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Chapter 1

Introduction

This thesis is on the classification of four-dimensional smooth manifolds. More specifically,

we give an introduction to the gauge theory used to study them called Seiberg-Witten theory.

The aim of this chapter is to provide some background to the theory and give an outline of

how it works, which will simultaneously provide an outline of the contents of this thesis. The

guiding result which we want to prove is the following due to Taubes [31].

Theorem. Let (X,ω) be a compact symplectic four-manifold with b+2 (X) > 1. Then X does

not admit a Riemannian metric of positive scalar curvature. Furthermore, it does not admit

a connected sum decomposition X ∼= X1#X2 with b+2 (Xi) > 0 for i = 1, 2.

This theorem will follow naturally from our development of Seiberg-Witten theory and is

proven in this thesis as Theorem 5.6.7.

History

Before the introduction of gauge theory into the subject, the classification of four-dimensional

manifolds up to diffeomorphism was proving troublesome. Indeed, the usual techniques for ar-

bitrary n-dimensional manifolds could not capture their intricacies, due to the fact that these

mostly dealt with invariants of the manifold preserved by homeomorphisms. This mostly

suffices for other dimensions, but in dimension four there is a great distinction between the

homeomorphism and diffeomorphism type of a given smooth four-manifold. A very nice in-

troduction to the study of four-manifolds can be found in [12].

In 1983, Donaldson [3] wrote a paper using techniques from gauge theory to construct a new

invariant for four-manifolds, later dubbed Donaldson invariants. These invariants were con-

structed by counting the amount of anti-self-dual (ASD) connections on a given SU(2)-bundle

over the four-manifold. Solutions to these ASD equations are called instantons. They are

invariant under bundle automorphisms called gauge transformations, and hence it is more

natural to consider instead the quotient space called the moduli space of instantons. While

the success of Donaldson theory can not be understated, the moduli space of instantons is

generally not well-behaved. In particular, it is almost always not compact, and a great deal
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of work is required to find a suitable compactification necessary to define the Donaldson in-

variants. Standard references to learn more about Donaldson theory are [5, 8].

Then, in 1988, Witten [33] showed that the Donaldson invariants could be computed using

what is called N = 2 supersymmetric Yang-Mills theory, a type of topological quantum field

theory. Using this realization together with Seiberg in [28] he considered the dual to this

theory, which turns out to give rise to much nicer spaces out of which one can construct

invariants. Indeed, the associated Seiberg-Witten equations first written down in 1994 [34]

have a moduli space which for example is always compact. After the introduction of Seiberg-

Witten theory many outstanding problems on four-manifolds were quickly solved due to its

similarity to Donaldson theory. In particular, Seiberg-Witten theory obtains the results from

Donaldson theory in a much simpler manner. Mathematicians which were chiefly involved

with the early development of Seiberg-Witten theory include Kronheimer, Mrowka, Morgan,

Stern and Taubes, as can be read in [4].

Witten conjectured in [34] that the Donaldson and Seiberg-Witten invariants contain the

same amount of information. More precisely, he proposed a formula expressing the Donaldson

invariants in terms of the Seiberg-Witten invariants. More about this can also be found in [4].

Lastly we mention work by Leness and Feehan [6,7] in this direction, following a program set

out by Pidstrigach.

General strategy

The general strategy of Seiberg-Witten gauge theory is as follows. The reader familiar with

Donaldson gauge theory should see many similarities, both in the strategy described here

as in the techniques used to prove things. Throughout, X will be a compact oriented four-

manifold. We wish to study the orientation preserving diffeomorphism type of X. In order

to do this, we wish to find suitable vector bundles E1, E2 → X together with a differential

operator F : Γ(E1)→ Γ(E2). We then consider the equation

Fs = 0, s ∈ Γ(E1),

called the Seiberg-Witten equations, and study its solutions. The differential operator will

depend on some auxiliary data. More specifically, F = F (g, c), with g a Riemannian metric

on X and c ∈ Sc(X) a so-called Spinc-structure. Sometimes we will also need to consider

perturbations of F , which we will then denote by Fη for a given perturbation parameter η.

Given a Spinc-structure c, the Seiberg-Witten equations will be expressed in terms of variables

taken from a configuration space C(c). The solutions to Fs = 0 will be invariant under a group

of automorphisms of the bundle associated to the configuration space, also called the gauge

group, G. Instead of considering the space Z(c) of all solutions inside the configuration space,

we will study the moduli space

M(c) = Z(c)/G,
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which is a subset of the larger quotient B(c) = C(c)/G of configurations modulo the action

of the gauge group. If the gauge group acts freely, M(c) will be a smooth manifold. There

will in general be points in the configuration space where the gauge group does not act freely.

These are called reducible points; all other points are called irreducible. We must arrange

our data such that none of these reducible points are solutions to Fs = 0. The operator F

can be shown to be elliptic, so that away from reducible solutions we can linearize F to get

a Fredholm map T . For a generic choice of η, M(c) will then be a smooth finite-dimensional

manifold by the Sard-Smale theorem, as long as b+2 (X) > 0. Its dimension is just the index

of T , which we can compute using the Atiyah-Singer index theorem.

To arrive at the Seiberg-Witten invariants we wish to integrate certain canonical cohomology

classes over the moduli space. To ensure this process does not depend on the metric g nor

the perturbation η, we wish to show that any M(g0, η0) and M(g1, η1) are cobordant inside

a larger space, and for that we use the topological condition b+2 (X) > 1. When one only has

b2+(X) = 1 one can still proceed, but things will depend on the class of Riemannian metric

one picked. For this integration process to make sense, we need to establish the following

wish list of properties of M(c).

Wish list. Let X be a compact oriented four-manifold satisfying b+2 (X) > 1 equipped with

a Riemannian metric g and a Spinc-structure c. For the Seiberg-Witten moduli space M(c),

establish the following.

• Have a formula for its formal dimension d(M(c)). This was mentioned earlier, and is

done by an index calculation;

• Show compactness of M , which is automatic in Seiberg-Witten theory coming from an

a priori estimate.

• Show orientability of M , which is done by considering the determinant index bundle

det ind(T );

• Ensure that M does not contain reducible points using transversality. Essentially, one

can perturb F to Fη so that there are no reducible solutions, for generic choices of η;

• Find suitable cohomology classes to integrate. This will turn out to be rather straight-

forward. In fact, in most cases the moduli space M will be zero-dimensional, so that

the integration process boils down to a count of points.

Once we have all the ingredients on the wish list, we will obtain a map called the Seiberg-

Witten invariant SWX , i.e.

SWX : Sc(X)→ Z.

For a given manifoldX, there are only finitely many Spinc-structures giving a nonzero Seiberg-

Witten invariant. It turns out that manifolds with an almost complex structure have a canon-

ical choice of Spinc-structure. We show that given a compact symplectic manifold (X,ω)

with a compatible almost complex structure, this Spinc-structure will have Seiberg-Witten
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invariant equal to 1 mod 2. On the other hand, it follows from the Weitzenböck formula

that manifolds admitting a Riemannian metric with positive scalar curvature have vanishing

Seiberg-Witten invariants, as all solutions must be both reducible and irreducible. Similarly,

a manifold admitting a connected sum decomposition as in the theorem above will have van-

ishing Seiberg-Witten invariants as well. From this it is clear that the theorem follows.

This thesis is organized as follows. In Chapter 2 we discuss some of the background required

to formulate the Seiberg-Witten equations. The equations will take place on the space of

sections of a vector bundle which is most readily obtained through the associated vector bun-

dle construction out of a principal G-bundle for some Lie group G. We recall some of the

theory on principal G-bundles and describe the notion of a connection. We then continue by

recalling some theory on almost complex and symplectic manifolds. We finish off with some

generalities from functional analysis which will be important for us, namely the theory of

elliptic operators, Sobolev spaces and Hilbert manifolds.

In Chapter 3 we discuss some notions from spin geometry. We describe the Lie group G called

Spinc(4) and make explicit how to then obtain the aforementioned vector bundle on X called

the spinor bundle S(X). The spinor bundle admits an action of T ∗X called Clifford multi-

plication, and through it we can define an important class of differential operators on spinor

bundles called Dirac operators DA : Γ(S) → Γ(S). Afterwards we discuss these concepts in

the presence of an almost complex or symplectic structure and relate the Dirac operator to

the Cauchy-Riemann operator in this setting.

In Chapter 4 we are then able to state the Seiberg-Witten equations and describe the group

of automorphisms leaving it invariant. In order to study the moduli space M of solutions to

the Seiberg-Witten equations, we equip the spaces involved with Sobolev norms making them

into Hilbert manifolds. After we have done this, we follow the wish list of properties of M

and proceed to establish that the moduli space indeed satisfies them.

Finally, in Chapter 5 we define the Seiberg-Witten invariant SWX and proceed to study its

properties. In particular, we show that it is independent of the choice of Riemannian metric g

and perturbation η we made to construct it. Furthermore, we show the aforementioned van-

ishing theorem in the case of admitting a metric of positive scalar curvature and outline the

proof in the case of a connected sum decomposition. Lastly, we describe the proof by Taubes

of the non-vanishing of the Seiberg-Witten invariants in the case of symplectic manifolds.

In describing Seiberg-Witten theory as outlined above we have of course been forced to leave

out many interesting aspects and results due to the space constraints of this thesis. We would

like to stress that none of the results in this thesis are new, yet hope that it provides a readable

introduction to the subject. Since its full inception in 1994 there have appeared several texts

on the subject, each differing either in approach or scope. These include [1, 4, 15, 19, 22, 23,

26, 27]. Our main references are [23] and [27]. The former gives a practical introduction
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to Seiberg-Witten theory, while the latter is more thorough in its explanations. Lastly we

mention [26], which goes to great length to discuss the analytical aspects the theory.

Acknowledgements

I would first and foremost like to thank my advisor Gil Cavalcanti for his supervision of

my project. Furthermore, I would thank my fellow master students Reinier Storm, Joost

Broens and Bram Bet. Together with them I was introduced to gauge theory by presenting

the contents of [5] on Donaldson invariants in a seminar organized by Gil. Even though our

eventual thesis projects somewhat diverged, I benefitted greatly from my discussions with

them.

9





Chapter 2

Preliminaries

This chapter is devoted to covering most of the background necessary for Seiberg-Witten

theory. As was mentioned in the introduction, we develop in this chapter some theory on

principal G-bundles and connections thereon, some on almost complex and symplectic mani-

folds and some tools from functional analysis. We will be brief with regard to proofs and will

instead give a general reference for each topic.

2.1 Principal G-bundles

In this section we discuss theory of principal bundles insofar as it is used in this thesis. A

general reference for this section is [16]. We will see that the Seiberg-Witten equations take

place in the space of sections of a certain vector bundle over the manifold. The construction

of this vector bundle is most easily described using the language of principal bundles. We go

over the basic definitions of principal bundles and show how to create vector bundles out of

them using the associated vector bundle construction. Throughout, let G be a Lie group.

Definition 2.1.1. A smooth free right action of G on a manifold P is a smooth map P×G→
P written as (p, g) 7→ pg such that

• (pg1)g2 = p(g1g2) for all p ∈ P , g1, g2 ∈ G (associativity);

• For all p ∈ P , pg = p if and only if g = e, the identity element of G (freeness).

It follows readily from this that for any fixed g ∈ G, right multiplication by g, i.e. the map

(p, g) 7→ pg, P × {g} → P is a diffeomorphism.

Definition 2.1.2. A principal G-bundle P over B is a smooth submersion π : P → B onto

a manifold B along with a smooth free right action P ×G→ P such that

• As a set we have P/G = B;

• For any b ∈ B there exists a neighbourhood U ⊆ B of b and a diffeomorphism ΦU :

π−1(U) → U × G such that pr1 ◦ ΦU = π|π−1(U), or in other words that the following
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diagram commutes

π−1(U) U ×G

U

ΦU

π pr1
, (2.1.1)

and ΦU commutes with the action of G, i.e. for each h ∈ G we have ΦU (ph) = (b, gh),

where (b, g) = ΦU (p) and π(p) = b ∈ U .

Remark 2.1.3. We see that a principal G-bundle is a fiber bundle along with a right G-

action compatible with its local trivializations. In particular, the group action preserves the

fibers and acts transitively. The space B is also called the base space, with P being called the

total space.

Given two principal G-bundles π : P → B and π′ : P ′ → B′, a bundle map is an equivariant

map σ : P → P ′, i.e. a map which commutes with the actions of G on P and P ′. If B = B′,

we call such a map σ a morphism of principal G-bundles. If further P = P ′, we call such

a map σ an automorphism of P . We denote the collection of all principal G-bundles over

B by PGB, and the set of bundle automorphisms of P by Aut(P ), which is a group under

composition. A principal G-bundle is said to be trivial if it is isomorphic to the product

principal bundle B×G→ B. Of course, by definition every principal bundle is locally trivial.

It is in fact quite a strong condition for a local product (P, π) over B with fiber G to be a

principal G-bundle. In fact, we have

Lemma 2.1.4. Any morphism of principal G-bundles is an isomorphism.

Proof. Let σ : P → Q be such a morphism between principal bundles P,Q over B. Assume

that P = Q = B × G, the product principal bundle. Then σ(b, g) = (b, f(b)g) for some

continuous function f : B → G. But then σ is an isomorphism with inverse σ−1(b, g) =

(b, f(b)−1g). As every principal bundle is locally trivial, the general case immediately follows

from this.

Definition 2.1.5. A local section of a principal bundle P is a smooth map s : U → P defined

on a neighbourhood U ⊂ B such that π ◦ s = IdU . A section is a local section defined on

U = B.

To see the distinction with vector bundles more clearly, note that we have

Corollary 2.1.6. A principal G-bundle π : P → B is trivial if and only if it admits a section.

Proof. If P is trivial then it has a section. Indeed, any local trivialization ΦU : π−1(U) →
U × G gives rise to a local section s(x) = Φ−1(x, e). Conversely, if s : B → P is a section,

then the map φ : B ×G→ P given by φ(b, g) = s(b)g is a morphism of principal bundles, so

that by Lemma 2.1.4 it is an isomorphism.
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As with vector bundles, we can consider a purely local description of a principal G-bundle

in terms of transition functions. Consider a pair of overlapping trivializing neighbourhoods

Uα, Uβ ⊆ B. Then we have

Φβ ◦ Φ−1α (b, g) = (b, ψβα(b, g)), (2.1.2)

for some map ψβα : B ×G→ G. For each fixed b ∈ Uα ∩Uβ, the map g 7→ ψβα(b, g) is just a

map G→ G. By associativity of the action we then see that for each such b we must have

ψβα(b, g)h = ψβα(b, gh) for all g, h ∈ G. (2.1.3)

Hence if we now take g = e to be the unit element, we see that the map ψβα(b, ·) is just left

multiplication by ψβα(b) = ψβα(b, e) ∈ G.

Definition 2.1.7. Given two local trivializations Uα, Uβ ⊆ B, the map ψβα : Uα ∩ Uβ → G

is called the transition function associated to Uα, Uβ.

We see that principal G-bundles have transition functions just like vector bundles do. In

particular, these transition functions satisfy the same cocycle conditions.

Lemma 2.1.8. Given local trivializations Uα, Uβ, Uγ, the associated transition functions sat-

isfy

ψαα = IdG, ψαβψβα = IdG, ψαβψβγψγα = IdG, (2.1.4)

whenever the above equations make sense.

In fact, as with vector bundles, all of the information of a principal bundle is encoded in these

transition functions, as can be seen through the following Steenrod construction. Let {Uα}
be an open cover of B by trivializing neighbourhoods together with a system of maps {ψβα}
satisfying the cocycle conditions. Consider now for each Uα ⊂ B the product Uα × G, and

define a relation ∼ between elements (b, g) ∈ Uα ×G and (b′, g′) ∈ Uβ ×G by setting

(b, g) ∼ (b′, g′) if and only if b = b′ and g′ = ψβα(b)g. (2.1.5)

It is then easy to check using the cocycle conditions that this is an equivalence relation. Now

consider the quotient

P =
⊔
α

(Uα ×G) / ∼, (2.1.6)

consisting of the disjoint union of all Uα ×G glued together by the equivalence relation. We

then have

Theorem 2.1.9. The quotient P as defined by equation (2.1.6) is a principal G-bundle.

In particular, we see that given a vector bundle E over B, we can take its transition functions

and construct a principal G-bundle P over B. A special case of this is when one considers

a manifold’s tangent bundle and out of it creates the principal GL(n,R)-bundle called the

frame bundle. The construction can in fact be reversed to obtain from a principal G-bundle

P over B a vector bundle E over B.
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Definition 2.1.10. Let π : P → B be a principal G-bundle and let F be a space with a left

G-action, i.e. for each g ∈ G we have a map Tg : F → F satisfying Tg ◦ Tg′ = Tgg′ for all

g, g′G. Then the associated bundle is the bundle

P ×G F → B, (2.1.7)

constructed as follows: the total space is P ×GF = (P ×F )/ ∼, with the equivalence relation

∼ being given by the action of G on both factors, i.e.

(p, f) ∼ (p′, f ′) if and only if p′ = pg and f ′ = gf for some g ∈ G. (2.1.8)

The projection map for this bundle sends the class [(p, f)] ∈ P ×G F of (p, f) ∈ P × F to

π(p).

Remark 2.1.11. In general, the associated bundle is not a principal bundle. Moreover, the

vector bundle associated to the frame bundle of B via the fundamental representation of

GL(n;R) is isomorphic to the tangent bundle TB of B.

There are two important examples of associated bundles.

Example 2.1.12. Consider F = G with the adjoint action of G on itself by conjugation,

i.e. for given fixed g ∈ G we have Tgf = gfg−1. From this we get the adjoint bundle

Ad(P ) = P ×G G.

Example 2.1.13. Consider F = V a vector space with a linear representation of G, i.e. a

homomorphism ρ : G → End(V ). From this we get an associated vector bundle P ×ρ V . In

particular, taking ρ to be the adjoint representation ad of G on its Lie algebra g, we get the

associated vector bundle ad(P ) = P ×ad g.

We see from the above example that the notion of a principal bundle makes it simple to de-

scribe all the vector bundles one can create out of a given one. Examples of this are creating

the cotangent bundle T ∗B and its exterior powers
∧• T ∗B out of the tangent bundle, or tak-

ing connected sums E ⊕ F or tensor products E ⊗ F . Indeed, the reason these constructions

worked for vector bundles is essentially encapsulated in the slogan “everything that works for

vector spaces works for vector bundles”. We now see that this can be described in terms of

representations and the associated bundle construction.

There is one more construction that bears a special name. Note firstly that given two Lie

groups G and H and a homomorphism f : H → G, there is a natural left action of H on G

given by (h, g) 7→ f(h)g for g ∈ G, h ∈ H.

Definition 2.1.14. Let P be a principal G-bundle and let a homomorphism H → G from

another Lie group H be given. We say P admits a reduction of the structure group from

G to H if there exists a principal H-bundle PH such that through the associated bundle

construction we have

PH ×H G ∼= P. (2.1.9)
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This construction makes sense for any map H → G, which in particular need not necessarily

be an inclusion, despite the terminology used. In terms of the transition functions of the

bundles, a G-bundle can be reduced if and only if its transition functions can be taken to

have values in H. This is not always the case, and in general there are topological obstructions

for this. Furthermore, even when it can be reduced, this reduction need not be unique.

Many structures on the tangent bundle of a manifold can be expressed in terms of reductions

of the structure group. Recall that the tangent bundle is a priori a GL(n)-bundle.

• The reduction to O(n) < GL(n) is the same as equipping it with a Riemannian metric.

Note that because O(n) is the maximal compact subgroup of GL(n), the inclusion

O(n) ↪→ GL(n) is a deformation retract, so that this reduction is always possible;

• The reduction GL+(n) < GL(n) is the same as choosing an orientation. We know that

a manifold X is orientable if and only if its first Stiefel-Whitney class w1(X) = w1(TX)

vanishes, so that this reduction is not always possible. Furthermore, note that orientable

manifolds admit exactly two orientations, or two different reductions of the structure

group;

• The reduction GL(n,C) < GL(2n,R) is the same as choosing an almost complex struc-

ture. For this to exist certainly the manifold must then be orientable, and for four-

manifolds X we in fact have the following criterion due to Wu [35].

Theorem 2.1.15. A four-manifold X admits an almost complex structure J if and only

if there exists a h ∈ H2(X;Z) such that h2 = 3σ(X) + 2χ(X) and h ≡ w2(X) mod 2,

in which case h = c1(TX, J).

Other examples include the existence of a volume form through the reduction SL < GL,

which because SL→ GL+ is again a deformation retract is possible if and only if the bundle

is orientable. Lastly, the reduction GL(k)×GL(n− k) < GL(n) is the same as expressing a

vector bundle as a Whitney sum of two sub-bundles of rank k and n − k. We will see two

other important examples of reduction of the structure group in the next section, when we

discuss the Spin(n) and Spinc(n) groups.

Let B be a manifold and consider again the set PG(B) of principal G-bundles over B.

Something we have not yet mentioned is that given principal G-bundle P → B and a map

f : X → B from some other space X we can consider the pullback bundle

f∗P → X, (2.1.10)

which is now a principal G-bundle over X. One can prove that homotopic maps give rise to

isomorphic pullback bundles. In particular, any principal G-bundle over a contractible space

is trivial. Now recall the notion of a weakly contractible space, i.e. a space with all homotopy

groups vanishing. Given a space X, let [X,B] denote the space of homotopy classes of maps

f : X → B. From the pullback construction there is the natural question if there is a space

B such that every principal G-bundle can be obtained as the pullback bundle in this manner.
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Definition 2.1.16. Let G be a Lie group. A classifying space for G is a space B together

with a principal G-bundle P → B such that P is weakly contractible.

It is common practice to write BG for the classifying space of G, and using the notation EG

for its universal principal G-bundle P . Note however that BG and EG are only well-defined

up to homotopy equivalence. The following theorem answers the previous question in the

affirmative.

Theorem 2.1.17. Let G be a Lie group. Then there exists a classifying space for G. More-

over, for every CW-complex B, the map

ϕ : [B,BG]→ PG(B), f 7→ f∗EG (2.1.11)

is a bijection.

The previous theorem explains why BG is called the classifying space.

Example 2.1.18. The classifying space for G = U(1) is given by BG = CP∞, the infinite-

dimensional projective plane.

Let π : P → B be a principal G-bundle. We defined earlier the group Aut(P ) of bundle

automorphisms of P . We can now prove the following.

Proposition 2.1.19. The group Aut(P ) can be identified with the space of smooth sections

Γ (Ad(P )) of the associated bundle Ad(P ).

Proof. Let f : P → P be an element of Aut(P ). Then from this we can define a map

ψ : P → G by setting f(p) = pψ(p) for all p ∈ P . As we have by equivariance of f that

f(pg) = f(p)g for any g ∈ G we get equivariance of ψ, i.e. ψ(pg) = g−1ψ(p)g. In other words,

ψ defines a section s of Ad(P ) by s : B → P ×G G given by b 7→ [p, ψ(p)], with p ∈ π−1(b)
chosen arbitrarily. Conversely, a section s of Ad(P ) defines an equivariant function ψ and

thus a bundle automorphism f by the above formulas.

From the above proposition we see that we can view Aut(P ) as an infinite-dimensional Lie

group. Its Lie algebra can then be identified with the space of sections of ad(P ) through a

fiberwise exponential map. Namely, given a section σ of ad(P ), i.e. a map σ : B → P ×G g

given by b 7→ [p,X], we can define a section s = expσ of Ad(P ), s : B → P ×G G given

by b 7→ [p, expX]. This is well-defined as for any g ∈ G and X ∈ g we have exp(g−1Xg) =

g−1(expX)g, i.e. the regular exponential map is equivariant with respect to the conjugation

action.

Definition 2.1.20. Given a principal G-bundle P , its gauge group is the space Aut(P ) =

Γ (Ad(P )).

An important case for us will be when G = U(1). Hence consider a principal U(1)-bundle

L. Any automorphism of L is given fiberwise by multiplication by an element of U(1). This

immediately implies the following result.

Lemma 2.1.21. For G = U(1), the gauge group of any principal U(1)-bundle over B can be

identified with the space C∞(B; U(1)) of smooth maps from B to U(1).
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2.2 Connections

In this section we discuss connections on principal G-bundles and describe how they are

related to connections on the associated vector bundles. Again, all of this can be found

in [16, 27]. There are several different ways of looking at connections. Each has its merits

depending on the situation. Let π : P → B be a principal G-bundle. Taking differentials

we get a map dπ : TP → TB. We can then consider the subbundle ker(dπ) ⊂ TP , whose

fiber over a point p ∈ P is just ker(dπp). Of course, this fits pointwise into the short exact

sequence

0→ ker(dπp) ↪→ TpP
dπp→ Tπ(p)B → 0. (2.2.1)

A connection on P is then a way of choosing a complementary subspace to each ker(dπp)

which behaves nicely under the G-action. More precisely, we have the following.

Definition 2.2.1. A connection on a principal G-bundle π : P → B is a distribution

{Hp}p∈P , i.e. a smooth family of linear subspaces of the tangent bundle TP , such that for all

p ∈ P
ker(dπp)⊕Hp = TpP, (2.2.2)

and such that it is invariant under the G-action, i.e. g∗(Hp) = Hg(p) for all p ∈ P and g ∈ G.

