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Abstract

In this thesis, defects in ordered media will be introduced. Then, they will be classified, first intro-
ducing a physical measure of equivalence, and then translating that to mathematics via homotopy
theory. It will turn out that point defects in R2 and line defects in R3 are classified by conjugacy
classes of the fundamental group. Finally, after some examples of defects, a relatively simple way to
compute the fundamental group is discussed.
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1 Introduction

Physicists like studying ordered media, because they are great for modelling many things. Examples
include metals and liquid crystals. Often, though, these media are not fully ordered - they have certain
mistakes in their composition, called defects. It is generally very useful to know what types of defects
one might encounter, and whether or not two defects cause the same problems in some medium. This is
where the maths comes in, to characterise defects for any given ordered medium. In this thesis, we will
look at classifying such defects.

2 Phase Transitions and Landau Theory

Physicists often observe phase transitions in materials they study. This can be from a solid to a liquid,
or from a magnetised piece of iron to a non-magnetised piece of iron. Many phase transitions are
thermal phase transitions, which means they occur when varying the temperature. There is some critical
temperature at which a phase transition occurs. At lower temperatures, there is order, and at higher
temperatures, there is disorder. The notion of ‘order’ can be different in different situations.

The most well-known model to study phase transitions and order is probably the two-dimensional Ising
model. We consider a square lattice, with a spin at each lattice point, which can point either up (1) or
down (−1). The assumption is that the energy is lower when adjacent spins are equal, and higher when
adjacent spins are opposite. This can be modelled by introducing some coupling constant J > 0, and
then the energy will be equal to the sum of −JSiSj for each pair of adjacent spins. The energy function
reads as follows:

E = −J
2

∑
〈i,j〉

SiSj ,

where Si is the spin at location i, so either 1 or −1, and 〈i, j〉 indicates i and j are adjacent. The factor
1
2 is there to correct for overcounting - we are counting each pair twice, since both spins can fulfil the
role of i.

In the Ising model, the order is described by an order parameter m, which is the average direction of the
spins. Since up spins are 1 and down spins are −1, this is simply the average of all the spins. We can
show, both by doing the maths1 and by running a simulation, that this system has a temperature where
a phase transition happens. This is called the critical temperature. The phase transition, in this case,
is the disappearance of any sort of preferred direction, or in other words, |m| becoming equal to 0. If a
system has a temperature below Tc, it is in the ordered phase. If it has a temperature above Tc, it is in
the disordered phase.

To make a relatively accurate prediction about the behaviour of phase transitions, Landau theory was
developed. For the simple form of Landau theory, we Taylor expand the energy as a function of the
order parameter. This is allowed, since the order parameter is small near the critical temperature by
definition. Then, we cut this Taylor polynomial off at the fourth power. This is a good compromise
between simplicity and accuracy. Notice how the coefficients still depend on temperature. Next, we make
sure the polynomial shares the symmetries of the energy. This will be demonstrated with the Ising model
in the next paragraph. We also make sure the fourth power has a positive coefficient, to avoid letting
the system get arbitrarily low energy by letting the order parameter tend to infinity. Then, we find the
minimal energy for each value of the temperature.

As an example, we will use the Ising model again. Its order parameter m is simply the average of all
the spins, as we have seen above. First of all, we remark that all we care about is the location of the
minima in the energy for a given temperature. Therefore, any constant term is irrelevant and can be
discarded. Second of all, we remark that reversing the direction of all spins indeed does not change the
energy - which direction is up and which is down is merely a matter of perspective, and does not change
the energy. Therefore, it is a Taylor expansion with only even terms, like required, and we find

E(m,T )− E(0, T ) ≈ a(T )m2 + b(T )m4.

1L. Onsager, Crystal Statistics I, Physical Review, 1944, Vol. 65, Nos. 3 and 4, pag. 117-149.
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As mentioned above, there is some critical temperature where the minimal energy changes from being
achieved at m = 0 to m 6= 0. Since T − Tc is small when T is near this critical temperature, we can
Taylor expand the coefficients in T − Tc. For b(T ), we see it has a constant term b > 0 (since b(T ) > 0
for all T ), and for a(T ), in order for the location of the minimum in energy to change at T = Tc, we need
a(T ) = a · (T − Tc). Thus, we find

E(m,T )− E(0, T ) ≈ a · (T − Tc)m2 + bm4.

Minimising the energy (for any fixed temperature) is now easy. We could take the derivative, but it is
even easier to complete the square:

E(m,T )− E(0, T ) ≈ b
(
m2 +

a · (T − Tc)
2b

)2

−
(
a · (T − Tc)

2b

)2

.

Since the final term is a constant, we can discard it again. Since the other term is a square, its minimal

value is 0, if and only if the expression we are squaring is 0. However, if a·(T−Tc)
2b is positive, we cannot

make m2 + a·(T−Tc)
2b equal to 0, since m2 is also positive (m is real, after all). The best we can do is

setting m = 0, to make m2 + a·(T−Tc)
2b as small as possible. Therefore, we see

m2 =

{
−a·(T−Tc)

2b if T < Tc

0 if T ≥ Tc
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Figure 1: Graph of the Ising model’s magnetisation, based on a simulation. The jaggedness arises from
the combination of a finite lattice and a Monte Carlo process. The average of the absolute value of m is
plotted against T , multiplied by some constant to get Tred. The phase transition is visible here, and m
does follow a square root curve near the critical point.

Despite the large number of approximations we have made in Landau theory, it works surprisingly well
for predicting behaviour near the critical point. However, this very basic approximation is not always
enough to describe a system, so we need to expand the theory to deal with more complicated situations.
There are two things we need to change.

The first change we need to make is that we need to go from a global order parameter to a local one.
The order parameter, therefore, is now a function. In the case of the Ising model, it is the function that
assigns the spin value to every point on the grid. To make it more general, however, we want to allow
varying magnitude of each spin, so we choose them as elements of R instead of as elements of {−1, 1}.
Additionally, now that we are working with functions, we do not want to have a discrete domain (like a
square grid), but we want to change it to a continuous domain (like Rn). If we ’zoom out’ enough, a square
grid becomes fine enough that it is approximately R2, so for the Ising model, we will use f : R2 → R. In
a more general case, this will be some f : Rn → U , where U is some subset of Rk for some k, and n = 2
or n = 3.
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The second change we need to make is to include (mis)alignment terms in the energy formula. Now that
we have a continuous domain and a local order parameter, we can talk about derivatives. The derivative
is useful, because it represents alignment - full alignment gives a constant function, so any deviation from
0 indicates misalignment. We will add a term with the ‘square’ of the derivative, because that is analytic,
and a positive coefficient, so that misalignment costs energy. ‘Square’ here means ‘sum of squares of all
elements in the Jacobian matrix’. If we denote the Jacobian matrix as df , then this is tr(dfT df).

Now, since we never demanded that f be differentiable, we cannot compute the derivative everywhere.
This means we will use some other theory for the regions where it is not defined.

Since we are working with a function of space now, and since we want to talk about the energy of the
system as a whole, we need to find a way to go from the local order parameter to the total energy. On
a lattice, this would be simple - it is the sum over all lattice sites of the energies per lattice site. We
are using an approximation of a very fine grid, and in the limit of going from a grid to all of Rn, a sum
becomes an integral. Hence, the formula becomes

E(f, T )− E(0, T ) ≈
∫
R2

(
a(T )|f |2 + b(T )|f |4 + c(T )tr(dfT df)

)
d~x.

It is not very pleasant to work with such a general space, so we will make some assumptions and simplify
what we are working with. Since we want to look at the ordered phase, where the function is differentiable
almost everywhere,2 we will assume that tr(dfT df) � |f |. This implies we can practically ignore the
derivative term when we are trying to minimise this for a fixed T . But that means we can simply try
to minimise a(T )|f |2 + b(T )|f |4 everywhere, and that will minimise the integral. This gives us a very
similar result to the one we got for the Ising model earlier - |f | is constant for a fixed temperature.3 We
might have some other relations, such as in the case of nematics (which will be discussed later), where we
use a sphere with antipodal points glued together, so in general, we will always have some combination
of products and quotients of spheres.4 This new space, where |f | is constant, will be called the order
parameter space X. A more useful definition of X will follow in the next chapter.

In short, we see that in a general case, when observing the ordered phase, we have a local order parameter
f : Rn → X, with X the order parameter space, and n = 2 or n = 3, that is differentiable almost
everywhere.

