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Abstract

Since Einstein published his theory of general relativity, scientists wanted to
construct a theory which describes both gravity and electromagnetism. Kaluza
introduced a five dimensional manifold, which consists of spacetime plus an
extra circle dimension. After he reduced the Einstein equations for the five
dimensional manifold to four dimensional equations, he could unify gravity and
the electromagnetic field in one theory. The derivation done by Kaluza is called
the Kaluza-Klein reduction. In this reduction, Kaluza used an ansatz, called the
cylindrical condition, which was motivated by Klein. In this thesis we will look
at the Kaluza-Klein reduction and at the cylindrical condition. This reduction
is a motivation to consider actions in the five dimensional spacetime and look at
the results they give in four dimensional spacetime. We are going to look at the
action for a (p — 1)-form gauge field on a five dimensional manifold and we are
going to reduce the action to four dimensions. To do this reduction, we cover
the mathematics of differential forms. With this mathematics, we will look at
Hodge theorem, which relates exact, closed and harmonic forms. With Hodge
theorem we will better understand the action for a (p — 1)-form gauge field.
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Introduction

This thesis is about a unification of gravity and the electromagnetic field. We
will discuss the method for this unification done by Theodor Kaluza and Oskar
Klein. We have investigated the steps done by Kaluza and Klein to get both the
homogeneous Maxwell equations for electromagnetism and the Einstein equa-
tions for general relativity. The homogeneous Maxwell equations describe elec-
tromagnetic fields without extra charges and currents. Therefore they do not
describe charged particles such as electrons.

We will start with a little bit of history. In the beginning of the 20** century,
Albert Einstein created the theory of general relativity, in which gravity is
described by only using geometrical arguments (2]). The idea of general relativity
is that spacetime itself is curved due to masses and energies. As the Euclidean
space, which was used to describe the spacetime before Einstein introduced
general relativity, is not curved, we consider spacetime now to be a manifold,
which can be curved. In general relativity we propose that spacetime is a four
dimensional space. In the beginning of last century, general relativity could
describe gravity more accurately than any other theory, but a major problem at
this time was that people did not know how to unify this theory with the physical
theories existing at that time, such as electromagnetism. When the standard
model was introduced, scientists did not manage to unify this with gravity,
even though candidates such as string theory have been constructed. Back in
the beginning of the twentieth century, the German mathematician Theodor
Kaluza (1885-1954) came up with an idea to combine general relativity and
electromagnetism (I1]). In 1921 he published a paper in which he considered
spacetime as a five dimensional manifold, in stead of a four dimensional one.
He made the manifold five dimensional by proposing a circle on every point of
the four dimensional spacetime.

Kaluza reduced the Einstein equations in five dimensions to equations in four
dimensions. These four dimensional equations are the homogeneous Maxwell
equations for electromagnetism and the Einstein equations for gravity. This re-
duction from a theory in five dimensions to a theory in four dimensions, is called
the Kaluza-Klein reduction. The result of the reduction has to be four dimen-
sional, as all experiments are done in four dimensions and we need experiments
to justify the theory.

To be able to get results in four dimensions, Kaluza made use of an ansatz,
called the cylindrical condition. This ansatz is that all fields are constant under
transformations on the circle. Kaluza did not show why this ansatz could be
made, but the Swedish physicist Oskar Klein (1894-1977) did in 1926 (8).

An equivalent way of the Kaluza-Klein reduction, is to reduce the five dimen-
sional Einstein-Hilbert action to an action in four dimensions. The Einstein-
Hilbert action is the action which describes the same system as the Einstein
equations.

In this thesis, we will also consider another action than the Einstein-Hilbert
action on a five dimensional manifold, as this has been done before and has some
interesting results. In the four dimensional spacetime, an important system to



consider is the system which describes the Maxwell equations. The correspond-
ing action, the action for a differential 1-form gauge field, can be written in
terms of differential forms. We will consider this action, which is dependent on
differential forms, in more dimensions. This action is called the action for a
(p - 1)-form gauge field.

To be able to do these dimensional reductions, we have to understand all
mathematical terms we are using in the actions. The Einstein-Hilbert action
contains the Ricci scalar. To know what the Ricci scalar is, we have to look
at the Christoffel symbols, the Riemann tensor and the Ricci tensor first. The
action for a (p — 1)-form gauge field contains differential forms, which are anti-
symmetric covariant tensors. The notation used for differential forms is different
from the component notation which is often used for tensors. We will notice
that in some cases computations are more pleasant if we work with differential
forms. For these computations we use the exterior product and the exterior
derivative.

Wiliam Hodge (1903-1975) stated two important theorems with respect to
differential forms. In the first place he proved his decomposition theorem, which
states that any differential form can be split in an exact, closed and harmonic
form. His other theorem, called Hodge theorem, states that the de Rham coho-
mology group is isomorphic to the set of harmonic forms. Hodge decomposition
theorem will be used in the reduction of the action for a (p—1)-form gauge field.

Since the publication of general relativity, new physical theories, such as the
standard model, have been proposed. Physicists tried to unify the standard
model with general relativity, by adding even more dimensions to the four di-
mensional spacetime. For this unification a lot more work has to be done than
for the unification of the electromagnetic field with gravity. Originally Kaluza
only added one extra dimension to the four dimensional spacetime, as he only
intended to unify electromagnetism with gravity. String theory, in which a
similar reduction as the Kaluza-Klein reduction is used to get expressions in
four dimensions, out of a higher dimensional theory, is one of the attempts of
this unification. In string theory, particles are considered as strings, which is
a fundamental change from how we considered particles before. This gives an
impression of the importance of the work done by Kaluza and Klein.
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1 Manifolds

In general relativity, the spacetime we use is a manifold, because this can be
curved. A manifold is a more general space than the Euclidean space R", as it
is locally homeomorphic with R"™, but it can be different globally. In this thesis
the spaces we consider are smooth manifolds, so we can differentiate as many
times on the manifold as we want. We are going to consider a five dimensional
manifold, which is four dimensional spacetime plus a circle.

A manifold which is locally homeomorphic with R™ is an n dimensional mani-
fold. A manifold can only have one dimensionality. In the end of this chapter,
we are going to look at Riemannian manifolds in order to measure distances.

1.1 Smooth manifolds

Before we can give the definition of a smooth manifold, we have to look at some
definitions first.

Definition 1.1. Take U an open subsets of M. A chart on M is a pair (U,v),
where ¥ is a homeomorphism from U to (U) = U’ with U’ a subset of R™.

Definition 1.2. Two charts (Uy,v1) and (Us,1)2) are called smoothly com-
patible if the composite map 1po o Y7t is a diffeomorphism or if Uy nUs = @.

Definition 1.3. An atlas is a collection of charts whose union covers the cor-
responding manifold.

A smooth atlas is an atlas for which all charts are smoothly compatible. A
maximal smooth atlas A, is a smooth atlas, such that there is no larger smooth
atlas containing A. Now we can explain what a smooth structure on M is and
then what a smooth manifold is.

Definition 1.4. A smooth structure is a mazrimal smooth atlas.

Definition 1.5. A smooth manifold is a pair (M, A), where M is a manifold
and A is a smooth structure on M.

Normally a smooth manifold is denoted by M only.

1.2 Compactness

Let us define compactness for a topological space in general. We can use this
definition for manifolds as a manifold is a topological space. First we must know
what a covering is.

Definition 1.6. Let X be a topological space. A covering of X is a family
{A;li e I} of subsets of X with

Udi=T (1.1)



{4;|i € I} is called an open covering if for every i € I, {A;} is an open set.

Definition 1.7. A topological space X is compact if, for every open covering
{Aili e I} of X, there is a finite subset J c I, with {A;|j € J} a covering of X.

As any closed and bounded subset of R is compact, the circle is compact.
Compactness is an important criterion as Klein proved that the Kaluza-Klein
reduction can only be done on compact manifolds.

1.3 Tangent vectors

Having introduced smooth manifolds, we will next introduce tangent vectors.
Unlike on R, vectors on manifolds are not just the displacement from one point
to another. Tangent vectors are not elements of the manifold itself, but elements
of a tangent space. These vectors on smooth manifolds are also called tangent
vectors. To construct tangent vectors, we must first define a derivation at p € M.

Definition 1.8. A derivation at p is a linear map V : C* - R, for which
also holds that

V(f9)=f®)Vg+g9(@)VF. (1.2)
Here f and g are real-valued smooth functions on M.

Definition 1.9. The tangent space T,M to M at p, is the set of all derivations
at the point p.

Definition 1.10. A tangent vector at p is an element of T, M.

We can now see that a tangent vector at p is a possible direction with length
at p which is tangent to the manifold.

Proposition 1.11. Let M be a smooth manifold. The tangent space T,M has
the same dimensionality as the manifold M .

We want to find a basis for the tangent space. To find this basis we look at the
smooth chart (U, ¢). Here ¢ is a diffeomorphism from U to U’ ¢ R"™. Therefore
there is an isomorphism between T}, M and Ty ,)R". Let us look at a basis of
T¢(p)Rn: {81|¢,(p), e 6n|¢(p)}, where we use the notation that 6Z|¢(p) = % #(p)-
Here {z',...,2™} is a basis of R™. These vectors are exactly the partial derivative
operators at ¢(p). As ¢ is a diffeomorphism, the preimages of these basis vectors
form a basis for T, M. This preimages are exactly O1p, ..., Onlp-

Proposition 1.12. For any smooth chart (U, $) with p € U, the set of vectors
{01lps -, Onlp} forms a basis for T,M.

This basis is called a coordinate basis for 7),M.
Now we can write a tangent vector V,, with respect to its basis: V}, = V0.



1.4 Tangent bundle
Now we can look at the tangent bundle T'M.

Definition 1.13. The tangent bundle of M is the disjoint union of the tan-
gent spaces at all points of M.

An element of TM is a pair (p,v), where p € M and v € T,M. There is a
natural map from the tangent bundle to the manifold. This map is called the
projection map 7 and holds that w(p,v) = p. The dimension of TM is twice the
dimension of M. We can now define vector fields.

