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Preface

This thesis is the product of two different directions of study this year. Under the supervision
of Gil Cavalcanti and Stefan Vandoren a reading seminar was organized, in which Bram Bet,
Reinier Storm, Ralph Klaasse and I presented and discussed the book “The Geometry of Four-
Manifolds” written by Donaldson and Kronheimer [DK]. The idea of the seminar was to get
a solid foundation in the modern study of the geometry of four-manifolds. After that we
went onto projects of our own that were related to this field. The book is mostly concerned
with the applications of Yang–Mills gauge theory to smooth four-manifolds, as developed by
mathematicians such as Donaldson and Atiyah. A central theme that returns in our projects
is the description of the moduli spaces of instantons that are associated to gauge theories. The
moduli space of anti-self-dual SU(2) connections on S2×S2, a class of instantons, is my project.
Chapter 3 gives an exposition of the theory regarding this moduli space.

The thesis also contains a part in which the theory of four-manifolds is applied to Abelian
gauge theories. Bram Bet and I got the assignment from Stefan Vandoren to study electric-
magnetic duality in Abelian gauge theories on four-manifolds, with a focus on del Pezzo surfaces.
The starting point for me was to study Abelian gauge theory on S2×S2, whereas Bram focused
on CP2. However, the geometry of these two del Pezzo surfaces is highly intertwined and as a
result our projects have become very much alike.

Although the part written on electric-magnetic duality in Chapter 4 is self-contained, it
does have connections with other parts of physics and mathematics. Due to the scope and size
of the thesis, these connections will only be dwelt upon shortly and much of these matters will
leave room for possible further research.
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Chapter 1

Introduction

Gauge theory in four dimensions has many striking features that throughout the last decades
have helped to make enormous progress in both mathematics and physics. This thesis is cen-
tered on two subjects in the interplay between gauge theory and four-dimensional geometry:
instantons and electric-magnetic duality. The first subject concerns instantons in Yang–Mills
theory and it has proved to be a powerful tool in the study of smooth four-manifolds. Electric-
magnetic duality is present in Abelian gauge theories, where identities related to four-manifolds
induce useful symmetries. Del Pezzo surfaces are a class of four-manifolds which will illustrate
many of the interesting characteristics of these two subjects. In this introduction some more
background information is given on instantons, electric-magnetic duality, four-manifolds and
del Pezzo surfaces. This chapter is concluded with an outline of the thesis.

1.1 Gauge theory and instantons

Gauge theory describes a field theory for which the Lagrangian is invariant under so-called
gauge transformations. This invariance corresponds to redundant degrees of freedom in the
associated physical theory. To calculate physical quantities one can choose a preferred gauge of
the fields. The gauge transformations act on the chosen gauge and the new field configuration
will result in equivalent physical predictions. These local transformations take values in a
specific representation of a Lie group, called the gauge group. Gauge fields are added to the
theory to ensure gauge invariance. For this invariance the gauge fields need to satisfy certain
transformation rules.

Gauge theory has been intensively studied by particle physicists during the second half of
the twentieth century. This has resulted in the Standard Model which describes the quantum
field theories of the strong force, the weak force and electromagnetism in a unified framework.
This is a quantum field theory with gauge group SU(3)× SU(2)× U(1).

Instantons were initially defined to be solutions to the equations of motions in Euclidean
space with a finite non-zero Euclidean action [VN]. The Euclidean action is obtained from
an action corresponding to a field theory on Minkowksi space, when one performs a Wick
rotation. The solutions to the equations of motion form saddle points of the Euclidean action.
In non-Abelian gauge theories on Minkowski space these instantons were encountered when the
vacuum structure of the theory was studied. The most notable is Yang–Mills theory, for which
the (non-Abelian) gauge group is SU(N).

To quantize the associated quantum field theories, one uses perturbations of the fields around
one of the vacua. These vacua correspond to minima of the potential. They can define topologi-
cally different backgrounds for the fields, in the sense that under continuous field transformations
one is not able to go from one vacuum into the other. This obstruction is usually formed by
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Chapter 1. Introduction

a potential barrier. Between the vacua there still exist tunnelling effects, and the fields that
mediate the tunnelling are the instantons. In order to describe the full quantum theory on
Minkowski space, one needs to take into account these effects.

The background for gauge theories is usually formed by flat space-time, i.e. Minkowski
space. According to Einstein’s theory of general relativity, this four-dimensional background
can become curved in the presence of matter. Due to the curvature the space can globally look
very different than flat space-time. The properties of such spaces are captured in the framework
of manifolds and depending on the curvature one can find obstructions for their topology. The
manifolds that serve as models for curved space-time are called Lorentzian four-manifolds. The
prefix Lorentzian indicates that we put a Lorentzian metric on it, a metric of signature (1, 3)
or equivalently (3, 1). In this way the manifolds have the same causal structure as Minkowski
space, which is needed to extend the relation between ‘time’ and ‘space’ as in special relativity
to curved space-times.

Background spaces for the Euclidean action and the associated instantons are obtained by
performing a Wick rotation on the time coordinate of a Lorentzian manifold. Such a transfor-
mation turns the metric into a Riemannian metric, which is positive-definite. These manifolds
are known as four-dimensional Riemannian manifolds.

The saddle points of the Euclidean action in Yang–Mills theory satisfy the Yang–Mills equa-
tions, which are non-linear partial differential equations. The solutions for which the Euclidean
action, also called the Yang–Mills functional, is non-zero and finite are known as Yang–Mills
instantons. The observed correspondence between the Yang–Mills instantons and the structure
of the underlying Riemannian four-manifolds has led to a revolution in mathematics. A special
class of these manifolds are closed, meaning they are compact and have no boundary. The
four-sphere is an example of a closed manifold that can be obtained as the Wick rotation of a
Lorentzian manifold, namely four-dimensional de Sitter Space (Example 3.6, [Bet]). This study
of Yang–Mills theory has been extended to closed manifolds that are not necessarily a Wick
rotated Lorentzian four-manifold.

The instantons in non-Abelian gauge theories on R4 were the first examples that were
studied, since they were of relevance for gauge theory on Minkowski space. A property of these
instantons is that they form fields localized in space and time and this property motivated
their name. The condition that the Euclidean action should be finite implies that the solutions
should approach pure gauge at spatial infinity [VN]. Gauge fields satisfying this condition are
topologically characterized by a quantity known as the instanton number. When we consider
closed backgrounds, the Euclidean action is always finite, but the gauge fields can still be
characterized by the instanton number.

For Abelian gauge theories on R4 such interesting structure for the saddle points is absent.
In order to see interesting effects we have to extend the topology of the manifold, which is done
when studying electric-magnetic duality.

1.2 Gauge theory on smooth four-manifolds

Several groundbreaking results in four-manifold theory came about in the late 70s and the 80s.
The intersection form of four-manifolds played a central role in those breakthroughs. An early
result by Milnor [Mil] in 1958 already stated that the oriented homotopy type of a simply-
connected, closed, oriented four-manifold is determined by its intersection form. Building on
Milnor’s work Freedman deduced [Fre] that the homeomorphism type of such a manifold is
determined by the intersection form and a Z2 invariant, called the Kirby-Siebenmann invariant.

Parallel to the development of gauge theory by physicists, gauge theory was also picked
up by mathematicians to analyse smooth four-manifolds. The usual techniques to study the
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1.3. Electric-magnetic duality

homeomorphism type of four-manifolds fell too short to study their diffeomorphism type and
gauge theory was able to provide the tools necessary. From a mathematical point of view,
the fields in a gauge theory are sections of a vector bundle over the background manifold.
Mathematicians recognized the choice of gauge as a choice of bundle trivialization. Associated
to this trivialization is a so-called structure group G which coincides with the gauge group. The
gauge transformations are then formed by a class of automorphisms of the vector bundle and
the gauge fields are naturally identified with connections on the bundle.

Atiyah was one of the first to study instantons in Yang–Mills theory on smooth four-
manifolds. The class of Yang–Mills instantons he focused on were the self-dual (SD) and
anti-self-dual (ASD) connections. In collaboration with others he classified all these instan-
tons modulo gauge transformations on R4 or equivalently on the four-sphere S4, culminating
in the ADHM construction [ADHM]. By looking at the moduli space of ASD connections on
SU(2) bundles, Donaldson was able to tell apart different smooth structures on four-manifolds.
Using this space he also constructed new polynomial invariants associated to smooth four-
manifolds, nowadays called the Donaldson invariants [Don1, DK]. For his seminal work in this
area Donaldson has been awarded the Fields Medal.

For Kähler manifolds, mathematicians later found a correspondence between the moduli
spaces of ASD connections and stable holomorphic bundles. Through this correspondence one
can use algebro-geometric methods to this describe this class of Yang–Mills instantons. See the
notes of Chapter 6 in [DK] for a short history regarding this correspondence.

Supersymmetric N = 2 SU(2) gauge theory is a special type of four-dimensional gauge
theory that has lately seen a rise in interest in both the mathematics and physics community.
Witten showed [Wit1] (with a technical addition by Baulieu and Singer [BS]) that certain type
of correlation functions in a twisted version of this theory were equivalent to the Donaldson in-
variants. The low-energy physics of N = 2 supersymmetric SU(2) gauge is calculated through
Seiberg–Witten gauge theory [SW1, SW2]. A set of field equations that show up in this theory
can be used to determine new invariants associated to four-manifolds. In analogy with Donald-
son theory one uses the moduli space of the solutions to these equations. Witten conjectured
that these invariants are actually related to the Donaldson invariants [Wit2]. The introduction
of the Seiberg–Witten invariants, as they are called these days, caused a (second) revolution
in mathematics, since they were technically easier to work with. A mathematically rigourous
discussion of Seiberg–Witten theory can be found in [Mor, Don2].

1.3 Electric-magnetic duality

Our starting point for electric-magnetic duality, also known as electromagnetic duality, is Maxwell
theory in vacuum and on a flat space-time, which is an Abelian gauge theory with gauge group
U(1). Soon after the discovery of Maxwell’s equations it was noticed that the Minkowski energy
and momentum densities associated to electromagnetism are invariant under ‘duality rotations’
of the electric and magnetic fields. In the formalism of tensor calculus one can write the elec-
tromagnetic four-potential as Aµ. In terms of the electromagnetic tensor Fµν = ∂µAν − ∂νAµ
Maxwell’s equations in vacuum become

∂µFµν = 0,
1

2
εµνρσ∂µFρσ = 0,

where εµνρσ is the totally anti-symmetric tensor. The second identity is implied by the way Fµν

is defined.
If we want to introduce curved space-time backgrounds, the more general setup is to write

the vector-potential Aµ as a 1-form
A = Aµdx

µ.
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Chapter 1. Introduction

The electromagnetic tensor Fµν is then seen to be part of the exterior derivative of A given by

F = dA =
1

2
Fµνdx

µ ∧ dxν ,

also called the two-form field strength. The curved space-time background is given by a
Lorentzian four-manifold with metric tensor gµν . An important object which incorporates the
non-trival curved background is the Hodge dual of F :

? F =
1

4

√
−g̃gµρgνσεαβρσFµνdxα ∧ dxβ, (1.1)

where gµν is the inverse of gµν and g̃ = det gµν . Maxwell’s equations on a curved background
can now be elegantly written as

d ? F = 0, dF = 0.

The identity dF = 0 is always true, because of the way F is defined. Mathematically speaking
F is the curvature of a connection A and dF = 0 is then known as the Bianchi identity.

The action we will consider is given by

S[A] =
1

g2

∫
M
F ∧ ?F +

θ

8π2

∫
M
F ∧ F, (1.2)

where θ is called the theta parameter and g the gauge coupling constant. The Euler-Lagrange
equations for this action result in Maxwell’s equations. In terms of the fields Fµν (1.2) can be
written as

S[A] =

∫
M
d4x
√
−g̃
(

1

4g2
FµνF

µν +
θ

16π2
εµνρσF

µνF ρσ
)
.

We prefer to write the action in terms of differential forms, since the geometric structure behind
this theory is then easier to study.

Define the ‘electric’ field to be FD = 4π
g2
F + θ

2π ? F . The ‘duality rotations’ which leave

invariant the energy-momentum tensor (and the equations of motion) associated to this action
are given by an action of SL(2,R) on the ‘electric’ and magnetic field [OA]:

FD 7→ aFD + bF, F 7→ cFD + dF, ad− bc = 1. (1.3)

If one combines the constants θ and g in the ‘complex’ coupling constant τ = θ
2π + 4πi

g2
, the

effect of the transformations in (1.3) is a new theory with complex coupling constant

τ 7→ aτ + b

cτ + d
.

The action of the group SL(2,R) on τ is generated by τ 7→ −1/τ and τ 7→ τ + b with b ∈ R.
In order to study the quantum theory associated to Maxwell theory in vacuum, one usually

calculates path integrals over all possible gauge fields A on the curved background. A path
integral that often is calculated (after setting ~ = 1) is given by∫

[dA] exp(iS[A]) =

∫
[dA] exp

(
i

1

g2

∫
M
F ∧ ?F + i

θ

8π2

∫
M
F ∧ F

)
. (1.4)

The term θ
8π2

∫
M F ∧F does not affect the physics, since it does not change the Euler-Lagrange

equations nor the value of the energy-momentum tensor. However, if the background space-
time M has sufficiently non-trivial topology the term 1

4π2

∫
M F ∧ F is quantized for a general
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1.3. Electric-magnetic duality

gauge field. If this is the case the action gets a non-trivial quantum phase and covariance under
SL(2,R) is not directly clear.

The path integrals for Maxwell theory are usually calculated through the Euclidean path
integral which has input the Euclidean Maxwell action SE [A]. These path integrals are math-
ematically better understood and the results obtained from this path integral may be Wick
rotated back. Maxwell theory in this framework is often referred to as Euclidean Maxwell the-
ory. The outcome of this theory would give the same physical results as one would get by
appropriate treatment of the (potentially divergent) Minkowskian path integral.

One can obtain the Euclidean Maxwell action from the Maxwell action (1.2) by performing
a Wick rotation on the Lorentzian four-manifold. Under this procedure one of the forms dxµ

obtains a factor i and the operator ? as in (1.1) turns into i?, where ? now is the Hodge star
operator acting on 2-forms on a Riemannian manifold. What we get is that the integrand in
the path integral (1.4) becomes

exp(iS[A]) 7→ exp(−SE [A]) = exp

(
− 1

g2

∫
M
F ∧ ?F + i

θ

8π2

∫
M
F ∧ F

)
, (1.5)

and the gauge fields are now defined on a four-dimensional Riemannian manifold. Notice that
the second term is unaffected in its form by the Wick rotation.

The path integral we get is highly convergent and for Riemannian manifolds of the form
M = S1 ×N it corresponds to a quantity known as the partition function

Z̃(τ) = Tr
(
e−E(τ)

)
.

Since the energy functional E(τ) is left invariant under the transformations in (1.3), this par-
tition function is therefore expected to be SL(2,R) covariant, meaning that the expression is
invariant up to some factor. The quantity

Z(τ) =

∫
[dA] exp(−SE [A]), (1.6)

is called the Maxwell partition function and the background manifolds M we will consider
are closed, connected, oriented and Riemannian. The key idea is that for closed and oriented
manifolds, we can make use of Poincaré duality in the calculations. The manifold M does not
have to be a Wick rotated Lorentzian four-manifold, so we have less restrictions on the topology
of the four-manifold and this will result in interesting effects.

The flux of F through a closed surface Σ in M , defined as the quantity
∫

Σ F , usually equals
zero if M has too trivial topology. Non-trivial fluxes are for example absent in classical Maxwell
theory on Euclidean R4. Fluxes can be non-trivial for more complicated manifolds, when a
topological quantity known as the second Betti number is non-zero. Dirac [Dir] stipulated that
these fluxes should be quantized, a result that has become known as the Dirac quantization
condition. Such quantized fluxes cause the term 1

4π2

∫
M F ∧F in the action to be quantized and

the values of this term will be dependent only on the topology of M . The resulting quantum
theory is then not SL(2,R) covariant anymore, since the transformation τ 7→ τ + b only leaves
the action invariant for even b in general, or integral b if 1

4π2

∫
M F ∧F is always even. Therefore

the action of SL(2,R) gets broken down to SL(2,Z) or a subgroup thereof.
The partition function becomes intricately related with the topology and geometry of the

underlying four-manifolds. An important object which will determine the values of 1
4π2

∫
M F∧F ,

is given by the intersection form we mentioned in the previous section. For specific topologies
of M , the partition function is invariant under the full group SL(2,Z) and we can speak of
exact electric-magnetic duality. In more general cases, the partition function transforms as a
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Chapter 1. Introduction

modular form under the action of SL(2,Z) or a subgroup thereof and we then speak of modular
covariance or SL(2,Z) covariance.

Verlinde [Ver] and Witten [Wit3] have studied the global properties of this duality. For
Abelian gauge fields which couple to complex spinor fields something peculiar happens and one
has to study the partition function in a more generalized context, which has been done by Olive
and Alvarez [OA].

Although electric-magnetic duality in Euclidean Maxwell theory is an interesting phe-
nomenon on its own to study, this type of duality seems to be a recurring theme in physics and
mathematics. In a recent paper Gaiotto and Witten [KW] have made a connection between
electric-magnetic duality and the geometric Langlands program. Also recently, a correspon-
dence between knot theory and topological gauge theories in four dimensions has been found,
in which electric-magnetic duality plays a role [GW].

Electric-magnetic duality has been extended to the concept of S-duality, also known as
strong-weak duality, which is present in string theory and plays a crucial role in supersymmetric
gauge theories. S-duality was first conjectured to be present as the so-called Montonen-Olive
electric-magnetic duality in N = 4 supersymmetric Yang–Mills theory [MO, Oli]. The duality
concerns the equivalence of two regimes of a given quantum field theory. This equivalence is
formed by a transformation within the quantum field theory that transforms a set of fields
and vacua with coupling constant g into a set of dual fields and vacua with gauge coupling
constant 1/g. This means there is a duality between the weak coupling regime and the strong
coupling regime of the same theory. The motivation behind finding these dualities is that QCD
is still poorly understood for low energies, where the coupling is strong, in contrast to high
energies, where the coupling is weak. Switching the ‘electric’ and magnetic fields in Euclidean
Maxwell theory with θ set to zero in (1.5), gives us such a duality. Seiberg [Sei] extended this
type of duality and showed it was present in N = 1 supersymmetric Yang–Mills gauge theory
on 4-manifolds. Vafa and Witten subsequently showed [VW] S-duality is present in N = 4
supersymmetric Yang–Mills theory on a variety of four-manifolds. This duality is also present
in Seiberg–Witten gauge theory [SW1, SW2]. When the gauge group is SU(2), this S-duality is
an embedded form of the electric-magnetic duality that is present in Euclidean Maxwell theory
[Wit3]. This is a domain where the theory regarding electric-magnetic duality in Abelian gauge
theories and Yang–Mills instantons meet.

1.4 Del Pezzo surfaces

Specific four-manifolds that are central within this thesis are del Pezzo surfaces. The Italian
mathematician Pasquale del Pezzo - after whom the surfaces are named - studied these surfaces
at the end of the 19th century and have been recurrently in the focus of mathematical research
ever since. Only recently did these surfaces become interesting to physicists, where they are
studied in the context of superstring theory. A large class of superstring theories requires ten
space-time dimensions. To reduce this number to the four dimensions we observe, one com-
pactifies the other six dimensions: they are rolled up onto very small six-dimensional manifolds.
Often this six-dimensional manifold is conjectured to be a Calabi–Yau threefold, which can
contain embedded del Pezzo surfaces. Such occurences of del Pezzo surfaces in superstring
theory and its extension to 11 dimensions, M-theory, have been studied in [CKM, HMV] for
example. By dimensional reduction one is sometimes able to obtain a Yang–Mills theory on
a del Pezzo surface. Hence in this setting it is interesting to study Yang–Mills instantons and
electric-magnetic duality on these manifolds. In the domain of string theory, one has also estab-
lished a correspondence between toroidal compactifications of M-theory and del Pezzo surfaces,
which is called the ‘mysterious duality’ [INV].
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1.5. Outline

Del Pezzo surfaces are obtained by blowing up points in CP1 × CP1, a product of two
Riemann spheres, or CP2, the complex projective plane. Blowing-up is a geometric procedure
from which one is able to construct new manifolds out of old ones. In four dimensions, it can be
described as replacing a point by a copy of CP1. Del Pezzo surfaces have a Kähler structure, so
that we can use methods from algebraic geometry to model the ASD moduli space. One result
from algebraic and complex geometry is that blowing up CP1 × CP1 in one point is the same
as blowing up CP2 in two points. This explicit structure will play a role in the description of
the moduli spaces.

Del Pezzo surfaces will also cover the full spectrum of the theory regarding electric-magnetic
duality in Euclidean Maxwell theory. We will calculate the Maxwell partition functions for del
Pezzo surfaces that are endowed with more generic metrics. The blow-ups of CP1×CP1 ' S2×S2

and CP2 will then be treated in terms of connected sums of manifolds. The resulting partition
functions still reflect the topological correspondences between the blown-up surfaces and the
dependence on the metric is reduced to a number of parameters satisfying certain conditions.

1.5 Outline

Chapter 2 will cover some basic facts about four-manifolds. The geometric properties of four-
manifolds can be characterized through the homology and cohomology groups and the intersec-
tion form. Specific to four-manifolds is the notion of (anti-)self-duality which is fundamental
for the description of the ASD moduli space and will also return when we discuss the Maxwell
partition function. Del Pezzo surfaces will have some additional structure and in Chapter 2 we
will also give an exposition of the algebraic and complex geometry related to del Pezzo surfaces.
At some points we refer the reader to the Appendix on complex projective space.

Chapter 3 covers the Yang–Mills instantons formed by ASD connections. We recall some
general theory about vector bundles and connections and cover some central results from [DK]
regarding ASD moduli spaces. For Kähler surfaces we will relate the SU(2) ASD moduli spaces
to the moduli spaces of stable holomorphic vector bundles of rank 2. Based on results in [Sob],
this correspondence will be combined with the constructions for del Pezzo surfaces to describe
the SU(2) ASD moduli space on S2 × S2 .

In Chapter 4 we will discuss electric-magnetic duality in Euclidean Maxwell theory on closed,
connected, oriented, Riemannian four-manifolds. The associated Maxwell partition function is
computed in the semiclassical approximation. Due to the Dirac quantization condition for fluxes
the result becomes a sum over a discrete set which is dependent on the topology of the manifold.
The intersection form is the topological invariant that will play the most significant role. The
modular covariance of this theory can then be easily studied, since part of the partition function
becomes a theta function. The theory developed will be applied to del Pezzo surfaces. Central
to this chapter are the papers by Verlinde [Ver], Witten [Wit3] and Olive and Alvarez [OA].

Besides four-manifold theory, there is no direct overlap between Yang–Mills instantons and
electric-magnetic duality in the way it is presented in this thesis. As a result Chapter 3 can be
read separetely from Chapter 4 and only some results from Sections 3.1, 3.2 and 3.4.3 are used
in Chapter 4.

In the Outlook we will cover some connections of what we presented with other parts of
physics and mathematics. One connection is the duality of Euclidean Maxwell theory with
toroidal models in string theory. Another main connection is formed by Seiberg–Witten theory,
where both instantons and electric-magnetic duality are encountered.

Due to the scope of the thesis a part of the theory is covered in a somewhat condensed
form. Whenever it is not possible to cover all details or there are more interesting aspects to
the theory, references to more comprehensive works are given. I would like to point out that only
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Chapter 1. Introduction

a few results presented are original. The computations in Section 4.6 are joint work with Bram
Bet under the supervision of Gil Cavalcanti and Stefan Vandoren. At some points I adapted
and extended some original arguments from the literature. I hope the reader will enjoy many of
the elegant features of gauge theory that are covered. The reader is encouraged to read Bram
Bet’s thesis [Bet] as well. Our theses supplement each other well at some points, especially in
Chapter 4.
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Chapter 2

Four-Manifolds

This chapter starts with a section covering some general theory about four-manifolds as a
preliminary for Chapters 3 and 4. We will follow selected parts from Chapter 1 of [DK] and
[AO] and assume the reader is familiar with basic algebraic topology and differential geometry.
The second section will cover the geometry of del Pezzo surfaces. These surfaces will illustrate
the theory from the first section and some related results will reappear in Sections 3.5, 4.5 and
4.6.

2.1 Cohomology, homology and intersection forms

Let M be a closed (compact without boundary), oriented n-manifold and denote Hi(M,Z) and
H i(M,Z) for the i-th homology and cohomology groups with integral coefficients, respectively.
The i-th Betti number bi denotes the rank of the i-th homology group. Poincaré duality gives
an isomorphism between homology and cohomology in complementary dimensions, i and n− i.
In combination with the universal coefficient, it is seen that bi is also the rank of H i(M,Z),
Hn−i(M,Z) and Hn−i(M,Z).

A simply connected manifold M has the property that its first homology group H1(M,Z)
vanishes. If this is the case and M is four-dimensional, the universal coefficient theorem and
Poincaré duality then greatly reduce the homology and cohomology groups of interest:

• H1(M,Z) = H3(M,Z) = H1(M,Z) = H3(M,Z) = 0;

• H2(M,Z) ' H2(M,Z) ' Hom(H2(M,Z),Z) ' Zb2 , i.e. they are infinite free Abelian
discrete groups of rank b2. The isomorphism with Zb2 is obtained by picking a set of
generators for H2(M,Z) and H2(M,Z);

• H0(M,Z) ' H0(M,Z) ' H4(M,Z) ' H4(M,Z) = Z.

2.1.1 The intersection form

Before we define the intersection form, we first introduce the intersection number, which can
be defined on any oriented smooth manifold.

Definition 2.1. Let V,W be two smooth submanifolds of an oriented smooth n-manifold M
that are of complementary dimension and intersect each other transversely. The intersection
number I(V,W ) is defined as

I(V,W ) =
∑

x∈V ∩W
ε(x),

where ε(x) ∈ {±1} is +1 if TxV ⊕ TxW matches the orientation of TxM and −1 otherwise.
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Chapter 2. Four-Manifolds

We fix M to be a closed, oriented, simply-connected four-manifold. The Poincaré duality
isomorphism and the pairing between homology and cohomology result in a symmetric, bilinear
form

Q : H2(M,Z)×H2(M,Z)→ Z; Q(α, β) = 〈α ^ β, [M ]〉 ∈ Z, (2.1)

where ^ denotes the cup product on cohomology, [M ] is the fundamental homology class of
M and the brackets indicate the pairing between homology and cohomology. Using Poincaré
duality on the entries of Q, we obtain a symmetric, bilinear form

I : H2(M,Z)×H2(M,Z)→ Z. (2.2)

If M is smooth, then for Σ, Σ′ ∈ H2(M,Z) the number I(Σ,Σ′) is given by the intersection
number of the 2-dimensional oriented surfaces that represent Σ and Σ′, which can be chosen to
intersect transversely. Due to the properties of the intersection number, I(Σ,Σ′) is then indeed
symmetric in Σ and Σ′ and the value of I(Σ,Σ′) is independent of the representative chosen.
As a consequence it is also possible to define the self-intersection number I(Σ,Σ).

For smooth M the Poincaré dual of a homology 2-cycle Σ can be realized as the de Rham
cohomology class of a closed 2-form ω. This 2-form has the property that

∫
Σ α =

∫
M ω∧α for all

2-forms α. Given two Σ,Σ′ ∈ H2(M,Z) and its Poincaré dual forms ω, ω′, we have the identity
I(Σ,Σ′) =

∫
M ω ∧ ω′. To show this we first notice that integration of ω ∧ ω′ over M reduces

to integration over neighbhourhoods of the points in Σ ∩ Σ′ (the representatives are denoted
by the same symbol). The integrals over these neighbourhoods then equal ±1, depending on
whether TΣ ⊕ TΣ′ matches the orientations of TM at the points of intersection. The sum of
these integrals gives us I(Σ,Σ′). A more explicit calculation can be found on pages 2 and 3 of
[DK]. Whence, by using de Rham cocycles as representatives for H2(M,Z) the form I becomes
Poincaré dual to the following symmetric, bilinear form

Q : H2(M,Z)×H2(M,Z)→ Z; Q([α], [β]) =

∫
M
α ∧ β ∈ Z, (2.3)

which coincides with the right-hand side of (2.1). We conclude that in the presence of a smooth
structrure, the expressions (2.1) and (2.2) can be computed in more geometric terms.

The isomorphism H2(M,Z) ' H2(M,Z) ' Hom(H2(M,Z),Z) is realized through the as-
signment I(Σ)(·) = I(Σ, ·). This means that the form I is unimodular. Similarly, Q induces an
isomorphism between H2(M,Z) and Hom(H2(M,Z),Z) ' H2(M,Z), so that Q is a unimodular
form as well.

Definition 2.2. The unimodular forms Q and I in (2.1) and (2.2) are both called the inter-
section form of M . When M is smooth, Q can also be given by (2.3) and I in terms of the
intersection number of the surfaces that represent the homology 2-cycles (see Definition 2.1).
The form Q can be extended to the full de Rham cohomology group H2(M,R) by applying the
right-hand side of (2.3) to the de Rham cocycles. The result is a real, non-degenerate, bilinear,
symmetric form on H2(M,R).

Both Q and I can be represented by symmetric non-degenerate matrices with integer entries
after picking a basis for H2(M,Z) and H2(M,Z). These matrices must have determinant equal
to ±1, since their inverses must have integer entries as well by unimodularity of the forms.
Symmetric matrices having integer entries and determinant equal to ±1 are called unimodular
matrices.

Remark 2.3. The values of I and Q are independent of the representatives chosen, i.e. I(Σ +
∂Π,Σ′+∂Π′) = I(Σ,Σ′) and Q(α+∂γ, α′+∂γ′) = Q(α, α′). Therefore cycles and cocycles and
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2.1. Cohomology, homology and intersection forms

their respective homology and cohomology classes are sometimes denoted by the same symbol.
Whenever the underlying manifold of the intersection form needs to be distinguished, we will
denote it by a subscript, i.e. I = IM and Q = QM .

The intersection form is a topological invariant associated to four-manifolds for which certain
algebraic properties are valid. Discrete Abelian groups of rank n isomorphic to Zn and endowed
with a unimodular form can be classified algebraically up to isomorphism. We will cover this
classification in Section 4.3.1, when we see these groups as lattices. An important property of
an integral, symmetric, bilinear form on such a group is its type: odd or even.

Definition 2.4. Let Λ be a discrete Abelian group isomorphic to Zn. Then an integral, sym-
metric, bilinear form Q on Λ is even if Q(x, x) is even for all x ∈ Λ and odd otherwise.