3 Ordered Media and Defects

Our trip into Landau theory has motivated us to define an ’ordered medium’. We have seen that some
models have a phase transition, with the ordered state occurring below the critical temperature, and the
disordered state occurring above the critical temperature. We want an ordered medium to be far in the
ordered phase (T � Tc). We have already seen it is described by a local order parameter, and we will
call the function that describes this local order parameter the configuration.

Definition 3.1. An order parameter space is some connected topological manifold5 X with metric.

A configuration is a map f : Rn → X, where X is an order parameter space and where n ∈ {2, 3}.
Since we are looking only at T � Tc, this map is merely discontinuous in a set with measure 0 and a
finite number of connected components.

An ordered medium is a physical object that is described by a configuration.

Note that a connected topological manifold is also path-connected.

For an example of the discontinuities in f , we can look at the Ising model. Recall that, since we discovered
in the previous chapter that the magnitude had to be fixed for any order parameter space, we have a

2The set of points where f is not differentiable has measure 0 and has a finite number of connected components. We are
approximating a model with a finite number of particles, after all.

3Technically, |f | can vary slightly, due to some fluctuations as a result of temperature, but it’s practically constant.
4’Sphere’ refers to any dimension here, so a circle is also considered to be a sphere.
5In this thesis, all topological manifolds will be second countable. Not everyone seems to agree whether or not this is

included in the definition of a topological manifold.
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function f : R2 → {−1, 1} = S0. There, f−1({1}) and f−1({−1}) will generally only have a small
number of connected components, each with nonempty interior. In the interior of each of the connected
components, the function is constant. The boundaries of the connected components are known as ‘domain
walls’, which are an example of the much more general concept of ‘defects’.

Definition 3.2. A defect is a set on which a configuration is discontinuous or undefined.

For more examples of defects, we will introduce another model - the O(2)-model, as introduced in Chaikin-
Lubensky.6 Here, instead of having f : R2 → {1,−1} = S0 like in the Ising model, we have f : R2 →
S1 ⊂ R2. Notice how the local order parameter is now a vector field, instead of the scalar field it was for
the Ising model. This shows how different local order parameters can be in different models.

This O(2)-model has much more diverse and interesting defects. One example would be a configuration f
where all spins simply point outward from the origin. In other words, for any point (x, y)! = (0, 0) ∈ R2,
we have

f(x, y) =
(x, y)

|(x, y)|
.

This defect is an example of a ’vortex’. What exactly is meant by ’vortex’ will be clarified, after we describe
how to classify defects. We can see it does not have perfect alignment, so the derivative contribution in
the Landau formula is nonzero. It can be seen as the leftmost image in Figure 2.

However, this is obviously not the only type of defect. We could also have all spins rotated a quarter
turn counterclockwise compared the defect described above. This is another example of a vortex:

f(x, y) =
(−y, x)

|(x, y)|
.

Like the defect discussed before, it also has nonzero derivative contribution in the Landau formula. It is
the middle image in Figure 2.

One final example of a defect would be the configuration

f(x, y) = (cos(u), sin(u)),

where

u =
2πx

10|(x, y)|2
.

Since this function is perfectly continuous everywhere outside of the origin, but undefined at the origin,
we clearly have a defect at the origin on our hands. This defect looks almost uniform outside of a small
region around the origin, and does not seem to turn around the origin like the previous two examples of
vortices do. It is displayed as the rightmost image in Figure 2.

Figure 2: An image showing the three defects discussed above in the region [−1, 1]2.

6P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, 1995.
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4 Local Surgery

We have already seen some defect states, and noticed they have nonzero derivative contributions. The
reason they do not spontaneously transform into a uniform state does not come from the fact they have
minimal energy7, but from the fact that any transformation from a defect state to a defect-less state
must necessarily be discontinuous.

Why do these transformations matter? Because systems generally evolve over time due to fluctuations
in the configuration. These fluctuations are called ’thermal fluctuations’, since they occur as a result of
temperature. The higher the temperature, the more often fluctuations occur, and the larger the areas
they can affect at once. At the low temperatures we are working at, only small areas of the configuration
can transform at once, and only in a way that keeps the configuration continuous. It explains why defect
states do not simply transform into uniform states, and it will lead us to a concept called ‘local surgery’,
as also used in Mermin.8

In this thesis, we will only look at point or line defects (the latter of which only in R3). In these cases, the
configuration is continuous everywhere except for a point or a line. In the case of a point, we will place
it at the origin, and in the case of a line, we will place it at the z-axis. Physically, it now makes sense to
look at a small region of space around the defect (although in the case of a line defect, such a set is an
infinitely long cylinder, so ’small’ is relative). There are two reasons for this. Firstly, we look at a region
around the defect, because changing a region that does not include the defect does not fundamentally
change the defect in the configuration. Secondly, we look at a small region, because thermal fluctuations
can only affect a small region at once, as we have discussed above.9

Based on this observation, we will consider two configurations equivalent if we can make one of them
equal to the other in a small set around the origin or z-axis (depending on the type of defect we are
considering) in such a way that there is only a small transitional region between the two configurations,
and such that this new configuration is continuous everywhere except possibly the origin or z-axis. We
have specifically avoided ’defect’ here, since we want to include defect-less configurations as well.

This is still a very vague description, so we will make this a bit more rigourous.

Definition 4.1. The open disk with radius r will be denoted Dn
r = {x ∈ Rn : |x| < r}. The open

cylinder with radius r will be denoted Kr = {(x, y, z) ∈ R3 : (x2 + y2) < r}.

Definition 4.2. If f, g : Rn → X are configurations with potential point defects (at the origin) and with
order parameter space X, then the point defects in f and g are equivalent if and only if there exists a
configuration h : Rn → X and r2 > r1 > 0 such that

1. h|Dn
r1

= g|Dn
r1

2. h|Rn−Dn
r2

= f |Rn−Dn
r2

3. h is continuous on Rn − {0}

Such a function h will be called a local surgery of point defect states.

If f, g : R3 → X are configurations with potential line defects (on the z-axis) and with order parameter
space X, then the line defects in f and g are equivalent if and only if there exists a configuration
h : R3 → X and r2 > r1 > 0 such that

1. h|Kr1
= g|Kr1

7If you are currently wondering ’Then what did we need Landau theory for, which describes energy?’, it is because
Landau theory is the reason order parameters exist, which we need for our entire reasoning. Skipping Landau theory would
not give us a motivation to define order parameters.

8N.D. Mermin, The topological theory of defects in ordered media, Reviews of Modern Physics, 1979, Vol. 51, No. 3,
pag. 591-648.

9Since actual, physical versions of ordered media are obviously bounded, the cylinder would be finitely long, but we
approximate it as infinitely long. This introduces a new problem, namely defects being able to get out of the medium by
moving to the boundary and disappearing, however, if we demand the boundary changes continuously, this cannot happen.
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2. h|Rn−Kr2
= f |Rn−Kr2

3. h is continuous on R3 − {(0, 0)} × R

Such a function h will also be called a local surgery of line defects states.

A defect will be called removable if there is a local surgery between its configuration and a uniform
configuration.

This will be explained with an example.

Example 4.3. Let f be the uniform configuration in R2 pointing right, and let g be the uniform
configuration in R2 pointing left. In other words,

f : R2 ≈ C→ S1, reiθ 7→ 1,

g : R2 ≈ C→ S1, reiθ 7→ −1,

where we use complex numbers.

Now, we need to construct a function h that is continuous on R2 − {0, 0}, matches g inside D2
r1 , and

matches f outside of D2
r2 . The most obvious thing to try would be to linearly increase the angle of the

result as we move from radius r1 to r2, keeping the result independent of θ. In other words,

h : R2 ≈ C→ S1, reiθ 7→


1 if r > r2

−1 if r < r1

eiπ
r−r2
r1−r2 if r1 ≤ r ≤ r2

Since this new function h also does not depend on θ at all, it is well-defined.10 It is also continuous, since

we can verify that eiπ
r1−r2
r1−r2 = eiπ = −1 and eiπ

r2−r2
r1−r2 = e0 = 1. h also, by construction, is equal to f and

g on the correct domains, so it appears we have found a local surgery. It is displayed in Figure 3.

Figure 3: An image showing the above interpolation in the region [−1, 1]2, with r1 = 0.4 and r2 = 0.8.