Definition 1.14. A vector field V on M is a smooth map
V:M->TM, (1.3)
such that V,, e T,M, where we write V), instead of V(p).

The set of vector fields is denoted by T'(T'M).
We want to be able to take derivatives of vector fields. Therefore we must
introduce the connection on the tangent bundle. This connection is called an
affine connection.

Definition 1.15. Let V, W be vector fields and let f be a smooth function on
the manifold. An affine connection is a bilinear map V from T(TM)xT'(TM)
to T(TM), such that

1. VivW = fuyW,
2. Vv (fW) =0y fW+ fyyW.

In this notation Jy is the partial derivative in the direction of the vector V.
Further in this thesis we will introduce the Christoffel symbols using an affine
connection on a Riemannian manifold.

1.5 Dual space and covectors

In this section we introduce the dual vector space, which is also called the cotan-
gent space and is denoted by T, M. The cotangent space is the space of all
linear maps from the tangent space to R. Elements of 77 M are called dual
vectors, covariant vectors, covectors or one-forms. As T7 M is the dual

space of T),M, we can relatively easy construct a basis for 7)) M.

Proposition 1.16. Let {e1],, ..., enl,} be a basis for T,M, then {E',, ..., E"|,}
defined by E'e; =03 1s a basis for T,y M.

Remember the coordinate basis for T, M: {81, ..., Onlp}. Notice that {E|,, ..., E"|,} =
{dz'|,, ...,dz™|,} fulfills this condition as

i

dz'(9;) = % = 5t (1.4)

7

10



Here {dz',...,dz"} is called the coordinate basis for T M.
With the same construction as for the tangent bundle, the cotangent bundle is
constructed.

Definition 1.17. The cotangent bundle of M, denoted by T*M, is the dis-
joint union of the cotangent spaces at all points of M.

1.6 Tensors

It is now a simple generalization to go from vectors and covectors to tensors.
Let us first define a multilinear map.

Definition 1.18. A multilinear map is a map which is linear as a function
of each separate variable.

So if S is a multilinear map, we have:
S(X1y ooy @i + aYiy ooy @) = S(X1, ey iy oy T ) + S (X1, ooy Yiy ooy T ) (1.5)

Similar as a covector is a linear map from vectors to IR and a vector is a linear
map from covectors to R, a tensor T of rank (k,!) is a multilinear map from a
collection of vectors and covectors to R. So T is a map from

T:TyMx..xTyM xT,M x ... x T,M - R. (1.6)

Here we have k times T); M and [ times T),M.

To define tensors, we must first introduce the tensor product. The tensor
product between T a (k, 1) tensor and S an (m,n) tensor is the new (k+m,+n)
tensor T'® S:

T ® S(Vayy s Vags Vagors s Vagams Vors s Vors Vogars s Voran )

(1.7)
= T(Ual)"'7vak7%17"'7‘/bl) x S(Uak+1’ "'7Uak+1n"/bl+1’"'7‘/bl+n)'

Here v,, are covectors and Vj, are vectors.

In section 1.5, a basis for the tangent space and the cotangent space is in-
troduced. In this basis, the covector v,, can be written as v,, = vq,,,,dz".
Similarly the vector V,, can be written in its own basis as V;, = V;70,,. A basis
for the space of all (k,l) tensors is the tensor products of all these bases. So
this basis looks like

Oy ® ...0 0y, @daM" @ ... @ dz. (1.8)

Finally we can write a (k,l) tensor T as

T=T "0, ®.00, ®dr" ®..&dr". (1.9)

11



1.7 Riemannian manifold

In general relativity we want to measure distances on our space and therefore
we use a metric. Let us explain what Riemannian manifolds are.

Definition 1.19. A Riemannian manifold is a pair (M, g), with M a smooth
manifold and g a Riemannian metric on M.

Here a Riemannian metric g is a symmetric metric which is positive at
each point. In general, a metric g is often written as follows:

g = gijda’da’. (1.10)

Here we write the metric in components, g;; which is a symmetric (0, 2)-tensor.
This tensor is called the metric tensor. The inverse metric tensor g* is defined
via:

9" gkj = grjg"" = 6;. (1.11)

Because g;; is symmetric, g% is also symmetric.

On a Riemannian manifold, we can define an inner product between two tangent
vectors V and W by g(V,W) € R. Now we can counsider g(V,.) as a map from
T,M to R by W+ g(V,W). The metric tensor acting on a vector g(V,.) is thus
a covector. Notice that the metric tensor g is an isomorphism between T}, M
and Ty M. In the notation where we write the metric as a two tensor g;;, the
isomorphism looks as follows: V; = g;;V? and V* = g"/V;. Here V; € T;y M. This
mapping between T, M and 7)) M is known as raising and lowering indices.

12



2 Differential forms

In this chapter we will look at differential forms, which are antisymmetrical
tensors and are commonly used in physical computations. We will also look at
a product and a derivative on differential forms, the exterior product and the
exterior derivative. We will have a closer look at exact, closed and harmonic
forms. With these differential forms we will introduce two theorems from Hodge.

2.1 Differential forms

Definition 2.1. A differential k-form «, also called a k-form, is an alter-
nating (0, k)-tensor.

The integer k is called the degree of the differential form. A (0, k)-tensor
« is alternating if for all vectors vy, ...,vx € V' and every pair of distinct indices
i,j we have

(V15 ey Uiy ey Uy ooy U ) = =@ (U150, Vg ooy Uy oy, Uk ) (2.1)

In this thesis we look at differential forms on smooth manifolds. The vector
space of k-forms on a smooth manifold M is denoted by QF(M).

Let us define the exterior product, which is a multiplication such that this
product of two differential forms is again a differential form.

2.2 Exterior product

To define the exterior product, we must look first on how it acts on coordinate
basis vectors for 7,7 M.

dz™ A dat? Ao Adatr = del @ date .. @ dat ] (2.2)

Here we used the notation that for a (0, k)-tensor 7% % we have that:

1
plav-an] < E(T‘“'““’c + alternating sum over the permutations of indices).
' (2.3)
We can now write a k-form w in component notation in the following way:
1 . )
w = gwil.-.ikdx“ A...ANdx'*. (24)

With this notation we can look at the exterior product between two differen-
tial forms w € Q¥ (M) and 1 € Q' (M), which is a new (k+1)-form. Their exterior
product is as follows:

(W AN (UL, oy Uk ey Vt) = (Vs o V&) (Vk 15 s Vi) - (2.5)

1
[T

Notice that the exterior product of a k-form and an I-form is a (k + [)-form, so
A QE(M) x QY (M) - QFL(M).
To get a feeling for the exterior product, we look at the following example:

13



Example 2.2. Let w be a 2-form and n a 1-form. Their exterior product is as
follows: 4 4 .
WAN = Wiy Wi, Nigdr' Adz™ Adx™. (2.6)

In general the exterior product of a k-form and an [-form can be written like
this: _ _ _ '
WA= Wiy iy Mjy. 4T Ao ade'™ Ada?* AL Ada?t. (2.7)

2.3 Exterior derivative

With the exterior product we have seen that the product between two differential
forms, is again a differential form. Similarly, we want to take the derivative of
a differential form in a way that the result is again a differential form. The
exterior derivative fulfils this requirement. Let w be the k—form from equation
2.4.

Definition 2.3. The exterior derivative of w, dw, is the following (k +1)-
form:

1 0

dw = — -2
Y o

(W), g )dz" A dz?t A A dad®, (2.8)

Here d : Q% — QF*! is called the exterior derivative operator. Notice that
the exterior derivative operator only acts on differential forms. The exterior
derivative has the important property that d? = 0. To see this we write d?w:

1 92

dPw=———r
Y oo

(Wi )zt A dat Ada?t A A dat (2.9)

2 . . . . ] . .
Here %(wjlmjk) is symmetric with respect to [ and 4, but dz' A dz® is anti-

symmetric. Therefore %{in(w‘jl---‘jk Ydz! Ada® =0, and also d*w = 0.
Lemma 2.4. Let w be an k-form and n be a I-form. Then
d(wAn) =dwan+(-1)*w A dy. (2.10)

This result follows from writing out d(w A 7).

2.4 Exact and closed forms

Let us first look at the kernel, image and cokernel of a linear map. The image
of fis f(V) c W and is denoted by im(f). The kernel of f is {ve V|f(v) =0}
and is denoted by ker(f). The cokernel, coker(f) is defined as:

coker(f) = ; v (2.11)

m(f)

We are now going to have a closer look at the differential forms which are exact
or closed.

14



Definition 2.5. A p-form w on a smooth manifold M is called exact if there
is a (p—1)-form n with w = dn.

We denote the image of d : QP~1(M) — QP(M)) by BP(M), which is the
set of all exact p-forms on M.

Definition 2.6. A form w on a smooth manifold M is called closed if dw = 0.

We denote the kernel of d : QP(M) — QP*L(M)) by ZP(M), which is the
set of all the closed p-forms on M. The image and the kernel are well-defined
as the exterior derivative is a linear map.

We notice that exact forms are closed forms, as d?w = 0, for any differential
form w. This leads to the fact that the image is a subset of the kernel, so

BP (M) c ZP(M). (2.12)
We can now define the de Rham cohomology group.

Definition 2.7. The de Rham cohomology group in degree p, denoted by
HY. (M), is defined as follows:

ZP(M)
Br(M)

1 (M) = (2.13)

Two forms are called cohomologous if they only differ by an exact form.
Later Hodge theorem will show that the de Rham cohomology group is isomor-
phic to the collection of harmonic forms of M. First we need to introduce some
more concepts.

2.5 Adjoint of the exterior derivative

To define the adjoint of the exterior derivative, the Hodge star operator, denoted
by *, must be introduced first.