Freedman showed [Fre] that any unimodular form can be obtained as the intersection form
of some topological four-manifold. In some cases a certain intersection form is an obstruction for
a smooth structure on the manifold. For a summary of results regarding smooth four-manifolds
and their possible intersection forms see Chapters 8 and 9 of [DK].

2.1.2 Non-simply connectedness

When M is not necessarily simply connected, the intersection forms I and Q are still well-
defined, but the manifold can have homology and cohomology classes that have torsion. This
means there are elements [Σ] ∈ Hi(M,Z) and [α] ∈ H i(M,Z) which have finite order: there
are numbers N,N ′, such that the cycle NΣ and cocycle N ′α are respectively a boundary and
coboundary, i.e NΣ = ∂Π and N ′α = dβ for some (i + 1)-chain Π and (i − 1)-cochain β. Let
us denote the group of torsion elements in Hi(M,Z) and H i(M,Z) by Ti(M,Z) and T i(M,Z),
respectively. One sees that for Σ ∈ T2(M,Z) we have

I(Σ, Σ̃) =
1

N
I(NΣ, Σ̃) = I(0, Σ̃) = 0.

Similarly, Q(α, β) = 0 if α or β lies in T 2(M,Z). If these torsion groups are non-trivial, I and
Q are not unimodular anymore, since they have become degenerate. However, Poincaré duality
and the universal coefficient theorem imply that the quotients

F2(M,Z) = H2(M,Z)/T2(M,Z), F 2(M,Z) = H2(M,Z)/T 2(M,Z), (2.4)

both are isomorphic to Zb2 and that Q and I restricted to these quotients are unimodular.
Furthermore the isomorphism H2(M,Z) ' Hom(H2(M,Z),Z) gets replaced with

F 2(M,Z) ' Hom(H2(M,Z),Z) ' Hom(F2(M,Z),Z). (2.5)

Examples of closed, oriented, non-simply connected four-manifolds are RP2 × RP2, where
RP2 is real projective 2-space, or T 2 × T 2, the direct product of two tori.

For completeness we calculate the non-trivial torsion groups for a closed, oriented, connected
four-manifold M . Connectedness gives H0(M,Z) ' Z and in combination with orientability and
closedness we get H4(M,Z) ' Z. Poincaré duality then tells us that M always has

H0(M,Z) ' H0(M,Z) ' H4(M,Z) ' H4(M,Z) = Z.

The universal coefficient theorem implies

T i(M,Z) ' Ti−1(M,Z), (2.6)
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Chapter 2. Four-Manifolds

so that T 1(M,Z) = T0(M,Z) = 0 and T3(M,Z) = T 4(M,Z) = 0. Due to Poincaré duality and
(2.6) the only non-trivial torsion groups satisfy

T2(M,Z) ' T 2(M,Z) ' T1(M,Z) ' T 3(M,Z).

If M is simply-connected, all torsion groups vanish, since then T1(M,Z) ⊂ H1(M,Z) = 0.

2.1.3 (Anti-)Self-duality and harmonic forms

We fix our attention to oriented, Riemannian n-manifolds. On such manifolds, the Hodge star
operator ? : Ωi(M)→ Ωn−i(M) is defined through

α ∧ ?β = (α, β)dµ, (2.7)

where (·, ·) is the Euclidean inner-product on the fibres of ΛiT ∗M and dµ is the Riemannian
volume form. Using ? we obtain the following inner-product on forms

〈α, β〉 =

∫
M
α ∧ ?β. (2.8)

There is an adjoint map d∗ : Ωi(M)→ Ωi−1(M) defined using this inner-product:

〈dα, β〉 = 〈α, d∗β〉, (2.9)

where it is assumed that at least one of the two forms has compact support. One can compute
that d∗ = ± ? d?.

An i-form α is harmonic if dα = d∗α = 0. We denote all such forms by

Hi(M) = {α ∈ Ωi(M) | dα = d∗α = 0}. (2.10)

If M is closed, we can apply Hodge theory. The following decomposition is then valid for i-forms

Ωi(M) = Hi ⊕ d∗(Ωi+1(M))⊕ d(Ωi−1(M)).

The first and third term form the closed forms, since dd∗γ = 0 implies d∗γ = 0. From this we
conclude that H i(M,R) = ker(d : Ωi(M)→ Ωi+1(M))/d(Ωi−1(M)) ' Hi, i.e. each cohomology
class has a unique harmonic representative.

In four dimensions ?2|Ω2(M) = id. Accordingly, Ω2(M) = Γ(Λ2) can be split as

Ω2(M) = Ω+(M)⊕ Ω−(M) = Γ(Λ+)⊕ Γ(Λ−), (2.11)

where Λ± is the ±1 eigenspace of ?, i.e for α ∈ Λ± one has

α ∧ α = ±|α|2dµ.

For α± ∈ Λ±, we have

α+ ∧ ?α− = −α+ ∧ α− = − ? α+ ∧ α− = −α+ ∧ ?α−,

so that α+ and α− are orthogonal for the Euclidean inner product (·, ·) in (2.7). This implies
that the splitting of Λ2TM = Λ+ ⊕ Λ− is actually an orthogonal decomposition.

One important observation is that in four dimensions the action of ? on 2-forms (hence the
splitting in (2.11)) only depends on the conformal class of the Riemannian metric.
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2.1. Cohomology, homology and intersection forms

Proposition 2.5. Let M be an oriented, Riemannian four-manifold. Then the action of the
Hodge star operator on 2-forms only depends on the conformal class of the metric.

Proof. What we need to proof is that for a positive smooth function c on M , the Riemannian
metric cg will give the same value on the right-hand side of (2.7) when α, β ∈ Ω2(M). The
Riemannian volume form for the new metric becomes c4dµ. The elements in the cotangent
bundle get rescaled by a factor 1/c, so the inner product (α, β) gets rescaled by a factor 1/c4.
The different powers of c cancel each other and therefore the right-hand side of (2.7) remains
invariant.

For closed and four-dimensional M , the cohomology classes in H2(M,R) can be uniquely
represented by harmonic 2-forms and we have d∗ = − ? d? and ?2 = id in two degrees. This
shows ? preserves H2(M) and hence the splitting in (2.11) passes to cohomology:

H2(M,R) ' H2(M) = H+ ⊕H−, (2.12)

where H+ and H− are the self-dual and anti-self-dual harmonic 2-forms, respectively. The
spaces H+ and H− are seen to correspond with maximal positive and negative subspaces of the
form Q, when Q is applied to the unique harmonic representatives of H2(M,R) through the
right-hand side of (2.3).

Remark 2.6. The second cohomology group with real coefficients H2(M,R) can be realized
as H2(M,Z)⊗ R. Tensoring with R has the effect that all torsion cocycles vanish, so that the
quotient F 2(M,Z) forms a discrete subgroup of H2(M,R). As a consequence of the isomorphism
H2(M,R) ' H2(M), the generators of F 2(M,Z) can be uniquely represented by harmonic
forms. Furthermore, the intersection form Q extended to H2(M,R) is non-degenerate even if
H2(M,Z) has torsion elements.

The splitting in (2.12) depends on the conformal class of the metric due to Proposition 2.5.
The numbers b+ = dimH+ and b− = dimH− are topological invariants however, since they
correspond to dimensions of the maximal positive and negative subspaces of Q. The number

σ(M) = b+ − b− (2.13)

is known as the Hirzebruch signature of M .

2.1.4 Connected sums

Let M and N be oriented, closed n-manifolds. A connected sum in its simplest definition is
deleting two (small) n-balls in M and N and ‘glue’ the resulting boundary (n − 1)-spheres.
How one glues together these spheres depends on which properties of the manifolds we want to
preserve. To preserve the orientation of both manifolds, one must identify the spheres through
an orientation reversing map.

Often one also wants to preserve the smooth structure of both manifolds if they are present.
In addition, one then takes two neighbourhoods of the boundary (n − 1)-spheres, forming an-
nuli diffeomorphic to (0, 1) × S2n−1. These annuli are identified with each other through an
orientation preserving diffeomorphism, where the ‘radial’ coordinate x ∈ (0, 1) gets inverted and
the ‘spheres’ get identified through an orientation reversing map. This means the outer sphere
(' {1} × Sn−1) in one annulus gets identified with the ‘reversed’ inner sphere (' {0} × Sn−1)
of the other annulus and vice versa. After the two annuli are identified with each other, the
resulting part of the manifold is denoted as the neck of the connected sum. The identifications
are illustrated in Figure 2.1.
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Chapter 2. Four-Manifolds

Figure 2.1: Smooth connected sum ([Sco], page 119).

The connected sum M#N is closed and oriented as well. We therefore have H0(M#N,Z) '
Hn(M#N,Z) ' Z. One can show that the rest of the homology splits using Mayer–Vietoris
sequences (see [Hat], page 258), which in combination with Poincaré duality gives the following
theorem.

Theorem 2.7. Let M#N be the connected sum of oriented, closed n-manifolds M and N .
Then we have:

H0(M#N,Z) ' Hn(M#N,Z) ' H0(M#N,Z) ' Hn(M#N,Z) ' Z,
Hi(M#N,Z) = Hi(M,Z)⊕Hi(N,Z) for 0 < i < n,

H i(M#N,Z) = H i(M,Z)⊕H i(N,Z) for 0 < i < n.

Another property of the connected sum M#N is that it is simply connected if M and N
are, which is consistent with the theorem above.

In the construction of the connected sum, the representatives of the homology cycles in M
can be chosen to not intersect those in N . Now suppose M and N are four-dimensional and
smooth. In the connected sum M#N , the intersection numbers between the two-cycles in M
and between the two-cycles in N remain the same. Therefore, the intersection forms I and Q
on M#N split as a direct sum of the two original intersection forms on M and N . This also
holds when M and N are not smooth ([Sco], page 118).

Proposition 2.8. Let M,N be closed, oriented four-manifolds and M#N their connected sum.
Then the following is true for the intersection forms I and Q as in Definition 2.2:

IM#N = IM ⊕ IN , QM#N = QM ⊕QN .

2.2 Del Pezzo surfaces

In this section we will give a brief description of the algebraic and complex geometry needed
to describe del Pezzo surfaces. More information on CPn, complex projective n-space, can be
found in Appendix A, where we also set notation.
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2.2. Del Pezzo surfaces

Del Pezzo surfaces are formally defined as specific abstract algebraic surfaces. When realized
as complex surfaces, they form complex manifolds of dimension 2, which is the class of four-
manifolds we are interested in.

Definition 2.9 ([Man]). A del Pezzo surface is a smooth projective complex surface with
ample anticanonical bundle K−1. The degree of a del Pezzo surface is the self-intersection
number ([K], [K]) of its canonical class.

The canonical bundle K over a complex surface M is defined as the top exterior power of
the holomorphic cotangent bundle ([GH], page 146):

K = Λ2,0T ∗M,

which is a line bundle (Section 3.2 covers line bundles). The anticanonical bundle K−1 is the
inverse of K, meaning K ⊗K−1 is the trivial line bundle. The canonical class [K] ∈ H2(M,Z)
is the first Chern class of K and the self-intersection number ([K], [K]) is given by Q([K], [K]),
where Q is the intersection form as in Definition 2.2. Since K−1 is ample for a del Pezzo surface,
it can be embedded in CPN for some N .

Remark 2.10. Definition 2.9 can be generalized to any algebraically closed field k instead of
C. This will be the definition of a del Pezzo surfaces in terms of an abstract algebraic surface.

Pasquale del Pezzo proved that the degree d of a del Pezzo surface satisfies 1 ≤ d ≤ 9. There
is also an alternative description of del Pezzo surfaces given in terms of blow-ups of CP2 and
CP1 × CP1.

A blow-up of a complex manifold can heuristically be described as the surface one gets
when one replaces a point by the set of all complex lines passing through that point (see Figure
2.2). For complex manifolds of dimension 2, this means that we replace a point by CP1. The
following theorem [Var] will give us a description of del Pezzo surfaces in terms of blow-ups.

Theorem 2.11. Let M be a del Pezzo surface of degree d. Then either M is biholomorphic to
the blow-up of CP2 at 9− d points in general position in CP2, or d = 8 and M is biholomorphic
to CP1 × CP1.

Remark 2.12. The condition that a collection of points is in general position in CP2 means:

1) No three points lie in the same line;

2) No six points lie in the same quadric;

3) There is no singular cubic passing through all the 8 points and which has one of the points
as its singularity.

This condition is implied by the fact that K−1 is ample for a del Pezzo surface.

In Section 2.2.2 blow-ups are covered in more detail. There it will be shown that the blow-
up of a complex manifold M of dimension n is diffeomorphic to the smooth connected sum
M#CPn, where CPn is the manifold CPn with reversed orientation.

The complex manifold CP1×CP1 is diffeomorphic to S2×S2, but when S2×S2 is realized
in such a way it is endowed with the product metric on two round spheres. Del Pezzo surfaces
can hence be classified up to diffeomorphism as:

• dP0 = CP2;

• dP1 = CP2#CP2
and dP̃1 = S2 × S2;
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Chapter 2. Four-Manifolds

Figure 2.2: A depiction of a blow-up ([Har]), page 29).

• dPl = CP2#lCP2
, with 2 ≤ l ≤ 8.

In Section 2.2.3 we will proof that the blow-up of CP1 ×CP1 at one point is biholomorphic
to the blow-up of CP2 at two points. As a consequence the higher blow-ups of these two surfaces

are biholomorphic to each other as well. This implies that dPl = CP2#lCP2
can also be realized

(up to diffeomorphism) as S2 × S2#(l − 1)CP2
.

We will start with the introduction of algebraic varieties. Several geometrical properties
of del Pezzo surfaces are better understood in that framework, since intersections of algebraic
varieties are well-behaved. The main reference of what follows is [GH]. I assume the reader is
familiar with basic notions from complex geometry.

2.2.1 Algebraic varieties

A large class of known complex manifolds can be obtained by studying zero-sets of holomor-
phic functions f : Cn → C. The prime examples of holomorphic functions are the complex
polynomials. A great deal of ring theory is devoted to the study of polynomial functions. The
algebraic relations for polynomial functions gets reflected in the geometric properties of their
zero-sets. Subsets of Cn that can be obtained in this way are known as algebraic sets.

Del Pezzo surfaces can be embedded in complex projective space, so it is more natural to
consider subsets of CPn cut out by polynomials. To define subsets of CPn as the zero locus of a
polynomial, we notice that these are only well defined for homogeneous polynomials. The zero
set of a homogeneous polynomial F ∈ C[Z0, . . . , Zn] in CPn is denoted as

Z(F ) = {F = 0} = {(Z0 : . . . : Zn) ∈ CPn |F (Z) = 0}. (2.14)

We can extend these definitions to zero-loci of subsets S of homogeneous polynomials:

Z(S) = {(Z0 : . . . : Zn) ∈ CPn |F (Z) = 0, ∀F ∈ S}. (2.15)

Definition 2.13 ([GH], page 166). A subset of CPn that can be realized as the zero-locus of
a finite family of homogeneous polynomials is called an algebraic variety. An algebraic variety
in CPn has dimension k if the number of homogeneous polynomials defining it is n− k and the
polynomials are coprime. Algebraic varieties of dimension 2 are called algebraic surfaces.

To see the detailed structure of algebraic varieties, one uses the holomorphic coordinate
charts (ϕi, Ui) for CPn given by the sets

Ui = {Zi 6= 0} (2.16)
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and maps

ϕi : CPn ∩ Ui → Cn ; (Z0 : . . . : Zn) 7→ (Z0/Zi, . . . , Zi−1/Zi, Zi+1/Zi, . . . , Zn/Zi), (2.17)

with inverse ϕ−1
i (z1, . . . , zn) = (z1, . . . zi−1 : 1 : zi : . . . : zn). The coordinates zj = Zj/Zi on Ui

are also called affine coordinates.
Using the charts in (2.17) one can describe the zero-set Z(F ) of a homogeneous polynomial

in terms of affine coordinates (z0, . . . , zi−1, zi+1, zn) ∈ Cn, where zj = Zj/Zi:

Z(F ) ∩ Ui ' {F (z0, . . . , zi−1, 1, zi+1, . . . , zn) = 0} = {f(z0, . . . , zn) = 0}.

A point p ∈ Z(F )∩Ui is regular if ∂f
∂zj

(ϕi(p)) 6= 0 for some j. By an application of the implicit

function theorem a local neigboorhoud of p is then a complex manifold of dimension n− 1. A
point p is singular if it is not regular in some chart. If none of the points p ∈ Z(F ) are singular,
then Z(F ) is a complex submanifold of CPn of dimension n− 1.

Now on Ui we have ∂f
∂zj

= ∂F
∂Zj

Zi and for homogeneous polynomials of degree d we have the

Euler rule:
n∑
j=0

∂F

∂Xj
·Xj = d · F.

These identities show that the set of singular points in Z(F ) is given by
⋂n
j=0 Z

(
∂F
∂Xj

)
. Hence,

Z(F ) is a closed complex submanifold of CPn of dimension n− 1 if and only if

n⋂
j=0

Z

(
∂F

∂Xj

)
= ∅. (2.18)

We extend this discussion to a collection S = {F1, . . . , Fk} of (coprime) homogeneous polyno-
mials. Then the condition of a point p ∈ Z(S) being singular is equivalent to

rank

(
∂Fi
∂Xj

(p)

)
i,j

< k, (2.19)

where
(
∂Fi
∂Xj

(p)
)
i,j

is the k × (n+ 1) matrix of partial derivatives ∂Fi
∂Xj

(p). If none of the points

in Z(S) is singular, then Z(S) can be realized as a closed complex (n − k)-submanifold of
CPn. If this is the case, we say that the algebraic variety Z(S) is smooth or non-singular. A
consequence of Chow’s theorem ([GH], page 167) is that the converse is also true, any closed
complex submanifold of CPn is a smooth algebraic variety. This shows that the del Pezzo
surfaces can all be realized as smooth algebraic varieties.

Intersection numbers and degrees

Intersections of algebraic sets and varieties have very useful properties and form one of the main
subjects of study in the field of algebraic geometry. Let us consider for example a closed complex
manifold M and two complex submanifolds V,W ⊂ M that are of complimentary dimension
and intersect each other transversely. The intersection number I(V,W ) as in Definition 2.1 is
then always positive. In fact, if V and W are defined as the smooth zero-set ⊂ Cn (or ⊂ CPn)
of complex (homegeneous) polynomials, then the number I(V,W ) is equal to the number of
simultaneous solutions to the polynomials defining V and W . This observation is in fact one of
the corner stones of algebraic geometry.
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One can extend the definition of the intersection number to account for intersections that
are not transverse. In this definition one takes into account the multiplicity of intersection
points and basically the result counts the number of transverse intersection points one gets
under small perturbations of the manifolds V,W .

Based on this property of the intersection number for smooth algebraic varieties, we intro-
duce the notion of degree.

Definition 2.14 ([GH], page 172). Let V be an algebraic variety of dimension k in CPn. The
degree of V is defined as the number of points (counted with multiplicity) in the intersection of
V with a generic complex projective (n− k)-plane CPn−k in CPn.

The degree is multiplicative with respect to intersections. For instance, let us take two
algebraic varieties V,W ⊂ CP4 of dimension 3 and 2 and having degree 4 and 5, respectively.
Then their intersection will generally be a non-empty 1-dimensional algebraic variety, since
Z(S) ∩ Z(S′) = Z(S ∪ S′). This intersection will then intersect a generic complex projective
3-plane in 4× 5 = 20 points (counted with multiplicity).

Another property of the degree is that if V ⊂ CPn is a hypersurface, i.e. the zero locus of a
homogeneous polynomial F , then the degree of V is equal to the degree of F . One special case
of the properties of the degree is also known as Bezout’s theorem.

Theorem 2.15 (Bezout). Let f1 and f2 in C[x, y, z] be homogeneous irreducible polynomials of
degree d1 and d2, respectively. Assume Z(f1) 6= Z(f2). Then #(Z(f1) ∩ Z(f2)) = d1d2 counted
with multiplicity.

2.2.2 Blow-ups

For a general subset U ⊂ Cn containing 0 we look at the following set,

Ũ = {(z, [w]) ∈ U × CPn−1 | z ∈ [w]} = {(z, [w]) ∈ U × CPn−1 | ziwj = zjwi}.

One sees that Ũ − {(0, [w])} ' U − {0}, since every point z ∈ U − {0} determines [w] ∈ CPn−1

uniquely. By taking the closure on both sides we see that we get a holomorphic map π : Ũ → U
extending the identity on U − {0}. The set Ũ is called the blow-up of U at 0 and π−1(0) =
{0} × CPn−1 ' CPn−1. It can be seen as a subset of the tautological bundle L over CPn−1,
which is a complex manifold of dimension n given by

L = {(z, [w]) ∈ Cn × CPn−1 | z ∈ [w]}. (2.20)

Now let M be a complex n-manifold. For an open set U ′ ⊂M centered around a point p ∈M we
can find a holomorphic coordinate chart φ : U ′ → U ⊂ Cn, such that φ(p) = (z1(p), . . . , zn(p)) =
0. Extending this chart to the blow-up of U at 0, we obtain a set Ũ ′ and a holomorphic map
π′ : Ũ ′ → U ′ such that:

• (π′)−1(p) ' P(TpU
′) ' P(TpM) ' CPn−1, which is the set of complex lines in the tangent

space at p ∈ U ′;

• π′ : Ũ ′ − (π′)−1(p)→ U ′ − {p} is biholomorphic.

The blow-up M̃ of M at p is then obtained by replacing U ′ with the set Ũ ′. What we obtain
is a complex manifold M̃ with a natural holomorphic projection map π : M̃ → M extending
the identity on M − {p}. The set E := π−1(p) ' P(TpM) ' CPn−1 is called the exceptional
divisor of the blow-up. A complex manifold M is said to be the blow-down of another complex
manifold N if N can be realized as the blow-up of M . We have the following proposition as a
corollary of the Kodaira embedding theorem ([GH], pages 191-192):
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2.2. Del Pezzo surfaces

Proposition 2.16. If M is a smooth algebraic variety, then the blow-up M̃ of M at a point p
is again a smooth algebraic variety.

Remark 2.17. In Section 2.2.3 we will show how CP1 × CP1 can be realized as a smooth
quadric in CP3. Theorem 2.11 and Proposition 2.16 then show again that del Pezzo surfaces
can be realized as smooth algebraic varieties.

Let V be a subset of M , then the proper transform of Ṽ ⊂ M̃ is given by

Ṽ = π−1(V − {p}) = π−1(V )− E.

Again π : Ṽ −E → V −{p} is a bijection and a biholomorpism if V −{p} is embedded in M as
a complex submanifold. If V does not intersect p, Ṽ = V . If p ∈ V , and V is smooth, then one
easily sees that the proper transform Ṽ is just the blow-up of V at p. If V is singular and p is
one of its singularities, Ṽ may have a milder singularity at some points in Ṽ ∩E. In Figure 2.2
one can see the proper transform of a curve that intersects itself in the blown-up point.

Blow-ups as connected sum

When the blow-up M̃ of M at a point p is considered as a smooth manifold, it can be shown
that M̃ is diffeomorphic to the smooth connected sum M#CPn, which was defined in Section
2.1.4. In the discussion below we follow parts of Section 2.4 of [Bal].

One thing we first need to prove is that CPn minus a point is diffeomorphic to the tautological
line bundle L over CPn−1 (see (2.20)). We can assume without loss of generality that the point
we delete in CPn is (1 : 0 : . . . : 0). The orientation of CPn is reversed by taking the complex
conjugate of z0. The set we then get is given by

CPn − {(1 : 0 : . . . : 0)} = {(z0 : z1 : . . . : zn) | zi = 0 for not all i 6= 0}.

The map ψ : CPn − {(1 : 0 : . . . : 0)} → L defined by

ψ((z0 : z1 : . . . : zn)) =

(
z0

|z|2
(z1, . . . , zn), (z1 : . . . : zn)

)
with |z|2 =

n∑
i=1

zizi, (2.21)

is then well-defined and a diffeomorphism.
By deleting a closed ball in CPn we obtain the set

Vε = {(z0 : z1 : . . . : zn) | |z0| < ε|z|}, where |z|2 =
n∑
i=1

zizi.

The image of Vε under ψ is the open set

Ũε = {(z′, [w]) ∈ L | |z′| < ε}.

Now Ũε can be used as the open set Ũ in our description of the blow-up of 0 ∈ Cn. We
see that Ũε is diffeomorphic (even biholomorphic) to an open set Ũ ′ε of the exceptional divisor
E = π−1(p) of M̃ . Let U ′ε be the corresponding neigbhourhood of p in M , for which we can
make the identification

(†) U ′ε − {p} ' Ũ ′ε − E ' Vε − ψ−1({0} × CPn−1).

Subsequently we pick a smaller closed neighbourhood U ′′ε ⊂ U ′ε.
The connected sum M#CPn can now be realized as the union (M − U ′′ε ) ∪(†) Vε, where the

subscript (†) indicates z′ ∈ U ′ε − U ′′ε is identified with z ∈ Vε through (†). The annuli in the
smooth connected sum (see Figure 2.1) are now given by U ′ε−U ′′ε and a small neighbourhood of
the boundary of Vε, which are both diffeomorphic to (0, 1)× S2n−1. The orientation preserving
diffeomorphism through which the two annuli are identified is now just induced by (†). Since
Vε ' Ũ ′ε, this connected sum is easily seen to be diffeomorphic to M̃ .
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Homology and cohomology for blown-up manifolds

Let us denote the i-th homology group with integral coefficients of a manifold N in short by
Hi(N). One can prove the following for the homology of blown-up complex manifolds.

Theorem 2.18 ([GH], page 473)). Let M be a complex manifold of dimension n and let M̃
denote its blow-up at a point p. The i-th homology group of M̃ is given by Hi(M̃) = Hi(M)⊕
Hi(E) ' Hi(M)⊕Hi(CPn−1) for i > 0.

Proof. Let U ′ and Ũ ′ be the open sets as in the definition of the blow-up of M , which we
will denote by U and Ũ for simplicity. We denote M∗ = M − {p}, M̃∗ = π−1M = M̃ − E,
U∗ = U −{p} and Ũ∗ = π−1(U∗) = Ũ −E. Now the Mayer–Vietoris sequences of M = M∗ ∪U
and M̃ = M̃∗ ∪ Ũ are exact and are related by the pushforward of π:

· · · −−−−→ Hi(Ũ
∗)

i−−−−→ Hi(Ũ)⊕Hi(M̃
∗)

j−−−−→ Hi(M̃)
h−−−−→ Hi−1(Ũ∗) −−−−→ · · ·

π∗

y π∗

y π∗

y π∗

y
· · · −−−−→ Hi(U

∗)
i′−−−−→ Hi(U)⊕Hi(M

∗)
j′−−−−→ Hi(M)

h′−−−−→ Hi−1(U∗) −−−−→ · · ·

The sets U and Ũ are homotopic to p and E, respectively. Furthermore, π is a diffeomorphism
from Ũ∗ to U∗ and from M̃∗ to M∗, so the diagram above simplifies to

· · · −−−−→ Hi(Ũ
∗)

i−−−−→ Hi(E)⊕Hi(M
∗)

j−−−−→ Hi(M̃)
h−−−−→ Hi−1(Ũ∗) −−−−→ · · ·

π∗

y' (0,id)

y π∗

y π∗

y'
· · · −−−−→ Hi(U

∗)
i′−−−−→ 0⊕Hi(M

∗)
j′−−−−→ Hi(M)

h′−−−−→ Hi−1(U∗) −−−−→ · · ·

We replace Hi(M̃) by Hi(M̃)/j(Hi(E)⊕0), Hi(E) by the trivial group and i by its composition
with the projection onto the second factor. The map (0, id) then becomes an isomorphism in this
new exact sequence and we can apply the 5-lemma, which gives usHi(M̃)/j(Hi(E)⊕0) ' Hi(M)
for i > 0.

If we can prove j(e, 0) = 0⇒ e = 0, then j(Hi(E)⊕ 0) ' Hi(E) and

Hi(M̃) = Hi(M)⊕Hi(E) for i > 0.

Since we know π∗ : Hi(M̃) → Hi(M) is surjective, the exact sequence above gives us the
following implications

j(e, 0) = 0⇒ (e, 0) = i(u)⇒ 0 = i′(π∗(u))⇒ π∗(u) = h′(m) = h′(π∗(m̃)) = π∗(h(m̃))

⇒ u = h(m̃)⇒ (e, 0) = i(u) = i(h(m̃)) = 0,

which proves our claim.

Remark 2.19. According to Theorem 2.7, we have Hi(M̃) = Hi(M#CPn) = Hi(M)⊕Hi(CP
n
)

for 0 < i < n and Hn(M̃) ' Z. Using Hi(CP
n
) = Hi(CPn) = Hi(CPn−1) for 0 < i < n and

Hn(CPn−1) = 0, we could have obtained Theorem 2.18 otherwise. In fact the proof of the more
general statement in Theorem 2.7 is very similar to the proof above, although at some points
it is a little bit more involved.

The blow-up of a complex surface M is diffeomorphic to M#CP2
, so that Proposition 2.8

gives us IM̃ = IM ⊕ ICP2 . We know H2(E) = ZE = H2(CP2
) and in Example 4.23 it will

be calculated that we can pick a basis of H2(CP2
) such that the intersection form QCP2 is

represented by the matrix −(1). This implies ICP2(E,E) = −1. Summarizing, we get the
following proposition.
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2.2. Del Pezzo surfaces

Proposition 2.20. Let M̃ be the blow-up of a closed complex manifold M of dimension 2 at
p and let E ' CP1 be the corresponding exceptional divisor. Then we have I(E,Σ) = 0 for all
Σ ∈ H2(M) and I(E,E) = −1, where I is the intersection form of M̃ as in Definition 2.2.

2.2.3 Quadrics in CP3

The discussion below concerning the Segre embedding of CP1 ×CP1 and quadrics in CP3 is an
adaptation of the section “The Quadric Surface” in Chapter 4 of [GH].

A quadric in CP3 is given by the zero-locus of a homogeneous polynomial of degree 2, also
called a quadratic form. Such a homogeneous polynomial F is in direct correspondence with a
symmetric matrix Q = (qij) of rank 3, i.e.:

F = Z ·QZ =
∑

qijZiZj . (2.22)

Let S be the zero-locus of the polynomial, then S is a smooth submanifold of CP3 if and only if
Q is non-degenerate as can be seen from (2.18). Since all non-degenerate symmetric quadratic
forms on C4 are isomorphic, any two smooth quadric surfaces in CP3 are biholomorphic when
seen as complex manifolds. A quadric that is smooth will also be called non-singular.

