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Introduction

Gauge theories are of major importance in physics, as they provide a successful description
of the standard model interactions. Quantum electrodynamics is the theory of the electromag-
netic interaction between fundamental particles. It is a gauge theory with the gauge group U(1)
and the electromagnetic four-potential its gauge field that describes the photon as the gauge
boson. Yang-Mills theory is the gauge theory based on the non-abelian gauge group SU(N).
The success of this theory is found in the standard model. The gauge-theory based on the group
SU(2) provides us with a description of the weak interaction; it has 3 gauge bosons being the
W± and the Z bosons. Quantum Chromodynamics, a theory of the strong interaction, is a
gauge-theory with SU(3) gauge and has 8 gauge bosons: the gluons. The complete standard
model is described as a gauge theory with gauge group U(1)× SU(2)× SU(3).

General relativity tells us that in the presence of matter and energy, space-time is curved.
Instead of a flat Minkowski space, space-time is a manifold: locally it looks like a flat space,
but it may have curvature which on the global level results in curves or topologically non-trivial
shapes.

Since space-time may be curved, it is important to formulate the physical theories in such a
way that they apply for any space-time, flat or curved. For gauge theories, the way to approach
this is by using the notion of vector bundles. Gauge fields can be regarded as connections on a
vector bundle, while matter fields are sections of this vector bundle. In this frame-work, gauge-
transformations arise naturally as bundle automorphisms and connections define a covariant
derivative of the sections, or fields. Also, the field strength tensor is defined as the curvature
form associated the connection.

Electromagnetism can be formulated on a curved space-time in terms of differential geom-
etry. The field strength tensor, which has the electric and magnetic field as its components, is
expressed as a two-form on the space-time manifold. Locally, this two form can be written as the
exterior derivative of a one-form: the vector-potential. Maxwell’s equations are translated into
the condition that the two-form must be closed and coclosed. However, when there are fields
that describe charged particles on space-time, we interpret the theory as a U(1) gauge theory.
If there are charged bosons that are described by a complex scalar field, the vector potential
one-form is interpreted as a connection on a line bundle over the space-time manifold. Similarly,
if there are fermions that are described by a spinor field, we can interpret the vector potential
as a connection on a line bundle which is associated with a Spinc bundle.

Using this interpretation, we can deduce a quantization result: in the presence of a boson,
the flux through a closed two-dimensional surface can only take integer values. This is known
as the Dirac quantization, named after Dirac who first proved this from general principles of
quantum mechanics [7]. From a mathematical viewpoint this quantization is very natural since
the flux can be identified with the first Chern class, which is integer valued. In the presence of
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2 INTRODUCTION

a fermion we have a similar result: the flux takes integer values, or half integer values depend-
ing on the existence of a Spin structure on the space-time manifold. This was first noticed by
Hawking and Pope [13].

Maxwell’s equations in vacuum, that is, in the absence of charged particles, show a remark-
able symmetry: they are invariant under interchanging of the electric and magnetic field. This is
called electromagnetic duality. The symmetry can be extended to a full SL(2,R) symmetry: any
invertible real linear transformation of the pair of fields leaves the equations invariant. These
transformations can be encoded in the Möbius transformations of a single parameter τ , that
contains the gauge coupling. When there is charged matter on the space-time manifold, we can
investigate how much of this symmetry remains. This is done by studying the partition function.
By use of the Dirac quantization it is possible to express the partition function as a sum over
the classical solutions: it takes the form of a theta function.

It turns out that the original SL(2,R) invariance is broken down to a discrete subgroup:
the partition function transforms as a modular form under SL(2,Z) Möbius transformations of
the parameter τ . The weights of this transformation depend on topological invariants of the
space-time manifold: the Euler characteristic and the signature.

With the Dirac quantization and the expression of the partition function as a theta function
at hand, we can calculate the partition function for a variety of four-dimensional manifolds. Del
Pezzo surfaces form an interesting family of four-manifolds.

Del Pezzo surfaces where named after the Italian mathematician Pasquale del Pezzo, who
studied them already at the end of the 19th century. Their relevance for physics came much
later in the area of superstring theory. According to superstring theory, space-time is 10 di-
mensional. We only experience a four-dimensional space-time because the other 6 dimensions
are compactified: they are rolled up into very small manifolds called Calabi-Yau manifolds. Del
Pezzo surfaces are of interest in string theory because they form surfaces inside this Calabi-Yau
manifolds: in some cases, Calabi-Yau manifolds can be described as fiber bundles over a del
Pezzo surface (for instance in [12]) or del Pezzo surfaces form special subvarieties of the Calabi-
Yau manifolds (for instance in [5]). Another link to string theory is the so called ’mysterious
duality’. This is a correspondence between the U-duality group of M-theory compactified on a
torus T k, and the diffeomorphism group of the complex projective plane with k points blown
up: a del Pezzo surface [14]. Lastly, del Pezzo surfaces admit a mirror symmetry: a duality
between del Pezzo surfaces and certain Landau-Ginzburg models [15].

From this perspective, it is interesting to describe electromagnetism on the four-dimensional
del Pezzo surfaces. In order to construct the partition function, it is important to understand the
topology of these del Pezzo surfaces. They can be described in terms of a blow-up construction:
we replace a point by a copy of the complex projective line. The partition function also depends
on a choice of metric on the manifold. This metric may be difficult to construct explicitly, but
it turns out we can solve for the metric of a number of parameters. We obtain the partition
function as a theta function, depending on a number of parameters.

The equations of motion of the non-abelian SU(N) gauge theories , Yang-Mills theories, in
Euclidean space-time, admit a special type of solutions: instantons. These instanton fields are
characterized by the fact that they have self-dual or anti-self-dual fields strength. The instantons
owe their name to the fact that these fields are localized in space and time.
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Given a SU(N) vector bundle over a compact space-time manifold, we can have many con-
nections on this bundle. The gauge group of this bundle has an action on the set of connections:
it transforms one connection into another. By identifying gauge-equivalent connections, we ob-
tain the space of all gauge-equivalent classes of connections, generically an infinite dimensional
object. However, when we focus only on the subset gauge equivalence classes of instantons, we
obtain, under some assumptions, a space which has the structure of a finite dimensional smooth
manifold. This space is the moduli space of instantons. By integrating certain cohomology
classes of the quotient space over this moduli space, one produces diffeomorphism invariants of
the underlying manifold. These invariants are called the Donaldson invariants.

This thesis is organized as follows. We set out the basic theory of vector bundles, connections
and curvature in chapter 1. This framework forms the mathematical basis of gauge theory on a
curved space-time.

In chapter 2 we describe electromagnetism on a Riemannian manifold, by fitting this in the
mathematical framework of Yang-Mills theory. We prove the Dirac quantization condition for
U(1)gauge theory with scalar fields and with spinor fields. The latter requires a short discussion
of the notion of a Spinc structure. This discussion is based on parts of [2], [3] and [16].

In chapter 3 we use the Dirac quantization condition to express the partition function in
terms of a theta function and study its modular transformation properties. Finally, the partition
function is calculated on two different kind of four-dimensional space-times, inspired by general
relativity. The material in this chapter is mainly based on the papers on electromagnetic duality
by Witten [25], Verlinde [23] and Olive and Alvarez [19].

The partition function for del Pezzo surfaces is calculated in chapter 4. First we give a
detailed description of the complex projective plane. We calculate the partition function for this
space and check explicitly the modular transformation properties prescribed by the previous
chapter. Then we describe how to construct the different del Pezzo surfaces by blowing up
points and how to calculate the topology of these spaces. Finally we explicitly construct the
partition function in terms of a number of parameters.

In chapter 5, we give a brief overview of the theory of moduli spaces of Yang-Mills instantons.
Most of this material is based on the book by Donaldson and Kronheimer [9] and on the seminar
organized by Gil Cavalcanti.

Finally, in the appendices one finds some mathematical background on principal G-bundles,
Spin structures and lattices. This is included in the appendices to fix notation and to clarify
some constructions. In appendix D we give a Dutch summary of this thesis, aimed at the reader
without a background in physics or mathematics.





CHAPTER 1

Instantons on four-manifolds

In this first chapter, we discuss the concepts of Yang-Mills theory and instantons. In math-
ematical language, Yang-Mills theory is a theory of vector bundles over manifolds, connections
on these vector bundles and their curvature. In physical language, it is a non-abelian gauge the-
ory, which plays a central role in the standard model by describing various interactions between
fundamental particles.

1. Bundles and connections

Let G be a Lie group and P → X be a principal G-bundle over a smooth manifold X.
We refer to Appendix A. for more information about principal G-bundles. Associated to such
a principal G-bundle is a vector bundle E → X with structure group G. We can define a
connection as follows:

Definition 1.1. A connection A on E is defined by a covariant derivative of sections of E:
it is a linear map

(1.1) ∇A : Ω0
X(E)→ Ω1

X(E)

which satisfies the Leibnize rule: ∇A(f.s) = f∇As+df.s, for a section s ∈ Ω0
X(E) and a smooth

function f : X → R/C.

Here, Ωp
X(E) denotes sections of ΛpT ∗X⊗E: p-forms with values in E. Let us denote g for

the Lie algebra of G and gE for the bundle of Lie algebras associated to the adjoint representation
of G, so gE is a subbundle of the endomorphism bundle End E = E ⊗ E∗. Below, we let E be
a complex vector bundle of rank n.

If we have the trivial bundle, E = X × Cn, there is an easy example of a connection:
a covariant derivative on this bundle is given by the ordinary differentiation of vector valued
functions. This connection is called the product connection.

Given a connection A on E and a Lie-algebra bundle-valued one-form a ∈ Ω1
X(gE), the

operator ∇A + a is again a covariant derivative

(1.2) ∇A + a : Ω0
X(E)→ Ω1

X(E)

where a acts on sections s ∈ Ω0
X(E) via the contraction

(1.3) Ω0
X(E)× Ω1

X(EndE)→ Ω1
X(E), (s, a) 7→ a(s).

Conversely, the difference of two connections on E is defined as an element of Ω1
X(E). This

means that the space of all connections on E, A , is an infinite dimensional affine space modeled
on Ω1

X(gE).
Things become clearer when we study the connections in local trivializations of the bundle.

Suppose that we have an open neighbourdhood U over which E is trivial, E|U ∼= U × Cn via a
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6 1. INSTANTONS ON FOUR-MANIFOLDS

trivialization τ : E|U → Cn. Using this trivialization τ , we can compare a connection A on E
with the product connection on U × Cn over U . In terms of covariant derivatives, we write

(1.4) ∇A = d+Aτ ,

where the connection form Aτ is a g-valued 1-form. Given local coordinates xi on U , we can
write this covariant derivative in coordinates as

(1.5) ∇A =
∑
i

∇idxi,

where

(1.6) ∇i =
∂

∂xi
+Aτi

for matrix-valued functions Aτi on U .
It is important to note that these connection matrices Aτ depend on the choice of trivial-

ization τ .

Definition 1.2. The gauge group of E, denoted G , is the group of all automorphisms
u : E → E that respect the structure on the fibers and cover the identity, i.e. act fiberwise.

There is a pointwise exponential map exp : Ω0
X(gE)→ G . The gauge group acts on the set

of connections by

(1.7) ∇u(A)s = u∇A(u−1s).

We can expand this as u∇Au−1 = ∇A − (∇Au)u−1, where we can take the covariant derivative
of u by regarding it as a section of the bundle End(E). Therefore,

(1.8) u(A) = A− (∇A)u−1.

If u is an automorphism of the trivial bundle X × Cn, and τ is a trivialization of E, then
(uτ) is a new trivialization and we have

Auτ = Aτ − {(d+ [Aτ , ·])u}u−1(1.9)
= Aτ − {du+Aτu− uAτ}u−1

= uAτu−1 − (du)u−1.

Hence, Aτ and Auτ are different matrices that represent the same connection.
Concluding, we can say that a connection on a bundle over X is given by the following data.

First, the bundle can be defined in terms of an open cover U = {Uα} of X and transition maps

(1.10) uαβ : Uα ∩ Uβ → U(n)

such that uαβ = u−1
βα and uab ubg uga = 1 on Uα ∩ Uβ ∩ Uγ . (See appendix A.) The connection

is given by matrix valued one-forms Aα on the open neighbourdhoods Uα such that

(1.11) Aα = uαβAβu
−1
αβ − (duαβ)u−1

αβ .
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2. Curvature

We can extend the de Rham complex

(1.12) Ω0
X

d−−→ Ω1
X

d−−→ ...
d−−→ Ωp

X
d−−→ Ωp+1

X
d−−→ ...

with exterior derivatives dA, defined by:
(1) dA = ∇A on Ω0

X(E)
(2) Leibniz rule: dA(ω ∧ θ) = (dω) ∧ θ + (−1)pω ∧ dAθ, for ω ∈ Ωp

X , θ ∈ Ωq
X(E)

The ordinary exterior derivative satisfies d2 = 0, but this need not be the case for dA. The
Leibniz rule gives us that

d2
A(ω ∧ θ) = d2

Aω ∧ θ + ω ∧ d2
Aθ,(1.13)

d2
A(fω) = ddf ∧ ω + fd2

Aω = fd2
Aω,(1.14)

for ω ∈ Ωp
X , θ ∈ Ωq

X(E) and f a smooth function on X. Hence, d2
A is an algebraic operator on

Ωp
X(E) that commutes with multiplication by smooth functions.

Definition 1.3. The curvature FA ∈ Ω2
X(gE) of a connection A is defined by

(1.15) dAdAs = FAs.

If we vary the connection A with an element a ∈ Ω1
X(gE), the curvature changes as

(1.16) FA+a = FA + dAa+ a ∧ a,
where a ∧ a denotes the combination of the wedge product with multiplication in gE ⊂ End E.

In a local trivialization, the curvature is given by a matrix of 2-forms

(1.17) F τA = dAτ +Aτ ∧Aτ .
In local coordinates, we can write the curvature matrix as F τA =

∑
i,j Fijdxi ∧ dxj , where

Fij = [∇i,∇j ] = [
∂

∂xi
+Aτi ,

∂

∂xj
+Aτj ](1.18)

=
∂Aτj
∂xi
− ∂Aτi
∂xj

+ [Aτi , A
τ
j ].

Under bundle automorphisms, the curvature transforms as

(1.19) Fu(A) = uFAu
−1.

Note that the set of connections with zero curvature, called flat connections, is preserved by the
gauge group G .

The curvature satisfies the Bianchi identity :

(1.20) dAFA = 0,

which follows easily from the definition of the curvature:

(1.21) (dAFA)s = dA(FAs)− FA(dAs) = dA(d2
As)− d2

A(dAs) = d3
As− d3

As = 0,

for any section s.

Example 1.4. Consider a complex vector bundle of rank 1, with Hermitian metric, i.e. a
line bundle L. This has structure group G = U(1) and we can identify the Lie algebra g with iR.
Then, in a local trivialization, a connection on L is represented by a purely imaginary one-form
A and the curvature is given by F = dA, as the commutator term vanishes since U(1) is abelian.
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We can write a gauge transformation as u = exp(iχ), where χ is a real-valued function on X,
and the connection transforms as

(1.22) A→ A− idχ
under this gauge transformation. Now the curvature is a purely imaginary two-form, which we
can write as F = −2πiω. Then ω is a real two-form which is closed by the Bianchi identity.
Therefore it defines a de Rham cohomology class [ω] ∈ H2(X; R). Now if we have another
connection A′ = A + a, the curvature is F ′ = F + da, hence [ω′] = [ω]. We see that the
cohomology class [ω] does not depend on the connection, so it only depends on the bundle L.
We can identify [ω] with the first Chern class c1(L), since line bundles are classified by their
first Chern class (Appendix A.).

3. (Anti-)Self-dual connections

If X is an oriented Riemannian manifold, we can consider the Hodge ∗-operator that trans-
forms p-forms into n− p-forms (n = dim X). It is defined by

(1.23) α ∧ ∗β = (α, β)dµ,

where (·, ·) is the natural metric on the p−forms and dµ is the Riemannian volume element.
Now if X is a four-manifold, this operation takes two-forms to two-forms and ∗2 = 1Λ2 . The
self-dual and anti-self-dual forms, Ω+

X ,Ω
−
X respectively, are the ±1 eigenspaces of ∗: they are

sections of the rank-3 bundles Λ±, where

(1.24) Λ2 = Λ+ ⊕ Λ−, α ∧ α = ±|α|2dµ, for α ∈ Λ±.
We can introduce a formal adjoint operator for the exterior derivative,

(1.25) d∗ : Ωp → Ωp−1,

such that

(1.26)
∫
X

(dα, β)dµ =
∫
X

(α, d∗β)dµ.

For oriented X, the adjoint operator can be expressed as d∗ = ± ∗ d∗. If X is compact, the
Hodge theorem says that each real cohomology class has a unique harmonic representative α:

(1.27) dα = d∗α = 0.

It is clear that the ∗ operator preserves these harmonic forms, so we get a decomposition

(1.28) H2(X; R) = H + ⊕H −,

where H ± are the self-dual and anti-self-dual harmonic 2-forms. These are the maximal positive
and negative subspaces for the intersection form

(1.29) Q : H2(X; R)×H2(X; R)→ R, (α, β) 7→
∫
X
α ∧ β

on de Rham cohomology and dim H + = b+, dim H − = b−. Note that the self-dual and
anti-self-dual forms are orthogonal with respect to the intersection form:

(1.30) α ∧ β = α ∧ ∗β = (α, β)dµ = (β, α)dµ = β ∧ ∗α = −β ∧ α = −α ∧ β = 0.

The above splitting can be extended to bundle-valued two-forms:

(1.31) Ω2
X(gE) = Ω+

X(gE)⊕ Ω−X(gE), Ω±X = Γ(Λ± ⊗ gE).
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Then, the curvature two-form FA splits as

(1.32) FA = F+
A ⊕ F

−
A .

We say a connection is self-dual is F−A = 0, and anti-self-dual if F+
A = 0.

Definition 1.5. An instanton is a self-dual or anti-self-dual connection on a vector bundle
over an oriented Riemannian manifold.

Example 1.6. If X = R4, the anti-self-dual condition F+
A = 0 translates into

F12 + F34 = 0(1.33)
F14 + F23 = 0
F13 + F42 = 0.

4. Yang Mills theory and instantons

Suppose we are given vector bundle E over a closed, oriented four-manifold X, with struc-
ture group SU(n). The Lie algebra su(n) consists of traceless skew-hermitian matrices A† = −A,
such that Tr(A2) = −|A|2:

(1.34) Tr(a2) = aijaji = −a∗ijaij = −|aij |2.

Then, for the curvature we have

Tr(FA ∧ FA) = Tr(F+
A ∧ F

+
A ) + Tr(F−A ∧ F

−
A ) = (F+

A , F
+
A )dµ− (F−A , F

−
A )dµ(1.35)

= −(|F+
A |

2 − |F−A |
2)dµ

Tr(FA ∧ ∗FA) = Tr(F+
A ∧ F

+
A )− Tr(F−A ∧ F

−
A ) = (F+

A , F
+
A )dµ+ (F−A , F

−
A )dµ(1.36)

= −(|F+
A |

2 + |F−A |
2)dµ = −|FA|2dµ.

It can be shown that the quantity
∫
X Tr(FA)2 =

∫
X |F

−
A |2 −

∫
X |F

+
A |2 does not depend on the

connection. It can be recognized as the second Chern class of the bundle E:

(1.37) 8π2c2(E) =
∫
X

Tr(F 2
A).

This is also called the instanton number. This quantity is positive (negative) when A is anti-
self-dual (self-dual).

We can define the Yang-Mills functional on the space A of connections A on E as the
square of the L2 norm of the curvature

(1.38) S(A) = ‖FA‖2 =
∫
X
|FA|2dµ = −

∫
X

Tr(FA ∧ ∗FA).

A connection A extremizes this functional if

δS = S(A+ a)− S(A) = 2
∫
X

(Fa, dAa)dµ+O(‖a‖2)(1.39)

= 2
∫
X

(d∗AFA, a)dµ+O(‖a‖2) = 0,

for all infinitesimal variations a, so the Euler-Lagrange equations are given by

(1.40) d∗AFA = 0.
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We see that the self-dual and anti-self-dual connections are solutions to these Euler-Lagrange
equations. Conversely,

(1.41)
∫
X
|FA|2dµ =

∫
X
|F±A |

2dµ∓
∫
X

Tr(FA)2 ≥ ∓
∫
X

Tr(F 2
A),

and we have an equality precisely when A is (anti-)self-dual.

The theory described here is the mathematical framework that underlies non-abelian gauge
theories in physics: Yang-Mills theory. This becomes much clearer when we express things in
local coordinates.

Let T a be a basis of traceless skew-hermitian matrices for g such that Tr(TaTb) = −1
2δab and

[Ta, Tb] = f cabTc. Then, a connection A is a one-form A = AaµTadx
µ. This defines the covariant

derivative dA = Dµdx
µ, with Dµ = ∂µ+[Aµ, ·]. The curvature is then F = 1

2Fµνdx
µ∧dxν where

Fµν = F aµνTa = ∂µAν − ∂νAµ + [Aµ, Aν ] = [Dµ, Dν ]. Also, we write ∗F = 1
2 F̃µνdx

µ ∧ dxν where
F̃µν = 1

2εµνρσF
ρσ.

Now,

Tr(F ∧ ∗F ) =
1
8
F aµνF

ρσ bTr(TaTb)εαβρσ dxµ ∧ dxν ∧ dxα ∧ dxβ(1.42)

= − 1
16
F aµνF

ρσ bδabεαβρσε
αβµν dx1 ∧ dx2 ∧ dx3 ∧ dx4

= −1
8
F aµνF

ρσ a(δµρ δ
ν
σ − δµσδνρ) d4x

= −1
4
F aµνF

µν a d4x.

We see that in local coordinates,

(1.43) S = −1
4

∫
X
d4xF aµνF

µν a,

which can be recognized as the action of Yang-Mills theory.
The Euler-Lagrange equation d∗AFA = 0 becomes

0 = ∗dA ∗ FA =
1
2
∗DαF

µνεµνρσdx
α ∧ dxρ ∧ dxσ(1.44)

=
1
2
DαF

µνεµνρσε
αρσβdxβ

=
1
2
DαF

µν(δαµδ
β
ν − δανδβµ)dxβ

= DµF
µνdxν ,

so

(1.45) DµF
µν = 0.

Similarly, the Bianchi identity reads

(1.46) DµF̃µν = 0.

Definition 1.7. A Yang-Mills instanton is a solution to the classical equations of motion
(1.45) given by the Yang-Mills action (1.43) on a Euclidean space-time, such that the action is
finite.