Definition 2.8. Let M be an m-dimensional manifold. Let w € QF be the

following k-form:
1 i j
w= ijl_“jkdxﬁ A AdxTk. (2.14)

The Hodge star operator is a map from QF(M) to Q™ *(M) by:

lg] .. g

* W= — : )
K\(m - k)! bl S oim

dz?" A A dam (2.15)

The differential form *w is called the Hodge dual of w.
In the equation we have that

Iy...1 _ i ledk . )
6jk+1'~-jm - g "'g 6]1"'37”’ (216)

where €;,. ;.. is the Levi-Civita symbol, which is 1 for even permutations of
{1,...,m}, -1 for odd permutations and 0 if there are repeated indices. In

15



equation 2.15, the term |g| is the absolute value of the determinant of the metric
tensor. Notice that the Hodge star depends on the metric. This dependence is

Vgl

ey
FT(m—)1 and in €

Jk+1--Jm”

quite tricky as the metric is both found in the prefactor

Lemma 2.9. Let n and w be k-forms. The following exterior product n A *w is
an m-form and is symmetric, so

NA*W =W A *1). (2.17)

Proof:
The proof of the symmetry property follows by writing the exterior product in
component notation:

lg] Iy...lg
Eml...ik mwj j

1 S
= Em‘l.._ikwh'““\/|g|da:1 Ao Adz™.

dx" A ...ondx'™ AdxT AL A daT™
n

* = . .
NA*w 1ooJk gt e g

(2.18)
This last expression is symmetric as the metric is symmetric.m

Lemma 2.10. Let w be as before and let (M,g) be a Riemannian manifold,
then
% ww = (=1)Fm=R)g, (2.19)

This result follows from acting the Hodge star operator twice on the differ-
ential form w.

Definition 2.11. The invariant volume element is x1.

As the simplest O-tensor is the scalar 1, the most basic volume form is 1.
Now we look at a Riemannian manifold (M,g). Notice that invariant volume
element is as follows:

*1= %ehmjmdzﬁ Ao ndx?™ = \/|gldzt A A dz™. (2.20)

The following notation of the inner product is useful:

Definition 2.12. Let w and n be k-forms on a m-dimensional manifold M.
The inner product between w and n, denoted by (w,n) is defined as

1 . m
(w,n) =/MOM*77= ;/Mwjl,,,jknh'“ﬂm*k\/|g|dx1...dx ) (2.21)

Here w A *7 is an m-form.
The inner product has the following properties:

1. (w,w) >0,

16



2. If (w,w) =0, then w = 0.

The properties follow from the definition of the inner product and the fact that
our manifold M is Riemannian.
Let us look at the operator d* : Q¥ — Q¥ which is given by:

d* _ (_1)km+m+1 *d*, (222)

where d is the exterior derivative operator d: Q' — QF. For this operator we
have the following lemma.

Lemma 2.13. Let w be an r-form and n be an r — 1-form. Then the following
equality holds:
(dn,w) = (n,d"w). (2.23)

Proof:
We know from lemma 2.4 and lemma 2.10 that
d(w A *n) =dw A *n—(=1)"wAd*n=dwnsy—(=1) DG A s s d sy
=dwA*n—wA*d'n.

(2.24)

If we now integrate both d(w A *1n) over the whole manifold, we can set the
result equal to zero, by choosing the boundary terms. In total we see that

/ (dw A *n—w A *d*n) = (dn,w) + (n,d*w) = 0. (2.25)
M

In conclusion we see that (dn,w) = (n,d*w). =

In this notation, d* is the adjoint of d and therefore d* is called the exterior
derivative operator.

This operator has the property that d*? =0as d*? = xd* +d* = C*d?* = 0, with
C' a constant.

With the exterior derivative operator we can define coexact forms.

Definition 2.14. A form w on a smooth manifold M is called coexact if there
is a (k +1)-form n such that w = d*n.
2.6 Harmonic forms

With the exterior derivative and its adjoint, we can define a second derivative
operator which sends p-forms to p-forms. This operator is called the Laplacian.

Definition 2.15. The Laplacian, denoted by A : QP (M) - QP (M) is defined
as follows:
A=dd* +d*d. (2.26)

Definition 2.16. A form w is called harmonic if Aw = 0.

We will cover some properties of the Laplacian.

17



Lemma 2.17. A form w is harmonic, if and only if dw =d*w = 0.

Proof:
Look at the inner product (w, Aw). We claim that this inner product is positive.

(w, Aw) = (w, (dd* + d*d)w) = (dw, dw) + (d*w,d*w) >0, (2.27)

because both (dw,dw) and (d*w,d*w) are non negative. If w is harmonic,
(w,Aw) = 0 and thus dw = d*w = 0. Showing that w is harmonic if w is both
closed and coclosed is trivial. m

Lemma 2.18. The Laplacian is self-adjoint, so for two p-forms a and B we
have that (Aa, 8) = (a, AB).

Proof:
This proof is similar to the proof of lemma 2.18.

(a,AB) = (e, (dd” +d"d)B) = (da, df) + (d"a,d" B)

2.28
= ((dd* +d*d)a, 8) = (A, B).m ( )
The following notation is normally used: The set of harmonic p-forms on M is
denoted by HarmP(M). Let us look at some other properties of the Laplacian.

Lemma 2.19. The Laplacian commutes with d and d*.

Proof:
dA =dd*d +ddd* = dd*d. (2.29)

Ad=d*dd+dd*d=dd"d. (2.30)
We conclude that Ad = dA. The proof for d* is similar. m

Lemma 2.20. The image of the Laplacian, im(A), is closed and has a finite
dimensional complement, which is the cokernel of the Laplacian, coker(A).

Here the image is well-defined as the exterior derivative operator and its
adjoint are linear maps and the Laplacian is a combination of them. We use the
notation, im(A), for the set of p-forms in the image of the Laplacian, which in
our case is an operator on p-forms. Similarly, coker(A), is also a set of p-forms.

Proving lemma 2.20 requires prior knowledge in functional analysis. The
results follows from the theory of self-adjoint elliptic operators. We therefore
do not give the proof. The proof of lemma 2.20 can be found in chapter 6 of
"Foundations of differential manifolds and Lie groups’ by F.W. Warner ({@).

Lemma 2.21. Let the set of harmonic forms and the cokernel be defined as
before. Then Harm? (M) = coker(A).
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Proof:
Let 8 be perpendicular to all exact forms, so 8 € im(A)*. Because the Laplacian
is self-adjoint we have that for all a:

(o, AB) = (Ae, ) = 0. (2.31)

As this equation holds for all «, we conclude that 3 is a harmonic form.

Now let 8 be a harmonic form. For all @ we have that (a, AB) = 0. Again
because the Laplacian is self-adjoint (Ac, 8) =0, so 8 € im(A)*. We conclude
that HarmP (M) = im(A)*.

Now we only have to proof that coker(A) = im(A)*. For the Laplacian we
have that im(A) ¢ Q(M), with im(A) closed. From lemma 2.21 we know
that im(A)* is finite dimensional. Therefore coker(A) = im(A)*, and thus
HarmP(M) = coker(A). m

Lemma 2.22. The Laplacian gives an isomorphism between HarmP(M)* and

im(A).

We have seen that Harm? (M) = im(A)*. Therefore HarmP(M)* = (im(A)*)*.
We know from linear algebra that for a subspace W in an infinite dimensional
Hilbert space, that the complement of the orthogonal complement of W is the
closure of W. Therefore we know:

HarmP(M)* = (im(A))* =im(A). (2.32)
As im(A) is closed, we conclude that:
HarmP(M)* zim(A).m (2.33)

As the Laplacian is an isomorphism between HarmP(M)* and im(A), the
inverse of the Laplacian exists. This inverse is called the Green operator G.

2.7 Hodge theorem

Theorem 2.23 (Hodge theorem). Let (M, g) be a compact orientable Rieman-
nian manifold, then HY (M) is isomorphic to HarmP(M).

~ Z2(M)

Corollary 2.24. Harm?(M) = B0 -

Before we prove the theorem, we will first prove another theorem by Hodge:

Theorem 2.25 (Hodge decomposition theorem). Let (M,g) be a compact ori-
entable Riemannian manifold, then a p-form w e QP (M) is written globally as

w=da+d S+, (2.34)

where o € QP~Y (M), B € QP (M) and v € Harm? (M).
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Proof:
First we show that da, d*8 and ~ are orthogonal.

(da,d*B) = (d*a, B) = (0,) = 0. (2.35)
(da,y) = (a,d*y) = 0. (2.36)
(d*B,7) = (B.dy) = 0. (2.37)

Now we show that w only consists of da, d* and .
The set of differential p-forms QP (M) can be decomposed in the set of harmonic
p-forms and a set perpendicular to the harmonic p-forms Harm?(M)*:

OP(M) = HarmP(M) & Harm?(M)*. (2.38)

From before we know that HarmP(M)* = im(A).
Now we can look at a p-form w € QP (M).

w=n+7, (2.39)

where n € im(A) and v € Harm?(M). Write n = A€ for a p-form . Now we
have:
w=n+y=Al+y=dd*E+d*dE +y=da+d* [ +7. (2.40)

This proves theorem 2.26. m

Now we can proof Hodge theorem. First we show that HarmP(M) c
HY.(M). For any harmonic form v, dy = 0. Thus v € ZP(M). Now look
at a 8 e BP(M). We can write 8 = dn, with n a (p— 1)-form. Now we have

(8,7) = (dn,7) = (n,d*y) = 0. (2.41)

From this follows that BP (M) N Harm? (M) = @. We conclude that HarmP (M) c
Hp(M).
Now we show that HY,(M) c Harm?(M). Let w be a p-form in HY,(M). We

know that HY,(M) = %, so w is a closed p-form. Now look at (dw,f).

According to Hodge decomposition theorem, we can split w as follows:
w=da+d" f+7. (2.42)

We now see that:
(dw, 8) = 0= (d*B.d"*B). (2.43)

Thus d* B =0 and w = da+~. We already know that any harmonic form is in the
de Rahm cohomology group so v € HY,(M). The de Rham cohomology group
is a group under addition, so w — v = da is also in H(‘;R(M). As there are per
definition no exact forms in HY,(M), do = 0 and thus w = . Therefore w any
p-form in the de Rham cohomology group is a harmonic form. We conclude that
HarmP (M) is isomorphic to H},(M). With this, Hodge theorem is proven. m
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3 General Relativity

In 1905 Einstein published his theory on special relativity. With this theory
he was able to describe particles moving with constant velocity. To explain
accelerating particles he created a new theory in 1915, general relativity. With
this theory, Einstein gave a new description of gravity. As general relativity
could describe phenomena in space, which earlier theories of gravity could not,
such as the bending of light and the orbit of Mercury, Einstein’s theory was soon
seen as the most accurate description of gravity. In general relativity, spacetime
is seen as a manifold, which can be curved, instead of a Minkowski-space as in
special relativity.