Remark 2.21. The space of quadrics in CP3 is parametrized by a copy of CP9, hence is a
smooth algebraic variety of dimension 9.

The Segre embedding of CP1 × CP1

Using the Segre embedding (see Appendix A) we get an embedding of CP1 × CP1 in CP3:

Ψ : CP1 × CP1 → CP3 ; ((s0 : s1), (t0 : t1)) 7→ (s0t0 : s0t1 : s1t0 : s1t1). (2.23)

Its image is given by the quadric {Z0Z3 −Z1Z2 = 0}, which we call S0. The symmetric matrix
Q as in (2.22) is non-degenerate. From the discussion above regarding quadratic forms we
deduce that any smooth quadric surface in CP3 is biholomorphic to CP1 × CP1. To make this
biholomorphism explicit, we first must study the geometry of quadrics and the image of the
Segre embedding more closely.

We claim that for all s, t ∈ CP1, the images of CP1×{t} and {s}×CP1 are lines in CP3 that
intersect each other in Ψ(s, t). A line in CP3 is given by the intersection of two hyperplanes
going through the origin and corresponds to a copy of CP1 sitting inside CP3 (see Appendix
A). It is easy to see that the image of {s} × CP1 equals

Ψ({s} × CP1) = {(s0t
′
0 : s0t

′
1 : s1t

′
0 : s1 : t′1) ∈ CP3 | (t0 : t1) ∈ CP1}

= {s1Z0 − s1Z2 = 0} ∩ {s1Z1 − s0Z3 = 0},

which is a line. Similarly we have

Ψ(CP1 × {t}) = {t1Z0 − t0Z1 = 0} ∩ {t1Z2 − t0Z3 = 0}.

By injectivity of Ψ we see that the two lines meet in Ψ(s, t).
Injectivity tells us furthermore that the lines Ψ({s} × CP1) and Ψ({s′} × CP1) are disjoint

for s 6= s′. Such lines are called A-lines. The same holds for the images of CP1 × {t}, which we
call B-lines. The rules for these lines in S0 are summarized as follows:

• Every A-line meets every B-line;

• Every two A-lines are disjoint;
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• Every two B-lines are disjoint.

In fact, we can show that these are all the lines in S0. Let L be a line on S0 going through
Ψ(s, t) and Ψ(s′, t′). If we can deduce that then either s = s′ or t = t′, L must necessarily be
either an A-line or B-line, respectively.

The line L between Ψ(s, t) and Ψ(s′, t′) is given by

{Ψ(s, t) + λ(Ψ(s′, t′)−Ψ(s, t)) ∈ CP3 |λ ∈ C}.

If L must lie on S0, then the equation Z0Z3 − Z1Z2 = 0 implies that for all λ ∈ C we have

0 = λ(1− λ)(s0t0s
′
1t
′
1 + s′0t

′
0s1t1 − s0t1s

′
1t
′
0 − s′0t′1s1t0)

= λ(1− λ)(s0s
′
1 − s′0s1)(t0t

′
1 − t1t′0).

This shows that either s0s
′
1 = s′0s1 or t0t

′
1 = t1t

′
0, i.e. either s = s′ or t = t′.

Figure 2.3: A quadric in CP3 ([Har]), page 14).

Non-singular quadrics

Let S be a non-singular quadric in CP3. Given a point p ∈ S, then its tangent space TpS is a
hyperplane in CP3, which is cut out by a homogeneous polynomial of degree 1. Let us recall
the properties of the degree discussed after Definition 2.14. We see that TpS ∩S is an algebraic
variety of degree 2 and complex dimension 1. Take q ∈ TpS∩S and assume the line pq does not
lie in TpS ∩S. By the properties of the degree, pq either intersects S transversely in p and q, in
p with multiplicity two or in q with multiplicity two. None of these options are possible, since
pq is tangent to S at p and meets q. Hence pq lies in TpS ∩S and we conclude that TpS ∩S is a
union of lines. Since TpS ∩ S has degree 2, any generic plane in CP3 intersects it in two points,
meaning it is a union of two lines (counted with multiplicity). These are exactly the lines on S
that go through p.

There is still the option that the two lines do not meet transversely at p, i.e. TpS ∩ S is
just one line L. In this case TpS would be everywhere tangent to S along L and so no other
line on S can meet L (that line would then have to lie in TpS). However, L must meet any
general tangent space TqS (any line and plane intersect in CP3) and this cannot be outside of
S. Therefore, L intersects TqS ∩ S, a union of lines, contradicting our earlier assumption.

Now we can draw the analogy with the A- and B-lines in the image of the Segre embedding.
We start with one line L0 ⊂ S. We call a line L on S an A′-line if it is equal to or disjoint
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from L0 and a B′-line if it meets L0 in one point. Take two lines L,L′ 6= L0 on S meeting in
a point. The plane they span in CP3 must meet L0 in a point p ∈ S. Since L,L′ are the only
points in the plane that lie on S, p must be a point of either L or L′. It cannot be both, since
no more than two lines can go through p. We see that one of the two lines L,L′ is an A′-line
and the other a B′-line. Conversely, let L 6= L0 be an A′-line and L′ a B′-line, then by similar
reasoning the plane spanned by L0 and L′ must meet L in one point, which by definition of an
A′-line cannot be L0.

We see that through any point in S there passes an A′-line and a B′-line and any two such
lines meet if and only if they are of different type, i.e. the properties of these families of lines
match those of the A- and B-lines we defined on Ψ(CP1 × CP1). From this we can construct
the explicit biholomorphism S ' CP1 × CP1. By mapping each A′-line and B′-line on S to an
A-line and B-line on Ψ(CP1 ×CP1), the two families of lines on S are parametrized by a point
in CP1. Any point q ∈ S is then mapped to the point Ψ(s, t) of intersection of the A-line and
B-line, corresponding to the A′-line and B′-line intersecting in q.

Blow-ups of quadrics in CP3

Now that we know that every non-singular quadric S ⊂ CP3 is biholomorphic to CP1×CP1 and
we have a description of all the lines that lie on such a quadric, we would like to establish the
claim that blowing up CP1 × CP1 is the same as blowing up CP2 at two points. Equivalently,
this means that any non-singular quadric S blown-up at one point is biholomorphic to a generic
hyperplane H ⊂ CP3 blown-up at two points (CP2 can be embedded as a general hyperplane
in CP3).

Take H any hyperplane in CP3 and S a smooth quadric in CP3. Let p ∈ S be such that H
is not tangent to S at p. We can then define a projection map πp : S − {p} → H, by letting
πp(s) be the point in H that intersects the line ps. This point exists, since any line and plane
should meet at least once in CP3, and it is unique since H is not tangent to p. By blowing-up
S at p we can extend the map πp. The result is a holomorphic map π̃p : S̃ → H, which on the
exceptional divisor E ⊂ S̃ is defined as follows. For r ∈ E ' P(TpS), let r ⊂ TpS be the line it
defines in CP3. The point π̃p(r) is then just the point of intersection of H with r̃.

Now by a familiar line of reasoning every line in CP3 must meet S in two points or must be
tangent to it. If we take q ∈ H, then the line pq either intersects S − {p} in one point or lies
in the tangent space TpS, which means it defines an element in E. From this we see that the
map π̃p : S̃ → H is surjective. All lines in the tangent space have different points of intersection
with H and two points s, s′ ∈ S are mapped to the same point if and only if they lie on the
same line through p, which can only happen if s, s′ ∈ S ∩Tp(S). Therefore injectivity of π̃p fails
only on the proper transforms of the A′-line and B′-line passing through p. Denote these lines
L1 and L2 and their corresponding images q1 and q2. The inverse images of q1 and q2 under π̃p
are then the proper transforms L̃1, L̃2.

We see π̃p : S̃− L̃1− L̃2 → H −{q1, q2} is a biholomorphism. The proper transforms L̃1, L̃2

are biholomorphic to CP1, since L1, L2 ⊂ were both embedded as a copy of CP1 in CP3. If
L̃1, L̃2 are mapped to the exceptional divisors E1, E2 associated to the blow-up H̃ of H in q1

and q2, we obtain a biholomorphism ψ : S̃ → H̃ that extends π̃p.
Notice that under these identifications any line in S that meets L1 (a B′-line) corresponds

to a unique line through q1 and vice versa. Similarly, there is such a correspondence between
the A′-lines and lines through q2. The line L0 = q1q2 ⊂ H runs through both q1 and q2 and on
S there are no lines unequal to L1, L2 going through both lines. This means that π̃−1

q (L0) must
be the exceptional divisor E.

The relations for the blow-up σ : S̃ → S at p and the blow-up τ : H̃ → H at q1 and q2, can
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be summarized through the following commutative diagram

S̃

σ

��
π̃p $$

'
ψ // H̃

τ

��
S πp

// H ' CP2,

(2.24)

with the relations E = π̃−1
p (L0) = ψ−1(L̃0) = σ−1(p) and

L̃i = σ−1(Li) = π̃−1
p (qi) = ψ−1(Ei) = ψ(τ−1(qi)) for i = 1, 2.

Remark 2.22. Extending this discussion to higher del Pezzo surfaces, one needs to take into
account the condition that the blown-up points are in general position (see Remark 2.12). If
one wants to study all the algebraic properties of del Pezzo surfaces, one needs more tools from
the field of algebraic geometry.

The surfaces CP1 × CP1 and dPl with 0 ≤ l ≤ 3 can also be described as a torus fibration
over a convex polytope. An algebraic variety realized in such a way is called a toric variety and
the associated convex polytope is called a toric diagram. The blow-ups of del Pezzo surfaces
then correspond to manipulations of the toric diagram by means of cutting the corners. Using
these diagrams one can show in another way that the blow-up of CP1 × CP1 is biholomorphic
to the blow-up of CP2 in 2 points. A description of del Pezzo surfaces using toric diagrams can
be found in [INV].
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Chapter 3

Yang–Mills instantons on
four-manifolds

This chapter will consist of the theory describing the moduli space of anti-self-dual connections
in four-dimensional Yang–Mills theory. These connections correspond to a class of instantons
and are particulary interesting when studied on SU(2) bundles. Following Chapters 2, 4 and
6 of [DK] we will start with basic theory on vector bundles and quickly move on to the ASD
moduli space and its correspondence with stable bundles on Kähler surfaces. The ASD moduli
space for SU(2) bundles over S2×S2 is discussed using theory from [Sob] and Section 2.2.3. Due
to the scope of the thesis, we will state a lot of results without proof. Most of the results from
[DK] that we present here, were covered in the reading seminar organized by Gil Cavalcanti
and Stefan Vandoren. All the statements and their proofs can be found back in the two main
references above.

3.1 Bundles and connections

Let E be a smooth vector bundle of rank n over a smooth manifold M and let A be underlying
field of the vector bundle. For this bundle we have a smooth surjection π : E →M and a cover
{Uα} of M with diffeomorphisms

ϕα : Uα × An → π−1(U), (3.1)

satisfying π ◦ ϕα = id|Uα . The map ϕα is called a trivialization over Uα. On overlapping
neighbourhoods one has

ϕ−1
β ◦ ϕα : (Uα ∩ Uβ)× An → (Uα ∩ Uβ)× An ; (x, v) 7→ (x, gαβ(x)v), (3.2)

where gαβ : Uα ∩ Uβ → GL(n,A) is smooth and is called a transition function. The collection
of transition functions gαβ associated to the cover {Uα} satisfy the cocycle condition:

gαα = id and gαβgβγgγα = id, (3.3)

whenever the intersection Uα ∩ Uβ ∩ Uγ is non-empty.
Let G be a Lie group. A vector bundle E over M is said to have structure group G, if there

is a covering {Uα} of M and trivializations over that cover such that the transition functions
gαβ take values in a representation ρ : G → GL(n,A) of the Lie group G on An. If E has
structure group G, we will often name it a G bundle and we will denote the transition functions
accordingly as gαβ : Uα ∩ Uβ → G.
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For real vector bundles of rank n we can consider G to be a subgroup of GL(n,R), such as
SO(n), Sp(n) or SL(n,R). For complex vector bundles of rank n we can consider subgroups of
GL(n,C), like U(n) and SU(n). Recall that associated to the Lie group G there is a Lie algebra
g. From E we can construct a new bundle gE having structure group G, with fibers isomorphic
to g. The group G acts on the fibers in the adjoint representation, meaning gE is a subbundle
of EndE = E ⊗ E∗. Let us denote two spaces of bundle valued forms which will often appear
in this chapter:

Ωp
M (E) = Γ(ΛpT ∗X ⊗ E), Ωp

M (gE) = Γ(ΛpT ∗X ⊗ gE). (3.4)

Central to the construction of Yang–Mills instantons are connections on E.

Definition 3.1. A connection on a smooth vector bundle E →M is a linear map

∇A : Ω0
M (E)→ Ω1

M (E), (3.5)

satisfying the Leibniz rule:

∇A(f · s) = f∇As+ df ⊗ s, ∀s ∈ Ω0
M (E) = Γ(E) and ∀f ∈ C∞(M).

When there is no confusion, we will denote ∇A as A. The space of all connections is denoted
as A .

The sum ∇A + a is again a connection for a ∈ Ω1
M (EndE), where a acts on E by the linear

extension to Ω1
M (EndE) of the contraction

Ω0
M (E)× Ω1

M (EndE)→ Ω1
M (E) ; (s, α⊗ a) 7→ α⊗ a(s).

By an application of the Leibniz rule one can show that the difference ∇A − ∇A′ of two con-
nections is an element of Ω1(EndE).

If E has structure group G, we have associated local trivializations τ : U ×An → E|U which
are compatible with the structure group. We put some extra structure on the connections by
demanding that for any such local trivialization ∇A|U = τ∗(∇A) is given by

∇A|U = d+Aτ , (3.6)

where Aτ is a g-valued 1-form over U called the connection form and d is the product connection
on the trivial bundle An × U → U . The product connection is given by letting the exterior
derivative d act on the components of sections in this bundle.

Convention 3.2. Whenever E has structure group G, we assume the local trivializations are
compatible with the structure group, i.e. the transition functions take values in G. A connection
A on a G bundle satisfies (3.6) in such a local trivialization.

As a consequence of this convention, the difference ∇A − ∇A′ of two connections is now
an element of Ω1(gE). In conclusion, the space A of all connections on a G bundle E is an
infinite-dimensional affine space, modeled on Ω1

M (gE).
The form ∇A|U takes in (3.6) is obviously dependent on the trivialization chosen over U ,

sometimes also referred to as a choice of gauge. What we would like to know is how the
definitions above change under a different choice of trivilization and how to achieve different
triviliziations.

A different trivialization is achieved by choosing a different set of sections spanning E over
U which we used to construct the isomorphism U × An ' E|U . The transformation relating
these sections must be compatible with the structure group. This transformation must therefore
be a section of the bundle U ×G→ U . We can glue together such sections over M to obtain an
automorphism u : E → E, which covers the identity on M , i.e. it acts fiberwise. Futhermore u
should preserve the structure of the fibers, so that u(x) : Ex → Ex must be an element in G.
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Definition 3.3. The set of automorphisms u : E → E covering the identity and preserving the
structure on the fibers forms a group G called the gauge group of E.1

By applying the exponential map exp : g→ G pointwise to sections of gE , we obtain a map
exp : Ω0(gE)→ G . The gauge group G acts on connections A ∈ A through the rule

∇u(A)s = u∇A(u−1s) for s ∈ Γ(E). (3.7)

Writing out the right-hand side gives

∇u(A) = ∇A − (∇Au)u−1 or noted otherwise u(A) = A− (∇Au)u−1, (3.8)

where ∇A acts on u by seeing it as a section of EndE = E ⊗E∗. This equivalence of (3.7) and
(3.8) shows that we can view u(A) either as a new connection on E or as the effect of changing
the local trivializations of E.

A change of trivialization τ of E over U can be described by an automorphism u of the
trivial bundle U ×Cn → U taking values in G. If τ is a trivialization of E over U , then (uτ) is
a new trivialization and ∇A|U = (uτ)∗(∇A) takes the form

∇A = d+Auτ ,

where

Auτ = u(Aτ ) = Aτ − {(d+ [Aτ , ])u}u−1

= Aτ − {du+Aτu− uAτ}u−1

= uAτu−1 − (du)u−1. (3.9)

By recognizing the new connection as ∇A|U = u(d+Aτ )u−1, we would have obtained this result
directly from (3.7). The reason why we demanded the connections A on a G bundle should
satisfy (3.6), is that Auτ in (3.9) now again is a g-valued 1-form.

3.1.1 Exterior derivatives and curvature

In the definition of the connection ∇A : Ω0
M (E) → Ω1

M (E) we used the exterior derivative
d : Ω0(M)→ Ω1(M). The ordinary de Rham complex

Ω0(M)
d−−−−→ Ω1(M)

d−−−−→ . . .
d−−−−→ Ωp(M)

d−−−−→ Ωp+1(M),

can be extended such that we obtain exterior derivatives

dA : Ωp
M (E)→ Ωp+1

M (E), (3.10)

which are uniquely determined by the properties:

i) dA = ∇A on Ω0
M (E);

ii) dA(ω ∧ θ) = (dω) ∧ θ + (−1)pω ∧ dAθ, for ω ∈ Ωp(M), θ ∈ Ωq
M (E).

The operators ∇A and dA will be used interchangably from here on. Using this construction we
can also extend the operator ∇A as defined on EndE and the subbundle gE .

1This definition 3.3 should not be confused with the definition of the gauge group in physics, which in this
formalism corresponds to the structure group G.
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Chapter 3. Yang–Mills instantons on four-manifolds

Unlike the exterior derivative, dA does not necessarily square to zero. However, using the
Leibniz rule one has dAdA(fs) = fdAdAs for f ∈ C∞(M) and s ∈ Ω0

M (E). Therefore dAdA acts
as multiplication on sections s with a g-valued 2-form. This 2-form FA ∈ Ω2

M (gE) is called the
curvature, which is then defined as

dAdAs = FAs. (3.11)

Under the addition of a ∈ Ω1
M (gE) we have

FA+a = FA + dAa+ a ∧ a. (3.12)

In a local trivialization τ : U × Cn → E|U the curvature is expressed as

F τA = dAτ +Aτ ∧Aτ , (3.13)

where the wedge product in the second term is a combination of the wedge product between
1-forms and multiplication in gE . Under gauge transformations of the connection A we get

Fu(A) = uFAu
−1. (3.14)

One sees that G preserves connections with curvature zero, which we call flat connections. The
last identity we note is the Bianchi identity

dAFA = 0. (3.15)

Now suppose M is an oriented, Riemanninan four-manifold. Recall from (2.11) that we
had the splitting Ω2(M) = Ω+(M) ⊕ Ω−(M). This induces a splitting of the curvature into a
self-dual part and anti-self-dual part

FA = F+
A + F−A ∈ Ω+

M (gE)⊕ Ω−M (gE), (3.16)

where Ω±M (gE) = Γ(Λ± ⊗ gE).

Definition 3.4. A connection A on a G bundle over an oriented, Riemannian four-manifold is
anti-self-dual (ASD) if F+

A = 0 and self-dual (SD) if F−A = 0.

Remark 3.5. Self-duality and anti-self-duality are a conformally invariant property of the
connection due to Proposition 2.5. By (3.14) these conditions are preserved under gauge trans-
formations. Furthermore, self-dual and anti-self-dual connections get interchanged if we reverse
the orientation of M .

3.1.2 Adjoints, inner-products and norms

Let E be a vector bundle over an oriented, Riemannian manifold M with a Hermitian or
Euclidean metric on the fibers. This means that the representation of the structure group in
the definition of the transition functions lies in a subgroup of respectively U(n) or SO(n). On
Ωp
M (E) and Ωp

M (gE) we then have the inner products

〈φ, ϕ〉 =

∫
M

(φ, ϕ)dµ for φ, ϕ ∈ Ωp
M (E), (3.17)

and

〈a, b〉 =

∫
M

(a, b)dµ for a, b ∈ Ωp
M (gE), (3.18)
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where dµ is the Riemannian volume form on M and (·, ·) denotes the inner-product on the fibers
of the bundles ΛpT ∗M ⊗E and ΛpT ∗M ⊗gE . We have formal adjoints d∗A : Ωp

M (E)→ Ωp−1
M (E)

and d∗A : Ωp
M (gE)→ Ωp−1

M (gE), defined through

〈dAφ, ϕ〉 = 〈φ, d∗Aϕ〉 and 〈dAa, b〉 = 〈a, d∗Ab〉.

In this definition of d∗A at least one of the forms should have compact support. We also define
the following L2-norms:

‖ϕ‖ = 〈ϕ,ϕ〉1/2, ϕ ∈ Ωp
M (E), (3.19)

‖a‖ = 〈a, a〉1/2, a ∈ Ωp
M (gE). (3.20)

Remark 3.6. With respect to the L2-norms (3.19) and (3.20), the splitting in (3.16) is orthog-
onal, since the splitting Λ2TM = Λ+ ⊕ Λ− is orthogonal with respect to the inner product on
the fibers of Λ2TM .

3.2 Chern–Weil theory for vector bundles

A Hermitian vector bundle over a smooth manifold M has structure group U(r). For r = 1 we
can construct such a U(1) bundle L→M , which is called a Hermitian line bundle over M . Let
A be a connection on L. According to the theory in the previous section the curvature FA is a
purely-imaginary 2-form since g = iR for a U(1) bundle, which we write as −2πiφ. According
to (3.13), the curvature can be written in a local trivialization as F = dA, where A now is a
purely imaginary local 1-form. The Bianchi identity (3.15) now tells us that dF = 0 in any
local trivialization, hence the form φ is globally closed and defines a de Rham cohomology class
[φ] ∈ H2(M,R).

Furthermore, (3.12) tells us that a second A′ = A + a with a ∈ Ω2(gL) has curvature
F ′ = F + dAa. The term dAa now corresponds to a globally exact form and hence [φ′] = [φ].
This cohomology class therefore only depends on the bundle L and Chern–Weil theory tells us
that this cohomology class equals the first Chern class c1(L) of this bundle. This is a topological
invariant associated to the bundle L and all line bundles up to isomorphism are classified by
this invariant. In fact more is known: c1(L) lies in the integral cohomology H2(M,Z) of M (see
pages 63-64 of [MK] for a proof). For general complex vector bundles E, one can extend the
previous construction to the cohomology class of i

2πTr(FA), which then equals the first Chern
class c1(E) of this bundle.

Extending Tr(FA) to higher forms and their cohomology classes, we can consider the 4-form
Tr(F 2

A) for a connection A on a Hermitian bundle E, also called a unitary connection. The
relation

Tr(F 2
A+a)− Tr(F 2

A) = d

(
Tr(a ∧ dAa+

2

3
a ∧ a ∧ a)

)
,

shows the cohomology class only depends on the isomorphism class of E. Using Chern–Weil
theory one can relate the cohomology class to the characteristic classes of E:

1

8π2
[Tr(F 2

A)] = (c2(E)− 1

2
c1(E)2) ∈ H4(M,Z). (3.21)

For G = SU(r) the generators of the Lie-algebra are anti-Hermitian traceless matrices, hence
c1(E) = Tr(FA)/2π = 0. So 1

8π2 Tr(F 2
A) represents the cohomology class c2(E). If M is a closed,

oriented, Riemannian four-manifold, H4(M,Z) is isomorphic to Z. Then we can say c2(E) = k
for some k ∈ Z and this number is defined as the topological charge of the connection A. In the
literature this number is often also called the instanton number or winding number.
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Chapter 3. Yang–Mills instantons on four-manifolds

Yang–Mills theory is concerned with connections A on a SU(r) bundle over oriented, Rie-
mannian four-manifolds M . A central object in this theory is the Yang–Mills functional, which
is given by the square of the L2-norm of the curvature (see equation (3.20)):

S(A) = ‖FA‖2 =

∫
M
|FA|2dµ =

∫
M
|F−A |

2dµ+

∫
M
|F+
A |

2dµ, (3.22)

where the last identity follows from the fact that the SD/ASD splitting as in (3.16) is orthogonal
according to Remark 3.6.

Definition 3.7. A saddle point of the Yang–Mills functional (3.22) for which the functional is
finite is called a Yang–Mills instanton.

A general saddle point of the Yang–Mills functional satisfies the corresponding Euler-
Langrange equations. These equations can be obtained by looking at the variation δS =
S(A + a) − S(A), where a ∈ Ω1

M (E), and then impose the condition that all terms linear
in a should vanish. Writing out δS gives us

S(A+ a)− S(A) = 2

∫
M

(FA, dAa)dµ+O(‖a‖2)

= 2

∫
M

(d∗AFA, a)dµ+O(‖a‖2),

where d∗A is the adjoint of dA. The Euler-Lagrange equations then are seen to be given by

d∗AFA = 0. (3.23)

According the properties for d∗A, the equation above is equivalent to ? dA ? FA = 0. Using
the Bianchi identity in (3.15) it is seen that the SD/ASD connections are saddle points of the
Yang–Mills functional.

Now let us assume M is closed. Then (3.22) is finite, so that the SD/ASD connections
correspond to a class of Yang–Mills instantons. If c2(E) > 0, the ASD connections are in fact
minima of the Yang–Mills functional as can be explained by the following observation. For
G = SU(r) the fibers of gE are formed the Lie-algebra su(n) and the norm on this vector space
is given by |ξ2| = −Tr(ξ2). Furthermore, for the fibers of Λ2T ∗M we have

α ∧ α = (|α+|2 − |α−|2)dµ,

where α+ is the self-dual and α− the anti-self-dual part of α = α+ + α− ∈ Λ2T ∗M . Now we
combine these two facts and (3.21) to obtain the following identity

8π2c2(E) =

∫
M

Tr(FA ∧ FA) =

∫
M

(|F−A |
2 − |F+

A |
2)dµ ∈ 8π2Z. (3.24)

Plugging this in (3.22) we get

‖FA‖2 = 8π2c2(E) + 2

∫
M
|F+
A |

2dµ.

Hence ‖FA‖2 is minimized with minimal value 8π2c2(E) if and only if F+
A = 0, i.e when A is an

ASD connection.
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Remark 3.8. Notice that by (3.24), SD connections are not possible on SU(r) bundles E for
which c2(E) > 0. Similarly ASD connections do not exist if c2(E) < 0 and in that case the
SD connections form minima of the Yang–Mills functional. If c2(E) = 0 the only SD and ASD
connections are the flat connections and conversely flat connections only exist when c2(E) = 0.
Proposition 2.2.3 of [DK] states that the gauge equivalence classes of flat-connections are in
one-to-one correspondence with conjugacy classes of representations π1(M) → SU(r). This
means that if M is simply connected, all flat connections are gauge equivalent to the product
connection, i.e. we can find a coordinate chart of M and corresponding trivilizations τ on each
coordinate patch, such that Aτ as in (3.6) equals zero.

3.3 The ASD moduli space

In this section we assume E is a G bundle over a closed, oriented, Riemannian four-manifold
M . Let A be the space of connections on E and G be the space of gauge transformations as in
Definition 3.3. Define B to be the quotient space

B = A /G , (3.25)

with quotient topology and where g ∈ G acts on a connection A through (3.8). Denote [A] ∈ B
for the gauge equivalence class of A. Using the L2 norm on Ω1(gE) (see (3.20)), we have the L2

metric ‖A−B‖ and the expression

d([A], [B]) = inf
g∈G
‖A− g(B)‖

defines a metric on B ([DK], Lemma 4.2.4).
Let A ∈ A and ε > 0, then we define the local slice of A by

TA,ε = {a ∈ Ω1(gE) | d∗Aa = 0, ‖a‖L2 ≤ ε}. (3.26)

The isotropy group ΓA of A is defined as

ΓA = {u ∈ G |u(A) = A}. (3.27)

Proposition 4.2.9 from [DK] tells us that for ε small enough a neigbourhood of [A] ∈ B is
homeomorphic to TA,ε/ΓA.

3.3.1 Reducible and irreducible connections

The condition u(A) = A in (3.27) means dAu = 0, which is a partial differential equation for
u : E → E. The solution to this equation is uniquely determined by its value in G at a point
x ∈ M . An important remark here is that some values don’t have a solution to this equation.
This shows that in fact ΓA ⊂ G ⊂ AutEx, so ΓA is finite-dimensional unlike G . The group ΓA
also has a more geometric interpretation in terms of the holonomy associated to the connection
A.

For a path α : [0, 1]→M the holonomy Tα is defined as follows. We consider the connection
α∗(A) on the bundle α∗(E)→ [0, 1] and look at constant covariant sections s of this bundle:

α∗(∇A)(s(α(t)) = 0.

Such a section is uniquely determined by its value at 0, i.e a vector x ∈ Eα(0). The vector Tα(x)
is defined as the value of this section at 1, which is an element of (α∗(E))1 = Eγ(1). In sum, we
obtain a map

Tα : Eα(0) → Eα(1).

37



Chapter 3. Yang–Mills instantons on four-manifolds

For closed loops γ based at x the holonomy map Tγ must be an element of G ⊂ AutEx, since
the connection A was modeled on Ω1(gE). This shows that the holonomy of loops based at x
induced by A forms a subgroup of G, which we call HA.

Lemma 4.2.8 of [DK] states that under the correspondences made, ΓA equals the centralizer
of HA in G. We say that a connection is reducible if HA is a proper subgroup of G and irreducible
if that is not the case. For G = SU(2) this means that if ΓA = C(G), we have HA = G. This
first condition indicates that the isotropy group is minimal for irreducible connections and this
is how we define the notion of irreducibility in the general sense. Write A ∗ for all irreducible
connections, i.e

A ∗ = {A ∈ A |ΓA = C(G)},

and B∗ ⊂ B for the quotient A ∗/G .
For SU(2) bundles over simply connected M , reducible connections with ΓA = S1 (or

equivalently HA = S1) correspond to a splitting E = L ⊕ L−1, where L is a Hermitian line
bundle unequal to the trivial line bundle. A necessary and sufficient condition for such a spliting
is c2(E) = −Q(c1(L), c1(L)) where Q is the intersection form and c1(L) 6= 0. A connection on
E reduces to one on L and this connection is ASD precisely when c1(L) is represented by
an anti-self-dual 2-form. For simply connected M this connection is unique modulo gauge
transformations. The following statement summarizes this result.

Proposition 3.9 ([DK], Proposition 4.2.15). Let E be an SU(2) bundle over a closed, sim-
ply connected, oriented, Riemannian four-manifold M with c2(E) > 0. The gauge equivalence
classes of reducible ASD-connections on E, with holonomy group S1, are in one-to-one corre-
sponce with pairs ±c, where c is a non-zero class in H2(M,Z) represented by an anti-self-dual
2-form and satisfies c2(E) = −Q(c, c), where Q is the intersection form.