4. YANG MILLS THEORY AND INSTANTONS 11

Remark 1.8. Yang-Mills theory is the quantum field theory we obtain by quantizing the
theory described by the action (1.43). Yang-Mills plays an essential role in the standard model,
where it describes the various fundamental forces (except gravity). First of all, if we take
G = U(1), we have the theory of electromagnetism as described above, which leads to Quantum
Electrodynamics. This describes the electromagnetic force. Second, the so called electroweak
unification can be described by G = SU(2) × U(1), which is a theory that incorporates the
electromagnetic and the weak interaction. Third, G = SU(3) leads to the theory of Quantum
Chromodynamics, which is a theory that describes the strong interaction.





CHAPTER 2

Maxwell’s theory and the Dirac quantization condition on
four-manifolds

In this section, we consider the theory of electromagnetism formulated by Maxwell, on a
four-manifold. It is described in terms of a two-tensor Fµν , or equivalently, a real-valued two-
form F , called the field strength tensor. Its components can be recognized as the electric and
magnetic field. In the presence of scalar or spinor fields, the two-form F can be recognized as
the curvature of a connection on a line bundle. Therefore, electromagnetism can be viewed as
an abelian version of Yang-Mills theory. The cocycle condition of the line bundle imposes that
the flux of F through a two-dimensional surfaces can only take integer values, a result which is
known as the Dirac quantization condition. The discussion below is based on parts of [2], [3]
and [16].

1. (Co)Homology

Let M be a compact, connected, oriented Riemannian four-manifold, representing space-
time. Let Hk(M ; Z) denote the k-th homology group of M with integer coefficients, that is, the
k-cycles modulo the k-boundaries. Likewise let Hk(M ; Z) denote the k-th cohomolgy group.
We will assume that these groups are finitely generated.

The elements of finite order in these groups form the torsion subgroups, Tk(M ; Z) and
T k(M,Z): a k-cycle α has finite order N if N is the smallest integer such that

(2.1) Nα = ∂β,

for some k − 1-chain β. The quotients

(2.2) Fk(M ; Z) = Hk(M ; Z)/Tk(M ; Z), F k(M ; Z) = Hk(M ; Z)/T k(M ; Z)

are then finitely generated, free abelian groups, hence are of the form

(2.3) Fk(M ; Z) = Z⊕ Z⊕ ...⊕ Z = ⊕bkZ.
Here bk and bk are the k-th Betti numbers of M . Now the universal coefficient theorem for
cohomology implies that

(2.4) F k(M ; Z) ∼= Fk(M ; Z), T k(M ; Z) ∼= Tk−1(M ; Z).

Since we assume our space-time manifold to be connected, compact and oriented, it will satisfy
Poincaré duality:

(2.5) Hk(M ; Z) ∼= Hm−k(M ; Z),

where m is the dimension of M . The above statements imply that bk = bk = bm−k = bm−k.

If we have cycles Σ,Σ′ whose dimensions add up to m, generically they intersect in a finite
number of points. Since M is oriented, we can count these points with signs (by matching the
orientations) and the resulting integer is called the intersection number I(Σ,Σ′) of Σ and Σ′.

13
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This intersection number depends only on the homology classes of the cycles: if Σ = ∂V , another
cycle Σ′ will intersect it an even number of times, with opposite orientations such that the in-
tersection number vanishes. Moreover, only on the free parts of the cycles since the intersection
number vanishes on torsion elements:

(2.6) I(α, γ) = 1/N I(Nα, γ) = 1/N I(0, γ) = 0.

If we consider 4-manifolds, the 2-cycles will satisfy the above properties. Let Σ1,Σ2, ...,Σb2 be
a basis of the integer lattice F2(M ; Z) and let

(2.7) I(Σi,Σj) = (Q−1)ij .

Then Q−1 is obviously a symmetric b2 × b2 matrix with integer entries. Also, Poincaré duality
implies that it has determinant ±1. Therefore, Q has the same properties:

(2.8) Q = QT , detQ = ±1.

From the above we see that the free homology F2(M ; Z) forms an integer lattice with quadratic
form defined by Q−1. In general, this quadratic form is indefinite of type (b+, b−), where
b2 = b+ + b− and we define

(2.9) σ(M) = b+ − b−,

which is called the signature of M .

2. Flux and gauge transformations

Let F be a real valued, closed 2-form on M which defines the electromagnetic field strength.
The flux through a 2-cycle Σ is defined as

(2.10)
∫

Σ
F.

The flux depends only on the homology class of Σ and the cohomology class of F , since

(2.11)
∫
∂V
F =

∫
V
dF = 0,

∫
Σ
dB =

∫
∂Σ
B = 0,

for boundaries ∂V and coboundaries dB and where we used Stokes’ theorem. Moreover the flux
through torsion cycles vanishes:

(2.12)
∫
α
F =

1
N

∫
Nα

F =
1
N

∫
∂β
F = 0,

for a torsion cycle α of order N , hence the flux depends only on the free part of the homology
class of Σ. Now F defines an element of the de Rham cohomology, where real coefficients are
used, so there is no reason to suspect that the fluxes will be integral. However, we will see that
if there are other fields defined on M , the flux will only take integer values.

Let us take a cover U = {Uα} of M consisting of contractible open neighbourhoods Uα.
Since M is compact, we can take this cover to be finite. The Poincaré lemma tell us that F is
locally an exact form:

(2.13) F |Uα = dAα,
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for some one-form Aα
1. This one-form is called the vector potential.

Assuming that the overlaps Uαβ := Uα∩Uβ are also contractible, in each overlap the 1-forms
can only differ by an exact form:

(2.14) Aα −Aβ = dχαβ,

for a real valued function χαβ on Uαβ. Note that χαβ = −χβα.

Remark 2.1. The family of one-forms {Aα} defines a Čech 0-chain with values in the 1-
forms, defined on the open cover U = {Uα}. The difference Aα − Aβ is then precisely the
coboundary (δA)αβ, a Čech 1-chain with values in 1-forms, such that (2.14) is an equality of
Čech 1-chains:

(2.15) (δA)αβ = (dχ)αβ = dχαβ.

Consider the problem of well-defining the line integral

(2.16)
∫

Γ
A,

where Γ is a path in M . Suppose that the path Γ goes through an overlap Uαβ, let I, F be the
begin and endpoint of γ and let P be a point on γ in the overlap as in figure 1.

�
Q

Figure 1. A path Γ from a point I ∈ Uβ to a point F ∈ Uα, passing through a point P ∈ Uαβ .

A first guess for the line integral would be

(2.17) IP :=
∫ F

P
Aα +

∫ P

I
Aβ.

However, this expression depends on the choice of the point P : if we choose another point Q on
Γ in the overlap, we have

(2.18) IQ − IP = −
∫ Q

P
(Aα −Aβ) = −

∫ Q

P
dχαβ = χαβ(P )− χαβ(Q).

We see that

(2.19)
∫

Γ
A = IQ + χαβ(Q) =

∫ F

Q
Aα + χαβ(Q) +

∫ Q

I
Aβ

1A word of caution: the index α in Aα refers to the member of U on which the 1-form is defined and is not a
Lorentz-index!
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does not depend on the choice of Q, hence correctly defines the line integral. The next step is
to consider triple overlaps, by considering a third open set Uγ and point R ∈ Uαγ , P ∈ Uβγ as
in Figure 2.

�

Figure 2. The same path Γ connecting I and F , passing through the points P ∈ Uβγ , Q ∈ Uαβγ

and R ∈ Uγα.

If we ignore Uγ at first, the line integral is given by equation (2.19). Now we can use the
gauge transformation (2.14) to rewrite the line integral between P and R to obtain:

(2.20)
∫

Γ
A =

∫ F

R
Aα + χαγ(R) +

∫ R

P
Aγ + χγβ(P ) +

∫ P

I
Aβ + (χαβ(Q) + χβγ(Q) + χγα(Q)).

Note that the only Q dependence is in the last term. Now consider the gauge transformations
in each double overlap:

Aα −Aβ = dχαβ(2.21)
Aβ −Aγ = dχβγ

Aγ −Aα = dχγα,

which add up to

(2.22) d(χαβ + χβγ + χγα) = 0.

Now if we also assume that each triple overlap Uαβγ := Uα ∩ Uβ ∩ Uγ is contractible, we can
again invoke the Poincaré lemma to find that, on Uαβγ ,

(2.23) χαβ + χβγ + χγα = cαβγ ,

where cαβγ is a constant.

Remark 2.2. Adding the equations (2.21) to zero is equivalent with stating δ(δA) = 0. On
the right hand side, we therefore obtain the equation δdχ = dδχ = 0, where we switch the order
of the Čech and de Rham differentials acting on the Čech 1-chain {χαβ}. Using the Poincaré
lemma in each Uαβγ as above, we obtain the Čech 2-chain {cαβγ}. Then equation (2.23) reads
δχ = c and we immediately find δc = 0, such that c defines a Čech cocycle.
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Using this terminology, we see that the method used above illustrates a constructive way to
prove an isomorphism between de Rham cohomology and Čech cohomology. A cocycle represen-
tative F of a de Rham cohomology class defines a Čech cocycle {cαβγ} and vice versa. One still
has to show that this construction is independent of the choices made. The discussion above is
based on cocycles of degree 2, but the construction can be done for cohomology in any degree.
This is for instance explained in [3].

Next, we consider the flux through a 2-dimenional surface Σ. We would like to break up
the integral as surface integrals over each patch Uα ∩ Σ covering Σ:

(2.24)
∫

Σ
F =

∑
α

∫
Uα∩Σ

F.

This is not correct, since we are counting contributions from the overlaps double in this way.
However, we can subdivide our surface into non-overlapping regions Vα ⊂ Uα ∩ Σ as shown in
figure 3.

E↵�

S

P
Figure 3. The overlapping neighborhoods Uα and Uβ are replaced by two non-overlapping neigh-
borhoods Vα and Vβ , sharing a common border Eαβ .

By use of Stokes’ theorem, we write

(2.25)
∫

Σ
F =

∑
α

∫
Vα

F =
∑
α

∫
Vα

dAα =
∑
α

∫
∂Vα

Aα.

Since the contourintegrals over ∂Vα and ∂Vβ result in line integrals over the edge Eαβ in opposite
directions, its contribution to the contour integral may be expressed as

(2.26)
∫
Eαβ

(Aα −Aβ) =
∫
∂Eαβ

χαβ = χαβ(S)− χαβ(P ),

where we again used Stokes’ theorem.

The next step is again to consider triple overlaps. Assume for a moment that our surface Σ
can be covered by three open sets Uα, Uβ and Uγ (it is equal to the union of these three), which
have a triple overlap Uαβγ . We replace these open neighborhoods with three non-overlapping
neighborhoods, as shown in Figure 4.
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E��E�↵

E↵�

P

QR

S

Figure 4. Three neighborhoods Uα, Uβ , Uγ with non-empty triple intersection, replaced by non-
overlapping neighborhoods Vα, Vβ , Vγ .

We write∫
Σ
F =

∑
α

∫
∂Vα

=
∫
Eα

Aα − χαβ(P ) +
∫
Eβ

Aβ − χβγ(Q) +
∫
Eγ

Aγ − χγα(R)(2.27)

+(χαβ(S) + χβγ(S) + χγα(S))

= ”
∮
∂Σ
A” + cαβγ ,

where ”
∮
A” is the corrected contour integral which is independent of our choice of point P,Q,R

on the boundary ∂Σ. We can now easily generalize this construction to an arbitrary open cover
U :

(2.28)
∫

Σ
F = ”

∮
∂Σ
A” +

∑
Σ∩Uαβγ

cαβγ ,

where we define the contour integral ”
∮
∂ΣA” as

(2.29) ”
∮
∂Σ
A” =

∑
k

∫ Pk,k+1

Pk−1,k

Ak − χk,k+1(Pk,k+1),

which is a generalization of the above expression for the contour integral, where we have labeled
open sets U0, ..., UN covering ∂Σ and have chosen a point Pk,k+1 in each overlap ∂Σ∩Uk ∩Uk+1.
In particular, when Σ is a cycle, i.e. ∂Σ = 0, we see that

(2.30)
∫

Σ
F =

∑
Σ∩Uαβγ

cαβγ .
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This expression for the flux will play an important role in the derivation of the Dirac
quantization condition. We will see that the presence of scalar or spinor fields on M impose
restrictions on the possible values of the cαβγ , which lead to different quantization results.

3. The Dirac quantization condition for scalar fields

Suppose that next to the electromagnetic fields, we have a complex scalar field φ living
on our manifold. This means the theory we are describing is scalar electrodynamics, which is
governed by a Lagrangian of the form

(2.31) L =
1
2
|Dµφ|2 + U(|φ|2)− 1

4
FµνF

µν ,

where Dµ = ∂µ − i qb~ Aµ is the covariant derivative. We write qb for the coupling constant, i.e.
the electric charge carried by the bosonic field φ. We will however treat this scalar field as a
fixed background field: it will not show up in the path integral.

Now in each open neighbourhood Uα we have a well-defined vector potential 1-form Aα
and a complex valued function φα. On the overlaps Uαβ, the fields are related by U(1) gauge
transformations:

(2.32) Aα −Aβ = dχαβ, φα = ei
qb
~ χαβφβ.

In the triple overlap regions Uαβγ , the three fields φα, φβ and φγ are defined and are related
by the gauge transformations (2.32). To be self consistent, the gauge transformations should
satisfy

φα = ei
qb
~ χαβ ei

qb
~ χβγ ei

qb
~ χγα φα(2.33)

= ei
qb
~ (χαβ+χβγ+χγα) φα,

evaluated at any point in Uαβγ . This means that

(2.34) cαβγ = χαβ(P ) + χβγ(P ) + χγα(P ) ∈ 2π~
qb

Z,

for any P ∈ Uαβγ .

The mathematical formulation of the above statements is as follows. We consider a complex
line bundle L→M over M , which has gauge group G = U(1) and transition maps gαβ : Uαβ →
U(1). See appendix A. These transition functions satisfy the cocycle condition:

(2.35) gαβ gβγ gγα = 1.

The vector potential A above is then defined as a connection on L, which in a local triv-
ialization is represented by a 1-form Ãα = i q~Aα. Here, we identify the Lie-algebra g of U(1)
with i q~R to explicitly bring in the physical constants. The covariant derivative defined by this
connection is then precisely the one appearing in the Lagrangian (2.31).

Under a change of local trivialization, a connection transforms as (1.11), which now reads

(2.36) Ãα = Ãβ − (dgαβ) g−1
αβ ,

since the gauge transformations are complex numbers, hence commute with A.
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The scalar field φ above is precisely a section of the line bundle and is locally given by
complex functions φα : Uα → C. Under a change of trivialization this section transforms as

(2.37) φα = gαβ φβ.

Now if we write our transition functions as

(2.38) gαβ = exp(i
qb
~
χαβ), χαβ : Uαβ → R,

the change under local trivializations (2.36) and (2.37) precisely produces the gauge transfor-
mations (2.32). Then, cocycle conditon implies that

(2.39) cαβγ ∈
2π~
qb

Z,

where cαβγ is defined as above.
Since the flux through a 2-dimensional surface could be expressed in terms of the cαβγ

(equation 2.28), we conclude that the flux through a 2-cycle Σ is quantized:

(2.40)
qb

2π~

∫
Σ
F =

qb
2π~

∑
Σ∩Uαβγ

cαβγ ∈ Z.

This is known as the Dirac quantization condition and was first proven by Dirac in [7].

Remark 2.3. We see above that F is the curvature of a connection A on a line bundle L.
Following Example 1.4, the curvature F defines a de Rham cohomology class q

2π~F , which we
can identify with the first Chern class of L. Since c1(L) ∈ H2(M ; Z), we have that 〈c1(L),Σ〉 =∫

Σ
q

2π~F ∈ Z for a integer homology class Σ ∈ H2(M ; Z).
This can also be seen from the discussion in this section: the Čech 2-cocycle {cαβγ} is

precisely the image of the Čech 1-cocycle {gαβ} under the coboundary map in (A.10). Therefore,
{cαβγ} ∈ H2(M ; Z) is the first Chern class of L, and the sum over the Uαβγ ∩Σ is the evaluation
of this cocycle on the integer cycle Σ.

4. The Dirac quantization condition for spinor fields

In the previous section we saw that the presence of a complex scalar field φ on the manifold
M resulted in a quantization of the flux through cycles. Now we investigate what happens in
the presence of a complex spinor field ψ, so we are describing quantum electrodynamics on M :

(2.41) L = ψ̄(iγµDµ −m)ψ − 1
4
FµνF

µν .

We write qf for the charge carried by the fermonic field ψ, the coupling constant for the coupling
to the gauge field. Just as in the scalar case, we treat the spinor field as a background field.
Again, we cover M with finitely many open sets Uα and on each open neighbourdhood we have
a complex spinor wave function ψα and a 1-form Aα. Now next to the U(1) gauge freedom,

ψα → ei
qf
~ χψα,(2.42)

Aα → Aα + dχ,

the spinors also transform under local SO(4) transformations:

Fα → LFα,(2.43)
ψα → S(L)ψα,
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where Fα is an oriented frame (vierbein) and L 7→ S(L) is a lift SO(4)→ Spin(4). This lift has
an ambiguity in sign, because Spin(4)/Z2

∼= SO(4).
In each overlap Uαβ, the fields are related by gauge transformations:

Aα = Aβ + dχαβ(2.44)
Fα = LαβFβ

ψα = S(Lαβ)ei
qf
~ χαβψβ.

Just as in the scalar case, we have self-consistency conditions in triple overlaps Uαβγ :

Lαβ Lβγ Lγα = I(2.45)

ψα = ei
qf
~ (χαβ+χβγ+χγα)S(Lαβ)S(Lβγ)S(Lγα)ψα.

This means that

(2.46) S(Lαβ)S(Lβγ)S(Lγα) = ±I =: εαβγI

where we cannot determine the sign since it depends on the choice of lift SO(4)→ Spin(4) and
hence

(2.47) ei
qf
~ (χαβ+χβγ+χγα) = ei

qf
~ cαβγ = εαβγ .

We saw before that the flux through Σ was given in terms of the cαβγ ’s, hence we find that

(2.48) ei
qf
~

R
Σ F =

∏
Uαβγ∩Σ6=∅

εαβγ =: (−1)w(Σ).

To find out how this sign depends on the cycle Σ we should formulate the above in more
mathematical language in terms of a Spinc-structure.

4.1. Spinc-structures. The notion of a Spinc structure is essentially the ’complex ana-
logue’ of a Spin structure, and we will see that the requirements for existence of a Spinc structure
are less restrictive then for the existence of a Spin Structure.

Definition 2.4. The Spinc group is defined as

(2.49) Spinc(n) := Spin(n)×Z2 U(1) = Spin(n)× U(1)/(−1,−1).

Note that the Spinc group fits in the short exact sequence

(2.50) 0→ Z2 → Spinc(n)
ξ−→ SO(n)× U(1)→ 1,

where the subgroup Z2 ⊂ Spinc(n) is generated by the element [(−1, 1)] = [(1,−1)]. Just as
in the case of a Spin-bundle, we look for a principal Spinc(n)-bundle over M which admits a
bundle mapping

(2.51) PSpinc
ξ−→ PSO(n) × PU(1),

which is Spinc-equivariant in the sense that ξ(pg) = ξ(p)ξ(g) for all p ∈ PSpinc(n) and g ∈
Spinc(n). As in Appendix A, we consider the exact sequence

(2.52) H1(M ;Spinc(N))
ξ−→ H1(M ;SO(n))⊕H1(M ;U(1)) w2+c̃1−−−−→ H2(M ; Z2),
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which is determined by the coefficient sequence (2.50). The coboundary map associates to a
pair (PSO(N), PU(1)) an element w2(PSO(N)) + c̃1(PU(1)) where c̃1 is the mod 2 reduction of the
first Chern class of PU(1). Under the isomorphism appendix this map can be written as

(2.53) H1(M ;SO(n))⊕H2(M ; Z)
w2+ρ−−−→ H2(M ; Z2),

where ρ is the mod 2 reduction. Remember (appendix A.) that a compatible set of choices of
transition functions exists if and only if this boundary map vanishes. We conclude that given a
bundle PSO(n), we can find the bundle in (2.51) if w2 is de mod 2 reduction of an integral class.

Definition 2.5. Let PSO(n) be a principal SO(n)-bundle over M . A Spinc-structure
on PSO(n) consist of a principal U(1)-bundle PU(1) and a principal Spinc(n)-bundle with a
Spinc(n)-equivariant map

(2.54) PSpinc(n) −→ PSO(n) × PU(1).

From the above argument we can conclude:

Theorem 2.6. PSO(n) carries a Spinc(n)-structure if and only w2(P ) is the mod 2 reduction
of an integral class.

Analogous to the definition of a spin-manifold we can define the notion of a Spinc-manifold:

Definition 2.7. An oriented Riemannian manifold with a Spinc(n)-structure on its tangent
bundle is called a Spinc-manifold.

Then Theorem 2.6 has an immediate consequence:

Corollary 2.8. An orientable manifold M admits Spinc-structure if and only if w2(M)
is the mod 2 reduction of an integral class.

Remark 2.9. A lift of the second Stiefel-Whitney class has components in H2(M ; Z) and
T 3(M ; Z), which can be seen as follows. Since w2 ∈ H2(M ; Z2), it satisfies δw2 = 0 mod 2. We
can then either have δw2 = 0 in which case w2 lifts to H2(M ; Z), or δw2 = 2λ for some 3-cochain
λ. Since δ2 = 0 we see that δλ = 0 such that λ ∈ T 3(M ; Z). For the space-time four-manifolds
that we are considering (compact, oriented), we have the isomorphisms

(2.55) T 3(M ; Z) = T2(M ; Z) = T 2(M ; Z) = T1(M ; Z),

where the middle equality is due to Poincaré duality and the other two equalities are due to the
universal coefficient theorem. Because of these isomorphisms, we can always say that w2 is the
mod 2 reduction of an integral class, since T 3 and T 2 are isomorphic. Therefore, the space-time
M admits a Spinc-structure.

Let us consider the problem of constructing a spinor bundle (a bundle of irreducible complex
modules for the Clifford algebra over a manifold M . We can do this locally: let {Uα}α∈A be
an open cover of M such that Uα1 ∩ ... ∩ Uαk is contractible for all α1, ..., αk. On each Uα, the
bundles can be trivialized and we can find a complex spinor bundle of the form Uα × V where
V is an irreducible complex Clifford module.