However, we can see it is not a very nice formula, and it seems like a lot of work for an argument that
two uniform states with a different direction of spins are equivalent. We want to find a better way to
argue that configurations are equivalent, or if the goal is to find an explicit local surgery, we want to at
least know whether or not one exists before putting in a lot of effort to find one. We also do not have
the ability to prove the lack of existence of a local surgery yet, which is problematic. This will be the
main quest for most of the rest of this thesis - to find mathematical tools that give us a way to quickly
determine whether or not two configurations are equivalent.

10It does not depend on the representative of the angle, since any multiple of 2π can be added to any angle without
changing it.
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5 Homotopies

With this thought about making local surgeries simpler in the back of our minds, let us look at a
seemingly unrelated topic, that will turn out to be very useful, namely homotopies. A homotopy is
basically a continuous interpolation between two functions.

Definition 5.1. Given two topological spaces A and B, and two functions f, g : A→ B, a homotopy is
a function h : A× [0, 1]→ B such that

1. h is continuous

2. h(x, 0) = f(x) for all x ∈ A

3. h(x, 1) = g(x) for all x ∈ A

Definition 5.2. The space of continuous functions from A to B is denoted C(A,B).

To see where the interpolation comes in, we can introduce h̃:

h̃ : [0, 1]→ C(A,B), h̃(t)(x) = h(x, t).

Now write h̃(t) = ht, so that we have h(x, t) = ht(x), h0 = f , and h1 = g. Each value of t gives a different
continuous function, that changes from f to g as t changes from 0 to 1. The continuity criterion for this
version is much harder to verify, however, so h : A× [0, 1]→ B is used for that anyway.

In this thesis, we will mainly apply homotopies to loops in some space X, which are functions of the form
γ : S1 → X. Since a circle is equivalent to an interval with its endpoints identified (in other words, glued
together), we can also see this as a function γ′ : [0, 1]→ X, with γ′(0) = γ′(1).

Definition 5.3. A loop is a function γ : [0, 1]→ B for some topological space B such that γ(0) = γ(1).
γ(0) is called the basepoint.

We will clarify the notion of homotopy by using an example.

Example 5.4. Let
γ1 : [0, 1]→ R2, γ1(s) = (1− cos(2πs), sin(2πs))

γ2 : [0, 1]→ R2, γ2(s) = (−1 + cos(2πs), sin(2πs))

be two loops starting at the origin. In other words, γ1 moves clockwise through a unit circle that starts
at the origin and γ2 moves counterclockwise through a unit circle that starts at the origin, too. Now, the
function

h : [0, 1]2 → R2, h(s, t) = ((1− 2t)(1− cos(2πs)), sin(2πs)) = (1− t)γ1(s) + tγ2(s)

is a homotopy between the two loops. It slowly squishes γ1 into a vertical line segment, and then opens
up the vertical line segment into γ2. It is displayed in Figure 4. We can easily see that h is continuous,
since it is simply made up of sums, products, and compositions of continuous functions. By construction,
h(s, 0) = γ1(s) and h(s, 1) = γ2(s), so h is indeed a homotopy. Therefore, γ1 and γ2 are homotopic.11

t = 0.0 t = 0.25 t = 0.45 t = 0.75 t = 1.0

Figure 4: An image showing the above interpolation in the region [−1, 1]2, with r1 = 0.4 and r2 = 0.8.

11As a matter of fact, all loops in R2 are homotopic to each other, using the same interpolation as here. In general, any
two loops in a convex space are homotopic to each other, using the same principle of interpolation.
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We will prove two lemmas that will be very useful for the next theorem.

Definition 5.5. We will denote Cnr : [0, 1]→ Rn, Cnr (s) := r(cos(2πs), sin(2πs), 0, . . . , 0).

Lemma 5.6. Let n = 2 or n = 3. Given any two circles Cnr1 and Cnr2 , and any configuration f : Rn → X
that is continuous everywhere except for possibly the origin if n = 2 and the z-axis if n = 3, f(Cnr1) is
homotopic to f(Cnr2).

Proof. There is clearly a homotopy h from Cnr1 to Cnr2 for any r1, r2 in R2 − {0, 0} or R3 − {0, 0} × R,
depending on whether n = 2 or n = 3 - simply grow or shrink the circle. Now, f(h) is a homotopy
from f(Cnr1) to f(Cnr2) - it restricts to the correct functions by definition, and it is continuous, since f is
continuous on the entire range of h. This proves the statement.

Lemma 5.7. Given two configurations f, g : R3 → X that are continuous everywhere except for possi-
bly on the z-axis, we have that f |∂Kr2

and g|∂Kr1
are homotopic if and only if f(C3

r2) and g(C3
r1) are

homotopic.

Proof. If f |∂Kr2
and g|∂Kr1

are homotopic, then obviously f(C3
r2) and g(C3

r1) are homotopic, since we
can simply restrict the homotopy to a subset.

If, on the other hand, f(C3
r2) and g(C3

r1) are homotopic with homotopy h : [0, 1]2 → X, the proof is
trickier. Define

k : [0, 1]× R× [0, 1]→ X, k(s, z, t) =


f(r2 cos(2πs), r2 sin(2πs), (1− 3t)z) if 0 ≤ t < 1

3

h(s, 3t− 1) if 1
3 ≤ t <

2
3

g(r1 cos(2πs), r1 sin(2πs), (3t− 2)z) if 2
3 ≤ t ≤ 1

We get k(−,−, 0) = f |∂Kr2
and k(−,−, 1) = g|∂Kr1

. Furthermore, we know h(s, 0) = f(C3
r2) =

f(r2 cos(2πs), r2 sin(2πs), 0) and h(s, 1) = g(C3
r1) = g(r1 cos(2πs), r1 sin(2πs), 0), so the pieces of k match

up, and k is continuous. Therefore, k is a homotopy between f |∂Kr2
and g|∂Kr1

.12

This proves the equivalence.

With these two lemmas proven, we can now move on to the main theorem of this section, which will
demonstrate a link between homotopies and local surgeries.

Theorem 5.8. Let n = 2 or n = 3. Given two configurations f, g : Rn → X that are continuous
everywhere except for possibly at the origin if n = 2 and the z-axis if n = 3, there exists a local surgery
of point defect states with radii r1, r2 if and only if f(Cr) and g(Cr) are homotopic, for any r > 0.

Proof. This proof will feature the n = 2 case, but the n = 3 case is essentially the same after applying
Lemma 5.7.

Assume we have a local surgery h : R2 ≈ C→ X with radii r1 and r2, in other words,

1. h|Dn
r1

= g|Dn
r1

2. h|R2−Dn
r2

= f |R2−Dn
r2

3. h is continuous on R2 − {(0, 0)}.

Then define k : [0, 1]2 → X, k(s, t) = h((tr1 + (1 − t)r2)e2πsi). We can see that, by construction,
k(s, 0) = h(r2e

2πsi) = h(Cr2) = f(Cr2), and k(s, 1) = h(r1e
2πsi) = h(Cr1) = g(Cr1). Furthermore, since

h is continuous everywhere except for possibly at the origin, and since r1, r2 > 0, k is continuous in both
variables. Therefore, if a local surgery with radii r1, r2 exists, then f(Cr2) and g(Cr1) are homotopic. We
can now apply Lemma 5.6 to both f and g and find that f(Cr) and g(Cr) are homotopic for any r > 0.

12The notation is arguably suboptimal, with the configurations being restricted to a set in one case, and composed with
a parametrisation of a set in the other case. This is because the parametrisation made the proof for Theorem 5.8 look nicer.
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Conversely, assume we have a homotopy k̃ : [0, 1]2 → X such that k̃(s, 0) = f(Cr) and k̃(s, 1) = g(Cr).
Then applying Lemma 5.6 to both f and g gives a new homotopy k from f(Cr2) to g(Cr1). Define

h : R2 ≈ C→ X

h(reiθ) =


f(reiθ) if r ≥ r2
g(reiθ) if r ≤ r1
k(sθ,

r−r2
r1−r2 ) if r1 < r < r2

where sθ is defined as the unique solution of s = θ
2π such that s ∈ [0, 1). This is necessary, because any

angle can have different representatives that differ by multiples of 2π.

We can see quite easily that h is equal to f and g in the appropriate places, and continuity is guaranteed
by k being a homotopy and matching f and g in the appropriate places. Therefore, h is a local surgery,
and this proves the equivalence of the two statements.