Remark 3.10. We take pairs, since the spltting E = L ⊕ L−1 is symmetric and c1(L−1) =
−c1(L). For simply connected manifolds, the only other possible reducible connections on
SU(2) bundles are the flat connections, which have the trivial group as holonomy group (or
equivalently ΓA = G) and are all gauge equivalent to the product connection. However, these
connections only occur when c2(E) = 0 and all ASD connections are then flat (see Remark
3.8). For c2(E) < 0 there are no ASD connections, but Proposition 3.9 then applies to SD
connections.

3.3.2 Local models using elliptic theory

We write (·)+ for the projection Ω2(gE)→ Ω+(gE). The operator

d+
A : Ω1

M (gE)→ Ω+(gE) ; d+
Aa = (dAa)+, (3.28)

appears in a sequence of bundles and differentials, known as the instanton complex,

0 −−−−→ Ω0
M (gE)

dA−−−−→ Ω1
M (gE)

d+A−−−−→ Ω+
M (gE) −−−−→ 0. (3.29)

This is an elliptic complex whenever A is an ASD connection, since d+
A ◦ dA = F+

A = 0 and the
operator

δA = d∗A ⊕ d+
A : Ω1

M (gE)→ Ω0
M (gE)⊕ Ω+

M (gE), (3.30)

is elliptic for any connection A ([DK], page 137).
We assume A is ASD in what follows. By using Hodge theory for the elliptic complex in

(3.29) we get decompositions

Ω1(gE) = Im dA ⊕ ker d∗A, Ω0(gE) = ker dA ⊕ Im d∗A, Ω+(gE) = ker d∗A ⊕ Im d+
A. (3.31)
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The cohomology groupsH0
A, H1

A andH2
A associated to the complex are finite, whereH0

A = ker dA
is the Lie algebra of ΓA and there are natural isomorphisms

H1
A =

ker d+
A

Im dA
' ker d+

A ∩ ker d∗A = ker δA, (3.32)

H2
A = coker d+

A ' ker d∗A ⊂ Ω+
M (gE). (3.33)

Let us denote M = ME ⊂ B for the space of gauge equivalence classes of anti-self-dual
connections on a G bundle E, in short called the ASD moduli space. Sometimes it is denoted
as ME(g) to express the dependence of this space on the metric put on M . The claim is that
ME is finite-dimensional and a local model of this space can be given in terms of H1

A, H2
A and

ΓA.

Proposition 3.11 (Proposition 4.2.23, [DK]). If A is an ASD connection over M , a neigh-
bourhood of [A] in ME is modeled on a quotient f−1(0)/ΓA, where

f : H1
A → H2

A

is a ΓA-equivariant map.

In the proposition above H1
A represents the linearization of the ASD equations modulo G

and the map f corresponds to a specific realization of this linearized quotient. From (3.31) it
can be read off that coker d∗A ' ker dA ⊂ Ω0

M (gE), so that the index of δA equals minus the
Euler-characteristic of the instanton complex:

ind δA = dimH1
A − dimH0

A − dimH2
A.

The number s := ind δA is called the formal dimension of the moduli space. When we consider
f as in Proposition 3.11, the set of points in f−1(0) which are both regular points for f and
represent free ΓA orbits, form a manifold of dimension s. The Atiyah-Singer index theorem
relates s to topological data associated to E and M :

s = ind δA = a(G)κ(E)− dimG(1− b1(M) + b+(M)), (3.34)

where a(G) and κ(E) are integers dependent on the structure group G and the bundle E. For
SU(r) bundles κ(E) = c2(E) and in the special case G = SU(2) we get:

s = 8c2(E)− 3(1− b1(M) + b+(M)). (3.35)

A specific construction of f as in Proposition 3.11, corresponds to a linearization of the
zero-locus Z(ψ) of the map

ψ : TA,ε → Ω+(gE); ψ(a) = F+(A+ a) = d+
Aa+ (a ∧ a)+. (3.36)

A neighbourhood of [A] ∈ ME is then homeomorphic to the quotient Z(ψ)/ΓA. The operator
δA is elliptic, hence Fredholm, i.e. the kernel and cokernel of δA are finite-dimensional. This
implies that the derivative of ψ given by

d+
A : ker d∗A → Ω+

M (gE), (3.37)

is a Fredholm operator, which turns ψ in a smooth Fredholm map. For this Fredholm map ψ
one can construct a ΓA-equivariant map f from ker(d+

A|ker d∗A
) = ker δA to coker (d+

A|ker d∗A
) =

coker d+
A. The zero-set of f is then a finite-dimensional model for Z(ψ) ⊂ TA,ε, so that a

neighbourhood of [A] ∈ME is modeled on f−1(0)/ΓA.
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Chapter 3. Yang–Mills instantons on four-manifolds

An irreducible ASD connection is regular if H2
A = 0 and the moduli spaceME(g) is regular

if all its irreducible points are regular. Notice that all regular points in M∗E =ME ∩B∗ form
a smooth manifold of dimension s, and its tangent space at [A] is given by H1

A.
When M is simply connected, some extra structure is present for SU(2) bundles. A com-

bination of results in Section 4.3.3 of [DK] give the following proposition regarding the moduli
space ME .

Proposition 3.12. Let M be a closed, simply connected, oriented, Riemannian four-manifold
with b+(M) > 0 and fix l > 0. Then for a dense set of metrics g on M , the moduli spaceME(g)
for any SU(2) bundle with 0 < c2(E) ≤ l contains no reducible connections and is regular.

In order to have a reducible ASD connection on a SU(2) bundle with 0 < c2(E) ≤ l, we
need H−(M) to contain a form α such that Q([α], [α]) = −c2(E) and [α] ∈ H2(M,Z) (see
Proposition 3.9). This is a closed condition on how H−(M) is realized. One of the results
contained in Proposition 3.12 is that we can deform the conformal class of the metric, such that
H−(M) no langer satisfies this condition.

Remark 3.13. In the discussion of the ASD moduli space we ignored the fact that the L2-norm
used at several induces a too weak topology. One in general also needs to have control over
higher derivatives of the connections, curvatures and gauge transformations. The space in which
we need to put these connections, curvatures and gauge transformation are the higher Sobolev
spaces L2

l−1, L2
l−2 and L2

l , respectively (with l > 2). This means that in a local trivialization
of a G bundle E, the associated transition functions are L2

l maps taking values in G and the
connection forms as in (3.6) are given by L2

l−1 matrix valued functions. As a consequence the
curvature matrix as in (3.13) lies in L2

l−2. One of the results in [DK] is that the resulting moduli
spaces ME are homeomorphic to each other regardless of the Sobolev space we initially chose.
Since we are primarily interested in ME , we can neglect this analytical subtleties.

3.3.3 Donaldson–Uhlenbeck compactification

For SU(2) bundles E over M , the formal dimension (3.35) of the ASD moduli space depends
on the charge c2(E). Therefore we label these ASD moduli spaces accordingly as Mk, where
k = c2(E). According to Remark 3.8, k ≥ 0 and if M is simply connected M0 is just formed
by the gauge equivalence class of the product connection.

An ideal ASD connection of Chern class k is given by a pair

([A], (x1, . . . , xl)) ∈Mk−l × sl(M),

where 0 ≤ l ≤ k and (x1, . . . , xl) is an unordered l-tuple of points in M . Associated to such an
ideal ASD connection is a measure, called the curvature density:

Tr(F 2
A) + 8π2

l∑
r=1

δxr = |FA|2dµ+ 8π2
l∑

r=1

δxr .

Integration of this measure over M gives 8π2k (see (3.24)).
The Donaldson–Uhlenbeck compactification of the ASD moduli space Mk is given by the

closure of Mk in the set of all ideal ASD connections of Chern class k:

IMk =Mk ∪Mk−1 ×M ∪Mk−2 × s2(M) ∪ . . . ∪M0 × sk(M). (3.38)

The topology in which we take the closure is given by weak convergence. A sequence [Aα] in
Mk converges weakly to an ideal ASD connection ([A], (x1, . . . , xl)) if:
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3.4. Correspondence with stable holomorphic bundles over Kähler surfaces

i) For any f ∈ C0(M) we have∫
M
f |FAα |2dµ −→

∫
M
f |FA|2dµ+ 8π2

l∑
r=1

f(xr);

ii) For each α there is a bundle map

ρα : E′|X−{x1,...,xl} → E|X−{x1,...,xl},

such that ρ∗α(Aα) converges to A (in C∞ on compact sets of X −{x1, . . . , xr}) and where
E′ is the bundle associated to Mk−l with c2(E′) = k − l.

In this formalism we have a strong result for the closure M̄k of Mk.

Theorem 3.14 ([DK], Theorem 4.4.3). The space M̄k is compact.

3.4 Correspondence with stable holomorphic bundles over Kähler
surfaces

When Kähler structures are present on a closed, oriented, Riemannian four-manifold M , one
can make a correspondence between the SU(2) ASD moduli space ME on one side and the
moduli space of stable holomorphic bundles topologically equivalent to E on the other side. In
what follows we will give a brief description regarding this correspondence following Chapter 6
of [DK].

Definition 3.15. A Hermitian manifold is a complex manifold with a Hermitian metric h on the
complexified tangent space. Such a metric is given by a smooth section h ∈ Γ(T 1,0M ⊗T 0,1M)∗

satisfying hp(η, ζ) = hp(ζ, η) ∀η, ζ ∈ T 1,0
p M and hp(ζ, ζ) ≥ 0 for ∀ζ ∈ T 1,0

p M with equaltity if
and only if ζ = 0. Associated to h is the (1, 1)-form ω = i

2(h − h), where h is now the image
under the projection (T 1,0M ⊗ T 0,1M)∗ → Λ1,1T ∗M

A specific class of Hermitian manifolds that have extra structure are Kähler manifolds.

Definition 3.16. A Kähler manifold K is a Hermitian manifold K with closed ω.

A Kähler manifold is the same as a symplectic manifold (K,ω) with an integrable almost
complex structure J 2 that is compatible with the symplectic form. This last condition means
g(u, v) = ω(u, Jv) defines a Riemannian metric.

The original metric h is called the Kähler metric and the associated (1, 1)-form ω the Kähler
form. The Riemannian volume form dµ on K (determined by the Riemannian metric g induced
by ω) is given by the canonical volume form volK = ωn

n! with n = dimC(K).

3.4.1 Holomorphic structures

Recall that on a complex manifold Z, the de Rham complex (Ω∗(Z), d) splits into a double
complex (Ωp,q(Z), ∂, ∂) with d = ∂ + ∂ and

∂ : Ωp,q(Z)→ Ωp+1,q(Z) ∂ : Ωp,q(Z)→ Ωp,q+1(Z).

A complex valued function f is holomorphic if and only if ∂f = 0.
Let E be a complex vector bundle over a general complex manifold Z. A holomorphic

structure E is defined by the following equivalent definitions:

2This condition is equivalent to K being a complex manifold. One can show that such a structure induces
holomorphic coordinate charts.
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Chapter 3. Yang–Mills instantons on four-manifolds

• There is a holomorphic projection map π : E → Z where each fibre Ez = π−1(z) is a
complex vector space;

• We can find a covering {Uα} of Z and trivializations of E over the cover, such that the
corresponding transition functions gαβ : Zα ∩ Zβ → GL(n,C) are holomorphic;

• There exists a preferred collection E of local holomorphic sections, denoted as O(E ), which
forms a sheaf of modules over the structure sheaf OZ of local holomorphic functions on Z.

The symbols E and E will be used interchangably from here on to denote the vector bundle.
Given a holomorphic structure, we can construct a linear map ∂E : Ω0

Z(E)→ Ω0,1
Z (E), uniquely

determined by:

i) ∂E (fs) = (∂f) ⊗ s + f(∂E s) for all f ∈ C∞(M) and s ∈ Ω0
Z(E), similar to the Leibniz

rule in Definition 3.1;

ii) (∂E s) vanishes on open U ⊂ Z if and only if s is holomorphic over U , i.e. s ∈ O(E ).

By property i) the operator ∂E is local and in a local holomorphic trivialization the sections
of E are therefore represented by vector valued functions. The operator ∂E just works on
these sections by the ordinary ∂ operator. This is independent of the holomorphic trivialization
chosen, since ∂(g · s) = g∂(s) for holomorphic g : Z → GL(n,C).

The splitting of d = ∂ + ∂ and Ωk =
⊕

p+q=k Ωp,q, induces a splitting

dA = ∂A ⊕ ∂A : Ω0
Z(E)→ Ω1,0

Z (E)⊕ Ω0,1
Z (E). (3.39)

The map ∂A forms a so-called partial connection on E, which is a map ∂α : Ω0
Z(E)→ Ω0,1

Z (E)
satisfying the same first condition as for the operator ∂E above.

A general partial connection ∂α is integrable if ∂α defines a holomorphic structure on E. This
means that for each z ∈ Z there exists a neighbourhood U over which there is a trivialization of
E such that ∂α = ∂ + ατ = ∂. Now integrability has a necessary and sufficient condition given
by the integrability theorem (see Section 2.2.2 of [DK] for a proof).

Theorem 3.17 (Integrability theorem). A partial connection ∂α on a smooth complex vector

bundle E over a complex manifold Z is integrable if and only if ∂
2
α = 0.

If E is Hermitian, we have the following result relating the map ∂A associated to a connec-
tions as in (3.39) and a partial connection.

Proposition 3.18. Let E be a Hermitian complex vector bundle over a complex manifold Z.
Then for each partial connection ∂α on E, there is a unique unitary connection A, such that
∂A = ∂α.

Proof. In a local trivialization we have ∂α = ∂ + ατ . The connection form Aτ = ατ − (α)τ is
then anti-Hermitian and has ∂Aτ = ∂ + ατ . Gluing the connection forms Aτ over Z gives us a
unique unitary connection A satisfying ∂A = ∂α.

A connection A is called compatible with a holomorphic structure E if ∂A = ∂E , where
∂A is as in (3.39). This means the partial connection given by ∂A is integrable, which by the

integrability theorem is equivalent to ∂
2
A = 0.

The complex structure on Z gives us the decomposition

Ω2 = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2 (3.40)
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and accordingly the curvature FA ∈ Ω2
Z(gE) can be written as

FA = F 2,0
A + F 1,1

A + F 0,2
A . (3.41)

Now the compatibility condition of A can be given in terms of its curvature.

Proposition 3.19. A unitary connection on a Hermitian complex vector bundle over Z is
compatible with a holomorphic structure if and only if it has curvature of type (1, 1). In this
case the connection is uniquely determined by the metric and holomorphic structure.

Proof. To be compatible with a holomorphic structure, we must have F 0,2
A = ∂

2
A = 0. Then also

F 2,0
A = −(F 2,0

A )∗ = 0. The uniticity comes from the fact that the holomorphic structure defines
a unique partial connection for which we have Proposition 3.18.

If we take Z to be a complex surface, we also have the decomposition as in (2.11) besides the
decomposition as in (3.40). If in addition, Z is a Hermitian manifold with associated Hermitian
form ω, then the two are related as follows ([DK], Lemma 2.1.57):

Ω+ = Ω2,0 ⊕ Ω0,2 ⊕ Ω0 · ω (3.42)

Ω− = Ω1,1
0 , (3.43)

where Ω1,1
0 is the space of (1, 1)-forms orthogonal to ω. Let F̂A = (FA, ω) ∈ Ω0(gE) be the

inner-product of FA with ω. The previous statements combine into the following proposition.

Proposition 3.20. If A is an ASD connection on a Hermitian complex vector bundle E over
a Hermitian manifold Z, then ∂A defines a holomorphic structure on E. Conversely if E is a
holomorphic structure on E and A is a compatible unitary connection, then A is ASD if and
only if F̂A = 0.

3.4.2 Stable holomorphic vector bundles of rank 2

In the following we assume M to be a closed Kähler manifold of complex dimension 2 and ω
the corresponding Kähler form. Let E be a rank two holomorphic vector bundle over M with
Λ2E trivial, i.e. we have a holomorphic SL(2,C) bundle.

For any line bundle L over M we define the degree of L to be:

deg(L) = Q(c1(L), [ω]), (3.44)

where [ω] ∈ H2(M,R) is the cohomology class of ω and Q is the intersection form on M extended
to H2(M,R) (see Definition 2.2).

Definition 3.21. A holomorphic SL(2,C) bundle E is stable if for each holomorphic line bundle
U over M for which there is a non-trivial holomorphic map E → U , we have deg U > 0.

Now let E be a Hermitian complex vector bundle. Define A 1,1 to be the space of unitary
connections on E with curvature of type (1, 1). Each A ∈ A 1,1 defines a holomorphic structure
by Proposition 3.19, which we denote by EA.

The natural question to ask is when two holomorpic structures EA1 and EA2 are isomorphic.
This is the case when there is a bundle automorphism g of E (covering the identity), such that
∂A1 = g∂A2g

−1, since there should be an isomorphism between the local holomorphic sections
in O(EA1) and those in O(EA2). This is the case when A1 = g(A2) as in (3.8) and g lies in the
gauge group G , since dA1 = dg(A2) = gdA2g

−1 and dA = ∂A + ∂A.
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Chapter 3. Yang–Mills instantons on four-manifolds

Now define the group G c to be the group of all bundle automorphisms of E covering the
identity, which we call the complex gauge group. We extend the action of G on A to an action
of G c on A as follows:

∂g(A) = g∂Ag
−1 = ∂A − (∂Ag)g−1

∂g(A) = g̃∂Ag̃
−1 = ∂A + ((∂Ag)g−1)∗ = (∂g(A))

∗,

where g̃ = (g∗)−1. This is indeed seen to coincide with the definition of g(A) as in (3.8) if
g ∈ G . Under these tranformations the curvature of g(A) is of type (1,1), if that of A is of type
(1,1) as well. We can see this by expanding (∂g(A) + ∂g(A))

2 and subsequently identify all the
components. This means that G c preserves A 1,1.

The discussion shows that a G c orbit defines an equivalence class of isomorphic holomorphic
structures, i.e. of unitary connections compatible with the same holomorphic structure. If a
bundle is stable, then a bundle with an isomorphic holomorphic structure is also stable as one
can readily check from Definition 3.21. Stable G c orbits are defined as orbits of connections A
such that EA is stable.

According to (3.43), A ∈ A 1,1 is ASD if and only if F̂A = 0. Theorem 6.1.5 of [DK] gives
a correspondence between the ASD connections on a SU(2) bundle over M and the stable
holomorphic vector bundles E they define.

Theorem 3.22.

i) Any G c orbit contains at most one G orbit of solutions to the equation F̂A = 0.

ii) A G c orbit contains a solution to F̂A = 0 if and only if it is either a stable orbit or the
orbit of a decomposable holomorphic structure E = U ⊕ U −1, where deg U = 0. In the
first case the solution A is an irreducible connection and in the second case it is a reducible
solution compatible with the holomorphic splitting.

Note that by Theorem 3.22 the moduli spaceM∗E of irreducible ASD connections on a SU(2)
bundle E is naturally identified with the G c orbits of stable holomorphic SL(2,C) bundles E
topologically equivalent to E. In that case all A ∈ A 1,1 are unitary and by Proposition 3.20
and Theorem 3.22 there is a correspondence G ·A ' G c · E for

[A] ∈M∗E = {A ∈ A 1,1 | F̂A = 0, A irreducible}/G ,

where E = EA is the holomorphic stable SL(2,C) bundle uniquely determined by A. As a
corollary we have:

Corollary 3.23 ([DK], Corollary 6.1.6). If E is an SU(2) bundle over a compact Kähler
manifold M , the moduli space M∗E of irreducible ASD connections is naturally identified, as a
set, with the set of G c equivalence classes of stable holomorphic SL(2,C) bundles E which are
topologically equivalent to E.

Remark 3.24. Notice that in the definitions up till now we have not explicitly used the fact
that the Kähler form is closed. However, we must mention that the definition of stability
will come to its full right when considered on Kähler manifolds. Using the so-called Kähler
identities the notion of degree as in (3.44) will have an effect on the values of F̂A = (FA, ω).
The correspondences mentioned in Theorem 3.22 can then be proven.
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3.5. The SU(2) ASD moduli space for S2 × S2

3.4.3 Kähler structure on del Pezzo surfaces

On CPn the Fubini–Study metric is defined on each of the sets Uk = {Zk 6= 0} separately.
Recall (see (2.17)) that on Uk we can pick affine coordinates (z0, . . . , zk−1, zk+1, . . . zn) ∈ Cn,
with zi = Zi/Zk. On this chart the following Hermitian (1, 1)-form defining the metric is called
the Fubini–Study metric:

ω =
(
∑

i dzi ∧ dz̄i)
1 +

∑
i |zi|2

−
(
∑

i z̄idzi) ∧ (
∑

j zjdz̄j)

(1 +
∑

i |zi|2)2
. (3.45)

To see that this form is globally well-defined, we notice that ω = ∂∂ log(1 +
∑

i |zi|2) = ∂∂K.
Now on Ul = {Zk 6= 0}, ω is given by ω = ∂∂̄K ′ = ∂∂̄ log(1 +

∑
i |z′i|2), where z′i = Zi/Zl are

the affine coordinates associated to Ul. We have log(1 +
∑

i |zi|2) = log(|zl|2(1 +
∑

i |z′i|2)), so
that K −K ′ = log(|zl|2) = − log(|z′k|2). We see ∂∂(K −K ′) = 0, i.e. the definitions of ω agree
on the overlap Uk ∩ Ul. The form ω is closed as well:

dω = (∂ + ∂)∂∂K = (∂2∂ − ∂∂2
)K = 0.

It is seen that CPn endowed with the Fubini–Study metric is a Kähler manifold. As a conse-
quence all smooth algebraic varieties are Kähler manifolds, since they can be realized as complex
submanifolds of CPn and the Kähler form restricted to these submanifolds is again Kähler. Due
to Proposition 2.16 all blow-ups of a smooth algebraic variety are again smooth algebraic va-
rieties and therefore have a Kähler structure. This applies to the del Pezzo surfaces, since we
could realize them as closed submanifolds of complex projective space and as blow-ups of CP2

and CP1 × CP1 (recall from Section 2.2.3 that it can be embedded as a quadric in CP3). The
specific Kähler structure can be computed if we know how the del Pezzo surfaces are embedded
in complex projective space.

One can show that the first Chern class of the tautological line bundle L over CPn (see
(2.20)) equals −[ω]/(2πi) and that

1

(2πi)n

∫
CPn

ωn = 1. (3.46)

Furthermore, it can be shown that ω is self-dual ([Bet], Section 4.1) on CP2 and hence harmonic.
Every other line bundle over CP2 (and CPn in general) is a power of L ([GH], page 145),

hence every harmonic curvature F on CP2 must be an integral multiple of 2πiω. The Dirac

quantization condition in Section 4.1 then agrees with this for CP2. On CP2
, we can still define

the form ω and it remains closed. Since the orientation is reversed, ω is now anti-self-dual and
hence harmonic as well.

3.5 The SU(2) ASD moduli space for S2 × S2

One of the implications of the Kähler structure on del Pezzo surfaces is that we can use Theorem
3.22 and its Corollary 3.23 to find models for the ASD moduli spaces using algebro-geometric
methods. The moduli spaces of G c equivalence classes of stable holomorphic SL(2,C) bundles
have been studied for CP2 in [OSS] (Section II.4) and [Bar]. With this model at hand, we can
construct a model for the ASD moduli space for S2 × S2 ' CP1 × CP1, when realized as a
non-singular quadric S ⊂ CP3. The references we will follow are page 128 of [DK] and [Sob]. In
[Sob] a connection between stable holomorphic SL(2,C) bundles over S and over CP2 is made,
where the intricate relation between the two surfaces as covered in Section 2.2.3 plays a role.
The notions from algebraic geometry used in what follows can be read back in Section 2.2.1.
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Chapter 3. Yang–Mills instantons on four-manifolds

The space CP2 can be embedded as a general plane H ⊂ CP3. The quadric S ' CP1×CP1

has two rulings by lines (the A′- and B′-lines) biholomorphic to one of the CP1 and parametrized
by the other factor CP1. Lines in the same ruling do not meet and lines lying in different rulings
meet in a point q ∈ S, with the property that TqS ∩ S is the union of the two lines. If H is
not tangent to p ∈ S, we have a projection map πp : S − {p} → H with the property that the
lines L1 and L2 in TpS ∩ S = L1 ∪ L2, are mapped to points q1 and q2, respectively. These
constructions fit in the commutative diagram in (2.24), which describes the equivalence of the
blow-up of S at p and the blow-up of H at the points q1 and q2.

We restrict to stable holomorphic SL(2,C) bundles E , with c1(E ) = 0 and c2(E ) = k, for
which the moduli space of G c equivalence classes is denoted as M(k)(S). The corresponding
moduli space for CP2 is denoted asM(k)(CP2). According to (3.35) the ASD moduli spaces to
which these spaces should correspond, both have formal dimension 8k − 6 (or complex formal
dimension 4k − 3), which is the case for M(k)(S) ([Sob], §1) and M(k)(CP2) [Bar]. In fact
more is true, M(k)(S) is a smooth space of this dimension if it is non-empty.

A bundle E is called projectable from a point q ∈ S if E |L1 and E |L2 are trivial where L1

and L2 are the A′- and B′-lines going through q, i.e. TqS ∩ S = L1 ∪L2. We say that a bundle
is projectable if it is from some point q. There is a direct correspondence ([Sob], Proposition
2.1) through the projection map πq : S → CP2 between stable bundles projectable from q and
stable bundles over CP2 trivial over the line L0 = q1q2, where q1 = πq(L1) and q2 = πq(L2).
This correspondence gives an isomorphism Mq(k) ' ML0(k) of the respective G c equivalence
classes of bundles.

The obstruction for a bundle E to be projectable is that we cannot find an A′- and B′-line
on S, over which E is trivial. Lemma 2.5 of [Sob] states that there is a small deformation of E
such that this obstruction disappears. Therefore, the set of equivalence classes of projectable
bundles given by M0(k) = ∪q∈SMq(k) is an open set of M(k)(S).3 Now there is already one
implication: if M(k)(CP2) is empty, M(k)(S) is as well. This is for example the case when
k = 1 [Bar].

A projectable bundle E over S has a set of lines in S on which E is not trivial, which are
called the jumping lines of S. Proposition 2.2 of [Sob] states that the jumping lines consist of
k A′-lines and k B′-lines counted with multiplicity.

A conic on S can be realized by intersecting S with a plane in CP3, which can be non-
degenerate (a curve of degree 2) or degenerate (a double line, which is the intersection of S with
a tangent plane). A plane is called a jumping plane of a projectable bundle E , if the conic C it
defines satisfies either one of the following properties:

i) C is non-degenerate and has the property that E |C is non-trivial;

ii) C is degenerate, i.e. C = L1 ∩ L2, and at least one of the two lines is a jumping line.

A generic non-degenerate conic on E usually does not have this property. Let us denote the set
of all jumping planes as J(E ), which is a subset of the dual of CP3, denoted as (CP3)∗.

Any point z ∈ (CP3)∗ defines a plane in CP3 and vice versa. Any non-singular quadric
Q ⊂ CP3 induces an isomorphism CP3 'Q (CP3)∗ through the symmetric non-singular matrix
as in (2.22). This isomorphism maps a point q ∈ Q to its tangent plane Tq ∈ (CP3)∗. Similarly,
one has the dual (CP2)∗ of CP2, i.e. a point z ∈ (CP2)∗ defines a line in CP2.

Using the correspondence between projectable bundles E over S and bundles over CP2

that are trivial over a line, one can show that the set of jumping planes that intersect S in q
corresponds to the set of jumping lines for the bundle πqE (lines on which the associated bundle

3These spaces can be realized as abstract varieties and the topology that is put on these spaces is the Zariski
topology (see [Har]).
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over CP2 is non-trivial). This set of jumping lines for πqE forms a curve in (CP2)∗ of degree
c2(E) = k. The set of all planes intersecting q ∈ S, denoted as E∗q , forms a plane in (CP3)∗.

This shows J(E ) is a surface in (CP3)∗ of degree k, since the intersection with the plane E∗q in

(CP3)∗ is a curve of degree k and for any generic plane P in (CP3)∗ there exists q ∈ S, such
that P = E∗q .

Under the isomorphism CP3 'S (CP3)∗ the surface J(E ) gets mapped to a surface of degree
k in CP3, which we also call J(E ). The main statement ([Sob], Theorem 3.4) is then that
J(E ) ∩ S consist of the 2k jumping lines (counted with multiplicity), i.e. k A′-lines and k
B′-lines.

The condition of projectability and the condition of L being a jumping line for E is invariant
under the action of G c on E . Hence the set S(E ) of jumping planes is indeed well-defined for a
G c equivalence of projectable bundles inM0(k)(S). Summarizing, we have a model for the open
subset M0(k)(S) of M(k)(S): to each G c equivalence class x ∈ M0(k)(S) there is a collection
of surfaces of degree k that intersect S in the jumping lines associated to a bundle E which
represents x.

The moduli space for c2(E) = 2

Let E be an SU(2) bundle over S ' S2 × S2 with c2(E) = 2. Using the model above for
M0(2)(S), every G c equivalence class of a projectable bundle E over S (topologically equivalent
to E) can be identified with a non-singular quadric which intersects S in 2 × 2 lines (counted
with multiplicity), 2 in each system of A′- and B′-lines. Using Theorem 3.22, a subset of the
moduli space M2(E) of irreducible ASD connections can be modeled by this set of quadrics,
which we will call M0.

Given one such quadric S′, one can show that each quadric in the pencil S′+tS (t ∈ C) meets
S in four lines as well. This implies that part ofM2(E) is a subset of a complex projective cone
K, i.e. an algebraic variety ruled by projective lines through a common vertex. This singular
variety of complex dimension 5 is embedded in the space of quadrics in CP3, which is given by
CP9 (see Remark 2.21). This agrees with the formal (real) dimension of M2(E), which is 10.
When we extendM0 to all non-singular quadrics in the cone K, we obtain a set of quadricsM
that corresponds to M2(E) [DK]. This set has a distinguised quadric, namely S itself.

The complement K \M consists of singular quadrics intersecting S in four lines, which must
necessarily be pairs of planes tangent to S. The pair of planes is then determined by the pair of
points at which these planes are tangent to S. This shows K \M ' s2(S), which is in agreement
with the Donaldson–Uhlenbeck compactification of M2(E). Since M(1)(S) is empty, M1(E)
is empty and M0(E) is just a point (the product connection) by simply connectedness of S.
According to (3.38) we would then have M̄2(E) ⊂M2(E) ∪ s2(S).