Now to compare the fibers over different neighbourhoods, we try to find transition functions
g̃αβ : Uαβ → Spin(n), such that ξ ◦ g̃αβ = gαβ : Uαβ → SO(n) are the corresponding transition
functions for PSO(M) = PSO(TM). As described in appendix B, the existence of such a spin
bundle is equivalent to the vanishing of the Čech cocycle

(2.56) wαβγ := g̃αβ g̃βγ g̃γα : Uαβγ −→ Z2 = ker(ξ)
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in H2(M ; Z2).
Now suppose that the class [w] ∈ H2(M ; Z2) is the mod 2 reduction of an integral class

W ∈ H2(M ; Z) and let λ be the complex line bundle corresponding to W , that is, c1(λ) = W .
We try to find a square root of λ: a line bundle λ1/2 with (λ1/2)2 = λ. Let γαβ : Uαβ → U(1) be
the transition functions for λ. Since Uαβ is contractible, we can take a square root γ̃αβ := γ

1/2
αβ :

Uαβ → U(1). These transition functions are compatible if the Čech cocycle

(2.57) w′αβγ := γ̃αβ γ̃βγ γ̃γα : Uαβγ → Z2 = ker(σ)

vanishes. Here σ(z) = z2 in the exact sequence

(2.58) 0→ Z2 → S1 σ−−→ S1 → 0.

As in Appendix A, we obain a long exact sequence where the class [w′] ∈ H2(M ; Z) is just the
coboundary of λ ∈ H1(M ;S1). We get the following commutative diagram:

H1(M ;S1) H1(M ;S1) H2(M ; Z2)

H2(M ; Z) H2(M ; Z) H2(M ; Z2)

σ w′

∼= ∼=

2 ρ

=

Since the diagram commutes, we see that [w′] = ρ(c1(λ)) = ρ(W ) = [w] such that [w] + [w′] = 0
mod 2. By adjusting by coboundaries, we can choose g̃αβ and γ̃αβ such that wαβγ ≡ w′αβγ . Then
the transition functions

(2.59) Gαβ = g̃αβ × γ̃αβ : Uαβ −→ Spin(n)×Z2 S
1 = Spinc(n)

satisfy Gαβ Gβγ Gγα ≡ 0, hence they determine a global bundle. We see that while we cannot
construct the spinor bundle and λ1/2 separately, we can construct their product.

4.2. Quantized flux. We return to the physics picture. The vierbein Fα defined above
represents a section of the principal bundle PSO(TM). The SO(4) gauge transformations on
this vierbein represent the action of the structure group SO(4) and we see that the vierbeins on
different trivializations are related by transition functions on the overlaps.

The spinor field ψ represents a section of the complex spinor bundle associated to PSpinc(TM).
The gauge transformations that relate the spinor fields over different overlaps,

(2.60) ψα = S(Lαβ) ei
qf
h
χαβ ψβ,

now play the role of the transition functions Gαβ defined above. The relation Gαβ Gβγ Gγα ≡ 0,
or wαβγ ≡ w′αβγ is then translated into the relation

(2.61) ei
qf
~ cαβγ ≡ εαβγ

on each triple overlap Uαβγ . We can now distinguish 2 cases:
(1) If the second Stiefel-Whitney class of M vanishes, M admits a Spin structure and the

Spinc-structure above actually comes from a Spin structure. In this case we can choose
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the transition functions such that wαβγ ≡ 0, which translates into εαβγ ≡ 1 on Uαβγ .
This implies that q

~cαβγ ∈ 2πZ so that

(2.62)
qf

2π~

∫
Σ
F =

qf
2π~

∑
Uαβγ∩Σ6=∅

cαβγ ∈ Z

and w(Σ) = 0 mod 2 where w(Σ) is defined as in (2.48).
(2) If w2(M) does not vanish, we have that wαβγ 6= 0, hence εαβγ = −1 on some (possibly

all) Uαβγ . On these triple overlaps we have then qf
~ cαβγ ∈ π + 2πZ. Now we have that

eπiw(Σ) = (−1)w(Σ) =
∏

Uαβγ∩Σ6=∅

εαβγ =
∏

Uαβγ∩Σ6=∅

ei
qf
~ cαβγ(2.63)

= exp{i
qf
~

∑
Uαβγ∩Σ6=∅

cαβγ} = exp{i
qf
~

∫
Σ
F}

where we use the definition (2.48) in the second, relation (2.61) in the third and relation
(2.30) in the last equality. This implies that

(2.64) 1 = exp{i
qf
~

∫
Σ
F − πiw(Σ)}

and we see that

(2.65)
qf

2π~

∫
Σ
F − 1

2
w(Σ) ∈ Z.

Remark 2.10. From the relation (2.65) we obtain that, if w2 does not vanish, it is impossible
for the charge qf to vanish. This reflects the fact that w2 forms the obstruction for the existence
of a Spin-structure on M , which would describe a neutral spinor. Therefore, if w2 does not
vanish, there only exists a charged spinor on M , described by a Spinc-structure.

4.3. Identifying w(Σ) with the intersection number. Since we have spinor fields on
M , we can evaluate the index of the Dirac operator DA acting on them [16]:

(2.66) Ind( /DA) =
{
e

1
2
cÂ(M)}

}
[M ] = −1

8
σ(M) +

qf
8π2~2

∫
M
F ∧ F,

where c is the first Chern class of the bundle λ above, so 1
2c = qf

2π~ [F ] and we use that the Â
class is given by Â(M) = 1− 1

24p1(X) = 1− 1
8σ(M) [9]. We can evaluate the integral by making

use of the Riemann bilinear identity :

(2.67)
∫
M
F ∧ F =

b2∑
i,j=1

∫
Σi

F Qij

∫
Σj

F,

where Σ1, ...,Σb2 is a basis of 2-cycles for F2(M ; Z) as defined above. The flux through each Σi

is quantized as in (2.65), so we can write

(2.68)
qf

2π~

∫
Σi

F = mi +
1
2
wi,

where mi ∈ Z and wi := w(Σi) as defined above. We can now evaluate the integral such that
the index becomes

(2.69) Ind( /DA) = −1
8
σ +

1
2

(m+
w

2
)TQ(m+

w

2
) =

1
8

(wTQw − σ) +
1
2

(mTQm+mTQw),
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where we have arranged the quantities mi and wi in column vectors w and m. In this treatment,
the integers mi are fixed integers determined by the particular field strength F . Therefore, the
second term in (2.69) depends on F , whereas the first term only depends on the topology of M
and the homology classes of the Σi. Since the index has to be an integer for every choice of F ,
we conclude that the individual terms in (2.69) must be integer, such that

wTQw = σ + 8Z,(2.70)

mTQm = mTQw + 2Z.(2.71)

The second equation shows that w is a characteristic vector for the integer valued unimodular
matrix Q (see Appendix C). Since this has to hold for every choice of integers mi, we can insert
the choice mi = (Q−1)ik for some k ∈ {1, ..., b2} into (2.71) to obtain:

mTQm = (Q−1)ki Qij (Q−1)jk = δkj (Q−1)jk = (Q−1)kk(2.72)

mTQw = (Q−1)ki Qij wj = δkjwj = wk,(2.73)

hence we see that

(2.74) wk = −(Q−1)kk + 2Z = −I(Σk,Σk) + 2Z.

We conclude that w(Σ) = −I(Σ,Σ) mod 2 for a general 2-cycle Σ.

5. The field strength F

According to the discussion above, in the flux through a cocycle Σ becomes quantized when
there are background scalar or spinor fields on M . In the case of a scalar field, carrying a charge
qb, we have seen that the flux becomes quantized:

(2.75)
qb

2π~

∫
Σ
F = m(Σ) ∈ Z,

for all Σ ∈ H2(X; Z). We can choose closed 2-forms F 1, ..., F b2 , representing a basis of F 2(X;Z)
which is dual to the basis Σi:

(2.76)
qb

2π~

∫
Σi

F j = δji .

Due to the quantization condition we can now expand F in term of the basis:

(2.77) F =
b2∑
i=1

miF
i, mi = m(Σi).

In the case of a spinor field, which couples to the gauge field with a charge qf , we can
distuinguish 2 cases:

• The intersection form is even, I(Σ,Σ) ∈ 2Z for all Σ ∈ H2(M ; Z). This implies that
w(Σ) = 0 mod 2 for all Σ and we get

(2.78)
qf

2π~

∫
Σ
F = m(Σ) ∈ Z

for all Σ ∈ H2(M ; Z). Note that this implies that the second Stiefel-Whitney class
vanishes, hence that M actually admits a Spin structure.
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As in the scalar case, we can expand F as

(2.79) F =
b2∑
i=1

miF
i,

where we choose the basis F j such that

(2.80)
qf

2π~

∫
Σi

F j = δji .

• The intersection form is not even: I(Σ,Σ) is odd for some 2-cycle Σ. Then the flux is
quantized as

(2.81)
qf

2π~

∫
Σ
F +

1
2
I(Σ,Σ) = m(Σ) ∈ Z.

In this case,

(2.82) F =
b2∑
i=1

(mi +
wi
2

)F i,

where wi = w(Σi).

Remark 2.11. In the presence of scalar and spinor fields, there must be a compatibility
condition between the bosonic and fermonic charges, depending on the parity of the intersection
form. If I(Σ,Σ) is even for all Σ, we obtain from (2.75) and (2.78) that

(2.83)
qb
qf

=
mb

mf
∈ Q,

where mb,mf ∈ Z, so the ratio between the charges can be any rational number.
If I(Σ,Σ) is odd for some 2-cycle Σ, we obtain from (2.75) and (2.81) that

(2.84)
qb
qf

=
2mb

2mf + 1
,

where mb,mf ∈ Z. We see that the ration between the charges is restricted to the fraction of
an even and an odd integer.



CHAPTER 3

The Maxwell partition function and electromagnetic duality on
four-manifolds

We consider electromagnetism on a four-manifold Minkowskian manifold M, which is de-
scribed by a gauge theory with the Abelian gauge group G = U(1). In vacuum, the classical
Maxwell’s equations admit a symmetry of interchanging the electric and the magnetic field, which
is called electromagnetic duality. This symmetry can be extended to an action of SL(2,R). We
investigate how much of this symmetry remains in the quantum theory when there are back-
ground matter fields. We do a Wick rotation to describe the theory on a Riemannian manifold
M and we study the partition function, which can be expressed as a sum over the classical solu-
tion to the equations of motion, with the help of the Dirac quantization condition. We will see
that the symmetry is reduced to an action of (a subgroup of) SL(2,Z). Most of the discussion
is based on parts of [23], [25] and [19].

1. Electromagnetic duality

The idea of electromagnetic duality arose already when Maxwell wrote down his equations.
Maxwell’s equations in vacuum,

∇ · ~E = 0, ∇× ~E = −∂t ~B,(3.1)

∇ · ~B = 0, ∇× ~B = ∂t ~E,(3.2)

are invariant under the transformation

(3.3) ( ~E, ~B)→ ( ~B,− ~E).

When we group ~E and ~B together in single complex vector field ~E + i ~B, Maxwell’s equations
can be grouped together to just two equations:

∇ · ( ~E + i ~B) = 0,(3.4)

∇× ( ~E + i ~B) = i∂t( ~E + i ~B).(3.5)

These equations now exhibit the symmetry

(3.6) ~E + i ~B → eiφ( ~E + i ~B).

Note that (3.3) is a special case of this symmetry. Note that the energy and momentum density
of the electromagnetic field,

1
2
| ~E + i ~B|2 =

1
2

(E2 +B2),(3.7)

1
2i

( ~E + i ~B)× ( ~E + i ~B) = ~E × ~B,(3.8)

are invariant under (3.6).

27
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However,

(3.9)
1
2

( ~E + i ~B)2 =
1
2

(E2 −B2) + i ~E · ~B,

is not invariant under the rotation (3.6). In a Lorentz covariant formulation of Maxwell’s theory,
the electric and magnetic fields combine together in the field strength tensor Fµν = ∂µAν−∂nuAµ
and the real and imaginary parts of (3.9) can be recognized as the terms in the Lagrangian density

(3.10) L = −1
4
FµνF

µν − 1
4
Fµν

∗Fµν ,

where ∗Fµν = 1
2ε
µνρσFρσ. We conclude that the rotation (3.6) is a symmetry of the equations

of motion, but not of the action. We can extend this idea as follows.
Let us consider the action

(3.11) S(τ) =
−1
16π

∫
M
d4x
√
−g
[

4π
g2
FµνF

µν +
θ

2π
1
2
εµνρσF

µνF ρσ
]
.

We can write in terms of differential forms F = 1
2Fµν dx

µ ∧ dxν :

(3.12) S(τ) =
1

4π

∫
M

[
4π
g2
F ∧ ∗F +

θ

2π
F ∧ F

]
=

1
4π

∫
M
F ∧ τ̂F,

where the operator τ̂ = τ1 + ∗τ2 = θ
2π + ∗4π

g2 and ∗ is the Hodge star operator. Here g is the
gauge coupling constant and θ is often called the theta angle. The space-time manifold M is
supposed to have Minkowskian signature. The real parameters τi can be combined into a single
complex parameter

(3.13) τ = τ1 + iτ2 =
θ

2π
+ i

4π
g2
.

The Lagrangian density appearing in this action is generalization of (3.10) by adding coupling
constants and written in terms of differential forms instead of in coordinates.

Remark 3.1. The action (3.12) is written in terms of a dimensionless field strength tensor
F , which is related to the field strength tensor of the previous chapter by a factor q

~ . As a result,
the fluxes will be dimensionless, such that the Dirac quantization condition becomes

(3.14)
1

2π

∫
Σ
F ∈ Z,

in the presence of scalar fields, and a similar expression in the presence of spinor fields. Note
also that the charge q, which played the role of the gauge coupling constant, is now replaced by
the more conventional gauge coupling constant g.

The equations of motions of the Maxwell action (3.12) are

(3.15) d ∗ F = 0.

Also, due to the Bianchi identity, F is a closed form:

(3.16) dF = 0.

We can rewrite these two equations as

(3.17)

{
dτ̂F = 0
dF = 0.
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These equations of motion are invariant under the linear transformations

τ̂F → τ̂ ′F ′ = aτ̂F + bF(3.18)
F → F ′ = cτ̂F + dF

where a, b, c, d are real constants. Under these transformations, τ transforms as

(3.19) τ → τ ′ =
aτ + b

cτ + d
.

Analogous to the invariance of (3.7) under the rotation (3.6), we can investigate the effect of the
transformation (3.18) on the symmetric energy momentum tensor Tµν , which can be written as

(3.20) Tµν =
1
g2

[
1
2
Fµρ Fσν g

ρσ − 1
4
gµνFαβF

αβ] =
τ2

4π
(FµρgρσFσν + ∗Fµρ gρσ ∗ Fσν),

where we have written F = Fµνdx
µ ∧ dxν/2, ∗F = ∗Fµνdxµ ∧ dxν/2. The densities (3.7) form

components of this tensor, so it is natural to ask under which conditions the energy momentum
tensor remains invariant under (3.18). The energy momentum tensor changes as

(3.21) Tµν → (ad− bc)Tµν ,
and we conclude that Tµν is invariant if and only if ad− bc = 1. These transformations form the
group SL(2,R). The natural question to ask next is: what happens when we are not in vacuum
but there are charged particles on M. In the previous chapter we have seen that the presence
of charged background fields leads to the quantization of fluxes trough two-cycles, this will play
a role in the discussion below. We will investigate how the transformations (3.18) translate into
a transformation of the partition function of this Maxwell action.

2. The partition function

In vacuum, we have seen that the energy density is invariant under the duality transforma-
tion. Therefore, we consider the partition function

(3.22) Z(τ) = Tr
(
e−H(τ)

)
,

which can be expressed in the path integral

(3.23) Z(τ) =
∫

DA eiSE [A].

The Euclidean Maxwell action is a Wick rotated version of the previous action:

(3.24) SE(τ) =
1

4π

∫
M
F ∧ τ̂F

where the space-time manifold M is now a closed, oriented, smooth Euclidean manifold M and
τ̂ = τ1 + i ∗ τ2 with τ as before. The Hodge dual operator ∗ a quires a factor i due to the Wick
rotation.

To evaluate the path integral, we expand it around the stationary points of the exponent,
that is, field configurations for which the classical action is minimized. These field configurations
are precisely the solutions to the equations of motion for the Maxwell action:

(3.25) d ∗ F = 0.

Since F is also closed, dF = 0 by the Bianchi identity, this means that the classical solutions F
are harmonic 2-forms. On our manifolds, the Hodge theorem is applicable and states that there
is a unique harmonic representative in each cohomology class. This means that we can choose
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a basis of harmonic representatives F 1, ..., F b2 for H2(X; Z). Using the Dirac quantization, we
see that the classical solutions are precisely given by

(3.26) F =

{
miF

i, in the presence of scalar fields,
(mi + wi

2 )F i in the presence of spinor fields,

where wi = I(Σi,Σi) mod 2. We see that each field configuration that is a stationary point
for the classical action, is specified by the b2 integers m1, ...,mb2 . So the expansion around
the stationary point results in a sum over the lattice F 2(X; Z). After the expansion around a
stationary point, we can perform the Gaussian integral over the quadratic fluctuations. The
resulting determinant is equal for all stationary points and is of the form

(3.27) ∆(τ) = C τ
b1−1

2
2 ,

where C is a constant and b1 denotes the first Betti number of M [25]. We conclude that
the partition function is given by this factor ∆ multiplying a summation over a lattice, of the
exponentiated action which is given in term of the coordinates of the lattice point. Note that
since the action is quadratic in the fields, this expansion method is exact.

3. Scalar fields

We start by considering the case of coupling to scalar fields or spinor fields with Q even.
We can write the contribution of the first term in the action as

(3.28)
iτ1

4π

∫
M
F ∧ F = iπτ1m

TQm.

For the second term, note that if F i is harmonic, its Hodge dual ∗F i is also harmonic.
Therefore, it can be expressed in terms of the basis F j so there should be a matrix G such that

(3.29) ∗ F i = Gij(Q−1)jkF k.

Now since the metric on M is Euclidean, the Hodge star satisfies ∗2 = 1, so the matrix G should
satisfy

(3.30) (GQ−1)2 = 1.

Therefore we can write the second term as

(3.31)
−τ2

4π

∫
M
F ∧ ∗F = −πτ2m

TGm.

For general p-forms α, β, the Hodge operator is defined by α ∧ ∗β = (α, β)dµ, where (·, ·) is the
natural metric on the forms and dµ is the volume form on M . From this we can conclude that
the matrix G must be symmetric and positive definite. Putting the terms together, we see that
the action, evaluated at a stationary point, takes the form

(3.32) iS(m) = iπmTΩ(τ)m,

where Ω is the b2 × b2 matrix Ω(τ) = τ1Q+ iτ2G. The partition function becomes

(3.33) Z(τ) = ∆(τ)
∑
mi∈Z

eiπm
TΩ(τ)m.
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Let us define the theta function

(3.34) Θ(Ω) =
∑
mi∈Z

eiπm
TΩm,

such that Z(τ) = ∆(τ)Θ(τ). Note that, due to the positive definiteness of G, convergence of
this theta function is guaranteed.

Remark 3.2. Instead of choosing a harmonic representative F i in each integer cohomology
class and express the partition function as a sum of the integer lattice H2(M,Z), we can choose
a basis of harmonic forms by choosing bases of self-dual and anti-self-dual harmonic forms for
H ±. These form another basis for the vector space H2(M,R) and in this basis the matrices Q
and G are expressed as

Q = b+(1)⊕ b−(−1)(3.35)
G = b+(1)⊕ b−(1).

The partition function becomes a sum over the integral lattice Λb+,b− spanned by the (anti)-self-
dual harmonic forms:

(3.36) Z(τ) = ∆(τ)
∑

(m+,m−)∈Λb+,b−

eπiτ(m+)2−πiτ̄(m−)2
.

Remark 3.3. While the intersection form Q is determined by the topology of M , the G
determines on metric on M . In general, a manifold can admit multiple metrics, therefore the
partition function will depend on such a choice of metric. According to Verlinde [23], the moduli
space of possible partition functions is given by the double quotient

(3.37) Mb+,b− = SO(b+)× SO(b−)\SO(b+, b−)/SO(b+, b−,Z).

This can be seen as follows. In a basis of (anti-)self-dual harmonic forms, the intersection matrix
is written Q = b+(1)⊕b−(−1) and the relation (GQ−1)2 translates into GTQG = Q, the defining
relation of the group SO(b+, b−). Therefore, the possible metrics G are elements of SO(b+, b−).
Now given such G, the partition function is written as (3.36). Now when we act with an element
A = A+ ⊕ A− ∈ SO(b+) × SO(b−) on the lattice Λb+,b− , this corresponds to a change of basis
for H + and H + separately and will leave the quadratic forms (3.35) invariant. Therefore, the
action will not change when we conjugate G with A: ATGA and G determine the same partition
function.

The quotient by the discrete group in (3.37) corresponds to transformations that preserve
the lattice Λb+,b− , therefore conjugating G with these transformations will determine the same
partition function.

We conclude that the moduli space of possible partition functions is of dimension
(3.38)

dimSO(b+, b−)−dim(SO(b+)×SO(b−)) =
1
2

(b++b−)(b++b+−1)−1
2
b+(b+−1)−1

2
b−(b−−1) = b+×b−,

or equivalently, that the partition function depends on b+ × b− parameters, or moduli.

Let us investigate some properties of this partition function. First, for A ∈ GL(b2,Z)
(invertible b2 × b2 matrices with integer coefficients), we have that

(3.39) Θ(ATΩA) =
∑
m∈Zb2

eiπ(Am)TΩ(Am) =
∑

m′∈AZb2

eiπm
′TΩm = Θ(Ω),
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since for A ∈ GL(b2,Z), Ax = y ∈ Zb2 always has an integer solution x ∈ Zb2 , so AZb2 = Zb2 .
Also, if B is a symmetric matrix with integer entries, which are even on the diagonal, we have

(3.40) Θ(Ω +B) = Θ(Ω),

which can be seen by splitting B = D + T + T T , where D is a diagonal matrix and T a strictly
upper triangular matrix. Then mTBm = mTDm+ 2mTTm and we see that Θ is invariant if D
has even entries.

Consider the Poisson resummation formula:

(3.41)
∑
ni∈Z

f(xi + ni) =
∑
mj∈Z

e2πmjxj f̂(mj),

where

(3.42) f̂(kj) =
∫
dnxe−2πikjxjf(x).

In our case, f(x) = eiπxjΩjmxm , hence

f̂(k) =
∫
dnxe−2πikjxjeiπxjΩjmxm(3.43)

=
∫
dnxe−

1
2

(−2πiΩjm)xjxm−2πikjxj

=

√
(2π)n

det(−2πiΩ)
e

1
2

(−2πi)kjkm(Ω−1)jm

=
1√

det(−iΩ)
e−iπkj(Ω

−1)jmkm ,

where n = b2 and we ’completed the square’ and used a standard expression for Gaussian
integrals. Plugging this back into the resummation formula results in

(3.44)
∑
ni∈Z

eiπ(xj+nj)Ωjk(xk+nk) =
1√

det(−iΩ)

∑
mi∈Z

e2πimjxje−πimj(Ω
−1)jkmk .

Now if we set x = 0 in the above expression, we obtain

(3.45) Θ(−Ω−1) =
√

det(−iΩ)Θ(Ω).