The description of gravity follows by the assumption that non-accelerated
test particles, follow geodesics. A test particle is a particle which does not affect
the curvature of spacetime. Geodesics can be thought of as the shortest path
from one place to another. A curved spacetime has different geodesics than R"™
as the geodesics are bent due to masses. Therefore test particles follow other
paths in curved space than in flat space.

In general relativity the Einstein equations are one of the most used results,
as they summarise general relativity and as we can calculate with them. We
will generate the Einstein equations for a vacuum, because Kaluza used these
equations in five dimensions as a starting position for his reduction to four
dimensions. To understand the Einstein equations, we will look at the Ricci
scalar and the Ricci tensors which are only nonzero on curved manifolds. To
understand this scalar and tensors we will look at the Christoffel symbols. In
the end of this chapter we will cover the derivation for the Einstein equations
in a vacuum.

3.1 Christoffel symbols

In chapter 1, we introduced an affine connection on a smooth manifold. Let us
now look at an affine connection on a Riemannian manifold. This connection
is called the covariant derivative, or the Levi-Civita connection. This
connection is a derivative which transforms as a vector on an arbitrary manifold.
It acts exactly like a partial derivative on a flat space. We want the covariant
derivative to transform under a change of coordinates of the tangent space,
like a vector. As we have seen, a vector itself does not change under a change
of coordinates of the tangent space, only its components change. So does the
covariant derivative. A partial derivative changes under a change of coordinates
in a curved space, as the partial derivative is a derivative with respect to the
coordinates of the tangent space. This makes the covariant derivative better to
work with. The third derivative we have discussed is the exterior derivative,
which is only defined on differential forms. The covariant derivative on the
other hand, can act on any tensor. This connection working on a (p, q)-tensor
gives a (p,q + 1)-tensor. To let the covariant derivative be independent on
the coordinates of the tangent space, we write it as the original derivative plus
correction terms. These correction terms are given by the Christoffel symbols
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A So acting on a vector V¥ we have:

v, VY =8,VV +T", V. 3.1
I H HA

In general we have for tensors that:

V1...Un _ AeUn V1 vy Vp rV1...Un
V,‘LTVn+1~~~Vn+m _a:u’TVnJrl‘aner + F,u,)\TVnJrLaner Tt ]"—‘,LLATVn+1~~Vn+m (3 2)
A VieUn _ _ Iw\ V1...Un '

HVnt+1 ™ Ao Vnym HVntm ™ Upgl.oo A"

Here we notice that V,V" is coordinate independent so vV, V" = VWV’/. We
demand two other conditions for the Christoffel symbols.

Firstly they are torsion free, which means that Tﬂ\u =0, where T:‘V = Ffly - Ff)u.
Secondly, they are metric compatible. This means that the covariant derivative
of the metric with respect to the connection is zero, so Vg, = 0.

Now we want to find an expression for the Christoffel symbols. we will do so by
expanding Vg,,. By construction we will find that the obtained expression is
unique. We know that the following equations hold:

Vaguv = 8)\guu - Fiugpu - Fl,(l,gpu =0, (33)

V,ugy)\ = augu)\ - Fﬁygp)\ - FZ,\gpu =0 (34)
and

Vg = aug)\u - F,’j)\gpu - Fgugpk =0. (35)

In these expressions we used the property that the Christoffel symbols are tor-
sion free. Combining the three equations, we get the wanted unique expression
for the Christoffel symbols:

Flp/,u = %gp)\(a,ugu)\ + aug)\,u - 5}4];“/)' (36)
In the expression we see that the Christoffel symbols are totally dependent on
the metric. On a flat manifold, the Christoffel symbols vanish as the metric is
constant. In this case the covariant derivative is equal to the partial derivative.
In this chapter we are using component notation and not the differential form
notation. This is because the tensors we are working with are not antisymmetric.
The notation of differential forms will only be used in the next chapter.

3.2 Riemann tensor

We are now going to use the Christoffel symbols for constructing the Riemann
tensor and the Ricci tensor. The Riemann tensor, also known as the Riemann
curvature tensor, describes the curvature on a manifold. The Riemann tensor
gives on every point on the manifold a description of the curvature.

One can transport a vector, which has a direction, over a manifold along a
path, while keeping the vector constant. This is called parallel transport. If we
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parallel transport a vector over a curved manifold from one place to an other,
the resulting vector is path dependent. Parallel transporting a vector to a really
small place is equivalent to taking the covariant derivative.

Consider a transport of first taking first the covariant derivative of a vector V*
in the z# direction and then in the z” direction V* - V? +v,V,V?dxtdx”. If
the space is curved then this parallel transport is different than taking first the
covariant derivative in the z¥ direction and then in the x* direction. So then
V.V, VP =V, Y, VP 0.

The Riemann tensor is defined as follows:

RP

LV =V VP =0, v, VP =T VAV?. (3.7)

Here T;V is the torsion tensor, which is in our cases always equal to zero as we
demand the Christoffel symbols to be torsion free.
Now look at Vv, V,V?:

VuV, VP 20,0,V + (0,10,)V7 + 0,0,V =T}, 0\V"
-T), I8 V74T 0,V +T%, 17,V

pno- v

(3.8)

V.V, V? gives the same equation but with p and v switched positions. In total
we find the expression for the Riemann tensor:
A A
Ry, =00, 0,1, + I‘Z/\I‘W - I";/\Fw. (3.9)
From the Riemann tensor, we can find the Ricci tensor R,,,. The Ricci tensor
is defined as follows:
R, =Ry}, (3.10)

Notice that the Ricci tensor is by construction symmetric:

R,, =R,,. (3.11)
The trace of the Ricci tensor is the Ricci scalar R:

R=g¢g""R,,. (3.12)

It turns out that the Ricci scalar is the simplest scalar dependent on the curva-
ture which invariant on a Riemannian manifold. Therefore it is a really impor-
tant scalar in general relativity.

3.3 Action principles

An action can be written as the integral over a space of the Lagrange density,
which is a function of fields. This could be scalar fields, vector fields or tensor
fields. By varying one of these fields with a small value, the action varies too.
In physics, a general assumption is that any system is in a state of minimal
action. This means that if one varies the action a little, that locally the action
does not change as it is in an equilibrium position. This assumption is called
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the principle of least action. This assumption gives a restriction on the fields
that leads to the equations of motion. According to Hamilton’s principle any
system that is described by equations of motion can be reformulated in terms
of an action principle and vice versa. In many cases, the Lagrangian density is
a more compact formulation and therefore it is often clearer to read what kind
of system is described by looking at the Lagrangian density than looking at the
equations of motion.

3.4 The Einstein-Hilbert action

In this section we look at the Einstein-Hilbert action. Out of this action, we
will later find the Einstein equations, which describe general relativity. Via the
principle of least action, Hilbert wanted to construct the Einstein equations. We
only consider the vacuum case. In vacuum, the Einstein equations for general
relativity are as follows (2)):

Ry, =0. (3.13)

To get equations which give the Einstein equations and describe the dependence
of curvature, the action must be dependent on the metric. An action is always
an integral over the whole manifold of a Lagrange density. On a Riemannian
manifold, this Lagrange density is a scalar L multiplied with \/m L is called
the Lagrangian scalar. We can write the action as follows:

S:/L*l. (3.14)

A good guess for the Lagrange scalar L, including second order derivatives of
the metric, is the Ricci scalar. This is the simplest possible scalar, which is
dependent on the second derivative of the metric. One could also add more
complex scalars to the Lagrangian density, but this would only give higher
order corrections. This is, because any other scalar dependent on the metric,
not equivalent to the Ricci scalar, would consist of higher order terms of the
metric tensor. We thus look at the action which looks as follows:

S:/R*lz/\/@Rdnz. (3.15)

Here n is the dimensionality of the manifold. This action is called the Einstein-
Hilbert action. The Einstein-Hilbert action describes gravity in a vacuum.

3.5 The Einstein vacuum equations

By varying the Einstein-Hilbert action, we can find equations of motion, which
will give a description of gravity. To find these equations, we have to minimize
the action. Therefore we want to find when §.S = 0.

65 = /5(@3)(1%. (3.16)
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We see that 6.5 =0, if 6(y/|g|R) = 0.

S(VgIR) = 8(g™™ Rasn/19))

(3.17)
= Ryndg™ ™ lgl + Rs0v/|gl + g™ N 6 Rpv /1 9l.
Here we have 6\/|g = —grnen/lgl6g™ ™.
Now zoom in on d Ry n:
0R, = VA(T),) = V., (0T3,,). (3.18)

Luckily, this term vanishes at the boundaries of the integration. In total we find
the following equation:

1 v
0(V19IR) = (Ryuw = 5 Rgu)09™ Vlgl. (3.19)
We now see that 65 = 0, if the following equation holds:
1
Ry = 5 Ry = 0. (3.20)
This equation can get simplified by multiplying with the metric tensor.
1% 1 v 1
9" Ry - 59“ Rg,, =R - itr(g)R =0. (3.21)
We see now that the Ricci tensor has to be zero. When we use this result
in equation 3.20, we conclude that the equations of motion are given by the

following equations:
Ry, = 0. (3.22)

These are the Einstein equations of a vacuum, which we have seen in equation
3.13.
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4 Circle reduction

When Einstein published his theory of gravity, one of the big questions was
whether general relativity could be combined with other theories. Kaluza made
an attempt to unify gravity and electromagnetism. In the first section we will
look at what assumption was made for the five dimensional metric which was
used for the Kaluza-Klein reduction. With these assumptions we can find the
metric and the inverse metric in five dimensions in terms of a four dimensional
metric g, a vector field A, and a scalar field ¢. With this five dimensional
metric, Kaluza could write the five dimensional Einstein equations in terms of
guv, A and ¢. As the action describes a system equivalently as the equations
of motion, we could also take a reduction of the Einstein-Hilbert action in five
dimensions. In this process, one has to write the five dimensional Ricci scalar in
terms of g,,, A and ¢. The result is a four dimensional action. In both processes
it is necessary to use the cylindrical condition. In 1926 Klein motivated why
the cylindrical condition is reasonable. We will reproduce the arguments of
Klein. In the end, we will also look at an other action on a five dimensional
manifold and reduce it to an action on four dimensional spacetime. The action

we consider is: )

Storm = — F' AxF!. 4.1
d 2/MD+1 PR ( )

This action is called the action for a (p — 1)-form gauge field. We look at this
action, because on a four dimensional spacetime it results in the homogeneous
Maxwell equations.