Now, we can clearly see the usefulness of homotopies.

6 Fundamental Group

This section assumes the reader is familiar with equivalence relations.

Since we now know how important homotopies are to our problem, we would like to use some of the
existing maths involving homotopies to help us simplify the problem. To do that, we must first introduce
two new concepts.

Given two loops γ, γ′, there is a special situation when γ(0) = γ′(0). In that case, we can use a concept
known as based homotopy. To introduce based homotopy more generally, we first need to introduce
another definition

Definition 6.1. A pointed topological space is a pair (A, a), where A is a topological space and a is
a point in A. Any map f : (A, a)→ (B, b) must have f(a) = b.

If we want to have a function from A to B without this property, we will omit the designated point, so
we will write this as g : A→ B.

For paths and loops, the notation will be slightly different. For a path γ : [0, 1] → (B, b), it is implied
that the designated point in [0, 1] is 0, and for a loop η : [0, 1]→ (B, b), it is implied that the designated
point in [0, 1] is the single point represented by both 0 and 1.

Definition 6.2. Given two functions f, g : (A, a)→ (B, b) for some topological spaces A and B, a based
homotopy is a function h : A× [0, 1]→ B such that

1. h is continuous

2. h(x, 0) = f(s) for all x ∈ A

3. h(x, 1) = g(s) for all x ∈ A

4. h(a, t) = b for all t ∈ [0, 1]

We can see this as an interpolation between two functions with a shared basepoint, that fixes the basepoint
(hence the name ’based homotopy’).

Another concept we can use when we have two loops (or paths) γ, γ′ with a shared basepoint is concate-
nation.
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Definition 6.3. The concatenation of two loops (or paths) γ, γ′ with a shared basepoint is the loop (or
path) γ′γ, with

γ′γ(s) =

{
γ(2s) if 0 ≤ s < 1

2

γ′(2s− 1) if 1
2 ≤ s ≤ 1

In other words, it is the loop that first traverses γ and then γ′.

Notice how γ′γ and γγ′ are usually not equal.

We see concatenation is a way to combine two loops with a common basepoint into a single new loop,
with the same basepoint. It now makes sense to consider the set of loops with a given basepoint, and see
if concatenation can be useful.

Definition 6.4. The set of loops with a given basepoint x0 in some topological space X is defined as
Ω(X,x0) = {γ : [0, 1]→ X : γ(0) = γ(1) = x0}.

Concatenation on its own is not very useful - it is not even associative. The loop γ3(γ2γ1) first goes
through γ1 at four times the normal speed, then through γ2 at four times the normal speed, and finally
through γ3 at twice the normal speed. The loop (γ3γ2)γ1, on the other hand, first goes through γ1 at
twice the normal speed, then through γ2 at four times the normal speed, and finally through γ3 at four
times the normal speed. However, the path traced is identical, the parametrisation is just different.

This is where based homotopies enter the picture. While concatenation is not associative, it is associative
up to based homotopy, in the sense that we can find a based homotopy between γ3(γ2γ1) and (γ3γ2)γ1.
We will introduce a lemma to prove this, which will come in handy again later.

Definition 6.5. A reparametrisation of a loop γ is a loop γ′, such that γ′(s) = γ(f(s)) for some
continuous function f : [0, 1]→ [0, 1] with f(0) = 0 and f(1) = 1.

Lemma 6.6. A reparametrisation γ′ of a loop γ : [0, 1]→ X is homotopic to γ via a based homotopy.

Proof. Since γ′ is a reparametrisation of γ, there exists a continuous f : [0, 1]→ [0, 1] with f(0) = 0 and
f(1) = 1 such that γ′(s) = γ(f(s)). Because [0, 1] is convex, we can define the standard linear homotopy

h : [0, 1]2 → X,h(s, t) = γ((1− t)s+ tf(s)).

h is a composition of continuous functions and therefore continuous. Furthermore, h(s, 0) = γ(s) and
h(s, 1) = γ(f(s)) = γ′(s). Therefore, h is a homotopy. We even have h(0, t) = γ(0) and h(1, t) = γ(1) =
γ(0), so this is a based homotopy.

Lemma 6.7. Concatenation on Ω(X,x0) is associative up to based homotopy.

Proof. Let γ1, γ2, γ3 : [0, 1]→ X be three loops with common basepoint p. Now let

f : [0, 1]→ [0, 1], f(s) =


2s if 0 ≤ s < 1

4

s+ 1
4 if 1

4 ≤ s <
1
2

1
2s+ 1

2 if 1
2 ≤ s ≤ 1

We see that (γ3(γ2γ1))(f(s)) = ((γ3γ2)γ1)(s). In other words, one is a reparametrisation of the other,
which means that we can apply Lemma 6.6 and conclude that γ3(γ2γ1) and (γ3γ2)γ1 are homotopic.

We are going to define a group, which we will call the ’first homotopy group’ or ’fundamental group’, that
will very naturally encompass based homotopy, and which will also be very useful. Here, all loops that
are equal up to based homotopy will be merged into a single class of loops. In order to do this nicely, we
will use an equivalence relation.

Definition 6.8. An equivalence relation on a set A is a set R ⊂ A × A, which fulfils the following
three criteria

11



1. (a, a) ∈ R for every a ∈ A (reflexivity).

2. If (a, b) ∈ R, then (b, a) ∈ R (symmetry).

3. If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R (transitivity).

The usual notation is a ∼ b if and only if (a, b) ∈ R. The equivalence relation is also usually referred to
simply as ∼ (such as ’∼ is an equivalence relation’), even though it is technically a set.

The equivalence class of an element a ∈ X under an equivalence relation ∼ is defined as the set
[a] := {b ∈ X : a ∼ b}.

Given a set X and an equivalence relation ∼ on X, the quotient set X/ ∼ is defined as X/∼ := {[a] :
a ∈ X}.

For readers unfamiliar with the concept, the most common example of an equivalence relation is probably
modular arithmetic. If we are working with the integers Z modulo n, then a ∼ b if and only if n divides
a− b. In modular arithmetic, a ∼ b is usually denoted a ≡ b (mod n). The reader can verify that this is
indeed an equivalence relation. The equivalence class [k] of a number k consists of all the numbers that
have the same remainder upon division by n as k does. The quotient set when working modulo n is then
simply {[0], [1], . . . , [n− 1]}.

It turns out that based homotopy is also an equivalence relation.

Lemma 6.9. Based homotopy is an equivalence relation.

Proof. We see γ ∼ γ for all loops γ, since we can define

h : [0, 1]2 → X,h(s, t) = γ(s).

Given γ1, γ2, with γ1 ∼ γ2, we know there exists a based homotopy h from γ1 to γ2. Then k(s, t) =
h(s, 1− t) is a based homotopy from γ2 to γ1, hence γ2 ∼ γ1.

Given γ3, and given a based homotopy k from γ2 to γ3, consider

l : [0, 1]2 → X, l(s, t) =

{
h(s, 2t) if 0 ≤ t < 1

2

k(s, 2t− 1) if 1
2 ≤ t ≤ 1

This is a based homotopy between γ1 and γ3, hence γ1 ∼ γ3.

We see that based homotopy is indeed an equivalence relation.

Now that we know based homotopy is an equivalence relation, we can take the quotient set of Ω(X,x0)
to lump loops together in various sets of loops, such that there exist based homotopies between any pair
of loops within one set. We can use this to define the first homotopy group, also known as fundamental
group.

Definition 6.10. The fundamental group of X at basepoint x0 is defined as π1(X,x0) := Ω(X,x0)/∼,
where γ1 ∼ γ2 if and only if there exists a based homotopy between the two.

Although we call it ’group’ already, notice that we have not given this quotient set a group structure
yet. We have not even proven that there exists a meaningful binary operation on this set, since we have
only seen concatenation on Ω(X,x0). We have yet to check that it is well-defined on π1(X,x0). Define
concatenation as the map from π1(X,x0)× π1(X,x0) to π1(X,x0), where [γ2][γ1] := [γ2γ1].

Lemma 6.11. Concatenation is well-defined as operation from π1(X,x0)× π1(X,x0) to π1(X,x0).