We note that the matrix Ω(τ) has some special properties:

(3.46) Ω(τ + 1) = Ω(τ) +Q, Ω(−1/τ) = −QΩ(τ)−1Q.

The first property is obvious, the second property follows from (3.30). Also, we have that√
det(−iΩ(τ) =

√
det(−iΩ(τ)Q−1Q)(3.47)

=
√

det (τ1I + iτ2GQ−1)
√

det(−iQ)

= τ b
+/2τ̄ b

−/2(−i)(b+−b−)/2 = τ b
+/2τ̄ b

−/2e−
2πiσ

8 ,

where we used that Q and GQ−1 have b± eigenvalues ±1 and σ = b+ − b− is the signature of
M .
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Now using the transformation properties (3.39), (3.40) and (3.45) we obtain

Θ(−1/τ) = e−
2πiσ

8 τ b
+/2τ̄ b

−/2Θ(τ)(3.48)
Θ(τ + 1) = Θ(τ) if Q is even, and
Θ(τ + 2) = Θ(τ) otherwise.

Also note that ∆(τ) = Im(τ)
b1−1

2 satisfies

∆(τ + 1) = ∆(τ)(3.49)

∆(−1/τ) = Im(−1/τ)
b1−1

2 = (
1
τ τ̄

Im(τ))
b1−1

2 = τ
1−b1

2 τ̄
1−b1

2 ∆(τ).

Definition 3.4. A complex function F of τ transforms as a modular form of weight (u, v)
for a subgroup Γ of SL(2,Z) if

(3.50) F

(
aτ + b

cτ + d

)
= (cτ + d)u(cτ̄ + d)vF (τ),

for
(
a b
c d

)
∈ Γ.

Above, we see the actions of the elements

(3.51) S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
∈ SL(2,Z).

Since S and T generate the group SL(2,Z), we conclude that, if the intersection matrix Q is
even, the partition function transforms (up to a phase) as a modular form for SL(2,Z) of weights

(3.52) (u, v) =
1
2

(1− b1 + b+, 1− b1 + b−) =
1
4

(χ+ σ, χ− σ),

where χ =
∑

i(−1)ibi is the Euler characteristic.
Also, S and T 2 generate a subgroup Γθ ⊂ SL(2,Z) which is called the Hecke subgroup. We

conclude that if Q is odd, the partition function is a modular form for Γθ with weights as in
(3.52).

4. Spinor Fields

Recall that in the case of a spinor field on a manifold M , the fluxes were quantized with a
possible half shift wi

2 with wi = I(Σi,Σi) mod 2 = Qii mod 2 and the classical solutions could
be written as

(3.53) F = (mi + wi)F i.

Hence, repeating the above calculations but using the above classical saddle point results in a
partition function of the form

(3.54) Z(τ) = ∆(τ)Θ(τ)w,

where

(3.55) Θ(τ)w =
∑
mi∈Z

eiπ(m+w/2)TΩ(τ)(m+w/2).

Remark 3.5. In the case that the intersection form is even, Qii = 0 mod 2, the partition
function (3.55) is equal to the partition function in the scalar field case. So in this case we can
immediately conclude that the partition function transforms as a modular form under SL(2,Z).
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4.1. Theta functions. To investigate the transformation properties of the partition func-
tion (3.55), let us reconsider the Poisson resummation formula (3.41). Suppose that the nj are
coordinates of a point l in a lattice Λ with basis ei and that the mj are the coordinates of a
point l∗ in the dual lattice with basis fj . See appendix C. We write

(3.56) l = njej , l∗ = mjfj , and let X = xjej ,

and express the matrix Ω as

(3.57) Ω̂ = fjΩjkf
T
k , (Ω̂−1) = ej(Ω−1)jkeTk ,

then (3.41) becomes

(3.58)
∑
l∈Λ

eiπ(X+l)·Ω̂·(X+l) =
1√

det(−iΩ)

∑
l∗∈Λ∗

e2πil∗·Xe−iπl
∗·Ω̂−1·l∗ .

Now suppose the lattice is integral and that Z(Λ) = Λ∗/Λ = {0, λ1, ..., λ|Z(Λ)|−1} such that

(3.59) Λ∗ = Λ ∪ (λ1 + Λ) ∪ ... ∪ (λ|Z(Λ)|−1 + Λ),

and we have λ0 = 0.If we choose X = λα, then e2πil∗·X = e2πil∗·λα = e2πiλα·λβ if l∗ ∈ λβ + Λ
(since λα · l ∈ Z by definition of Λ∗). We can then rearrange (3.58) to∑

l∈Λ

eiπ(X+l)·Ω̂·(X+l) =
∑

l∈λα+Λ

eiπl·Ω̂·l(3.60)

=
1√

det(−iΩ)

∑
β=0

e2πiλα·λβ
∑

l∈λβ+Λ

eiπl·Ω̂
−1·l.

Now let Ω = Ω(τ) = τ1Q + iτ2G, with Q = ei · ej as before, but now not necessarily
unimodular, but | detQ| = |Z(Λ)|. In this case, we can write

(3.61) Ω̂(τ) = τ1 + iτ2Ĝ, where Ĝ = fiGijf
T
j .

Then Ĝ2 = 1, which follows from (3.30). We can then easily see that

(3.62) Ω̂(1/τ) =
1
τ τ̄

(τ1I − iτ2Ĝ) = Ω̂−1(τ).

Let us define the theta functions

(3.63) Θα(τ) =
∑

l∈λα+Λ

eiπl̇̂Ω·l, for α = 0, 1, ..., |Z(Λ)| − 1.

We can rewrite (3.58) in terms of these theta functions as

(3.64) Θα(τ) = τ−b
+/2τ̄−b

−/2 e
2πiσ/8

|Z(Λ)|
∑
β

e2πλα·λβΘβ(−1/τ).

The factor |detQ|−1/2 = |Z(Λ)|−1/2 is put in because now Q might not be unimodular. We
recognise (3.64) as the S-transformation. The T -transformation is;

Θα(τ + 1) = eπiλ
2
αθα(τ) if Λ is even,(3.65)

Θα(τ + 2) = e2πiλ2
αθα(τ) if Λ otherwise,

which can easily be seen form the fact that l · l = (λα + l′) · (λα + l′) = λ2
α + 2λα · l′ + l′ · l′ and

this last term is even depending on Λ being even or not. We see that the action of SL(2; Z), or
Γθ, transforms the different theta functions into each other.
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For an element B ∈ SL(2,Z), we define the action on a function F of τ as

(3.66) Au,v(B)F (τ) = (cτ + d)−u(cτ̄ + d)−vF
(
aτ + b

cτ + d

)
.

Definition 3.6. An N -tuple of functions (F1(τ), ..., FN (τ)) forms a vector modular form
for some subgroup Γ of SL(2,Z) if there exist matrices Mki(B) such that

(3.67) Au,v(B)Fi(τ) =
N∑
k=1

FkMki(B),

for all B ∈ Γ. (u, v) are called the weights of this vector modular form F .

From the transformations (3.64), (3.65) and (3.66), we see that the theta functions Θα form
a vector modular form of weights (u, v) = (b+/2, b−/2) with matrices

Mαβ(S) =
e−2πiσ/8√
|Z(Λ)|

e−2πiλα·λβ(3.68)

Mαβ(T ) = eπiλ
2
αδαβ

Mαβ(T 2) = e2πiλ2
αδαβ.

Note that these matrices are independent of the choice of representatives λα: a different
representative λ′α = λα + x, x ∈ Λ results in the same matrix, since x · λβ ∈ Z for all β.

4.2. Theta functions on cohomology lattices. If the lattice Λ is unimodular, Z(Λ) = 1
and the construction above gives us only 1 theta function. The matrices D above are then just
phase factors.

If the lattice Λ is odd, there is an sublattice Λeven such that |Z(Λeven)| = 4. Let c be a
characteristic element of Λ, then we can decompose Λtotal = Λ∗even as

(3.69) Λtotal = Λeven ∪ Λodd ∪ (Λeven + c/2) ∪ (λodd + c/2),

and we choose as representatives for these cosets:

(3.70) 0, λv, λs =
c

2
, λt = λv +

c

2
,

where λv ∈ Λodd. Following the construction above, this gives four theta functions Θα, α =
0, v, s, t. We can now explicitly calculate the matrices given by (3.68) and (3.69). As an example:

(3.71) λs · λt =
c

2
· (λv +

c

2
) =

1
2

(λ2
v + 2Z) +

1
4
c2 =

1
2

(2k + 1) +
1
4

(σ + 8Z),

where we use that c is characteristic, λv ∈ Λodd and c2 = σ mod 8 (Appendix C.). Hence:

(3.72) e−2πiλv ·λt = −1 · e−2πiσ/4.

The total result is:

(3.73) Mαβ(S) =
ϕ

2
e−2πiλα·λβ =

ϕ

2


1 1 1 1
1 1 −1 −1
1 −1 ϕ2 −ϕ2

1 −1 −ϕ2 ϕ2


and

(3.74) Mαβ(T ) = diag(1,−1, ϕ−1, ϕ−1),
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where ϕ = e−2πiσ/8.
Now with the help of these matrices, we see that

(3.75) A(S)(T )(Θs −Θt) = ϕ3(Θs −Θt), A(T )(Θs −Θt) = ϕ−1(Θs −Θt).

The other linear independent theta functions are given by Θ0,Θv and Θs+Θt. We can also
consider the following combinations:

Θ1 := Θ0 + Θv =
∑

l∈Λeven

eπil·Ω·l +
∑
l∈Λodd

eπil·Ω·l =
∑
l∈Λ

eπil·Ω·l,(3.76)

Θ2 := A(T )Θ1 = Θ0 −Θv =
∑

l∈Λeven

eπil·Ω·l −
∑
l∈Λodd

eπil·Ω·l,(3.77)

Θ3 := ϕ−1A(S)Θ2 = (Θs + Θt) =
∑

l∈c/2+Λ

eπil·Ω·l =
∑
l∈Λ

eπi(l+c/2)·Ω·(l+c/2).(3.78)

Note that Θ1 is precisely the theta function associated to the original lattice Λ.
These 3 theta functions form an alternative basis for the 3-dimensional subspace of theta

functions orthogonal to Θs −Θt. In this basis, the transformation matrices are

(3.79) M(S) = ϕ

 1 0 0
0 0 1
0 1 0

 ,M(T ) =

 0 1 0
1 0 0
0 0 ϕ−1

 .

Now consider the partition function Z(τ) defined above for a manifold with odd intersection
form. It is given as a sum over the free cohomology lattice F 2(M ; Z), which an unimodular lattice
and now assumed to be odd. The partition function associated to the case of coupling to a scalar
field is given by (3.33) and is precisely

(3.80) Z1(τ) = Zscalar(τ) = ∆(τ)Θ1(τ).

We can also define a partition function by

(3.81) Z2(τ) = ∆(τ)Θ2(τ),

which equals Zscalar but with the angle θ replaced by θ+ 2π. The third partition function is the
one relevant for the case of coupling to a spinor field:

(3.82) Z3(τ) = Zspinor(τ) = ∆(τ)Θ3.

Recall that the element w ∈ F 2(X; Z) formed a characteristic element for this free cohomology
lattice, so we can identify w with c above and we conclude that Z3 is precisely the partition
function (3.55).

Taking into acount that ∆(τ) transforms as a modular form of weight 1
2(1− b1, 1− b1), we

conclude:
For a manifold with odd cohomology lattice, the partition functions Zi defined above trans-

form as a vector modular form of weigths 1
2(1 − b1 + b+, 1 − b1 + b−) = 1

4(χ + σ, χ − σ) under
the action of SL(2,Z), with transformation matrices given in (3.79).

Finally, we point out that the product of the 3 partition functions,

(3.83) Zprod(τ) = Z1(τ) · Z2(τ) · Z3(τ) = ∆(τ)3Θ1(τ)Θ2(τ)Θ3(τ),

transforms as a modular form itself, with weights 3
4(χ+ σ, χ− σ). The transformation matrices

are in this case just phase factors:

(3.84) M(S) = ϕ3, M(T ) = ϕ−1.
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This composite partition function corresponds to a physical system in which there are three
gauge fields. Two gauge fields couple to a scalar field and are described by a Maxwell action with
electromagnetic parameter τ and τ + 1 respectively, while the third gauge field, also described
by a Maxwell action with parameter τ , couples to a spinor field. The SL(2,Z) action on the
partition function then permutes these fields.

In the next chapter, we will use the formalism constructed above to calculate the partition
function on a type of four-manifolds, called del Pezzo surfaces.

5. Two physical examples

So far, we have considered the space-time manifolds to be compact and endowed with a
Riemannian metric. These properties allow us to use Poincaré duality and the Hodge theorem.
However, the space-time manifolds that appear in physics (as solution to the Einstein equations
of general relativity), are usually non-compact and have a Minkowskian metric.

In some cases we can extend the discussion above to more ’physical’ space-times. First, we
can always Wick rotate the metric to obtain a Riemannian metric on the manifold. Also, one
can use various extensions of the above theorems for non-compact spaces. However, sometimes
the topology of the space-times is nice enough to avoid these extensions. Let us consider some
examples inspired by general relativity.

Example 3.7. Consider four-dimensional de Sitter space dS4. It is a maximally symmetric
solution to the Einstein field equations in vacuum, with a positive cosmological constant Λ. The
metric can be written as

(3.85) ds2 = −dτ2 + L2 cosh2(τ/L)dΩ2
3,

where L2 = Λ/3. This space-time has the topology of (is homeomorphic to) R × S3. We can
Wick rotate the metric to obtain a Euclidean metric:

(3.86) ds2 = dτ2
E + L2 cos2(τE/L)dΩ2

3.

The Euclidean time τE = iτ is now periodic with period β = 2πL (often identified with inverse
temperature). We see that the Wick rotated version of dS4 is homeomorphic to S4. The
homology and cohomology of S4 are very simple:

(3.87) Hk(S4; Z) = Hk(S4; Z) =

{
Z, if k = 0, 4,
0 otherwise.

Now consider electromagnetic fields on dS4. Let F be a solution to the equations of motion and
the Bianchi identity, dF = d∗F = 0. Since H2 vanishes, F must be an exact two-form: F = dA
for some globally defined one-form. Now, the L2-norm of F is

(3.88) ‖F‖2 =
∫
S4

(F, F )dµ =
∫
S4

(A, d∗F ) = 0,

so we conclude that F = 0.
Therefore, there is only one classical solution, F = 0, and the action vanishes. The ex-

pansion of the path integral around classical saddle point results in the expansion around this
trivial solution, and only the determinant factor remains:

(3.89) ZS4(τ) = ∆(τ) = Cτ
−1/2
2 = C

g√
4π
,

where we use that b1 = 0. We see that this partition function is a modular form of weight
(1/2, 1/2), precisely as prescribed above, since χ = 2 and σ = 0.
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In the case of the Sitter space, the vanishing of the second (co)homology leads to a trivial
result for the partition function. Let us consider an example with a slightly more non-trivial
topology: that of the Schwarzschild black hole.

Example 3.8. Consider the Schwarzschild black hole in four dimensions. It is a solution to
the Einstein field equations with zero cosmological constant. After Wick rotating, we can write
the metric as

(3.90) ds2 = (1− 2m
r

)dτ2 + (1− 2m
r

)−1dr2 + r2dΩ2
2,

in a coordinate chart outside the horizon r > 2m and the imaginary time τ ∈ [0, 8πm) [10].
Also, dΩ2

2 = dθ2 + sin2 θdφ2 is the line element on S2 in spherical coordinates. This manifold
is known as the Euclidean Schwarzschild manifold, here denoted M , and is homeomorphic to
R2 × S2. The homology of this manifold can be calculated using the Künneth formula or by
using that this space is homotopy equivalent to S2:

(3.91) Hk(R2 × S2; Z) ∼= Hk(S2; Z) =

{
Z, if k = 0, 2,
0 otherwise.

So the second homology of the Schwarzschild black hole has one generator and we can think of
this embedded S2 as being the horizon of the black hole. To express the partition function as a
sum, we should find an harmonic form ω dual to S2:

(3.92)
∫
S2

F = 1.

Since the manifold is not compact, Hodge theorem is not applicable. However, we can find the
harmonic form explicitly. One can check that the closed two-form

(3.93) ω =
1
2

(
1
r2
dτ ∧ dr + sin θdθ ∧ dφ),

is self-dual, hence harmonic. It satisfies

(3.94)
1

2π

∫
S2

ω|S2 =
1

4π

∫
S2

sin θdθ ∧ dφ =
1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ = 1,

so that 1
2πω is indeed dual to S2 and the cohomology class of 1

2πω is the generator of H2(R2 ×
S2; Z) ∼= H2(S2; Z) = Z. Also, ω satisfies

(3.95)
1

4π2

∫
M
ω ∧ ω = 2.

Therefore, we find that the intersection matrix is given by Q = (2).
Now let F be any solution to the equations of motion, dF = d ∗F = 0. If there are charged

scalar fields on the Schwarzschild manifold, there will be a quantization of the flux: we can cover
the S2 with a finite open cover and repeat the arguments of the previous chapter. We deduce
that

(3.96)
1

2π

∫
S2

F ∈ Z.

Therefore, F is an integer multiple of the self-dual harmonic form ω. This expression is also
valid for the spinor case since the intersection form is even.



5. TWO PHYSICAL EXAMPLES 39

Using this information, we can expand the path integral as a sum over classical solutions
and we find that the partition function for the Schwarzschild black hole becomes:

(3.97) Z(τ) = ∆(τ)
∑
m∈Z

e2πiτm2
= C

g√
4π

∑
m∈Z

e2πiτm2
.

Remark 3.9. It is important to note that the constant C, although denoted the same for
both examples, depends on the geometry of the specific space-time. In the non-compact case,
this constant may be a somewhat ill-defined, as it contains the determinant of the Laplacian,
which can be an infinite quantity in a non-compact space-time.





CHAPTER 4

The Maxwell partition function on del Pezzo surfaces

In this chapter, we will use the Dirac quantization condition and the expansion method to
express the partition function as a lattice sum, to explicitly calculate the partition function on
a type of manifolds called del Pezzo surfaces.

Before we can calculate the partition function on the del Pezzo surfaces, we need to have
an understanding of their topology. We will see that they can be described in terms of a blow
up construction.

We start by describing in detail the complex projective plane CP2, which will be the basic
object from which to construct the del Pezzo surfaces.

1. The complex projective plane CP2

The complex projective space is the space of all lines in Cn. It can be constructed from
Cn \{0} by identifying (z0, ..., zn) ∼ (λz0, ..., λzn) for all λ ∈ C \{0}. We denote the equivalence
class of (z0, ..., zn) by [z0, ..., zn]. The collection of charts (Ui, φi) where Ui ⊂ CPn is the set of
all points [z0, ..., zn] with zi 6= 0 and

(4.1) φi : Ui → Cn, φi([z0, ..., zn]) = (
z0

zi
, ...,

zi−1

zi
,
zi+1

zi
, ...

zn
zi

)

form an atlas for CPn.

To compute its cohomology, we give CPn a cell complex (CW-) structure:
we have an inclusion CPn−1 ⊂ CPn by

(4.2) [z0, ...zn−1] 7→ [z0, ..., zn−1, 0].

Now we can represent a point in CPn by (z0, ..., zn−1, t), where t =
√

1− ziz̄i. Then we can
define a map

(4.3) D2n → CPn, (z0, ..., zn−1) 7→ [z0, ..., zn−1, t],

such that the boundary S2n−1 of D2n maps to CPn−1. This gives CPn a CW-structure with 1
cell in each even dimension.
We put this in the cellular chain complex

(4.4) ...→ Hn+1(Xn+1, Xn)→ Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2)→ ,

where each Hn(Xn, Xn−1) is freely generated with a generator for each cell in dimension n and
Xn denotes the n-skeleton of CPn. Now the homology of this complex is isomorphic to that of
CPn, so that we have

(4.5) Hk(CPn; Z) =
{Z if k even

0 if k odd.

41
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From the construction of the CW-complex and the definition of the cellular chain complex we
immediately get that H2(X; Z) is generated by the 2-cell of CP1 embedded in CPn:

(4.6) C ⊃ D2 → CPn, z 7→ [z,
√

1− |z|2, ..., 0].

If we use Poincaré duality (since CPn is compact, oriented and without boundary) we get

(4.7) Hk(CPn; Z) =
{Z if k even

0 if k odd.

To describe H2(CPn; Z) we have a nice representative for the generator: the Fubini-Study
form. CPn is Kähler, so we can write the Kähler form as ω = i∂∂̄Ki on Ui, for some complex
function Ki on Ui. The Fubini-Study form is defined by Ki = log 1 + |zα|2 where zα = wα

wi
for

[w0, ..., wn] ∈ Ui.
We find that

(4.8) ω = i∂∂̄K0 =
i

(1 + |zα|2)2

(
(1 + |zα|2)δαβ̄ − z̄αzβ̄

)
dzα ∧ dzβ̄ := igαβ̄dz

α ∧ dzβ̄.

This form is obviously closed: ∂∂∂̄ω = 0 and ∂̄∂∂̄ω = −∂∂̄∂̄ω = 0, hence dω = 0. However,
to construct the partition function, we need to expand the 2-form F into a basis of harmonic
forms. Below, we explicitely check that ω is harmonic.

We can choose the metric on CPn to be the Fubini-Study metric: g = 2gαβ̄dz
α⊗dzβ̄, where gαβ̄

is as above. Now we want to compute ∗ω.
Locally, we can write a general (p, q)-form on an m-dimensional complex manifold as

(4.9) ψ = ψαpβ̄q
dzαp ∧ dzβ̄q ,

where we define

αp = (α1, ..., αp), α1 < α2 < ... < αp, 1 ≤ αi ≤ n,(4.10)
αn−p = (αp+1, ..., αn), αp+1 < ... < αn, 1 ≤ αi ≤ n,

such that (α1, ..., αn) is a permutation of (1, ..., n). We define the same for βq and βn−q. Now
we denote gᾱβ = (gαβ̄)−1 and

(4.11) ψᾱpβq = gᾱ1λ1 ...gµ̄qβqψλ1...λpµ̄1...µ̄q .

Also, define gαpαn−pβqβn−q = gα1...αnβ̄1...β̄n
= det(gαiβ̄k).

Now we define the (n− q, n− p)-form [18]

(4.12) ∗ ψ = (i)n(−1)
1
2
n(n−1)+pn gαqαn−qβpβn−p ψ

β̄pαqdzαn−q ∧ dzβ̄n−p .