For generic metrics on S2 × S2 the moduli space M2(E) does not contain reducible points
according to Proposition 3.12. However, we embed S2 × S2 as a quadric S in CP3. The Kähler
structure on S2×S2 then results in the product metric on two round spheres of equal radii. In
H2(S2×S2,Z), the cohomology class c = [a] = [α1−α2] then has as representative (see (4.90))
an anti-self-dual harmonic form satisfying −Q(c, c) = −

∫
M a ∧ a = 2 = c2(E). According to

Proposition 3.9 this results in a reducible point in M2(E). Under the correspondence M '
M2(E), this point corresponds to the quadric S itself [DK].

Using the Kähler structure on S, we can give a local model for the moduli space around
this gauge equivalence class of a reducible ASD connection A. Theorem 3.22 tells us that
[A] ∈M2(E) corresponds to a G c orbit of a decomposable holomorphic structure E = U ⊕U −1

and that A is compatible with this holomorphic splitting. For such E and A, one can show that
H1(A) = C6, H2

A = H0
A = R and a local model as in Proposition 3.11 is given by f−1(0)/S1,
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where

f : C6 → R; f(z) =
3∑
i=1

|zi|2 −
6∑
i=4

|zi|2.

In the quotient, eiθ ∈ S1 acts as e2iθ on z1, z2, z3 and as e−2iθ on z4, z5, z6. More details regarding
the calculations of the identities above can be found on page 140 and Section 6.4 of [DK].

48



Chapter 4

Electric-magnetic duality in
Euclidean Maxwell theory

Throughout this chapter we will consider the Abelian gauge theory we discussed in the in-
troduction, namely source-free Maxwell theory on a closed, connected, oriented, Riemannian
four-manifold M . One of the crucial ingredients needed to calculate the partition function is
the intersection form as in Definition 2.2.

Starting point for this chapter will be the papers by Verlinde and Witten [Ver, Wit3], which
explore electric-magnetic duality in Abelian gauge theories where the gauge field couples to a
background scalar field on M . The Maxwell partition function for this theory is calculated using
the semiclassical approximation. The result becomes a sum over a discrete set since the saddle
points of the action are harmonic 2-forms forming an integral lattice. This integrality is implied
by the Dirac quantization condition, which tells us that the magnetic fluxes for these 2-forms
are integrally quantized. However, the partition function can change for theories in which the
gauge fields couple to background spinor fields on M . Under some circumstances, the Dirac
quantization condition for the magnetic fluxes is then shifted by a half-integer.

The partition functions in both cases become functions of the complex coupling constant
τ = θ

2π + 4πi
g2

and we can study its modular behaviour under SL(2,Z) transformations of τ .
In the scalar case, the modular properties of this function can be computed using Poisson
resummation. To encompass the spinor case as well, the Maxwell partition function will be
looked at in a more generalized form in Section 4.3. The modular transformation properties
will then be studied in terms of theta functions, which are related to the topology of M .

There are a number of parameters in the partition function dependent on the detailed
geometry of the manifold. The moduli of these parameters will form a space that classifies
all distinct partition functions on M under variations of the metric. The construction of this
space will be covered in Section 4.4. Another result of the discussion there, is an algorithm to
determine these missing parameters using algebraic relations.

In Sections 4.5 and 4.6, the results we obtained will be applied to the del Pezzo surfaces
dPl and S2 × S2 we covered in Section 2.2. For S2 × S2 we can calculate the partition function
using an explicit metric, without having to resort to algebraic relations.

4.1 The Maxwell partition function

Let Ai be a U(1) gauge field on the manifold M and write it as a 1-form A = Aidx
i. If the gauge

field couples to a complex scalar field φ(x) on M , this form A is a connection on a complex line
bundle L (see Section 3.2) and φ a section of this bundle. Under gauge transformations of the
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

field φ we have

φ(x) 7→ eiχ(x)φ(x), A 7→ A− dχ, (4.1)

which is just (3.8). One can check that this leaves the term
∑

i |(
∂
∂xi
− iAi)φ(x)|2 invariant,

which is a term one gets in the Langrangian of this theory. We assume however that the scalar
field is a fixed background field: it does not show up in the path integrals defining the partition
function. Up till Section 4.3 only these couplings are taken into consideration and no couplings
to spinor fields.

The Euclidean Maxwell action for such a gauge field field A is given by

S[A] =
1

g2

∫
M
F ∧ ?F − i θ

8π2

∫
M
F ∧ F, (4.2)

where the curvature F = dA is the 2-form field strength of A, ? is the Hodge star operator
as defined in (2.7) and the parameters g and θ are the gauge coupling constant and theta
parameter, respectively.

The Dirac quantization condition for fluxes on four-manifolds [AO] states that for any non-
trivial homology 2-cycle Σ and 2-form field strength F∫

Σ
F = 2πm, m ∈ Z. (4.3)

This condition is due to the cocycle condition that holds for transition functions associated to
a trivialization of the bundle L . These functions can be seen as gauge transformations of the
field φ and A must transform accordingly as in equation (4.1). The cocycle condition induces
consistency conditions for A that result into equation (4.3).

The Maxwell partition function corrsponding to the action in equation (4.2) is given by

Z(τ) =
1

|G |

∫
[dA] exp(−S[A]), (4.4)

where we integrate over all U(1) gauge fields and divide by the volume of the group of gauge
transformations, which corresponds to the infinite-dimensional group G we considered in Defi-
nition 3.3. We expect the partition function to be dependent on g and θ and these parameters
are combined into the ‘complex’ coupling constant

τ =
θ

2π
+

4πi

g2
. (4.5)

One can calculate the partition function in the semiclassical approximation. The partition func-
tion Z(τ) then factorizes as a sum over all classical saddle points times a product of determinants
denoted as ∆(τ), which can be determined by a Faddeev–Popov regularization procedure. The
result is

Z(τ) = ∆(τ)
∑

saddle points

exp(−S[Acl]).

One exclusive feature of U(1) gauge theory is that these determinants can be computed
exactly by performing Gaussian integrals. These integrals are taken over the quadratic fluctu-
ations of the gauge fields around the saddle points. For general gauge groups, the localization
techniques one uses in this factorization only work in a few special cases.

The factor ∆(τ) needs exact geometric details about M . In [Wit3] it is argued that

∆(τ) = Z0(Imτ)
1
2

(b1−1),
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4.1. The Maxwell partition function

where b1 is the first Betti number and Z0 is a quantity dependent on the geometry of M , but
independent of τ . The number b1 only vanishes when M is simply connected.

The classical saddle point contribution can be computed using only a few geometric and
topological parameters. We combine this contribution with the factor (Imτ)

1
2

(b1−1) to get the
τ dependent part of the Maxwell partition function:

Zcl(g, θ) = Zcl(τ) = (Imτ)
1
2

(b1−1)
∑

saddle points

exp(−S[Acl]). (4.6)

The saddle points of the action (4.2) are solutions the (Euclidean) equations of Maxwell:

dF = d ? F = 0.

This can be computed in a similar way as in the derivation of (3.23). The adjoint map d∗ as
in (2.9) is given by d∗ = − ? d? in degree two, hence we conclude that the saddle point are
harmonic forms as in (2.10). We always have dF = 0 by the Bianchi-identity (3.15), hence the
term θ

8π2

∫
F ∧ F in the action does not change the equations of motion.

The harmonic forms span a vector space of dimension b2 and so all the saddle points can

be decomposed as F =
∑b2

I=1 f
IαI , where the αI form a basis for the harmonic forms. We

can choose the αI such that their cohomology classes generate F 2(M,Z) (see (2.4) and Remark
2.6), since we still have the freedom in how to normalize these basis vectors. The identity in
(2.5) implies we can then find homology cycles ΣI dual to the αI , i.e.∫

ΣI

αJ = δIJ . (4.7)

An application of equation (4.3) to these ΣI , tells us that every harmonic form F corresponding
to a saddle point can be written as

F = 2π
∑
I

mIαI , mI ∈ Z. (4.8)

Remark 4.1. Since F is the curvature of a connection A on a line bundle L, Chern–Weil theory
tells us that 1

2πF is a representative of the first Chern class c1(L) 1 of this line bundle. The
equation above tells us in particular that c1(L) lies in the quotient group F 2(M,Z), since the
cohomology classes of the αI were generators of this space. This statement was already made at
the beginning of Section 3.2. In fact, the proof of this statement uses the same type of argument
as the proof of the Dirac quantization condition (4.3) given in [Alv].

After plugging the expansion (4.8) of F into equation (4.2), the action evaluated for a
classical saddle point takes the following form:

S[mI ] =
∑
I,J

4π2

g2
mIGIJm

J −
∑
I,J

i

2
θmIQIJm

J , (4.9)

where

GIJ =

∫
M
αI ∧ ?αJ , QIJ =

∫
M
αI ∧ αJ . (4.10)

Equation (4.6) then takes the form

Zcl(τ) = (Imτ)
1
2

(b1−1)
∑
mI

exp

∑
I,J

4π2

g2
mIGIJm

J +
∑
I,J

i

2
θmIQIJm

J

 . (4.11)

1In Section 3.2 we have set the cohomology class of iF
2π

equal to c1(L). The reason we do not include i is due
to the fact that it is already included in the definition of the action of U(1) as in (4.1).
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

Dependence on the intersection form and metric

The αI were chosen, such that their cohomology classes generate F 2(M,Z). The symmetric
matrix QIJ in (4.10), then corresponds to the quantity Q([αI ], [αJ ]) as in (2.3). The intersection
form Q (see Definition 2.2) restricted to F 2(M,Z) is unimodular, hence the matrix QIJ is
unimodular (symmetric, integer-valued and determinant equal to one).

The inverse of the matrix QIJ is equal to QIJ = I(ΣI ,ΣJ), where I is the intersection form
as in Definition 2.2 and ΣI as in (4.7). The elements in H2(M,Z) with torsion give zero on the
left-hand side of equation (4.3):∫

Σ
F =

1

N

∫
NΣ

F =
1

N

∫
∂Γ
F =

1

N

∫
Γ
dF = 0.

Therefore the ΣI lie in the quotient group F2(M,Z) and I restricted to this space is unimodular,
so that the matrix QIJ is unimodular as well.

To see why QIJ is the inverse of QIJ , we notice that QIJ can also be expressed as

QIJ =

∫
α̃I ∧ α̃J ,

where α̃I is the Poincaré dual of ΣI , i.e.∫
ΣI

β =

∫
M
α̃I ∧ β for all 2-forms β. (4.12)

We can express α̃I as α̃I = AIJαJ . One can then check that

QIJ =

∫
α̃I ∧ α̃J =

∑
K

∫
α̃I ∧ (AJKαK) =

∑
K

AJK
∫

ΣI

αK = AIJ ,

which implies α̃I = QIJαJ . Using this expression we compute:∑
K

QIKQKJ =
∑
K

∫
QIKαK ∧ αJ =

∫
α̃I ∧ αJ = δIJ .

The symmetric matrix GIJ is positive-definite and determined by the action of the Hodge
star operator on harmonic 2-forms. Due to Proposition 2.5 this action depends on the conformal
class of the Riemannian metric g on M . Similar reasoning as before shows we can write ?αI as

? αI =
∑
J

GIJ α̃
J =

∑
J,K

GIJQ
JKαK . (4.13)

Since ?2|Ω2(M) = 1, we deduce that∑
J,K,L

GIJQ
JKGKLQ

LN = δNI (4.14)

Remark 4.2. An important observation is that when b2 = 0, there are no non-trivial harmonic
forms and Zcl reduces to (Imτ)

1
2

(b1−1), which only depends on g and not on θ. For general field
strengths F = dA we have

iθ

8π2

∫
M
F ∧ F =

iθ

2
Q(c1(L), c1(L)),

which implies that the theta term in the action only depends on the topology of M and the first
Chern class of the bundle L on which A is a connection. This confirms our statement in Section
1.3 saying that the theta term in the action is topological. As a result the partition function in
(4.11) only depends on θ through the intersection form Q.
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4.2. Modular properties of the Maxwell partition function

The partition function in terms of (anti-)self-dual harmonic forms

Recall (see (2.12)) that every α ∈ H2(M) = H+ ⊕ H− can be split into a self-dual part and
anti-self-dual part, i.e. α = α+ + α−, where ?α± = ±α±. With respect to the inner-product
as in (2.8) this splitting is orthogonal. Writing αI = e+

I + e−I , F = 2π
∑

I m
Ie+
I + 2π

∑
I m

Ie−I
and (α)2 = 〈α, α〉, equation (4.2) becomes:

S[A] =
1

g2

∫
M
F ∧ ?F − i θ

8π2

∫
M
F ∧ F

=
1

g2
4π2

(∫
M

(
∑
I

mIe+
I ) ∧ (?

∑
I

mIe+
I ) +

∫
M

(
∑
I

mIe−I ) ∧ (?
∑
I

mIe−I )

)

−i θ
8π2

4π2

(∫
M

(
∑
I

mIe+
I ) ∧ (?

∑
I

mIe+
I )−

∫
M

(
∑
I

mIe−I ) ∧ (?
∑
I

mIe−I )

)

=

(
4π2

g2
− iθ

2

)
(
∑
I

mIe+
I )2 +

(
4π2

g2
+ i

θ

2

)
(
∑
I

mIe−I )2

= −iπτ(p+)2 + iπτ(p−)2, (4.15)

where p± =
∑

I m
Ie±I .

Equation (4.11) can now be rewritten as

Zcl(τ, τ) = (Imτ)
1
2

(b1−1)
∑

(p+,p−)∈Γb+,b−

exp(iπτ(p+)2 − iπτ(p−)2), (4.16)

where Γb+,b− is a self-dual Lorentzian lattice of signature (dimH+,dimH−) = (b+, b−) given by

Γb+,b− =
⊕
I

Z(e+
I ⊕ e

−
I ). (4.17)

Self-duality of the lattice Γb+,b− ⊂ H2(M) means that the set of y′ inH2(M) such that
∫
M y′∧y ∈

Z for y ∈ Γb+,b− is equal to Γb+,b− itself. More details about lattices are covered in Section 4.3.1.

If we write e±I =
∑b±

i (e±I )ifi where 〈fi, fj〉 = δij , then (p±)2 =
∑

I,J m
ImJ

∑b±

i (e±I )i(e±J )i.
Note that S[mI ] as in equation (4.9) can also be written as

S[mI ] = −iπτ
∑
I,J

mImJ 1

2
(GIJ +QIJ) + iπτ

∑
I,J

mImJ 1

2
(GIJ −QIJ). (4.18)

Hence comparing this to equation (4.15) we obtain

1

2
(GIJ ±QIJ) =

b±∑
i

(e±I )i(e±J )i. (4.19)

4.2 Modular properties of the Maxwell partition function

In this section the properties of the partition function Zcl(τ) in (4.11) will be analyzed under
modular transformations of the parameter τ ∈ C:

τ 7→ aτ + b

cτ + d
, with ad− bc = 1, a, b, c, d ∈ Z.
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

If we denote the above transformation by g · τ , with

g =

(
a b
c d

)
, (4.20)

then by succesively applying these transformations one can check that this forms an action
of the group SL(2,Z) on the parameter τ . Furthermore, we can calculate that under these
transformation the sign of the imaginary part gets preserved, which is what we want since
Im(τ) = 4π/g2 needs to stay positive. To be more explicit:

Im(g · z) =
1

|cz + d|2
Im(z).

Hence we can restrict τ to the upper-half plane of C, denoted by H. The elements {±1} ∈
SL(2,Z) act the same on H. The group that faithfully acts on τ , is therefore given by
PSL(2,Z) = SL(2,Z)/{±1}. In [Ser] it is shown that SL(2,Z) (and therefore PSL(2,Z))
are generated by the elements:

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. (4.21)

Notice that S2 = (ST )3 = 1 in PSL(2,Z), whereas in SL(2,Z) we have S2 = (ST )3 =
−1. Although PSL(2,Z) acts faithfully on H, there is a sign ambiguity if it acts on the
partition function. To see how SL(2,Z) (or a subgroup thereof) acts on the partition function,
it usually suffices to compute the action of the generators S and T above (or the generators of
the subgroup). The subgroup of our interest is the Hecke subgroup Γθ, which is generated by
S and T 2. It is a subgroup of index three, since one can show

SL(2,Z) = Γθ ∪ TΓθ ∪ STΓθ. (4.22)

The following generalization of Proposition 1 in Section VII.2.1 of [Ser] motivates the story
above. All the proofs of the statements above can also be found back in Chapter VII of this
book.

Proposition 4.3. Let f(τ) be a function in the variables τ and τ , where τ lies in H. Then the
following two statements are equivalent.

i) f(τ + 1) = f(τ) and f(−1/τ) = τuτvf(τ);

ii) f(g · τ) = (cτ + d)u(cτ + d)vf(τ), where g ∈ SL(2,Z) is as in equation (4.20).

. Statement ii) is the definition of f being a modular form of weight (u, v).

Proof. Case i) is a special case of case ii), hence we only need to check that i) gives ii). We

have d(g·τ)
dτ = 1

(cτ+d)2
and d(g·τ)

dτ = 1
(cτ+d)2

. Case ii) is now equivalent to:

f(g · τ)

f(τ)
=

(
d(g · τ)

dτ

)−u/2(d(g · τ)

dτ

)−v/2
f(g · τ)(d(g · τ))u/2(d(gτ))v/2 = f(τ)(dτ)u/2(dτ)v/2.

This is the same as f(τ)(dτ)u/2(dτ)v/2 being invariant under the action of SL(2,Z). Since this
is true for the generators S and T , as one can easily calculate, this must must be true for
all elements in SL(2,Z). For even u, v the form (dτ)u/2(dτ)v/2 is well-defined. For other u, v
we must check whether this form is still analytically well-defined, since there could be a sign
ambiguity. This issue is resolved by studying the action of the metaplectic cover of SL(2,R)
on τ and restrict it to the inverse image of SL(2,Z). In Chapter 1 of [Bru] more details can be
found.
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4.2. Modular properties of the Maxwell partition function

Remark 4.4. The proof of Proposition 4.3 shows as well that if in the first condition f(τ+1) =
f(τ) is replaced by f(τ + 2) = f(τ), condition ii) holds but then for the subgroup Γθ generated
by S and T 2. The function f is then still called a modular form of weight (u, v). Notice that if
we would have considered only the group PSL(2,Z) case ii) would contain a sign ambiguity.

To compute the action of S ∈ SL(2,Z) on the partition function, we need the Poisson
resummation formula given by

∑
m

f(m) =
∑
n

∫
dx exp(2πinx)f(x), (4.23)

and its multi-dimensional analogue

∑
m∈Zl

f(m) =
∑
n∈Zl

∫
dlx exp(2πin · x)f(x). (4.24)

These identities will be proven in a more general form in Proposition 4.13.
To see the modular covariance under S and T (or T 2) of the partition function in (4.11),

we write it in the following form:

Z(τ) = (Imτ)
1
2

(b1−1)
∑
m∈Zb2

exp(iπm · Ω(τ) ·m) = (Imτ)
1
2

(b1−1)Θ(τ), (4.25)

where Ω(τ) = τ1QIJ + iτ2GIJ = τ1Q + iτ2G, τ1 = Re(τ) = θ
2π and τ2 = Im(τ) = 4π

g2
. For the

modular transformation properties we have the following theorem [OA].

Theorem 4.5. Let M be a closed, oriented, Riemannian four-manifold with Q its unimodular
intersection form. Then for Z(τ) as in equation (4.25), the following is true:

• Z(τ) = Z(τ + 1) if Q is even, otherwise Z(τ) = Z(τ + 2);

• Z(−1/τ) = e−2πi(b+−b−)/8τ
1
2

(1−b1+b+)τ
1
2

(1−b1+b−)Z(τ).

Hence up to a phase factor Z(τ) is a modular form of weight (u, v) = 1
2(1− b1 + b+, 1− b1 + b−),

where the group SL(2,Z) is restricted to Γθ when Q is odd.

Proof. We first note that Ω(τ) has right-inverse (and therefore also left-inverse)−Q−1Ω(−1/τ)Q−1:

−Ω(τ)Q−1Ω(−1/τ)Q−1 =
−1

ττ
(τ1Q+ iτ2G)Q−1(−τ1Q+ iτ2G)Q−1

=
−1

ττ
(τ1Q+ iτ2G)(−τ1Q

−1 + iτ2G
−1)

=
−1

ττ
(τ1Q+ iτ2G)(−τ1Q

−1 + iτ2G
−1)

=
−1

ττ

(
−τ2

1 I − τ2
2 I − iτ1τ2(QG−1 −GQ−1)

)
= I,

where we used equation (4.14), i.e. (GQ−1)2 = I. Now we apply the Poisson resummation
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formula (4.24) on Θ(τ) = Θ(Ω(τ)):

Θ(Ω(τ)) =
∑
m∈Zb2

exp(iπm · Ω(τ) ·m)

=
∑
l∈Zb2

∫
db

2
x exp(2πil · x) exp(iπx · Ω(τ) · x)

=
∑
l∈Zb2

∫
db

2
x exp(iπ(x+ Ω−1 · l) · Ω · (x+ Ω−1 · l)) exp(−iπl · Ω−1 · l)

=
1√

det(−iΩ)

∑
l∈Zb2

exp(−iπl · Ω−1 · l)

=
1√

det(−iΩ(τ))
Θ(−Ω(τ)−1),

where in the second-last step we used an identity for Gaussian integrals.
To calculate

√
det(−iΩ(τ)), we observe that detQ = (1)b

+
(−1)b

−
and det(−iΩ(τ)) =

det(−iΩ(τ)Q−1Q) = det(−iτ1I + τ2GQ
−1) = detQ. By equation (4.14) and the fact that

〈GQ−1x, x〉 = 〈x, x〉 if x ∈ H+ and 〈GQ−1x, x〉 = −〈x, x〉 if x ∈ H−, GQ−1 has b+ eigenvalues
1 and b− eigenvalues −1. Therefore

det(−iτ1Id+ τ2GQ
−1) = (−i)(b++b−)τ b

+
τ b
−
.

Altogether we get:

Θ(Q−1Ω(−1/τ)Q−1) = Θ(−Ω(τ)−1)

= Θ(−Ω(τ)−1)

=
√

det(−iΩ)Θ(τ)

= e−2πi(b++b−)/8e2πi(b−)/4τ
b+

2 τ
b−
2 Θ(τ)

= e−2πi(b+−b−)/8τ
b+

2 τ
b−
2 Θ(τ).

Since Q−1 is a unimodular matrix, Q−1 = (Q−1)t is an automorphism of Zb2 and hence
Θ(Q−1Ω(−1/τ)Q−1) = Θ(Ω(−1/τ)). Furthermore, we have the following relation

Im(−1/τ)
1
2

(b1−1) = (ττ)
1
2

(1−b1)Im(τ)
1
2

(b1−1),

so that
Z(−1/τ) = e−2πi(b+−b−)/8τ

1
2

(1−b1+b+)τ
1
2

(1−b1+b−)Z(τ).

To see what happens under τ 7→ τ + 1, we notice that Ω(τ + 1) = Ω(τ) +Q, hence

Z(τ + 1) = (Imτ)
1
2

(b1−1)
∑
m∈Zb2

exp(iπm · Ω(τ) ·m) exp(iπm ·Q ·m),

The sum on the right-hand side is equal to Z(τ) if Q is even, otherwise we have only invariance
under τ 7→ τ + 2.

Remark 4.6. The modular weights of the partition function can be expressed in terms of two
other quantities of the manifold M , namely the Euler characteristic χ(M) =

∑
i(−1)ibi and the

Hirzebruch signature σ(M) = b+ − b−. By Poincaré duality we have the following equality

1

2
(1− b1 + b+, 1− b1 + b−) =

1

4
(χ(M) + σ(M), χ(M)− σ(M)). (4.26)

Theorem 4.5 can also be found in [Wit3], but there τ and τ are interchanged.
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4.3. The generalized Maxwell partition function

4.3 The generalized Maxwell partition function

When we consider a U(1) gauge field coupling to a spinor field ψ(x) on M , U(1) gauge trans-
formations take the following form

ψ(x) 7→ eiχ(x)ψ(x), A 7→ A− dχ. (4.27)

Again we will we assume the spinor field is a fixed background field, but the addition of such a
field to the theory changes the consistency conditions for the gauge field A that resulted in (4.3).
One has to take into account the extra structure that holds for the spinor fields. The result
[AO] is the adjusted Dirac quantization condition for the flux of F = dA through a two-cycle Σ

1

2π

∫
Σ
F = m+ I(Σ,Σ)/2, m ∈ Z. (4.28)

If I(Σ,Σ) is odd, we see that equation (4.3) gets shifted by 1/2. In the calculation of the
partition function we needed the expansion of the saddle points as in (4.8), so this shift will
change the form of the partition function. The effect is that the discrete set Zb2 in (4.25) is
translated by an element that is not an element in Zb2 . We then should not directly expect
invariance of the partition function under S. The relations in the proof of Theorem 4.5 relied
on the fact that the Poisson resummation took the specific form as in equation (4.24).

When we derived equation (4.25), we chose a basis {αI} for the harmonic forms, which
were the unique harmonic representatives of the generators of F 2(M,Z). The sum over the
saddle points could then be replaced by a sum over Zb2 through (4.8). The more general setup
is by considering F 2(M,Z) as a lattice in the real vector space H2(M,R) ' Rb2 for which the
cohomology classes [αI ] provide a basis. The intersection form Q can be extended to H2(M,R)
to give a non-degenerate scalar product (see Remark 2.6):

[α] · [β] = Q([α], [β]) =

∫
M
α ∧ β. (4.29)

Let Ω̂(τ) be the linear transformation on H2(M,R), which in the basis {[αI ]} can be represented
by the matrix Ω(τ) = θ

2π I + 4πi
g2
Q−1G, with Q = QIJ and G = GIJ given by (4.10). We can

now rewrite the partition function in (4.25) as:

Z(τ) = Zsc(τ) = (Imτ)
1
2

(b1−1)
∑

m∈F 2(M,Z)

exp(iπm · Ω̂(τ)m) = (Imτ)
1
2

(b1−1)Θ(τ), (4.30)

which we call the scalar partition function. The form Q is unimodular on F 2(M,Z) and this
turns F 2(M,Z) into what is known as a unimodular lattice. When we have to take into account
(4.28) for gauge fields coupling to spinor fields, the sum in (4.30) must be taken over F 2(M,Z)+
w/2, where w =

∑
I Q

II [αI ] ∈ F 2(M,Z). This element w forms a so-called characteristic
element that is associated to the unimodular lattice. The resulting partition function

Zsp(τ) = (Imτ)
1
2

(b1−1)
∑

m∈F 2(M,Z)+w/2

exp(iπm · Ω̂(τ)m) = (Imτ)
1
2

(b1−1)Θw/2(τ), (4.31)

is called the spinor partition function.
The scalar and spinor partition functions can be seen as special cases of a more generalized

form of (4.25), where the discrete set over which we sum can still be varied. This generalized
partition function is better understood in the framework of lattices and associated theta func-
tions. With this theory at hand we are able to proof something similar as Theorem 4.5 for the
spinor partition function.
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From a mathematical point of view spinor fields are sections of a spinor bundle. In order to
construct such a bundle one needs a so-called Spinc-structure. For oriented, Riemannian four-
manifolds such a structure is always present. When the manifold is also closed and connected,
the nature of a Spinc-structure depends on whether the intersection form Q is even or odd.
The consistency conditions for A that result in (4.28) are induced by this Spinc-structure. In
the context of lattices we will give a proof of this adjusted Dirac quantization condition. For
this proof we will only need some basic notions concerning spinor bundles and Spinc-structures.
Good references regarding the more general theory are [Mor, LM]. What follows in this section
is an adaptation of Sections 4, 6 and 7 of [OA].

4.3.1 Integral lattices

Let V be a n-dimensional real vector space. A lattice Λ in V of dimension n is a discrete
subgroup of V isomorphic to Zn defined as

Λ =

{
n∑
i=1

niei, ni ∈ Z

}
, (4.32)

where the vectors e1, . . . , en form a basis of V . The vector space can be endowed with a real,
symmetric, non-degenerate scalar product, denoted by x · y. Such a scalar product can be
represented by a non-degenerate symmetric matrix (ei · ej) in the basis {ei}. Let b± be the
number of positive/negative eigenvlues of this matrix, then the signature η of Λ is defined as

η(Λ) = b+ − b−. (4.33)

This scalar product is equivalent to a symmetric, non-degenerate, bilinear form on V and the
numbers b± correspond to the dimensions of maximal positive and negative subspaces of this
form.

The dual lattice of Λ is defined as

Λ∗ = {x ∈ V | y · x ∈ Z ∀y ∈ Λ}. (4.34)

One sees immediately from the definition that Λ∗∗ = Λ. The lattice Λ is integral when Λ forms
a subgroup of Λ∗. Then it is possible to define the quotient group Z(Λ):

Z(Λ) = Λ∗/Λ. (4.35)

An integral lattice Λ is unimodular if Z(Λ) is trivial or equivalently if Λ∗ = Λ.
The fundamental domain of the lattice is formed by the quotient V/Λ. The volume of the

fundamental domain is then defined by

V (Λ) = vol(V/Λ) :=
√
|det(ei · ej)|, (4.36)

where (ei · ej) is short-hand notation for the matrix representing the scalar product.

Remark 4.7. Equation (4.36) coincides with the volume of Rn/Λ if Λ is the Z-span of n linear
independent vectors ei ∈ Rn. In that case, one namely has vol(Rn/Λ) = | det(e1, . . . , en)| =√
| det(ei · ej)|. By the definition in equation (4.36) we implicitly put a measure on the vector

space V .

A standard basis for the dual basis is given by vectors f1, . . . , fn such that fi · ej = δij . One
then checks that

V (Λ∗)V (Λ) =
√
|det(fi · fj)|

√
| det(ei · ej)| = |det(fi · ej)| = det(δij) = 1.
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4.3. The generalized Maxwell partition function

In combination with the fact that V/Λ ' Z(Λ)⊕ V/Λ∗, we have

V (Λ) = (V (Λ∗))−1 =
√
|Z(Λ)|. (4.37)

We see that for unimodular lattices det(ei · ej) = 1, since |Z(Λ)| = 1. The matrix (ei · ej) is
then unimodular, i.e. it is integer-valued and has determinant one. Conversely, if in a chosen
basis of the lattice the matrix representing the scalar product is unimodular, then the lattice is
unimodular.

Let Λ be an integral lattice. The lattice Λ is said to be even if x · x is even for all x ∈ Λ,
otherwise Λ is odd. An element c ∈ Λ is said to be a characteristic element if

c · x+ x · x ∈ Z, ∀x ∈ Λ. (4.38)

According to Lemma 5.2 in Chapter II of [MH] a unimodular lattice always possesses a charac-
teristic element, which is then uniquely defined modulo 2 and satisfies

c · c ≡ η(Λ) mod 8. (4.39)

For unimodular lattices this identity can be proven using Milgram’s formula, which we will
cover (see equation (4.66)) when discussing vector modular forms in Section 4.3.2. Equation
(4.39) shows that an even lattice must have a signature that is divisible by 8, since c = 0 forms
a characteristic element.