4.1 The metric tensor in five dimensions

In this paragraph we argue what the metric tensor, which represents the five
dimensional spacetime, looks like. If we know the Ricci tensor, we can find the
five dimensional Einstein equations for a vacuum as this is Ry;y = 0. As the
Ricci tensor is only dependent on the metric, the metric tensor contains all the
information for the five dimensional Einstein equations.

Let us have a look at the five dimensional manifold. The first four dimensions
of our space from the manifold just represent spacetime as we are used to. We
get a fifth dimension by adding a circle with a radius R < 1. Do not confuse
this R with the Ricci scalar, which is also denoted by R. The radius of the circle
has to be really small, as in that case we can not observe the circle.

We use the notation that capital Latin indices run over all five dimensions.
The Greek indices run only over the first four dimensions. If we specifically
want to appoint the fifth dimension, we use the index 5.

The fifth coordinate is periodic with radius R, so z° = 2° + 27 R. Now we look
at a coordinate transformation z™ — '™ = M 4 M (M), Here our metric
transforms as

guN = Gun = gun — Oven (™M) = Onerr (2™). (4.2)
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At this moment we introduce the cylindrical condition for the first time. We
say that the transformation €j; is independent on the fifth coordinate. Now we
look at the transformation over the fifth coordinate, #° — 2% + €>(2#). Under
this transformation ¢, = 0 and Jses = 0, so g, and gss are invariant under
this transformation. The transformation of g,s over the fifth coordinate is as
follows:

Jus5 = Gus — Opuées. (4.3)

This is exactly the same transformation as the gauge transformation of a poten-
tial field A,,. This transformation corresponds with the U(1) symmetry group,
which is used to describe the electromagnetic field in the standard model. This
is a foresight that in the end the Kaluza-Klein reduction will give results of
electromagnetism. To find the metric tensor in five dimensions, write ds:

ds® = gy ndaeMdz = gudat dz” + 2A#dx“dx5 + gssda’dz®. (4.4)

We take gs5 = ¢, where ¢ is a scalar field. We can write ds? without losing
information as:
ds? = gy + ¢ (da® + A, dxt)?. (4.5)

This gives us the five dimensional metric tensor:

_ (9w + P*ALA, $*A, 46

9MN ( %A, o | (4.6)

From this we can find the inverse metric. The inverse metric g™* is given by:
MN _ g —AH

g - (_AV gang‘Aﬁ + # . (47)

4.2 Kaluza-Klein reduction of the Einstein-Hilbert action

Now we are going to look at the reduction of the five dimensional Einstein
equations to four dimensional equations. Also we are going to look at the
reduction of the five dimensional Einstein-Hilbert action to a four dimensional
action.

As discussed before, the Einstein equations for a vacuum in five dimensions are
found by Rp;n = 0. As we know what the metric tensor looks like, we could
now calculate the Ricci tensor. This gives 15 independent equations, as Ry is
a five by five tensor and Ry/n = Rya- The found equations are as follows (8):

1. V%6 = L¢P F,, Fr,

o+
2. VAF,, = —37¢F

3. and Gy = 5Ty — 3[V,.(000) - 90 V?6).
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Here we used the Einstein tensor G, = Ry, - ggw and the electromagnetic
energy-momentum tensor 7T}, = %gWF”"FpU - FJFW.

Originally, Kaluza assumed ¢ to be a constant. In this case both the Einstein
equations for matter and the homogeneous Maxwell equations are found:

¢2
G = ?TW, (4.8)
VHFE,, =0. (4.9)

We began with the five dimensional Einstein equations of a vacuum and af-
ter a reduction, we found the four dimensional Einstein equations which also
describes matter. In this way, we can describe matter by using only geomet-
rical arguments. It is important to notice that at least the vacuum Einstein
equations can be constructed via the reduction. As we started with the five
dimensional vacuum Einstein equations, we expected that at the very least the
four dimensional vacuum Einstein equations roll out the reduction. Notice fur-
ther that ¢ only is a constant if F},, F'*¥ = 0. The most interesting result is that
the homogeneous Maxwell equations are found by the reduction. These equa-
tions describe electromagnetism if all source charges and currents are zero. This
means that Kaluza succeeded in unifying gravity and the electromagnetic field
without charges and currents in one theory. This does not include the whole
theory of electromagnetism as the inhomogeneous Maxwell equations, which
include non zero charges and currents, are not found via the reduction.

In the appendix, one can find my attempt at finding the equation of motion
for Rs5 = 0. Unfortunately this result does not match with the result found in
the paper by J.M. Overduin and P.S. Wesson on Kaluza-Klein Gravity (8).

A way of describing the system, equivalent to finding the equations of motion,
is by finding the action of the system. The action in five dimensions is as follows:

S5 = / \/|g5|R5d5JJ. (410)
Ms

Here g5 is the five dimensional metric and Rj is the five dimensional Ricci scalar.
Do not confuse R5 with Rss5, which is a component of the Ricci tensor. To reduce
this action to four dimensions, we have to integrate over the fifth coordinate.
The first step is finding the Ricci scalar in terms of objects defined on a four
dimensional manifold. As the metric tensor of the five dimensional manifold
is given, we can find the Ricci tensor in terms of g, A, and ¢. Because of
the cylindrical condition, all objects defined on a four dimensional manifold are
independent on the fifth coordinate. This makes it possible to integrate over
the fifth coordinate. In total, the action in four dimensions is given by:

= \/ & 1. 2% EW 4
54 = /M4 |g4‘(b( K + 4¢ FMVF + 3 ¢2 )d x. (411)

Here K is a constant, on which we will not focus more.
In this action we see three different terms. The last term describes a massless
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scalar field ¢, which describes the so-called dilaton particle. The first term is
similar to the Hilbert-Einstein action for gravity. The second term is similar
to the homogeneous Maxwell actions for electromagnetism. In the result, the
equations for gravity and electromagnetism are dependent on the dilaton field.
We expected this, as the equations found by Rj;ny = 0 are also dependent on
the dilaton field. As all terms contain a ¢, they are connected with each other.
In conclusion, Kaluza began with a Hilbert-Einstein action in five dimensions.
After the reduction he could describe both gravity and the electromagnetic field
without charges and currents in one theory. Further, the equations for a dilaton
particle were found.

4.3 Cylindrical condition

The question that we still have to consider from the last chapter is: Why can
we make the cylindrical condition? Briefly, Klein came up with an answer for
this question by Fourier expanding fields on the manifold over the circle and by
showing that all Fourier modes represent massive fields, which are so heavy that
they are immeasurable, except the 0/ Fourier mode. As we do not have to worry
about the immeasurable massive fields and as the 0" Fourier mode is constant
under transformation on the circle, we can use the cylindrical condition.

Klein started with the same manifold as Kaluza. As constructed, the circle is
periodic, so x° = 2° + 27 R. Now consider a scalar field ¢ in the five dimensional
spacetime. This field is also periodic so ¢(z°) = ¢(2° + 27 R). Therefore we can
Fourier-expand the scalar field.

d(a",2%) = 3 dp(at)e I, (4.12)

nez

Here ¢,, refers to the n** Fourier mode.
As ¢ is a scalar field, it fulfils the Klein-Gordon equation:

(0% + 950°)p = —m?¢. (4.13)

Here O = 0,0", with p€{0,1,2,3}.
Now look at the derivative to the fifth coordinate:
2

050°0 = 3 00 (e[ F eI = T

. (4.14)
nez R R?

We make the assumption that R << 1. Now the mass becomes really large
unless we take ¢, (") = 0 for all n # 0. Already the first excited state of the
field would have a mass of m = %. All other exited states have an even larger
mass. Particles with these large masses have energies way above the energies of
particles we could possibly measure. As scientists have not been able to measure
such particles, we can neglect all modes with n # 0 (22)). The only mode which
exists on the circle is therefore the 0 Fourier mode, which describes a massless
scalar field.

Now ¢(x#,2°) becomes:

p(a',2%) = go(2"). (4.15)
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In this expression, ¢ is independent on the fifth coordinate.

Similarly we can look at the vector field Ap;. First we again Taylor expand
the field: .
Azt 2y = Y Ay (@) R, (4.16)
nez
Now instead of using the Klein-Gordon equation, look at the Proca equation in
five dimensions:

(0% + 050°) Apn = —m2 A, . (4.17)

Again we want to have a mass which is not really large. We thus have to take
Aprn =0 for all modes except A, 9 =0. Now A, is invariant under transforma-
tions over the fifth coordinate.

To show that the metric is invariant over the fifth coordinate, one has to do
similar steps as for the vector and scalar fields. This is a bit more complicated
as the metric is a rank two tensor, but Klein stated that also the metric in four
dimensions is independent on the fifth coordinate. The cylindrical condition is
thus indeed a well considered condition.