Remark 2.2.2. One also calls ker(dπ) the vertical distribution, where then a choice of Hp

satisfying equation (2.2.2) is called a horizontal distribution. The condition of equation (2.2.2)

can also be stated by saying that (dπp)(Hp) = Tπ(p)B for all p ∈ P .

A second way of looking at connections is in terms of a g-valued one-form. Given an element

X ∈ g, recall that for t ∈ R, exp(tX) ∈ G is such that

∂

∂t
exp(tX)

∣∣∣∣
t=0

= X. (2.2.3)

Now define σ : g→ Γ(TP ) by setting for p ∈ P

σ(X)(p) =
∂

∂t
p · exp(tX)

∣∣∣∣
t=0

. (2.2.4)

The vector field σ(X) is called the fundamental vector field associated to X.

Definition 2.2.3. A connection one-form on a principal G-bundle π : P → B is an element

ω ∈ Ω1(P, g) such that

ωp(σ(X)(p)) = Xp, ∀X ∈ g, (2.2.5)

and such that for any g ∈ G, p ∈ P and v ∈ TpP we have

ωg(p)(v · g) = g−1ωp(v)h. (2.2.6)

In other words, ω is equivariant with respect to the adjoint action.
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The proof of the equivalence of these descriptions will not be given here. Essentially, the one-

form ω is defined out of a connection by letting ωp be the projection from TpP onto ker(dπp)

with kernel Hp, and then noting that ker(dπp) can be identified with g using the action of G.

Hence applying ω to an element v ∈ TpP gives back an element of g.

Lemma 2.2.4. Given a principal G-bundle P , every connection one-form uniquely deter-

mines a connection and vice-versa.

Given a connection on a principal G-bundle, we get induced connections on associated vector

bundles. First let us recall the definition of such an object. Let X be a manifold.

Definition 2.2.5. A connection ∇A on a vector bundle E → X is a linear map

∇A : Ω0(X;E)→ Ω1(X;E) (2.2.7)

such that for all f ∈ C∞(X) and s ∈ Ω0(X;E) we have

∇A(fs) = df ⊗ s+ f∇A(s). (2.2.8)

Out of a connection ∇A and a vector field Y ∈ X (X) we can form the covariant derivative

in direction of Y ∇A(Y ) : Γ(E) → Γ(E). It is C∞(X)-linear with respect to Y and linear

with respect to the sections it acts on. If we denote ∇A(Y ) by ∇Y , it furthermore satisfies

∇Y (fs) = f∇Y s + Y (f)s for f ∈ C∞(X) and s ∈ Γ(E). Connections on vector bundles

always exist through a partition of unity argument. We denote the space of all connections

on a given vector bundle E by A(E).

Lemma 2.2.6. Given a principal G-bundle π : P → X with a connection and an associated

vector bundle E = P×GV associated to a linear representation ρ : G→ GL(V ), E is equipped

with an induced connection.

Proof. The definition of this connection ∇A on E can be described as follows. Let s be a local

section of E defined near some x ∈ X, and let v ∈ TxX be given. By the definition of the

tangent space we can choose a curve γ in X such that γ(0) = x and dg(0) = v. Pulling back

this curve through π we get a curve γ̃ such that π ◦ γ̃ = γ which is horizontal, i.e. for all t

we will have dγ̃(t) ∈ Hγ̃(t). Now consider s(γ(t)) ∈ E|γ(t). By the definition of an associated

vector bundle we see that s will be locally given as [γ̃(t), V (t)] where V (t) ∈ V is some smooth

V -valued function. Given this, we set

∇A(s)(v) =

[
p,
∂V

∂t

∣∣∣∣
t=0

]
(2.2.9)

The linearity of this object is clear, and one can readily check that it is well-defined and

satisfies the required Leibniz identity. Note that we have here used the induced representation

dρ : g→ End(V ).

If G is a matrix subgroup, i.e. is embedded in GL(V ) as a Lie group, then one can recover the

connection on the principal G-bundle from this associated connection ∇A on E. Furhermore,
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one can check that the difference of two connections ∇A,∇A′ on E is C∞-linear. Indeed, we

have by the Leibniz identity that

(∇A −∇A′)(fs) = df ⊗ s+ f∇A(s)− df ⊗ s− f∇A′(s) = f(∇A −∇A′)(s). (2.2.10)

This immediately implies the following result.

Lemma 2.2.7. Given any two connections ∇A,∇A′ on E, their difference a = ∇A −∇A′ ∈
Ω1(X; End(E)) is an End(E)-valued one-form.

Moreover, we get that given a connection ∇A we can construct any other connection on E as

∇A′ = ∇A + a for some one-form a. We say the space A(E) of connections on E forms an

affine space over Ω1(X; End(E)): there is a free transitive action of Ω1(X; End(E)) through

addition, but there is no canonical choice of origin. Hence only after a choice of origin do we

get a (non-canonical) isomorphismA(E) ∼= Ω1(X; End(E)). Nevertheless, we now have a local

description of a connection. Let E have a trivializing cover {Uα} with transition functions

gαβ : Uα∩Uβ → Uα∩Uβ. Then a connection ∇A is nothing more than a collection of matrices

{Aα} of E-valued one-forms on Uα: given a section s ∈ Γ(E) with local representative sα on

Uα, we have

(∇As)α = dsα +Aαsα. (2.2.11)

In this local description the exterior derivative is the trivial connection on the trivial bundle

over Uα, and we have described ∇A locally as being constructed out of d through the addition

of an E-valued one-form. The matrices {Aα} transform according to

Aα = gαβAβg
−1
αβ − g

−1
αβdgαβ. (2.2.12)

Hence we might as well identify ∇A with its connection matrix A = {Aα}, as we will do in

later chapters. Now, given a connection ∇A on a vector bundle E we can extend it to a map

∇A : Ωp(X;E)→ Ωp+1(X;E) between E-valued forms by setting

∇A(α⊗ s) = dα⊗ s+ (−1)pα ∧∇A(s) for α ∈ Ωp(X), s ∈ Γ(E). (2.2.13)

Sometimes this extension is denoted by dA instead. We can further consider the curvature

FA of a connection, namely

FA = ∇A ◦ ∇A : Ω0(X;E)→ Ω2(X;E). (2.2.14)

One can check that it is C∞-linear and hence defines an element of Ω2(X; End(E)). A similar

thing can be done for connections on principal bundles. Now suppose the connection ∇A on

E comes from a connection on a principal G-bundle through a representation ρ. Then FA
will be the image of the curvature of the connection on the principal G-bundle through the

map dρ : g→ End(V ). We can also give a local description of the curvature. Using the same

trivializing cover {Uα} as before, the curvature applied to a section s ∈ Γ(E) is described by

a curvature matrix which we will also denote by FA, given locally by

(FAs)α = (dAα +Aα ∧Aα)sα. (2.2.15)

It will be useful to relate the curvature of two different connections to each other. This is

answered by the following lemma.
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Lemma 2.2.8. Given a connection ∇A and a one-form a ∈ Ω1(X; End(E)), we have

FA+a = FA + da+ a ∧ a. (2.2.16)

Now consider the action of the gauge group on connections, which we describe in the principal

G-bundle situation. Given a connection ∇ on a principal G-bundle P with connection one-

form ω and a gauge transformation u ∈ G(P ), we can form the pull-back connection u∗(∇) =

u∇u−1. This pull-back connection will have connection one-form u∗(ω), more explicitly given

by

u∗(ω) = u−1ωu+ u−1du. (2.2.17)

This defines an action u · ∇ = u∗(∇). We can also easily identify what happens to the

curvature: if Ω = ∇ ◦ ∇ is the curvature of ω, then the curvature Ω′ of u∗(ω) will simply be

its conjugate by u, i.e.

Ω′ = u−1Ωu. (2.2.18)

The same is true for the associated gauge transformations on any associated vector bundle

E coming from P . Lastly we mention one result coming from Chern-Weil theory. Let E be

a U(m)-bundle. One can check that given a connection A on E, its curvature satisfies

dAFA = 0 (2.2.19)

This is called the Bianchi identity. Now specify to the case m = 1, as this will be the only

case we care about. Then equation (2.2.19) merely reads dFA = 0, as the Lie algebra of U(1)

is iR, which is abelian. In other words, FA is closed. Because of this it defines a cohomology

class [FA] ∈ H2(X;C). Up to a scalar multiple it can be identified with the first Chern class

of E.

Theorem 2.2.9. Given a connection A on a U(1)-bundle E, we have

[FA] = −2πic1(E). (2.2.20)

Proof. Essentially, this can be taken to be true by definition of the Chern classes. For more

information see [21, Appendix C].

2.3 Almost complex and symplectic manifolds

In this section we recall some of the theory on almost complex and symplectic manifolds. In

particular we recall the notion of compatibility between these structures giving almost Kähler

manifolds, and pay special attention to the Cauchy-Riemann operator ∂ in this setting. A

general reference for symplectic manifolds is [20], with the theory of almost Kähler manifolds

following [26,27].

Throughout, let X be a four-manifold unless otherwise specified. Most of the results below of

course hold true in arbitrary dimension, but we will only focus on the four-dimensional case.

First, let us recall the basic definitions.
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Definition 2.3.1. An almost complex structure on X is an endomorphism J : TX → TX

such that J2 = −1. It is called integrable if it arises from a complex structure on X. A

manifold X together with an almost complex structure will be referred to as an almost complex

manifold.

Here by an almost complex structure “arising from a complex structure” we mean the endo-

morphism J locally given by J( ∂
∂xi

) = ∂
∂yi

in complex coordinates zi = xi + iyi. Furthermore,

an almost complex manifold is orientable with an orientation specified by the ordered basis

of pairs { ∂
∂xi
, J ∂

∂xi
}.

Definition 2.3.2. A symplectic form onX is a closed non-degenerate two-form ω ∈ Ω2(X;R),

i.e. for all x ∈ X and nonzero X ∈ TxX there exists a Y ∈ TxX such that ωx(X,Y ) = 1. A

manifold X together with a symplectic form will be referred to as a symplectic manifold.

Now let (X, J, g) be an almost complex manifold equipped with a Riemannian metric g. There

is a notion of these two structures being compatible.

Definition 2.3.3. A Riemannian metric g is called J-invariant or almost Hermitian, if

gx(X,Y ) = gx(JX, JX) for all x ∈ X and X,Y ∈ TxX. (2.3.1)

We will see shortly how these notions relate to symplectic forms, but first we introduce the

notion of self-duality.

Definition 2.3.4. Let X be compact oriented Riemannian n-dimensional manifold with

volume form dvolg. The Hodge star operator ∗ : Ωk(X;R) → Ωn−k(X;R) for 0 ≤ k ≤ n is

defined by the equation

α ∧ ∗β = 〈α, β〉dvolg, (2.3.2)

where 〈·, ·〉 denotes the inner product induced by g.

It is readily verified that ∗2 = (−1)k(n−k) on k-forms. In particular whenX is four-dimensional,

n = 4, so that

∗ : Ω2(X;R)→ Ω2(X;R), ∗2 = 1. (2.3.3)

Hence because ∗ is an involution on Ω2(X), we can split Ω2 up into its ±1-eigenspaces denoted

by Ω2
+(X) and Ω2

−(X) respectively. In other words, we have

Ω2(X;R) = Ω2
+(X;R)⊕ Ω2

−(X;R). (2.3.4)

We write α = α+ + α− for the decomposition of α ∈ Ω2(X) into α± ∈ Ω2
±(X).

Definition 2.3.5. Given α ∈ Ω2(X), we say α is self-dual (or SD) if α− = 0 and anti-self-dual

(or ASD) if α+ = 0.

Remark 2.3.6. The forms α+ and α− are also called the self-dual and anti-self-dual parts

of α, respectively. We see that α is ASD if and only if ∗α = −α. Note furthermore that

the notion of (anti)-self-duality of a given form depends on the Riemannian metric, and

that the projection pr±α of a given form onto its (anti)-self-dual part is explicitly given by

pr±α = 1
2 (α± ∗α).
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Using the Hodge star operator, we can define an inner product (·, ·) on the space of forms by

(α, β) =

∫
X

α ∧ ∗β, α, β ∈ Ωk(X). (2.3.5)

Using this inner product we can define the codifferential d∗, which is the formal adjoint of d

with respect to this inner product. We can express it in terms of the Hodge star operator

and d, and viewed as an operator on k-forms it then satisfies

d∗ = (−1)k(n−k) ∗ d∗, (2.3.6)

as one can verify using Stokes’ theorem. We can then define the Hodge Laplacian ∆ =

dd∗ + d∗d. A form ω ∈ Ω2 is said to be harmonic if ∆ω = 0, which is seen to be identical to

requiring that dω = d∗ω = 0. Note that ∆ = (d + d∗)2. We denote the space of harmonic

k-forms on X by Hk(X). Now recall that when X is compact, Hodge theory tells us that

each cohomology class has a unique harmonic representative, i.e. Hk(X;R) ∼= Hk(X;R).

Furthermore, in this case there is a Hodge decomposition

Ωk(X;R) = Hk(X;R)⊕ im(d)⊕ im(d∗). (2.3.7)

Moreover, when X is compact the de Rham cohomology groups Hk(X;R) are finite dimen-

sional.

Definition 2.3.7. Let X be compact. The kth Betti number bk is defined by

bk = dimHk(X;R) for 0 ≤ k ≤ n. (2.3.8)

Now note that the Hodge star operator swaps the kernels of d and d∗. Hence if ω is harmonic

then ∗ω is again harmonic. In particular, the (anti-)self-dual part of a harmonic two-form is

again harmonic. Because of this, we can split H2(X;R) into two subspaces

H2(X;R) = H2
+(X;R)⊕H2

−(X;R). (2.3.9)

We denote the dimensions of these subspaces by b+2 (X) and b−2 (X) respectively. At this point

it is not clear that these numbers are independent of the chosen Riemannian metric g. To see

that this is true, consider the intersection form QX of X. This is a symmetric bilinear form,

defined for compact oriented four-manifolds X by

QX : H2(X;Z)×H2(X;Z)→ Z, (α, β) 7→
∫
X
α ∧ β. (2.3.10)

It can be shown that it vanishes only for torsion classes, so that it descends to a non-degenerate

pairing on H2(X;Z) modulo torsion. After picking a basis for this space, we can represent

it by a matrix, also denoted by QX . From Poincaré duality we can interpret the integral

in equation (2.3.10) as an signed count of points of intersection of embedded surfaces of X,

i.e. representatives of homology classes in H2(X;Z). This shows that QX is indeed integer

valued. Moreover, if we tensor with the reals and extend QX to H2(X;R), we can diagonalize

it as it is a symmetric matrix. By non-degeneracy of QX it then contains only the entries

+1 and −1. The numbers b±2 (X) are then the amount of entries equal to ±1 respectively.

In particular, this argument shows that they are both indeed independent of g, and in fact

depend only on topological information of X.
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Remark 2.3.8. The intersection form QX we just described captures most of the topological

information of X. More precisely, Freedman [9] and Donaldson [3] showed that the homeo-

morphism type of a simply-connected compact smooth four-manifold X is determined by QX .

The study of QX is indeed central in understanding four-manifolds, as can be read in [12].

Now note that we have

b2(X) = b+2 (X) + b−2 (X). (2.3.11)

Their difference is called the signature of X, denoted by τ(X) = b+2 (X)−b−2 (X). Furthermore,

the expresssion

χ(X) = b0(X)− b1(X) + b2(X)− b3(X) + b4(X) (2.3.12)

is called the Euler characteristic of X. Of course by Poincaré duality and the fact that

H0(X;R) ∼= R we see that

χ(X) = 2− 2b1(X) + b2(X). (2.3.13)

For later use we also introduce the notation d+ = pr+ ◦ d for the self-dual part of the exterior

derivative. With it we can form the following complex.

0→ Ω0(X)
d→ Ω1(X)

d+→ Ω2
+(X)→ 0. (2.3.14)

Indeed, this is a complex because d+ ◦ d = pr+d
2 = 0. Let us determine its cohomology

groups.

Lemma 2.3.9. The cohomology groups of the above complex are isomorphic to H0(X;R),

H1(X;R) and H2
+(X;R) respectively.

Proof. The first cohomology group consists of all 0-forms ω in ker d ⊂ Ω0(X;R), which because

for a 0-form we automatically have d∗ω = 0 immediately implies that ω is harmonic. Similarly,

the third cohomology group is equal to cokerd+ ⊂ Ω2
+(X;R). Hence let ω ∈ Ω2

+(X;R) be

orthogonal to the image of d+. Then for all α ∈ Ω1(X;R) we have

0 = (ω, d+α) = (ω, dα) = (d∗ω, α). (2.3.15)

This implies that d∗ω = 0, but ω is self-dual so that ∗ω = ω, and hence 0 = d∗ω = −∗d∗ω =

− ∗ dω. In other words, dω = 0 as well, so that ω is harmonic. Finally, consider a one-form

α ∈ Ω1(X;R) which lies in the kernel of d+ but is orthogonal to the image of d. Then for all

ω ∈ Ω0(X) we have

0 = (α, dω) = (d∗α, ω), (2.3.16)

so that d∗α = 0. Now note that we have

2d∗d+ = 2d∗
1

2
(d+ ∗d) = d∗d+ d∗ ∗ d = d∗d. (2.3.17)

Hence consider

(dα, dα) = (d∗dα, α) = (2d∗d+α, α) = 0, (2.3.18)

so that dα = 0. We conclude that α is harmonic.
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Now let J be an almost complex structure on a compact Riemannian four-manifold X. Given

an almost Hermitian metric g, define a two-form ω on X by

ω(X,Y ) = g(JX, Y ). (2.3.19)

By construction ω is J-invariant and g-self-dual. Furthermore, it is non-degenerate because

g is. However, there is no guarantee that ω is closed, so that ω is not necessarily a symplectic

form. However, when it is, we know that any two of the triple (J, g, ω) determine the third

one.

Definition 2.3.10. Let ω be a symplectic form on X. Then an almost complex structure J is

said to be ω-compatible if g defined by g(X,Y ) = ω(X, JY ) is a Riemannian metric. A triple

(X,ω, J) consisting of a symplectic form ω with an ω-compatible almost complex structure

J is called an almost Kähler manifold.

By a result of Gromov the space of such J is non-empty and in fact contractible [20]. It is a

straightforward exercise to check that given a non-degenerate two-form ω and a Riemannian

metric g, there exists an ω-compatible J inducing g if and only if ω is self-dual with respect

to g and satisfies |ω| =
√

2.

Remark 2.3.11. If the almost complex structure J of an almost Kähler manifold X is

integrable, then X is called Kähler : it is also a complex manifold, and its complex structure

is compatible with the symplectic structure.

Now, because J2 = −1 we can split TX into its ±i-eigenspaces. If we extend J complex

linearly to the complexifications TX ⊗R C and T ∗X ⊗R C we can also split these bundles,

and hence decompose all complex differential forms into types. Writing T ∗1,0X and T ∗0,1X

for these +i- and −i-eigenspaces respectively, we denote for p, q ∈ N∧p,q
T ∗X =

(∧p
T ∗1,0X

)
∧
(∧q

T ∗0,1X
)
. (2.3.20)

We then have denote the space of (p, q)-forms on X by Ωp,q(X) = Γ (
∧p,q T ∗X). For example,

we have

Ω1(X;C) = Ω1,0(X;C)⊕ Ω0,1(X;C),

Ω2
+(X;C) = Cω ⊕ Ω2,0(X;C)⊕ Ω0,2(X;C).

(2.3.21)

Furthermore, we see that ω is of type (1, 1) with respect to J . Now define ∂, ∂ by projection.

Given α ∈ Ωp,q(X;C), set

∂α = (dα)p+1,q, ∂α = (dα)p,q+1 (2.3.22)

Only if J is integrable do we have d = ∂⊕ ∂, as dα in general can also have (p− 1, q+ 2) and

(p+ 2, q − 1) components. We set

NJα =
1

4
(dα)p−1,q+2, NJα =

1

4
(dα)p+2,q−1. (2.3.23)
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This NJ : Ωp,q → Ωp+2,q−1 is called the Nijenhuis tensor of J . Alternatively, we can define

NJ : TX ⊗ TX → TX by

NJ(Y,Z) =
1

4
([Y,Z] + J [JY, Z] + J [Z, JY ]− [JY, JZ]) , Y, Z ∈ X (X). (2.3.24)

One can readily see that NJ is C∞(X)-bilinear, skew-symmetric and complex anti-linear. In

other words, NJ satisfies NJ(fY, Z) = fNJ(Y, Z), NJ(Y, Z) = −NJ(Z, Y ) and NJ(JY, Z) =

NJ(Y, JZ) = −JNJ(Y, Z). Furthermore, we have the famous Newlander-Nirenberg theorem.

Theorem 2.3.12 (Newlander-Nirenberg). An almost complex structure J is integrable if and

only if NJ = 0.

Other equivalent ways of stating J is integable is by d = ∂ + ∂, or ∂
2

= 0. Indeed, the

Nijenhuis tensor measures how far ∂ is from squaring to zero.

Lemma 2.3.13. Let a ∈ Ω1,0(X) be given. Then (da)0,2 = a ◦NJ .

Proof. Let Y,Z ∈ X (X) be arbitrary. Note that given a two-form τ ∈ Ω2(X) we have

τ0,2(Y,Z) =
1

4
(τ(Y,Z)− τ(JY, JZ) + iτ(JY, Z) + iτ(Y, JZ)) . (2.3.25)

Now, by definition of the differential we have

da(Y, Z) = LX(a(Z))− LY (a(Y )) + a([Y,Z]). (2.3.26)

The lemma follows simply by substituting this in equation (2.3.25) and noticing that a lot of

the terms cancel.

Lemma 2.3.14. For f ∈ Ω0(X;R) we have ∂
2
f = −∂f ◦NJ .

Proof. This follows from Lemma 2.3.13 by setting a = ∂f .

Now let E → X be a complex vector bundle equipped with a Hermitian metric, and let

PE → X be its associated unitary frame bundle. Then a unitary connection B ∈ A(PE) gives

rise to a covariant derivative dB : Ω0(X;E) → Ω1(X;E), and using J we can decompose it

into its complex linear and anti-linear parts,

∂B : Ω0(X;E)→ Ω1,0(X;E), ∂B : Ω0(X;E)→ Ω0,1(X;E), (2.3.27)

explicitly as ∂Bs = 1
2 (dB + idBs ◦ J) and ∂Bs = 1

2 (dB − idBs ◦ J) for s ∈ Ω0(X;E). For later

use we prove the following result, measuring to what extent the composition ∂
2
B corresponds

to the (0, 2)-part of the curvature.

Lemma 2.3.15. We have for s ∈ Ω0(X;E)

∂B∂Bs = F 0,2
B s− (∂Bs) ◦NJ . (2.3.28)
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Proof. By Lemma 2.3.13 we have for a ∈ Ω1,0(X) that

(dBa)0,2 = a ◦NJ . (2.3.29)

Because of this, we compute

∂B∂Bs =
(
dB∂Bs

)0,2
= (dBdBs)

0,2 − (dB∂Bs)
0,2 = F 0,2

B s− ∂Bs ◦NJ . (2.3.30)

Given a two-form α, let Λα denote contraction with ω. In other words, set Λα = 〈α, ω〉. We

have the following Weitzenböck formula relating the two Laplacians ∂
∗
B∂B and d∗BdB.

Lemma 2.3.16. Let (X,ω, J) be an almost Kähler four-manifold, and let E → X be a

Hermitian line bundle with a unitary connection B. Then for any s ∈ Ω0(X;E) we have

∂
∗
B∂Bs =

1

2
(d∗BdBs− iΛFBs) . (2.3.31)

Proof. By definition we have J = i ∗ ω∧ on one-forms. Hence

∂
∗
B∂Bs = ∂

∗
B

1

2
(dBs+ i ∗ (ω ∧ dBs)) =

1

2
d∗B (dBs+ i ∗ (ω ∧ dBs)) . (2.3.32)

Now recall that d∗B∗ = − ∗ dB, so that because ω is closed this is also equal to

1

2
(d∗BdBs− i ∗ dB(ω ∧ dBs)) =

1

2

(
d∗BdBs− i ∗ (ω ∧ d2Bs)

)
=

1

2
(d∗BdBs− i ∗ (ω ∧ FBs)) .

(2.3.33)

Looking at the definition of the Hodge star operator, we now see that ∗ω∧ = Λ on two-forms,

so that we are done.

2.4 Elliptic operators

In this section we discuss the notion of a differential operator between two vector bundles to

be elliptic. A comprehensive treatment is provided in [14]. Recall first the following fact from

linear algebra. If T : V →W is a linear map between two finite-dimensional vector spaces V

and W , we can consider the dimensions of its kernel and cokernel. These obviously depend

on what T we picked, but their difference does not:

dim ker(T )− dim coker(T ) = dimV − dimW. (2.4.1)

This observation is naturally extended to (separable) infinite-dimensional Hilbert spaces.

Definition 2.4.1. A map T : V → W between Hilbert spaces is called Fredholm if it has

closed range and its kernel kerT and cokernel cokerT are finite dimensional. If this is true,

its index ind(T ) is defined by

ind(T ) = dim ker(T )− dim coker(T ). (2.4.2)
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We now consider the analogous notion for operators between sections of vector bundles.