Classification of unimodular forms and lattices

A scalar product restricted to a lattice gives a symmetric bilinear form on the lattice. For
integral lattices Λ this form is said to be unimodular if it induces a bijection between Λ and
Hom(Λ,Z). From the definition we see that this is equivalent to the lattice being unimodular.
These forms are odd or even if the corresponding lattices are odd or even. Since the intersection
form Q is unimodular, F 2(M,Z) forms a unimodular lattice in H2(M,R) if the scalar product
is given by (4.29). The following definition will give us a notion through which we can classify
lattices.

Definition 4.8. Given two lattices Λ,Λ′ with a symmetric bilinear form Q and Q′ on it. The
pairs (Λ, Q) and (Λ′, Q′) are said to be isomorphic if there is a bijection f : Λ → Λ′ such that
Q′(f(a), f(b)) = Q(a, b) for all a, b in Λ. We say that a form Q on Λ is equivalent to a matrix
Qij if there is a choice of basis {e1, . . . , erank(Λ)} for the lattice Λ such that Q(ei, ej) = Qij . The

pair (Λ, Q) is then seen to be isomorphic to (Zrank(Λ), Qij). When there can be no confusion,
we will denote the matrix Qij and the form Q by the same symbol.

Hasse and Minkowski have given a classification of the isomorphism classes of unimodu-
lar forms on lattices that are indefinite (neither positive-definite or negative-definite). This
classification has become known as the Hasse–Minkowski theorem and is given in terms of the
unimodular matrices the forms are equivalent to. More details can be found in Chapter II of
[MH] or Chapter V of [Ser].

Theorem 4.9 (Hasse–Minkowski). Let Λ be a lattice with an indefinite unimodular form on it.

i) If the form is odd, then it is equivalent to l(1) ⊕ m(−1), with rank(Λ) = m + l and
η(Λ) = l −m.

ii) If the form is even and η(Λ) ≥ 0, then it is equivalent to

l

(
0 1
1 0

)
⊕mE8,
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

where E8 is the following matrix defining a positive-definite even form of rank 8:

E8 =



2 0 −1
0 2 0 −1
−1 0 2 −1

−1 −1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


.

Here m + l = rank(Λ) and η(Λ) = m. For η(Λ) < 0 the same result holds, but then with
E8 replaced by −E8 and m = |η(Λ)|.

In short, any indefinite unimodular form is defined by its rank, signature and its type (even or
odd).

Example 4.10. The forms defined by the matrices(
0 1
1 0

)
and

(
1 0
0 −1

)
,

are of different type, hence are not equivalent to each other. Therefore two lattices (' Z2)
endowed with these two different forms are not isomorphic to each other.

The form given by the matrix

Q′ =

(
0 1
1 0

)
⊕m(−1) (4.40)

is equivalent to Q = (1)⊕ (m+ 1)(−1) according to Theorem 4.9, since Q′ is odd. The matrix

B =


1 0 1
1 1 0
−1 −1 −1

O

O Im−1

 , (4.41)

represents an automorphism of the lattice (the matrix is integer-valued and det(B) = 1) and
has the property that BtQ′B = Q. This matrix represents a different choice of basis for the
lattice and hence realizes the equivalence of the two forms.

Remark 4.11. For definite unimodular forms the classification problem becomes more difficult.
The odd positive-definite /negative-definite forms are isomorphic to m(1)/m(−1), where m =
rank(Λ). The possibilities for the rank of definite even forms is restricted to multiples of 8 due
to (4.39). The number of isomorphism classes of unimodular forms grows rapidly with the rank
and the classification is generally considered as extraordinarily difficult. Chapter II of [MH]
contains a discussion of this problem.

However, when these definite unimodular forms are realized as intersection forms of smooth,
oriented, simply-connected, closed four-manifolds, there are strong theorems that put a restric-
tion on what is possible. Rokhlin’s theorem ([DK], Theorem 1.2.6) states that the signature of
a smooth, closed, oriented, spin (see Definition 4.18) four-manifold is divisble by 16. As a con-
sequence, such manifolds cannot have ±E8 as intersection form. Donaldson’s diagonalisability
theorem ([DK], Theorem 1.3.1) states the following: the only possible negative-definite forms
realized as the intersection form of a smooth, oriented, simply connected, closed four-manifold
are isomorphic to m(−1). By reversing the orientation of X we see that the only possible
positive-definite forms are then isomorphic to m(1).
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4.3. The generalized Maxwell partition function

Constructions for odd unimodular lattices

If Λ is an odd unimodular lattice, we can construct some derived lattices using the characteristic
element.

• Since c/2 /∈ Λ, the union

Λtotal = Λ ∪ (Λ + c/2), (4.42)

defines a new lattice. We see Λtotal ' Z2 ⊕ Λ or equivalently Λtotal/Λ ' Z2. Similarly as
in the derivation of (4.37) V (Λtotal) = V (Λ)/2 = 1/2.

• We can decompose Λ as

Λ = Λeven ∪ Λodd, (4.43)

where x·x ∈ 2Z for x ∈ Λeven and where x·x ∈ 2Z+1 for x ∈ Λodd. Since for any v ∈ Λodd,
we can write Λodd = Λeven + v, we have Λ/Λeven ' Z2 and V (Λeven) = 2. Furthermore
c ∈ Λodd/even if η(Λ) is respectively even or odd by equation (4.39).

• The lattice Λtotal equals the dual lattice Λ∗even. This can be seen by the fact that Λ is
already integral and c/2 · y ≡ (1/2)y · y ≡ 0 mod 1. Let φ be the map

x 7→ x+ c/2.

By making use of

(y + c) · (y + c) ≡ c · c− y · y mod 2,

we see that if c ∈ Λeven

φ2(Λeven) = Λeven, φ2(Λodd) = Λodd,

and if c ∈ Λodd

φ2(Λeven) = Λodd, φ2(Λodd) = Λeven.

We can write

Λtotal = Λeven ∪ (Λeven + c/2) ∪ Λodd ∪ (Λodd + c/2) (4.44)

and according to the equations above the coset structure is given by

Z(Λeven) = Λtotal/Λeven =

{
Z4 if c ∈ Λodd,
Z2 × Z2 if c ∈ Λeven.

(4.45)

When c ∈ Λeven, the second Z2 action comes from the translation x 7→ x + λv, where λv
is any element in Λodd. Accordingly, we then obtain two new lattices

Λ′ := Λeven ∪ (Λodd + c/2), Λ′′ := Λeven ∪ (Λeven + c/2), (4.46)

with V (Λ′) = V (Λ′′) = V (Λeven)/2 = 1. Hence, when c · c is a multiple of four, these
lattices become integral hence unimodular and are odd or even depending on whether
c · c/4 is.
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

General Poisson resummation formula

Let Λ be an integral lattice in a real vector space V endowed with scalar product x · y. The
following lemma is then true [Sch].

Lemma 4.12. If g : V → C is smooth and Λ-periodic, then

g(x) =
∑
v∈Λ∗

cv exp(2πiv · x), (4.47)

where

cv =
1

V (Λ)

∫
V/Λ

g(y) exp(−2πiy · v)dy.2

Let f be a smooth and fast-decaying function. Then g(x) =
∑

v∈Λ f(x + v) is smooth and
Λ-periodic and we can write ∑

v∈Λ

f(x+ v) =
∑
l∈Λ∗

cl exp(2πl · x). (4.48)

As an application of this lemma we obtain the next proposition.

Proposition 4.13. Let f : V → C be the function defined by f(x) = exp(iπx · Ω̂x), where Ω̂
acts as a linear transformation on x ∈ V , represented by a complex symmetric invertible matrix
Ω̃ in a given basis {ei} of Λ. If the imaginary part of Ω̃ is positive-definite with respect to the
given scalar product, i.e. when x · Im(Ω̂x) > 0 for all x ∈ V − {0}, then∑
v∈Λ

f(x+ v) =
∑
v∈Λ

exp(iπ(x+ v) · Ω̂(x+ v)) =
(−i)b−

V (Λ)
√

det(−iΩ̃)

∑
l∈Λ∗

exp(−iπl · Ω̂−1l+ 2πix · l),

(4.49)
where b− is the number of negative eigenvalues of the matrix (ei · ej) representing the scalar
product.

Proof. The function f satisfies the conditions of Lemma 4.12, so using equation (4.48) we get:∑
v∈Λ

exp(iπ(x+ v) · Ω̂(x+ v)) =
∑
v∈Λ

∑
l∈Λ∗

1

V (Λ)

∫
V/Λ

dy exp(iπ(y + v) · Ω̂(y + v))

× exp(−2πiy · l + 2πix · l)

=
∑
l∈Λ∗

1

V (Λ)

∫
V
dy exp(iπy · Ω̂y) exp(−2πiy · l + 2πix · l)

=
∑
l∈Λ∗

1

V (Λ)

∫
V
dy exp(iπ(y − Ω̂−1l) · Ω̂(y − Ω̂−1l))

× exp(−iπl · Ω̂−1l + 2πix · l)

=
1

V (Λ)
√

det(−iΩ̃)

V (Λ)√
det(ei · ej)

∑
l∈Λ∗

exp(−iπl · Ω̂−1l + 2πix · l)

=
(−i)b−

V (Λ)
√

det(−iΩ̃)

∑
l∈Λ∗

exp(−iπl · Ω̂−1l + 2πix · l),

where we used the fact that a · Ω̂−1b = ((Ω̂−1)ta) · b = (Ω̂−1a) · b, since Ω̂ could be represented
by a symmetric matrix.

2The measure dy is determined through the isomorphism Rn ' V , which maps the orthonormal basis vectors
x1, . . . , xn of Rn to the basis e1, . . . , en of Λ. In this case dy = V (Λ)dx
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4.3. The generalized Maxwell partition function

Remark 4.14. In equation (4.49) there is a sign ambiguity, since at several steps in the deriva-
tion we had to take the square root of −1 and this can be set to either +i or −i. We will set it
to +i.

4.3.2 Theta functions and vector modular forms

For an integral lattice Λ in a vector space V , the lattice Λ∗ has the following Z(Λ) coset
decomposition

Λ∗ = Λ ∪ (λ1 + Λ) ∪ . . . ∪ (λ|Z(Λ)|−1 + Λ), (4.50)

where λα is a representative of the α-th coset and λ0 = 0 is just the identity in the group
structure of Λ∗. Recall that V (Λ) =

√
|Z(Λ)|. Let Ω̂ be a linear transformation on V satisfying

the conditions in Proposition 4.13. Setting x = λα ∈ Λ∗ in (4.49) gives us the relation

∑
v∈λα+Λ

exp(iπv · Ω̂v) =
(−i)b−√

|Z(Λ)|
√

det(−iΩ̃)

|Z(Λ)|−1∑
β=0

exp(2πiλα · λβ)
∑

l∈λβ+Λ

exp(−iπl · Ω̂−1l).

(4.51)
Now we assume in addition, that in a chosen basis {ei} for Λ, Ω̂ = Ω̂(τ) is represented by

the matrix
Ω̃ = Ω̃(τ) = τ1I + iτ2G̃, (4.52)

where τ2 > 0 and G̃ satisfies G̃2 = I. The matrix G̃ has eigenvalues ±1. If we recall the discus-
sion before (4.33), the matrix (ei · ej) has b+ positive eigenvalues and b− negative eigenvalues.
The positive-definiteness of G̃ with respect to the scalar product implies that G̃ must have b±

eigenvalues ±1. Similarly as in the proof of Theorem 4.5 we now have

det(−iΩ̃) = (−i)(b++b−)τ b
+
τ b
−
,

and
Ω̃−1(−1/τ) = −Ω̃(τ).

Notice that the equation above implies that the corresponding linear transformation on V
satisfies Ω̂−1(−1/τ) = −Ω̂(τ).

Now we define |Z(Λ)| theta functions by

Θα(τ) =
∑

l∈λα+Λ

exp(iπl · Ω̂(τ)l). (4.53)

Then the Poisson resummation formula (4.51) and the identities above give us the following
relation between the theta functions

Θα(τ) = τ−
b+

2 τ−
b−
2

e2πiη/8√
|Z(Λ)|

|Z(Λ)|−1∑
β=0

e2πiλα·λβΘβ(−1/τ), (4.54)

where η = η(Λ) = b+ − b−. One can see furthermore that

Θα(τ + 1) = eπiλ
2
αΘα(τ) for even Λ, (4.55)

Θα(τ + 2) = e2πiλ2αΘα(τ) otherwise. (4.56)

The relations above fit properly into the framework of vector modular forms, if we recognize
them as actions of the elements S, T and T 2 in SL(2,Z). The setup is similar as in Section 4.2.
Let B be the matrix

B =

(
a b
c d

)
∈ SL(2,R),
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and f : H→ C a function of τ and τ . Then we define the following action of B on f

Âk1,k2(B)f(τ) = (cτ + d)−k1(cτ + d)−k2f

(
aτ + b

cτ + d

)
(4.57)

By extending this action linearly over f we get a group action of SL(2,R), i.e. for two B,B′ ∈
SL(2,R) we have

Âk1,k2(B)Âk1,k2(B′) = Âk1,k2(BB′). (4.58)

This again contains a sign ambiguity if k1 and k2 are not integers, but this is resolved by looking
at the action of the metaplectic cover of SL(2,Z).

Definition 4.15. Let (f1(τ), . . . , fN (τ)) be a vector column of functions fi : H → C and
Âk1,k2(B) be defined as in (4.57) for B ∈ SL(2,Z). Then (f1, . . . , fN ) is said to be a vector
modular form of weight (k1, k2) if for all B ∈ SL(2,Z) (or a subgroup thereof) there exists
matrices Dβα(B), such that

Âk1,k2(B)fα(τ) =

N∑
β=1

fβ(τ)Dβα(B). (4.59)

Just as in Proposition 4.3 one only needs to check this condition for the generators S and
T (or T 2 if one considers the Hecke subgroup Γθ). More details can be found in Chapter 13 of
[Kac] and Chapter 1 of [Bru].

If the functions {fi} in the definition of a vector modular form are linear independent, the
group structure in (4.58) gets reflected in the matrices:

D(B)D(B′) = D(BB′). (4.60)

Furthermore, we have the following (trivial) identities

Dαβ(I) = δαβ, Dαβ(−I) = (−1)k1−k2δαβ. (4.61)

Now we look at the column vector with as entries the theta functions Θα(τ) as in (4.53).
According to (4.55) and (4.56), we have

Â b+

2
, b
−
2

(T )Θα(τ) = eπiλ
2
αΘα(τ) for even Λ,

Â b+

2
, b
−
2

(T 2)Θα(τ) = e2πiλ2αΘα(τ) otherwise.

Applying the identity ([Ser], Section VI.1)

1

|Z(Λ)|

|Z(Λ)|−1∑
β=0

e2πi(λγ−λα)·λβ = δλγ−λα,0 (4.62)

to equation (4.54) one can deduce

A b+

2
, b
−
2

(S)Θα(τ) =

|Z(Λ)|−1∑
β=0

e−2πiη/8√
|Z(Λ)|

e−2πiλα·λβΘβ(τ).

Hence we conclude that the column vector (Θ0, . . . ,Θ|Z(Λ)|−1) is a vector modular form of weight
(b+/2, b−/2) with

Dαβ(S) =
e−2πiη/8√
|Z(Λ)|

e−2πiλα·λβ , (4.63)

Dαβ(T ) = eπiλ
2
αδαβ for even Λ, (4.64)

Dαβ(T 2) = e2πiλ2αδαβ otherwise. (4.65)
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4.3. The generalized Maxwell partition function

It is immediately seen that D(T ) and D(T 2) are unitary matrices. The identity in (4.62) shows
that D(S) is a unitary matrix as well and

D(S)2 = D(−I)P,

where P = δλα+λβ ,0. We see that this conflicts (4.60), since one has S2 = −I. This is due to the
fact that if λα = −λβ for some representatives λα, λβ, then Θα(τ) = Θβ(τ), which means the
condition on linear independence is not valid anymore. In any case, when acted upon through
(4.59), the condition S2 = −I is still consistent with (4.58), since the matrix P acts as the
identity on the theta functions. By using equation (4.58) and (ST )3 = −I, it can be computed
([OA], pages 22-23) that for even lattices

1√
|Z(Λ)|

|Z(Λ)|−1∑
γ=0

eπiλ
2
γ = e2πiη(Λ)/8. (4.66)

This result is known as Milgram’s formula.

Remark 4.16. Since all λα lie in Λ∗, the matrix elements in the equations (4.63)-(4.65) are
invariant under translations by elements in the lattice, i.e. if λα 7→ λα + l, for some l ∈ Λ,
the matrix elements remain the same. Therefore the matrix elements are independent of the
choice of representatives in the coset decomposition (4.50). Since the coset decomposition was
independent of the choice of the matrix G̃, the matrices in (4.63)-(4.65) do not depend on these
parameters as well. Later on we will see that the matrix Q−1G, with Q and G as in (4.9),
has the same properties as we listed for the matrix G̃ in (4.52). The modular properties of
the partition function that will be summarized in Section 4.3.4 are therefore only dependent on
the topology of the underlying manifolds. As we will see in Section 4.4 the remaining b+ × b−
parameters in G will define different partition functions (up to some discrete symmetries), but
will have no effect on the modular properties.

Applications to unimodular lattices

For unimodular lattices the quotient group Z(Λ) is trivial, hence only one theta function is
associated to these lattices and the modular group action (4.58) will transform the theta function
by multiplication with a phase factor. For even unimodular lattices, Milgram’s formula implies
exp(2πiη/8) = 1 and by (4.63) and (4.64) the action of the modular group is trivial, i.e.

D(S) = D(T ) = 1.

Odd lattices still can have any signature and the action of the Hecke subgroup is given by

D(S) = e−2πiη/8, D(T 2) = 1.

The object of our main interest will be Λtotal = Λ∗even as in (4.42). Using the decomposition
(4.44), we can take as coset representatives in (4.50)

0, λv, λs = c/2, λt = λv + c/2, (4.67)

where λv is any element of Λodd. As a short intermezzo, we can deduce (4.39) by an application
of Milgram’s formula (4.66) and property (4.38) for c:

e2πiη/8 =
1

2

∑
γ=0,v,s,t

eπiλ
2
γ = e2πic2/8.
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Associated to these coset representatives are four theta functions Θ0(τ),Θv(τ),Θs(τ) and
Θt(τ), which are defined through (4.53). Using (4.63), (4.64), (4.38), (4.39) and denoting
ω = e−2πη/8, we compute D(S) and D(T ):

D(S) =
ω

2


1 1 1 1
1 1 −1 −1
1 −1 ω2 −ω2

1 −1 −ω2 ω2

 , (4.68)

D(T ) = diag(1,−1, ω−1, ω−1). (4.69)

Let us fix the notation Â b+

2
, b
−
2

(B) = Â(B) for B ∈ SL(2,Z). One can check that Θs − Θt

spans a subspace invariant under SL(2,Z):

Â(S)(Θs −Θt) = ω3(Θs −Θt), Â(T )(Θs −Θt) = ω−1(Θs −Θt).

This function vanishes if η(Λ) is odd [OA].
For the subspace orthogonal to Θs − Θt, we choose the orthogonal basis Θ := Θ0 + Θv,

ΘT := Θ0 −Θv and ΘST := ω(Θs + Θt). For this basis one has

ΘST = Â(S)(ΘT ) = Â(S)Â(T )(Θ) = Â(ST )(Θ).

If one recognises Θ as the theta function corresponding to Λ, we see that the relation above
corresponds to the decomposition of SL(2,Z) as in (4.22), since Θ is invariant under Γθ. Under
the action of S these functions get permuted into each other (up to phase factors):

Â(S)(Θ) = ωΘ, Â(S)(ΘT ) = ΘST , Â(S)(ΘST ) = ω2ΘT . (4.70)

The action of T results in

Â(T )(Θ) = ΘT , Â(T )(ΘT ) = Θ, Â(T )(ΘST ) = ω−1ΘST . (4.71)

In fact this shows that the subspace spanned by these vectors is invariant under SL(2,Z) and
the rest of the actions of SL(2,Z) can then be computed through combinations of (4.70) and
(4.71).

Remark 4.17. There are some special cases depending on the values of the signature η(Λ).

• η(Λ) is odd: Θs −Θt vanishes.

• η(Λ)/4 is integral: c · c/4 is an integer and hence the two lattices in (4.46) are unimodular
and odd or even depending on whether η(Λ)/4 is. Associated to these lattices are the
theta functions Θ0 + Θs and Θ0 + Θt, for which we have

Â(S)(Θ0 + Θs) = ω(Θ0 + Θs), Â(T )(Θ0 + Θs) = Θ0 + ωΘs,

Â(S)(Θ0 + Θt) = ω(Θ0 + Θt), Â(T )(Θ0 + Θs) = Θ0 + ωΘt,

where ω = (−1)η(Λ)/4 now equals ±1.

• η(Λ)/8 is integral: according to the relations above the linear combination

2Θ0 + Θs + Θt = Θ + ΘT + ΘST

is now a modular function for which D(S) = D(T ) = 1.

• η(Λ) ≡ 4 mod 8: according to (4.71) the linear combination

Θ−ΘT + ΘST

is now a modular function with D(S) = D(T ) = −1.
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4.3. The generalized Maxwell partition function

4.3.3 Spinc-structures and the adjusted Dirac quantization condition

An oriented, Riemannian n-manifold M has the property that the tangent bundle has structure
group SO(n) (see Section 3.1). It is known that if the second Stiefel-Whitney class w2(TM) of
the tangent bundle vanishes there exists a lift of the structure group of the tangent bundle TM
to its double cover Spin(n) (Lemma 3.1.1, [Mor]). This means that we can find an open cover
{Uα} of M and trivializations of TM over that cover such that we have transition functions
gαβ : Uα ∩ Uβ → SO(n) and g̃αβ : Uα ∩ Uβ → Spin(n) that satisfy ρ ◦ g̃αβ = gαβ for the double
cover map ρ : Spin(n)→ SO(n).

Definition 4.18. For an oriented, Riemannian n-manifold a lift of the structure group of the
tangent bundle TM to its double cover Spin(n) is called a spin structure on M . In this case
the manifold M is said to be spin.

When such a lift of the structure group SO(n) to Spin(n) does not exist, there can still be
another structure that is useful, called the Spinc-structure. This Spinc-structure consists of a
bundle which can be constructed from the tangent bundle and has structure group Spinc(n),
the Spinc-group. The Spinc-group is defined as

Spinc(n) := SO(n)×Z2 U(1) = SO(n)× U(1)/{(±I,±I)}, (4.72)

where the elements in the product get identified through the diagonal action of Z2 ' {(±I,±I)}.
Such a lift always exists when the oriented, Riemannian manifold M is four-dimensional

(Lemma 3.1.2, [Mor]). This is equivalent to the fact that on these manifolds the second Stiefel-
Whitney class w2(TM) ∈ H2(M,Z/2) can always be lifted to an element of H2(M,Z). Spinc-
structures therefore always exist for the manifolds we considered in the previous sections. A
Spinc-structure is necessary to construct spinor bundles. If a gauge field A couples to a fixed
background spinor field, which is a section of this bundle, the Spinc-structure will again induce
consistency conditions for A, similar as the cocycle condition did for a connection on a line
bundle. The result is the Dirac quantization condition as in (4.28). We will give a proof of this
condition using ideas from [AO] and adapt the argument following Sections 3.1-3.3 of [Mor].

Associated to a spinor bundle P is the determinant line bundle detP . The form 2A is then
a connection on this line bundle, so we are back to the case in Section 4.1. Let 2F be the 2-form
field strength of 2A. For the cohomology class of 2F one has the relation

1

2π
[2F ] = c1(detP ) ≡ w2(TM) mod 2,

where w2(TM) is the second Stiefel-Whitney class. In the case F is harmonic, we can apply
(4.8) to 2F :

2F

2π
=
∑
I

nIαI , nI ∈ Z,

where the αI are the unique harmonic representatives of the generators for F 2(M,Z). Combining
the two relations, we obtain

1

2π
F =

∑
I

mIαI + w/2, mI ∈ Z, (4.73)

where w is the unique harmonic representative of the lift w2(TM) into H2(M,Z). This w should
be torsion free, since it can be written as a linear combination of the αI .
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The connection 2A enters in the Dirac operator D2A on the spinor bundle P ([Mor], Section
3.3). With the Atiyah-Singer index theorem we can compute its index. If we write

∑
I m

I [αI ] =

m ∈ F 2(M,Z) and c1(detP ) = [2F ]
2π = 2m+ [w] = 2m+ w, we get

indD2A =
1

8

∫
M
c1(detP )2 − σ(M)

8

=
1

8
Q(w + 2m, 2m+ w)− σ(M)

8

=
1

8
(Q(w,w)− σ(M)) +

1

2
(Q(m,w) +Q(m,m)),

where σ(M) is given by (2.13). From the integrality of the index we deduce

Q(m,w) +Q(m,m) ∈ 2Z (4.74)

Q(w,w) ≡ σ(M) mod 8. (4.75)

In the context of Section 4.3.1, we can see F 2(M,Z) as a unimodular lattice in H2(M,R), where
the scalar product is given by (4.29). The signature of this lattice is σ(M) = b+− b− and (4.74)
tells us w is a characteristic element of F 2(M,Z). Equation (4.75) agrees with (4.39), but is
now proved by using the Atiyah-Singer index theorem. We can determine w modulo 2 (which
should be unique) by making use of (4.73). Writing w =

∑
I w

IαI and choosing mI = −
∑
α̃I ,

where α̃I is the Poincaré dual of ΣI (see (4.7) and (4.12)), we get

wI = Q(α̃I ,
∑
J

wJαJ) ≡ Q(α̃I , α̃I) mod 2 ≡ QII mod 2.

Therefore F as in (4.73) can be rewritten as

F = 2π
∑
I

mIαI + 2πw/2 = 2π
∑
I

mIαI + 2π
∑
I

QII

2
αI , mI ∈ Z (4.76)

This is the result we need in Section 4.3.4. Using this expansion for a harmonic F we can prove
equation (4.28).

Recall that using the Poincaré duals α̃I of ΣI , we can write QII = I(ΣI ,ΣI) = Q(α̃I , α̃I).
Furthermore, any Σ ∈ F2(M,Z) can be written as Σ =

∑
I n

IΣI with nI ∈ Z. We can directly
restrict to F2(M,Z), since torsion cycles give zero on the left- and right-hand side of equation
(4.28). Using equation (4.74) we now compute

I(Σ,Σ) = Q

(∑
I

nI α̃I ,
∑
J

nJ α̃J

)

=
∑
I

nIQ

(
α̃I ,
∑
J

QJJαJ

)
+ 2k, k ∈ Z

=
∑
I

nIQ
(
α̃I , α̃I

)
+ 2k′, k′ ∈ Z

=
∑
I

nIQII + 2k′, k′ ∈ Z.

Integrating F/2π over a 2-cycle Σ then results in equation (4.28). Notice that any other curva-
ture F ′ is cohomologous to a harmonic curvature F , i.e. F ′ = F + dβ for some 1-form β. The
integral of dβ over a two-cycle vanishes, hence (4.28) is also valid for F ′.
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Remark 4.19. If all Σ ∈ H2(M,Z) have even intersection number, which is equivalent to all

QII being even, then F as in (4.76) satisfies [2F ]
2π ≡ 0 mod 2. From this we deduce that M

has vanishing second Stiefel-Whitney class. Conversely, vanishing second Stiefel-Whitney class
implies all self-intersection numbers are zero through (4.74). Hence we conclude that a closed,
connected, oriented four-manifold M being spin is equivalent to all homology two-cycles having
even self-intersection. The presence of a spin structure on M will leave the Dirac quantization
condition as in (4.3) intact, and therefore the partition function as well. Notice that by equation
(4.75) manifolds with an odd Hirzebruch signature cannot be spin.

In [AO] it is argued that a physical consequence of manifolds not being spin is that neu-
tral complex spinor fields cannot exist. For manifolds that are not spin F 2(M,Z) is an odd
unimodular lattice.

4.3.4 Modular properties of the generalized Maxwell partition function

Let Λ be the lattice F 2(M,Z) ⊂ H2(M,Z) and the scalar product given by (4.29). Then the
linear transformation Ω̂(τ) in (4.30) and (4.31) fits the description of the linear transformation
corresponding to (4.52). We can namely pick a basis of F 2(M,Z) such that Ω̂(τ) is represented
by the matrix Ω(τ) = τ1 + iτ2Q

−1G. This matrix Q−1G is positive-definite with respect to
the given scalar product (represented by the matrix Q), since G is a positive-definite matrix.
Furthermore, it satisfies

(Q−1G)2 = Q−1(GQ−1GQ−1)Q−1 = I.

The theory about theta functions in Section 4.3.1 can now be put to use to study the modular
properties of the generalized Maxwell partition function, where Θ(τ) in (4.30) is replaced by a
linear combination of the other theta functions at hand.

Spin Manifolds

If M is a manifold with a spin structure, then the unimodular lattice F 2(M,Z) is even and
Section 4.3.2 tells us that the theta function Θ(τ) in (4.30) is invariant under the action of Â(S)
and Â(T ), which is in agreement with Theorem 4.5. The value of e−2πi(b+−b−)/8 is now 1, since
M is spin and therefore σ(M) ∈ 8Z by (4.75).

According to Remark 4.19, w can be set to zero in (4.31). Therefore the partition function
in (4.31) is identical to that in (4.30).

Manifolds that are not spin

The case we are actually interested is the modular behaviour of (4.31) with w 6= 0 mod 2, i.e.
when M is not spin and the lattice F 2(M,Z) is odd. We look at the lattice F 2(M,Z)total given
by (4.42) and its decomposition in (4.44):

F 2(M,Z)total = F 2(M,Z)even ∪ F 2(M,Z)odd ∪ (F 2(M,Z)even + w/2) ∪ (F 2(M,Z)odd + w/2).