In our case of CP2 we have that in the chart U0:

(4.13) gαβ̄ =
1

(1 + |zα|2)2

(
1 + |z2|2 −z̄1z2

−z1z̄2 1 + |z1|2
)
,

such that det(gαβ̄) = 1
(1+|zi|2)3 , and

(4.14) gᾱβ = (1 + |zα|2)
(

1 + |z1|2 z̄1z2

z1z̄2 1 + |z2|2
)
,
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such that

∗w = ii2(−1)3(det(g)g11dz2 ∧ dz2 + (−det(g))g21dz2 ∧ dz1 +(4.15)

(−det(g))g12dz1 ∧ dz2 + det(g)g22dz1 ∧ dz1)

=
i

(1 + |zα|2)2
((1 + |z1|2)dz2 ∧ dz2 − z1z̄2dz

2 ∧ dz1 − z̄1z2dz
1 ∧ dz2 + (1 + |z2|2)dz1 ∧ dz1)

= gαβ̄dz
α ∧ dzβ̄ = ω,

where we used that g1212 = −g2112 = −g1221 = g2121 = det(g) = (1 + |zα|2)−3. In the other
charts U1 and U2 the calculation in identical. We conclude that ω is globally selfdual.
Note that if we would have taken the manifold CP2, which has the opposite orientation of CP2,
which is induced from an opposite orientation of C2, then ∗ becomes −∗ such that ω will be
anti-selfdual.
Since the adjoint of d satisfies d∗ = ± ∗ d∗, we get that d∗ω = 0 such that ω is harmonic:
∆ω = (d+ d∗)2ω = 0.

The Fubini-Study form satisfies
∫

CP1 ω = 1, where this CP1 denotes the embedded copy of
CP1 in CP2. This implies that ω is dual to CP1. The intersection matrix is given by

(4.16) Q(ω, ω) =
∫

CP2
ω ∧ ω =

∫
CP2

ω ∧ ∗ω =
∫

CP2
dµ(ω, ω) = 1,

where we assume that ω is normalized. Following the notation of the previous chapter, Σ = CP1

is a representative for the generator (a basis of 1 element) H2(M ; Z) = F2(M ; Z) = Z and F = ω
is a harmonic representative for the dual generator of H2(M ; Z) = F 2(M ; Z) = Z.

We conclude the following topological data for CP2:
• The (co)homology lattice H2 = F2 = H2 = F 2 = Z.
• The Euler characteristic χ = 3, which we can conclude from the CW-structure.
• The intersection form Q = 1, hence b+ = 1, b− = 0 and σ = 1.

Remark 4.1. If we had taken CP2 instead of CP2, we would obtain Q = −1, G = 1, since

(4.17)
∫

CP2
ω ∧ ω = −

∫
CP2

ω ∧ ∗ω = −1.

1.1. Electromagnetic duality on CP2. We can explicitely check the formalism developed
in the previous chapter. As concluded above, the cohomology lattice Λ of CP2 is equal to Z.
The partition function in the presence of scalar fields is given by

(4.18) ZCP2,sc(τ) = ∆(τ)
∑
n∈Z

eπin
2τ = ∆(τ) ΘCP2,sc(τ).

Note that ΘCP2,sc is of the form Θ1, defined in the previous chapter. We compute the T - and
S-transformation:

ΘCP2,sc(τ + 1) =
∑
n∈Z

eπin
2τeπin

2
=
∑
n∈2Z

eπin
2τ −

∑
n∈1+2Z

eπin
2τ = Θ2(τ),(4.19)

ΘCP2,sc(τ + 2) = Θ2(τ + 1) =
∑
n∈Z

eπin
2τe2πin2

= Θ1(τ) = ΘCP2,sc(τ).(4.20)

For the S-transformation we can use another form of the Poisson Resummation Formula [6]:

(4.21)
∑
n∈Z

exp(−πan2 + bn) =
1√
a

∑
k∈Z

exp(−π
a

(k +
b

2πi
)2).
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Using a = −iτ, b = 0, this gives us

τ−1/2 ΘCP2,sc(−1/τ) = τ−1/2
∑
n∈Z

eπin
2·(−1/τ) = τ−1/2

√
−iτ

∑
n∈Z

eπin
2τ(4.22)

=
√
−i
∑
n∈Z

eπin
2τ = e−πi/4

∑
n∈Z

eπin
2τ = κ ΘCP2,sc(τ).

Note that 1 ∈ Z is a characteristic element for Λ, as x ≡ x2 mod 2. This is to be expected,
since Q = 1, hence w(Σ) = I(CP1,CP1) = 1. Λ is of course an odd lattice, an we can define the
even sublattice 2Z. Then Λtotal splits into cosets with representatives (following notation of the
previous chapter):

(4.23) λ0 = 0, λv = 1, λs = 1/2 and λt = 3/2.

In the presence of spinor fields, the flux (through CP1) is fractionally quantized and the Maxwell
partition function is then:

(4.24) ZCP2,sp(τ) = ∆(τ)
∑
n∈Z

eπi(n+ 1
2

)2τ = C∆(τ) ΘCP2,sp(τ).

First note that

(4.25) ΘCP2,sp(τ) =
∑
n∈Z

eπi(n+ 1
2

)2τ =
∑

n∈(1/2+2Z)

eπi(n+ 1
2

)2τ +
∑

n∈(3/2+2Z)

eπi(n+ 1
2

)2τ = Θ3(τ).

We compute:

ΘCP2,sp(τ + 1) =
∑
n∈Z

eπi(n+ 1
2

)2τeπi(n+ 1
2

)2
=
∑

n ∈ Zeπi(n+ 1
2

)2
eπi(n

2+n+ 1
4

)(4.26)

=
∑
n∈Z

(−1)n
2+neπi(n+ 1

2
)2τe2πi/8 = κ−1Θ3(τ),

ΘCP2,sp(τ + 2) =
∑
n∈Z

eπi(n+ 1
2

)2τe2πi(n+ 1
2

)2
= (e2πi/8)−2Θ3(τ) = κ−2Θ3(τ),(4.27)

where κ = e−2πiσ/8. For the S-transformation we use again (4.21) with a = −iτ, b = πi:

τ−1/2ΘCP2,sp(−1/τ) = τ−1/2
∑
n∈Z

eπi(n+ 1
2

)2·−1/τ = τ−1/2
√
−iτ

∑
n∈Z

eπin
2τ+πin(4.28)

=
√
−i
∑
n∈Z

eπin
2τ+πin2

= e−πi/4
∑
n∈Z

eπin
2(τ+1) = κΘ2(τ).

We see that these expressions precisely match with the descriptions of the previous chapter.

Remark 4.2. For CP2, Q = −1, G = 1 and we can define the partition functions

ZCP2
,sc

(τ) = ∆(τ) ΘCP2
,sc

(τ) = ∆(τ)
∑
m∈Z

eπim
2(−τ1+iτ2),(4.29)

ZCP2
,sp

(τ) = ∆(τ) ΘCP2
,sp

(τ) = ∆(τ)
∑
m∈Z

eπi(m−
1
2

)2(−τ1+iτ2).(4.30)



2. BLOWING UP A POINT 45

2. Blowing up a point

When we construct the del Pezzo surfaces, we need a mathematical construction called
blowing up.

Let M be a complex manifold of (complex) dimension n and let z = (z1, ..., zn) be holomor-
phic coordinates in a neighbourhood p ∈ U ⊂M . Let

(4.31) Ũ = {(z, l) : z ∈ l} ⊂ U × CPn−1.

Definition 4.3. The blow-up M̃ of M at p is the complex manifold obtained from M by
glueing Ũ to M \ {p} along the isomorphism

(4.32) Ũ \ {z = 0} ∼= U \ {p}, (z, l) 7→ z.

The projection map π : M̃ → M extends the identity on M \ {p}. The inverse image
E := π−1({p}) ∼= CPn−1 is called the exceptional divisor of the blowup M̃ → M . We can
visualize the blow up of a point as making all the lines through p disjoint, see Figure 2.

We can calculate the homology of M̃ by using the Mayer-Vietoris sequence. Let M∗ =
M \ {p}, M̃∗ = π−1(M∗) = M̃ \ E, U∗ = U \ {p} and Ũ∗ = π−1U∗ = Ũ \ E, such that
M∗ ∩ U = U∗ and M̃∗ ∩ Ũ = Ũ∗. We compare the Mayer-Vietoris sequences for M∗ ∪ U and
M̃∗ ∪ Ũ :

Hi(Ũ∗) Hi(Ũ)⊕Hi(M̃∗) Hi(M̃) Hi+1(Ũ∗)

Hi(U∗) Hi(U)⊕Hi(M∗) Hi(M) Hi+1(U)

π∗ π∗ π∗ π∗

Now π is an isomorphism Ũ∗ ∼= U∗ and M̃∗ ∼= M∗, hence it induces isomorphisms π∗
between Hi(Ũ∗) and Hi(U∗), and between Hi(M̃∗) and Hi. Also, if we choose U to be a small
ball around p, the contraction U → {p} by z 7→ tz induces a contraction Ũ → E via π. Then,
for i > 0, Hi(U) = 0 and Hi(Ũ) ∼= Hi(E). We conclude that

(4.33) Hi(M̃) = Hi(M)⊕Hi(E), i > 0.

We can also describe the blow-up M̃ of M at a point in terms of a connected sum. The
connected sum of two manifolds is obtained by removing a small disc from both manifolds
and identifying the boundary spheres. Let U be a coordinate chart at p as above, and let
V0 = {[w0, w]|w0 6= 0} ⊂ CPn be the coordinate chart at q = [1, 0, , 0] with coordinates w/w0.
We can form the connected sum M#CPn by identifying the two open neighborhoods U ∼= V0.

Now, let Ũ ⊂ U × CPn−1 as above and let us define Ũε = {(z, l) ∈ Ũ : |z| < ε} and

(4.34) Vε = {[w0, w] ∈ CPn : |w0| < ε|w|}.
Then, the map f : M#CPn → M̃ ,

(4.35) f(x) =

{
x if x ∈M \ {p},
(w0w
|w|2 , [w]) ∈ Ũε if x = [w0, w] ∈ Vε

is well-defined and defines an orientation preserving diffeomorphism.
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Figure 1. The blow-up of a point. [11]

In the case of a four-manifold M , or n = 2, the structure of the intersection form becomes
immediately clear: a blow-up results in a connected sum with CP2. This attached CP2 contains
a 2-cycle E, which we can choose to lie outside the glued neighborhoods, such that E does not
intersect the 2-cycles of M and has self-intersection −1. The resulting intersection matrix is of
the form

(4.36) QM̃ =
(
QM 0

0 −1

)
.

3. Del Pezzo surfaces

Now we turn to the del Pezzo surfaces. The classical definition of a del Pezzo surface is the
following [8].
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Figure 2. The connected sum of two tori. [1]

Definition 4.4. A del Pezzo surface is a nondegenerate irreducible surface of degree d in
CPd that is not a cone and not isomorphic to a surface of degree d in CPd+1.

This definition requires a lot of algebraic geometry and is not of much use for our purposes.
However, the following theorem [22] provides us with a better understanding of the topology of
del Pezzo surfaces.

Theorem 4.5. Let X be a del Pezzo surface of degree d. Then either X is isomorphic to
the blow-up of CP2 at 9− d points in general position in CP2, or d = 8 and X is isomorphic to
CP1 × CP1 ∼= S2 × S2.

We say a collection of points in CP2 is said to be in general position if no 3 points lie on a
line, no 6 points lie on a a conic and no 8 points lie on a singular cubic, with one of the point
at the singularity. We will not proof the theorem.

Let Bk denote the del Pezzo surface of degree 9−k obtained by blowing up k points in general
position. We start with B0 = CP2. As we have seen above, has homology H2(CP2; Z) = Z with
generator C := CP1 ⊂ CP2. This has self intersection C · C = 1.

Now to obtain Bk, we blow up k ≤ 8 points in general position, which results in k exceptional
divisors E1, ..., Ek. As described above, the homology of the iterated blow-up is given by

(4.37) H2(Bk; Z) = Z C ⊕ Z E1 ⊕ ...⊕ Z Ek.

The intersection numbers are given by

(4.38) C · C = 1, C · Ei = 0, Ei · Ej = −δij , 1 ≤ i, j ≤ k.
We conclude that the intersection matrix for the del Pezzo surface Bk is given by

(4.39) Q−1 = diag(1,−1,−1, ...,−1) = Q,

where the last equality is obivious since Q−1 squares to the identity. We conclude that Bk has
b+ = 1, b− = k and hence σ = 1 − k. Finally, note that the intersection matrix of each Bk is
odd, so that we have to consider fractionally quantized fluxes in the presence of fermionic field
on these manifolds.

For the ’other’ del Pezzo surface of degree 8, CP1 × CP1 ∼= S2 × S2, we note that H2(S2 ×
S2; Z) = Z⊕ Z, where the generators are the individual spheres S2 × {p} and {p} × S2. These
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spheres have zero self intersection and intersect each other transversely in one point (p, p).
Therefore, the intersection matrix is given by

(4.40) Q−1 =
(

0 1
1 0

)
= Q.

Remark 4.6. As we have seen, each time we blow up a point in CP2, we add a generator to
the second homology. Since H1(CP2; Z) = 0, we see that H1(Bk; Z) = 0. Also, H1(S2×S2; Z) =
0. We conclude that b1 = 0 for all del Pezzo surfaces. Therefore, the determinant factor ∆(τ)
is equal to τ−1/2

2 = C g√
4π

for all these del Pezzo surfaces.

4. The partition function for del Pezzo surfaces

Now that the topology of the del Pezzo surfaces is known, we can return to the original
question of calculating the partition function on these surfaces. As we have seen in the previous
chapter, the partition function is given as a lattice sum of the exponentiated action. The action
contains a term involving the intersection matrix Q, and term involving the symmetric and
positive definite matrix G. For a choice of harmonic representative F i for the cohomology, the
matrix G was defined by ∗F i = Gij(Q−1)jkF k. We see that G depends on a choice of harmonic
basis for H2(Bk) and on the choice of a metric on Bk, as the Hodge star operator depends on
the metric. However, since ∗2 = 1, we obtain the relation (GQ−1)2 = 1. This relation allows us
to express the matrix G in terms of some parameters (moduli), which result in parameters for
the partition function Z(τ). We start by some simple cases.

4.1. The surface B1. The del Pezzo surface B1 has intersection matrix

(4.41) Q = Q−1 =
(

1 0
0 −1

)
.

We write down the general expression for a symmetric 2× 2 matrix G,

(4.42) G =
(
a b
b c

)
,

and solve

(4.43) (GQ−1)2 =
(

a b
−b −c

)2

=
(

a2 − b2 b(c− a)
b(a− c) −b2 + c2

)
= I =

(
1 0
0 1

)
.

From the off-diagonal terms we get c = a or b = 0. Setting c = a, we obtain a2 − b2 = 1. This
can be parametrized a = ± coshα, b = ± sinhα. However, the plus-sign in front of the cosh
must be chosen to ensure positive definiteness of G and we obtain

(4.44) G =
(

coshα sinhα
sinhα coshα

)
.

If we set b = 0, we solve a2 = c2 = 1 by a2 = ±1, c2 = ±1. Again, a = c = 1 must be chosen to
make G positive definite and we obtain the solution above with α = 0.

Remember that the action in the presence of scalar fields was given by i
~S(τ,m) = iπmTΩ(τ)m,

where Ω(τ) = τ1Q+ iτG. Plugging in our parametrization for G we obtain

iSsc(τ,m1,m2) = πi
(
m1,m2

)( τ1 + iτ2 coshα iτ2 sinhα
iτ2 sinhα −τ1 + iτ2 coshα

)(
m1

m2

)
(4.45)

= πi
[
(m2

1 −m2
2)τ1 + iτ2 coshα(m2

1 +m2
2) + 2im1m2τ2 sinhα

]
.
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Thus we obtain the partition function

(4.46) ZB1,sc(τ, α) = ∆(τ)
∑

m1,m2∈Z
eπi[(m

2
1−m2

2)τ1+iτ2 coshα(m2
1+m2

2)+2im1m2τ2 sinhα].

For the special case α = 0, the partition function factorizes as

ZB1,sc(τ, 0) = C∆(τ)

(∑
m∈Z

eπim
2(τ1+iτ2)

)(∑
m∈Z

eπim
2(−τ1+iτ2)

)
(4.47)

= ∆(τ)ΘCP2,sc(τ)ΘCP2,sc
(τ).

We see that setting α to zero results in a partition function with factors into the different
partition functions for CP2 and CP2.

Now we turn to the presence of a spinor field on B1. The homology group H2(B1; Z) has
2 generators Σ1 = C = CP1 ⊂ CP2 and Σ2 = E1 ⊂ CP2, and from the intersection matrix we
see that Σ1 has self-intersection 1, Σ2 has self-intersection −1. Therefore, the fluxes through
these cycles will be quantized with a shift of ±1/2 respectively. The sign is irrelevant, since it
can be changed by a simple basis transformation (a translation by 1) of the lattice. The action
becomes:

iSsp(τ, α,m1,m2) = πi
(
m1 +

1
2
,m2 +

1
2
)( τ1 + iτ2 coshα iτ2 sinhα

iτ2 sinhα −τ1 + iτ2 coshα

)(
m1 + 1

2
m2 + 1

2

)
= πi [(m1(m1 + 1)−m2(m2 + 1))τ1 + iτ2 coshα(m1(m1 + 1) +m2(m2 + 1) + 1/2)

+2i(m1 + 1/2)(m2 + 1/2)τ2 sinhα] .

The partition function is then given by

(4.48) ZB1,sp(τ, α) = ∆(τ)
∑
mi∈Z

eπiSsp(τ,α,m1,m2).

Again, if we set α equal to zero, the partition function factorizes:

(4.49) ZB1,sp(τ, 0) = ∆(τ)ΘCP2,sp(τ)ΘCP2
,sp

(τ).

4.2. The surface B2. Now we turn to the next del Pezzo surface, B2. It has intersection
matrix

(4.50) Q = Q−1 =

 1 0 0
0 −1 0
0 0 −1

 .

Let

(4.51) G =

 a b c
b d e
c e f

 ,

and we solve

(4.52) (GQ−1)2 =

 a2 − b2 − c2 ab+ bd+ ce −ac+ be+ cf
ab− bd− ce −b2 + d2 + e2 −bc+ de+ ef
ac− be− cf −bc+ de+ ef −c2 + e2 + f2

 = I =

 1 0 0
0 1 0
0 0 1

 .
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The solutions to these equations can be parameterized by two parameters:

(4.53)

 −1+coshα+coshβ ±
√

(−1+coshα)(coshα+coshβ) ±
√

(−1+coshβ)(coshα+coshβ)

±
√

(−1+coshα)(coshα+coshβ) coshα ±
√

(−1+coshα)(−1+coshβ)

±
√

(−1+coshβ)(coshα+coshβ) ±
√

(−1+coshα)(−1+coshβ) coshβ

 .

We see that setting one of the parameters to zero makes the harmonic form dual to Ei orthogonal
to the harmonic form ω, dual to C:

Gα=0 =

 coshβ 0 sinhβ
0 1 0

sinhβ 0 coshβ

 ,(4.54)

Gβ=0 =

 coshα sinhα 0
sinhα coshα 0

0 0 1

 ,(4.55)

Gα=β=0 =

 1 0 0
0 1 0
0 0 1

 .(4.56)

As before, in the presence of scalar fields on B2, the fluxes are quantized and the action is
given by

(4.57) Ssc(τ, α, β,m) = (m1,m2,m3) · (τ1Q+ iτ2G(α, β)) · (m1,m2,m3).

In the presence of spinor fields, the fluxes will be fractionally quantized according to the
self intersection of the generators of H2(B2; Z). We find that the action is given by

(4.58) Ssp(τ, α, β,m) = (m1 +
1
2
,m2 +

1
2
,m3 +

1
2

) ·(τ1Q+iτ2G(α, β)) ·(m1 +
1
2
,m2 +

1
2
,m3 +

1
2

).

In either case, we find that the partition function becomes

(4.59) ZB2,sc/sp(τ, α, β) = ∆(τ)
∑
m∈Z3

eπiSsc/sp(τ,α,β,m).

Now from the parameterization in (4.54), we see that setting one of the parameters to zero
factorizes the partition function, with factors equal to the partition function of B1 and of CP2

with τ̄ :

(4.60) ZB2,sc/sp(τ, α, 0) = ∆(τ) ΘB1,sc/sp(τ, α) ΘCP2
,sc/sp

(τ).

4.3. The del Pezzo surface Bk. This procedure is easily generalized to the other del Pezzo
surfaces Bk, for 1 ≤ k ≤ 9. Bk has intersection matrix Q = Q−1 = diag(1,−1, ...,−1). Then G
is a symmetric (k+ 1)× (k+ 1) matrix and we solve (GQ−1)2 = 1. As noted in Remark 3.3, the
metric G is an element of SO(b+, b−), in this case precisely the group of Lorentz transformations
SO(1, k). As described in Remark 3.3, we quotient this group by the group SO(k) to find the
distinct partition functions. The Lorentz group is generated by two types of transformations,
the boosts and the rotations. The group SO(k) corresponds to these rotations, so we conclude
that the possible matrices G are precisely the Lorentz boosts. Therefore, we can parameterize
G as a general Lorentz boost in 1 + k dimensions:

(4.61) (Gij)(α1, ..., αk) =


1√

1−α2
−1√
1−α2

αi

−1√
1−α2

αj δij + ( 1√
1−α2

− 1)αiαj
α2

 ,
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where α2 =
∑

i α
2
i and αi ∈ (−1, 1) (in a Lorentz boost αi = vi

c , where v is the velocity of the
moving frame). This is consistent with the previous parameterizations of B1 and B2 by taking
αi = tanhβi.

In the presence of scalar of spinor fields, the fluxes will be quantized or fractionally quan-
tized. We have seen that by blowing-up, we obtain an extra generator for the homology, with
self intersection −1. We conclude that the actions for the general Bk become

Ssc(τ, α1, ..., αk,m) = mT (τ1Q+ iτ2G(α1, ..., αk))m,(4.62)

Ssp(τ, α1, ..., αk,m) = (m+ w/2)T (τ1Q+ iτ2G(α1, ...αk)(m+ w/2),(4.63)

where in the spinor case, the vector w is given by (1, 1, 1, ..., 1). The result is a partition function
that depends on k moduli:

(4.64) ZBk,sc/sp(τ, α1, ..., αk) = ∆(τ)
∑
m∈Zk

eπiSsc/sp(τ,α1,...,αk,m).

Also, by setting αi to zero we set each (i + 1, i + 1)-th entry to 1 and the (i + 1, j)-th and
(j, i+ 1)-th entries to zero for all j = 1, , k + 1 . The partition function then factorizes as

(4.65) ZBk,sc/sp(τ, αj 6=i, αi = 0) = ZBk−1,sc/sp(τ, αj 6=i) ΘCP2
,sc/sp

(τ).

Setting all αj to zero results in the factorization

(4.66) ZBk,sc/sp(τ, αj = 0) = ∆(τ) ΘCP2,sc/sp(τ)
(

ΘCP2
,sc/sp

(τ)
)k
.

