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Abstract

This thesis is an introduction to topological the topological theory defects and solitons, aimed to
bring the mathematical and physical perspectives closer together.

The ordered media in which defects arise are introduced, and their configurations are described
using homotopy theory. This description is reformulated in terms of symmetry groups, isotropy
groups and homogeneous spaces, of which the homotopy groups are calculated using the long

exact sequence of homotopy groups for fibrations. Finally, an overview of the applications of this
method to a variety of systems is given, and the secondary phenomena arising due to the presence
of defects or solitons are described, concluding with the complete classification of defects in SO(3)

symmetry broken media in 3 dimensions.
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Introduction

The aim of this thesis is to present the topological theory of defects arising in ordered media in a
mathematical setting. These defects have been well-studied in the context of topological quantum
field theories, which is strongly influenced by homotopy theory. In these field theories, they are
known as topological solitons and exist for example in the form of vortices in the theory of type-II
superconductors.

The main motivation is to provide a rederivation and generalization of the results presented in
[1] by means of fibrations. We will start by introducing the framework of order-parameter the-
ory, from which we motivate the study and classification of topological defects. We then present a
classification scheme of defects, and reflect on the similarities and differences with respect to the
classification of [1]. In order to derive the long exact sequence of homotopy groups for fibrations,
we introduce the basics of homotopy theory. Together with the formulation of coset spaces of Lie
groups as principal bundles, we derive the fundamental theorem on fundamental groups and the
long exact sequence of homotopy groups of order-parameter spaces as given in [1]. A minor diver-
sion into miscellaneous phenomena and generalized defects is presented, and to conclude we apply
the results to the ordered media with broken SO(3) symmetry.

Basic knowledge in classical and statistical physics, in group theory, and in topology is assumed,
however, most of the necessary terminology and used facts are mentioned in passing.
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Part I

Ordered Media
In Section I.1 of this part, we divert into an introduction to classical physics, which leads us into
statistical physics. There, we outline discuss the necessary theories for the description of phase
transitions. From phase transitions we motivate the definition of order and order-parameters. Us-
ing the order-parameters we can model certain types of phase transitions. We demonstrate the
application to the planar ferromagnet, which is generalized to other ordered media.

In Section I.2 we describe how defects can arise in ordered media, and apply this to the example of
the planar ferromagnet. This example illustrates a topological invariant that prevents a connection
between two states, and will inspire the more topological discussion of defects later.

I.1 From classical physics to symmetry breaking

The goal of this section is to give a description of defects in ordered media, starting from simpler
classical systems. A crystal is such an ordered medium, and has a highly ordered structure. How-
ever, a crystal can still have imperfections. We say that defects are the generalization of the crystal
imperfections, and from this picture we see that before we can describe defects, we first need to de-
scribe “generalized perfection”. The order of a medium is precisely the generalization of perfection.
We conclude that the discussion of defects is inseparable from the discussion of order.

I.1.1 Classical physics

We enter a lengthy diversion into the physics that ultimately lead to order-parameter theory, the
study of ordered media. This introduction into the language of physics is heavily guided by simple
examples. Examples of interesting things are the solar system, a glass of water, the air in your
room and a nonspecific crystal. Of these, the water in the glass and the nonspecific crystal are
most relevant, because they are more ordered. We say that they are condensed, because they are
composed of many particles and are cohesive 1, unlike the solar system, which has few components2,
and the air, which is a gas and not very cohesive.

To describe the behaviour of these examples, we need Hamiltonian mechanics. The first example,
the solar system, is completely described by coordinates and momenta of the sun and planets, to-
gether with the Hamiltonian that describes the total energy of a given state. In this case it is the
sum of the kinetic and gravitational energy. We say that the coordinates and momenta take values
in the phase space, but the form and description of the phase space depend on the problem con-
sidered. If we call the phase space X, and the Hamiltonian H, then a state x in X has an energy
assigned by H. Energy is a real number, so we say that the Hamiltonian is a map H : X → R and
the energy of x is H(x).