Definition 2.4.2. An operator D : Γ(E) → Γ(F ) between sections of two vector bundles

E and F over X is called Fredholm if its kernel ker(D) and cokernel coker(D) are finite-

dimensional. If this is true we define its index ind(D) to be

ind(D) = dim ker(D)− dim coker(D). (2.4.3)

If we have equipped our bundles with metrics such that we can speak of formal adjoints, we of

course have coker(D) = ker(D∗). An important fact of Fredholm operators is that their index

is invariant under perturbations. In other words, if one were to take a family of Fredholm

operators parameterized by some connected topological space, all of their indices would agree.

There is a broad theory on determining Fredholmness of operators and calculating their index.

A key concept is that of ellipticity. Let π : T ∗X → X be the natural projection. Let E and F

be vector bundles of rank n over X, and note that we can pullback them to bundles π∗E, π∗F

over T ∗X.

Definition 2.4.3. A linear operator D : Γ(E) → Γ(F ) is called a differential operator of

order at most k ∈ N if it decreases supports and in local coordinates is given by

D =
∑

0≤|α|≤k

fα
∂|α|

∂xα
, (2.4.4)

for some matrix-valued functions fα.

In the above definition we use multi-index notation, meaning that we use n-tuples α =

(α1, . . . , αn) ∈ Nn and write |α| =
∑

i αi and xα = (xα1
1 , . . . , xαnn ).

Definition 2.4.4. Given a differential operator D of order at most k, its principal symbol

σ(D) : π∗E → π∗F is a bundle map locally given for ξ ∈ T ∗xX by

σ(D)(ξ) = ik
∑
|α|=k

fαξ
α : Ex → Fx. (2.4.5)

The operator D is called elliptic if for all x ∈ X and nonzero ξ ∈ T ∗xX the map σ(D)(ξ) :

Ex → Fx is an isomorphism.

There is a way to define the principal symbol invariantly, i.e. without going to a local descrip-

tion of D. One of the main reasons for introducing the notion of ellipticity is that several

differential operators encountered in geometry satisfy this condition, but moreover that we

have the following result.

Theorem 2.4.5. Let X be a compact manifold and D : Γ(E) → Γ(F ) a first order elliptic

differential operator between vector bundles E and F over X. Then D is Fredholm.
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2.5 Sobolev spaces

In this section we briefly go over the theory of Sobolev spaces as we will need it. For more

details, see [5, Appendix] and references therein. Let (X, g) be a compact Riemannian mani-

fold, and let E → X be either an O(m)- or U(m)-bundle over X, equipped with a connection

A. Recall that we can extend ∇A to the space of E-valued k-forms Ωk(X;E) as per equation

(2.2.13). Given s ∈ Γ(E) we then have ∇kAs = (∇A ◦ · · · ◦ ∇A)s ∈ Ωk(X;E).

Definition 2.5.1. The kth Sobolev norm ‖ · ‖p,k of exponent p > 1 on Γ(E) is defined by

‖s‖pp,k =

k∑
i=0

∫
X

∣∣∇iAs∣∣p dµ for s ∈ Γ(E), (2.5.1)

where ∇0
A is understood to be the identity on Γ(E).

This indeed defines a norm on Γ(E).

Definition 2.5.2. The Sobolev space Lpk(E) is the completion of Γ(E) with respect to the

norm ‖ · ‖p,k.

Remark 2.5.3. If we were to change the Riemannian metric g on X, the choice of fiber

metric on E or the connection A on E, we would get norms ‖ · ‖p,k on Γ(E) which are all

equivalent. In other words, the Sobolev space Lpk(E) would be the same as our choice does

not affect the completion process.

We then naturally have the following result.

Proposition 2.5.4. The space Lpk(E) is a Banach space for all p and k and a Hilbert space

for p = 2.

Note that by definition the space Γ(E) of smooth sections of E lies dense in any Sobolev space

Lpk(E). The main reason for introducing these Sobolev spaces is that functional analysis tells

us the following three key theorems are true.

Theorem 2.5.5 (Sobolev embedding). Let n = dimX. Then for k − n
p > ` there is a

continuous embedding

Lpk(E) ↪→ C`(E), (2.5.2)

where C`(E) is the space of C`-sections of E.

The above theorem has an immediate corollary.

Corollary 2.5.6. Let s be such that s ∈ Lpk(E) for some fixed p and all k. Then s is smooth.

Proof. Clearly s is smooth if and only if it lies in C`(E) for all `. Hence let ` be given. Then

an application of Theorem 2.5.5 with k = `+ bnp c+ 1 implies the result.
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Theorem 2.5.7 (Sobolev multiplication). Let E, F be two O(m)- or U(m)-bundles over X.

Then for k − n
p > 0 there is a continuous multiplication

Lpk(E)⊗ Lpk(F )→ Lpk(E ⊗ F ). (2.5.3)

Remark 2.5.8. A more elaborate version of Sobolev multiplication states that there is a

continuous multiplication

Lpk(E)⊗ Lq`(F )→ Lrm(E ⊗ F ), (2.5.4)

where 0 ≤ m ≤ min{k, `} is such that

0 <
m

n
+

(
1

p
− k

n

)
+

(
1

q
− `

n

)
≤ 1

r
≤ 1. (2.5.5)

Theorem 2.5.9 (Rellich’s lemma). The inclusion

Lpk+1(E) ↪→ Lpk(E) (2.5.6)

is compact for all p and k. In other words, a sequence {si} which is bounded in Lpk+1 has a

convergent subsequence in Lpk.

There is one more result which will be of importance to us, having to do with elliptic operators

between Sobolev spaces.

Theorem 2.5.10 (Elliptic regularity). Let D : Lpk(E) → Lpk(F ) be a first order elliptic

differential operator between Sobolev spaces of sections. Then there exists a constant C > 0

such that for any s ∈ Γ(E) we have

‖s‖p,k+1 ≤ C(‖Ds‖p,k + ‖s‖p,k). (2.5.7)

Moreover, when D has trivial kernel we instead have

‖s‖p,k+1 ≤ C‖Ds‖p,k. (2.5.8)

2.6 Hilbert manifolds

In this section we discuss some basic results of the theory of Hilbert manifolds. Recall that

an ordinary (finite-dimensional) manifold of dimension n is a topological space X which is

Hausdorff, second countable and locally Euclidean. This last condition can also be phrased

by saying that it is modelled on Rn. Hilbert manifolds are a generalization of this concept in

that they allow for topological spaces which are locally modelled on Hilbert spaces instead.

Throughout, let V denote a Hilbert space, i.e. a vector space equipped with an inner product

〈·, ·〉V for whose norm it is complete. Almost all of the below results are true if one replaces

the word Hilbert by Banach everywhere, but all Banach manifolds we will encounter will in

fact be Hilbert. More information on Hilbert manifolds pertaining to Seiberg-Witten theory

can be found in [27, Appendix A & B].
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Definition 2.6.1. A map F : V → W between Hilbert spaces is said to be Fréchet differ-

entiable if for each x ∈ V there exists an open neighbourhood U of x such that there is a

bounded linear operator Ax : V →W satisfying

lim
h→0

‖f(x+ h)− f(x)−Ax‖W
‖h‖V

= 0. (2.6.1)

The operator Ax is called the Fréchet derivative of F at x, and is also denoted by dFx.

Remark 2.6.2. One can readily check that if one takes V and W to be standard Euclidean

Hilbert spaces that the Fréchet derivative agrees with the ordinary definition of a derivative.

Recall that a map between manifolds is smooth if it is locally smooth, i.e. written in coordinate

charts it is infinitely differentiable. We now have a similar notion of a map between Hilbert

spaces being infinitely Fréchet differentiable, which we will again refer to as smoothness.

Definition 2.6.3. A Hilbert manifold Y modelled on V is a paracompact topological space

Y such that each point has a neighbourhood diffeomorphic to an open set in V , along with a

choice of maximal atlas of smooth transition functions.

We say a map F : Y → Z between Hilbert manifolds is smooth if it is locally infinitely

Fréchet differentiable. In the same manner we can extend the notions of regular and critical

values of a map F : Y → Z.

Definition 2.6.4. Given a smooth map F : Y → Z, a point z ∈ Z is called a regular value

of F if for each y ∈ F−1(z) we have that dFy is surjective and has a right inverse. The point

z is called a critical value of F if it is not a regular value of F .

Because Hilbert manifolds are generally infinite dimensional, one must be careful in trying

to extend theorems which hold true for maps between finite-dimensional manifolds to this

setting. It turns out that there are analogous statements for maps which are Fredholm.

Definition 2.6.5. A map F : Y → Z between Hilbert manifolds is Fredholm if it is differen-

tiable and for each y ∈ Y its differential dFy is Fredholm.

Consider now some continuously differentiable Fredholm map F : Y → Z. We can consider

for each y ∈ Y the index ind(dFy) ∈ Z. Because dF is assumed to be continuous and Z is

discrete, we see that the index is locally constant. Assuming that Y is connected we then

define the index of F to be

ind(F ) = ind(dFy), (2.6.2)

for any y ∈ Y . Recall now Sard’s theorem in the finite-dimensional case: for any smooth map

between manifolds its set of critical values has measure zero. There is an analogous statement

for Fredholm maps between Hilbert manifolds due to Smale [29].

Theorem 2.6.6 (Sard-Smale). Let F : Y → Z be a Fredholm map between Hilbert manifolds

such that Y is connected. Then the set of regular values of F is dense in Z.
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Remark 2.6.7. The standard formulation of the theorem is to say that the set of regular

values of F is residual in Z. Here, a subset A ⊂ Z is residual if it is the countable intersection

of open dense sets. Because Z is a metric space, residual sets are dense by the Baire category

theorem. We will also say that a generic point z ∈ Z is regular.

Theorem 2.6.8 (Inverse function). Let F : Y → Z be a smooth map between Hilbert

manifolds and let z ∈ Z be a regular value of F . Then M = f−1(z) ⊂ Y is a (possibly

empty) smooth Hilbert submanifold. If F is Fredholm, then M is finite-dimensional with

dimM = ind(F ).

Proof. A proof using the analogue of the implicit function theorem can be found [27, Appendix

B]. If ind(F ) is negative then M will be empty.

In particular, the above two theorems together show that given a Fredholm map F : Y → Z, a

generic point z ∈ Z will give rise to a finite dimensional Hilbert manifold F−1(z) of dimension

ind(F ).
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Chapter 3

Spin geometry

In this chapter we develop just enough of the theory of spin geometry as is required for

our purposes. In particular, we will quickly restrict ourselves to the four-dimensional case

whenever this is convenient. A more thorough introduction to the subject of spin geometry

can be found, for example, in [11,18].

3.1 The Spin and Spinc groups

In this section we discuss the Lie groups Spin(n) and Spinc(n). We will give explicit de-

scriptions of these groups in the case where n = 4, which will be the only relevant case for

us. Moreover, we will mention several group homomorphisms which will be used in the next

section. We mostly follow the treatment in [22].

Definition 3.1.1. For n > 1 a positive integer, the spin group in dimension n Spin(n) is the

non-trivial double cover of SO(n).

The group Spin(n) is a compact Lie group of dimension n(n−1)
2 and is connected for n ≥ 2

and simply connected for n ≥ 3. Letting ρ : Spin(n)→ SO(n) denote this double cover, these

groups fit in the short exact sequence of Lie groups

1→ {±1} → Spin(n)
ρ→ SO(n)→ 1. (3.1.1)

We see that Spin(n) is a central extension of SO(n) and because SO(n) has fundamental

group Z2 for n > 2 it has a unique double cover.

Corollary 3.1.2. The Lie algebra of Spin(n) is so(n).

We can be more explicit when n = 4. The important fact we use is that R4 carries a natural

multiplication through its identification with the quaternions H. Let us identify R4 and H
with a subspace V of complex 2× 2-matrices, i.e.

R4 ∼=

{
A ∈ M(2,C)

∣∣∣∣∣A =

(
x+ iy z + it

−z + it x− iy

)
, x, y, z, t ∈ R

}
∼= H. (3.1.2)
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This subspace V is generated by the matrices

1 =

(
1 0

0 1

)
, i =

(
i 0

0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)
. (3.1.3)

One can readily check that these matrices indeed satisfy the defining relations for the quater-

nions,

i2 = j2 = k2 = ijk = −1. (3.1.4)

Note that we have

detA = x2 + y2 + z2 + t2 = 〈A,A〉, (3.1.5)

where 〈·, ·〉 is the standard Euclidean inner product. From this we also readily see that we

can identify SU(2) with the subspace of unit vectors in V

SU(2) ∼= {A ∈ V : 〈A,A〉 = 1} ⊂ V. (3.1.6)

From this, the group Spin(4) is the direct product of two copies of SU(2),

Spin(4) = SU+(2)× SU−(2) =

{(
A+ 0

0 A−

)∣∣∣∣∣ A± ∈ SU±(2)

}
. (3.1.7)

The aforementioned covering map is realized by the representation ρ : Spin(4) → GL(V )

given by

ρ(A+, A−)(B) = A−B(A+)−1 (A+, A−) ∈ Spin(4), B ∈ V. (3.1.8)

We then have

〈A−B(A+)−1, A−B(A+)−1〉 = det
(
A−B(A+)−1

)
= detB = 〈B,B〉, (3.1.9)

as by definition both A+ and A− have determinant one. The representation ρ thus preserves

the inner product, and hence ρ : Spin(4) → SO(4). It is now readily checked that ρ is

surjective, and because both Spin(4) and SO(4) are compact Lie groups of dimension 6 we

immediately get that ρ induces an isomorphism of their Lie algebras. Furthermore, the kernel

K of ρ is a finite subgroup and ρ is a covering map. Because as a manifold we have SU(2) ∼= S3,

we see that Spin(4) ∼= S3 × S3 and hence it is simply connected because S3 is. Now consider

the exact sequence on the level of homotopy groups

π1 (Spin(4), I)→ π1 (SO(4), I)→ K → 0. (3.1.10)

Because we know that π(SO(4), I) = Z2 we see from this that K ∼= Z2, and more explicitly

we have K = {(I, I), (−I,−I)}.

Definition 3.1.3. For n > 0 a positive integer, the Spinc-group in dimension n Spinc(n) is

the unique non-trivial double cover of SO(n)×U(1) for which the preimage of each factor is

connected.

34



An alternative definition of Spinc(n) would be

Spinc(n) ∼= Spin(n)×Z2 U(1), (3.1.11)

i.e. as a twisted product of Spin(n) with U(1) through the diagonal action of Z2.

Remark 3.1.4. It is clear that Spin(n) sits inside Spinc(n) through a natural inclusion

i : Spin(n) ↪→ Spinc(n).

We see that Spinc(n) is a central extension of SO(n) by U(1). If we let ρc : Spinc(n) →
SO(n)×U(1) be this double cover, we have ρc([u, λ]) = (ρ(u), λ2) and these groups fit in the

short exact sequence of Lie groups

1→ {±1} → Spinc(n)
ρc→ SO(n)×U(1)→ 1. (3.1.12)

Note furthermore that while Spinc(n) is connected for all n ≥ 2 it is never simply-connected,

and in fact has π1(Spinc(n), I) = Z for n ≥ 3. We again can conclude from the above short

exact sequence what the Lie algebra of Spinc(n) is.

Corollary 3.1.5. The Lie algebra of Spinc(n) is so(n)⊕ iR.

Again we can be more explicit when n = 4. We now have an explicit description of Spinc(4)

as

Spinc(4) =

{(
λA+ 0

0 λA−

)∣∣∣∣∣ A± ∈ SU±(2), λ ∈ U(1)

}
, (3.1.13)

where SU±(2) denote two copies of SU(2) which we distinguish by their subscript. We see

that Spinc(4) has dimension 7 and that

Spinc(4) = (SU+(2)× SU−(2)×U(1)) /Z2, (3.1.14)

through the diagonal action of Z2
∼= K = {(I, I), (−I,−I)}. Perhaps a more symmetric

description of Spinc(4) then is

Spinc(4) = {(A+, A−) : A± ∈ U(2),det(A+) = det(A−)} . (3.1.15)

Moreover, the representation ρ described earlier extends to a representation ρc : Spinc(4)→
GL(V ) given by

ρc([A+, A−, λ])(B) = (λA−)B (λA+)−1 = A−BA
−1
+ . (3.1.16)

Furthermore, there is a group homomorphism π : Spinc(4)→ U(1) given by

π([A+, A−, λ]) = det(λA+) = det(λA−) = λ2. (3.1.17)

Lastly, we will need two further representations of Spinc(4). Let W+ and W− be two copies

of C2 with the standard Hermitian metric. Then we have actions of Spinc(4) on w± ∈ W±
defined by

ρc+([A+, A−, λ])(w+) = λA+w+, ρc−([A+, A−, λ])(w−) = λA−w−. (3.1.18)

The representations ρc+ and ρc− are also called the positive and negative spinor representations

associated to the complex spin representation ρc.
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3.2 Spinc-structures and spinor bundles

Let X be an oriented n-dimensional manifold with Riemannian metric g. In this section we

discuss how to equip X with a principal Spinc-bundle. Again we mostly follow the treatment

in [22]. Consider the frame bundle P → X, i.e. the principal GL(n,R)-bundle constructed out

of transition functions of the tangent bundle TX. Because X is oriented and we have chosen

a Riemannian metric, we can reduce the structure group from GL(n,R) to SO(n). Doing

this we now speak of P as the orthonormal frame bundle of (X, g). Because the space of

Riemannian metrics is path-connected and contractible, all such orthonormal frame bundles

will be isomorphic.

Definition 3.2.1. Given an oriented n-dimensional Riemannian manifoldX, a Spinc-structure

c on X is a lift of the orthogonal frame bundle P to a principal Spinc-bundle P̃ → X. A

Spin-structure on X is a lift of P to a principal Spin-bundle.

In other words, the following diagram has to commute.

P̃ × Spinc(n) P̃

P × SO(n) P

X

(3.2.1)

We denote the space of all Spinc-structures of (X, g) by Sc(X, g). Because of the map π :

Spinc(n) → U(1) constructed in equation (3.1.17), we see that given a Spinc-structure P̃ we

can reduce its structure group to U(1) through π to obtain a principal U(1)-bundle L =

P̃ ×π U(1), which will be called the determinant line bundle det(P̃ ) or det(c) associated to

the Spinc-structure. Because of the inclusion of Spin(n) into Spinc(n), the following result

should not be surprising.

Lemma 3.2.2. Every Spin-structure determines a Spinc-structure.

Proof. If PSpin is a Spin-structure we can use the inclusion i : Spin(n) ↪→ Spinc(n) to reduce

the structure group of PSpin to Spinc(n). Effectively we are creating a Spinc-structure P̃ with

trivial determinant line bundle, viz.

P̃ = PSpin ×Z2 U(1), (3.2.2)

where Z2 acts in the same diagonal manner as expressed in equation (3.1.11), and U(1) is the

trivial U(1)-bundle.

Let us now look at what the construction of a Spinc-structure means locally, in terms of

transition functions. We stated that given a Riemannian metric g on an oriented manifold
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X we can reduce the structure group of the frame bundle P → X from GL(n,R) to SO(n).

In terms of transition functions, this means that we can trivialize the tangent bundle TX so

that there now exists an open cover {Uα}α of X with maps

gαβ : Uα ∩ Uβ → SO(n), (3.2.3)

satisfying the cocycle condition. A Spin- respectively Spinc-structure is now a collection of

transition functions g̃αβ : Uα ∩ Uβ → Spin(n) such that ρ ◦ g̃αβ = gαβ respectively ρc ◦ g̃αβ =

gαβ, which again satisfy the cocycle condition. There now is a nice topological criterion for

the existence of Spinc- and Spin-structures on X in terms of its second Stiefel-Whitney class.

First we recall a notion from the theory of Čech cohomology.

Definition 3.2.3. An open covering {Uα}α ofX is called good if for each choice of (α1, . . . , αk)

for any k, the intersection Uα1 ∩ . . . Uα2 is either empty or diffeomorphic to Rn, i.e. is geodesi-

cally contractible.

It can be shown that one can always find good covers. In particular, we can choose a good

cover as the trivializing cover for TX considered above.

Lemma 3.2.4. An oriented manifold X admits a Spinc-structure if and only if w2(X) is the

reduction mod 2 of an integral class, i.e. w2(X) = c ∈ H2(X;Z) mod 2 for some c. It

admits a Spin-structure if and only if w2(X) = 0.

Proof. We will first deal with the question of a Spin-structure. Given a good cover {Uα}α
trivializing TX, we get maps gαβ : Uα ∩ Uβ → SO(n). Because Uα ∩ Uβ is assumed to be

contractible, we can surely find lifts g̃αβ mapping into Spin(n). However, these might not

satisfy the cocycle condition. Define now the maps

ηαβγ : Uα ∩ Uβ ∩ Uγ → Spin(n) (3.2.4)

by ηαβγ = g̃αβ g̃βγ g̃γα. Because the gαβ satisfy the cocycle condition, we see that each ηαβγ
maps into Z2. Unravelling the definition of g̃αβ immediately implies that they satisfy ηαβγ =

ηβγα = ηβαγ . We further have that as x−1 = x for x ∈ Z2 that ηαβγ = η−1βαγ . Because of

this, Čech cohomology theory tells us that the set of all maps ηαβγ defines a cohomology

class in H2(X;Z2), which is exactly the second Stiefel-Whitney class w2(X). If X has a

Spin-structure, we are able to find a lift g̃αβ satisfying the cocycle condition, which means

then that the maps ηαβγ are all constant 1. But then w2(X) = 0. Conversely, if w2(X) = 0,

then {ηαβγ} is a coboundary and hence we can find constant maps ηαβ mapping into Z2 such

that ηαβηβγηγα = ηαβγ . Consider now the maps g̃′αβ = ηαβ g̃αβ. These map into Spin(n), and

we claim these satisfy the cocycle conditions. Indeed, the maps ηαβ commute with all g̃γδ by

linearity, and we have

g̃′αβ g̃
′
βγ g̃
′
γα = (ηαβgαβ) (ηβγgβγ) (ηγαgγα)

= ηαβγ g̃αβ g̃βγ g̃γα = 1,
(3.2.5)

again because any element of Z2 is its own inverse.
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Now on to Spinc-structures. In this case, we are looking for a set of lifts g̃αβ of gαβ mapping

into Spinc satisfying the cocycle condition. For a good cover we can again always find such a

lift, but they may not satisfy the cocycle condition. Now assume that w2(X) = c ∈ H2(X;Z)

mod 2. Then we can lift the Čech-cocycle ηαβγ defined earlier to an integral cocycle η̃αβγ , with

the reduction mod 2 map expressed by the relation exp(πiη̃αβγ) = ηαβγ . One can now pick a

partition of unity {ψα}α subordinate to our open cover and form the maps fβγ =
∑

α ψαη̃αβγ .

Then setting λαβ = exp(πifαβ) we see that these map into U(1), and one can check then

that the maps h−1αβ g̃αβ define a Spinc-structure for X. Conversely, note that out of transition

functions g̃αβ we can get the transition functions for its determinant line bundle L as the U(1)-

valued maps π ◦ g̃αβ. Thus we see from applying (i, π) to ηαβγ that we get w2(X) + c1(L) = 0

mod 2, from which the conclusion follows, as c1(L) is integral.

Due to this lemma, we can give another description of a Spinc-structure. Say we are given

a principal U(1)-bundle L → X over X with c1(L) ≡ w2(X) mod 2. Then we can obtain

a Spinc-structure on X by letting P̃ → X be the principal Spinc(4)-bundle obtained as the

double covering of P ×L such that the covering map is ρc-equivariant for the principal bundle

actions. The bundle L is again the determinant line bundle of P̃ mentioned earlier. We can

in fact describe all possible Spinc-structures on a four-manifold X.

Theorem 3.2.5. The map Sc(X) → H2(X;Z) given by P̃ 7→ c1(det(P̃ )) is a surjection.

Moreover, if H2(X;Z) is torsion-free (e.g. if X is simply connected) it is also injective.

Proof. Let c ∈ Sc(X) be a given Spinc-structure with determinant line bundle L, and let

another principal U(1)-bundle E → X be given. Consider now the bundle

L′ = L ⊗ E2. (3.2.6)

This is again a principal U(1)-bundle, and furthermore its first Chern class satisfies

c1(L′) = c1(L) + 2c1(E) ≡ w2(X) mod 2. (3.2.7)

In other words, L′ again specifies a Spinc-structure. Looking at a local description of this

process it is not hard to show that all Spinc-structures arise in this manner. The failure of

injectivity comes from the fact that different Spinc-structures might have the same first Chern

class.

We see that in the simply-connected case can identify equivalence classes of Spinc-structures

on X with H2(X,Z). Because of this theorem, we say that Sc(X) is an H2(X;Z)-torsor,

i.e. a homogeneous space for the action we just described. This action is now shown to be

transitive and in the absence of torsion also free, but there is no canonical choice of ‘origin’,

so that we then only get that Sc(X) is non-canonically isomorphic to H2(X;Z). We now

have the following very nice result for n = 4, i.e. for four-manifolds, due to Hirzebruch and

Hopf [13].