4.4 The action for an electromagnetic field

In this section we look at a different action, the action for an electromagnetic
field. First we look at the action in four dimensions and focus on the similarities
in using the notation of differential forms, where we write the electromagnetic
tensor as F' = dA, and in component notation, where F,, = 9,4, -0, A,,. Here A
is a 1-form. We again begin with writing the action in terms of the Lagrangian
scalar:

S:/MLH (4.18)

Now start with a four dimensional manifold, as spacetime. In this action, we
take the Lagrangian scalar L as a function of the first derivative of a 1-form A.
The simplest possible choice for the Lagrangian scalar is L = F,, F'*”. So we
consider the action:

S = / VIgIFw F* dat A ... A dat. (4.19)
My

Now we find the equations of motion by varying the action S with respect to
A,

L AL
58 = v/ 5A LOA)dat A LA dat
S » |g|(aAH ”+88,,AM8 w)dr AL A dx

(4.20)
= /M \/H(FW&,(SAH)dxl Ao ndat
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Now using partial integrating we get:

5S = \V|glF"™ 6 Ao, + / VIgl(=0, F* 5 A,)dz* A ... A da’
Ma (4.21)

:/ VIgl(=0, F*")§ A, dat A ... A da*.
My

Fortunately dA is neglectable at the boundary. We now find the equations of
motion by putting §5 = 0. Now we can read the equations of motion:

9, F" = 0. (4.22)

These are the homogeneous Maxwell equations, which play an important role
in electromagnetism. As this four dimensional action gives an important result,
we want to consider the same action but then in more dimensions.

First we want to write the action with the notation of differential forms. Our
claim is that on a four dimensional manifold, the following way of writing the
action is equivalent:

V0gIEw F*dzt A onda® = [ Fyn#Fy, (4.23)
M4 M4

with Fy the 2-form F» = dA.
In the form notation we have A = A,dz". Also we see:

F,=dA=0,A,dx" ndz" (4.24)
and
* Fy = %6,Aue%dxp Adx?. (4.25)

We remember from definition 2.11 the formula for the invariant volume element.
In total we see that the following equality holds.

/ FyAsFy = / FL FM %1, (4.26)
My My

In the next section we are going to look at the electromagnetic tensor in a higher
dimensional manifold. Then, as we will see, the notation of differential forms
is more useful than using components. The notation of differential forms is
more compact and it makes the derivation a lot clearer. Because the gauge field
can be written as a differential form we choose to use this notation. In string
theory, many physical objects are antisymmetrical and can therefore be written
the notation of differential forms.

4.5 Dimensional reduction of the action for a (p-1)-form
gauge field

We are now in a position to look at a similar action as the action for an elec-
tromagnetic field, but now on the five dimensional manifold. As the action in
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section 4.4 gave us the homogeneous Maxwell equation, this action, but then for
p-forms which are not necessarily 2-forms, is probably also interesting in the five
dimensional manifold. In this section we are not looking at the five dimensional
manifold, but we generalize the situation by considering a manifold of dimension
D + 1. Here we again take the last dimension to be a small circle. In the end
we will focus again on the specific case where D + 1 =5. Also we generalize F5.
Instead of only considering F5 being a 2-form we look at the exact p-form F;.
Now F) =dC,_;, with C},_; a (p—1)-form.

We use the same action as Federico Bonetti [6], but Bonetti has defined his
inner product to be negative, where we defined our inner product to be pos-
itive. Therefore, we differ a sign in our action. This action, the action for a
(p—1)-form gauge field C;,_;, looks as follows:

1
Sform = 5 /M Fz; A *FZQ. (4.27)
D+1

Here * is the the Hodge star operator which sends p-forms from Q"(Mp41) to
QD+1—r(MD+1)_
For this equation in five dimensions, we want to know what result it is equivalent
to in four dimensions. To find a result in four dimensions, we have to integrate
over the fifth dimension. To do so we start by noticing that we can Fourier
expand Czl?—l with respect to the circle. Here we split C;_l in a term Cp_; which
is a p-form with only values in the first D dimensions and in a term Cj,_3 A dy.
This last term consists of a (p — 2)-form in the first D dimensions C)p_2 and a
part on the circle dy. A reasonable way of writing C},_; would be as follows:

L= SO+ ) A dyle™. (4.28)

p-17 -
nez

It turns out that the result will be much more convenient if we shift C,_;:
Ol > Chy+ Y O A Ae™. (4.29)
nez

Here A is the same 1-form as above. Notice that A lives on the first D dimen-
sions. In our new convention for C;_; we have the following expression:

L= SO+ O A (dy + A)]e™. (4.30)

p-17
nez

As with the scalar field and the tensor field, we only consider the modes where
n = 0. All the modes where n > 0 describe massive fields. Now we have the
following equation for C;,_;:

! =[C + O A (dy + A)). (4.31)
Now we look at F]g.
F=dC)_y = dC +d[C%) A (dy + A)]

(4.32)
= dCI(f_J)1 + dC;g)Q Ady+ A)+ (—1)1701(79)2 AdA.
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Now we define the following forms:
Fpy = dC) (4.33)

and
Fp=dC% + (-1)P 0% A dA. (4.34)

In total we can write F; as follows:
Fy=F,+Fy1A(dy+A). (4.35)

We now see that:
FynsFy =Fp AxFy +2F, Ax[Fpo1 A (dy + A)]

(4.36)
+Fp A (dy+A) A#[Fpq A(dy + A)].
Here we used lemma 2.9, which says that:
WA =1 A *W. (4.37)

We are looking for an equation in D dimensions. Therefore we want to integrate
over the circle, so we want to separate the dy term from the rest of the equation.
Write

lgD+1]

Vlopl

Here the Hodge star # is the Hodge star operator for a D-dimensional manifold
and not the one for a (D + 1)-dimensional manifold, as before. This change
of dimension corresponding to the Hodge star operator, we get the extra term

Vv ‘9D+1|
Vbl

tensor gp, is the metric tensor corresponding to Mp.
Now we look at the term *[Fj,_1 A (dy + A)].

F,A%F, = F, n3F, Ady. (4.38)

. The tensor gp.1, is the metric tensor corresponding to Mp,; and the

« [Fyr A (dy + 4)] =

9D+1 . . , N ,
pl(i) —+p|)l Fpiy..0, (dy + A)DJrlgllJ1 ~-9lp]p9(D+1)JDHEjlu-jmldxjp“ Ao ndx??.
(4.39)
Notice that 1
(dy + A)D+19(D+1)'7D+16j1~~jD+1 = ﬁpehmﬂn (4'40)
A v
as ( 1”) (A" A AY + ﬁ) = ﬁ
Now we have:
A |gD+1| 1 Jp+1 JjD
*[Fpo1 A(dy+A)] = mEpr_lJlu_lpejlmdex A...ANdx
(4.41)
|gD+1‘ 1.

= —*F,1.
Vlgp| ¢*
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Now we can look at the following exterior product:

|9D+1| 1
/ ¢2

As F, is a p-form and #F,_; is a (D —p+1)-form, F, A%F,_ is a (D +1)-form.
Both Fj, and #F,_; live in a D dimensional space, so F,, A #F,_; too. Because
of antisymmetry, any (D + 1)-form on a D dimensional space is zero. Therefore
we have:

FyAs[Fpo1n(dy+A)] = AN*Fp_q. (4.42)

Fyn#F,_, =0. (4.43)
Finally look at F,,_1 A (dy + A) A*[Fp_1 A (dy + A)].

|9D+1| 1

Vigol ¢

Fpan(dy+A)A*[Fpi A(dy+A)] = Fpoan(dy+A)A*F,_q. (4.44)

Now we split Fp_1 A (dy + A) A %F,_1:
Fooin(dy+A)A3Fp 1 =F, 1 NAANSF, 1+ F, i Adyns*Fp_q. (4.45)

For F,_1 AAA%F,_; we use the same argument as before to say that this is zero.
In total we get the following expression:

|9D+1|

Vool

. Here we have the following metric for the manifold of

1
F)AsFy = (Fp A*F, + ?Fp,l A%F, 1) Ady. (4.46)

|9D+1|
lgpl
dimensionality D + 1:

Now we look at

L+ dPALA, B2A
9D+1,MN = (gp, d)gﬁAVM ¢¢2M)a (447)

where 1 and v run over the first D dimensions. The metric for the manifold of
dimensionality D is just:
9D,uv = Guv- (448)

Now we see that |gpi1| = ¢*|gp], so V\l/gi“ = ¢.

R 1 .
FyAwEy =p(Fp ARE, + ng,l A*F, 1) Ady. (4.49)

Now we can integrate over the extra dimension.

1 1 2 1
7/ F)AsFy = 7/ P(Fpn#Fy+ S Fp 1 A*E, 1) Ady
2 M. 2 Jap Jo ¢ (4.50)

. 1 5
=7 P(Fp A*Fp+ 5 Fp1 A3y 1)
Mp (rb
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Now we consider again a four dimensional spacetime with an extra dimension,
which is a circle. We thus have:

1/ F)AxF) = 7r/ A(Fp A+F) + %Fp_l A*F, ). (4.51)
2 ) v My ¢

The left hand side of equation 4.51 is an action which is only dependent on one
(p-1)-form C;_; on the five dimensional manifold. The right hand side of the
equation, the action contains two such terms, but now on the four dimensional
manifold. So out of one single (p — 1)-form in five dimensions, we can create a
theory which describes two different forms at once. Notice that both forms are
related as both Fj,_; and F, are dependent on the (p—2)-form C’S,Q. This means
that F},_; and F}, do not change independently. Also F},_; and F}, interact with
each other via the scalar field ¢. This derivation is useful as it is used in string
theory (7).

4.6 Hodge theorem and the action for a (p-1)-form gauge
field

In this section we look at a closed p-form Flg. In physics we are often interested
in closed p-forms which vary under a transformation by an exact form. We are
going to use Hodge theorem, that in this case describing a system represented
by a closed p-forms, can equivalently be described by an exact p-form. First we
want to remember the inner product:

(F.,F.) = F! A+F). (4.52)
Mpi1
Consider again the action for a (p — 1)-form gauge field:

1
Storm= 3 / ! AF, (4.53)
Mpi1

To find the equations of motion, we have to minimize the action.
From Hodge decomposition theorem (theorem 2.26), we know that I} can be
written locally as follows:

Fl=dC+d*8+7, (4.54)

with C' € Q¥ 1(M), B € QF*1(M) and v € Harm*(M). So here dC is an exact
form, d*f is a coexact form and < is a harmonic form.