Proof. We need to check that concatenation yields the same resulting equivalence class, regardless of
which representatives are used. In other words, if γ1 ∼ γ′1, and γ2 ∼ γ′2, then γ2γ1 ∼ γ′2γ′1, where γ1 ∼ γ2
if and only if there exists a based homotopy between the two.
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Let h be the based homotopy between γ1 and γ2, and let h′ be the based homotopy between γ′1 and γ′2.
Define the function

k : [0, 1]2 → X, k(s, t) =

{
h(2s, t) if 0 ≤ s < 1

2

h′(2s− 1, t) if 1
2 ≤ s ≤ 1

By construction, l(s, 0) = (γ2γ1)(s) and l(s, 1) = (γ′2γ
′
1)(s). Since h(1, t) = p = h′(0, t) by the fact

that they are based homotopies, the two pieces of the function agree at s = 1
2 . We also see each piece

individually is continuous, since they are both compositions of continuous functions. Finally, we see
l(0, t) = l(1, t) = p. Therefore, this is a based homotopy between γ2γ1 and γ′2γ

′
1, and that proves that

concatenation is well-defined on π1(X,x0).

Now that we know concatenation carries over to π1(X,x0), we can use lemma 6.7 to immediately see
that concatenation is associative on π1(X,x0). There is no more need to include ’up to homotopy’, since
we have already dealt with that by using equivalence classes.

Since we have called the fundamental group a group, we are now also going to prove the other two
properties a group needs to have, namely the existence of an identity element and the existence of an
inverse for each element. The most logical option for the identity would be the loop γx0

: [0, 1] →
(X,x0), s 7→ x0 that just stays at the basepoint x0 all the time, so we will now verify that γx0

is indeed
the identity.

Definition 6.12. The constant loop at x0 will be denoted γx0
: [0, 1]→ (X,x0), s 7→ x0.

Lemma 6.13. The equivalence class [γx0 ] of the constant loop at x0 acts as the identity for concatenation
on π1(X,x0). In other words, [γ][γx0

] = [γx0
][γ] = [γ] for any [γ] ∈ π1(X,x0).

Proof. Let [γ] ∈ π1(X,x0). Then γ : [0, 1] → X is a loop with basepoint p. Since [γx0
][γ] = [γx0

γ], we
need to prove that [γx0

γ] = [γ]. Because concatenation is well-defined, it is enough to verify that there
exists a based homotopy between γx0γ and γ.

We know

(γx0γ)(s, t) =

{
γ(2s) if 0 ≤ s < 1

2

p if 1
2 ≤ s ≤ 1

Therefore, we can define

f : [0, 1]→ [0, 1], f(s) =

{
2s if 0 ≤ s < 1

2

1 if 1
2 ≤ s ≤ 1

Since (γx0γ)(s) = γ(f(s)), one is a reparametrisation of the other, and Lemma 6.6 gives us the desired
based homotopy.

A completely analogous proof shows that there is also a based homotopy from γγx0
to γ, so [γx0

] is indeed
the identity for concatenation on π1(X,x0).

We now only need to prove that concatenation has inverses, and then we will have proven that π1(X,x0)
is actually a group.

Definition 6.14. Given a loop (or path) γ : [0, 1] → (X,x0), we define γ−1(s) = γ(1 − s), or in other
words, the loop (or path) γ but in reverse.

Lemma 6.15. The inverse of the equivalence class [γ] is the equivalence class [γ−1]. In other words,
[γ][γ−1] = [γ−1][γ] = [γx0 ].

Proof. Since [γ−1][γ] = [γ−1γ], we need to find a based homotopy between γx0 and γ−1γ.

Define

h : [0, 1]2 → X,h(s, t) =

{
γ(2(1− t)s) if 0 ≤ s < 1

2

γ((1− t)(2− 2s)) if 1
2 ≤ s ≤ 1
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We see h(s, 0) = γ−1γ and h(s, 1) = γ(0) = p. Furthermore, the two pieces line up for all t, and each piece
individually is continuous thanks to being a composition of continuous functions, hence h is continuous.
Finally, h(0, t) = γ(0) = h(1, t), so this is in fact a based homotopy.

An analogous proof works to prove that there is a based homotopy between γγ−1 and γx0
, which completes

our proof.

As a matter of fact, this lemma also works for paths. We will state it here without proof, since the proof
is the same as for loops.

Lemma 6.16. Given a path γ with basepoint x0, there is a based homotopy between the loop γγ−1 and
the constant loop γx0

.

With the help of all of these lemmas, we can easily prove that π1(X,x0) is a group.

Theorem 6.17. The fundamental group π1(X,x0) has a group structure.

Proof. Simply combine Lemmas 6.7, 6.13, and 6.15.

This group is actually far more useful than might initially be apparent, because in path-connected spaces,
it does not depend on the choice of basepoint, as is described in Hatcher.13

Theorem 6.18. For any order parameter space X, π1(X,x0) is isomorphic to π1(X, y0) for any x0, y0 ∈
X.

Proof. Since X is a connected topological manifold, it is path-connected. Let η be a path from q to p.
Define

h : π1(X,x0)→ π1(X, y0), [γ] 7→ [η−1γη],

where η−1γη is a concatenation of paths, but with a loop as result. h is a homomorphism, since we can
see h([γ2][γ1]) = h([γ2γ1]) = [η−1γ2γ1η] = [η−1γ2ηη

−1γ1η] = [η−1γ2η][η−1γ1η] = h([γ2])h([γ1]). Here, we
use Lemma 6.16. Additionally, h has an inverse. Define

k : π1(X, y0)→ π1(X,x0), [γ′] 7→ [ηγ′η−1].

We can verify h(k[γ′]) = h([ηγ′η−1]) = [η−1ηγ′η−1η] = [γ′], and similarly k(h([γ])) = [γ]. Therefore,
since h has is a homomorphism and has an inverse, it must be an isomorphism.

In other words, the basepoint we choose is irrelevant. Therefore, we sometimes denote the fundamental
group by π1(X), with the basepoint dropped.

7 Classifying Defects

So, our question now is: how does the fundamental group connect to the classification of defects? We
have seen Theorem 5.8, which tells us how homotopies connect to local surgeries. We already know how
local surgeries classify defects. We will go back to this, and see where the fundamental group comes in.

Let us take a closer look at Theorem 5.8. Since f and g are continuous, f(Cr) and g(Cr) are loops in X,
and we can use the fundamental group of X to classify these loops. There are still two problems.

Firstly, f(Cr) and g(Cr) need not share the same basepoint. Secondly, an element of the fundamental
group is a class of loops that are equivalent up to based homotopy, whereas we want to consider classes
of loops that are equivalent up to regular homotopy.14

Fortunately, the solutions to both of these issues are fairly simple to understand, although they are much
harder to prove.

13A. Hatcher, Algebraic Topology, 2001.
14These notions are different even when the loops share a basepoint.
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Let us define the space we would like to work on, namely classes of homotopic loops on X, not necessarily
with the same basepoint.

Definition 7.1. Define [A,X] := C(A,X)/∼, where f ∼ g if and only if f and g are homotopic for
f, g ∈ C(A,X).

Evidently, [S1, X] is the space of loops we want to work with, and we have seen there exists a bijection
between classes of equivalent point or line defects (depending on the dimension of the domain of the
configurations) on a space X and this space [S1, X] - since a local surgery guarantees equivalence and
exists if and only if a homotopy exists, the homotopy classes of loops correspond to the classes of equivalent
defects. Now, we need to find how [S1, X] relates to π1(X,x0) for any point x0 ∈ X.

In order to find this relation, we will follow Hatcher15, Chapter 0. Specifically, the part about the
homotopy extension property, most importantly Proposition 0.16. We will not need this in its full
generality. All we want is the following lemma, however, it does not seem like there is a simpler proof for
this than using the general case and filling in the specific spaces we want to work with. The reader who
is not interested in the proof can skip it.

Lemma 7.2. Given a map f : (Sn, ∗) → (X,x0) for some pointed order parameter space (X,x0) and
given some path or loop γ : [0, 1] → (X,x0), we can find a homotopy h : Sn × [0, 1] → X such that
h(s, 0) = f(s) and h(∗, t) = γ(t).

Proof. First, we remark that Sn is a CW -complex like required in Hatcher’s Proposition 0.16, and {∗}
is a subcomplex. It does not really matter what this means, and explaining the concept would be well
outside the scope of this thesis. However, for the reader familiar with CW -complexes, this should be a
very simple observation.