4.4. The del Pezzo surface S2×S2. The only del Pezzo surface we have not yet considered
is CP1 × CP1 ∼= S2 × S2. As mentioned above, S2 × S2 has intersection form

(4.67) Q−1 =
(

0 1
1 0

)
= Q.

Note that this intersection form is even, hence there will be no shift in the Dirac quantization
condition and the partition function in the presence of a scalar field will be equal to the one in
the presence of a spinor field. To find the metric G, we solve again:

(4.68) (GQ−1)2 =
(
b2 + ac 2ab

2bc b2 + ac

)
=
(

1 0
0 1

)
.

This is solved by b = 0, a = 1
c or a = c = 0, b = ±1. Positive definiteness of G rules out the

second solution, and forces a > 0 in the first, so we obtain

(4.69) G(α) =
(
r2 0
0 1

r2

)
.

We can interpret the parameter r as the ratio of the two spheres in S2 × S2. The result for the
partition function is
(4.70)
ZS2×S2,sc/sp(τ, r) = ∆(τ)

∑
m∈Z2

eπi[2τ1m1m2+iτ2(r2m2
1+ 1

r2
m2

2) = ∆(τ)
∑
m∈Z2

eπi[
τ
2

(rm1+
m2
r

)2− τ̄
2

(rm1−m2
r

)2].
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4.5. Blowing up S2×S2. When we blow up a point in S2×S2, we obtain the manifold S2×
S2#CP2, which is again a del Pezzo surface. In fact, there is a diffeomorphism S2× S2#CP2 ∼=
B2. [9] Since these manifolds are diffeomorphic, they must have isomorphic intersection forms.

Definition 4.7. Given a lattice Λ = Z ⊕ Z ⊕ ... ⊕ Z, we say that two bilinear forms
ψ,ψ′ : Λ× Λ→ Z are isomorphic if there exist a matrix P ∈ GL(n,Z) such that

(4.71) [ψ]′ = P T [ψ]P

where [·] denotes the matrix corresponding to the bilinear form.

If we blow up a point in S2 × S2, we obtain the intersection form

(4.72) Q
S2×S2#CP2 =

 0 1 0
1 0 0
0 0 −1

 .

This must be isomorphic to QB2 = diag(1,−1,−1), so we must find a matrix P such that
P TQB2P = Q

S2×S2#CP2 . After a calculation, we find that the matrix

(4.73) P =

 −1 −1 1
0 −1 1
−1 0 1

 ,

does the job. We see that detP = 1, hence P ∈ GL(3,Z), as was required.
For brevity, let us denote S = S2 × S2#CP2 and QS its intersection matrix, such that

P TQB2P = QS . Also, let GS(α, β) be the metric on the harmonic forms associated to S, that is,
it is a solution to (GSQ−1

S )2 = 1. Now QB2 , QS are both symmetric and satisfy Q2
B2

= Q2
S = 1.

Therefore,

(4.74) QB2 = Q−1
B2

= ((P−1)TQSP−1)−1 = PQSP
T ,

and

(4.75) 1 = (GB2Q
−1
B2

)2 = GB2PQSP
TGB2PQSP

T → (P TGB2P QS)2 = (P TGB2P Q−1
S )2.

We see that P TGB2P solves (GSQ−1
S )2 = 1, so we have P TGB2(α, β)P = GS(α′, β′) where the

parameters are different. We can solve the parameters α, β in terms of α′, β′, but this produces,
except for some special cases, a complicated relation which does not have a direct geometrical
interpretation (yet). We conclude that the actions on these manifolds can be related by

SS(τ,m, α′, β′) = πimT (τ1QS + iτ2GS(α′, β′)m(4.76)

= πimTP T (τ1QB + iτ2GB(α, β)Pm
= SB(τ,m′, α, β),

where m′ = Pm.
In the presence of a scalar field on the manifold, we have that

ZS,sc(τ, α′, β′) = ∆(τ)
∑
m∈Z3

eπim
T (τ1QS+iτ2GS(α′,β′))m(4.77)

= ∆(τ)
∑

m′∈PZ3

eπim
′T (τ1QB2

+iGB2
(α,β))m′ = ZB2,sc(τ, α, β).

Here we used that P ∈ GL(3,Z), hence P is an isomorphism PZ3 = Z3. If there is a spinor field
on the manifold, we have that the fluxes are fractionally quantized according to the intersection
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form, which leads to F = (mi + wi
2 )F i. From the intersection form of both manifolds, we see

that wS = (0, 0, 1) mod 2, while wB2 = (1, 1, 1) mod 2. However, we have that

(4.78) P (0, 0, 1)T = (1, 1, 1)T = (1, 1, 1)T .

Therefore, the partition functions on S and B2 are related by

ZS,sp(τ, α′, β′) = ∆(τ)
∑
m∈Z3

eπi(m+
wS
2

)T (τ1QS+iτ2GS(α′,β′)(m+
wS
2

)(4.79)

= ∆(τ)
∑

m′∈PZ3=Z3

eπi(m
′+

PwS
2

)T (τ1QB2
+iτ2GB2

(α,β))(m′+
PwS

2
)

= ∆(τ)
∑
m′∈Z3

eπi(m
′+

wB2
2

)T (τ1QB2
+iτ2GB2

(α,β))(m′+
wB2

2
) = ZB2,sp(τ, α, β).

We conclude that S2 × S2#CP2 and B2, have the same partition function, albeit for a different
choice of parameters α, β.





CHAPTER 5

The moduli space of instantons on four-manifolds

The partition function is a central object in quantum field theory. In Yang-Mills theory,
the partition function has the form

(5.1) Z[A] =
∫

DAe−S[A].

In the previous chapters, we have seen that in the abelian U(1) gauge theory, the partition
function could be expressed as a sum over the integral cohomology classes of solutions F to the
classical equations of motion. Equivalently, the partition function could be expressed as a sum
over a lattice of (anti)-self-dual harmonic forms F .

Under gauge transformations, the U(1) connections transform as A→ A−dχ, such that the
curvature F remains unchanged. Therefore, the cohomology class of F can be identified with a
gauge equivalence class of connections under the gauge group U(1). We can then interpret the
partition function as a sum over gauge-equivalence classes of (anti)-self-dual connections, that
is, an integral over a zero-dimensional moduli space of instantons.

One can ask if this can be generalized to higher gauge groups. Certainly, we have seen
in Chapter 1 that the instanton solutions minimize the Yang-Mills action, therefore one might
expect that a saddle point expansion of the path integral will lead to a sum over the instanton
number of an integral over the moduli space for fixed instanton number. However, since the
SU(N) gauge groups are non-abelian, the action contains terms of higher than quadratic order
and the saddle point expansion will not be exact.

For some theories this can be done. For instance, in [4], there is described how a localization
technique, the Mathai-Quillen formalism, is used to localize the path integral of a topological
field theory to a finite dimensional integral: the example used is the instanton moduli space.
Witten describes in [24] how for a supersymmetric version of Yang-Mills theory, the path integral
can be expanded around instanton solutions. In [20], Witten and Vafa show that for N = 4
supersymmetric Yang-Mills theory, the partition function can be expressed as theta function of
the form

∑
k χ(Mk)qk, where χ(Mk) is the Euler characteristic of the moduli space of instanton

number k, and q = exp 2πiτ .
For these descriptions, a good understanding of the structure and topology of the instanton

moduli space is essential.

Also from a mathematical viewpoint these moduli spaces are interesting. This moduli space
can, under some assumptions, be described as a finite dimensional smooth manifold. The pairing
of certain cohomology classes of the moduli produces diffeomorphism invariants of the underly-
ing four-manifold, the Donaldson invariants.

55
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In this chapter, we give an overview of results for the description moduli space of instan-
tons, and the route to defining the Donaldson invariants. For the most part, we will consider the
moduli space of instantons of a general vector bundle over a compact Riemannian four-manifold,
but sometimes we restrict to the case SU(2) for simplicity. The results below are mainly based
on the book by Donaldson [9] and on the seminar organized by Gil Cavalcanti on this topic.

Let E be a vector bundle over a compact oriented Riemannian four-manifold X, with
structure group G. We define the moduli space

(5.2) ME = {gauge equivalence classes of anti-self-dual connections on E},
so we identify connections which are in the same orbit of the gauge group G .

This space has a topology induced from the affine space A , the space of all connections on
E. The moduli space ME will turn out to be a finite dimensional, real analytic space and that
in most cases, ME can be assumed to be a smooth manifold, except for some singular points.
Also, this moduli space can be compactified in a natural way.

1. Fixing a gauge

We start by considering connection one-forms A on the trivial U(1) bundle over X. Any
gauge transformation can be written as u = exp(iχ) for a real-valued function χ on X and the
connections transform under these gauge transformations as A→ A− idχ. Given a connection
A, we can choose χ such that Ã = A− idχ satisfies

(5.3) d∗Ã = 0.

In classical electromagnetism, the gauge freedom can be fixed by setting d∗A = 0, or ∇· ~A =
0, which is called the Coulomb gauge. In a Lorentz covariant formulation of electromagnetism,
we can choose a gauge by setting d∗A = 0 or ∂µAµ = 0, which is called the Lorentz gauge.

Inspired by this, we can make the following definition. Let A0 be a connection on E and

(5.4) H = {u(A) : u ∈ G } ⊂ A ,

be the gauge equivalence class of another connection A on E.

Definition 5.1. We say that B ∈H is in Coulomb gauge relative to A0 if

(5.5) d∗A0
(B −A0) = 0.

If we consider a family of gauge transformations u(t) = exp(tχ), χ ∈ Ω0
X(gE), we have

d

dt

∣∣∣∣
t=0

‖etχ(B)−A0‖2L2 =
d

dt

∣∣∣∣
t=0

‖B − e−tχ(A0)‖2L2 = 2
d

dt

∣∣∣∣
t=0

〈B − e−tχ(A0), B −A0〉

= 2
d

dt

∣∣∣∣
t=0

〈B − e−tχA0e
tχ − (de−tχ)etχ, B −A0〉

= 2〈χA0 −A0χ− dχ,B −A0〉 = 2〈dA0χ,B −A0〉 =
= 2〈χ, d∗A0

(B −A0)〉.(5.6)

So the Coulomb gauge relation (5.5) is precisely the Euler-Lagrange equation for the functional

(5.7) B → ‖B −A0‖2L2 .

and we see that when a connection B is in Coulomb gauge relative to A0, their L2 distance is
extremized. On the other hand, the following proposition tells us that for a connection B, which
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is close to a given connection A in the sense that the difference is small in some norm, we can
find a gauge equivalent connection which is in Coulomb gauge relative to A.

Proposition 5.2. For any connection A on E, there is a constant c(A) such that if B is
another connection on E and a = B −A satisfies

(5.8) ‖∇A∇Aa‖2L2 + ‖a‖2L2 < c(a),

then there is a gauge transformation u ∈ G such that u(B) is in Coulomb gauge relative to A

Here, ∇A∇A denotes the second covariant derivative ∇A∇A : Ω1
X(gE)→ Γ(T ∗X ⊗2 T ∗X ⊗

gE), which is different from the curvature operator dAdA.
As a special case, consider the product connection θ on the trivial bundle. Another con-

nection A is in Coulomb gauge relative to θ if d∗A = 0. For a general bundle, a trivialization τ
represents a connection in Coulomb gauge if d∗Aτ = 0.

2. The moduli space

Now we turn to the moduli space of instantons. The strategy for constructing the moduli
space will be to first construct the space B of gauge equivalence classes of connections on E,
and then describe the moduli space as a subset of this quotient space.

2.1. The quotient space.

Definition 5.3. We define B as the quotient space

(5.9) B = A /G ,

equipped with the quotient topology, and we denote the gauge equivalence class of a connection
A by [A].

The gauge transformations preserve the L2 metric on A , so this norm descends to the
quotient space by

(5.10) d([A], [B]) = inf
u∈G
‖A− u(B)‖,

which defines a metric on B.
For A ∈ A and ε > 0, let us define

(5.11) TA,ε = {a ∈ Ω1(gE) : d∗a = 0, ‖a‖ < ε}.
Now if [B] is close to [A], we can represent this by connections B close to A and Proposition 5.2
tells us that there is a connection B̃ in coulomb gauge relative to A. Therefore, any orbit close
to the orbit of A meets A+ TA,ε so we can describe a neighbourhood of [A] in B by a quotient
of TA,ε.

Definition 5.4. A connection A on a G-bundle E is reducible if for all x ∈ X, the holonomy
group at x, holx,A, is a proper subgroup of Aut Ex ∼= G.

If X is connected, the holonomy groups at different points are related by conjugation with
parallel transport, hence we can restrict to a single fiber to define a conjugacy class of subgroups
HA ⊂ G.

We can define isotropy group ΓA of A by

(5.12) ΓA = {u ∈ G : u(A) = A}.
The two groups are related by the following lemma:



58 5. THE MODULI SPACE OF INSTANTONS ON FOUR-MANIFOLDS

Lemma 5.5. For any connection A over a connected base space X, ΓA is isomorphic to the
centralizer of HA in G, CG(HA).

Remark 5.6. Note that ΓA always contains the center of G, C(G).

ΓA is a closed subgroup of G, hence itself a Lie group and its elements are precisely the
covariant constant sections of Aut E. Its Lie algebra is then ker dA ⊂ Ω0

X(gE). Then, ΓA acts
on Ω1

X(gE) and in particular on TA,ε. With this definition, the following proposition gives a
local description of the quotient space B:

Proposition 5.7. For small enough ε > 0, the projection map A → B induces a home-
omorphism h for the quotient TA,ε/ΓA to a neighborhood [A] in B. For a ∈ TA,ε, the isotropy
group of a in ΓA is naturally isomorphic to that of h(a) in G

We write A ∗ ⊂ A for the open subset of connections that have minimal isotropy group:

(5.13) {A ∈ A : ΓA = C(G)},
and we define B∗ ⊂ B by the quotient A ∗/G . The proposition tells us that B∗ is a smooth
Hilbert manifold: it is modeled locally on the balls TA,ε, which are open subsets of the Hilbert
space ker d∗A ⊂ Ω1

X(gE). However, at a point in B \B∗, we have to quotient by a bigger group,
so we have a singular point. There is a way of describing these singular points as follows.

We partition B into disjoint subspaces BΓ, labelled by the conjugacy class Γ of the isotropy
groups ΓA in G, of the connections in BΓ. For each connection A, we can decompose

(5.14) gE = V ⊕ V ⊥,
where V us the set of elements in gE which are fixed by ΓA and V ⊥ is the orthogonal complement.
Since ΓA ∼= CG(HA), we have that V is actually the Lie algebra of HA. Now the subset BΓ is
a Hilbert manifold, modeled locally on the space

(5.15) ker d∗A ∩ Ω1
X(V ).

Also, the structure of B normal to BΓ is modeled on

(5.16)
(

ker d∗A ∩ Ω1
X(V ⊥)

)/
ΓA.

Also, we have the property that if a point [A] lies in the closure of BΓ, then ΓA contains (a
representative of the conjugacy class) Γ. This structure makes the quotient space B into a
stratified space.

We call the open subset B∗ the manifold of irreducible connections. Strictly speaking, this
is not completely correct in general, since the reducibility is determined by the centralizer of
the holonomy group. For example, if a connection on a SU(n) bundle reduces to the subgroup
SO(n) (its holonomy group HA is the subgroup SO(n) ⊂ SU(n)), this connection still represents
a point in B∗ if n > 2, since CSU(n)(SO(n)) = Z/n = C(SU(n)) in this case. However, for
SU(2) or SO(3) bundles over a simply connected manifold X, the two notions coincide.

2.2. The moduli space. Now that we have established the space of gauge equivalence
classes B, we can describe the moduli space ME as a subset of B, consisting of solutions to the
equation F (A)+ = 0.

Remark 5.8. To construct the space of equivalence classes of connections, we should work
in the framework of Sobolev spaces L2

l . The Sobolev embedding theorem tells us that L2
l consists

of continuous functions if l > 2. We can then define locally an L2
l map X ⊃ U → G and we
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define an L2
l G-bundle as bundle defined by a family of L2

l transition functions. Connections
on this bundle are given, in local trivialization, by L2

l−1 matrix valued functions, which have
curvature in L2

l−2 (this follows from the Sobolev multiplication L2
l−1 × L2

l−1 → L2
l−2.

The moduli space then depends by construction on the choice of Sobolev space, i.e. on l,
and we denote it ME(l). However, one can prove that the inclusion ME(l) ↪→ ME(l + 1) is a
homeomorphism. Therefore, we do not refer to the choice of Sobolev space, as the resulting
moduli spaces are homeomorphic.

We can now find try to find local models for ME within the local models for B as follows.
Let A be an ASD connection and define the map

(5.17) ψ : TA,ε → Ω+(gX), ψ(a) = F+(A+ a) = d+
Aa+ (a ∧ a)+,

where the superscript + denote the projection onto the self-dual two-forms. Let Z(ψ) ⊂ TA,ε be
the zero set of ψ. The map h of Proposition 5.7 induces a homeomorphism from the quotient
Z(ψ)/ΓA to a neighborhood of [A] in ME .

A bounded linear map of Banach spaces,

(5.18) L : U → V,

is called Fredholm if dim kerL <∞,dim cokerL <∞. We can then write

(5.19) U = U0 ⊕ F, V = V0 ⊕G,

where F,G finite dimensional and L is an isomorphism between U0 and V0.

Definition 5.9. The index of L is defined as

(5.20) ind (L) = dim kerL− dim coker L = dimF − dimG.

Now for a connected open neighbourhood N ⊂ U , a smooth map φ : N → V is called
Fredholm if the derivative,

(5.21) (Dφ)x : U → V,

is a Fredholm operator. The index of this operator is independent of x and is called the index
of φ.

We say that φ is right equivalent to a map L is they agree under composition on the
right with a local diffeomorphism. The implicit function theorem in Banach spaces implies the
following proposition.

Proposition 5.10. A Fredholm map φ form a neighborhood of 0 is locally right equivalent
to a map of the form

(5.22) φ̃ : U0 × F → V0 ×G, φ̃(ξ, η) = (L(ξ), α(ξ, η)),

where L is a linear isomorphism form U0 to V0, F and G are finite-dimensional, dimF−dimG =
ind φ and the derivative of α vanishes at 0.

From this proposition we obtain a finite dimensional model for a neighborhood of 0 in the
zero set Z(φ) of φ. Under a diffeomorphism of U , this zero set can be identified with the zero
set of the map φ′ above and since L is an isomorphism, this zero set can is precisely the zero set
of the map

(5.23) f : F → G, f(y) = α(0, y).
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We apply the above to our map ψ, whose zero set describes the moduli space. We have

(5.24)
d

dt

∣∣∣∣
t=0

ψ(ta) =
d

dt

∣∣∣∣
t=0

td+
A + t2(a ∧ a)+ = d+

Aa,

so the derivative of ψ at 0 is given by

(5.25) d+
A : ker d∗A → Ω+(gE).

Now the operator δA := d∗A ⊕ d+
A : Ω1(gE) → Ω0(gE) ⊕ Ω+(gE) is an elliptic operator. In

particular, an elliptic operator is Fredholm, so this implies that the restriction of d+
A to ker d∗A

is Fredholm. Therefore, ψ is a smooth Fredholm map with index

ind (ψ) = ind d+
A|ker d∗A

= dim ker d+
A|ker d∗A

− dim coker d+
A|ker d∗A

(5.26)

= dim(ker d+
A ∩ ker d∗A)− dim Ω+/im d+

A

= dim ker(δA)− (dim Ω+/im d+
A dim Ω0/im d∗A) + dim Ω0/im d∗A

= dim ker δA − dim coker δA + dim ker(dA|Ω0)
= ind δA + dim ΓA,

where we use that ker dA ⊕ coker d∗A and coker δA = Ω+/im d+
A ⊕ Ω0/im d∗A.

The index of δA is given by the following formula, which follows from the Atiyah-Singer
index theorem:

(5.27) ind δA = a(G)κ(G)− dimG(1− b1(X) + b+(X)),

where a(G) is an integer depending on G and κ = c2 for SU(n) bundles and −1
4p1 for SO(n)

bundles. For example, in the case of an SU(2) bundles, we have

(5.28) ind δA = 8c2(E)− 3(1− b1(X) + b+(X)).

If we apply the Fredholm decomposition to the map d+
A,

(5.29) U = ker d∗A = U0 ⊕ (ker d+
A ∩ ker d∗A) = U0 ⊕ ker δA, V = Ω+(gE) = V0 ⊕ coker d+

A,

we can linearize our map ψ, using Proposition 5.10, to get:

Proposition 5.11. If A is an ASD connection over X, a neighborhood of [A] in M is
modeled on a quotient f−1(0)/ΓA, where

(5.30) f : ker δA → coker d+
A

is a ΓA-equivariant map.

The index s = ind δA is sometimes referred to as the virtual dimension of the moduli space.
This comes from the fact that points in the zero set of f which are both regular points of f and
represent free ΓA orbits form a smooth manifold of dimension

(5.31) dim ker δA − dim coker d+
A − dim ΓA = ind δA.

The construction of the map ψ and its linearization f , depended on our ’choice of gauge’,
namely, we considered a local slice TA,ε in Coulomb gauge relative to A. We can take a more
invariant viewpoint by considering the deformation complex :

(5.32) Ω0
X(gE) dA−−−→ Ω1

X(gE)
d+
A−−−→ Ω+

X(gE).
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If A is ASD, then we have d+
A ◦ dA = F+(A) = 0, so this is indeed a complex and we obtain

three cohomology groups H0
A, H

1
A, H

2
A. From the Hodge theory for the elliptic operator δA, we

have decompositions Ω0
X(gE) = ker dA ⊕ im d∗A,Ω

1
X = im dA ⊕ ker d∗A, such that

H1
A =

ker d+
A

im dA
= ker d+

A ∩ ker d∗A = ker δA,(5.33)

H2
A = coker d+

A = ker d∗A ⊂ Ω+(gE)(5.34)

and H0
A is the Lie algebra of ΓA. As above, the space H1

A represents the linearization of the
ASD equations, modulo the gauge group G . In this setting, we obtain a local model for the
moduli space as a map

(5.35) f : H1
A → H2

A.

The index s is then given by minus the Euler characteristic of the complex:

(5.36) s = dimH1
A − dimH0

A − dimH2
A.

In most cases, H2
A will be zero, which can be proved using a Weitzenböck formula. Also, we

have for structure groups SU(2) or SO(3) that dim ΓA = 0, so in this case the index s is indeed
the dimension of the moduli space.

3. Smoothness of the moduli space

The ASD relation depends in principle on the metric, as the Hodge star does. To be
precise, it depends on the conformal class [g] of the metric. We write ME(g) to denote the
moduli space of anti-self-dual connections defined by [g]. To make a more precise statement
about the smoothness of the moduli space, we describe it as the zero set of a section and use
transversality results to conclude smoothness.