Theorem 3.2.6. Let X be an oriented four-manifold. Then X admits a Spinc-structure.
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Proof. By an algebraic topology argument, the second Stiefel-Whitney class w2(X) always

lifts to an integral class c ∈ H2(X;Z). Now construct a line bundle L such that c1(L) =

c and pick a Hermitian metric for L. Then consider its principal U(1)-bundle L. More

details can be found in [11, Appendix A]. The proof of the lifting of the second Stiefel-

Whitney class simplifies when we assume the manifold is simply-connected and compact

(simply-connectedness implies that it is orientable). Namely, consider the short exact sequence

of coefficient groups

1→ Z 2·→ Z r→ Z2 → 1, (3.2.8)

where r : Z → Z2 is given by reduction mod 2. This induces a long exact sequence in

cohomology,

. . .→ H2(X;Z)
2·→ H2(X;Z)

r→ H2(X;Z2)
β→ H3(X;Z)→ . . . , (3.2.9)

where β is called the Bockstein homomorphism. We need to show that w2(X) ∈ im(r) ⊂
H2(X;Z2). But by exactness of the above sequence, we see that im(r) = ker(β). However,

because X is simply connected we have H1(X;Z) = {0}, and then by compactness Poincaré

duality implies that H3(X;Z) = {0} as well. This in turn implies that ker(β) = H2(X;Z2),

so that the conclusion is immediate.

Now, recall that for Spinc(4) we had the very special representations ρc± onto the vector spaces

W± ∼= C2. Using these and the associated bundle construction from Definition 2.1.10 we can

create the spinor bundles, which are one of our main objects of interest.

Definition 3.2.7. Given an oriented Riemannian four-manifold X and a Spinc-structure

c ∈ Sc(X) with principal Spinc(4)-bundle P̃ , the complex plus and minus spinor bundles

S±(c) are defined by

S±(c) = P̃ ×ρc± W±. (3.2.10)

The spinor bundle S(c) is defined by the direct sum S(c) = S+(c)⊕ S−(c).

Sections ψ ∈ Γ(S±(c)) are called positive and negative spinors respectively. The bundles S±(c)

are the U(2)-bundles associated with the projections Spinc(4) → U(2) corresponding to the

two factors SU±(2) in Spinc(4). This means one can think of them as complex rank 2 vector

bundles with Hermitian inner products. Indeed, a complex rank 2 vector bundle initially

has structure group GL(2,C), and the choice of an Hermitian inner product corresponds

to a reduction of the structure group to U(2) < GL(2,C). The determinant line bundle

detC(S±) = L is then just the Hermitian line bundle associated to L, as is clear from equation

(3.1.15). In particular, both determinant line bundles of S+(c) and S−(c) are canonically

isomorphic. One can also define the spinor bundle in arbitrary dimensions n, but this requires

a more abstract description of the representations of Spinc(n).

3.3 Clifford multiplication

In this section we introduce an important operation on the spinor bundles. We will create a

map called Clifford multiplication, which is an action of the cotangent bundle T ∗X on S. In

39



other words, we will define a map

cl : T ∗X → End(S(c)) = End(S+(c)⊕ S−(c)). (3.3.1)

Let us now describe how to define this action. As in equation (3.1.2) we identify R4 ∼= H with

the subspace V of complex 2× 2-matrices. Now consider the map

cl : R4 ×W+ →W−, (x, ψ) 7→ xψ, (3.3.2)

where the expression xψ means having the matrix in V corresponding to x act on ψ through

ordinary matrix multiplication.

Lemma 3.3.1. This map cl induces a bundle map T ∗X ⊗ S+(c)→ S−(c).

Proof. Recall that S+(c) and S−(c) are defined through the associated vector bundle con-

struction out of our given principal Spinc(4)-bundle. To show this map indeed gives rise to

a bundle map, we must check that it commutes with the representations ρc± used to define

S±(c), and the representation ρc : Spinc(4) → GL(V ). Hence let p = [A+, A−, λ] ∈ Spinc(4)

be given. Then we have

cl(ρc(p)x, ρc+(p)ψ) = cl(A−xA
−1
+ , λA+ψ) = A−xA

−1
+ λA+ψ

= λA−xψ = ρc−(p)xψ

= ρc−(p)cl(x, ψ).

(3.3.3)

We can similarly define a map cl : R4×W− →W+ given by (x, ϕ) = −xtϕ. Again one readily

checks that this induces a bundle map T ∗X ⊗ S−(c)→ S+(c).

Definition 3.3.2. The Clifford multiplication map is defined by cl(v)ψ = cl(v, ψ) for v ∈
T ∗X, ψ ∈ Γ(S(c)).

We can now check that this map satisfies the three properties mentioned at the beginning of

this section.

Lemma 3.3.3. The map cl satisfies the following three properties.

1. Given v ∈ T ∗X we have cl(v) ◦ cl(v) = −|v|2Id;

2. If v ∈ T ∗X satisfies |v| = 1, then cl(v) is a unitary transformation;

3. Given v ∈ T ∗X, its Clifford multiplication maps cl(v) : S±(c)→ S∓(c).

Proof. Let v ∈ T ∗X be given. By definition it maps positive spinors to negative spinors and

vice versa, establishing property 3. Moreover, we have for ψ ∈ Γ(S+(c)) that

cl(v) ◦ cl(v)ψ = cl(v)vψ = −vtvψ = −det(v)ψ = −|v|2ψ (3.3.4)

where we use the local identification R4 ∼= V and equation (3.1.5). Property 1 follows. That

cl(v) is unitary when |v| = 1 is now immediate, so that property 2 is seen to hold as well.
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We can extend Clifford multiplication to a map on two-forms cl :
∧2 T ∗X → End(S(c) by

setting

cl(v ∧ w) = cl(v)cl(w)− cl(w)cl(v). (3.3.5)

Note that Clifford multiplication by two-forms preserves the positive and negative spinors.

For later use it will be important to note that we can consider this map after complexification

and restriction as a map

cl+ :
∧2

+
T ∗X ⊗ C→ End(S+). (3.3.6)

We will now determine the matrices in V are associated to this map cl+. Consider a local

trivialization of T ∗X given by the orthonormal frame e1, e2, e3, e4. Then we know that the

space of self-dual two-forms
∧2

+ T
∗X is spanned by the elements

α1 = e1 ∧ e2 + e3 ∧ e4, α2 = e1 ∧ e3 − e2 ∧ e4 and α3 = e1 ∧ e4 + e2 ∧ e3. (3.3.7)

Lemma 3.3.4. Under the identification R4 ∼= V , Clifford multiplication cl+ by the elements

αi is given by the matrices

cl+(α1) =

(
−2i 0

0 2i

)
, cl+(α2) =

(
0 2

−2 0

)
, cl+(α3) =

(
0 −2i

−2i 0

)
. (3.3.8)

Proof. First recall that by the identification R4 ∼= V , the elements ei correspond under Clifford

multiplication to the matrices given in equation (3.1.3). Because of this, we merely compute

cl+(α1) = cl(e1 ∧ e2) + cl(e3 ∧ e4) = (cl(e1)cl(e2)− cl(e2)cl(e1)) + (cl(e3)cl(e4)− cl(e4)cl(e3))

=

((
1 0

0 1

)(
i 0

0 −i

)
−

(
i 0

0 −i

)(
1 0

0 1

))
+

((
0 −1

1 0

)(
0 i

i 0

)
−

(
0 i

i 0

)(
0 −1

1 0

))

=

(
−i 0

0 i

)
−

(
i 0

0 −i

)
=

(
−2i 0

0 2i

)
.

(3.3.9)

The proofs for α2 and α3 are completely analogous.

Remark 3.3.5. Note in particular that the above lemma shows that self-dual two-forms act

by traceless skew-Hermitian endomorphisms. In fact, it shows that by Clifford multiplication∧2
+ T
∗X and the space of traceless skew-Hermitian endomorphisms of S+ are isomorphic.

Similarly, one can check that the restriction cl− to
∧2
− T
∗X gives an isomorphism from this

space to the space of trace-free skew-Hermitian endomorphisms of S−. This type of isomor-

phism only holds in four dimensions, and will be important in stating the Seiberg-Witten

equations.

3.4 Dirac operators

Let P̃ → X be a Spinc-structure with determinant principal U(1)-bundle L. In this section

we discuss the notion of a Dirac operator, mostly following [22]. This will be a differential
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operator between sections of the spinor bundle S(c). For this we will first have to construct a

connection on S(c). As X comes with a given Riemannian metric g, its tangent bundle carries

a natural connection, namely the Levi-Civita connection ∇LC. We can lift this connection

to a connection on its frame bundle. Now let A be a unitary connection on L. Then ∇LC

together with A give a connection on the principal SO(4)×U(1)-bundle which is the quotient

of P̃ by {±1}. Now recall that by Spinc(4) is the double-cover of SO(4) × U(1), so that

they have the same Lie algebras, spinc(4) = so(4) ⊕ iR. Because of this, this connection in

turn induces a unique connection on P̃ , and following the representations ρc± we then get a

connection on the spinor bundle S(c) which we will denote by ∇A. In other words, we get a

covariant derivative

∇A : Γ(S(c))→ Γ(T ∗X ⊗ S(c)). (3.4.1)

This connection is called the spin connection, and it satisfies the following compatibility

condition with respect to Clifford multiplication on S(c) and the Levi-Civita connection. For

any vector fields V,W ∈ Γ(T ∗X) and section s ∈ Γ(S(c)) we have the following Leibniz rule

∇A(cl(V )s) = cl(∇LCV )s+ cl(V )∇As. (3.4.2)

Some important things to note are that ∇A leaves the bundles S+(c) and S−(c) invariant, and

if we let it induce a connection on either determinant line bundle, we get back our original

connection A. It will be useful to note how spin connections made from different connections

A and A′ on L are related. Recall that by Lemma 2.2.7 the space of U(1)-connections on L

is affine over Ω1(X; iR).

Lemma 3.4.1. Let A and A′ = A+a for a ∈ Ω1(X; iR) be two U(1)-connections on L. Then

we have

∇A′ = ∇A +
1

2
a. (3.4.3)

Proof. This is straightforward, noting that the factor 1
2 stems from the fact that the map

π : Spinc(4)→ U(1) used to get back L is given by π([A+, A−, λ]) = λ2.

Using the spin connection ∇A we can define our Dirac operator.

Definition 3.4.2. Given a unitary connection A on L, the Dirac operator DA is defined to

be the map

DA : Γ(S+(c))→ Γ(S−(c)) (3.4.4)

given by the composition

DA : Γ(S+(c))
∇A→ Γ(S+(c)⊗ T ∗X)

cl→ Γ(S−(c)), (3.4.5)

where we use the Clifford multiplication map cl described in the previous section.

It is perhaps instructive to give a local expression for DA. Given a local orthonormal system

of coordinates {ei} and a section ψ ∈ Γ(S+(c)), we have

DA(ψ) =
4∑
i=1

cl(ei)∇A,eiψ. (3.4.6)
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One can readily check that this expression is indeed invariant, i.e. does not depend on the

coordinate system chosen. Moreover, one sees from this that DA is a linear first order dif-

ferential operator. Of course, the same defining expression for DA makes sense to define an

operator Γ(S−(c))→ Γ(S+(c)), also denoted by DA. We can then consider the Dirac opera-

tor as a map D̃A between sections of the full spinor bundle S(c), which in matrix form with

respect to the splitting S = S+ ⊕ S− reads

D̃A =

(
0 DA

DA 0

)
. (3.4.7)

The fact that Clifford multiplication by one-forms sends positive spinors to negative spinors

and vice versa is reflected by the diagonal of this matrix being zero. Now recall that the

bundles S± are equipped with metrics through the metric g on TX and the metric on L.

Because of this, we can define a formal adjoint to DA : Γ(S+(c)) → Γ(S−(c)), giving an

operator D∗A : Γ(S−(c) → Γ(S+(c)). This operator is identical to operator DA we defined

between Γ(S−(c)) and Γ(S+(c)) using the local expression.

Lemma 3.4.3. Let X be compact. Then the Dirac operator D̃A : Γ(S(c)) → Γ(S(c)) is

formally self-adjoint. In other words, for any two sections ψ,ϕ ∈ Γ(S(c)) we have∫
X
〈D̃Aψ,ϕ〉 dµ =

∫
X
〈ψ, D̃Aϕ〉 dµ. (3.4.8)

Proof. Let x ∈ X be some point. Trivialize S in some neighbourhood U of x using a local

orthonormal frame {ei} of S which is moving, i.e. satisfies ∇A,eiej = 0 for all i, j. We then

have

〈D̃Aψ,ϕ〉(x) =

4∑
i=1

〈cl(ei)∇A,eiψ,ϕ〉(x). (3.4.9)

Now recall that Clifford multiplication by unit vectors is a orthogonal map. As such, we have

〈cl(ei)∇A,eiψ,ϕ〉 = 〈cl(ei)cl(ei)∇A,eiψ, cl(ei)ϕ〉 = −〈∇A,eiψ, cl(ei)ϕ〉, (3.4.10)

using the defining expression cl(ei)cl(ei) = −|ei|2Id. Using this together with the fact that

∇A is a unitary connection we get by the Leibniz rule for the spin connection that

〈Daψ,ϕ〉(x) = −
4∑
i=1

〈∇A,eiψ, cl(ei)ϕ〉(x)

=

4∑
i=1

〈ψ,∇A,ei(cl(ei)ϕ)〉(x)− ∂

∂ei
〈ψ, cl(ei)ϕ〉(x)

=

4∑
i=1

〈ψ, cl(ei)∇A,eiϕ〉(x) + 〈ψ, cl(∇LC,ei(ei))ϕ〉(x)− ∂

∂ei
〈ψ, cl(ei)ϕ〉(x)

= 〈ψ, D̃Aϕ〉(x)−
4∑
i=1

∂

∂ei
〈ψ, cl(ei)ϕ〉(x).

(3.4.11)
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Now we need only notice that
4∑
i=1

∂
∂ei
〈ψ, cl(ei)ϕ〉(x) = d∗ω(x) where ω is the one-form given

by 〈ω, ei〉 = 〈ψ, cl(ei)ϕ〉.1 We can now integrate over X and use Stokes’ theorem to finish the

proof.

We can compare the square D∗ADA of the Dirac operator DA : Γ(S+(c)) → Γ(S−(c)) to the

vector bundle Laplacian ∇∗A∇A. Let us first give a local expression for this latter operator.

Lemma 3.4.4. Let {ei} be a moving orthonormal frame. Then we have

∇∗A ◦ ∇A(ψ) = −
4∑
i=1

∇A,ei ◦ ∇A,ei(ψ). (3.4.13)

Proof. Let ψ ∈ Γ(S(c)) and α ∈ Γ(T ∗X ⊗ S(c)) be given. Then by definition of the adjoint

we have

〈∇Aψ, α〉 = 〈ψ,∇∗Aα〉. (3.4.14)

Because ∇A is unitary, it satisfies

d〈ψ,ϕ〉(x) = 〈∇Aψ,ϕ〉(x) + 〈ψ,∇Aϕ〉(x) for all ϕ ∈ Γ(S(c)). (3.4.15)

Now choose ϕ = ∗α in the above formula. Note that if we then integrate the above expression

the left hand side vanishes, so that by definition of the inner product we get

〈∇Aψ, α〉 =

∫
X
〈∇Aψ, ∗α〉(x) = −

∫
X
〈ψ,∇A(∗α)〉(x) = 〈ψ,− ∗ ∇A(∗α)〉. (3.4.16)

This implies that ∇∗A = −∗∇A∗ when applied to S-valued one-forms. Because of this, we get

∇∗A◦∇A(ψ) = −∗∇A

(
4∑
i=1

∇A,ei(ψ) ∗ (dei)

)
= −∗

4∑
i=1

∇A,ei∇A,ei(ψ)dµ = −
4∑
i=1

∇A,ei◦∇A,ei(ψ).

(3.4.17)

The resulting formula we get through this comparison is called Weitzenböck formula, and will

prove to be very useful later on.

Theorem 3.4.5. The Dirac operator satisfies

D∗ADA = ∇∗A∇A +
1

4
s+

1

2
cl(FA), (3.4.18)

where s : X → R denotes the scalar curvature of g.

1This is because the codifferential d∗ is given locally by

d∗ω = −
4∑
i=1

ι(ei)∇LC,eiω, (3.4.12)

where ι denotes internal contraction.
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Proof. Let ψ be a section of S(c) and let {ei} be a moving orthonormal frame. Then we have

by the Leibniz rule and the definition of Clifford multiplication that

D∗ADAψ =

(
4∑
i=1

cl(ei)∇A,ei

) 4∑
j=1

cl(ej)∇A,ej

ψ

=

4∑
i,j=1

cl(ei)∇A,ei
(
cl(ej)∇A,ejψ

)
=

4∑
i,j=1

cl(ei)
(
cl(∇LC,eiej)∇A,ej (ψ) + cl(ej)∇A,ei∇A,ejψ

)
=

4∑
i,j=1

cl(ei)cl(ej)∇A,ei∇A,ejψ

= −
4∑
i=1

∇A,ei∇A,eiψ +
1

2

4∑
i,j=1

cl(ei)cl(ej)
(
∇A,ei∇A,ej −∇A,ej∇A,ei

)
ψ

= ∇∗A∇Aψ +
1

2

4∑
i,j=1

cl(ei)cl(ej)∇2
A(ψ)(ei, ej).

(3.4.19)

The second term can be seen to split into two parts, one of which is scalar multiplication

of ψ by the scalar curvature, and the other is Clifford multiplication by the curvature FA.

See [22, Proposition 5.1.5.] for more details.

It will be useful later on to know how to relate the Dirac operators of two connections A and

A′ with each other. Again recall that by Lemma 2.2.7 the space of U(1)-connections on L is

affine over Ω1(X; iR).

Lemma 3.4.6. Let A and A′ = A+ α be two U(1)-connections on L. Then we have

DA+αψ = DAψ +
1

2
cl(a)ψ for ψ ∈ Γ(S(c)). (3.4.20)

Proof. This readily follows from the local description of the Dirac operator: if ω and A are

the connection one-forms for the spin connection we have by equation (3.4.6) and Lemma

3.4.1 that

DAψ =
∑
i

cl(ei)
dψ

dei
+

1

2
A(ei)cl(ei) +

∑
k<j

ωk,j(ei)cl(ejek)ψ. (3.4.21)

Changing A to A′ indeed just amounts to changing the connection one-form from A to A+a,

and we note that by Definition 3.3.2 that∑
i

a(ei)cl(ei)ψ = cl(a)ψ. (3.4.22)

45



Recall that we mentioned that DA is a linear first order differential operator. It is a natural

question to ask whether it is elliptic, so that it is Fredholm and hence has an index. We now

show that this is indeed the case, and will in fact give a formula for its index.

Lemma 3.4.7. Any Dirac operator DA is elliptic.

Proof. Consider again the local expression for DA used in the proof of Lemma 3.4.6. As the

highest order term does not involve the connection matrices at all, we see that for ξ ∈ T ∗xX
we have

σ(DA)(ξ) = i
∑
j

cl(ξj), (3.4.23)

where we use the metric to identify T ∗xX and TxX. In other words, the principal symbol of DA

at ξ is just Clifford multiplication by iξ. By the defining relation for Clifford multiplication

this is an isomorphism for all nonzero ξ.

Remark 3.4.8. Note that the previous proof showed that the principal symbol of DA is

independent of the unitary connection A on L used to define it.

Now because any Dirac operator is elliptic, it is Fredholm. Furthermore, we can calculate

its index using the Atiyah-Singer index theorem. This is a very deep theorem expressing

the index of any elliptic differential operator on a compact manifold in terms of its principal

symbol and topological information of the bundles involved. We will not state the precise

formulation of this theorem and instead only give the result of applying it to our situation.

Theorem 3.4.9. Let X be a compact oriented four-manifold with a Spinc-structure c. Then

the index of DA : Γ(S+(c))→ Γ(S−(c)) is

ind(DA) =
c1(L)2 − τ(X)

8
, (3.4.24)

where τ(X) is the signature of X.

Remark 3.4.10. We saw that the principal symbol of DA does not depend on the connection

A. As by the Atiyah-Singer index theorem its index only depends on it principal symbol, this

index should be independent of the connection A as well. The above formula shows that this

is indeed the case.

3.5 Spinc-structures for a symplectic manifold

In this section we describe how a symplectic manifold X is naturally equipped with a Spinc-

structure. Moreover, we give a more explicit description of the spinor bundles and Dirac

operators in this case. This section has two main goals. The first is to elucidate the perhaps

abstract definitions of a Spinc-structure and accompanying spinor bundles and Dirac opera-

tors. The second is to develop the necessary formulas for the Dirac operator in this context

for when we discuss the Seiberg-Witten invariants for symplectic manifolds in Section 5.6.
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This section follows [15].

Let X be a four-manifold equipped with an almost complex structure J . Consider once more

the frame bundle P of TX. Through the use of J we can reduce the structure group of P

to U(2). Now note that there is a natural inclusion of U(2) into SO(4), which we will denote

by i : U(2) ↪→ SO(4). Similarly, we have the group homomorphism det : U(2) → U(1)

given by taking the determinant. Looking at the definition of the group Spinc(4), it should

now be clear that it is possible to lift the map i × det : U(2) → SO(4) × U(1) to a map

j : U(2) → Spinc(4). By reduction of the structure group, we then immediately get the

following result.

Lemma 3.5.1. An almost complex structure J equips X with a canonical Spinc-structure cJ .

Proof. More specifically, the canonical embedding j : U(2)→ Spinc(4) is given by

j(A) =


1 0

0 detA

0 0

0 0

0 0

0 0
A

 ⊂ U(2)×U(2). (3.5.1)

Looking at equation (3.1.15) it is clear that this indeed lands in Spinc(4).

Let us now describe the positive and negative spinor bundles in this situation. It will be

convenient to assume X is symplectic with symplectic form ω, which we will do from here on.

Now let c be any Spinc-structure on X, and let J be ω-compatible as per Definition 2.3.10.

Recall that we can act on the spinor bundle S(c) with forms through Clifford multiplication.

In particular we get a map

cl+(ω) : S+(c)→ S+(c). (3.5.2)

Now recall that we can choose local coordinates {xi} on X such that the symplectic form

looks like

ω = dx1 ∧ dx2 + dx3 ∧ dx4. (3.5.3)

By Lemma 3.3.4 we see from this that

cl+(ω) =

(
−2i 0

0 2i

)
. (3.5.4)

Because of this we can split S+(c) up into a +2i- and −2i-eigenspace for cl+(ω). Denote the

subbundle of S+(c) given by the −2i-eigenspace by E → X. This is necessarily a line bundle,

and hence it will have a first Chern class c1(E).

Proposition 3.5.2. The positive and negative spinor bundles S±(c) are given by

S+(c) =
(∧0,0

T ∗X ⊕
∧0,2

T ∗X
)
⊗ E = E ⊕ (K−1 ⊗ E),

S−(c) =
∧0,1

T ∗X ⊗ E.
(3.5.5)
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Moreover, Clifford multiplication by an element v ∈ T ∗(X) ⊗ C on a form α ∈
∧0,• T ∗X is

given by

cl(v)(α) =
√

2(v0,1 ∧ α− ι(v1,0)α). (3.5.6)

Proof. Consider first the case of S+. From the discussion preceding the theorem it is clear that

we must show that the +2i-eigenspace of cl+(ω) is isomorphic to K−1 ⊗E. An isomorphism

from K−1 ⊗ E to this +2i-eigenspace can be given by 1
2cl, as one then checks that in local

coordinates that
1

2
cl(dz ∧ dw) =

(
0 0

−2 0

)
. (3.5.7)

The isomorphism for S− is constructed similarly by considering instead 1√
2
cl. The given

relation for Clifford multiplication is then immediate.

The above lemma can also be proven using the property that the irreducible spin represen-

tations ρc+ and ρc− used to construct the spinor bundle are up to isomorphism unique. This

line of proof can be found in [23, Section 3.4].

Remark 3.5.3. The Spinc-structure cJ we constructed in Lemma 3.5.1 has E trivial, so that

we can realize the non-canonical isomorphism Sc(X) ∼= H2(X;Z) from Theorem 3.2.5 by the

map

E 7→ c1(E). (3.5.8)

We immediately see that a Spinc-structure c = cE has determinant line bundle

L(cE) = det(S+(cE)) = K−1 ⊗ E2. (3.5.9)

In particular, the determinant line bundle of the canonical Spinc-structure associated to J is

K−1.

Let us now turn to describing the Dirac operator in this setting. It will turn out that Dirac

operator can be neatly expressed in terms of the Cauchy-Riemann operator ∂, for any almost

complex manifold. However, we will only do so in the case of a symplectic manifold. An

initial observation is that by Lemma 3.4.7 the Dirac operator has the same symbol as the

standard Dolbeault operator
√

2(∂ + ∂
∗
). What this means is that they can only differ as

differential operators by a term of order zero. So let cJ be the canonical Spinc-structure and

let A be any unitary connection on det(cJ) = K−1. Out of this we can form the associated

spin connection as in Section 3.4. In other words, we get an operator

∇A : Γ(S(c))→ Γ(T ∗X ⊗ S(c)). (3.5.10)

Recall now the splitting of S+(cJ) as S+(cJ) = C ⊕ K−1, and let s0 ∈ Γ(C) ∼= C∞(X;C)

be the trivial constant section of C which is equal to 1 everywhere. By definition the spin

connection respects the splitting of S into the positive and negative spinors, so that in fact

∇A : Γ(C⊕K−1)→ Ω1(X;C)⊕ Ω1(X;K−1). (3.5.11)

There now is a preferred connection with which to form the Spin-connection on S.
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Lemma 3.5.4. There exists a unique unitary connection A0 on K−1 such that the associated

Spin-connection satisfies

∇A0s0 ∈ Ω1(X;K−1). (3.5.12)

Proof. We regard A as being given. Now let A0 = A+ a be any other unitary connection on

K−1, where a ∈ Ω1(X; iR) is some imaginary one-form. By Lemma 3.4.1 we have

∇A0s0 = ∇As0 +
1

2
as0. (3.5.13)

Now again decompose the term ∇As0 according to Ω1(X;C) ⊕ Ω1(X;K−1). Then the fact

that ∇A is a metric connection implies that its C-part (∇As0)C is an imaginary one-form

multiplied by s0. From this the solution is seen to be

a = −2(∇As0)C. (3.5.14)

Now, if the manifold X happens to be Kähler, then the term∇A0s0 in fact vanishes identically.