By construction we have that dFy = ddC +dd* 3 + dy = dd*3. As F} is a closed
form, dF}, = 0. We thus have that:

(dFy, B) = (dd"B,B) = (d*B,d"B) = 0. (4.55)

The only solution for this equation is d*3 = 0.
As proven before, the harmonic form + is perpendicular to the exact form dC,
so (dC,~) =0. We can now write the inner product:

(F), Fy) = (dC,dC) + (7, 7). (4.56)
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Notice that both (dC,dC) and (v,7v) are positive. The action is minimized
when both (dC,dC) and (v,v) separately are minimized. In total we get the
following action:

1 1
Sform = */ YN FY + */ dC A *dC. (457)
2 Mpia 2 Mp+1

The action has variations in exact directions. As exact forms are perpendicular
to the harmonic forms, a variation in the action will only influence (dC,dC).
The harmonic form will not influence the equations of motion of the system.
Therefore, if we want to find the equations of motion, it is sufficient to consider
Fz: to be an exact form. The harmonic part of F1; does not contribute to the
equations of motion of the system. This is the reason that in section 4.5 it is
sufficient to consider F, to be exact, so I, = dC},_;.

4.7 Perception of a five dimensional spacetime

In the reduction we considered a five dimensional spacetime. Even though we
cannot perceive any extra circle, it is possible that this five dimensional space-
time exists and that it has a physical meaning. If we would live in a five
dimensional spacetime, there has to be a reason why we do not perceive any
extra dimension. Therefore, if we want to use a theory containing a higher di-
mension, we have to reason why we do not perceive extra dimensions. If that is
not possible, the whole theory would just be a mathematical description with-
out having the possibility to represent the real world.

It is hard to have an image in mind of a five dimensional manifold. Therefore
we consider for now our normally four dimensional space-time to be two dimen-
sional, where we have one spatial direction and the time direction. Now we
add the extra circle on this two dimensional manifold. Now our space without
the time coordinate looks like R x ', which is a cylinder (see figure 1). As the
radius of the circle is very small, any observation of it is impossible. The objects
we can measure are ways larger than the scale of the circle. We thus perceive
the cylinder as a single line. Similarly we do not perceive the circle in the five
dimensional spacetime.

We have also seen that all fields are constant with respect to the extra dimension.
We are therefore not able to move on the extra dimension. This means that it is
possible that our four dimensional spacetime contains an extra dimension which
we cannot perceive. Adding an extra dimension is thus not in contrast with our
perception of the world. In fact, any compactified Riemannian manifold, which
is so small that we cannot perceive it, can be a part of our space.
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Figure 1: In this figure is visualized how the manifold becomes five dimensional
by adding a circle. (25)
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5 Beyond a five dimensional spacetime

In this thesis we only considered a reduction from a five dimensional manifold
to a four dimensional manifold. As this fifth dimension is combined with the
cylindrical condition, this extra dimension is equivalent with the addition of
the circle group U(1). In the second half of the twentieth century, when the
standard model was formulated, physicists described quantum electrodynamics
(QED) as a gauge theory with the symmetry group U(1). In the standard model,
the weak force and the strong force also contain symmetries. These symmetries
are represented by the groups SU(2) and SU(3) respectively. By adding one
extra circle dimension to the four dimensional spacetime, we could describe
the electromagnetic field. What is missing in the result of the reduction is the
description of charged particles. To add this in one theory, one must consider
a higher dimensional spacetime. We also want to conclude the weak force and
the strong force in a theory with gravity. Similarly to adding a circle, we must
add a manifold in which at the very least concludes all the symmetries of the
U(1), SU(2) and SU(3) groups, to be able to describe the standard model with
geometrical arguments. In string theory, more assumptions are made to describe
the particles in the standard model. This higher order dimensional manifold
does not give easily a theory which concludes all wanted theories. In string
theory, scientists try to do this unification, but they need more insights than
just geometrical arguments. In the compactification in string theory, a similar
technique is used as the Kaluza-Klein reduction (24)). Studying the Kaluza-
Klein reduction is thus of great importance for understanding unification of the
standard model and gravity.
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Conclusion

In this thesis we investigated the Kaluza-Klein reduction. We started this reduc-
tion with the five dimensional Einstein-Hilbert action and the five dimensional
Einstein equations. Via the Christoffel symbols and the Riemann tensor we
found the equations of motion in four dimensions. These equations are the
massive Einstein equations and the homogeneous Maxwell equations under the
assumption that the dilaton field is constant. This is a very important result,
because with a single theory, both gravity and the electromagnetic field are de-
scribed.

Further we reduced the dimensions of a manifold containing a circle for the
action for a (p — 1)-form gauge field. After the reduction, the action in the
reduced manifold exists of two differential forms, which are dependent on each
other. This method of dimensional reduction is used in string theory and is
therefore very useful.

After getting to the result of Hodge decomposition theorem, we know that any
differential form can be decomposed in an exact form, a coexact form and a
harmonic form. Also we have shown that these differential forms are perpendic-
ular to each other. Using this decomposition, we could prove Hodge theorem,
which relates the set of harmonic forms with the de Rham cohomology group.
We used the result of Hodge decomposition theorem to show that for a closed
p-form, one can neglect the harmonic part of the p-form if we describe a p-form
which varies under exact forms.
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Discussion

We cannot check if a five dimensional spacetime really exists, because we can
only do experiments in four dimensional spacetime. Therefore, we can only
verify equations in four dimensional spacetime and not the equations in five
dimensional spacetime. As we have seen, Kaluza and Klein have found a result
in four dimensional equations. The equations they found for electromagnetism
and gravity were already found before. The extra terms they found represent a
dilaton field. If we could find this dilaton field in our experiments, the existence
of extra dimensions would be supported. Also, as the gravity equations, and
the homogeneous Maxwell equations are related to the field ¢, this dilaton field
gives a relation between the Maxwell and the Einstein equations. If we would
find a dilaton field which corresponds to a relation between the Maxwell and
the Einstein equations, which then must be measured, then the existence of an
extra dimension would be really supported. Kaluza just assumed the dilaton
field to be constant. In this case, the Maxwell and the Einstein equations do
not have an extra interaction. In further research we should look for the dilaton
field and investigate its impact on gravity and electromagnetism.

A next step in studying the Kaluza-Klein reduction is looking at how a reduction
of higher dimension would be. As scientists are trying to unify the standard
model and gravity by describing a manifold with multiple extra dimensions,
this is a relevant question. We have only considered adding one dimension
and in this case, the only compactified manifold which can be added to the
four dimensional spacetime is topologically homeomorphic to a circle. If we
look at a higher dimensionality, there are many topologically different possible
compactified manifolds that we could add to the spacetime. A further study
which investigates what possible compactified manifolds exist would be really
interesting, as we need manifolds with a higher dimensionality to unify the
standard model with gravity.

To understand better what kind of extra manifold we should add to spacetime
to do this unification, we must have a closer look at the standard model. The
relation between the electromagnetic field and the symmetry group U(1) is well
explained in the standard model. Also, we could find an explanation how the
weak force is related with the symmetry group SU(2) and how the strong force
is related with the symmetry group SU(3). Knowing these relations makes
it possible to know what extra manifold we should add to spacetime for the
unification.

The Kaluza-Klein reduction gave us the homogeneous Maxwell equations. To
describe electromagnetism fully, charges and currents have to be covered. If we
want to unify the inhomogeneous Maxwell equations with gravity, we have to
focus more on the standard model.

In this thesis we wrote the Fourier expansion for the scalar and tensor fields.
Here we neglected fields with high mass. The masses were really high because
we chose the radius of the circle to be very small. It might be interesting to
look at the massive fields as they give physical results if the radius of the circle
would be larger. Also in equation 4.30, we neglected all modes where n # 0.
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These modes form a so-called tower of modes. We should further investigate
the massive terms and have a look at the tower of modes.

The four dimensional equations of motion in section 4.2 are copied from the
paper by Overduin et al. (8). In my attempt to produce the equations, I did
not manage to get the same result. As the result by Overduin et al. is widely
used and has survived for many years, I believe this result more than my result.
Here are some reasons why I could not find the right result. I could have made
a mistake in computing the Ricci tensors, by accidentally adding or missing a
term. I missed an insight into how to write my results in terms of covariant
derivatives instead of partial derivatives. An other possibility is that the result
by Overduin et al. is only found by combining the results for Rss, R,5 and
R,,,. 1 did not check this, because I assumed that I made a mistake. Also in
the paper is written that the following equations follow directly from Rss = 0,
R,5 =0 and R,, = 0 respectively.

1. V2= 10 F, F*,
2. VI, =-322F,,,

3. and Gy = 5Ty = 3[V,(000) - g, V29)].

I have not derived the reduction of the five dimensional Einstein-Hilbert action
to the four dimensional action myself. This is because I could not find the right
equation for Rs5. The term in the Ricci tensor Rs5 is needed to calculate the five
dimensional Ricci scalar, which is part of the five dimensional Einstein-Hilbert
action.

As the derivation of the Ricci tensors is not found in the literature, writing
them fully would be interesting for other people who are studying the Kaluza-
Klein reduction. Adding that derivation in this thesis would be a big addition.

Finally, in section 4.6 we only looked at closed p-forms which vary under
transformation by an exact form. In physics we are often interested in these
differential forms. We should motivate why especially these differential forms
are interesting and why in physics a gauge field only varies by an exact form.
Also it is interesting to find out what happens if one looks at an other p-form,
which also contains non closed terms. We could also vary these terms by other
forms than only the exact forms as done in this thesis.
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Appendix

Calculation of the Christoffel symbols

Here we will calculate the Christoffel symbols corresponding to the five dimen-
sional metric used by Kaluza:

2 2
= (2 e ). 51)

Remember that the Christoffel symbols are found via the following equation:

1
Fllj,u = Egp)\(a,ugu)\ + al/g)\,u - a)\g,u,u)~ (52)

Now we will calculate all possible Christoffel symbols corresponding to the five
dimensional metric. First we will calculate I'),,, where the Greek letters stand
for the first four dimensions.