The free G /C(G) action on A ∗ makes the quotient A ∗ → B∗ into a principal G /C(G)-
bundle. Also, G /C(G) has an action on Ω+

X(gE), so we can form the associated bundle

(5.37) E = A ∗ ×G /C(G) Ω+
X(gE)→ B∗.

The map F+ : A ∗ → Ω+
X(gE) translates into a section Ψg of E , by Ψg([A]) = F+(A). This

is a Fredholm section of index s. The part of the moduli consisting of irreducible connections,
denoted M∗E(g), is then the set of solutions to the family of equations

(5.38) Ψg([A]) = 0.

If we have a smooth map F : P → Q between finite dimensional manifolds of dimensions
p and q, we say that a point x ∈ P is regular if DFx is surjective and point y ∈ Q is regular if
DFx surjective for all x ∈ F−1(y). If y is a regular value, then F−1(y) is a smooth manifold of
dimension p − q. Sard’s theorem states that there are many regular values: they form a dense
set in Q.

There is an analog of this for Fredholm maps between Banach spaces. If F : U → V is a
smooth Fredholm map between paracompact Banach spaces, and y ∈ V is a regular value, then
F−1(y) is a smooth manifold of dimension ind (F ). The Smale-Sard theorem then tells us that
these regular values form a dense set in U .

Recall that two maps f : P → Q, h : R→ Q are called transverse if TQfp = span(im Dfp, im Dhr)
for all points f(p) = h(r). If we have a vector bundle V → P , a section Ψ is transverse to the
zero section if the map DΨx : TPx → Vx is surjective for all x such that Ψ(x) = 0.

The Smale Sard theorem implies the following transversality result:
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Proposition 5.12. Given a Fredholm map F : U → V between paracompact spaces and
h : R → V a smooth map from a finite-dimensional manifold R, there is a map h′ : R → V
arbitrarily close to h and transverse to F .

We apply this to sections of vector bundles. Let V → P be a bundle of Banach spaces over
a Banachh manifold, and Φ a Fredholm section of V , that is, a section represented by Fredholm
maps in local trivializations. We want to perturb Φ to obtain a section with a regular zero set.
Consider the bundle V̄ → P ×S, where S is an auxiliary Banach manifold. Let Φ̄ be a section of
V̄ which extends Φ and is Fredholm which is Fredholm as a function on P in local trivialization.
Then we have a section Φs of V for each s ∈ S. Proposition (5.12) then implies:

Proposition 5.13. If the zero set Z ⊂ P × S is regular then there is a dense set of s ∈ S
for which the zero sets of Φs are regular.

We apply this to the section Ψ above. For each conformal class [g] we have a space Ω+
X,g(gE)

of self-dual forms defined by g. The gauge group G acts on this space, we obtain a quotient
bundle E → B∗ × C , where C denotes the space of conformal classes [g].The self dual part of
the curvature defines a section Ψ of E . The following result is due to Freed and Uhlenbeck:

Theorem 5.14. For any SU(2) or SO(3) bundle E over X, the zero set of Ψ in B∗ × C
is regular.

We write M∗ for the zero set of Ψ. The theorem tells us that M∗ is a smooth Banach
manifold. The individual moduli spaces M∗(g) are the fibres of the projection M∗ → C and
proposition (5.13) implies:

Corollary 5.15. There is a dense subset C ′ ⊂ C of conformal classes, such that for
[g] ∈ C and for any SU(2) of SO(3) bundle E over X, the moduli space M∗E(g) is regular (as
the zero set of the section determined by [g]).

We conclude that for any given metric g on X, we can find a metric g′ arbitrarily close to g
such that the moduli space is, apart from some singular point formed by reducible connections,
a smooth manifold.

4. Compactification of the moduli space

We have seen that the moduli space of anti-self-dual connections is locally a smooth man-
ifold. This manifold need not be a compact manifold. However, the moduli space has a com-
pactification in the following way.

As before, X is a compact oriented Riemannian four-manifold. Let us restrict to the case
G = SU(2) for simplicity and denote Mk for the moduli space of anti-self-dual connections with
second Chern class

(5.39) k = c2(E) =
1

8π2

∫
X
|F (A)|2dµ ≥ 0.

Definition 5.16. An ideal ASD connection over X, of Chern class k , is a pair

(5.40) ([A], (x1, ..., xl)),

where [A] is a point in Mk−l and (x1, ..., xl) is a multiset of degree l of points of X. The curvature
density of ([A], (x1, ..., xl) is the measure

(5.41) |F (A)|2 + 8π2
l∑

r=1

δxr .
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Now let Aα, α ∈ N be a sequence of connections on an SU(2) bundle Pk of Chern class k.
We can define the following convergence:

Definition 5.17. We say that the gauge equivalence class [Aα] converges weakly to an ideal
ASD connection ([A], (x1, ..., xl)) if

(1) The action densities converge as measures, i.e. for any continuous function f on X,

(5.42)
∫
X
f |F (Aα)|2dµ −→

∫
X
f |F (A)|2 + 8π2

l∑
r=1

f(xr).

(2) There are bundle maps ρα : Pl|X\{x1,...,xl} → Pk|X\{x1,...,xl} such that ρ∗(Aα) converges
(in C∞ on compact subsets of the punctured manifold) to A.

This notion of convergence can be extended to convergence of a sequence of ideal ASD
connections by the same definition: ([Bβ], (x1, ..., xl) ∈ Mk−l × sl(X) converges weakly to
([B], (y1, ...ym) ∈Mk−m if

(5.43)
∫
X
f |F (Bβ)|2dµ+

l∑
r=1

f(xr) −→
∫
X
f |F (B)|2dµ+

m∑
r=1

f(yr),

for any continuous function f on X.
We define the set of all ideal ASD connection with a fixed Chern class k:

(5.44) IMk = Mk ∪Mk−1 ×X ∪Mk−2 × s2(X) ∪ ...
The notion of weak convergence of ideal connections equips IMk with a topology. The moduli
space Mk sits inside IMk as an open subset.

Definition 5.18. M̄k is the closure of Mk in the space of ideal connection IMk.

With these definitions, we are able to state the main theorem:

Theorem 5.19. Any infinite sequence in Mk has a weakly convergent sub-sequence, with a
limit point in M̄k.

The compactification of the moduli space follows from this theorem:

Corollary 5.20. The space M̄k is compact.

5. Topology of the moduli space

Let P → X be a principal G-bundle over a compact, connected manifold X. We want
to describe the cohomology of the moduli space, which sits inside the quotient space B. In
studying the topological properties of B and B∗, some difficulties may arise due to the fact that
the action of G on A is not free. It turns out to be convenient to work with framed connections.

Definition 5.21. Let (X,x0) be a manifold with base point. A framed connection is a pair
(A, φ), where A is a connection and φ an isomorphism φ : Px0 → G.

The gauge group acts on the set of framed connections as

(5.45) (A, φ) 7→ (u(A), φ ◦ u), u ∈ G ,

and we define the space of equivalence classes

(5.46) B̃ = (A ×Hom(Px0 , G))/G .
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Alternatively, we can consider the framing φ fixed and define G0 its stabilizer:

(5.47) G0 = {u ∈ G : u(x0) = 1}.
Then B̃ = A /G0.

We have a map β : B̃ → B by ’forgetting’ the framing (or dividing out the remainder of the
gauge group G /G0

∼= G in the second description). The fiber β−1([A]) is isomorphic to G/ΓA.
Hence, β : B̃∗ → B∗ define a principal G/C(G)-bundle.

Next we define a family of framed connections:

Definition 5.22. A family of connections in P parametrized by a topological space T is a
bundle P

¯
→ T ×X such that P

¯
|{t}×X = Pt → {t}×X is isomorphic to P for each t ∈ T and on

each Pt we have a connection At, forming a family A
¯

= {At}

A family of connections if framed is an isomorphism

(5.48) φ : P |T×{x0} → G× T.
Then, for each t ∈ T , (At, φt) is a framed connection in Pt.

We obtain a an interesting family of connection by taking T = A : the bundle P = A ×P →
A ×X. This bundle carries a tautological family of connection: in the slice {A} ×X, we have
a connection A. Then, given a framing φ : Px0 → G, this extends to a family of framings for P
by φ : P |A×x0 → A ×G.

G0 has a free action on A × X and on P , hence we can form the quotient bundles P̃ =
P/G0 → B̃ ×X. Then P̃ carries a family of connections (Ã, φ), this is the universal family of
connections in P → X parameterized by B̃.

We can also construct a family of connections parameterized by B∗. Let P → A ∗ ×X be
the pullback bundle P = A ∗ × P . This also carries a tautological family of connections. The
action of G on the base A ∗ × X is not free, unlesss C(G) is trivial. C(G) acts trivial on the
base, but non-trivial on P , there the quotient is a bundle with structure group Gad = G/C(G):
we define

(5.49) Pad → B∗ ×X,
as the quotient P/G . For example, if G = SU(2), Pad is an SO(3) bundle over B∗ ×X.

Now we can describe the cohomology of B̃ and B∗ in the case of an SU(2) bundle over a
simply connected manifold. For any G-bundle P → X we can construct cohomology classes in
B̃X,P using the slant-product pairing:

(5.50) / : Hd(B̃ ×X)×Hi(X)→ Hd−i(B̃).

If c is a characteristic class associated with G-bundles, there is a cohomology class c(P̃) ∈
Hd(B̃ ×X), d = deg(c), and we define the map

(5.51) µ̃c : Hi(X)→ Hd−i(B̃), µ̃c(α) = c(P̃)/α.

Similarly, we can construct cohomology classes in B∗X,P : if c is a characteristic class for Gad-
bundles, we have

(5.52) µc : Hi(X)→ Hd−i(B∗), µc(α) = c(Pad)/α.

Definition 5.23. (1) For an SU(2) bundle P → X, the map µ̃ : H2(X; Z)→ H2(B̃X,P ; Z)
is given by

(5.53) µ̃(Σ) = c2(P̃)/[Σ].
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(2) The map µ : H2(X; Q)→ H2(B∗X,P ; Q) is given by

(5.54) µ(Σ) = −1
4
p1(Pad)/[Σ].

With these definitions at hand, the following proposition describes the cohomology of B̃.

Proposition 5.24. Let P be an SU(2)-bundle over a simply-connected four-manifold X,
and let Σ1, ...,Σb be a basis for H2(X; Z). Then the rational cohomology ring H∗(B̃X,P ; Q) is
polynomial algebra on the generator µ̃(Σ1), ..., µ̃(Σb):

(5.55) H∗(B̃; Q) = Q[µ̃(Σ1), ..., µ̃(Σb)].

A similar result can be given for the cohomology of B∗X,P , using the base-point fibration
β. There is a four-dimensional class ν = −1

4p1(β) ∈ H4(B∗; Q), where p1(β) is the Pontryagin
class of the SO(3) bundle β : B̃∗ → B∗. The cohomology is then given by:

Proposition 5.25. The rational cohomology ring H∗(B∗X,P ; Q) is a polynomial algebra on
the four-dimensional generator ν and the two-dimensional generators µ(Σi):

(5.56) H∗(B∗; Q) = Q[ν, µ(Σ1), ..., µ(Σb)].

6. Donaldson invariants

We have seen that the moduli space M can be described as the zero-set of a section Ψg

of a bundle E of Banach spaces over B∗. As a finite dimensional analogy, consider a vector
bundle V over a compact finite-dimensional manifold B and a section s of V . Of s vanishes
transversely (the image s(B) intersects the zero section transversely), the zero-set Z(s) is a
smooth submanifold of B whose fundamental class represents the Poicaré dual of the Euler class
of V :

(5.57) [Z(s)] ∈ Hd(B), d = dimB − rankV.

We can try to apply the same to the bundle E for the section Ψg and associate a fundamental
homology class [M ] to the moduli space which sits inside B∗. As we have seen, under some
assumptions on the metric, the moduli space is a smooth sub manifold of B∗.

Using this homology class, it is possible to define invariants of the manifold by pairing
it with certain cohomology classes in H∗(B∗). A difficulty in this strategy is the fact that
the moduli space may be non-compact, therefore, we can not define a fundamental class [M ]
properly. However, one can still form a well-defined pairing 〈β, [M ]〉 for certain cohomology
classes β ∈ H∗(B∗) whose restriction to M are compactly supported.

This can be done for an SU(2) bundle E → X. Let c2(E) = k and Mk be the moduli space
of instantons on E. Suppose that the moduli space has even dimension:

(5.58) dimMk = 2d,

where d = 4k − 3
2(b+(X) + 1), which follows from (5.28). This requires b+ to be odd. Also, we

require b+ > 1 to avoid reducible connections.
Let [Σ1], ..., [Σd] ∈ H2(X; Z) and let µ(Σi) ∈ H2(B∗) be there image under the map µ in

the cohomology of B∗. The cup product µ(Σ1) ∪ ... ∪ µ(Σd) had degree2d, so we can try to
evaluate it on Mk:

(5.59) q = 〈µ(Σ1) ∪ ... ∪ µ(Σd), [Mk]〉 ∈ Z.
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One can show that q depends only on the homology classes of the Σi and that it behaves
natural under oriented diffeomorphisms f : X → Y . Therefore, it is an invariant of the oriented
diffeomorphism type of X. These invariants are called Donaldson invariants.

Remark 5.26. In [24], Witten shows how the path integral for a supersymmetric Yang-
Mills theory can be expanded around instanton solutions. The path integral then produces
topological invariants which can be identified with Donaldson invariants.

7. Example

As an example, we give the result for the moduli space of SU(2) instantons with Chern
class 1 on R4. This result also applies to the four-sphere S4, which is conformally flat and can
be interpreted as the conformal compactification of R4.

Example 5.27. Let E be an SU(2) bundle over X = R4, with Chern class c2(E) = 1. The
instantons can be constructed using the ADHM construction [9], or making a suitable ansatz to
solve the anti-self-dual equations [21]. The result is

(5.60) Ay,λ(x) =
1

λ2 + |x− y|2
(θ1τ1 + θ2τ2 + θ3τ3),

where τi = σi/i (σi the Pauli matrices) which form a basis for su(2) and

θ1 = (x1 − y1)dx2 − (x2 − y2)dx1 − (x3 − y3)dx4 + (x4 − y4)dx3

θ2 = (x1 − y1)dx3 − (x3 − y3)dx1 − (x4 − y4)dx2 + (x2 − y2)dx4

θ3 = (x1 − y1)dx4 − (x4 − y4)dx1 − (x2 − y2)dx3 + (x3 − y3)dx2.

The parameters y and λ denote the position and size of the instanton. We see that the moduli
space is M = R4 × R+. We can calculate the curvature, using

(5.61) F = Fij dxi ∧ dxj , Fij = ∂iAj − ∂jAi + [Ai, Aj ],

and the result is

(5.62) F (Ay,λ) =
λ2

(λ2 + |x− y|2)2
(dθ1τ1 + dθ2τ2 + dθ3τ3).

The curvature density is then

(5.63) Tr(F (Ay,λ)2) = 48
(

λ2

(λ2 + |x− y|2)2

)2

dµ = |F (Ay,λ)|2dµ,

where we use that Tr(τiτj)dθi ∧ dθj = −2δij dθi ∧ dθj = 48dµ, since dθ2
1 = dθ2

2 = dθ2
3 = −8dµ.

We see that as λ→ 0, the density |F (Ay,λ)|2 converges as a distribution to a delta distribution
at y, with mass

(5.64) lim
λ→0

48
∫

R4

d4x

(
λ2

(λ2 + |x− y|2)2

)2

= 8π2.

Hence, the connection Ay,λ converges weakly to the ideal connection ([Θ], y), where Θ is
the product connection.



Conclusion and Discussion

We formulated electromagnetism on a general compact Riemannian four-manifold M in
the framework of Yang-Mills theory. By using this language of bundles and connections, the
Dirac quantization condition was deduced. The presence of a charged boson on the manifold,
described by a scalar field, was regarded as a section of a line bundle and the vector potential as
a connection on this line bundle. The flux through a two-cyle, or the integral over the curvature
over this two-cycle, takes only integer values, as it is the evaluation of the first Chern class
on the two-cycle. The presence of a charged fermion, described by a spinor, imposes that the
flux through some two-cycles is half-integer quantized, depending on the second Stiefel-Whitney
class, or equivalently, on the parity of the intersection form.

Electromagnetic duality of the Maxwell theory on M was studied by investigating the
effect of SL(2,Z) transformations on the partition function. Using the Dirac quantization, the
partition function of the electromagnetic theory on the manifold was expressed as a sum over
classical solutions. The resulting partition function is a theta function. Using the properties
of this theta function, we established the modular transformation properties of the partition
function under SL(2,Z) or a subgroup Γθ of order 3. In the presence of charged bosons, the
partition function transforms as a modular form under SL(2,Z) (or Γ, depending on the parity of
the intersection), with weights given by topological invariants of M . In the presence of fermions,
we can define three different theta functions which together transform as a vector modular form
under SL(2,Z), the partition function being one of them. The product of these 3 partition
functions does transform as a modular form.

The Maxwell partition functions were explicitly calculated for del Pezzo surfaces. We con-
structed the metric on two-forms G in terms of a number of parameters. Via this construction
we have explicitly expressed the partition function as a theta function depending on these pa-
rameters. By setting the parameters to zero, the partition function factorizes as a product of
theta functions over Z.

The moduli space of Yang-Mills instantons was described. We have seen that under some
assumptions on the manifold, the moduli space is a finite dimensional smooth manifold. By pair-
ing of certain cohomology classes of this moduli space, diffeomorphism invariants can be defined.

The Dirac quantization and electromagnetic duality were studied on compact and Rie-
mannian four-manifolds. However, the space-time manifolds appearing in general relativity are
Minkowskian and usually non-compact. We have encountered two examples of these in the end
of Chapter 3. It is interesting to extend the treatment of Dirac quantization and electromagnetic
duality to these types of manifolds. The non-compactness can be a difficulty in this program,
as the Poincaré duality and Hodge theorem will not apply and one might need to use extensions
of these. Also, calculation of the determinant ∆, which contains the formal determinant of the
Laplacian, has some subtleties for a non-compact space-time.
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It is interesting to investigate if the techniques used in the U(1) setting will also apply for
higher gauge groups. As mentioned in Chapter 5, due to the non-abelian nature of SU(N) gauge
groups, a saddle point expansion method will not be exact. Still, one might try to find similar
SL(2,Z) transformation properties for the resulting partition function.

For the N = 4 supersymmetric Yang-Mills theory, there is such a SL(2,Z) duality present,
as shown by Vafa and Witten in [20]. The partition function can be written as a theta function
of the form

∑
k χ(Mk)qk, q = exp 2πiτ , which transforms under SL(2,Z) transformations of τ ,

similar to the electromagnetic duality.



APPENDIX A

Principal G-bundles

In this appendix, we briefly discuss Principal G-bundles.

1. Principal G-Bundles

Let X be a paracompact Hausdorff space and G be a topological group.

Definition A.1. A Principal G-bundle is a fiber bundle P → X together with a continuous
right action of G which preserves the fibers and acts freely and transitively on them. We say
that P has structure group G.

So, the fibers are exactly the orbit of G. Also, each point in X has a neighbourhood
U and a homeomorphism hU : π−1(U)

∼=−→ U × G which is of the form hU (p) = (π(p), γ(p)
(where γ : π−1({x}) → G is a homeomorphism between the fibers and G), and which satisfies
hU (pg) = (π(p), γ(p)g)). So locally, the bundle looks like:

U ×G

U

and G acts by multiplication on the right. Two principal G-bundles are equivalent if there is a
homeomorphism H : P → P ′ such that the diagram

P P ′

X

H

π
π

commutes and is G-equivariant: H(pg) = H(p)g for all g ∈ G. We denote the equivalence classes
of principal G-bundles by PrinG(X).

Example A.2. Let π : P → X be a 2-sheeted covering space of X and G = Z2. This is
a principal Z2-bundle, where the group Z2 acts by interchanging the sheets. Conversely, any
principal Z2-bundle is a 2-sheeted covering space and we have that PrinZ2(X) ∼= Cov2(X), where
Cov2(X) is the set of equivalence classes of 2-sheeted covering spaces.

Example A.3. Let E be a real n-dimensional vector bundle over X and let PGL(E) be the
associated frame bundle: it is a bundle whose fiber over x ∈ X is the set of all bases for the
vector space Ex. This is a principal GL(n)-bundle, where GL(n) is the group of invertible n×n
real matrices. Let g = ((aij)) ∈ GL(n) and given a basis p = (v1, ..., vn) of Ex, we define the
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action of g by

pg := (v′1, ..., v
′
n)(A.1)

v′j =
∑
k

vkakj .

This action is obviously free and transitive.
If the vector bundle E has additional structure, we obtain a principal bundle with smaller

structure group. For instance, if E is equipped with a Riemannian metric, we can consider
the bundle PO(E) of orthonormal frames. The construction above makes this into a principal
O(n)-bundle. Also, if X is oriented we obtain the principal SO(n)-bundle PSO(E) of oriented
orthonormal frames.

Conversely, given a linear representation of G on Cn or Rn, we obtain an associated vector
bundle E over X. For the classical groups (automorphisms of a vector space that preserve
some linear algebraic structure), the concepts of principal and vector bundles are completely
equivalent.

Recall that a general fiber bundle B π−→ X with fiber F and structure group G ⊆ Homeo(F )
is given by the following data.

• We have an open cover U = {Uα}α∈A of X and over each neighbourhood Uα there is
a local trivialization π−1(Uα) hα−→ Uα×F such that pr ◦ hα = π (where pr is projection
onto Uα).

• The change of trivialization over Uα∩Uβ =: Uαβ is of the form Uαβ×F
hα◦h−1

β−−−−−→ Uαβ×F ,
where hα◦h−1

β (x, f) = (x, gαβ(x)(f)) and gαβ : Uαβ → G are continuous functions called
the transition functions. They satisfy

(A.2)

{
gαα ≡ 1 on Uα

gαβ gβγ gγα ≡ 1 on Uα ∩ Uβ ∩ Uγ := Uαβγ .

The latter condition is called the cocycle condition
The bundle can then be reconstructed from the above data by gluing the local products Uα×F
together with the transition maps.

We observe that any principal G-bundle can be represented by transition functions gαβ :
Uαβ → G multiplying G on the left. Since a principal G-bundle is a fiber bundle, it is given by
an open cover {Uα} and a family of transition functions Gαβ : Uαβ → Homeo(G). Also, since
the bundle is principal, these functions must pointwise commute with right G-multiplication If
then we define gαβ(x) = Gαβ(x)(1), we have Gαβ(x)(g) = Gαβ(x)(1)g = gαβ(x)g.