This has to do with the fact that for Kähler manifolds the Levi-Civita connection and the

Chern connection agree. Hence for Kähler manifolds we further have that DA0s0 = 0. While

the former property does not hold when X is just almost Kähler, the latter property does.

Lemma 3.5.5. Let (X,ω, J) be an almost Kähler four-manifold and consider the Spinc-

structure cJ . For the unitary connection A0 on K−1 from Lemma 3.5.4 we have

DA0s0 = 0. (3.5.15)

Proof. The fact that ∇A0 being a spin connection satisfies the Leibniz rule, equation (3.4.2),

implies after contracting by Clifford multiplication (denoted by c̃l) that

DA0(cl(ω)s0) = cl(dω + d∗ω)s0 + c̃l(cl(ω)∇A0s0). (3.5.16)

Here the latter term means the following. We have s0 ∈ Γ(C), and by Lemma 3.5.4 then

∇A0s0 ∈ Γ(K−1 ⊗ T ∗X). Now apply cl(ω) to get an element cl(ω) ∈ Γ(S+(cJ)⊗ T ∗X), and

use the contraction c̃l to finally obtain an element of Γ(S−(cJ)). Continuing, recall that s0
lies in the −2i-eigenspace of cl(ω). Furthermore, by Lemma 3.5.4, the term ∇A0s0 lies in the

+2i-eigenspace of cl(ω). Lastly, dω = 0, and because ω is self-dual also d∗ω = 0. We see from

this that equation (3.5.16) boils down to

DA0(−2is0) = cl(0)s0 + c̃l(2i∇A0s0). (3.5.17)

But by definition of the Dirac operator we have c̃l(∇A0s0) = DA0s0. The claim follows.

The reason we went through the trouble finding a connection A0 satisfying the property that

DA0s0 = 0 will now become clear, as we will be able to write the Dirac operator for any

Spinc-structure on X in terms of the Cauchy-Riemann operator. Using Lemma 3.2.5 and

Proposition 3.5.2, let cE = cJ ⊗E be any Spinc-structure on X. The determinant line bundle

of cE is given by L = K−1 ⊗E2, so that any unitary connection A ∈ A(L) can be written as

A = A0 ⊗ B2 = A0 + 2B for B a unitary connection on E. If E is chosen to be trivial, then

this twisting by B just amounts to changing the connection on K−1.
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Theorem 3.5.6. Let (X,ω, J) be an almost Kähler four-manifold with a given Spinc-structure

cE = cJ ⊗ E. Then for all A ∈ A(L) given by A = A0 + 2B we have

DA =
√

2(∂B + ∂
∗
B). (3.5.18)

Proof. It suffices to prove this for the canonical Spinc-structure cJ , as the other cases follow

formally from the twisting process. Let α ∈ Γ(C) and β ∈ Γ(K−1) so that (α, β) ∈ Γ(S+(cJ)).

Note that β is self-dual, so that cl(dβ) = cl(d∗β). By equation (3.5.16), the fact that DA0s0 =

0 by Lemma 3.5.5 and the explicit formula for Clifford multiplication given by equation (3.5.6),

we can then write

DA0(α+β) = DA0

(
cl

(
α+

β

2

)
s0

)
= cl

(
dα+

1

2
(dβ + d∗β)

)
s0 =

√
2(∂α+∂

∗
β). (3.5.19)
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Chapter 4

Seiberg-Witten equations and

moduli space

At this point we have reviewed the necessary mathematical objects to give the Seiberg-Witten

equations. In this chapter we will state them and start following the program of establishing

the properties on the wish list mentioned in the introduction. This chapter mostly follows [23].

4.1 The Seiberg-Witten equations

Let X be a compact oriented four-manifold with Riemannian metric g. Let c ∈ Sc(X) be a

Spinc-structure with determinant line bundle L = det(c) having some fixed Hermitian metric

h. We saw in Section 3.2 that c gives rise to two spinor bundles S±(c), and in Section 3.4 that a

unitary connection A ∈ A(L) on L gives rise to a Dirac operator DA : Γ(S+(c))→ Γ(S−(c))

when coupled with the Levi-Civita connection on TX. Let us now introduce the space of

variables in which the Seiberg-Witten equations are expressed.

Definition 4.1.1. The Seiberg-Witten configuration space C(c) is defined by

C(c) = A(L)× Γ(S+(c)). (4.1.1)

We see that C(c) consists of all pairs (A,ψ) where A is a unitary connection on L and ψ is a

section of the positive spinor bundle S+(c). Note that because S+(c) has a Hermitian metric

through h, we can identify it with its dual through an anti-complex isomorphism. If we are

given ψ ∈ Γ(S+(c)) then under this isomorphism its image is denoted by ψ∗. Given ϕ ∈ S+(c)

we can then form

ϕ⊗ ψ∗ ∈ S+(c)⊗
(
S+(c)

)∗ ∼= End(S+(c)). (4.1.2)

We then have an U(2)-equivariant map

σ : C2 × C2 → End(C2) = C2 ⊗ C2∗, σ(ϕ,ψ) = ϕ⊗ ψ∗ − 1

2
tr(ϕ⊗ ψ∗)Id. (4.1.3)

This induces a bundle map σ : S+(c)⊗ S+(c)→ End(S+(c)). Now q(ψ) = σ(ψ,ψ) defines a

map

q : Γ(S+(c))→ End(S+(c)). (4.1.4)
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Note that q(ψ) is a traceless endomorphism of S+(c), so that by Lemma 3.3.4 we get an

element of Ω2
+(X; iR) after applying cl−1+ . With this in mind we are now able to state the

Seiberg-Witten equations.

Definition 4.1.2. The Seiberg-Witten equations for (X, g, c) are given by

F+
A = cl−1+ q(ψ),

DAψ = 0.
(4.1.5)

The first of these is referred to as the monopole equation, while the second is called the Dirac

equation.

We see that the monopole equation takes place in the space Ω2
+(X; iR) of imaginary self-dual

two-forms, while the Dirac equation takes place in the space Γ(S−(c)) of sections of the neg-

ative spinor bundle (recall that DA sends positive spinors to negative spinors and vice versa).

Alternatively, we could have written the monopole equation as cl(F+
A ) = q(ψ) so that it takes

place in the bundle End(S+(c)) of endomorphisms of the positive spinor bundle, as is also

commonly found in the literature.

To ensure the space of solutions to the Seiberg-Witten equations satisfies the desirable prop-

erties of the wish list mentioned in the introduction, it will be necessary to consider slight

perturbations of the equations.

Definition 4.1.3. Given an imaginary self-dual two-form η ∈ Ω2
+(X; iR), the perturbed

Seiberg-Witten equations for (X, g, c, η) are given by

F+
A = cl−1+ q(ψ) + η,

DAψ = 0.
(4.1.6)

Remark 4.1.4. The form η is also called the perturbation parameter. Furthermore, we could

again have written cl(F+
A ) = q(ψ) + cl(η) instead.

To study the space of solutions it will be useful to capture the (perturbed) Seiberg-Witten

equations in one map F , such that solutions to the Seiberg-Witten equations correspond to

pairs in the configuration space such that F (A,ψ) = 0.

Definition 4.1.5. Given an imaginary self-dual two-form η ∈ Ω2
+(X; iR), the Seiberg-Witten

map is the map F : C(c)→ Ω2
+(X; iR)⊕ Γ(S−(c)) defined by

F (A,ψ) = (F+
A − cl−1+ q(ψ), DAψ). (4.1.7)

Similarly, the perturbed Seiberg-Witten map is the map Fη given by

Fη(A,ψ) = (F+
A − cl−1+ q(ψ)− η,DAψ). (4.1.8)

We wish to study the space of all solutions to the Seiberg-Witten equations given a pair

(X, c). However, recall that the bundles in which the equations take place carry groups of
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automorphisms. Some of these automorphisms leave the Seiberg-Witten equations invariant,

and hence send solutions to solutions. Because of this it is more natural to study the space

of solutions not related to each other by such an automorphism. Our choice will be to use

those automorphisms of the principal Spinc-bundle P̃ which cover the identity on the frame

bundle of the tangent bundle. But these are easily identified with the automorphisms of the

principal U(1)-bundle L associated to the determinant line bundle. Taking note of Lemma

2.1.21 we then have the following definition.

Definition 4.1.6. The gauge group G is defined by G = C∞(X,U(1)) = Aut(L).

There is a natural action of the gauge group on the configuration space. Note that we can

conjugate a given spin connection ∇A on S(c) by an element u ∈ G to obtain a new connection

u∇Au−1. It is not hard to show that

u∇Au−1 = ∇A−2u−1du, (4.1.9)

the factor 2 arising from the fact that the map π : Spinc(4) → U(1) is given by squar-

ing. In other words, the resulting connection is the same as the spin connection induced

by A − 2u−1du. Similarly, any automorphism u of the principal Spinc-bundle c induces an

automorphism on all of its associated bundles and hence in particular on the spinor bundle

S(c). We will not introduce new notation and also write u for the resulting action on S(c).

Definition 4.1.7. The gauge action of G on C(c) is defined by

u · (A,ψ) = (A− 2u−1du, uψ). (4.1.10)

Remark 4.1.8. We say two pairs (A,ψ), (A′, ψ′) ∈ C(c) are gauge equivalent if there exists

an element u ∈ G such that u · (A,ψ) = (A′, ψ′). It is clear that this is indeed an equivalence

relation, and we denote the equivalence class of (A,ψ) under gauge equivalence by [A,ψ].

We would of course like that this gauge action does not interfere with being a solution to

the Seiberg-Witten equations, so that the space of solutions is invariant under the gauge

action. Let us therefore also define the action of u ∈ G on Ω2
+(X; iR) ⊕ Γ(S−(c)). Given

(η, ϕ) ∈ Ω2
+(X; iR)⊕ Γ(S−(c)), we set

u · (η, ϕ) = (η, uϕ). (4.1.11)

Lemma 4.1.9. The Seiberg-Witten equations are equivariant with respect to the gauge action.

Proof. We must show that for each u ∈ G we have that

Fη(u · (A,ψ)) = u · Fη(A,ψ). (4.1.12)

Using Definition 4.1.5 we see that

Fη(u · (A,ψ)) = (F+
u(A) − cl−1+ q(uψ)− η,Du(A)(uψ)). (4.1.13)
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But now note that we have

Fu(A) = FA−2u−1du = FA − 2d
(
u−1du

)
= FA,

q(uψ) = σ(uψ, uψ) = (uψ)⊗ (uψ)∗ − |uψ|
2

2
Id = uuψ ⊗ ψ∗ − |u|2 |ψ|

2

2
Id = q(ψ),

(4.1.14)

because by definition u is a map into U(1) and thus satisfies uu = |u|2 = 1. Lastly we have

by unravelling the definitions that

DA−2u−1du(uψ) = cl ◦ ∇A−2u−1du(uψ) = cl ◦ u∇A(u−1uψ) = u ◦ cl∇Aψ = uDAψ, (4.1.15)

where we used the fact that Clifford multiplication commutes with all automorphisms of the

spinor bundle S(c).

In particular, if (A,ψ) is a solution to the Seiberg-Witten equations, we now have for any

u ∈ G that

Fη(u · (A,ψ)) = u · Fη(A,ψ) = 0, (4.1.16)

so that u · (A,ψ) is again a solution to the Seiberg-Witten equations. Having this result, we

can now define the object which we will study for the remainder of this thesis.

Definition 4.1.10. Given a Spinc-structure c on X and a perturbation η ∈ Ω2
+(X; iR), the

Seiberg-Witten moduli space Mη(c) is the space of solutions (A,ϕ) to the Seiberg-Witten

equations, modulo gauge transformations.

Given a Spinc-structure c, let us introduce the general quotient space B(c) defined by

B(c) = C(c)/G, (4.1.17)

consisting of all gauge equivalence classes [A,ψ] of configuration pairs. We then see that the

Seiberg-Witten moduli space is given by the subset of B(c)

Mη(c) = {[A,ψ] ∈ B(c) |Fη(A,ψ) = 0} . (4.1.18)

In order to study this space and its properties we will first study the space B(c). Note that

we can naturally identify the tangent space of C(c) at any point with the space Ω1(X; iR)⊕
Γ(S+(c)) due to the space of unitary connections being affine, see Lemma 2.2.7. We wish to

understand M as a topological space, and hence must equip B(c) with a topology. One might

consider using smooth connections and sections of the positive spinor bundle, but in fact it is

more useful to consider only those in a certain Sobolev space. There are now several choices

to be made, but we will continue to follow the treatment in [23] and work with L2-spaces.

This means the spaces we work with are Hilbert manifolds; see also Section 2.5. In particular,

recall how given a vector bundle E → X we let Lpk(E) denote the space of Lpk-sections of E.

Given a Spinc-structure c we denote the space of unitary L2
k-connections on its determinant

line bundle L = det(c) by Ak(L). Similarly, we denote the space of L2
k-configurations by

Ck(c) = AL2
k
(L)× L2

k(S
+(c)). (4.1.19)
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We denote by Gk = L2
k(U(1)) the gauge group consisting of all L2

k-maps from X to U(1),

where U(1) is the trivial U(1)-bundle over X. Lastly, we denote by Pk = L2
k

(∧2
+ T
∗X ⊗ iR

)
the space of L2

k-perturbations. We now choose to work with C2(c), which will again write as

C(c). Furthermore, we choose to work with the space G3 = G of gauge transformations, and

the space P1 of perturbations. We now equip B(c) with the quotient topology and Mη(c) with

the induced subspace topology. For k ≥ 2, denote by Mη,k(c) the moduli space of L2
k-solutions

to the perturbed Seiberg-Witten equations modulo L2
k+1-gauge transformations.

Remark 4.1.11. We require one additional degree of regularity on the gauge transformations

as their action on the configuration space involves their derivative. Furthermore, we require

that the gauge transformations give rise to continuous bundle automorphisms, and for this

we need them to be at least L2
3. In this case we have by the Sobolev multiplication theorem,

Theorem 2.5.7, a continuous map L2
3(U(1))×L2

3(U(1))→ L2
3(U(1)). Moreover, similar Sobolev

multiplication theorems imply that the gauge action on C(c) is continuous. We will see shortly

in Corollary 4.1.19 that all Mη,k(c) for k ≥ 2 are diffeomorphic.

Proposition 4.1.12. The configuration space Ck(c) is a Hilbert manifold. Moreover, the

gauge group Gk is an infinite-dimensional Hilbert Lie group.

As said, to understand M(c) clearly it is important to consider first the quotient B(c) of the

configuration space by the gauge action. A priori it is not clear that the gauge action is nice.

In particular, for the quotient to again be a manifold we need that the action is free. Whether

or not this is true is answered by the following lemma.

Lemma 4.1.13. Let X be connected. The gauge action at a point (A,ψ) is free if and only

if ψ 6= 0.

Proof. Let (A,ψ) ∈ C(c) be any point and let u ∈ G be given. Recall that

u · (A,ψ) = (A− 2u−1du, uψ). (4.1.20)

For u to act trivially on the connection A, we need exactly that du = 0, which because X

is connected implies that u is a constant map from X to U(1). Such an element clearly acts

freely on ψ if and only if ψ 6= 0.

Remark 4.1.14. Pairs (A,ψ) ∈ where ψ 6= 0 are called irreducible, and all others are called

reducible. We see that reducible pairs have stabilizer equal to the subgroup of G consisting

of constant maps to U(1). Note that being (ir)reducible is preserved by the gauge action, so

that it makes sense to speak of (ir)reducible points in the quotient space B(c).

Given a Spinc-structure c, we denote by B∗(c) ⊂ B(c) the space of irreducible gauge equivalence

classes of configuration pairs. Similarly, we denote by M∗(c) the moduli space of irreducible

solutions to the Seiberg-Witten equations. We see that the only solutions where the moduli

space can be hoped to be well-behaved are the irreducible ones. As such, we wish to have

some results regarding how many reducible solutions there are. This will be treated in detail

in Section 4.4 on transversality. More precisely, we will show that for so-called generic choices

of Riemannian metric g and perturbation η the moduli space Mη(c) does not contain reducible

solutions. Let us now state the following “slice theorem” result which we will not prove here.
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Theorem 4.1.15. The quotient space B(c) = C(c)/G is Hausdorff. Moreover, there are local

slices for the gauge action: each point (A,ψ) ∈ C(c) has an open neighbourhood U containing

a smoothly embedded closed submanifold S which is invariant under the stabilizer Stab of

(A,ψ) such that the map

G ×Stab S → C(c) (4.1.21)

is a diffeomorphism onto a neighbourhood of the orbit going through (A,ψ).

Proof. A proof using the inverse function theorem applied to the differential of the gauge

action can be found in [23, Section 4.5].

Corollary 4.1.16. The open subset B∗(c) ⊂ B(c) of irreducible orbits is a Hilbert manifold.

Proof. This follows directly from Theorem 4.1.15 together with the fact that the gauge action

is free at irreducible points by Lemma 4.1.13.

We now turn to the gauge fixing. Essentially, we wish to pick out a preferred representative

of a given gauge equivalence class.

Lemma 4.1.17. Let A0 ∈ A(L) be some smooth unitary connection and fix k ≥ 2. Then for

any connection A ∈ Ak(L) there exists a gauge transformation u ∈ Gk+1 such that u(A) =

A0 + a with a ∈ iL2
k(T

∗X) satisfying d∗a = 0.

Proof. Given A, we know there exists a b ∈ iL2
k(T

∗X) such that A = A0 + b. Now using the

Hodge decomposition equation (2.3.7) we see that we can write

b = b0 + df + d∗β, (4.1.22)

where b0 is harmonic, f ∈ L2
k+1(X; iR) and β ∈ iL2

k

(∧2 T ∗X
)

. Now define the gauge

transformation u by u = e
1
2
f . Then by definition of the gauge action we have

u(A) = A− 2u−1du = A0 + b0 + df + d∗β − df = A0 + b0 + d∗β. (4.1.23)

In other words, we have u(A) = A0 + a for a = b0 + d∗β. It is clear by definition that

d∗a = 0.

Now consider again the perturbed Seiberg-Witten equations Fη(A,ψ) = 0.

Lemma 4.1.18. Given an element η ∈ Pk for k ≥ 1, for every solution (A,ψ) ∈ C2(c) there

exists a gauge transformation u ∈ G3 such that u · (A,ψ) ∈ Ck+1(c). In particular, given a

smooth perturbation η, any solution (A,ψ) to the perturbed Seiberg-Witten equations is gauge

equivalent to a smooth solution.

Proof. This will be proven for the unperturbed case in Section 4.3 on compactness. More

specifically, this follows from Theorem 4.3.8. Essentially, one uses the Seiberg-Witten equa-

tions equations and ellipticity of the Dirac operator and d++d∗ together with elliptic regular-

ity, Theorem 2.5.10, to gradually increase the degree of regularity of the solution. An adap-

tation to the perturbed case is immediate. The second statement follows from the Sobolev

embedding theorem, Theorem 2.5.5.
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Let η be a smooth perturbation. We can now answer the question whether choosing to work

with Sobolev spaces changed the spaces we work with.

Corollary 4.1.19. For any k ≥ 2 we have Mη,2(c) ∼= Mη,k(c). In other words, the smoothly

perturbed Seiberg-Witten moduli space is independent of the choice of Sobolev norm on C(c)
and G.

Proof. This is immediate from Lemma 4.1.18: every element [A,ψ] ∈ Mη,2(c) in fact sits

inside Mη,k(c) for all k ≥ 2, and clearly the converse is also true.

Remark 4.1.20. We see that instead of considering just smooth solutions by also looking

for solutions in the larger Sobolev space we did not gain anything. Regardless, the Sobolev

spaces allow for useful analytical tools to be used.

4.2 Dimension

In this section we will prove that at irreducible solutions the moduli space is a smooth manifold

of a certain dimension, determined by the Atiyah-Singer index theorem. This section follows

[23] and is an instance of the general Kuranishi picture as in [27, Appendix B]. Let (A,ψ) ∈
C(c) be a solution to the Seiberg-Witten equations. We wish to find a local description

of the moduli space for a neighbourhood around some point. In such a situation we will

always get a deformation complex, also called the fundamental complex, corresponding to

the linearization of the Seiberg-Witten equations and the gauge action. Let us see how this

arises. Recall how the solutions to the Seiberg-Witten equations are those pairs (A,ψ) ∈ C(c)
satisfying F (A,ψ) = 0.

Lemma 4.2.1. The differential dF of F at a pair (A,ψ) ∈ C(c) is given by

dF(A,ψ)(a, ϕ) =

(
d+a− cl−1+ dqψ(ϕ),

1

2
cl(a)ψ +DAϕ

)
for (a, ϕ) ∈ Ω1(X; iR)⊕ Γ(S+(c)),

(4.2.1)

where dqψ is the differential of q at ψ.

Proof. Consider dF(A,ψ) as a 2× 2-matrix. We know from Lemma 2.2.8 that the connection

A+ a has curvature given by FA+a = FA + da, the term a∧ a vanishing as the Lie algebra iR
of U(1) is abelian. From this it is clear that the first matrix entry should be d+a. Similarly,

the third matrix entry is indeed 1
2cl(a)ψ because of Lemma 3.4.6. Furthermore, the fourth

matrix entry should indeed be DAϕ merely by linearity of the Dirac operator. Let us now

compute what dqψ(ϕ) should be. We have

q(ψ + ϕ) = σ(ψ + ϕ,ψ + ϕ) = (ψ + ϕ)⊗ (ψ + ϕ)∗ − 1

2
〈ψ + ϕ,ψ + ϕ〉Id

= ψ ⊗ ψ∗ − 1

2
〈ψ,ψ〉Id +

(
ψ ⊗ ϕ∗ + ϕ⊗ ψ∗ − 1

2
(〈ψ,ϕ〉+ 〈ϕ,ψ〉) Id

)
+ ϕ⊗ ϕ∗ − 1

2
〈ϕ,ϕ〉Id.

(4.2.2)
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From looking at the terms which are linear in ϕ we see by conjugate symmetry of the inner

product on S(c) that

dqψ(ϕ) =
d

dt
q(ψ + tϕ)

∣∣∣∣
t=0

= ψ ⊗ ϕ∗ + ϕ⊗ ψ∗ − 1

2

(
〈ψ,ϕ〉+ 〈ψ,ϕ〉

)
Id. (4.2.3)

In particular, we see that this is a traceless self-adjoint element of End(S(c)) which by cl−1+

is sent to an imaginary self-dual two-form as desired.

Lemma 4.2.2. The differential of the gauge action at a pair (A,ψ) ∈ C(c) is given by

f 7→ (−2df, fψ) for f ∈ L2
3(X; iR). (4.2.4)

Proof. Consider a curve ut = etf ⊂ G for some map f : X → iR. We then have u0 = 1 and

u′0 = f . Because of this we can compute that

d

dt
ut(A)

∣∣∣∣
t=0

=
d

dt

(
A− 2dutu

−1
t

)∣∣∣∣
t=0

=
d

dt

(
A− 2d(etf )e−tf

)∣∣∣∣
t=0

= −2df, (4.2.5)

so that the infinitesimal action of the gauge group indeed is as stated.

We can now capture both the linearization of the gauge action and the Seiberg-Witten equa-

tions into a fundamental complex L, which reads

0→ L2
3(X; iR)

D1→ L2
2

(
(T ∗X ⊗ iR)⊕ S+(c)

) D2→ L2
1

((∧2

+
T ∗X ⊗ iR

)
⊕ S−(c)

)
→ 0, (4.2.6)

where the maps D1 and D2 are the linearizations of the gauge action and the differential of

F respectively, which by Lemma 4.2.2 and Lemma 4.2.1 are given by

D1 = (−2d, (·)ψ) and D2 =

(
d+ −cl−1+ dqψ(·)

1
2cl(·)ψ DA

)
. (4.2.7)

Lemma 4.2.3. At any solution (A,ψ) to the Seiberg-Witten equations the above composition

L is a complex.

Proof. To show L is a complex we must show that the composition D2 ◦D1 is the zero map.