Then, we remark we can see γ : [0, 1] → (X,x0) as a homotopy γ̃ : {∗} × [0, 1] → X, or in Hatcher’s
notation, γ̃t : {∗} → X, with t ∈ [0, 1].

Finally, we can apply Hatcher’s Proposition 0.16 and the homotopy extension property as discussed in
Hatcher.

From this lemma, we will be able to easily derive that the basepoints of f(Cr) and g(Cr) can be made
to match, in the sense that we can find two loops, one of which is homotopic to f(Cr) and the other of
which is homotopic to g(Cr), that both have the same, predetermined basepoint.16

Lemma 7.3. Given a map f : Sn → X for some order parameter space X, given some point ∗ ∈ Sn and
given some point x0 ∈ X, we can find a map g : (Sn, ∗)→ (X,x0) such that f is homotopic to g.

Proof. Use Lemma 7.2. Since X is path-connected, we can find a path γ : [0, 1]→ X, γ(0) = f(∗), γ(1) =
x0. Then we get a homotopy h : Sn × [0, 1] → X with h(s, 0) = f(s) and h(∗, t) = γ(t). Specifically,
h(∗, 1) = γ(1) = x0. Therefore, we can define g : (Sn, ∗) → (X), x0, g(s) = h(s, 1), and this map is
homotopic to f .

Therefore, since we wish to consider two loops f(Cr) and g(Cr) up to homotopy (regular homotopy,
and not based homotopy), we can transform them from two loops that arise from looking at an actual
configuration into two loops α, β : [0, 1] → X at some given basepoint x0, such that f(Cr) is homotopic
to α and g(Cr) is homotopic to β. This means that, for classification, we can completely ignore the
configurations for a moment, and simply look at the problem of classifying loops in X at a given basepoint
x0 up to (regular) homotopy.

In order to do this, we will first have to define a group action from π1(X,x0) on homotopy groups.

15A. Hatcher, Algebraic Topology, 2001.
16For a more visual reasoning, but without proof (since the proof is not very nice if made rigourous), let p be the basepoint

of f(Cr) and let q be the basepoint of g(Cr). Let γ be a path from q to p. Then γ−1g(Cr)γ is a loop homotopic to g(Cr)
with the same basepoint as f(Cr). The new loop will look like the old loop with a string attached, and the homotopy
involves slowly squishing the string into a point.
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Definition 7.4. A group action of a group G on a set X is a homomorphism ϕ from G to SX , where SX
is the group of bijections f : X → X under composition. The notation is generally that g(x) := ϕ(g)(x).

The orbit of a certain x ∈ X is defined as G(x) := {g(x) : g ∈ G} ⊂ X. If the group action is conjugation,
the resulting orbits are called conjugacy classes.

The identity of a group will be denoted e.

Definition 7.5. The n-th homotopy group of a topological space Y at basepoint y is given by
πn(Y, y) := {α : Sn → Y : α(∗) = y}/∼, for some fixed point ∗ ∈ Sn, where α, β : Sn → Y, α ∼ β if and
only if there exists a based homotopy between α and β.

It should be noted that we can identify Sn with [0, 1]n, but where the entire boundary acts as a single
point. Therefore, any map k : (Sn, ∗) → (Y, y) has an associated map k̃ : [0, 1]n → (Y, y), where this
notation means that k̃(∂([0, 1]n)) = {y}. Like the loop notation, the designated point in [0, 1]n with its
boundary identified as a single point is implied.

The operation on this group is a form of concatenation. Given f, g : [0, 1]n → (Y, y), define the concate-
nation

gf : [0, 1]n → (Y, y), (gf)(x1, x2, . . . , xn) =

{
f(2x1, x2, . . . , xn) if 0 ≤ x1 < 1

2

g(2x1 − 1, x2, . . . , xn) if 1
2 ≤ x1 ≤ 1

Now, with the n-th fundamental group defined, we can define a group action from π1(X,x0) on πn(X,x0).

Given a function α : (Sn, ∗)→ (X,x0), and a loop γ : [0, 1]→ (X,x0), we can use Lemma 7.2 once again.
By definition, α(∗) = γ(0) = x0. Therefore, we can find a homotopy h : [0, 1]2 → X with h(s, 0) = α(s)
and h(∗, t) = γ(t). We can then define [γ]([α])(s) := [h(s, 1)], and this is the group action we want.

Lemma 7.6. The group action of the fundamental group π1(X,x0) on πn(X,x0) described above is indeed
a group action.

Proof. We can see that if we have γ, η loops in (X,x0), and α : (Sn, ∗) → (X,x0) then [η]([γ]([α])) =
[ηγ]([α]). Namely, let h be the homotopy from α to a representative α′ of [γ]([α]) as used in the definition
above, and let k be the homotopy from α′ to a representative α′′ of [η]([γ]([α])), also as used in the
definition above. Then h(s, 0) = α(s), h(0, t) = γ(t), k(s, 0) = α′ = h(s, 1), and k(0, t) = η. We can now
define

m : Sn × [0, 1]→ X,m(s, t) =

{
h(s, 2t) if 0 ≤ t < 1

2

k(s, 2t− 1) if 1
2 ≤ t ≤ 1

This homotopy from α to α′′ clearly shows that [η]([γ]([α])) = [ηγ]([α]).

The action is also well-defined, in the sense that if we have loops η, γ with basepoint x0 with η ∈ [γ],
and if we have α, β : (Sn, ∗)→ (X,x0) with β ∈ [α], then [η]([β]) = [γ]([α]).17 The proof for that is very
tricky and well outside the scope of this thesis, but it is documented in Hatcher, in Proposition 4A.1.

In the case n = 1 (which is the case we will be mostly interested in for now), this group action becomes
a rather simple one, namely conjugation.

Lemma 7.7. Given loops α, γ with basepoint x0 in an order parameter space X, [γ]([α]) = [γαγ−1].

Proof. We have to prove there exists a homotopy h between α and γ(αγ−1) such that h(0, t) = γ(t).
When we pair this with the well-definedness of the group action, we get the desired result.

Define

h : [0, 1]2 → X,h(s, t) =


γ−1(4(s− t

4 ) + 1) if 0 ≤ s < t
4

α((1− t
2 )−1(s− t

4 )) if t
4 ≤ s < 1− t

4

γ(4(s− (1− t
4 ))) if 1− t

4 ≤ s ≤ 1

17In fact, the homotopies used for the definitions of the group actions are homotopic to each other - homotopies are
functions, too, after all, and can be homotopic to each other.
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For a fixed t, this becomes the loop with basepoint γ(t) that first traverses γ in reverse order, from γ(t)
to γ(0), then traverses α, and finally traverses γ from γ(0) back to γ(t). Notice how h(s, 0) = α(s) and
h(s, 1) is homotopic to γ(αγ−1) (by Lemma 6.6). Furthermore, h(0, t) = γ−1(1 − t) = γ(t) = h(1, t).
Finally, since all pieces are compositions of continuous functions, and since they agree where they join, h
is continuous. This proves that h is a homotopy with the required criteria.

Figure 5: Image showcasing the homotopy. In order to move the basepoint through the loop γ, the
resulting loop first moves through a piece of γ, but in opposite direction (of which the size increases as
t increases), then through α, and then through the same piece of γ but now in the normal direction, to
get back to the basepoint. Over all, the resulting loop is γαγ−1.

Now, we can find how to classify [S1, X].

Lemma 7.8. For any order parameter space X, the map

id : π1(X,x0)→ [S1, X], [α] 7→ [α]

induces a bijection ĩd between the set of conjugacy classes {[γαγ−1] : [α], [γ] ∈ π1(X,x0)} and [S1, X].

Proof. All equivalence classes in the following proof that are actually notated as [α], with square brackets,
will be those in π1(X,x0). The ones in [S1, X] are merely described with words.

We can first use 7.3 to show that any element18 of [S1, X] has a representative with basepoint x0.
Therefore, id is surjective. Because each element of π1(X,x0) is in some conjugacy class, ĩd must also be
surjective.

Since conjugation is the action discussed in Lemma 7.6 in the case n = 1, we can use that description
to more easily prove the well-definedness of ĩd. Two elements [α], [β] of the same orbit in π1(X,x0) will
fulfil the equation [β] = [γ]([α]) for some [γ] ∈ π1(X,x0). In other words, there will be a (regular, not
based) homotopy h between any two19 representatives α and β, where h(0, t) = γ(t). But this implies
any two elements of the same orbit will map to homotopic loops.20 Therefore, ĩd is well-defined - two
different elements of the same conjugacy class will map to the same element of [S1, X].