Associated to this lattice are the theta functions Θ(τ) in (4.30), Θw/2(τ) = e2πi(b+−b−)/8ΘST (τ)
in (4.31) and

Θ0(τ) =
∑

m∈F 2(M,Z)even

exp(iπm · Ω̂(τ)m), (4.77)

Θv(τ) =
∑

m∈F 2(M,Z)odd

exp(iπm · Ω̂(τ)m). (4.78)
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The relations in (4.70) and (4.71) and the modular behaviour of the prefactor (Imτ)
1
2

(b1−1) then
give us the action of the full modular group SL(2,Z) on the following partition functions: Zsc
as in (4.30) , Zsp as in (4.31) and

Zsc∗(τ) = (Imτ)
1
2

(b1−1)(Θ0(τ)−Θv(τ)) = (Imτ)
1
2

(b1−1)ΘT (τ). (4.79)

As a result of (4.70) we for example have

Zsp(−1/τ) = e−2πi(b+−b−)/8τ
1
2

(1−b1+b+)τ
1
2

(1−b1+b−)Zsc∗(τ). (4.80)

As another example, Zsp(τ) gets mulitplied with a factor exp(2πi(b+− b−)/8) under the action
of T .

The partition functions Zsc and Zsc∗ correspond to theories in which the Abelian gauge
fields couple to scalar fields, but with different theta parameters: Zsc∗(τ) is the same as Zsc(τ),
but with 2πRe(τ) = θ+2π. Recall that Zsp corresponds to a theory in which the Abelian gauge
field couple to spinor fields.

Remark 4.20. Whenever the underlying manifold becomes important in the partition function,
we will distinguish this in the notation by a subscript.

Depending on the signature of F 2(M,Z), which is the Hirzebruch signature σ(M), certain
linear combinations of these partition functions become modular forms of weight 1

2(1 − b1 +
b+, 1− b1 + b−) according to Remark 4.17. The partition functions on del Pezzo surfaces cover
all the cases, since σ(dPl) runs from 1 to −7.

Remark 4.21. Formulas (2.11)-(2.13) in [Ver] contain a similar result as in Theorem 4.5 for the
scalar partition function (4.30) and as equation (4.80) for the spinor partition function (4.31).
Verlinde computes that the scalar partition function remains invariant up to a phase factor
under T (or T 2 when M is not spin) and transforms under S as

Zsc(−1/τ) = ετ
1
2

(1−b1+b+−b−)τ
1
2

(1−b1)Z(τ),

where ε is some eight root of unity. The spinor partition function still remains invariant under
T 2 and under S transforms as

Zsp(−1/τ) = ετ
1
2

(1−b1+b+−b−)τ
1
2

(1−b1)(Imτ)
1
2

(b1−1)
∑

m∈F 2(M,Z)

exp(iπm · Ω̂(τ) ·m+ 2πim · w/2).

Using (4.74), we see m · w is even when m ∈ F 2(M,Z)even and odd if m ∈ F 2(M,Z)odd. This
shows

Zsp(−1/τ) = ετ
1
2

(1−b1+b+−b−)τ
1
2

(1−b1)Zsc∗(τ).

Comparing this with Theorem 4.5 and with (4.80), we see that a factor τ b
−/2 is replaced with

τ b
−/2. The derivation of the results above uses properties for electric and magnetic flux operators

associated to the gauge field A.
The computations done in Section 2.2 in [Wit3] give the same result as Theorem 4.5 as we

mentioned in Remark 4.6. However, Witten uses a field-theoretic approach, instead of analyzing
theta functions.
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4.4 Moduli space Mb+,b− of partition functions

The computation of the Maxwell partition function on M is greatly simplified, since the saddle
points form a lattice isomorphic to F 2(M,Z). The scalar product induced by the unimodular
intersection form Q then determines the modular properties, which are only dependent on the
topology of M . However, the matrix G in the partition function is still dependent on the
detailed geometry of M . As equation (4.10) shows, this is determined by the action of ? on
the basis of the lattice. According to equations (4.16) and (4.17), this is equivalent to how the
space H2(M) splits as in (2.12). What we would like to establish in this section is that the
moduli space of parameters in the partition function [Ver] is given by

Mb+,b− ' SO(b+)× SO(b−) \ SO(b+, b−)/O(b+, b−,Z). (4.81)

First we note that the group SO(b+, b−) can take various forms depending on the rank, type
and signature of the intersection form Q. After (2.12) we commented that H+ and H− form
maximal positive and negative subspaces of Q when applied to H2(M). The splitting of H2(M)
is orthogonal and we can look at both the projection operators π+ = 1

2(1+?) and π− = 1
2(1−?)

onto H+ and H−, respectively. From these projection operators it is possible to reconstruct ?,
namely ? = π+ − π−. Now all possible maximal and negative subspaces of Q can be obtained
by a linear transformation Ã of H2(M) which leave Q invariant, i.e. Q(Ãα, Ãβ) = Q(α, β) for
all α, β ∈ H2(M). This means that in the basis {αI} this transformation can be represented by
a matrix A, such that AtQA = Q, where Q = QIJ is the matrix in (4.10). This A hence defines
an element in O(b+, b−) and we can even take A ∈ SO(b+, b−) to obtain all possible maximal
and negative subspaces. Under such a linear transformation we obtain the projection operators
onto the new subspaces:

π′± = Ãπ±Ã
−1. (4.82)

Equation (4.13) shows the Hodge star operator on the basis {αI} is determined by the matrix
G = GIJ , so let us denote ? = ?G accordingly. We now have m · Gm = Q(α, ?Gα), where
α =

∑
I m

IαI and m = (m1, . . . ,mb2). If π′± satisfies (4.82) with A ∈ SO(b+, b−), then for
?′G = ?′ = π′+ − π′− and ?G = π+ − π− we have

m ·G′m = Q(α, Ã(π+ − π−)Ã−1α) = Q(Ã−1α, ?GÃ
−1α) = m · (A−1)tGA−1m.

So by letting A ∈ SO(b+, b−) act on one suited choice of G as AtGA, we obtain all the possible
matrices. This establishes the main group in (4.81).

After picking oneG to act on, the subgroup SO(b+)×SO(b−) corresponds to transformations
Ã leaving invariant the spaces H+

G and H−G associated to ? = ?G. These transformations then
commute with the projection operators π±, so that ?′ in (4.82) satisfies ?′ = π′+ − π′− = ?.
If two matrices A′, A ∈ SO(b+, b−) satisfy A′ = OA, where O ∈ SO(b+) × SO(b−), then O
corresponds to a transformation that leaves invariant H+

G and H−G, so that (A′)tGA′ = AtGA.
Furthermore if A′ = AO′, where O′ ∈ SO(b+) × SO(b−), then O′ leaves invariant H+

AtGA and
H−AtGA, so that (A′)tGA′ = AtGA. This establishes the quotient by SO(b+)×SO(b−) in (4.81).

Any automorphism of the lattice Λ =
⊕

I ZαI is represented by an element in GL(b+ +
b−,Z), i.e. matrices that have integer-entries and determinant ±1. The subgroup O(b+, b−,Z)
corresponds to the elements in the intersection GL(b+ + b−,Z) ∩ O(b+, b−.R). Suppose two
A,A′ ∈ SO(b+, b−,R) satisfy A′ = AO, where O ∈ O(b+, b−,Z). Then the matrix Ω(τ) = τ1Q+
τ2A

tGA in (4.25) can be replaced by OtΩ(τ)O = τ1Q+τ2(A′)tGA′, since O is an automorphism
of Zb2 (which leaves invariant the sum) and OtQO = Q.

This confirms that the moduli space of partition functions is indeed given by (4.81), which
is an orbifold with the discrete subgroup O(b+, b−,Z) acting on it. The dimension of this space
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is

dimSO(b+, b−)− dim(SO(b+)× SO(b−)) =
1

2
(b+ + b−)(b+ + b− − 1)

−1

2
(b−)(b− − 1)− 1

2
(b+)(b+ − 1)

= b+ × b−.

The isomorphism forMb+,b− is affine, since we had to start from one matrixG and corresponding
? operator in order to define the action of SO(b+, b−). The elements inMb+,b− then act on the
matrix G in the adjoint representation.

Remark 4.22. Notice that varying G does not affect our constructions in Section 4.3.4, since
these only involve the properties of the intersection form Q.

The group O(b+, b−,Z) depends on the signature, rank and type of Q. In general a large
part of O(b+, b−,Z) will correspond to permutations and reflections of vectors in

⊕
I ZαI that

leave invariant Q. For the intersection form equivalent to

Q = n

(
0 1
1 0

)
,

the group O(n, n,Z) has an interesting structure, which has been worked out in detail in [GMR,
GPR].

The action of the mapping class group of M is reflected in O(b+, b−.Z). An action of this
group on M should leave invariant the partition function and this invariance gets reflected in the
action of O(b+, b−.Z). Fixed points in Mb+,b− of the group O(b+, b−,Z) correspond to metrics
of the manifold for which there are extra symmetries. We will see an example of this in Section
4.5.

4.4.1 Computation of the moduli parameters

Given the lattice Λ =
⊕

I ZαI ' F 2(M,Z) and matrix Q = QIJ = Q([αI ], [αJ ]), we can
compute the matrix GIJ by using the properties of ? and the fact that it should be a positive-
definite symmetric matrix. For ? we have the identity ?2|Ω2(X) = id. We already saw in
equation (4.14) that this means (GQ−1)2 = I or equivalently GQ−1G = Q. We can solve for
these conditions directly, but we can also start from one G that satisfies the conditions and let
SO(b+, b−) act on it in the adjoint representation. Given such a G, then the matrix G′ = AtGA
is symmetric and positive-definite as well for A ∈ SO(b+, b−) and it satisfies G′Q−1G′ = Q,
since A leaves Q and Q−1 invariant.

If we have Q−1 = Q, the condition (GQ−1)2 = I just means that G leaves Q invariant. Such
a G must be a symmetric positive-definite matrix in SO(b+, b−). Since the indentity matrix I
satisfies the conditions, all the other matrices have the form G = AtA with A ∈ SO(b+, b−). If
Q−1 = Q, these constructions will sometimes make it easier to find the possible G.

The matrix G can also be determined though a direct calculation of ? and the harmonic 2-
forms {αI}. The operator ?|Ω2(M) depends on the conformal class of the metric (see Proposition
2.5) and in order to compute the harmonic forms, we need to solve the differential equations
dα = d∗α = 0. Such a direct calculation needs specific details of the metric and will generally
not be easy.

However, we only have to know that these harmonic 2-forms exist and then the possible G
can be computed using only algebraic relations as described above. The coefficients that return
in the matrix G, will generally be a function of b+ × b− parameters that are dependent on

72



4.4. Moduli space Mb+,b− of partition functions

the detailed geometry of the manifold. Only in some cases the problem is tractable enough to
find the explicit geometric origin of these parameters. In the next section we will calculate the
partition function for dP̃1 = S2 × S2 endowed with the product metric on two round spheres.
According to (4.81) we would just have 1 moduli parameter and we will see that this parameter
corresponds to the ratio between the radii of the two spheres. For the other del Pezzo surfaces
dPl the number of parameters is b+ × b− = l. For l > 0, the partition functions will be
calculated in Section 4.6. By looking at some qualitative behaviour of the partition function,
we will heuristically describe how these parameters are related to the geometry of dPl.

Notice that if b+ = 0 or b− = 0, Mb+,b− should be trivial, i.e. the partition functions are

not dependent on any parameters. The partition functions for CP2 and CP2
are an example of

this.

Example 4.23. One can show G = Q for CP2 and G = −Q for CP2
. The form α = ω

2π , with
ω the Fubini–Study metric on CP2 as in (3.45),3 is a self-dual harmonic form. Its cohomology
class equals minus the first Chern class of the tautological line bundle. Furthermore, (3.46)
shows

∫
CP2 α2 = 1, so its cohomology class forms the basis for H2(M,Z) and the intersection

form is equivalent to Q = (1). Since ω is self-dual, we have G = Q = (1) and equation (4.18)
then gives us

Zsc(τ)CP2 =
1√
Imτ

∑
m

exp(iπτm2). (4.83)

On CP2
, ω is an anti-self-dual harmonic form. Since the orientation is reversed, the form

α = ω
2π now satisfies

∫
CP2 α2 = −1 and its cohomology class lies in H2(CP2

,Z). We conclude
that G = −Q = (1) and therefore

Zsc(τ)CP2 =
1√
Imτ

∑
m

exp(−iπτm2). (4.84)

According to Theorem 4.5 these partition functions are invariant under S and T 2.

For the other cases where b+ = 0 or b− = 0, the partition function is still not dependent on
any parameters, since in these cases ?|Ω2(M) = ±id and hence Q = G and Q = −G, respectively.
Donaldson’s diagonalisability theorem (see Remark 4.11) shows that if in addition the manifold
M is simply-connected the partition function is given by

Zsc(τ) =
1√
Imτ

(∑
m

exp(iπτm2)

)b2
,

if b− = 0 or

Zsc(τ) =
1√
Imτ

(∑
m

exp(−iπτm2)

)b2
,

if b+ = 0.
We make the final remark that for b+, b− 6= 0 we can pick Q just to be one of the matrices

in Theorem 4.9 depending on the rank, signature and type of the intersection form Q. We are
namely still free to pick the generators of F 2(M,Z) and their unique harmonic representatives.
In general we will determine Q−1 using generators of F2(M,Z) and then look at harmonic
forms dual to these generators (see (4.7)). The cohomology classes of these forms then generate
F 2(M,Z) and these will form the basis in which we express Q.

3Recall that we have absorbed the factor i in all the connections.
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4.5 The Maxwell partition function for S2 × S2

Let S2 × S2 = S × S′, where S and S′ are round spheres with radius R and R′, respectively.
The product S × S′ is simply-connected and has b2(M) = 2. We compute the intersection
form with the two-cycles Σ1 = S × {(R′, 0)} and Σ2 = {(R, 0)} × S′. These two-cycles have
zero self-intersection numbers, since a small perturbation of the two-cycles in S×S′ is disjoint.
For example, Σ1 and S × {(

√
(R′)2 − ε2, ε)} are disjoint for small ε. Furthermore, we have

I(Σ1,Σ2) = I(Σ2,Σ1) = 1, since these cycles meet transversly in (R, 0)× (R′, 0) and TΣ1⊕TΣ2

obviously matches the orientation of T (S × S′) at that point. The intersection matrix is hence
given by:

QIJ =

(
0 1
1 0

)
= QIJ . (4.85)

Remark 4.24. Notice that Σ1 and Σ2 correspond to an A- and B-line (see Section 2.2.3) when
we realize S × S′ as a quadric in CP3. In this realization, the form of the intersection matrix is
just implied by the rules for the A- and B-lines. The two-cycles Σ1 and Σ2 are sometimes also
called an A- and B-cycle, respectively.

If we pick double spherical coordinates (θ, ϕ, θ′, ϕ′), the product metric on S × S′ takes the
following form:

gij =


R2 0 0 0
0 R2 sin2 θ 0 0
0 0 (R′)2 0
0 0 0 (R′)2 sin2 θ′

 (4.86)

The forms dual to Σ1 and Σ2 are given by:

α1 =
1

4π
sin θdθ ∧ dϕ, α2 =

1

4π
sin θ′dθ′ ∧ dϕ′. (4.87)

Let π1 : S×S′ → S and π2 : S×S′ → S′ be the projection maps, then under pullbacks one has
α1 = 1

4πR2π
∗
1(volS) and α2 = 1

4π(R′)2π
∗
2(volS′), where volS and volS′ are the volume forms on S

and S′, respectively. Since the volume forms are closed and for pullbacks we have d◦f∗ = f∗◦d,
α1 and α2 are closed forms. Now by the rules for the Hodge star operator on Cartesian products
4 and its action on volume forms:

? α1 =
1

4πR2
? (π∗1(volS)) =

1

4πR2
? (π∗1(volS) ∧ π∗2(1))

=
1

4πR2
(π∗1(?volS) ∧ π∗2(?1))

=
1

4πR2
(π∗1(1) ∧ π∗2(volS′))

=
(R′)2

R2
α2. (4.88)

Similarly we have ?α2 = R2

(R′)2α1. Since d∗ = − ? d? we conclude that α1 and α2 are unique

harmonic representatives of the generators of F 2(M,Z) = H2(M,Z).

4The following identity holds for forms on a Cartesian product X × Y :

?(π∗1(α) ∧ π∗2(β)) = (−1)(dimX−k)lπ∗1(?α) ∧ π∗2(?β),

where α ∈ Ωk(X), β ∈ Ωl(Y ) and π1, π2 are the projections π1 : X × Y → X and π2 : X × Y → Y .
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4.5. The Maxwell partition function for S2 × S2

Remark 4.25. We could have also obtained (4.88) by a calculation in local coordinates. The
basis vectors for the 1-forms in spherical coordinates are given by dθ, dϕ, dθ′ and dϕ′. The
Hodge dual of dθ ∧ dϕ in local coordinates can now be computed through the metric tensor
(4.86) and its inverse gij :

?(dθ ∧ dϕ) =
∑
i,j,k,l

√
det(gij)

(4− 2)!
g1ig2jεijkldx

k ∧ dxl

=
∑
k,l

R2 sin θ(R′)2 sin θ′

2
(R2)−1(R2 sin2 θ)−1ε12kldx

k ∧ dxl

=
(R′)2 sin θ′

R2 sin θ
dθ′ ∧ dϕ′.

By linearity of ?, this will give (4.88). Notice that the first identity is just the Euclidean version
of (1.1).

Setting r = R′

R , the matrix GIJ in (4.10) is now seen to be given by

GIJ =

(
r2 0
0 1

r2

)
. (4.89)

On S × S′ we have the following self-dual and anti-self-dual harmonic forms

α+ =
1√
2

(
1

r
α1 + rα2

)
, α− =

1√
2

(
1

r
α1 − rα2

)
, (4.90)

satisfying 〈α±, α±〉 = 1 and 〈α±, α∓〉 = 0. The forms α1 and α2 can now be written as:

α1 =
r√
2

(α+ + α−), α2 =
1

r
√

2
(α+ − α−)

According to equation (4.16), the Maxwell partition function is equal to

Zsc(τ, τ , r)S2×S2 =
1√
Imτ

∑
(p+,p−)∈Γb+,b−

exp(iπτ(p+)2 − iπτ(p−)2))

=
1√
Imτ

∑
n,m

exp

(
iπτ

2
((nr +m/r)α+)2 − iπτ

2
((nr −m/r)α+)2

)
=

1√
Imτ

∑
n,m

exp

(
iπτ

2
(nr +m/r)2 − iπτ

2
(nr −m/r)2

)
. (4.91)

Furthermore, equation (4.19) should hold for e±I in the decomposition αI = e+
I + e−I , since the

α± are already an orthonormal basis for H2(M). This is indeed the case:

1

2
(GIJ ±QIJ) =

1

2

(
r2 ±1
±1 1

r2

)
=

(
(r/
√

2)(r/
√

2) (r/
√

2)(±1/r
√

2)

(±1/r
√

2)(r/
√

2) (±1/r
√

2)(±1/r
√

2)

)
= (e±I )(e±J ).

In fact we could have plugged this matrix in equation (4.18) to get the same result as (4.91).
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Chapter 4. Electric-magnetic duality in Euclidean Maxwell theory

Modular transformation properties

According to Theorem 4.5, the scalar partition function we computed is a modular form of weight
(1, 1) under the action of the full group SL(2,Z), since the matrix QIJ is even or equivalently
S2 × S2 is spin. We know that in this case the spinor partition function Zsp in (4.31) is also
given by (4.91).

The partition function being a modular function of weight (1, 1) is equivalent (see Proposi-
tion 4.3) to invariance under τ 7→ τ + 1 and the transformation rule

Zsc(−1/τ) = ττZsc(τ).

As a check of the general theory we will compute these two results directly. First we look at
the action of the transformation τ 7→ τ + 1 on the partition function:

Zsc(τ + 1) = Zsc(τ + 1, τ + 1, r)

=
1√

Im(τ + 1)

∑
n,m

exp

(
iπ(τ + 1)

2
(nr +m/r)2 − iπ(τ + 1)

2
(nr −m/r)2

)
=

1√
Im(τ)

∑
n,m

exp

(
iπτ

2
(nr +m/r)2 − iπτ

2
(nr −m/r)2

)
× exp

(
iπ

2
((nr +m/r)2 − (nr −m/r)2

)
=

1√
Im(τ)

∑
n,m

exp

(
iπτ

2
(nr +m/r)2 − iπτ

2
((nr −m/r))2

)
exp

(
iπ

2
(4nm)

)
=

1√
Im(τ)

∑
n,m

exp

(
iπτ

2
(nr +m/r)2 − iπτ

2
(nr −m/r)2

)
= Zsc(τ) (4.92)
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Now we directly apply the Poisson resummation formula (4.23) to compute the action of S
on the partition function: 5

Zsc(−1/τ) = Zsc(−1/τ,−1/τ , r)

=
1√

Im(−1/τ)

∑
n,m

exp

(
− iπ

2

1

τ
(nr +m/r)2 +

iπ

2

1

τ
(nr −m/r)2

)
=
√
ττ Im(τ)

∑
k,l

∫
dxdy exp(2πikx+ 2πily) exp

(
− iπ

2τ
(x/r + yr)2 +

iπ

2τ
(x/r − yr)2

)

=

√
ττ

Im(τ)

∑
k,l

∫
dxdy exp

(
2πikx+ 2πily − iπ

2

(
τ − τ
ττ

)
x2

r2
− iπ

2

(
τ − τ
ττ

)
r2y2

−iπ
(
τ − τ
ττ

)
xy

)
=

√
ττ

Im(τ)

∑
k,l

∫
dxdy exp

(
− iπ

2r2
τ

(
x−

(
2k

τ
− βy

)
r2

)2

+
iπτr2

2

(
2k

τ
− βy

)2

+2πly − iπτ

2
r2y2

)
=

√
ττ

Im(τ)

√
2r2

iτ

∑
k,l

∫
dy exp

(
iπτr2

2

(
2k

τ
− βy

)2
)

exp

(
2πly − iπτ

2
r2y2

)

=

√
ττ

Im(τ)

√
2r2

iτ

∑
k,l

∫
dy exp

(
iπr2

τ
2k2 − iπ2βkyr2 + 2πly − iπ

2
r2y2 4

τ − τ

)

=

√
ττ

Im(τ)

√
2r2

iτ

∑
k,l

∫
dy exp

(
− i2πr

2

τ − τ

(
y − 1

2

(
l

r2
− βk

)
(τ − τ)

)2

+
iπ2k2r2

τ

+
iπr2

2

(
l

r2
− βk

)2

(τ − τ)

)

=

√
ττ

Im(τ)

√
2r2

iτ

√
τ − τ
i2r2

∑
k,l

exp

(
iπ

2

(
−4k2r2 ττ

τ − τ
+ r2(τ − τ)

(
l2

R4
+ β2k2 − 2βkl

r2

)))

=
ττ√
Im(τ)

∑
k,l

exp

(
iπτ

2

(
k2r2 + 2kl + l2/r2

)
− iπτ

2

(
k2r2 − 2kl + l2/r2

))

=
ττ√
Im(τ)

∑
k,l

exp

(
iπτ

2
(kr + l/r)2 − iπτ

2
(kr − l/r)2

)
= ττZsc(τ). (4.93)

Moduli parameters in M1,1

According to equation (4.81) the space of moduli parameters is equal to

SO(1, 1)/O(1, 1,Z),

5In this calculation we set β = τ+τ
τ−τ , τ = τ−τ

ττ
and use the relations 1 − β2 = −4ττ

(τ−τ)2 = − 4
τ(τ−τ) and

β2(τ − τ) + 4ττ
τ−τ = τ − τ .
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where SO(1, 1) should leave invariant Q and have determinant 1. This group of matrices is
given by

A = ±Ar =

(
r 0
0 1/r

)
.

The matrix G = I is positive-definite and leaves Q invariant, hence according to our description
in Section 4.4.1 all possible matrices are now of the form

Gr = (Ar)
tAr =

(
r2 0
0 1/r2

)
.

This matrix matches (4.89), which was the result we computed directly.
Notice that Zsc(τ, τ , r) = Zsc(τ, τ , 1/r). This is due to the fact that we could have switched

the roles of S and S′, which corresponds to an action of the mapping class group of S2 × S2.
This symmetry corresponds to an action of O(1, 1,Z) on SO(1, 1), where O(1, 1,Z) is given by
the matrix (

0 1
1 0

)
.

We see that the adjoint action of this matrix on Gr transforms it into G1/r. A special point in
SO(1, 1) is G = 1, which is a fixed point of O(1, 1,Z). Geometrically this corresponds to S and
S′ having the same radius and S2 × S2 then has an extra Z2 symmetry.

4.6 The Maxwell partition function for dPl = CP2#lCP2
(l > 0)

For 8 ≥ l ≥ 1 these surfaces dPl correspond with the del Pezzo surfaces we listed at the
beginning of Section 2.2. When realized as blown-up complex surfaces, Theorem 2.18 tells us
that the second homology group H2(dPl,Z) has basis {H,E1, . . . , El}, where H is the Poincaré
dual of the Fubiny-study metric on CP2 and the Ei are the homology cycles corresponding to
the exceptional divisors of the l blown-up points. The intersection form can then be calculated
through Proposition 2.20 and our result for CP2 in Example 4.23:

Q = QIJ = QIJ = (1)⊕ l(−1) =


1 0 0 · · ·
0 −1 0 · · ·
0 0 −1 · · ·
...

...
...

. . .

 .

For more generic metrics on dPl, we could have computed this using the more general statement
in Proposition 2.8 and the calculations in Example 4.23. From Q we read off that b+(dPl) = 1
and b−(dPl) = l.

Recall that if l > 1, we can realize dPl as well by blowing up S2 × S2 in l − 1 points, i.e.

as S2 × S2#(l − 1)CP2
. Using Proposition 2.8 and (4.85), the associated intersection form is

represented by the matrix Q′ given by:

Q′ =

(
0 1
1 0

)
⊕ (l − 1)(−1). (4.94)

In Example 4.10, we already mentioned that this form is equivalent to the matrix Q considered

above, which reflects the fact CP2#lCP2 is diffeomorphic to S2 × S2#(l − 1)CP2.
As seen from (4.10), GIJ can be calculated if we know how the Hodge star operator acts

on the unique harmonic representatives of H2(dPl,Z), which are dual to the generators of
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(l > 0)

H2(dPl,Z). As we mentioned in Section 4.4, we can circumvent the (difficult) explicit calculation
of ?|Ω2(dPl) and the harmonic 2-forms and use algebraic relations to determine GIJ .

Recall that the matrix G = GIJ is a positive-definite symmetric matrix satisfying GQ−1G =
Q = Q−1. According to Section 4.4.1 we can write all G as G = AtA with A ∈ SO(1, l), since
G = I is a positive-definite matrix satisfying GQG = Q. In SO(1, l), we are now allowed to
quotient out the group SO(1)×SO(l) according to (4.81). The matrix G then corresponds to a
proper orthochronous Lorentz transformation of a 1+ l flat Minskowski space time, which takes
the following form:

G =


1√

1−β2
− βi√

1−β2

− βi√
1−β2

I +

(
1√

1−β2
− 1

)
βiβj
β2

 , β2 =

n∑
i=1

β2
i < 1. (4.95)

Insertion of Q and G in equation (4.18) gives us the partition function for dPl = CP2#lCP2
:

Zsc(τ, τ , β1, . . . , βl)dPl =
1√
Imτ

∑
n,m1,...,ml

exp

(
iπτ

2

[
n2

(
1 +

1√
1− β2

)

− 2√
1− β2

∑
i

nβimi +
1

β2

(
1√

1− β2
− 1

)∑
i,j

mimjβiβj


× exp

(
− iπτ

2

[
n2

(
1√

1− β2
− 1

)
− 2√

1− β2

∑
i

nβimi

+2
∑
i

m2
i +

1

β2

(
1√

1− β2
− 1

)∑
i,j

mimjβiβj

 . (4.96)

In the limit βi → 0 the partition function factorizes as:

Zsc(τ, τ , β1, . . . , βl)dPl |βi=0 =

(∑
m

exp(−iπτm2)

)
Zsc(τ, τ , β1, . . . , βi−1, βi+1, . . . , βl)dPl−1

,

(4.97)

which would be the partition function if we consider the disjoint union (CP2#(l−1)CP2
)
∐

CP2

(recall equation (4.83)). This manifold can be obtained by collapsing the ‘neck’ in the smooth

connected sum (CP2#(l− 1)CP2
)#CP2

(see Section 2.1.4), i.e. letting the annuli diffeomorphic
to S3 × [0, 1] collapse to a point.

Doing this l− 1 times, we get to the case (CP2#CP2)
∐

(
∐l−1
i=1 CP

2). The partition function
is then given by

Zsc(τ, τ , β, 0, . . . , 0)dPl = Z̃sc(τ, τ , β)dPl =

(∑
m

exp(−iπτm2)

)l−1

Zsc(τ, τ , β)dP1 , (4.98)
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where

Zsc(τ, τ , β)dP1 =
1√
Imτ

∑
n,m

exp

(
iπτ

2

[
n2

(
1 +

1√
1− β2

)
− 2√

1− β2
nβm

+
1

β2

(
1√

1− β2
− 1

)
m2β2

])
exp

(
− iπτ

2

[
n2

(
1√

1− β2
− 1

)

− 2√
1− β2

nβm+
1

β2

(
1√

1− β2
+ 1

)
m2β2

])

=
1√
Imτ

∑
n,m

exp

(
iπτ

2
√

1− β2

(
n

√
1 +

√
1− β2 −m

√
1−

√
1− β2

)2
)

× exp

(
− iπτ

2
√

1− β2

(
n

√
1−

√
1− β2 −m

√
1 +

√
1− β2

)2
)
. (4.99)

Letting β → 0 this partition function as well factorizes as

Zsc(τ, τ , β = 0)dP1 =
1√
Imτ

(∑
n

exp(iπτn2)

)(∑
m

exp(−iπτm2)

)
. (4.100)

When we compare (4.99) with (4.91), we see that the parameters r and 1/r in Zsc(τ, r)S2×S2

get replaced with

1

1− β2

√
1 +

√
1− β2 and

1

1− β2

√
1−

√
1− β2 , respectively.

Notice that in this case a symmetry like r 7→ 1/r for (4.91) is absent. This is not in contradiction

with our expectation, since the intersection forms of CP2#CP2
and S2×S2 are not isomorphic.

According to Theorem 4.5 the partition function (4.96) is a modular form of weight 1
2(2, 1+l)

under the Hecke subgroup Γθ. Under the transformation S there is an additional phase factor
eiπσ(dPl)/4 = eiπ(1−l)/4. For an action of the full modular group one also has to look at the
partition functions Zsc∗(τ)dPl given by (4.79) and Zsp(τ)dPl in (4.31), which equals (4.96) but
with (n,m) ∈ Z× Zl + w/2, where w = (1,−1, . . . ,−1). The theory of Section 4.3 then shows
how these partition functions then transform into each other under SL(2,Z): one applies the
relations (4.70) and (4.71) to (4.30), (4.31) and (4.79). For dP1 the sum of these partition
functions is modular covariant. For dP5 the sum Zsc − Zsc∗ + Zsp is modular covariant. One
can see directly that the factorizations as in (4.97), (4.98) and (4.100) still apply to Zsc∗ and
Zsp.