This follows formally from Lemma 4.1.9, but let us show it explicitly. Let f ∈ L2
3(X; iR) be

given. Then D1f = (−2df, fψ) so that

D2 ◦D1f =
(
−2d+df − cl−1+ dqψ(fψ),−cl(df)ψ +DA(fψ)

)
. (4.2.8)

We now clearly have d+df = pr+d
2f = 0. Furthermore, we have

dqψ(fψ) = ψ ⊗ (fψ)∗ + (fψ)⊗ ψ∗ − 1

2

(
〈ψ, fψ〉+ 〈ψ, fψ〉

)
Id

= (f + f)ψ ⊗ ψ∗ − 1

2
(f + f)|ψ|2Id = 0,

(4.2.9)

as f is purely imaginary and thus f = −f . We see that the first component of the composition

indeed vanishes. Now by the Leibniz rule for the Dirac operator we get

− cl(df)ψ +DA(fψ) = −cl(df)ψ + cl(df)ψ + fDAψ = 0, (4.2.10)

where we used that DAψ = 0 as (A,ψ) is a solution to the Seiberg-Witten equations. We

conclude that the composition indeed is a complex.
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We can now define the three cohomology groups associated to this complex. They are given

by

H0
(A,ψ) = kerD1, H1

(A,ψ) =
kerD2

imD1
, H2

(A,ψ) = cokerD2. (4.2.11)

Proposition 4.2.4. The complex L is in fact elliptic, with Euler characteristic eL equal to

eL = dimH0
(A,ψ) − dimH1

(A,ψ) + dimH2
(A,ψ) = ind(d∗ ⊕ d+)− ind(DA). (4.2.12)

Proof. To show the complex is elliptic, note that we can change the complex under homotopy

deformations, as long as we do not change the corresponding symbol sequence. In other

words, we can get rid of zeroth order terms. As such, consider the homotopies

D1(t) = (−2d, (1− t)(·)ψ), D2(t) =

(
d+ −(1− t)cl−1+ dqψ(·)

1
2(1− t)cl(·)ψ DA

)
. (4.2.13)

We then have D1(0) = D1 and D2(0) = D2, while

D1(1) = (−2d, 0) and D2(1) =

(
d+ 0

0 DA

)
. (4.2.14)

By using this deformation we see that the original elliptic complex becomes the direct sum

of the two complexes L1 and L2, given respectively by

0→ L2
3(X; iR)

−2d→ L2
2 (T ∗X ⊗ iR)

d+→ L2
1

(∧2

+
T ∗X ⊗ R

)
→ 0,

0→ 0→ L2
2

(
S+(c)

) DA→ L2
1

(
S−(c)

)
→ 0.

(4.2.15)

Ellipticity of L2 follows from Lemma 3.4.7 saying that Dirac operators are elliptic. Ellipticity

of L1 immediately follows from Lemma 2.3.9, noting that the factor −2 is immaterial. We

conclude that the original complex is elliptic as well. Taking the adjoint of the first operator

−2d, let us transform L1 into

L2
2 (T ∗X ⊗ iR)

−2d∗⊕d+→ L2
3(X; iR)⊕ L2

1

(∧2

+
T ∗X ⊗ R

)
. (4.2.16)

Then the index of L1 is equal to the index of −2d∗⊕d+ which in turn is equal to ind(d∗⊕d+).

We thus see another proof of ellipticity of L1: the Hodge Laplacian ∆ is clearly elliptic, so

that D = d∗ + d is as well, because ∆ = D2. The Euler characteristic eL of our original

complex is now the sum of their respective Euler characteristics eL1 and eL2 , which are given

by

eL1 = ind(d∗ ⊕ d+), eL2 = −ind(DA). (4.2.17)

We can now see the interpretation of these cohomology groups. They measure exactly the

obstructions at a solution (A,ψ) in order for the quotient space to be well-behaved at that

point.
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Proposition 4.2.5. A solution (A,ψ) is irreducible if and only if H0
(A,ψ) is trivial. Further-

more, if both H0
(A,ψ) and H2

(A,ψ) vanish, the moduli space M(c) is a smooth manifold at [A,ψ],

of dimension equal to dimH1
(A,ψ) = ind(DA)− ind(d⊕ d∗).

Proof. The first statement is immediate as f ∈ kerD1 if and only if df = 0 and fψ = 0. To

see the second statement, note that H2
(A,ψ) vanishing implies that dF is surjective at (A,ψ),

so that the claim follows by the inverse function theorem, Theorem 2.6.8. More specifically,

the inverse function theorem implies that a neighbourhood of the equivalence class [A,ψ] is a

smooth Hilbert submanifold inside B∗(c) with tangent space equal to H1
(A,ψ). Its dimension

is given by ind(dF ) = dimH1
(A,ψ).

Remark 4.2.6. The space H1
(A,ψ) is called the Zariski tangent space of M(c) at (A,ψ). The

space H2
(A,ψ) is called the obstruction space at (A,ψ). We say an irreducible solution (A,ψ) is

smooth if its obstruction space vanishes. We see from the above proposition that the Zariski

tangent space is the tangent space of the moduli space at smooth irreducible solutions.

It is clear that we will want to be able to decide when a solution (A,ψ) is irreducible and

smooth. More specifically, we want results saying that we can make it so that all solutions

to the Seiberg-Witten equations are both irreducible and smooth, so that then the entire

moduli space is a smooth manifold. As was mentioned earlier, this will be done in Section 4.4

on transversality. The main idea is that given a Riemannian metric we can usually perturb

the Seiberg-Witten equations using a generic perturbation, i.e. one from some open dense set

in the space Ω2
+(X; iR) of all perturbations, such that all solutions are irreducible and smooth.

Having established that the moduli space will have tangent space equal to the Zariski tangent

space at smooth irreducible points, a natural question is to ask what the dimension of the

moduli space is. We can determine this by merely determining the dimension of the space

H1
(A,ψ). We see from Proposition 4.2.5 that this dimension, as long as H0

(A,ψ) and H2
(A,ψ) both

vanish, is given by the index of DA minus the index of the operator d∗⊕ d+. Let us therefore

calculate the index of these operators.

Proposition 4.2.7. The index of DA is equal to 1
4

(
c1(L)2 − τ(X)

)
. The index of d∗⊕ d+ is

equal to −(1 + b+2 (X)− b1(X)).

Proof. Note that for this calculation we care about the real index of the operators. As the

real index is just twice the complex index, the first statement follows from Lemma 3.4.9. To

determine the index of d∗ ⊕ d+, consider again the result of Lemma 2.3.9. We see from this

that

ker(d∗ ⊕ d+) = H1(X;R),

coker(d∗ ⊕ d+) = ker(d)⊕ coker(d+) = H0(X;R)⊕H2
+(X;R).

(4.2.18)

Now note that dimH0(X;R) = b0 = 1, so that

ind(d∗ ⊕ d+) = ker(d∗ ⊕ d+)− dim coker(d∗ ⊕ d+) = b1(X)− 1− b+2 (X). (4.2.19)
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Note that the above proposition in particular implies that the dimension of the Zariski tangent

space is the same at all smooth irreducible points. After this calculation it is now easy to

conclude what the dimension of the moduli space is.

Theorem 4.2.8. At a smooth irreducible point [A,ψ] ∈ M(c) the moduli space M(c) is a

smooth manifold of dimension

d(c) =
1

4

(
c1(L)2 − (2χ(X) + 3τ(X))

)
, (4.2.20)

where χ and τ are the Euler characteristic and signature respectively.

Proof. Note firstly that at a smooth irreducible point we have

d(c) = dimH1
(A,ψ) = −e = ind(DA)− ind(d∗ ⊕ d+), (4.2.21)

as was mentioned above Proposition 4.2.7. Because of this, we can compute by Proposition

4.2.7 that

d(c) = ind(DA)− ind(d∗ ⊕ d+) =
1

4
(c1(L)2 − τ(X)) + 1 + b+2 (X)− b1(X). (4.2.22)

Now note that by equation (2.3.13) we have

1

2
(χ(X) + τ(X)) =

1

2
(2− 2b1(X) + b2(X) + b+2 (X)− b−2 (X)) = 1 + b+2 (X)− b1(X), (4.2.23)

so that indeed

d(c) =
1

4

(
c1(L)2 − (2χ(X) + 3τ(X))

)
. (4.2.24)

To finish this section we state a corollary of this theorem in the case where the Spinc-structure

c comes from an almost complex structure. The main observation is the following result

mentioned earlier as Theorem 2.1.15.

Lemma 4.2.9. Let X be a four-manifold with an almost complex structure J . Then we have

c1(TX; J)2 = 2χ(X) + 3τ(X). (4.2.25)

So now let cJ be the canonical Spinc-structure associated to J . Because we know by Section

3.5 that its determinant line bundle L(cJ) is just K−1X , the dual of the canonical line bundle,

the following is immediate.

Corollary 4.2.10. Given an almost complex structure, the dimension d(M(cJ)) of the Seiberg-

Witten moduli space for its canonical Spinc-structure cJ is equal to zero near smooth irre-

ducible points.

Proof. This is immediate from the dimension formula in Theorem 4.2.8 together with Lemma

4.2.9.
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4.3 Compactness

In this section we deal with the compactness of the moduli spaces. As we will see, the situation

is much nicer in Seiberg-Witten theory than in Donaldson theory: indeed, the moduli spaces

M(c) are compact for any Spinc-structure c, in stark contrast with Donaldson theory. The

exact statement of the compactness theorem is the following.

Theorem 4.3.1. Let c be a Spinc-structure on a compact oriented four-manifold X. For

every fixed Riemannian metric g and perturbation η, the moduli space Mη(c) is compact.

To prove this theorem we follow the treatment in [23]. We use an a priori bound on the

solutions obtained through the Weitzenböck formula together with the gauge fixing idea of

Lemma 4.1.17. Throughout, a Spinc-structure c will be fixed. We focus first on the unper-

turbed Seiberg-Witten equations F (A,ψ) = 0. Note that it will suffice to show that the

moduli space is sequentially compact, as it is a metric space.

Lemma 4.3.2. Let (A,ψ) be a smooth solution to the Seiberg-Witten equations. Let {ei} be

a moving orthornormal frame. Then for all x ∈ X we have

Re (〈∇∗A∇A(ψ(x)), ψ(x)〉) =
1

2
∆(|ψ(x)|2) +

∑
i

|∇ei(ψ(x))|2, (4.3.1)

where ∆ = −
∑

i
∂2

∂e2i
is the Laplacian on functions.

Proof. Note firstly that by compatibility of the connection with the metric we have

−
∑
i

∂2

∂e2i
〈ψ(x), ψ(x)〉 = −

∑
i

(〈∇ei ◦ ∇ei(ψ(x)), ψ(x)〉+ 2〈∇ei(ψ(x)),∇ei(ψ(x))〉)

+
∑
i

〈ψ(x),∇ei ◦ ∇ei(ψ(x))〉.
(4.3.2)

Because of this, we have

∆(|ψ(x)|2) + 2
∑
i

|∇ei(ψ(x))|2 = −
∑
i

(〈∇ei ◦ ∇ei(ψ(x)), ψ(x)〉+ 〈ψ(x),∇ei ◦ ∇ei(ψ(x))〉)

= 〈∇∗A ◦ ∇A(ψ(x)), ψ(x)〉+ 〈ψ(x),∇∗A ◦ ∇A(ψ(x))〉
= 2Re (〈∇∗A∇A(ψ(x)), ψ(x)〉) .

(4.3.3)

where we used Lemma 3.4.4 for the local expression of ∇∗A ◦ ∇A.

Now define the quantity s−X by

s−X = max
x∈X

max{−s(x), 0}, (4.3.4)

where s is the scalar curvature of g. Note that s−X is independent of the Spinc-structure we

chose, as it only depends on the Riemannian metric.
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Lemma 4.3.3. Let (A,ψ) be a smooth solution to the Seiberg-Witten equations. Then for all

x ∈ X we have

|ψ(x)|2 ≤ s−X . (4.3.5)

Proof. The Weitzenböck formula, Lemma 3.4.5, states that

D∗ADA = ∇∗A∇A +
1

4
s+

1

2
cl(FA). (4.3.6)

Assume now that ψ 6= 0. Because (A,ψ) is a solution to the Seiberg-Witten equations, we have

DAψ = 0. Furthermore, as ψ ∈ Γ(S+(c)) is a positive spinor, we have cl(FA)ψ = cl(F+
A )ψ as

anti-self-dual forms act trivially on S+(c) by definition. This means that applying the above

to ψ and using the monopole equation we have

0 = ∇∗A∇Aψ +
s

4
ψ +

1

2

(
ψ ⊗ ψ∗ − |ψ|

2

2
Id

)
ψ. (4.3.7)

Now note that 1
2

(
ψ ⊗ ψ∗ − |ψ|

2

2 Id
)
ψ = |ψ|2

4 ψ. Hence by taking the pointwise inner product

with ψ at any point x ∈ X we get

〈∇∗A∇Aψ(x), ψ(x)〉+
s(x)

4
|ψ(x)|2 +

|ψ(x)|4

4
= 0. (4.3.8)

In particular, the term 〈∇∗A∇Aψ(x), ψ(x)〉 is seen to be real. Now let x0 ∈ X be such that

the function x 7→ |ψ(x)|2 takes on its maximum. Clearly then we have that ∆(|ψ(x0)|2) ≥ 0.

From this we see by Lemma 4.3.2 above that

〈∇∗A∇Aψ(x0), ψ(x0)〉 =
1

2
∆(|ψ(x0)|2) +

∑
i

|∇ei(ψ(x0))|2 ≥ 0, (4.3.9)

as both terms on the right hand side are non-negative. By this inequality we see from equation

(4.3.8) that at such an x0 we have

s(x0)

4
|ψ(x0)|2 +

|ψ(x0)|4

4
≤ 0. (4.3.10)

Note now that by assumption ψ 6= 0 and hence we must have |ψ(x0)|2 6= 0 by definition of

x0. We conclude after dividing by |ψ(x0)|2 that for any x ∈ X we have

|ψ(x)|2 ≤ |ψ(x0)|2 ≤ −s(x0) ≤ s−X . (4.3.11)

Remark 4.3.4. Note that to establish the bound in the previous lemma we needed to assume

the solution had some initial regularity, in order for the expression ∆|ψ|2 to make sense.

It is in fact possible to establish this bound without this assumption, as can be seen for

example in [19, Lemma 3.10]. Nevertheless, the bound we established is invariant under

gauge transformations, so that by Lemma 4.1.18 it also holds for all solutions in C2(c).
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The previous lemma also immediately implies a uniform bound on the self-dual part of the

curvature F+
A . Namely, we have by the Seiberg-Witten equations that

|F+
A (x)| =

∣∣cl−1+ q(ψ(x))
∣∣ =

∣∣∣∣ψ ⊗ ψ∗ − 1

2
tr(ψ ⊗ ψ∗)Id

∣∣∣∣ =
1

2
|ψ(x)|2 ≤ 1

2
s−X . (4.3.12)

Similarly by considering the Seiberg-Witten equations and using the Hodge decomposition

one can show that there exists a constant C1 > 0 such that

‖F+
A ‖

2
2,1 ≤ C1. (4.3.13)

Lemma 4.3.5. Let (A,ψ) be a smooth solution to the Seiberg-Witten equations. Then we

have

‖∇Aψ‖22,0 ≤
(s−X)2

4
vol(X). (4.3.14)

Proof. Consider again equation (4.3.8) from Lemma 4.3.3, rewritten slightly to

〈∇Aψ(x),∇Aψ(x)〉+
s(x)

4
|ψ(x)|2 +

|ψ(x)|4

4
= 0. (4.3.15)

Now integrate this equation over X and use the bound from Lemma 4.3.3.

Note that inside of the space H1(X; iR) of imaginary harmonic one-forms sits a lattice Λ =

H1(X; 2πiZ) of harmonic one-forms whose integral over every loop in X is an integer multiple

of 2πi. We say an element h ∈ Λ is periodic with period in 2πiZ.

Lemma 4.3.6. Let h ∈ Λ be a periodic harmonic one-form with period in 2πiZ. Then there

exist a harmonic function f : X → S1 such that h = df .

Proof. Let x0 ∈ X be given. Consider the universal cover X̃ of X and define a map f̃ : X̃ →
iR as follows. Given x ∈ X, consider a path γ from x0 to x, and then define

f̃(x) =

∫
γ

h. (4.3.16)

Because of the periodicity of h, this map descends to a map f : X → iR/(2πiZ) ∼= S1. By

definition we have df = h, which then implies that f is harmonic.

We now establish an extension of the gauge fixing lemma, Lemma 4.1.17, which includes a

uniform bound.

Lemma 4.3.7. Let A0 ∈ A(L) be some smooth unitary connection and let k ≥ 2 be given.

Then there exists constants C,K > 0 depending on A0 and k such that for any connection

A ∈ Ak(L) there exists a gauge transformation u ∈ Gk+1 such that u(A) = A0 + a with

a ∈ iL2
k(T

∗X) satisfying d∗a = 0, and

‖a‖22,k ≤ C‖F+
A ‖

2
2,k +K. (4.3.17)
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Proof. By Lemma 4.1.17 and write A = A0 + a for some imaginary one-form a satisfying

d∗a = 0. As in the proof of Lemma 4.1.18, we can now write the Seiberg-Witten equations

for (Ai, ψi) as {
DA0ψ = −1

2cl(a)ψ,

d+a = cl−1+ q(ψ)− F+
A0
.

(4.3.18)

Now consider the Hodge decomposition of a = (h, β) where h is harmonic and β is co-closed.

We immediately get that

‖a‖22,k ≤ ‖h‖22,k + ‖β‖22,k. (4.3.19)

In other words, we can bound the norm of a by considering h and β separately. First consider

β. Note that d∗β = 0 and d+β = F+
A − F

+
A0

. We saw in Section 4.2 that d∗ ⊕ d+ is elliptic

and its kernel consists of precisely the harmonic one-forms. Now restrict it to the orthogonal

complement of the harmonic one-forms, so that it has trivial kernel. By elliptic regularity,

Theorem 2.5.10, we then have

‖β‖22,k ≤ C‖(d∗ ⊕ d+)β‖22,k = C‖F+
A − F

+
A0
‖22,k ≤ C

(
‖F+

A ‖
2
2,k +K1

)
, (4.3.20)

where K1 = ‖F+
A0
‖22,k is a fixed constant. Now consider the harmonic part h. As the quotient

of H1(X; iR) by the lattice Λ is a compact torus, there exist a constant K2 such that we can

decompose h into harmonic forms as

h = h1 − h2, with ‖h1‖22,k+1 ≤ K2, (4.3.21)

and h2 with periods in 2πiZ. By Lemma 4.3.6 we can write h2 = df for some harmonic

function f . Applying the gauge transformation u = e
1
2
f we see that we may assume that

f = 0. But by combining the established bounds we get

‖a‖22,k ≤ K2 + C
(
‖F+

A ‖
2
2,k +K1

)
. (4.3.22)

Setting K = K2 + CK1 establishes the result.

With this out of the way we can finally show compactness of the moduli space.

Theorem 4.3.8. Let c be a Spinc-structure on a compact oriented four-manifold X. Then the

unperturbed moduli space M(c) is compact. In other words, any sequence {(Ai, ψi)} of solu-

tions to the Seiberg-Witten equations possesses, possibly after applying gauge transformations,

a convergent subsequence.

Proof. Again choose a fixed smooth unitary connection A0 ∈ A(L) and using Lemma 4.1.17

write Ai = A0 + ai with d∗ai = 0. Consider first an arbitrary solution (A,ψ) written as

A = A0 + a with d∗a = 0. We wish to show that (A,ψ) lies in L2
k for all k ≥ 2, which we

will do by elliptic bootstrapping. Note that by the estimate of Lemma 4.3.3, we have that

supx∈X |ψ(x)|2 < ∞. In other words we have ψ ∈ C0. Furthermore, Lemma 4.3.5 gives us a

bound on ‖∇Aψ‖22,0. Now by Lemma 4.3.7 together with the bound from equation (4.3.13)

we see that

‖a‖22,2 ≤ CC1 +K. (4.3.23)

65



In other words, a is bounded in L2
2. This now gives us an L2

1-bound on ψ, taken with respect

to the fixed connection A0. We wish to increase the degree of regularity of ψ. The Dirac

equation reads

DA0ψ = −1

2
cl(a)ψ. (4.3.24)

By the Sobolev multiplication theorem, Theorem 2.5.7, the above implies that DA0ψ is

bounded in L4. But now recall that Dirac operators are elliptic. Let pA0 denote the pro-

jection onto the orthogonal complement of the kernel of DA0 . Then from elliptic regularity,

Theorem 2.5.10, we get that pA0ψ is bounded in L4
1. On the other hand, ψ is bounded in

C0 and hence in L2, so that (1 − pA0)ψ, the projection of ψ onto the kernel of DA0 , is also

bounded in L2, and hence in C∞. These two bounds then give an L4
1-bound on ψ. The

Sobolev multiplication L2
2 ⊗ L4

1 → L3
1 applied to equation (4.3.24) then implies that DA0ψ is

bounded in L3
1, so that again using elliptic regularity we see that ψ is bounded in L3

2. We

continue this type of argument using the Sobolev multiplication L2
2⊗L3

2 → L2
2, so that DA0ψ

is bounded in L2
2 and hence by elliptic regularity ψ is bounded in L2

3. Now, the Seiberg-Witten

equation

F+
A = cl−1+ q(ψ), (4.3.25)

together with the Sobolev multiplication L2
3 ⊗ L2

3 → L2
3 implies that F+

A is bounded in L2
3.

By our choice of gauge this means that a is bound in L2
4. We are now basically done: if by

induction for k ≥ 3 we have established L2
3-bounds for a and ψ, then equation (4.3.24) and

the Sobolev multiplication L2
k ⊗L2

k → L2
k implies that DA0(ψ) is bounded in L2

k and hence ψ

is bounded in L2
k+1. But then the Seiberg-Witten equation again gives that F+

A is bounded

in L2
k, so that a is bounded in L2

k+1 as well. In other words, we conclude that a and ψ are

bounded in L2
k for all k ≥ 2.

Now return to our sequence. The above proof shows that each (Ai, ψi) lies in L2
k for all k ≥ 2.

Then Rellich’s lemma, Theorem 2.5.9, implies that {(Ai, ψi)} has a convergent subsequence

which converges in all L2
k. Then the Sobolev embedding theorem, Theorem 2.5.5, implies that

it in fact converges in Ck for all k.

This argument can be repeated for the perturbed moduli spaces.

Theorem 4.3.9. Let η ∈ L2
3(
∧2

+ T
∗X ⊗ iR) be any perturbation. Then the moduli space

Mη(c) is compact.

Proof. Again we wish to show that any solution is bounded in L2
k for all k, so that they are

smooth. The only thing we must adapt is the a priori bounds obtained in Lemma 4.3.3. In

this case, the Weitzenböck formula gives us that

0 = ∇∗A∇Aψ +
s

4
ψ +

|ψ|2

4
ψ + cl(η)ψ. (4.3.26)

Hence by taking the pointwise inner product with ψ at some maximum x0 ∈ X of |ψ|2 we get

s(x0)

4
|ψ(x0)|2 +

|ψ(x0)|4

4
+ Re (〈cl(η(x0))ψ(x0), ψ(x0)〉) ≤ 0. (4.3.27)
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We now realise that this last term has norm bounded by |h(x0)| |ψ(x0)|2. As again we must

have |ψ(x0)|2 6= 0 we can divide to get

s(x0)

4
+
|ψ(x0)|2

4
− |h(x0)| ≤ 0, or |ψ(x0)|2 ≤ 4|h(x0)| − s(x0). (4.3.28)

Because of this, we clearly have for any x ∈ X that

|ψ(x)|2 ≤ |ψ(x0)|2 ≤ max{max
y∈X

(4|h(y)| − s(y)) , 0}. (4.3.29)

This bound on ψ now plays the role of the bound used in Lemma 4.3.3. The rest of the

argument is then identical to that of the previous result.

4.4 Transversality

Let X be a closed oriented Riemannian four-manifold with a given Spinc-structure c. In

this section we discuss results which ensure that the Seiberg-Witten moduli space M(c) is a

finite-dimensional manifold. We mostly follow [23].

In light of the results of Section 4.2, more specifically Theorem 4.2.8, we see that we must

limit the amount of reducible solutions to the Seiberg-Witten equations. Recall that these

were configurations (A,ψ) such that ψ = 0. Furthermore, we would like to ensure that all

irreducible solutions are smooth, i.e. their second obstruction space H2
(A,ψ) vanishes. Both of

these questions will be solved by taking the required data to form the Seiberg-Witten equa-

tions to be generic, i.e. to lie in some dense subset of the set of all possible data.

We will first turn to the second question. For this it will be necessary to use the perturbed

version of the Seiberg-Witten equations, which for convenience reads

F+
A = cl−1+ q(ψ) + η,

DAψ = 0.
(4.4.1)

Here, recall that η is a given imaginary self-dual two form. We wish to employ the Sard-Smale

theorem, Theorem 2.6.6, and hence must again turn to using Sobolev spaces. We wish for our

perturbations to be at least continuous, hence will work with the space P3 of L2
3-perturbations.

This then forces us to choose configurations to be in C4(c) and gauge transformations to be in

G5. With this we again return to the Seiberg-Witten map F from Definition 4.1.5, but now

in a slightly different guise.

Definition 4.4.1. The parametrized Seiberg-Witten map F is given by

F : C4(c)× P3 → L2
3

(∧2

+
T ∗X ⊗ iR⊕ S−(c)

)
, F (A,ψ, η) = (F+

A − cl−1+ q(ψ)− η,DAψ).

(4.4.2)

In order to apply the Sard-Smale theorem, we must ensure that F is a Fredholm map, which

means that its differential is everywhere Fredholm. Let us now study the surjectivity of dF .

It turns out that it is surjective at all irreducible configurations.
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Lemma 4.4.2. Let (A,ψ) ∈ C4(c) with ψ 6= 0 be an irreducible configuration and let η ∈ P3.

Then dF is surjective at (A,ψ, η).