If we have two loops α, β with basepoint x0, which are representatives of the same element of [S1, X], then
by definition, these two loops are homotopic via a (regular, not based) homotopy h. Then by definition of
the group action in Lemma 7.6 (which is conjugation in the case of n = 1), [β] = [h(0, t)]([α]). Therefore,
if ĩd([α]) = ĩd([β]), then [α] and [β] are in the same conjugacy class, and ĩd is injective.

It follows that ĩd is a bijection.

With all of these lemmas taken care of, we can finally prove the main result of this chapter (and also one
of the main results of the thesis), which will classify point defects in R2 and line defects in R3.

18Recall that such an element is an equivalence class of loops that have (regular, not based) homotopies between them.
19The group action is well-defined, after all.
20These loops are only homotopic by regular homotopy and not by based homotopy.
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Theorem 7.9. Point defects in configurations f : R2 → X, and line defects in configurations f : R3 → X
are classified by conjugacy classes of π1(X), in the sense that a set of equivalent defects (via the local
surgery definition of equivalence) corresponds to a single conjugacy class.

Proof. We know from Theorem 5.8 that these defects are elements of [S1, X]. Theorem 7.8 tells us that
there is a bijection between [S1, X] and the set of conjugacy classes of π1(X,x0). This proves the desired
statement.

8 Defect Classification Examples

To show just how useful this theory is for classifying defects, we will discuss some examples here. Let
us start with the O(2)-model. We have already seen these defects, but for clarity’s sake, here they are
again, in Figure 6.

Figure 6: An image showing three defects in the region [−1, 1]2.

It is a well-known fact that π1(S1) = Z. Since Z is abelian, its conjugacy classes are simply its elements.
Therefore, each loop corresponds to a number, which is called its winding number. This is how many full
rotations around the circle the loop makes, namely. If we look at the leftmost configuration in Figure 6
and move around the origin once counterclockwise, we can see that the resulting values when we apply
the configuration21 also rotate around S1 once counterclockwise. Therefore, it corresponds to 1 ∈ Z. The
same applies to the configuration in the middle. It follows that these point defects are equivalent. We
can now also explain that a vortex is a defect with winding number 1. Notice that we now immediately
now that these defects are not removable, because any uniform state has a winding number of 0.

The configuration on the right is different. While we cannot really tell what happens when we get
close to the origin, thanks to the low resolution of the image, we already know that the classification is
independent of loop size. If we take a larger loop around the origin and apply the configuration, we see
the values wobble around a bit, but do not actually fully rotate around the circle at all. Therefore, this
is a removable defect.

Instead of limiting ourselves to S1, we can also allow the configuration to rotate in another direction, so
that it becomes a function from R2 to S2. In other words, arrows can now also point into or out of the
screen (or paper). It is also well-known that π1(S2) = {e}, the trivial group containing only the identity.
Therefore, all defects must be removable. We can an example when we look at Figure 6. By also allowing
all arrows to rotate out of the screen (or paper), we can actually define a local surgery between both the
left and middle configuration and the uniform state. It is equal to the uniform state pointing out of the
screen (or paper) in the middle, then slowly rotating down as we move away from the origin, and turning
into either of the two vortices displayed.

Another model often studied by physicists is the nematic model. Here, instead of having vectors pointing

21The configuration is a function, after all.
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on S1 or S2, we have line segments22 that can point in any direction. This means that we cannot
distinguish the configuration if all line segments are flipped. This is equivalent to pointing on S1 or
S2, but with opposite points glued together. This gives RP1 or RP2, a projective space, as the order
parameter space X.

Let us first look at the case X = RP1. Now, it turns out that RP1 is simply homeomorphic to S1.23

This implies that it has the same fundamental group as S1, so π1(RP1) = Z. However, instead of the
corresponding element being the number of full rotations, it is now the number of half rotations. This
makes sense, because line segments are invariant under half rotations, whereas vectors need a full rotation
to stay invariant. For an example with a half rotation, see Figure 7. For an example with a full rotation,
see Figure 8.

Now, we will discuss what happens when we add the extra direction of rotation again, to get X = RP2.
It is known that π1(RP2) = Z/2Z = {0, 1}, the two element cyclical group. This implies there is one class
of removable defects, and one class of non-removable defects. For the configuration in Figure 8, we can
do the same as what we did with X = S2, namely rotate the line segments out of the screen (or paper).
It has now become a removable defect. For the configuration in Figure 7, however, this cannot be done
in a continuous manner. Therefore, this is an element of the only class of non-removable defects with
X = RP2.

Figure 7: An image showing a defect in the region [−1, 1]2.

Figure 8: An image showing another defect in the region [−1, 1]2.

We can see how quickly we can classify defects once we know the fundamental group, especially if it is
abelian. However, we still need a way to calculate the fundamental groups easily once the spaces we use
get more complicated.

22Or cylindrical rods, if you are a physicist.
23As a matter of fact, we do not even need the spaces to be homeomorphic. We only need them to be homotopy

equivalent, but since we did not introduce that concept in the thesis, it was not named here. Intuitively, it should be clear
homeomorphisms do not change the fundamental group.
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9 Stabilisers and Cosets

This section assumes some basic group theory knowledge. If the reader does not have this yet, it is
explained well in, for example, Armstrong.24

Since we want to compute the fundamental group, a bit of group theory is going to come in handy. We
can use it to represent our order parameter space X in a convenient way, that will make computing the
fundamental group much easier.

Firstly, let us recall the definition of a group action, and some associated terms.

Definition 9.1. A topological group is a group that is also a topological space, where the multiplication
and inversion maps are continuous. We also demand that any group action G induces on a set X be
continuous, in the sense that the associated map ϕ̃ : G×X → X, ϕ̃(g, x) := ϕ(g)(x) = g(x) is continuous.

The stabiliser of x is defined as Hx := {g ∈ G : g(x) = x} ⊂ G.

A group action of G on X is transitive when there is only one orbit, in other words, G(x) = X for any
x ∈ X. It is said that G acts transitively on X.

Notice that G(x) = X for any x ∈ X implies that the action is transitive, since distinct orbits must be
disjoint, and therefore this must be the only orbit.

A relatively simple example of a group acting transitively would be G = SO(2), X = S1. SO(2) is the
group of all planar rotations, and S1 is a (unit) circle, so we see we can use SO(2) to rotate any point of
the circle to any other point. To be a bit more rigourous, we can embed S1 in C, and represent SO(2) as
a subset of C, too. Specifically, any element of SO(2) acting on S1 can be represented as multiplication
by a complex number with norm 1:

R(θ) : C→ C, z 7→ eiθz.

It follows that we can restrict this to

R̃(θ) : S1 → S1, z 7→ eiθz,

since |eiθz| = |eiθ||z| = 1.

We can easily see that the multiplication works as expected - R(θ)R(ϕ) = R(θ + ϕ), by the fact that
multiplying exponentials means adding their exponents.

We can verify that the point 1 can be rotated to any other point in S1:

eiθ · 1 = eiθ.

Since S1 is parametrised by eiθ, the map G(1) = X, and G does indeed act transitively on X.

The stabiliser of any point x ∈ S1 is given by the set of elements such that R̃(θ)(x) = x. This implies
that eiθ = 1, or in other words, R̃(θ) has to be the identity map. Therefore, the stabiliser of any x is
equal to Hx = {id}.

The fact all stabilisers are equal is not surprising at all, since a well-known fact in group theory is the
following.

Lemma 9.2. Let G be a group that acts on a set X. Let x, y be elements of X. If y = g(x) for some
g ∈ G, then Hy = gHxg

−1 := {ghg−1 : h ∈ Hx}. The associated map f : Hx → Hy, h 7→ ghg−1 is an
isomorphism.

Proof. See Armstrong.25

While this is a very common fact, something interesting happens when we demand G be a topological
group that acts transitively on a topological manifold with metric X.

24M.A. Armstrong, Groups and Symmetry, 1988.
25M.A. Armstrong, Groups and Symmetry, 1988.
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Lemma 9.3. Let G be a Lie group, and let X be a set. Then Hp and Hq are homeomorphic as topological
spaces for all p, q ∈ X.