1
FZV = (sz)él - §A7((3H((;52A,,) + 61,((;52,4#)). (5'3)
The terms (I}, )4 are the four dimensional Christoffel symbols.
1 1
T3, = 597 (00 (67 45) = 05(¢7Ay)) - S A7 00", (54)

1
I35 = -597" 050", (5.5)

1
ro, = ——A%(0,9us5 + 00 s — D5 9un) + 970 (0, (97 AL) + 8, (67 A,)). (5.6)

2
1 1

re, = -5,45(3”(,45&) - 05(A,0%)) + 5955@&. (5.7)
5 1 58 1 ) 2

[5s = 59 05955 = 514 059 (5.8)
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Calculation of the Ricci tensor

As we found expressions for the Christoffel symbols, we can now find expressions
for the Ricci tensor Ry/n. Again we are going to find this tensor for the first
four coordinates, denoted with Greek indices, and the fifth coordinate. The
Ricci tensor is defined as

Ry = RJS\'43N = aSFJS\'fM - aNFss*M + FgLF%M - F%Lréwl' (5.9)
We start looking at Rss.
Rg = 0,10 + T2 T8 + T2, 185 = T3,T05 - T3,155. (5.10)

Look at all parts individually.

1
0,1, = ~50,0"(6%). (5.11)

7555 = iA“é‘u(&)(gw[@v(AwZ) = 05(Ay9%)] - A70,(67)) (5.12)

As g7 is symmetric and 0, (As¢?) — 05(A,¢?) is antisymmetric, their product
vanishes. Thus we have

[T = -3 A0, (6 470, (67). (5.13)
D3T85 = (5077 (0562 Au)-0, (6% A9))= 5 AT0567 [ 30% (0, (67 4,) -0 (6 4,)) -5 470, 6%)
(5.14)
1 1
T35 = 50° (6" (-T354p + 5 A0, (As0%) +05(A,0%)])). (5.15)
Finally look at
TGS, = 107 ()40, (456%) ~ 05(Ar0)] - {07 ()0, (#).  (5.16)
In total we get
Rss == 50,07 (6%) -~ 50° () ([T g)a + 107 (6)97°0,(67) + 507 (45)0, (6) A°6?

=3P AN A+ 5 (4000 (4,)6'"
(5.17)

Notice that 97(¢?) transforms as a vector and that its covariant derivative is
as follows.

V4 07(6%) = 0,07 (6°) + (125)20°(¢7). (5.18)
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The covariant derivative of a scalar is the same as the partial derivative of a
scalar, so

1 1 1
Rss =~ §V7V7(¢2) + 157(¢2)g5537(¢2) + 557(A5)37(¢2)A5¢2
(5.19)
1 1
- 58)\(‘40)8[)(A>\)¢54 + 587(A5)6,Y(Ap)¢4g‘sp,
We want to find a term F),, F'*" in Rss. Therefore we focus on F),, F*¥.

Fu F* = (9, A, — 0,A,) (0" AY — 0¥ AM) = 20, A, 0" A - 20,A,0" A", (5.20)

I choose to express F),, F*” in terms of partial derivatives and not in terms of
covariant derivatives, because we have written Rs5 in terms of partial deriva-
tives.

To continue we use the following two equations:

DA 0V AP = 0, A,07 (Asg°") = g°PD, A, 07 As + Asdy A, 07 () (5.21)
D, A,0P AT = 0, A,0°(Asg™®) = 0 A,0° (As) + As0, A, 07 (g7°) (5.22)
We now see that

1 1 1 1
SN AN (AN + 507 (A5)05(A,)8'9" = 6" Fu P = 26" 450, 4,07 (5)

1
+ 5¢>4A(;a,yApaP(gw).

(5.23)
Let us focus on vV, V7 (¢?).
1
§v7v”¢2 = 0,006 + ¢V, V" (5.24)
and )
58%;52 = ¢ ¢. (5.25)

We therefore have that

- STV () + 107 (GD)g0,(67) = -0V, Vg + LA ASDTR0,67  (5.26)

2
So
e R T s T A B
#5050, 4,0°(47%) + 50 (A5)0, (67 A% o
I cannot find why it I do not get the following expression for Rjs:
Rss = -V + igﬁ‘*Fl“,F‘“’. (5.28)

As T could not find seemingly the right expression for Rss5, I put a lot of effort
to solve this equation. Therefore, I had no time to construct R,s and R, .

44



References

[1] JM. Lee Introduction to smooth manifolds, Second edition
[2] Sean M. Carroll (2019) Spacetime and geometry
[3] M. Nakahara (2003) Geometry, topology and physics, Second edition

[4] D. Lovelock and H. Rund (1989) Tensors, differential forms and variational
principles

[5] D.E. Soper Classical field theory
[6] F.W. Warner Foundations of differential manifolds and Lie groups

[7] F. Bonetti (2014) Effective actions for F-theory compactifications and
tensor theories
Link: https://inspirehep.net/files/7e90b5184e5d41e543eef15261b0a2d2,
Page 56 to 60.

[8] J.M. Overduin and P.S. Wesson (2008). Kaluza-Klein Gravity
Link: https://arxiv.org/pdf/gr-qc/9805018.pdf, Page 12 to 15.

[9] C.V. Johnson D-Branes

[10] N. Nowaczyk (2010) The Hodge Decomposition
Link: https://nikno.de/wp-content/uploads/2016/07/hodge.pdf

[11] Th. Kaluza (translated in 2018) On the Unification Problem in Physics
Link: https://arxiv.org/pdf/1803.08616.pdf

[12] B. Lowe The local theory of elliptic operators and the hodge theorem
Link: http://math.uchicago.edu/~may/REU2014/REUPapers/Lowe . pdf

[13] M. Crainic Mastermath course Differential Geometry 2015/2016

[14] J. van Dongen (2000) Einstein and the Kaluza-Klein particle
Link: https://arxiv.org/pdf/gr-qc/0009087.pdf

[15] H. Linander (2011) Free (2,0) Theory on a Circle Fibration
Link: https://publications.lib.chalmers.se/records/fulltext/
179151/179151 . pdf

[16] L. Toussaint (2013) The Hodge Decomposition Theorem
Link: https://webspace.science.uu.nl/~cavallOl/homepage/
Students_files/ToussaintBachelor.pdf

[17] M. Vonk (2019) Topology and Physics 2019 - lecture 2
Link: https://staff.fnwi.uva.nl/h.b.posthuma/TIP2019/Lecture,
202-2019.pdf

45


https://inspirehep.net/files/7e90b5184e5d41e543eef15261b0a2d2
https://arxiv.org/pdf/gr-qc/9805018.pdf
https://nikno.de/wp-content/uploads/2016/07/hodge.pdf
https://arxiv.org/pdf/1803.08616.pdf
http://math.uchicago.edu/~may/REU2014/REUPapers/Lowe.pdf
https://arxiv.org/pdf/gr-qc/0009087.pdf
https://publications.lib.chalmers.se/records/fulltext/179151/179151.pdf
https://publications.lib.chalmers.se/records/fulltext/179151/179151.pdf
https://webspace.science.uu.nl/~caval101/homepage/Students_files/ToussaintBachelor.pdf
https://webspace.science.uu.nl/~caval101/homepage/Students_files/ToussaintBachelor.pdf
https://staff.fnwi.uva.nl/h.b.posthuma/TIP2019/Lecture%202-2019.pdf
https://staff.fnwi.uva.nl/h.b.posthuma/TIP2019/Lecture%202-2019.pdf

[18] V. G. Ivancevic and T. T. Ivancevic (2011) Undergraduate Lecture Notes
in De Rham-Hodge Theory
Link: https://arxiv.org/abs/0807.4991

[19] G.’t Hooft (2010) Introduction to general relativity
Link: https://webspace.science.uu.nl/~hooft101/lectures/genrel_
2010.pdf

[20] D. Lowengrub (2014) Hodge Decomposition
Link: https://math.berkeley.edu/~lowdanie/hodge_decomposition.
pdf

[21] A. M. Patricio 5D Kaluza-Klein theories - a brief review

[22] C. Pope Lectures on Kaluza-Klein
Link: http://people.tamu.edu/~c-pope/ihplec.pdf

[23] https://link.springer.com/content/pdf/bbmy,
3A978-3-319-49682-5%2F1 . pdf

[24] D. Tong String Theory http://www.damtp.cam.ac.uk/user/tong/
string/string.pdf

[25] Image 1 https://www.quantum-bits.org/?p=1078

46


https://arxiv.org/abs/0807.4991
https://webspace.science.uu.nl/~hooft101/lectures/genrel_2010.pdf
https://webspace.science.uu.nl/~hooft101/lectures/genrel_2010.pdf
https://math.berkeley.edu/~lowdanie/hodge_decomposition.pdf
https://math.berkeley.edu/~lowdanie/hodge_decomposition.pdf
http://people.tamu.edu/~c-pope/ihplec.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-319-49682-5%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-3-319-49682-5%2F1.pdf
http://www.damtp.cam.ac.uk/user/tong/string/string.pdf
http://www.damtp.cam.ac.uk/user/tong/string/string.pdf
https://www.quantum-bits.org/?p=1078

	Introduction
	Manifolds
	Smooth manifolds
	Compactness
	Tangent vectors
	Tangent bundle
	Dual space and covectors
	Tensors
	Riemannian manifold

	Differential forms
	Differential forms
	Exterior product
	Exterior derivative
	Exact and closed forms
	Adjoint of the exterior derivative
	Harmonic forms
	Hodge theorem

	General Relativity
	Christoffel symbols
	Riemann tensor
	Action principles
	The Einstein-Hilbert action
	The Einstein vacuum equations

	Circle reduction
	The metric tensor in five dimensions
	Kaluza-Klein reduction of the Einstein-Hilbert action
	Cylindrical condition
	The action for an electromagnetic field
	Dimensional reduction of the action for a (p-1)-form gauge field
	Hodge theorem and the action for a (p-1)-form gauge field
	Perception of a five dimensional spacetime

	Beyond a five dimensional spacetime
	Conclusion
	Discussion
	Appendix
	Calculation of the Christoffel symbols
	Calculation of the Ricci tensor

	Bibliography