Proof. It is immediate from Lemma 4.2.1 that the differential dF is given by

dF(A,ψ,η) =

(
d+ −cl−1+ dqψ(·) −1

1
2cl(·)ψ DA 0

)
. (4.4.3)

First, note that if we restrict dF to the tangent space of P3 it is given by the map h 7→
(−h, 0). Clearly this map is surjective onto the first factor, i.e. onto L2

3

(∧2
+ T
∗X ⊗ iR

)
: for

h ∈ L2
3

(∧2
+ T
∗X ⊗ iR

)
we have dF(A,ψ,η)(0, 0,−h) = (h, 0). Now consider the restriction of

dF to the tangent space of C4(c). We see that this map is given by

dF(A,ψ,η)(a, ϕ) =

(
d+a− cl−1+ dqψ(ϕ),

1

2
cl(a)ψ +DAϕ

)
. (4.4.4)

As we have already ensured surjectivity onto the first factor through the perturbations h, let

us consider the projection P of this map onto the second factor, i.e. the map

P : (a, ϕ) 7→ 1

2
cl(a)ψ +DAϕ. (4.4.5)

We would be done if we could show this map to be surjective. We argue by contradiction.

Suppose it is not surjective, then there exists a ξ ∈ L2
3(S
−(c)) which is orthogonal to the

image of P , i.e.

〈P (a, ϕ), ξ〉 = 0 for all (a, ϕ). (4.4.6)

Take a = 0 for the moment. Then the above reads 〈DAϕ, ξ〉 = 0 for all ϕ, which by self-

adjointness of the Dirac operator (see Lemma 3.4.3) means that 〈ϕ,DAξ〉 = 0. But by

non-degeneracy of the inner product this implies that ξ lies in the kernel of DA. We see that

from equation (4.4.6) we now get that∫
X

〈1
2

cl(a)ψ, ξ〉dµ = 0 for all a. (4.4.7)

Now let x be a given point where ψ(x) 6= 0. Then because ψ is continuous by Sobolev

embedding, there exists some neighbourhood U in X containing x where ψ does not vanish.

We now trivialize the bundles T ∗X and S− on some (possibly smaller) neighbourhood V of

x and note that by the injectivity relation cl(a)2 = −|a|2Id for Clifford multiplication we get

an isomorphism between T ∗V and S−(c)|V , given by

b|V 7→ cl(b|V ) ψ|V . (4.4.8)

In particular, we can let a be such that 1
2cl(a)ψ

∣∣
V

= ϕ|V . We then get from equation (4.4.7)

that

0 =

∫
V

〈1
2

cl(a)ψ, ξ〉dµ =

∫
V

|ξ|2dµ. (4.4.9)
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But this implies that ξ ≡ 0 on V . By the so-called unique continuation theorem (see e.g. [2])

proven using elliptic regularity, Theorem 2.5.10, this together with ellipticity of DA implies

that ξ vanishes on the entirety of X. We have arrived at our desired contradiction and

conclude that dF is surjective.

Consider now the parameterized moduli space PM(c), given by the quotient of the space

C(c)× P under the action of the gauge group G acting trivially on the second factor.

Theorem 4.4.3. The parameterized moduli space of PM∗(c) of irreducible solutions is a

smooth submanifold of B∗4(c) × P4. The projection π onto P4 is smooth, and the inverse

image π−1(η) is given by the irreducible moduli space M∗η (c) of the Seiberg-Witten equations

perturbed by η.

Proof. From Lemma 4.4.2 and an application of the inverse function theorem, Theorem 2.6.8,

we see that the space

{(A,ψ, η) ∈ C∗4(c)× P3 : F (A,ψ, η) = 0} (4.4.10)

is a smooth submanifold. Hence by taking the quotient with respect to the gauge action we

see that PM∗(c) is as well.

Furthermore, we immediately get that for fixed η we have

ker dF([A,ψ],η)
∼= H1

(A,ψ)
∼= T(A,ψ)Mη(c), coker dF([A,ψ],η)

∼= H2
(A,ψ). (4.4.11)

In particular, dF is Fredholm of index 1
4

(
c1(L)2 − (2χ(X) + 3τ(X))

)
as per Theorem 4.2.8.

We can now settle the question of ensuring smoothness of irreducible solutions.

Theorem 4.4.4. Let (X, g) be a compact oriented Riemannian four-manifold with a given

Spinc-structure c with determinant line bundle L. Then for a generic choice of perturbation

η ∈ P3, the irreducible moduli space M∗η (c) is a (possibly empty) smooth submanifold of B∗4(c)

of dimension

d(M(c)) =
1

4

(
c1(L)2 − (2χ(X) + 3τ(X))

)
. (4.4.12)

Proof. By an application of the Sard-Smale theorem, Theorem 2.6.6, to the Fredholm map

π : PM∗(c)→ P4, (4.4.13)

we conclude that the of regular values η of π is dense. But for such an η, this means that

dFη is surjective and hence its cokernel vanishes everywhere. But this means that the second

obstruction space H2
(A,ψ) vanishes for all irreducible solutions (A,ψ) ∈ M∗η (c). Because the

second obstruction space now vanishes for all irreducible solutions, the theorem follows from

Theorem 4.2.8.

We now turn to controlling the amount of reducible solutions. Let us first consider the unper-

turbed Seiberg-Witten equations F (A,ψ) = 0. Recall that a reducible point is a configuration
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pair (A,ψ) ∈ C(c) with ψ = 0. For this to be a solution to the unperturbed Seiberg-Witten

equations, we see that we must have

F+
A = 0. (4.4.14)

In other words, A must be an ASD connection. Similarly, for it to be a solution to the

perturbed Seiberg-Witten equations Fη(A,ψ) = 0 for η ∈ Ω2
+(X; iR), we see that we must

have

F+
A = η. (4.4.15)

But we also know that the curvature FA of A is a harmonic two-form with [FA] = −2πic1(L)

in cohomology, where L is the determinant line bundle of C(c), see Theorem 2.2.9. Let us

determine when equation (4.4.15) has solutions. Recall from Definition 2.3.5 that the notion

of self-duality depends on the Riemannian metric, which we assume to be fixed for now.

Lemma 4.4.5. Given an imaginary self-dual two-form η ∈ Ω2
+(X; iR), there exists a con-

nection A ∈ A(L) such that F+
A = η if and only if η lies in an affine subspace of Ω2

+(X; iR)

of codimension b+2 (X).

Proof. Let A0 ∈ A(L) be any unitary connection. Then by Lemma 2.2.7 any other connection

A ∈ A(L) can be written as A = A0 + a for a ∈ Ω1(X; iR), and its curvature is given by

FA = FA0 + da. (4.4.16)

Taking the self-dual parts, we see that F+
A = F+

A0
+(da)+. Now define a map p : Ω1(X; iR)→

Ω2
+(X; iR) by

p(a) = F+
A0

+ d+a. (4.4.17)

We then see that F+
A = η has a solution if and only if η ∈ im(p) ⊂ Ω2

+(X; iR). Now recall

the results from Hodge theory mentioned in Section 2.3, more specifically Lemma 2.3.9. This

lemma implies that im(p) has orthogonal complement equal to the space H2
+(X) of self-dual

harmonic forms, which has dimension b+2 (X).

The lemma above allows us to conclude that we can avoid reducible solutions to the Seiberg-

Witten equations by perturbation, if we make the assumption that b+2 (X)(X) is positive.

Namely, given a Riemannian metric g we see that there will only be reducible solutions after

perturbing by an η lying in a space of codimension b+2 (X). If b+2 (X) > 0, then generically

a choice of perturbation will miss this space. If on the other hand b+2 (X) = 0, then for any

perturbation there will be reducible solutions. Combining this with Theorem 4.4.4 we can

now conclude the following.

Theorem 4.4.6. Let (X, g) be a compact oriented Riemannian four-manifold with b+2 (X) > 0,

and let c ∈ Sc(X) be given. Then for a generic choice of perturbation η ∈ P3, the moduli

space Mη(c) is a (possibly empty) smooth submanifold of B∗4(c) of dimension

d(c) =
1

4

(
c1(L)2 − (2χ(X) + 3τ(X))

)
. (4.4.18)

Proof. In light of Theorem 4.4.4 we need only establish that the we can choose our pertur-

bation such that there are no reducible solutions. But by the discussion above this theorem

this can clearly be done if b+2 (X) > 0.
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4.5 Orientability

In this section we deal with establishing the orientability of the moduli space, and in fact how

to orient it. We mostly follow [23]. It will turn out that the orientation of the moduli space

boils down to orienting the so-called determinant line bundle of the linearization of F , which

in turn is accomplished by orienting the vector space

H0(X;R)⊕H1(X;R)⊕H2
+(X;R). (4.5.1)

Let us now describe how this comes about. Let N be an n-dimensional manifold and let

E → N be some rank k-bundle over N . Recall then that an orientation of E is given by

a choice of non-vanishing section of the top exterior power of its tangent bundle, i.e. its

determinant line bundle det(E) =
∧nE,

s ∈ Γ(det(E)), s(x) 6= 0 for all x ∈ N. (4.5.2)

An orientation for N is then an orientation for its tangent bundle, i.e. we choose E = TN

in the above. In the case that N is connected and orientable, it suffices to orient E at one

point, as one can then extend this choice to an orientation of the entire manifold by parallel

transport after choosing a connection on E. Recall now from Section 4.2 that at smooth

irreducible points [A,ψ] we had an explicit description of the tangent space of the moduli

space, it being equal to the Zariski tangent space. This description involved the linearizations

of the Seiberg-Witten map F and the gauge action, which turned out to be Fredholm. There

is a general way to orient the bundles arising in this situation. See also [5, Section 5.1].

Definition 4.5.1. Given a Fredholm map F : V → W between two Hilbert spaces, its

determinant line det ind(F ) is defined to be

det ind(F ) =
∧top

ker(F )⊗
∧top

coker(F )∗. (4.5.3)

Here top indicates that one should take the respective top exterior powers of the subspaces

ker(F ) ⊂ V and coker(F ) ⊂W .

Now suppose we instead have not just one but instead a whole family F = {Ft} of Fredholm

maps Ft : V → W parametrized by some parameter t ∈ T , where T is a manifold. We

can then consider for each fixed t the determinant line det ind(Ft). However, we wish to

instead consider this family of subspaces as a line bundle over T . A priori this seems to

be ill-defined, as the dimensions of the kernels ker(Ft) and cokernels coker(Ft) may vary for

different t. However, there is a natural construction showing that as their difference ind(Ft)

is independent of t one can combine their determinant lines into a bundle.

Lemma 4.5.2. Given a family F = {Ft} of Fredholm maps parameterized by a manifold T ,

there is a well-defined line bundle det ind(F) → T called the determinant line bundle of the

family, whose fiber at t ∈ T is given by the vector space det ind(Ft).

Even more is true: if F and F ′ are two homotopic families of Fredholm operators both pa-

rameterized by T , then their determinant line bundle are isomorphic. The isomorphism is
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given by the homotopy, up to multiplication by some positive function. This is shown by

considering the entire homotopy as a family of Fredholm operators over the product T × I
and then noting that any line bundle over this product must be isomorphic to the product of

a line bundle over T with I, as any line bundle over I is trivial. We can now use this general

principle to construct a line bundle over the space B(c) of equivalence classes of configurations

(A,ψ).

So now let X be a compact oriented four-manifold and c ∈ Sc(X) a Spinc-structure. Let

(A,ψ) ∈ C(c) be given and consider again the linearizations of the gauge action and the

Seiberg-Witten map F , as computed in Lemma 4.2.2 and Lemma 4.2.1

D1 = (−2d, (·)ψ), D2 =

(
d+ −cl−1+ dqψ

1
2cl(·)ψ DA

)
. (4.5.4)

Before, in determining a local description of the moduli space, we considered the complex

formed out of their composition. We showed in Lemma 4.2.4 that it was elliptic as long as

(A,ψ) is a solution to the Seiberg-Witten equations. However, when (A,ψ) is not a solution

this decomposition is not necessarily a complex as D2 ◦D1 6= 0 in general. Therefore, instead

consider the operator D given by

D = (D2, D
∗
1) : L2

2((T
∗X ⊗ iR)⊕ S+(c))→ L2

1

((∧2

+
T ∗X ⊗ iR

)
⊕ S−(c)

)
⊕ L2

1(X; iR).

(4.5.5)

For exactly the same reason as in the proof of Lemma 4.2.4, this new operator D is elliptic

and hence Fredholm. As before, we deform D through a homotopy D(t) = (D2(t), D
∗
1(t)),

where D2(t) and D∗1(t) are again given by

D2(t) =

(
d+ −(1− t)cl−1+ dqψ

1
2(1− t)cl(·)ψ DA

)
, D∗1(t) = (−2d∗ + (1− t)(·)ψ). (4.5.6)

We see that D2(0) = D2 and D∗1(0) = D∗1, while D(1) is given by d+ + DA + (−2d∗).

Consider now the homotopy family of operators D(t) = {D(A,ψ)(t)} parameterized by all

points (A,ψ) ∈ C(c). Through the determinant line bundle construction of Lemma 4.5.2 we

get a line bundle det ind(D(t)) over C(c)× I. Now because the gauge group G acts on C(c) we

can extend this action to one on C(c)× I which is trivial on the I factor. Because this action

is clearly linear on each fiber of the bundle det ind(D(t)), we can quotient at all irreducible

configurations to obtain a bundle O over

B∗(c)× I = (C∗(c)× I) /G ⊂ (C(c)× I) /G. (4.5.7)

Note that we have to restrict ourselves to the irreducible configurations to ensure the resulting

space is a manifold. We shall show that we can orient this bundle.

Proposition 4.5.3. The bundle O → B∗(c) × I is trivial, with an orientation for O being

determined by an orientation for

H0(X;R)⊕H1(X;R)⊕H2
+(X;R). (4.5.8)
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Proof. Let Ot : B∗(c) × {t} for t ∈ I denote the bundles obtained by fixing a value of t.

Then by the discussion below Lemma 4.5.2 we know that all bundles Ot are isomorphic.

Hence it suffices to show just one of the Ot is trivial. Therefore, consider O1. Recall that

D(A,ψ)(1) is given by d+ +DA + (−2d∗). In particular, the family of Fredholm operators now

splits as the sum of the constant operator d+ + (−2d∗) and DA. Looking at the definition

of the determinant line bundle this means that det ind(D(1)) is given by the tensor product

of the constant line given by d+ + (−2d∗) and the determinant line bundle of the DA. This

decomposition carries over to the quotient as the action by G does not mix the target spaces

of the operator D(t). But now note that the determinant line bundle of DA is complex, as

the operators DA are complex linear. Thus this part carries a natural orientation as a real

line bundle, coming from the complex structure on it. To orient the constant line given by

d+ + (−2d∗), note that

ker(d+ − 2d∗) ∼= H1(X;R), coker(d+ − 2d∗) ∼= H2
+(X;R)⊕H0(X;R). (4.5.9)

Indeed, the factor −2 is immaterial, so instead consider d++d∗. Then the result is immediate

from Proposition 4.2.7. Hence after choosing an orientation for H0(X;R) ⊕ H1(X;R) ⊕
H2

+(X;R), we get an orientation for det ind(d+ − 2d∗) and hence for O.

We can now use this result to orient the moduli space M(c) at smooth irreducible points.

Theorem 4.5.4. The open subset M∗(c) of smooth irreducible points of M(c) is an orientable

manifold, with an orientation being determined by an orientation for H0(X;R), H1(X;R) and

H2
+(X;R).

Proof. By Proposition 4.5.3, a choice of orientation for these three spaces gives us an ori-

entation for the bundle O0 → B∗(c) × {0} ∼= B∗(c). Moreover, at smooth irreducible points

[A,ψ] ∈ M(c) the cokernel of D(A,ψ) vanishes, while ker(D(A,ψ)) ∼= T[A,ψ]M(c). Because an

orientation for M(c) is given by an orientation for

det(TM(c)) =
∧top

TM(c) ∼=
∧top

ker(D) = det ind(D) = O0, (4.5.10)

we see that we have indeed given an orientation for the moduli space at smooth irreducible

points in this way.

In order to make the choice of orientation explicit, we would have to make a choice of con-

vention of how to orient the determinant line bundle O0 and hence the moduli space. There

are several different choices one can make, but the standard one is the following.

Definition 4.5.5. Given a compact oriented four-manifold X, a homology orientation for X

is a choice of orientation for the ordered line

H0(X;R)⊗
(∧b1(X)

H1(X;R)

)∗
⊗
(∧b+2 (X)

H2
+(X;R)

)
. (4.5.11)

Remark 4.5.6. Varying the choice of Riemannian metric does not change the choice of

orientation even though the space of self-dual forms changes: this space is also a maximal

definite subspace of the intersection form QX , and the space of such subspaces is connected

and contractible. In other words, a homology orientation does not depend on a Riemannian

metric.
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4.6 Cohomology

In this section we discuss the cohomology of the moduli space. In particular, we will show the

Seiberg-Witten moduli space has a preferred two-dimensional cohomology class which will be

used to define the Seiberg-Witten invariants in Section 5.1. This material can be found in [26].

Let (X, g) be a compact oriented Riemannian four-manifold and let c ∈ Sc(X) be a given

Spinc-structure. Recall that the action of the gauge group G = C∞(X; U(1)) on the config-

uration space C(c) as defined in Definition 4.1.7 is free on pairs (A,ψ) ∈ C(c) with ψ 6= 0 by

Lemma 4.1.13. Moreover, points where it is not free have stabilizer equal to a copy of U(1).

Definition 4.6.1. Let x0 ∈ X be given. The based gauge group G0 is given by

G0 = {g ∈ G : g(x0) = 1 ∈ U(1)} . (4.6.1)

Of course we have that

G/G0 ∼= U(1), or G = G0 ×U(1). (4.6.2)

Now note that the proof of Lemma 4.1.13 shows that G0 acts freely on C(c). Because of this,

consider the quotient

B0(c) = C(c)/G0. (4.6.3)

This quotient space is now a smooth Hilbert manifold. As we have by construction that

B0(c) = B(c)/U(1), (4.6.4)

we have thus described a principal U(1)-bundle U over B∗(c). Now consider the inclusion

i : M∗(c) ↪→ B∗(c). (4.6.5)

Through this map we can pull back the bundle U to get a principal U(1)-bundle

i∗(U)→M∗(c). (4.6.6)

Being a principal U(1)-bundle, it has a first Chern class. This class is in fact the cohomology

class we will use.

Definition 4.6.2. Let (X, g) be a compact oriented Riemannian four-manifold and let c ∈
Sc(X). We define an element µ ∈ H2(M∗(c);Z) by

µ = c1(i
∗(U)). (4.6.7)

At this point it is not yet clear that the bundle U is independent of the chosen base point x0.

However, when X is connected, one can join any two points x0, x1 ∈ X by some smooth path

γ. This allows us to construct an isomorphism between the two bundles U(x0) and U(x1).

In particular, we see from this that when X is connected, the class µ is independent of the

chosen basepoint.
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Remark 4.6.3. The definition of our class µ is analogous to µ-map used in Donaldson theory

used to construct cohomology classes using the slant product [5]. To explore this analogy,

see [26, Section 2.3].

Recall now the definition of a classifying space, Definition 2.1.16. We can use this to establish

the homotopy type of B∗(c) and hence determine its cohomology. Let H be a group and n a

positive integer. Recall that a connected topological space X is called an Eilenberg-MacLane

space of type K(H,n) if πk(X) = H for k = n and trivial otherwise.

Theorem 4.6.4. The space B∗(c) is a classifying space for the gauge group G = C∞(X; U(1)).

In particular, it is homotopy equivalent to CP∞ ×K(H1(X;Z), 1).

Proof. Let L denote the determinant line bundle of c. Recall that C(c) = A(L) × Γ(S+(c))

is an affine space. Because of this it is contractible. Consider now the affine subspace of

reducible configurations, which has infinite codimension. Because of this its complement, the

open subset C∗(c) of irreducible configurations, is also contractible. Hence by definition the

quotient space B∗(c) = C∗(c)/G is a classifying space for G. Now consider G again. One can

show that it splits as the product

G = C̃∞(X; U(1))×H1(X;Z), (4.6.8)

the first factor denoting the group of all maps from X to U(1) which are homotopically trivial

and the second factor stemming coming from its connected components. We see that the

space C̃∞(X; U(1)) deformation retracts onto the space of constant maps, which is just a

copy of U(1). In particular, it is homotopy equivalent to U(1). From Example 2.1.18 we

know that the classifying space of U(1) is CP∞, so that the claim follows.

Denote the first Chern class of the bundle U→ B∗(c) by µ′ ∈ H2(B∗(c);Z).

Corollary 4.6.5. The integral cohomology ring of B∗(c) is isomorphic to

H•(B∗(c);Z) ∼=
∧•

H1(X;Z)⊕ Z[µ′]. (4.6.9)

In other words, B∗(c) is homotopic to the product K(Zb1 , 1)×K(Z, 2).

Proof. This follows from Theorem 4.6.4 upon noting that dimH1(X;Z) = b1(X) and the fact

that CP∞ ∼= K(Z, 2). We have established that µ′ is an element of H2(B∗(c);Z), and it is

not hard to see that it then in fact generates the second cohomology.
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Chapter 5

Seiberg-Witten invariants

In this chapter we finally define the Seiberg-Witten invariant SWX : Sc(X) → Z, having

established all the required properties of the Seiberg-Witten moduli space. After stating its

definition we check that it is independent of several choices, and then continue to establish

some of its properties. In particular, we prove the theorem by Taubes mentioned in the

introduction to this thesis.

5.1 Definition

With the results from the previous chapter, the definition of the Seiberg-Witten invariants is

rather straightforward. Let (X, g) be a compact oriented Riemannian four-manifold satisfying

b+2 (X) > 1, and let c ∈ Sc(X) be a Spinc-structure on X with determinant line bundle L.

Furthermore, choose a homology orientation for X, i.e. a fixed choice of orientation for

H0(X;R)⊕H1(X;R)⊕H2
+(X;R). (5.1.1)

We then know that for a generic self-dual 2-form η ∈ Ω2
+(X; iR), the moduli space Mη(c) is

an oriented compact smooth submanifold of B∗(c) of dimension

d(M(c)) =
1

4

(
c1(L)2 − 2χ(X)− 3σ(X)

)
, (5.1.2)

which is independent of η. This is the content of Theorems 4.2.8, 4.3.9, 4.4.6 and 4.5.4.

Definition 5.1.1. Consider the above setting. Then the Seiberg-Witten invariant of c is an

integer SWX(c) defined below.

To define the Seiberg-Witten invariant we will distinguish four cases, depending on the virtual

dimension d(M(c)) of the moduli space. These are

• d(M(c)) < 0;

• d(M(c)) = 0;

• d(M(c)) > 0 and is odd;
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• d(M(c)) > 0 and is even;

Let us first turn to the case where d(M(c)) < 0. In this case the moduli space is generically

empty by Theorem 4.4.6, so we simply set SWX(c) = 0. Now consider the case where

d(M(c)) = 0. Because Mη(c) is compact by Theorem 4.3.9, if it is a smooth manifold it

consists of finitely many points. Hence let (g, η) be generic in the sense of Theorem 4.4.6. We

then set the invariant equal to

SWX(c) =
∑

m∈Mη(c)

εm, εm = ±1, (5.1.3)

with the sign depending on whether the given orientation agrees with the canonical orientation

of a finite set. We continue to the cases where the virtual dimension is positive. First assume

that d(M(c)) > 0 and is odd. We saw in Section 4.6 that there is no good choice of cohomology

class with which one can pair [Mη(c)]. Because of this we simply set SWX(c) = 0. Lastly,

assume that d(M(c)) > 0 and is even. Again choose (g, η) generic in the sense of Theorem

4.4.6. Then Mη(c) is a finite-dimensional compact submanifold of B∗(c), and in particular it

has a fundamental class. In this case, recall that by Section 4.6 we have a given cohomology

class µ ∈ H2(M(c);Z). Given this, we define

SWX(c) =

∫
Mη(c)

µ
1
2
d(M(c)). (5.1.4)

This concludes the definition of the Seiberg-Witten invariant, having covered all possible

values of the virtual dimension.

Remark 5.1.2. Looking at the dimension formula for the Seiberg-Witten moduli space in

the form

d(M(c)) = b1(X)− 1− b+2 (X) +
c21(L)− τ(X)

4
, (5.1.5)

one can show that a given Spinc-structure c ∈ Sc(X) can only have a nonzero Seiberg-Witten

invariant SWX(c) if b+2 (X) − b1(X) is odd. Namely, only in this case is the integer d(M(c))

even.

We now wish to check that the Seiberg-Witten invariant SWX(c) is independent of most of

the choices we made, making it truly an invariant of the pair (X, c).

Lemma 5.1.3. For a compact oriented four-manifold X with b+2 (X) > 1, the above definition

of SWX(c) is independent of the choice of Riemannian metric and perturbation η.

Proof. Suppose we have chosen two pairs (g0, η0) and (g1, η1) of Riemannian metrics and

perturbations on X. Then we can choose a smooth path of metrics gt joining g0 to g1, and a

generic path η of perturbations connecting η0 and η1. With this we can form a parameterized

moduli space

M(c, η) ⊂ B∗(c)× I, (5.1.6)

which we know by Section 4.4 to be a smooth compact manifold with boundary. Here we use

the assumption b+2 (X) > 1 to ensure that this one-parameter family of moduli spaces does not
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contain reducible solutions. Having already chosen an orientation for the cohomology spaces

H1(X;R) and H2
+(X;R), we see that M(c, η) is oriented through the standard orientation on

I. Its boundary as an oriented manifold is given by M(c, η1)−M(c, η0). But this implies that

the fundamental homology classes of these latter two oriented moduli spaces in B∗(c) are the

same. We conclude then that ∫
M(c,η1)

µ
1
2
d(M(c)) =

∫
M(c,η0)

µ
1
2
d(M(c)), (5.1.7)

showing that both values of SWX(c) are the same.