A part of the symmetry group O(1, l,Z) (as in (4.81)) for (4.96) is formed by relabeling
the parameters βi, which corresponds to an exchange of the blown-up points. This exchange of
blown-up points can indeed be realized by an action of the mapping class group of dPl [INV].

The parameters βi in the partition function seem to be put there by hand. The parametriza-
tion was found using algebraic relations and besides topological data no specific geometric data
of the del Pezzo surface was used. The limit βi → 0 seems to correspond to exclusion of a

neighbourhood of the exceptional divisor Ei (diffeomorphic to CP2
minus a point) which re-

sults in the disjoint union dPl−1
∐

CP2
. In combination with our comment regarding O(1, l,Z)

this suggests that βi is associated to the geometry of Ei. A parameter in which βi might be
expressed is the Kähler parameter of the exceptional divisor, which corresponds to its volume
relative to the blown-up CP2 [INV]. The following two subsections further try to clarify the
geometric origin of the βi in (4.96), although an exact geometric correspondence is still unclear.
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(l > 0)

4.6.1 Correspondence with S2 × S2

Just as we obtained the partition function Zcl(τ, τ , β)dP1 in (4.98) by letting all but one βi go
to zero, it is also possible to obtain Zcl(τ, τ , r)S2×S2 in (4.91) as a factor by taking specific
values for the parameters βi. The starting point in obtaining (4.96) was to look for G such
that GQG = Q = (1) ⊕ l(−1), which resulted in (4.95). We could have also looked for G′

such that G′Q′G′ = Q′, with Q′ as in (4.94). The matrix B as in (4.41) with m = l − 1 is an
automorphism of the lattice Zb2 satisfying BtQ′B = Q. The desired matrix G′ is then given
by G′ = (Bt)−1GB−1 with G as in (4.95), which is also symmetric and positive-definite. The
inverse of B has the form

B−1 =


1 1 1
−1 0 −1

0 −1 −1
O

O Il−2

 =

(
A O
O Il−2

)
.

Denoting

G =

(
D E

Et G̃

)
,

where D is the upper-left 3× 3-submatrix and G̃ the lower-right (l− 2)× (l− 2)-submatrix, we
calculate G′:

G′ =

(
AtDA AtE

EtA G̃

)
.

Setting γ = 1√
1−β2

, the components AtE and AtDA are given by

AtE =

 −γβ3 − (γ − 1)β1β3/β
2 . . . −γβl − (γ − 1)β1βl/β

2

−γβ3 − (γ − 1)β2β3/β
2 . . . −γβl − (γ − 1)β2βl/β

2

−γβ3 − (γ − 1)β1β3/β
2 . . . −γβl − (γ − 1)(β1 + β2)βl/β

2

 (4.101)

AtDA =



γ(1 + 2β1) + 1 γ(1 + β1 + β2) γ(1 + 2β1 + β2) + 1
+(γ − 1)β2

1/β
2 +(γ − 1)β1β2/β

2 +(γ − 1)(β2
1 + β1β2)/β2

γ(1 + β1 + β2) γ(1 + 2β2) + 1 γ(1 + β1 + 2β2) + 1
+(γ − 1)β1β2/β

2 +(γ − 1)β2
2/β

2 +(γ − 1)(β2
2 + β1β2)/β2

γ(1 + 2β1 + β2) + 1 γ(1 + β1 + 2β2) + 1 γ(1 + 2β1 + 2β2) + 2
+(γ − 1)(β2

1 + β1β2)/β2 +(γ − 1)(β2
2 + β1β2)/β2 +(γ − 1)(β1 + β2)2/β2


(4.102)

If we let all βi go to zero for i 6= 1, 2, we have

G′ → G′ =

(
AtDA O
O Il−2

)
,

where now γ = 1√
1−β2

1−β2
2

. We consider the set

B =
{

(β1, β2) ∈ [−1, 0]2 |β2
1 + β1 + β2 + β1β2 + β2

2 = 0
}

=

{
(β1, β2) ∈ [−1, 0]2 |β1 = −1 + β2

2
− 1

2

√
(1 + β2)(1− 3β2)

}
, (4.103)
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which are the solutions to γ−1 =
√

(1 + β1)(1 + β2). These solutions simultaneously solve

γ(1 + β1 + β2) = −1 = −(γ − 1)β1β2/β
2

γβ1 + (γ − 1)β2
1/β

2 = −1 = γβ2 + (γ − 1)β2
2/β

2,

as one can directly check. For these values of β1 and β2 the matrix AtDA becomes

G′ =

 r2 0
0 1

r2
O

O Il−1

 , (4.104)

where r2 =
√

1+β1
1+β2

. We recognize the upper-left 2× 2-matrix as the matrix (4.89).

Finally, if we take the partition function as in (4.18) but plug in G′ and Q′ instead of G and
Q, the resulting partition function factorizes as

Zsc(τ, τ , β1, β2, 0, . . . , 0)dPl |(β1,β2)∈B =

(∑
m

e−iπτm
2

)l−1

Zsc

(
τ, τ , r =

(
1 + β1

1 + β2

) 1
4

)
S2×S2

,

(4.105)
where Zsc(τ, τ , r)S2×S2 is the partition function (4.91). Notice that we would get this result
as well (but with a little more work) if we would have set βi = 0 in (4.96) for i > 2 and let
(β1, β2) ∈ B.

What we would like is that similar to (4.105) Zsp factors as

Zsp(τ, τ , β1, β2, 0, . . . , 0)dPl |(β1,β2)∈B =

(∑
m

e−iπτ(m+1/2)2

)l−1

Zsc

(
τ, τ , r =

(
1 + β1

1 + β2

) 1
4

)
S2×S2

,

since the upper-left 2× 2-submatrix of Q′ that corresponds to the intersection form on S2×S2

is even. If the sequence of integers in the sum in (4.96) is translated by 1
2(1,−1, . . . ,−1), we see

that under B this vector gets mapped to 1
2(0, 0,−1, . . . ,−1). After we translate the sequence

of integers in (4.105) by these numbers, we indeed get the desired factorization.

Starting from S2 × S2#CP2

In the calculations above we actually circumvented the computation of G′ by directly solving
G′Q′G′ = Q′, with Q′ given by (4.94). For l = 2 the direct computation is not very long and
will give us a parametrization for G′ that is not as extensive as G′ = AtDA in (4.102). Plugging
Q′ and G in (4.18) will then result in a different paramatrization of Zsc/sp(τ)dP2 than as we had
before.

The ansatz for G′ is

G′ =

 a b c
b d e
c e f

 .

The equation we have to solve is G′Q′G′ = Q′, where

Q′ =

 0 1 0
1 0 0
0 0 −1

 .
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This gives us the following set of equations:

2ab− c2 = 0 2bd− c2 = 0

2ce− f2 = −1 ad+ b2 − ce = 1

ae+ bc− cf = 0 eb+ dv − ef = 0.

One can check that a, d and b all should have the same sign. The parameters c, e could have
the same or opposite sign. In the first case, we must have

b =
√
ad± 1, c = ±

√
2a(
√
ad− 1), e = ±

√
2d(
√
ad− 1), f = b+

√
ad = 2

√
ad± 1,

and in the other case

b = −(
√
ad± 1), c = ±

√
2a(
√
ad− 1), e = ∓

√
2d(
√
ad− 1), f = b−

√
ad = −(2

√
ad± 1).

Now the signs are being fixed by imposing positive-definiteness forG′. We know that the possible
matrices should lie in the same connected component of GL(3,R), so under a continuous limit
we should be able to obtain G′ as in (4.104). The only solution that is consistent with this
limit, where we must have ad = 1, is given by

G′ =


a

√
ad− 1 ±

√
2a(
√
ad− 1)

√
ad− 1 d ±

√
2d(
√
ad− 1)

±
√

2a(
√
ad− 1) ±

√
2d(
√
ad− 1) 2

√
ad− 1

 . (4.106)

In the solution above, a and d must be positive parameters such that ad ≥ 1. One can check
that this solution is consistent with (4.102) if we write

a = γ(1 + 2β1) + 1 + (γ − 1)β2
1/β

2 (4.107)

d = γ(1 + 2β2) + 1 + (γ − 1)β2
2/β

2. (4.108)

In the parametrization above we indeed have a, d > 0 and

√
ad− 1 = γ(1 + β1 + β2) + (γ − 1)β1β2/β

2 ≥ 0

2
√
ad− 1 = γ(1 + 2β1 + 2β2) + 2 + (γ − 1)(β1 + β2)2/β2

±
√

2a(
√
ad− 1) = γ(1 + 2β1 + β2) + 1 + (γ − 1)(β2

1 + β1β2)/β2

±
√

2d(
√
ad− 1) = γ(1 + β1 + 2β2) + 1 + (γ − 1)(β2

2 + β1β2)/β2,

where the sign in the last two equations is negative when (β1, β2) lie in the set{
(β1, β2) ∈ [−1, 0]2 |β2

1 + β2
2 < 1, β2

1 + β1 + β2 + β1β2 + β2
2 ≥ 0

}
.

When ad = 1, we obtain (4.105) with r2 = a.
We can invert equation (4.107) and (4.108) by comparing BtG′B with equation (4.95), where

B is as in (4.41) with m = 1. This gives us the following three equations:

γ = 4
√
ad− 3 + a+ d− 2(c+ e)

γβ1 = 3
√
ad− 2 + d− (c+ 2e)

γβ2 = 3
√
ad− 2 + a− (e+ 2c).
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After filling in c and e, we get the following expressions for β1 and β2 in terms of a and d:

β1 =
3
√
ad− 2 + d∓

√
2(
√
ad− 1)(

√
a+ 2

√
d)

4
√
ad− 3 + a+ d∓ 2

√
2(
√
ad− 1)(

√
a+
√
d)

(4.109)

β2 =
3
√
ad− 2 + a∓

√
2(
√
ad− 1)(2

√
a+
√
d)

4
√
ad− 3 + a+ d∓ 2

√
2(
√
ad− 1)(

√
a+
√
d)
. (4.110)

4.6.2 Comparison with n(S2 × S2)

According to Theorem 2.7 the homology for the connected sum n(S2×S2) = S2×S2# . . .#S2×
S2 is generated by the A- and B-cycles (see Remark 4.24) in the n connected sum components.
Let Σi and Σ̃i be the A-cycle and B-cycle on the i-th copy of S2 × S2. Let αi, β

i be the
corresponding harmonic representatives of the duals, i.e.

∫
Σi
αj =

∫
Σ̃i β

j = δij . Proposition 2.8
and (4.85) then show the intersection form is given by

n

(
0 1
1 0

)
=

(
0 1
1 0

)
⊕ . . .⊕

(
0 1
1 0

)
.

If we reorganize the basis H2(M,Z) to {α1, . . . , αn, β1, . . . , βn}, this intersection form is seen to
be equivalent to the 2n× 2n-matrix

QIJ = QIJ =

∫
M
αi ∧ βj =

(
O I
I O

)
.

According to our discussion in Section 4.4.1, the matrix GIJ expressed in this basis should be
a positive-definite symmetric matrix satisfying

G−1 = Q−1GQ−1.

By writing ∫
M
βi ∧ ?βj = Gij ,

∫
M
αi ∧ ?βj = Bj

i ,

∫
M
αi ∧ ?αj = Cij ,

the matrix G = GIJ can be expressed as

GIJ =

(
Cij Bj

i

Bi
j Gij

)
.

This is a 2n × 2n-matrix, composed of 4 n × n -submatrices, where the indices i, j = 1, . . . , n
denote the row- and column-vector, respectively. The condition G−1 = Q−1GQ−1 induces the
following relations ∑

k

Bi
kG

kj +
∑
k

GikBj
k = 0, Cij = Gij −

∑
k,l

Bl
iB

k
l Gkj , (4.111)

where Gij is the inverse of Gij . If we define Bij :=
∑

k B
k
i Gkj , these relations turn into

Bij = −Bji and Cij = Gij −
∑

k,lBikG
klBlj . The b+× b− = n×n moduli parameters are given

by the entries in the symmetric matrix Gij and the anti-symmetric matrix Bij . We still have
to impose positive-definiteness on GIJ , but this doesn’t change the number of parameters.
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Remark 4.26. The ansatz we use to compute G for n(S2 × S2) is different than the one we
used to compute G for dPl as in (4.95). We start with a symmetric 2n × 2n-matrix, which
consist of n(2n + 1) parameters. The relation Q−1GQ−1 = G−1 then gives us the relations
in (4.111). This kills the 1

2n(n + 1) parameters in Cij and relates Gij and Bj
i to each other

through 1
2n(n − 1) plus n equations. The number of independent parameters then reduces to

n× n. A part of the O(n, n,Z) symmetry in (4.81) is formed by relabeling the A- and B-cycles
and this corresponds to an action of the mapping class group of n(S2 × S2). Another part of
the symmetry group is the permutation of an A-cycle and its corresponding B-cycle, which for
S2 × S2 was seen to give the O(1, 1,Z) symmetry r 7→ 1/r.

After filling the paramaters Bij , Gij and Gij into equation (4.9), the classical action of the
saddle point configurations becomes

S[mI ] = S[m,n] =
4π

g2

∑
i,j

miGijm
j +

∑
i,j

(ni −
∑
k

Bikm
k)Gij(nj −

∑
l

Bjlm
l)

− iθmini,

(4.112)
where ni and mi are the flux over the B-cycle Σ̃i and A-cycle Σi, respectively. By performing
a Poincaré summation over ni one obtains [Ver]

Zsc(G,B)n(S2×S2) =
∑
m,n

exp(−S[m,n])→ Zsc(G,B, τ, τ)n(S2×S2) =
∑
m,n

exp(−2πE[m,n]),

(4.113)
with

E[m,n] =
1

Imτ

∑
i,j

(ni + τmi)(Gij +Bij)(n
j + τmj).

According to [Ver], pinching the A-cycle Σi corresponds to Gii blowing up and going to
infinity. In this limit factorization takes place as

Z[m,n] = exp(−2πE[m,n])→
∏
i

exp(−2πGii|ni +miτ |2/Imτ)Wmini ,

where the numbers Wmini are quantities that can be computed using Abelian versions of the
Wilson–’t Hooft line operators.

The case n = 1 was covered in Section 4.5, where pinching the A-cycle just means letting
r = R′/R go to infinity. One indeed sees from (4.89) that Gii = G11 goes to infinity and
Gii = G22 to zero. The dominant factor in the partition function (4.91) becomes

Zsc(τ, τ , r)S2×S2 ≈
1√
Imτ

∑
n,m

exp

(
iπ(τ − τ)

2
r2n2

)
,

where n is the quantized flux over the A-cycle.
The same sort of blowing-up of G in (4.95) happens when β2 → 1. A special case is letting

one βi go to ±1 and setting the rest of the βj to zero. In this limit the leading contribution is
given by the asymptotic behaviour of the factor (4.99):

Zsc(τ, τ)dP1 ≈
1√
Imτ

∑
n,m

exp

(
iπ(τ − τ)

2

(n−m)2√
1− β2

)
.

Equation (4.98) then turns into

Z̃sc(τ, τ , β)dPl ≈

(∑
m

exp(−iπτm2)

)l−1∑
n,m

exp

(
iπ(τ − τ)

2

(n−m)2√
1− β2

)
.
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Another case is the special limit (4.105), where βi = 0 for i > 2 and (β1, β2) ∈ B as in (4.103).
There, the analogy with pinching a cycle is more direct: (β1, β2) → (−1, 0) corresponds to r
going to zero and (β1, β2)→ (0,−1) corresponds to r going to infinity.

By the similarity in the limiting behaviour of the partition functions, one would guess that
letting βi go to 1 in (4.96) corresponds to pinching some surface in dPl that is diffeomorphic to
S2. This might be the exceptional divisor Ei. Pinching this divisor means letting the associated
Kähler parameter go to zero, i.e. the volume of Ei is shrinked to zero.
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Chapter 5

Outlook

In Chapter 2 we have discussed some basic facts about four-manifolds and studied del Pezzo
surfaces in more detail using blow-ups. Both in the algebraic and smooth sense these surfaces
had some interesting properties. In Chapter 3 we covered vector bundles endowed with a
structure group. Four-dimensional Yang–Mills theory and instantons were described in this
setting and we discussed the class of Yang–Mills instantons formed by anti-self-dual connections.
We covered some central results regarding the moduli space of these ASD connections, with a
focus on SU(2) bundles. For Kähler surfaces we could describe the SU(2) ASD connections in
terms of stable holomorphic vector bundles. This correspondence could be applied to del Pezzo
surfaces and we used methods from algebraic geometry to model the ASD moduli space for
S2 × S2. The blow-up construction that related CP2 and CP1 ×CP1 was central in this model.

Abelian gauge theories have been studied in Chapter 4 in the form of Euclidean Maxwell
theory. The associated partition function could be calculated using a semi-classical approxima-
tion. Electric-magnetic duality could be studied by looking at how this function transformed
under modular transformations of the complex coupling constant. Gauge fields coupling to
(background) scalar fields fitted in the framework of connections and line bundles. The un-
derlying four-manifold was taken to be closed, connected, oriented and Riemannian, so that
the resulting partition function became a modular form. Crucial tools in the calculations were
Poincaré duality, the intersection form, Hodge theory and the Dirac quantization condition.
When gauge fields coupled to scalar fields, the Dirac quantization was shifted and the altered
partition function had to be studied in a more generalized framework using theta functions and
lattices. The scalar and spinor partition function together with a third function allowed for an
action of SL(2,Z) and the modular behaviour of this set of functions was determined. If the
manifold was spin, both the scalar and spinor partition functions were equal to each other and
modular covariant under the full group SL(2,Z). The dependence of the partition functions
on the metric was reduced to algebraic relations involving the intersection form. The price we
paid was that the geometric origin of the parametrization was unclear and could be computed
only in some cases. We applied our results to del Pezzo surfaces and were able to find an exact
expression for the partition functions. These functions had interesting factorization behaviour
under certain limits and these reflected the geometrical properties of the del Pezzo surfaces.

Electric-magnetic duality and Yang–Mills instantons both appear in recent examples of
exact models in gauge theory. Although a great deal of extra symmetry and simplification
of the physics is needed, the hope is that the study of these models will shed light on the
mathematical structures that run through physics. In this setting we will first comment on the
duality of Euclidean Maxwell theory with toroidal models in string theory. Next we mention
how similar approaches using saddle points as in Chapter 4 are nowadays applied to SU(2)
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gauge theories. The ASD moduli spaces naturally appear in some models. In Seiberg–Witten
gauge theory electric-magnetic duality is encountered as well.

Duality with toroidal compactifications in string theory

The partition functions we obtained for Abelian gauge theories on four-manifolds are very
similar to those one encounters for toroidal models in string theory. The geometric origin of the
moduli parameters that are present in the partition functions is still unclear. These parameters
also appear in the toroidal models, so studying this duality might give new information.

The space Mb+,b− as in (4.81) was first studied in the context of string theory. In fact, the
results we used to describe this space in Section 4.4 are actually leant from papers in this field.
Verlinde argued that the appearance of the space Mb+,b− is not a coincidence. In Section 4 of
[Ver] a six-dimensional theory on M4× T 2 is studied. It is computed that the compactification
on the torus results in a Euclidean Maxwell theory on M4. The modular parameter of the
torus then gets mapped to the complex coupling constant τ in Euclidean Maxwell theory. It
is observed that the partition function of n(S2 × S2) (or a manifold with the same intersection
form) in (4.113) is equal to the partition function of a specific toroidal model, where both
the left- and right moving sectors of the bosonic string are compactified on a n-dimensional
torus Tn. Subsequently it is showed how one obtains this model after compactification on the
four-manifold. The parameter τ in the Euclidean Maxwell action then gets mapped to the
modular parameter of the torus, which returns in the genus one partition sum of the toroidal
compactification. These toroidal models have been extensively studied in [GMR, GPR]. The
actions of SL(2,Z) on τ in both theories are dual to each other as well. The moduli space of
inequivalent toroidal models then exactly corresponds with the space Mn,n given by (4.81).

Verlinde extended this idea to four-manifolds with b+ 6= b−, of which the del Pezzo surfaces
are an example. He argues that then a toroidal model is obtained with unequal left- and right
movers. For del Pezzo surfaces this duality might be related to the ‘mysterious duality’ as
covered in [INV]. This last duality relates the moduli space of the extended Kähler metric on
dPl to the l + 1 moduli parameters of M-theory on T l. The extended Kähler metric on dPl
is determined by l + 1 Kähler parameters: the volumes of the l exceptional divisors and the
volume of the blown-up CP2. M-theory on T l is described through the l compactification radii
and the Planck scale. Just before Section 4.6.1 we suggested that the parameters βi in (4.96)
could be related to l of these Kähler parameters.

Modern SU(2) gauge theories

One of the things we needed for the factorization of the partition function in a classical saddle
point contribution and determinants, was a Faddeev–Popov procedure. For U(1) gauge theo-
ries, this procedure would not encounter any major problems, since the theories are Gaussian.
For SU(2) gauge theories however (and other non-Abelian gauge theories), the regularized de-
terminants are usually not exactly computable or could contain anomalies, since the action is
not quadratic anymore. It is still an outstanding problem in mathematics to resolve the mathe-
matical issues related to this [JW]. In some supersymmetric SU(2) gauge theories, it is possible
to compute an exact answer for the partition function and other correlation functions using a
saddle point approximation. Famous examples are the twisted N = 2 version Witten used to
compute the Donaldson invariants [Wit1] and Seiberg–Witten SU(2) gauge theory [SW1, SW2].
Since the ASD connections form saddle points of the Yang–Mills functional and gauge transfor-
mations are usually modded out in the calculations, the ASD moduli spaces Mk from Chapter
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3 naturally appear in these theories. Other examples where these moduli spaces are used, can
be found in [VW, LNS].

The saddle points of the Yang–Mills functional not necessarily have to be self-dual or anti-
self-dual, so that there still exist classes of Yang-mills instantons that we have not described
yet. The question whether such instantons exist is not a simple one. In section 2.1 of [VN] these
non-self-dual instantons are discussed and further references regarding this problem are given.

In general it is difficult to give an explicit model ofMk and its compactification. As we saw
in Section 3.4, there was a correspondence between the moduli space of ASD connnections and
stable rank 2 holomorphic vector bundles in the presence of a Kähler structure. This enabled us
to give a description of the ASD moduli space using algebro-geometric methods. We explicitly
described the moduli spaceM2 and its compactification in terms of quadrics that intersect the
embedding of S2 × S2 as a quadric in CP3. Such models for the ASD moduli spaces might
make it possible to exactly perform certain computations in this field of gauge theory, where
integrals over these spaces are encountered. The ADHM construction has for example been
used in Nekrasov instanton calculus [Nek, NO, NS].

Sections 3 and 4 of [Wit3] give a description of how the Abelian gauge theories we considered
in Chapter 4 are embedded in Seiberg–Witten SU(2) gauge theory. The U(1) connections in
Euclidean Maxwell theory appear as a connection on specific line bundles in this theory. These
bundles appear in the splitting E = L⊕L−1 for reducible SU(2) connections, which we covered
in Section 3.3.1. In Euclidean Maxwell theory we had two gauge fields A and AD and under
the transformation S ∈ SL(2,Z) their field strengths transformed into each other as

FD 7→ −F, F 7→ FD.

In Seiberg–Witten gauge theory these U(1) connections A and AD are defined similarly and the
S-duality present in this theory is similar to the electric-magnetic duality we covered. When
the underlying manifold is not spin, there exist non-trivial Spinc-structures, which causes the
scalar and spinor partition function for Euclidean Maxwell theory to be different. Such non-
trivial Spinc-structure also play a role in Seiberg–Witten gauge theory. The results we covered
in Chapter 4 might be useful when studying the embedding of these gauge fields as described
by Witten. For the conjecture relating the Donaldson invariants and Seiberg–Witten invariants
(as stated in [Wit2]), many deep connections still have to be established.

89



Chapter 5. Outlook

90



Appendix A

Complex projective space

In this appendix we cover some basic properties of complex projective space and the Segre
embedding .

A.1 Complex projective n-space

Let Cn be the standard n-dimensional Euclidean vector space over C. We say z ∼ z′ if and
only if there exists a λ ∈ C∗ = C− {0} such that z′ = λz. Complex projective n-space, CPn, is
defined as the quotient Cn+1 − {0}/ ∼.

If (z0, . . . , zn) ∈ Cn+1, then its equivalence class in CPn is denoted by (z0 : . . . : zn). These
are the so-called homogeneous coordinates on CPn and the colon “:” indicates we are dealing
with ratios, i.e.

(z0 : . . . : zn) = (λz0 : . . . : λzn).

The space CPn is also called the set of complex lines in Cn+1.
If Zi 6= 0, zj = Zj/Zi defines a local coordinate chart on CPn. We can then write (Z0 : . . . :

Zn) = (z0 : . . . zi−1 : 1 : zi+1 : . . . : zn). These charts are holomorphic, so that CPn is a complex
manifold of dimension n. For n = 1 these maps coincide with the stereographic projections for
the two-dimensional sphere S2 when it is realized as a complex manifold. This shows CP1 ' S2

and S2 realized in this way is also called the Riemann sphere.
To get a better geometric intuition of CPn, one can look at the following embedding of

CPn−1 in CPn:

CPn ∩ {Zn = 0} = {(Z0 : . . . : Zn−1 : 0) | 0 6= (Z0, . . . , Zn−1, 0) ∈ Cn+1)} ' CPn−1. (A.1)

When Zn 6= 0, we have just seen that CPn ∩ {Zn 6= 0} ' Cn under the correspondence

(Z0 : . . . : Zn) = (z0 : . . . zi−1 : 1 : zi+1 : . . . : zn).

This altogether gives us the following decomposition for CPn:

CPn ' Cn t CPn−1 = Cn t Cn−1 t . . . t C t {(1 : 0 : . . . : 0)}.

For n = 1 this decomposition is called adding ‘the point at infinity’ to C, for n = 2 adding the
‘projective line at infinity’, et cetera. Notice that the choices of our coordinates are arbitrary,
so that in general we can embed any CPm in CPn (for m < n) using the description above.

Dividing by the norm of (Z0, . . . , Zn), we see (Z0 : . . . : Zn) = (z0 : . . . : zn), where∑
i |zi|2 = 1. Under the isomorphism Cn+1 ' R2(n+1), the (2n + 1)-sphere can be realized as
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S2n+1 = {(z0, . . . , zn) ∈ Cn | |
∑

i |zi|2 = 1}. For z, z′ ∈ S2n+1, we have z ∼ z′ if z = λz′ with
|λ| = 1, meaning λ ∈ S1 ⊂ C− {0}. This shows CPn ' S2n+1/S1.

Modeling CPn in this way, one can compute the homology of CPn. Let Bn be the closed
unit n-ball. One can check that the map

z = (z0, . . . , zn−1) ∈ B2n 7→ (z0 : . . . : zn−1 : 1− ‖z‖) ∈ CPn ' S2n+1/S1,

is a characteristic map (B2n, S2n−1)→ (CPn,CPn−1), i.e. it is surjective, injective onB2n\S2n−1

and the image of S2n−1 is CPn−1. Using tools from algebraic topology, we get Hk(CPn) = 0 for
k odd and Hk(CPn) = Hk(B

k, Sk−1) = Z for k even.

A.2 The Segre embedding

The Segre embedding ([Har], page 13) is given by:

Ψ : CPm × CPn → CPmn+n+m ; ((s0 : . . . : sm), (t0 : . . . tn)) 7→ (s0t0 : s0t1 : . . . : smtn). (A.2)

Let us denote Zij for the homogeneous coordinates of CPmn+m+n where 0 ≤ i ≤ m and
0 ≤ j ≤ n and the coordinates are ordered lexicographically. We have the following proposition
for the Segre embedding.

Proposition A.1. The Segre embedding is well-defined, injective and its image in CPmn+m+n

is given by ⋂
i 6=k,j 6=l

{ZijZkl − ZilZkj = 0} =
⋂

i≤k,j≤l
{ZijZkl − ZilZkj = 0}.

Proof. The map is well-defined, since Ψ(λs, λ′t) = λλ′Ψ(s, t) = Ψ(s, t). To see injectivity, we
first notice Ψ(s, t) = Ψ(s′, t′) implies that for some λ ∈ C∗ we have sitj = λs′it

′
j ∀i, j. If si = 0,

then there is at least one t′k 6= 0, so that 0 = λt′ks
′
i implies s′i = 0. Similarly tj = 0 implies

t′j = 0. Since not all si can be equal to zero, sk, s
′
k 6= 0 for at least one k. For all j we now have

tj = (λs′k/sk)t
′
j , hence t = (t0 : . . . : tn) = (t′0 : . . . : t′n) = t′. Similarly s = s′.

The inclusion Ψ(CPm × CPn) ⊂
⋂
i 6=k,j 6=l{ZijZkl − ZilZkj = 0} is clear, since for arbitrary

i, j, k, l with i 6= k, j 6= l, we have sitjsktl− sitlsktj = 0. The reverse inclusion can be proved by
studying the sets {ZijZkl−ZilZkj = 0} with i 6= k, j 6= l in the local charts given by (2.16) and
(2.17). The sets Ui are more properly indexed as Uij = {Zij 6= 0}, with 0 ≤ i ≤ m, 0 ≤ j ≤ n.
Let us fix i, j. Now we have

{ZijZkl − ZilZkj = 0} ∩ Uij = {Zkl/Zij − (Zil/Zij)(Zkj/Zij) = 0, Zij 6= 0}

For every Zij 6= 0 there exists si, tj 6= 0 such that Zij = sitj . For every l 6= j and k 6= i
we can now find sk and tl such that Zil = sitl and Zkj = sktj . On Uij we now see that
{ZijZkl − ZilZkj = 0} is a subset of

{Zkl − sktl = 0} ∩ {Zij − sitj = 0} ∩ {Zil − sitl = 0} ∩ {Zkj − sktj = 0}, where si, tj 6= 0.

The intersection of these sets over all k 6= i, l 6= j obviously is the image of Ψ intersected with Uij .
Furthermore, if Zij 6= 0 and ZijZkl−ZilZkj = 0 for all k 6= i, l 6= j, then Zk′l′Zk′′l′′−Zk′l′′Zk′′l′ =
0 for all combinations k′ 6= k′′, l′ 6= l′′.

Letting i, j vary again, we see that on all charts the set
⋂
i 6=k,j 6=l{ZijZkl − ZilZkj = 0} lies

in the image of Ψ.
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