Concluding, we see that every principal G-bundle on X is given by a pair (U , {gαβ}) where
U = {Uα}α∈A is an open cover of X and where gαβ : Uαβ → G are continuous functions that
satisfy the cocycle conditon (A.2). Such a pair can be interpreted as a Čech 1-cocycle with
coefficients in G. Two such bundles, constructed from cocycles {gαβ} and {g′αβ} on U are
equivalent if and only if there exist continuous maps gα : Uα → G such that

(A.3) g′αβ = g−1
α · gαβ · gβ,

on Uαβ for all α, β. Therefore, we define two 1-cocycle {gαβ} and {g′αβ} on U to be equivalent if
and only if there exists a Čech 0-cochain {gα}α∈A such that (A.3) holds. The set of equivalence
classes is denoted by H1(U ;G), which represents the equivalence classes of principal G-bundles
on X which can be trivialized over the open sets of U .
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Remark A.4. Let {fα0...αk} be a Čech k-chain with values in G on U . Then the Čech
differential of {fα0...αk} is the k + 1-chain

(A.4) (δkf)α0...αk+1
=

k+1∏
i=0

(fα0...αi−1αi+1...αk+1
)(−1)i

in multiplicative notation, or

(A.5) (δkf)α0...αk+1
=

k+1∑
i=0

(−1)i(fα0...αi−1αi+1...αk+1
)

in additive notation.
We call f a Čech cocycle if δkf = 1, and a Čech coboundary if f = δk−1g for some k − 1-

chain g. This definition justifies the above terminology: a Čech 1-chain {gαβ} defines a principal
G-bundle if and only if {gαβ} is a cocycle. Also, two cocycles define isomorphic bundles if they
differ by a coboundary, which we see from (A.3).

Suppose that (V , j) is a refinement of U : V is an open cover of X and j : V → U is
a map such that V ⊆ j(V ) for all V ∈ V . Then by restriction of the cocycles we get a map
rV U : H1(U ;G)→ H1(V ;G) which can be shown to be independent of the refinement function
j. These satisfy rW U = rW V ◦ rV U for refinements W → V → U such that we can take the
direct limit

(A.6) H1(X;G) := lim
−→

H1(U ;G).

This limit represents the equivalence classes of principal G-bundles on X:

(A.7) PrinG(X) ∼= H1(X;G).

If G is abelian, H1(X;G) is the first Čech cohomology group of X with coefficients in G.

Remark A.5. If X is a smooth manifold and G a Lie group, we can require the maps
gαβ, gα above to be smooth. We then obtain the set of equivalence classes of smooth principal
G-bundles over X, which is denoted H1(X;G)∞. However, the map H1(X;G)∞ → H1(X;G)
can be shown to be a bijection.

If G is not abelian, H1(X;G) is not a group, it is only a pointed set with the special element
given by the trivial G-bundle. Still, if

(A.8) 1→ K
i−→ G

j−→ G′ → 1

is an exact sequence of topological groups, there is an exact sequence of pointed sets [16]

{∗} → H0(X;K) i∗−→ H0(X;G)
j∗−→ H0(X;G′)(A.9)

→ H1(X;K) i∗−→ H1(X;G)
j∗−→ H1(X;G′).

H0(X;G) is the set of 0-cocycles and is identified with the space of continuous maps X → G.
The maps i∗ and j∗ are coefficient homomorphisms induced by the maps i, j above.

Remark A.6. If the group K is abelian, then H2(X;K) is defined such that we can extend
the exact sequence to

(A.10) ...→ H1(X;K) i∗−→ H1(X;G)
j∗−→ H1(X;G′) δ−→ H2(X;K).
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Example A.7. For the sequence

(A.11) 0→ Z2 → Spin(n)
ξ0−→ SO(n)→ 0,

the induced coboundary map

(A.12) w2 = δ : H1(X;SO(n))→ H2(X; Z2),

is the is the second Stiefel-Whitney class. By the exactness of the sequences above, we see that
w2(P ) = 0 if and only if P is in the image of j∗, i.e. if and only if P carries a spin structure.

Let (U , gαβ) be a cocycle representing P , where each Uαβ is contractible. We can lift each
gαβ to a map ḡαβ : Uαβ → Spin(n) and define

(A.13) wαβγ = ḡαβ ḡβγ ḡγα,

on Uαβγ . Since ξ0(wαβγ) ≡ 1, wαβγ maps to Z2. This Z2-cocycle wαβγ represents w2(P ).

Example A.8. Let us consider the exact sequence

(A.14) 0→ Z→ R σ−−→ S1 → 1,

where σ is the map x 7→ exp(2πix). All the groups in this sequence are abelian, so we can
extend the sequence (A.9). Now in Čech cohomology, H i(X; R) = 0 for all i > 0. Therefore,
from (A.10) we get an isomorphism

(A.15) c1 = δ : H1(X;S1)
∼=−→ H2(X; Z),

which is called the first Chern class. We see that the equivalence classes of principal U(1)-bundles
correspond 1-to-1 with elements of H2(X; Z).



APPENDIX B

Spin Structures

In this appendix we briefly discuss the notion of a spin structure.

1. Orientations on vector bundles.

Let π : E → X be a real vector bundle of rank n over a manifold X. We assume E to be
Riemannian: it has a positive definite inner product on the fibers which depends continuously on
the basepoint. We also assume that E is oriented : there is an orientation continuously defined
on the fibers. This structure does not always exist.

Consider the bundle of orientations Or(E) = PO(E)/SO(n), where 2 two orthonormal bases
are identified if they have the same orientation: they can be transformed into each other by an
orthogonal matrix with determinant +1. Then Or(E) is a 2-sheeted covering space of X and E
is orientable if and only if this coveringspace is trivial.

Lemma B.1. There is a natural isomorphism

(B.1) Cov2(X) ∼= H1(X; Z2).

Proof. This is an immediate consequence of the isomorphism H1(X;G) ∼= PrinG(X) and
the fact that Cov2(X) ∼= PrinZ2(X), see the Appendix A. �

Definition B.2. For each vector bundle E, we denote the image of the equivalence class
of Or(E) under this isomorphism by w1(E) ∈ H1(X; Z2) called the first Stiefel-Whitney class
of E.

We conclude:

Theorem B.3. A vector bundle E → X is orientable if and only if w1(E) = 0 . Further-
more if w1(E) = 0, then the distinct orientations are in 1-to-1 correspondence with elements of
H0(X; Z2).

The second statement says that there are two possible orientations of E over each connected
component of X.

There is an equivalent definition of w1(E). Suppose X is connected. Then from the fibration
O(n) i−→ PO(E) π−→ X we get a long exact sequence in cohomology:

(B.2) 0→ H0(X; Z2)→ H0(PO(E); Z2)→ H0(X; Z2) wE−−→ H1(X; Z2).

We can then define w1(E) = wE(g1), where g1 is the generator of H0(O(n); Z2). From the
exactness of this sequence see that w1(E) = 0 if and only if PO(E) has two connected components
(as O(n)), that is if and only if E is orientable.
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2. Spin structures on vector bundles

Now let E be an oriented n-dimensional vector bundle. We recall that, for n ≥ 3, the group
Spin(n) can be defined by the following exact sequence:

(B.3) 0→ Z2 → Spin(n)
ξ0−→ SO(n)→ 1,

where ξ0 is the universal covering homomorphism of SO(n).

Definition B.4. Suppose n ≥ 3. A spin structure on E is a principal Spin(n)-bundle
PSpin(E) together with a 2-sheeted covering

(B.4) ξ : PSpin(E)→ PSO(E),

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(E) and g ∈ Spin(n).

Note that the diagram

PSpin(E) PSO(E)

X

ξ

π′ π

where π, π′ are the bundle projections is commutative. If we restrict ξ to the fibers, we obtain
the covering ξ0 These fibrations fit together in the diagram

PSpin(E) PSO(E)

X

Spin(n) SO(n)

Z2

ξ

π′ π

ξ0

Conversely, suppose that ξ : PSpin(E)→ PSO(E) is a 2-sheeted covering which is non-trivial
on the fibers, that is such that the diagram

PSpin(E) PSO(E)

Spin(n) SO(n)Z2

ξ

ξ0

commutes. If we set π′ = π ◦ ξ we make PSpin(E) into a fibre bundle over X. Lifting the action
of SO(n) on PSO(E) to a compatible action of Spin(n) on PSpin(E) makes this into a principal
Spin(n)-bundle. We conclude:
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Theorem B.5. The spin structures on E are in 1-to-1 correspondence with 2-sheeted cov-
erings of PSO(E) which are non-trivial on the fibers.

Whit the help of lemma B.1 we can reformulate this as

Corollary B.6. Suppose X is connected, then the spin structures on E are in 1-to-1
correspondence with elements of H1(X; Z2) whose restriction to the fiber of PSO(E) is non-zero.

Now we turn to the question of the existence of such a spin structure. Associated to the
fibration SO(n) i−→ PSO(E) π−→ X there is an exact sequence in cohomology:

(B.5) 0→ H1(X; Z2) π∗−→ H1(PSO(E); Z2) i∗−→ H1(SO(n); Z2) wE−−→ H2(X; Z2).

Definition B.7. w2(E) = wE(g2) ∈ H2(X; Z2), where g2 is the generator of H1(SO(n); Z2)
is the second Stiefel-Whitney class of E.

From the corollary and the exactness of the sequence (B.5) we conclude:

Theorem B.8. There exists a spin structure on E if and only if w2(E) = 0. If w2(E), the
distinct spin structures are in 1-to-1 correspondence with elements of H1(X; Z2).

3. Spin Manifolds

Definition B.9. A spin manifold is an oriented Riemannian manifold with a spin structure
on its tangent bundle.

We define the Stiefel-Whitney classes wi(X) of a manifold X as the Stiefel-Whitney classes
of the tangent bundle TX. Hence we have the following:

Theorem B.10. An oriented Riemannian manifold X admits a spin structure if and only
if w2(X) = 0. In this case, the spin structures on X are in 1-to-1 correspondence with elements
of H1(X; Z2).





APPENDIX C

Lattices

In this appendix we briefly recall the concept of integral lattices.

1. Integral lattices

Definition C.1. A lattice in Rn is an additive subgroup Λ ⊂ Rn which is additively
generated by some basis e1, ..., en for Rn.

So elements of Λ are linear combinations l =
∑

i niei of the basis vectors with coefficients
ni ∈ Z. Choosing such a basis e1, ..., en, we can form the fundamental domain P consisting of
all X =

∑
i xiei with 0 ≤ xi < 1. The volume of P is given by

(C.1) vol(P ) =
∫
P
dx1...dxn = | det(e1, , en)|,

where (e1, ..., en is the matrix with rows ei. This volume can be identified with the volume of
the quotient torus Rn/Λ, and denote it by vol(Λ).

Definition C.2. We call a lattice Λ ⊂ Rn unimodular if vol(Λ) = 1.

The vector space Rn can be endowed with a real, symmetric, nondegenerate scalar product,
denoted x ·y. This scalar product need not be positive definite. Given such an (indefinite) inner
product, we can define the signature:

Definition C.3. Given a basis e1, ..., en for Λ and an inner product ·, we can define the
signature σ of Λ as

(C.2) σ(Λ) = b+ − b−,

where b+ (b−) is the number of basis elements ei with ei · bi > 0 (< 0).

The signature does not depend on the choice of basis, as it equals the difference in dimensions
of the maximal positive and negative subspaces of Rn for · .

Definition C.4. We call an element c ∈ Λ a characteristic element if c · x ≡ x · x mod 2
for all x ∈ Λ.

It can easily be shown [17] that such a characteristic elements always exists. A characteristic
element c satisfies [17]

(C.3) c · c = σ(Λ) mod 8.

Definition C.5. Given a lattice Λ and a scalar product ·, can define the dual lattice Λ∗:

(C.4) Λ∗ = {x ∈ Rn : y · x ∈ Z,∀y ∈ Λ}.
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We have Λ∗∗ = Λ. A standard basis for the dual lattice is the dual basis f1, ..., fn, which
are defined by ei · fi = δij .

We call Λ integral, if Λ ⊆ Λ∗ as a subgroup. If this is the case, the quotient

(C.5) Z(Λ) = Λ∗/Λ,

is well-defined. By choosing representatives λα for each coset, we can write this quotient group
as

(C.6) Z(Λ) = Λ ∪ (λ1 + Λ) ∪ ... ∪ (λ|Z(Λ)|−1 + Λ),

where we set λ0 = 0. Now the volumes of the lattices Λ and Λ∗ are related by

(C.7) vol(Λ)vol(Λ∗) = |det(e1, ..., en)| |det(f1, ..., fn)| = |det(ei · fj)| = det(δij) = 1,

hence vol(Λ) = vol(Λ∗)−1. On the other hand, |Z(Λ)| copies of the fundamental domain of Λ∗

form a fundamental domain for Λ, hence

(C.8) 1 = vol(Λ)vol(Λ∗) = vol(Λ)vol(Λ)|Z(Λ)|−1,

from which we conclude that vol(Λ) =
√
|Z(Λ)|. Hence, Λ is unimodular if |Z(Λ)| = 1, or

Λ∗ = Λ.
An integral lattice Λ is said to be even if x · x ∈ 2Z for all x ∈ Λ, otherwise Λ is odd. Note

that

(C.9) Λtotal = Λ ∪ (Λ +
c

2
)

is a lattice. Also, we can splitt Λ = Λeven ∪ Λodd where Λeven (Λodd) consists of all x ∈ Λ with
x · x even (odd). So we can further split Λtotal as

(C.10) Λtotal = Λeven ∪ Λodd ∪ (Λeven +
c

2
) ∪ (Λodd +

c

2
).

This splitting will become relevant for assigning the theta functions to the unimodular cohomol-
ogy lattice F 2(M ; Z) of our space-time manifold M .



APPENDIX D

Een samenvatting voor leken

Natuurkundige theorieën zijn soms invariant onder bepaalde symmetrieën: dit houdt in
dat we de velden waar de theorie uit is opgebouwd een beetje kunnen veranderen, maar dat de
fysische voorspellingen van de theorie niet veranderen. Zo’n symmetrie heet een ijk-symmetrie.
We kunnen de ijk-symmetrie in de theorie beschrijven door het toevoegen van een ijk-veld, de
theorie die we dan krijgen heet een ijk-theorie.

Yang-Mills is een voorbeeld van zo’n ijk-theorie. De symmetrieën van deze theorie zijn
de transformaties van de symmetrie-groepen U(N) of SU(N). Deze theorie beschrijft verschil-
lende interacties in het standaard model waarbij de ijk-velden de boodschapper-deeltjes voor
de verschillende fundamentele krachten vormen. Voor N = 1 krijgen we de U(1) ijk-theorie die
elektromagnetisme beschrijft, het ijk-veld is in dit geval het foton, het boodschapper-deeltje van
de elektromagnetische kracht. Voor SU(2) krijgen we de zwakke kernkracht en voor SU(3) de
sterke kernkracht, met bijbehorende boodschapper-deeltjes respectievelijk de W en Z bosonen
en de gluonen.

Wij mensen leven in een vier-dimensionale ruimtetijd, die wij als vlak ervaren. De algemene
relativiteitstheorie van Einstein vertelt ons echter dat de ruimtetijd gekromd is, als gevolg van
de aanwezigheid van materie en energie in deze ruimte. De kromming wordt pas duidelijk op
kosmologische schaal, met als gevolg dat op menselijke schaal, deze kromming zo klein is dat wij
er niets van merken. De wiskundige manier om zo’n ruimtetijd te beschrijven is in termen van
een variëteit. Een variëteit is een object wat lokaal lijkt op de vlakke ruimte, maar dat globaal
een ingewikkelder vorm heeft. Een standaard voorbeeld is het aardoppervlak: wanneer wij om
ons heen kijken lijkt de aarde plat, maar vanuit de ruimte gezien is de aarde een bol.

Omdat Einstein voorspelt dat de kosmos een gekromde ruimte is, is het belangrijk dat
de natuurkundige theorien beschreven kunnen worden op zo’n gekromde ruimte. Om dit te
doen voor Yang-Mills, is het belangrijk de wiskundige structuur hieronder te analyseren. Het
wiskundige begrip wat hierin centraal staat is dat van een vector-bundel. Een vector-bundel wi-
jst op een consistente manier aan elk punt in een variëteit een vlakke ruimte (een vector-ruimte)
toe. De verschillende manieren waarop dit gedaan kan worden zijn aan elkaar gerelateerd door
een ijk-transformatie; de ijk-symmetrie is dan een symmetrie van de vector-ruimte. Een veld
kan dan beschreven worden door een afbeelding die aan elk punt in de variëteit een punt in de
vector ruimte toekent (een sectie). De ijk-velden worden dan beschreven door een connectie:
een manier om de ruimtes boven verschillend punten te verbinden (parallel transport).

Wanneer we de Yang-Mills theorie gebruiken voor de symmetrie-groep U(1) (rotaties in een
2-dimensionale ruimte), beschrijven we de theorie van elektromagnetisme. De klassieke variant
van elektromagnetisme werd door James Clerk Maxwell geformuleerd in de Maxwell vergelijkin-
gen, dit zijn de wetten waaraan elektrische en magnetische velden voldoen in de vlakke ruimte.
Om de theorie op een gekromde ruimte te formuleren gebruiken we de formalismen van Yang-
Mills theorie door het elektromagnetische ijkveld, de vector-potentiaal, als een connectie op te
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vatten. Op deze manier kunnen we bewijzen dat in de aanwezigheid van geladen deeltjes, de
elektromagnetische velden alleen bepaalde waarden aan kunnen nemen. De flux, een maat voor
hoeveelheid elektromagnetisch veld wat door een oppervlak gaat, door twee-dimensionale op-
pervlakken kan alleen een geheel getal zijn of juist alleen een geheel getal met een correctie van
1/2, afhankelijk van het oppervlak en het type geladen deeltje. Dit staat bekend als de Dirac
quantizatie voorwaarde.

De klassieke wetten van Maxwell in vacuüm, dat wil zeggen zonder de aanwezigheid van
geladen deeltjes, vertonen een speciale symmetrie: wanneer we het elektrische en het magnetische
veld omwisselen, krijgen we dezelfde vergelijkingen terug. Dit verschijnsel heet elektromagnetis-
che dualiteit. Deze symmetrie kan zelfs vergroot worden: een willekeurige lineaire transformatie
met reële coëfficiënten laat de vergelijkingen invariant. Het is belangrijk om hierbij op te merken
dat deze dualiteit geen ijk-symmetrie is: alleen de bewegingsvergelijkingen zijn invariant. We
kunnen ons afvragen hoeveel van deze symmetrie overblijft wanneer er wel geladen deeltjes aan-
wezig zijn. Om dit te beschrijven moeten we de overstap maken van klassieke natuurkunde naar
de kwantum fysica. Een belangrijk object in de kwantum theorie is de zogenaamde partitiefunc-
tie: een soort gewogen gemiddelde van alle mogelijke toestanden die de velden kunnen aannemen.
De klassieke toestanden (die toestanden die voldoen aan Maxwells vergelijkingen) hebben in deze
partitiesom het grootste gewicht. Met de hulp van de Dirac quantizatie voorwaarde kunnen we
de partitiefunctie schrijven als een som over de klassiek toestanden. Vervolgens kunnen we on-
derzoeken hoeveel van de elektromagnetische dualiteit is overgebleven door te onderzoeken hoe
de partitiefunctie verandert onder de uitwisseling van de elektrische en magnetische velden. Het
blijkt dat de dualiteit verkleind is: alleen onder bepaalde transformatie met gehele coëfficiënten
blijft de partitiefunctie (vrijwel) invariant: zij verandert volgens een bepaalde vaste regel (we
noemen dit een modulaire vorm). De manier waarop de partitiefunctie verandert blijkt af te
hangen van de vorm en structuur van de gekromde ruimtetijd.

Del Pezzo-oppervlakken zijn een familie van vier-dimensionale oppervlakken die interessant
zijn vanuit snaartheorie. Volgens snaartheorie is de ruimtetijd tien-dimensionaal. De reden
dat wij maar vier dimensies ervaren is omdat de overige 6 dimensies heel klein zijn: ze zijn
opgerold in extreem kleine 6 dimensionale oppervlakken, Calabi-Yau variëteiten genaamd. Del
Pezzo-oppervlakken kunnen beschreven worden als oppervlakken die zich in zo’n Calabi-Yau
oppervlak bevinden. Daarom is het interessant om te weten hoe de elektromagnetische theorie
op die oppervlakken eruit ziet. De del Pezzo-oppervlakken kunnen beschreven worden in termen
van het opblazen van punten: we verwijderen een punt uit een del Pezzo-oppervlak en plakken
daar een bol aan vast. Het resultaat: een nieuw del Pezzo-oppervlak. Met behulp van de Dirac
quantizatie zijn we in staat om de elektromagnetische partitiefunctie uit te rekenen op de ver-
schillende del Pezzo-oppervlakken. Hierin blijkt een bepaalde keuzevrijheid: de partitiefunctie
hangt niet alleen af van de vorm (de topologie) van het oppervlak, maar ook van de keuze van
een afstandsbegrip (een metriek). Deze keuze kunnen we uitdrukken door een aantal parameters,
zo vinden we een partitiefunctie voor elke keuze van een metriek. Het blijkt dat we door een
specifieke keuze van parameters de partitiefuncties van de verschillende del Pezzo-oppervlakken
aan elkaar kunnen relateren.

Yang-Mills theorie is de ijk-theorie die hoort bij de symmetrie-groep SU(N) (dit zijn een
soort rotaties in een N -dimensional complexe vector ruimte). Deze groepen zijn niet Abels,
dat betekent dat de volgorde van opvolgende transformaties van belang is voor de uitkomst, in
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tegenstelling tot de U(1) transformaties; dit maakt de theorie een stuk complexer. De beweg-
ingsvergelijkingen van de Yang-Mills theorieën hebben een speciaal soort oplossingen: instan-
tonen. Deze oplossingen danken hun naam aan het feit dat ze gelokaliseerd zijn in ruimte en
tijd.

Verschillende connecties (ijk-velden), kunnen aan elkaar gerelateerd worden door ijk -
transformaties, we noemen dit ijk-equivalent. Wanneer we de ijk-equivalente connecties met
elkaar identificeren, verkrijgen we een verzameling van ijk-equivalentieklassen van connecties,
een oneindig dimensionaal object. Echter, de deelverzameling van ijk-equivalentieklassen van
instantonen blijkt een eindig dimensionaal object te zijn, die onder bepaalde voorwaarden de
structuur heeft van een glad oppervlak: een variëteit. Dit kan gebruikt worden om een bepaald
getal (een invariant) toe te kennen aan de specifieke variëteit waarop we de Yang-Mills theorie
beschrijven. Wiskundigen kunnen met deze invarianten vier-dimensionale oppervlakken classi-
ficeren.
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