Corollary 5.1.4. Let X be a compact oriented four-manifold with b+2 (X) > 1, and let Sc(X)

denote the set of isomorphism classes of Spinc-structures on X. Then Definition 5.1.1 gives

a well-defined map

SWX : Sc(X)→ Z. (5.1.8)

Remark 5.1.5. The construction of SWX in fact shows that it is a diffeomorphism invariant

of X. Letting oX denote the chosen homology orientation for X, this means that given an

orientation preserving diffeomorphism f : X → Y between compact oriented four-manifolds

with b+2 at least two we have

SWX,oX ◦ f
∗ = f∗ ◦ SWY,oY . (5.1.9)

This follows from our discussion in Section 4.6 that B∗X = B∗(c) has the weak homotopy type

of a classifying space for the gauge group, which is a homotopy invariant of X. Because of this

f gives an isomorphism between the integral cohomology rings H•(B∗X ;Z) and H•(B∗Y ;Z).

As was mentioned in the introduction, we can do the same thing for manifolds with b+2 (X) = 1.

The definition of SWX as described above still gives a well-defined map

(c, g) 7→ SWX(c). (5.1.10)

In other words, the only difference is that we can not get rid of the dependence on the

Riemannian metric g. The proof of Lemma 5.1.3 uses that we can avoid reducible solutions

by a generic path between perturbations, but this argument is not possible when b+2 (X) =

1. Indeed, the space of Riemannian metrics is split up into regions divided by so-called

walls, where one encounters reducible solutions. There is a wall-crossing formula relating

the Seiberg-Witten invariants on either side of such a wall. More on this can be found, for

example, in [23, Section 6.9].

5.2 Finiteness

In this section we prove that there are only finitely many Spinc-structures c such that SWX(c)

is nonzero. In fact, we show that there are only finitely many Spinc-structures c which have

non-negative dimensional moduli spaces d(M(c)) and whose moduli spaces are non-empty.

This is done through finding uniform bounds on the curvature of any connection on the
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corresponding determinant line bundle. Let A be a unitary connection on this line bundle.

Recall from Section 2.3 that we can split up the curvature into its self-dual and anti-self-dual

parts and that this decomposition is orthogonal with respect to the inner product induced by

the metric, i.e.

FA = F+
A + F−A and

∫
X

|FA|2 dµ =

∫
X

|F+
A |

2 dµ+

∫
X

|F−A |
2 dµ. (5.2.1)

Now define the quantities I+(A) and I−(A) by

I+(A) =

∫
X

|F+
A |

2 dµ, I−(A) =

∫
X

|F−A |
2 dµ. (5.2.2)

Theorem 5.2.1. Let X be a compact oriented four-manifold with b+2 (X) > 0 and let η be a

generic perturbation for all of its Spinc-structures. Then there are only finitely many Spinc-

structures c such that M(c) is non-empty. In particular for b+2 (X) > 1 we have SWX(c) = 0

for all but finitely many c.

Proof. Let c be given and denote its determinant line bundle by L. The moduli space M(c)

can only be non-empty if d(M(c)) ≥ 0, i.e. if

c1(L)2 ≥ 2χ(X) + 3τ(X). (5.2.3)

Let A be a unitary connection on L. From Theorem 2.2.9 we know that we can represent

c1(L) ∈ H2(X;Z) by the two-form i
2πFA. From this together with equation (5.2.1) we get

that

I+(A)− I−(A) = −
∫
X

FA ∧ FA = 4π2
∫
X

c1(L) ∧ c1(L)

= 4π2c1(L)2.

(5.2.4)

Hence define the constant C1 by C1 = −4π2 (2χ(X) + 3τ(X)). We then see that

I−(A)− I+(A) ≤ C1. (5.2.5)

But recall now from Section 4.3, more specifically equation (4.3.12), that if (A,ψ) is a solution

to the Seiberg-Witten equations we also have a uniform bound on I+(A). This equation deals

with the unperturbed case, but it is clear that the argument also gives a bound for any fixed

perturbation η. In other words, we get an estimate

I+(A) ≤ C2, (5.2.6)

for some constant C2 depending on η (and (X, g)). We can combine these two bounds to get

‖FA‖2 = I+(A) + I−(A) ≤ C1 + 2C2. (5.2.7)

Recalling that [FA] = −2πic1(L), we thus see that there exists a constant C such that

‖c1(L)‖ ≤ C. (5.2.8)
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In other words, for M(c) to be non-empty the class c1(L) must lie in a ball of radius C inside

the lattice H2(X; 2πiZ). But this means that c1(L) belongs to a finite set. As from Theorem

3.2.5 we know that there are only finitely many Spinc-structures with the same first Chern

class c1(L), we are done.

It is now natural to ask for examples of compact oriented four-manifolds with b+2 (X) > 1

which have a non-zero Seiberg-Witten invariant for some Spinc-structure giving a moduli

space of positive dimension. First we introduce two notions by Kronheimer and Mrowka,

which have counterparts in Donaldson theory.

Definition 5.2.2. A compact oriented four-manifold X is said to be of SW-simple type if

d(M(c)) = 0 for all c ∈ Sc(X). A Spinc-structure c with SWX(c) 6= 0 is called a basic class.

The answer to above question is that we do not have any examples of manifolds which are

not of SW-simple type yet have a basic class. This in fact led Witten [34] to conjecture the

following.

Conjecture 5.2.3. All compact oriented four-manifolds X with b+2 (X) > 1 are of SW-simple

type.

This conjecture has been shown to hold true for a large class of four-manifolds.

5.3 Positive scalar curvature

Let X be a compact oriented four-manifold. In this section we study the case when X admits

a Riemannian metric with positive scalar curvature s > 0. In fact, we have

Lemma 5.3.1. If X admits a Riemannian metric with scalar curvature s > 0, then if (A,ψ)

satisfies F (A,ψ) = 0 we have ψ = 0.

Proof. This is very similar to Lemma 4.3.3 used for compactness. Recall the Weitzenböck

formula for the Dirac operator, Lemma 3.4.5. This reads

D∗ADA = ∇∗A∇A +
s

4
+

1

2
cl(FA). (5.3.1)

As again cl(FA) = cl(F+
A ) when acting on ψ, we get

0 = D∗ADAψ = ∇∗A∇Aψ +
s

4
ψ +

1

2
cl(F+

A )ψ = ∇∗A∇Aψ +
s

4
ψ +

1

4
|ψ|2ψ, (5.3.2)

where we used that cl(F+
A )ψ = q(ψ)ψ = 1

2

(
ψ ⊗ ψ∗ − |ψ|

2

2 Id
)
ψ = |ψ|2

4 ψ. So now take the

inner product with ψ and integrate to get

0 =

∫
X

(
|∇Aψ|2 +

s

4
|ψ|2 +

1

4
|ψ|4

)
dµ. (5.3.3)

Each of these terms is now necessarily non-negative, hence ψ = 0.
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In other words, we see that when s > 0 there are only reducible solutions. It is clear that

Lemma 5.3.1 still holds if we replace F by Fη whenever η is small enough. Hence combining

this with our transversality results we get

Theorem 5.3.2. Let X be a compact orientable Riemannian four-manifold with b+2 (X) > 1

and s > 0. Then SWX ≡ 0.

Proof. Choose a Spinc-structure c and let g be a metric with s > 0. Note that having positive

scalar curvature is an open condition in the space of metrics. What this means is that η can be

chosen to be generic in the sense of Theorem 4.4.6 and small enough such that the conclusion

of Lemma 5.3.1 still holds. Then by this lemma there are only reducible solutions, and by

regularity of g there are only irreducibles. Moreover, g and η are chosen such that the moduli

space is a smooth manifold, hence can be used to define the Seiberg-Witten invariants by

Lemma 5.1.3. But we now have M(c) = ∅ so that SWX(c) = 0. This holds for all c ∈ Sc(X),

giving the result.

5.4 Gluing theory

In this section we briefly discuss gluing theory and how it pertains to Seiberg-Witten the-

ory. Consider the following setting. Let X1, X2 be compact oriented four-manifolds, and

assume that Σi ↪→ Xi for i = 1, 2 are two smoothly embedded closed oriented surfaces of

the same genus g. Assume that Σi have trivial normal bundle. Then each Σi has a neigh-

bourhood N(Σi) diffeomorphic to Σi×D2. Choose an orientation-preserving diffeomorphism

f : Σ1 → Σ2 and lift it to an orientation-reversing diffeomorphism φ : ∂N(Σ1) → ∂N(Σ2)

via conjugation in the normal fiber. Given this φ, we can form the following.

Definition 5.4.1. The fiber sum X = X1#φX2 of X1 and X2 along Σi is defined by the

gluing

X = (X1 \N(Σ1)) ∪φ (X2 \N(Σ2)) , (5.4.1)

where φ is used to identify the boundaries.

Note that if g = 0 then this is just the ordinary connected sum X = X1#X2. Furthermore,

note that X can depend on the choice of φ. A product theorem is a result which expresses

the Seiberg-Witten invariants of X in terms of those of X1 and X2. Several types of product

theorems have since been found, each covering different assumptions. We mention work by

Morgan, Mrowka, Szabó and Taubes [24, 25, 32]. A particular case of their results is the

following theorem, which is proven using similar techniques as for its analogue in Donaldson

theory.

Theorem 5.4.2. Let X1, X2 be compact oriented four-manifolds with b+2 (Xi) > 0 for i = 1, 2.

Then their connected sum X = X1#X2 has SWX ≡ 0.

Furthermore, one interesting case of gluing is that of blowup, i.e. of taking out a point and

replacing it with a copy of CP 1. This amounts to taking the connected sum with CP 2
.

Again there is a result relating the Seiberg-Witten invariants of X#CP 2
and X, showing in

particular that there is a bijection between their basic classes. See [26, Section 4.6.2].
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5.5 An involution

Let X be a compact oriented four-manifold. In this section we discuss an involution on Sc(X),

the set of Spinc-structures, and how the Seiberg-Witten invariants of these two are related.

This material can be found in [26, 27]. Recall that given a Spinc-structure c we can consider

its determinant line bundle L(c) and take its first Chern class c1(L(c)). Now, because the

associated spinor bundle S(c) is defined through a representation, see Definition 3.2.7, we can

instead consider the dual to this representation and create another associated vector bundle

S∗(c). It turns out that this then in turn defines a Spinc-structure c∗ such that

S(c∗) = S∗(c) and L(c∗) = L∗(c). (5.5.1)

In other words, the operator c 7→ c∗ defines an involution on Sc(X), and the first Chern class

of the determinant line bundle L(c∗) satisfies

c1(L(c∗)) = −c1(L(c)). (5.5.2)

In particular, the dimensions of their Seiberg-Witten moduli spaces M(c) and M(c∗) agree.

It is then a natural question to ask how their Seiberg-Witten invariants are related.

Theorem 5.5.1. Let X be a compact oriented four-manifold with b+2 (X) > 1 and b+2 (X) −
b1(X) odd as per Remark 5.1.2. Then given a Spinc-structure c ∈ Sc(X) we have

SWX(c∗) = (−1)
χ(X)+τ(X)

4 SWX(c). (5.5.3)

5.6 Symplectic manifolds

In this section we study the Seiberg-Witten invariants of symplectic manifolds. We mostly

follow [17], which in turn describes [31]. Let (X,ω) be a compact symplectic four-manifold.

Choose an almost complex structure J such that (X,ω, J) is almost Kähler as per Definition

2.3.10. We know from Lemma 3.5.1 that an almost complex structure induces a Spinc-

structure cJ on X. Furthermore, Proposition 3.5.2 then gives us an explicit description of

the spinor bundle for all Spinc-structures on X. So let cE = cJ ⊗ E be any Spinc-structure

on X. Recall that its determinant line bundle is equal to K−1 ⊗ E2. Choose a perturbation

η ∈ Ω2
+(X; iR) and let ψ ∈ Γ(S+(cE)) be a spinor with components ψ = (α, β) with respect

to the decomposition

S+(cE) = E ⊕ (K−1 ⊗ E). (5.6.1)

We then have by definition of q(ψ) that

q(ψ) =

(
|α|2 αβ

αβ |β|2

)
− 1

2

(
|α|2 + |β|2

)(1 0

0 1

)
=

(
1
2(|α|2 − |β|2) αβ

αβ −1
2(|α|2 − |β|2)

)
. (5.6.2)

Now compare this to the decomposition of the self-dual two forms on X as per equation

(2.3.21),

Ω2
+(X;C) = Cω ⊕ Ω2,0(X;C)⊕ Ω0,2(X;C). (5.6.3)
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Using Lemma 3.3.4 we see that for a connection A on K−1⊗E2 the Seiberg-Witten monopole

equation for (A,ψ) is equal to{
FωA = i

4

(
|α|2 − |β|2

)
ω + ηω,

F 0,2
A = 1

2αβ + η0,2.
(5.6.4)

Now note that we can decompose A = A0 ⊗ B2 with A0 a connection on K−1 and B a

connection on E. Choose A0 such that Theorem 3.5.6 applies. As the curvature of A can be

expressed in those of A0 and B as

FA = FA0 + 2FB, (5.6.5)

we see that equation (5.6.4) becomes{
FωB = i

8

(
|α|2 − |β|2

)
ω − 1

2F
ω
A0

+ 1
2η

ω,

F 0,2
B = 1

4αβ −
1
2F

0,2
A0

+ 1
2η

0,2.
(5.6.6)

On the other hand, by Theorem 3.5.6 the Seiberg-Witten Dirac equation for (A,ψ) becomes

∂Bα+ ∂
∗
Bβ = 0. (5.6.7)

Combining the above two observations we see that the Seiberg-Witten equations are equivalent

to the system 
∂Bα = −∂∗Bβ,
FωB = i

8

(
|α|2 − |β|2

)
ω − 1

2F
ω
A0

+ 1
2η

ω,

F 0,2
B = 1

4αβ −
1
2F

0,2
A0

+ 1
2η

0,2.

(5.6.8)

We now choose a very particular type of perturbation. Namely, let η ∈ Ω2
+(X; iR) be given

by

η0,2 = F 0,2
A0
, ηω = FωA0

− i

4
rω, (5.6.9)

for some number r > 0. Doing this, the Seiberg-Witten equations reduce to
∂Bα = −∂∗Bβ,
FωB = i

8

(
|α|2 − |β|2 − r

)
ω,

F 0,2
B = 1

4αβ.

(5.6.10)

For use in an upcoming proof we mention the following inequality, referred to as the Peter-Paul

inequality.

Lemma 5.6.1. For a, b ≥ 0 and ε > 0 we have

ab ≤ a2

2ε
+
εb2

2
. (5.6.11)
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Proof. This is a trivial corollary of Young’s inequality

ab ≤ a2

2
+
b2

2
, (5.6.12)

proven by setting a′ = a/
√
ε and b′ =

√
εb.

Lemma 5.6.2. Assume SWX(cE) 6= 0. Then the above system of equations (5.6.10) has at

most one solution up to gauge equivalence when c1(E) · [ω] = 0 and r is large enough.

Proof. Certainly if E = 0 and r ≥ 0, this system has a solution with B = 0, β = 0 and α

constant such that |α|2 = r. We wish to show this is the only solution if c1(E) · [ω] = 0. If

E has a non-trivial Seiberg-Witten invariant, there is a solution (B,α, β) to the equations.

We will omit writing the volume form dvolg below. By the Weitzenböck formula of Lemma

2.3.16 we get with s = α, taking the inner product with α∫
X

|dBα|2 =

∫
X

〈2∂∗B∂Bα, α〉+ iΛFB|α|2. (5.6.13)

Consider the first term of equation (5.6.13). By the Seiberg-Witten Dirac equation and then

adjointness we have∫
X

〈2∂∗B∂Bα, α〉 = 2

∫
X

〈∂∗B(−∂∗Bβ), α〉 = −2

∫
X

〈∂∗B∂
∗
Bβ, α〉

= −2

∫
X

〈β, ∂2Bα〉.
(5.6.14)

By Lemma 2.3.15 and the second monopole equation we then see that this is equal to

−2

∫
X

〈β, ∂2Bα〉 =

∫
X

(
−2〈β, F 0,2

B α〉+ 2〈β,NJ(∂Bα)〉
)

=

∫
X

(
−1

2
|α|2|β|2 + 2〈β,NJ(∂Bα)〉

)
.

(5.6.15)

Note that ω has length
√

2 as mentioned below Definition 2.3.10. By the first monopole

equation we see that the second term of equation (5.6.13) is equal to∫
X

iΛFB|α|2 = −1

4

∫
X

(|α|2 − |β|2 − r)|α|2. (5.6.16)

Combining equations (5.6.15) and (5.6.16) we get from equation (5.6.13) that∫
X

|dBα|2 =

∫
X

(
−1

2
|α|2|β|2 + 2〈β,NJ(∂Bα)〉 − 1

4
(|α|2 − |β|2 − r)|α|2

)
, (5.6.17)

which we quickly rewrite to∫ (
|dBα|2 +

1

4
|α|2|β|2 +

1

4
(|α|2 − r)2 +

1

4
r(|α|2 − r)

)
=

∫
X

2〈β,NJ(∂Bα)〉. (5.6.18)
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But now by Theorem 2.2.9 we have c1(E) = i
2π [FB], so that

c1(E) · [ω] =

∫
X

i

2π
FB ∧ ω = − 1

8π
(|α|2 − |β|2 − r). (5.6.19)

Because NJ is a bounded tensor, by Lemma 5.6.1 there then exists a constant C > 0 is a

constant not depending on (B,α, β) or on r so that∫
X

2〈β,NJ(∂Bα)〉 ≤
∫
X

1

2
|dBα|2 + C|β|2. (5.6.20)

Now we substitute equations (5.6.19) and (5.6.20) in equation (5.6.18) and rearrange to get∫ (
1

2
|dBα|2 +

1

4
|α|2|β|2 +

1

4
(|α|2 − r)2 +

(
1

4
r − C

)
|β|2

)
≤ 2πrc1(E) · [ω]. (5.6.21)

So now take r > 4C. Then we see that c1(E) · [ω] ≥ 0. If we would have c1(E) · [ω] = 0 then

this equation shows again β = 0, |α|2 = r and dBα = 0. But then B = 0 and E = 0. All such

solutions are gauge equivalent, so the Seiberg-Witten moduli space consists of one point.

We now check that the above perturbations η = η(r) can be made to be regular, so that the

associated Seiberg-Witten moduli space is smooth. We follow [26].

Lemma 5.6.3. Let (X,ω, J) be a compact almost Kähler four-manifold. There exists an

R > 0 such that the perturbation η(r) = FωA0
+F 0,2

A0
− i

4rω gives rise to a smooth moduli space

Mη(cJ) for all r > R.

Proof. We know from Theorem 5.6.2 that Mη(cJ) contains just one point, which has ψ 6= 0

and hence does not come from a reducible configuration pair. Hence by the results of Section

4.4 it suffices to check that the linearization dFη of the perturbed Seiberg-Witten map is

surjective at this solution. Recall that the solution is given by (A,ψ) = (A0, α0, β0) with

α0 =
√
r and β0 = 0. Let (a, ϕ) a tangent vector to the configuration space. Decompose

(a, φ) as

(a, ψ) =

(
i√
2

(φ+ φ), α, β

)
, (5.6.22)

for φ ∈ Ω0,1(X;R), α ∈ Ω0,0(X) and β ∈ Ω0,2(X) as S+(cJ) =
∧0,0 T ∗X ⊕K−1. After some

omitted computations we see from Lemma 4.2.1 and the explicit form of Clifford multiplication

given in Proposition 3.5.2 that dFη(a, ψ) = 0 amounts to the system
√

2(∂α+ ∂
∗
β) + i

√
rφ = 0,

i∂φ =

√
r

4
√

2
β,

∂
∗
φ = −

√
ri

4
√

2
α.

(5.6.23)

But now the fact that DA0 =
√

2(∂ + ∂
∗
) as per Theorem 3.5.6 gives us that this system

amounts to

DA0ζ = −
√
ri

4
φ, D∗A0

φ = −
√
ri

4
ζ, (5.6.24)
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where ζ = (α, β). In other words, we must have

D∗A0
DA0ζ = − r

16
ζ. (5.6.25)

By the Weitzenböck formula, Lemma 3.4.5, this can be rewritten into(
∇∗A0
∇A0 + S +

r

16

)
ζ = 0, (5.6.26)

where S includes the scalar curvature and Clifford multiplication by FA0 , but at any rate is

independent of r. Now choose r large enough so that S + r is a positive definite self-adjoint

operator. Then equation (5.6.26) implies that ζ = 0. But then φ = 0, which implies that dFη
is indeed surjective.

We can now tie our results together to prove a result of Taubes [31] that the canonical Spinc-

structure on a compact almost Kähler four-manifold has Seiberg-Witten invariant equal to 1

modulo 2.

Theorem 5.6.4. Let (X,ω) be a compact symplectic four-manifold satisfying b+2 (X) > 1 with

an almost complex structure J making X almost Kähler. Then SWX(cJ) = 1 mod 2.

Proof. By Lemma 5.6.3 we know that the perturbation η = FωA0
+ F 0,2

A0
− i

4rω is smooth for

r > R. Now choose r such that r > max{R, 4C} where C is the constant arising in the

proof of Lemma 5.6.2. In other words, the Seiberg-Witten moduli space Mη(cJ) is a compact

oriented zero-dimensional manifold, which necessarily consists of a finite number of points.

By Lemma 5.6.2 we then see that it in fact consists of just one point, given by the pair

(A,ψ) = (A0, (
√
r, 0)). By the definition of the Seiberg-Witten invariant, this implies that

SWX(cJ) = 1 mod 2.

Remark 5.6.5. One can show that with a natural choice of orientation one in fact has

SWX(cJ) = 1 in the theorem above. For details see [15,27].

Write cJ = 0 and cE = E. Then the result from Lemma 5.6.2 allows us to prove more. First,

note that by Theorem 5.5.1 on involutions of Spinc-structures we get that

SWX(E) = ±SWX(K ⊗ E∗). (5.6.27)

Because of this, we can extend Theorem 5.6.4 to the following statement again due to Taubes

[31].

Theorem 5.6.6. Let (X,ω) be a compact symplectic four-manifold satisfying b+2 (X) > 1.

Then SWX(K) = ±SWX(0) = ±1. Moreover, if cE = cJ ⊗ E is some Spinc-structure such

that SWX(cE) = SWX(E) 6= 0, then

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω] (5.6.28)

with equality if and only if E = 0 or E = K.
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Proof. We saw in the proof of Lemma 5.6.2 that there is no solution to the Seiberg-Witten

equations if c1(E) · [ω] < 0. But then Theorem 5.6.4 together with equation (5.6.27) implies

the result.

Taubes went on to prove a great deal of other things, equating the Seiberg-Witten invariants

for symplectic manifolds with their Gromov invariants [30]. We lastly prove the theorem from

the introduction.

Theorem 5.6.7. Let (X,ω) be a compact symplectic four-manifold with b+2 (X) > 1. Then

X does not admit a Riemannian metric of positive scalar curvature. Furthermore, it does not

admit a connected sum decomposition X ∼= X1#X2 with b+2 (Xi) > 0 for i = 1, 2.

Proof. From Theorems 5.3.2 and 5.4.2 we know that if X would admit either a metric of

positive scalar curvature or have such a connected sum decomposition, then SWX ≡ 0. On

the other hand, Theorem 5.6.4 shows that SWX(cJ) = 1 mod 2 for the Spinc-structure cJ
associated to a compatible almost complex structure.

Corollary 5.6.8. The manifold Xp,q := pCP 2#qCP 2 admits an almost complex structure if

and only if p ≡ 1 mod 2 and a symplectic structure if and only if p = 1.

Proof. This follows from Theorem 5.6.7 because Xp,q admits a metric of positive scalar

curvature, as this property is preserved by connected sums. Note that b+2 (CP 2) = 1 and

b−2 (CP 2) = 1 and that b+2 and b−2 behave additively with respect to connected sums.
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Chapter 6

Outlook

We discussed the basic theory for Seiberg-Witten invariants of compact oriented four-manifolds

X. We saw that we needed the assumption b+2 (X) > 1 in the section on transversality to

ensure the Seiberg-Witten moduli space was indeed generically a smooth manifold and the

Seiberg-Witten invariants where independent of the choice of Riemannian metric on X. More

can be said in the case where b+2 (X) = 1, and most of the results carry over with slight

modifications.

Almost straight from the definition we saw that the Seiberg-Witten invariants are zero for

manifolds which admit a metric of positive scalar curvature or a certain connected sum de-

composition. On the other hand we could show the canonical Spinc-structure one can asso-

ciate to a symplectic manifold has Seiberg-Witten invariant equal to one through picking a

smart choice of perturbation. This combination of vanishing and non-vanishing results for

the Seiberg-Witten invariants in the presence of additional geometric structure gives rise to

a dichotomy between such structures.

As was mentioned in the introduction, many interesting results have been left out of this

thesis. One thing of particular interest is if one can prove vanishing or non-vanishing results

of the Seiberg-Witten invariants for manifolds admitting other geometric structures than were

mentioned in this thesis.
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