Proof. The first thing we need to do is remark that a Lie group is a topological group.

We know that Cg(h) := ghg−1 is a bijection, from Lemma 9.2. To prove it is a homeomorphism, we only
have to prove that both Cg and C−1g are continuous.

Let us look at Cg(h) = ghg−1. By the definition of a topological group, the multiplication map and
inversion map are both continuous in all arguments, so it follows that Cg(h) is continuous (in both g and
h, although we only need continuity in h). Similarly, since C−1g (h) = g−1hg, C−1g (h) is continuous in
both g and h, too.

It follows that both Cg and C−1g are continuous bijections, and therefore homeomorphisms. This proves
the desired result.

It follows that Hx is independent of x up to isomorphism and homeomorphism.

Let us introduce some more notation.

Definition 9.4. Given a group G and a subgroup H, the left cosets of H are all the sets of the form
gH := {gh : h ∈ H}.

The collection of all left cosets is called the left coset space and is denoted as (G/H)l := {gH : g ∈ G}.26

Recall that distinct cosets are disjoint, so that left coset space actually makes sense.

Now, we can use an existing theorem to find something that represents X.

Lemma 9.5 (Orbit-stabiliser theorem). For any x ∈ X, we have that there is a bijective correspondence

g(x) ∈ G(x) 7→ gHx ∈ (G/Hx)l.

Proof. See Armstrong.27

Notice how H is not necessarily a normal subgroup, as seen in Lemma 9.2, so (G/Hx)l is generally not
a group, but just a set. However, the topology of G does carry over - (G/Hx)l comes equipped with the
quotient topology. Let

π : G→ (G/Hx)l, g 7→ gH

be the projection map that sends every element of a coset to the same coset. Then a set U ⊂ (G/Hx)l

is open if and only if its preimage π−1(U) ⊂ G is open. Now that we have a topology, we would also like
for there to be continuity.

First, remark that we can use Lemma 9.5 and combine it with the fact that for every x, G(x) = X.
Specifically, G(x0) = X, and that gives a bijection f : X → (G/Hx0

)l, g(x0) 7→ gHx0
. With this bijection

being defined, we can prove a very useful theorem. We will first need a lemma.

Lemma 9.6. Let ϕ : G×X → X be a group action from a Lie group G on an order parameter space X.
Let x0 ∈ X be a point. Then h : G→ X,h(g) := ϕ̃(g, x0) = g(x0) is an open map.

While this is true, we will not provide a proof for this, because it was very complicated and no source
that could properly be referenced was found.

Theorem 9.7. Given a Lie group G acting transitively on an order parameter space X and a point
x0 ∈ X, the function f as defined above is a homeomorphism between X and (G/Hx0

)l.

26This is done to avoid confusion with the quotient group, when H is a normal subgroup, and to also make the difference
between left and right coset space clearer.

27M.A. Armstrong, Groups and Symmetry, 1988.
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Proof. First, remark that we can use Lemma 9.5 and combine it with the fact that for every x, G(x) = X.
Specifically, G(x0) = X, and that gives a bijection f : X → (G/Hx0

)l, g(x0) 7→ gHx0
.

Now, we need to prove that this map and its inverse are continuous. In other words, we have to prove
that the preimage of an open set is open both under f and under f−1. Since this is a bijection, the
preimage of f−1 is equal to the image of f . This means we do not need to work with f−1 at all, and we
can replace its continuity with the fact f maps open sets to open sets.

Given an open set V ⊂ (G/Hx)l, we know that the set π−1(V ) := {g ∈ G : gH ∈ V } ⊂ G is open.
Now, f−1(V ) := {x ∈ X : x = g(x0), gH ∈ V } ⊂ X. However, we know that the map ϕ̃ : G ×X → X
describing the homomorphism is continuous. It follows that h : G → X,h(g) := ϕ̃(g, x0) = g(x0) is a
continuous function, and therefore, h(π−1(V )) := {x ∈ X : x = g(x0), gH ∈ V } = f−1(V ). Since h is an
open map, f is continuous.

Given an open set U ⊂ X, let us consider f(U) := {gH : g(x0) ∈ U} ⊂ (G/Hx)l. This set is open if and
only if π−1(f(U)) = {g : g(x0) ∈ U} ⊂ G is open. Now, consider h−1(U) := {g : g(x0) ∈ U} = π−1(f(U)).
Since h is continuous, h−1(U) is open, and therefore, so is π−1(f(U)). Finally, we conclude f(U) is open.

This proves f is a homeomorphism.

Now we see why we wanted G to be a Lie group. We need continuity for homotopies, and therefore,
it really is necessary to make sure X is homeomorphic to (G/Hx0

)l. Another nice thing is that Hx is
actually independent of x up to isomorphism and homeomorphism, so we can take any point x as x0,
and the result will not change. We will drop the subscript x0 for the next section.

10 Computing Fundamental Groups

In this chapter, we will find a very simple and intuitive way to compute the fundamental group.

First, we will look at the stabiliser H from last chapter, where we had a Lie group G acting transitively
on an order parameter space X. In this chapter, we also demand that G is simply connected. In other
words, π1(G) = {e}.

We have no idea what H actually looks like, so first, we will assume H is discrete. For that, we will first
need to look at H0, the path component of the identity of H.

Definition 10.1. The path component of the identity in H is denoted H0.

If we suppose that H is discrete, in other words, H0 is the trivial group, then we can define an action
from H on G, where h(g) = gh−1. Note that h′(h(g)) = gh−1(h′)−1 = g(h′h)−1 = (h′h)(g). Now, each
orbit will be a set of the form {gh−1 : h ∈ H} = {gh : H ∈ H} = gH, so a left coset of H.

It can be proven that any action of a discrete group H on a Lie group G has the desired property that
for any g ∈ G, there exists a neighbourhood U such that U ∩ h(U) = 0 for every h ∈ H with h 6= e.
However, like Lemma 9.6, the proof is very complicated, and no good source could be found.

With this knowledge, we can apply Hatcher28, Proposition 1.40, where we use G as the Y Hatcher uses,
and H as the G Hatcher uses. Then it follows that π1((G/H)l) is isomorphic to H.

However, this is not too useful, since many isotropy groups are not discrete. We will need to find a group
that is closely related to H, but is discrete. The following lemma will be of help.

Lemma 10.2. H0 is a normal subgroup of H.

Proof. Firstly, we need to prove that H0 is a subgroup of H. Let g, h be elements of H0, and let γ, η
be paths connecting g and h to the identity, respectively. Then we can define a new path α : [0, 1] →
H0, α(s) = γ(s)η−1(s). Notice how this new path uses the group operation, and not concatenation. This

28A. Hatcher, Algebraic Topology, 2001.
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path η starts at the identity and ends at gh−1. But this implies gh−1 is in the path component of the
identity for any g, h ∈ H, which proves it is a subgroup.

Secondly, we need to prove that H0 is a normal subgroup of H. Let g be an element of H0, let γ be
the path connecting g to the identity, and let h be an element of H. Now, define a path β : [0, 1] →
H0, β(s) = hγ(s)h−1. This path starts at hh−1 = e and ends at hgh−1. Therefore, for any g ∈ H0 and
h ∈ H, we have that hgh−1 ∈ H0, so H0 is a normal subgroup.

Now that we have a normal subgroup of H, we can look at the quotient group H/H0. This will be a
discrete group, since every path component is of the form hH0 for some h ∈ H, and therefore, every path
component is collapsed to a single point.

For an application of this quotient group, we will look at Mermin29 again. Mermin proves the following:

Theorem 10.3. Given a simply connected Lie group G acting transitively on an order parameter space
X, with stabiliser H, the fundamental group π1(X) is isomorphic to the group H/H0.

Proof. Mermin proves that π1((G/H)l) is isomorphic to H/H0. Combine this with theorem 9.7, and we
are done.

We expect the proof can also be completed by using (G/H0)l and H/H0 in Hatcher’s proposition, but
we could not find how to do this properly.

11 Conclusion

In conclusion, we have looked at defects in ordered media. Specifically, point defects in R2 and line defects
in R3. These can be classified by conjugacy classes of the fundamental group. If we have a group action
of a simply connected Lie group on an order parameter space, we can use the stabiliser to compute the
fundamental group of the order parameter space easily.

Further interesting subjects that could be looked into would be point defects in R3, and more different
shapes.
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