1To be precise, the correlations of particle-particle distances become peaked at certain lengths, as opposed to being roughly
uniform like in a gas.

2When the sun and each planet are viewed a single point mass.
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I.1.2 Statistical physics

The other three examples are many-particle problems, which we examine through statistical physics.
Statistical physics studies systems of 1026 interacting particles by means of probability theory and
certain approximations. Central to statistical physics are phase transitions; when cooling down ma-
terials, gases condense to liquids and liquids freeze to crystals. The temperatures at which phase
transitions occur are called critical temperatures. To talk about freezing water, we need to know
what temperature is and what happens when a collection of particles is cooled down.

Before describe temperature, we need to be able to describe collections of particles and their ener-
gies. We say that a microcanonical ensemble is a collection of N particles confined to a volume V
with a fixed energyE. The microcanonical ensemble is also called theNVE ensemble, andN , V and
E are called the macroscopic variables. A specific state of the collection is called a microstate, and
the number of microstates of energy E is denoted W = |{x ∈ X|H(x) = E}|. The microcanonical
ensemble assumes3 that the probability to encounter an arbitrary microstate x with H(x) = E is
P (x) = 1/W , and the probability to encounter a microstate x with H(x) 6= E is P (x) = 0.

To define a temperature on a system X with N particles and volume V , we attach a large heat
bath. Writing Ebath for the energy of the bath and fixing the total energy Etot = Ebath + E turns
this combination into a microcanonical ensemble. We say that the original system is a canonical
ensemble with temperature T , also called the NV T ensemble. We can express Wtot as the sum of
Wbath(Etot−H(x)) over all microstates x of X. Assuming E � Etot, we find P (x) = 1

Z exp(−βH(x)).
Here Z is the partition function

∑
x exp(−βH(x)). This defines the temperature as T = 1

kβ , where
k is the Boltzmann constant. The free energy F is defined as − 1

β logZ, so that P (x) = exp(β(F −
H(x))).

Macroscopic behaviour of an ensemble must certainly emerge from many particles and be described
by averages. Given a map φ from the phase space X to any vector space Y , we define its thermody-
namic average as 〈φ〉 =

∑
x∈X φ(x)P (x). For a continuous system we write fX(x) instead of P (x) for

the probability density, and the thermodynamic average becomes an integral over X. Examples of
thermodynamic averages include the average energy U = 〈E〉, the entropy S = −k〈log fX(x)〉 and
the pressure p = − ∂F

∂V . The free energy can be written in terms of averages as F = U − TS.

I.1.3 Phase transitions

With the free energy and the thermodynamic averages, we can get back to the discussion of phase
transitions. Consider the free energy F as a function of the temperature T . We then say that a
phase transition occurs at those T where some derivative of F becomes singular.

We describe phase transitions by their order-parameters, and the order-parameter of a condensing
gas is evidently the density. In the example of the gas, the density relates to the pressure, which in
turn determines the energy. The free energy is also a function of the order-parameter.

Now we can apply Landau theory: assuming that the free energy F is an analytic function of the
order-parameter η and has the same symmetries as the Hamiltonian, we can write down a phe-
nomenological4 expansion of F in terms of η, near the critical temperature Tc. In most systems
we consider, we find that F has a symmetry that requires it to actually be a function of η2, so the
expansion becomes:

F (T, η)− F0 = a(T )η2 +
b(T )

2
η4.

3This follows from the postulate of a priori equal probabilities.
4Phenomenological here means that we assume the expansion is correct, based on empirical evidence, or as is also the

case here, is flexible enough to predict what we observe and more.
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The order-parameter can be chosen to be 0 at Tc, so the higher terms are negligible. The coefficient
b(T ) should be positive, as the system is assumed to be stable for finite |η|. For a phase transition
to occur, the coefficient a(T ) should change sign around Tc. For simplicity, we approximate that
a(T ) = a0(T − Tc) and b(T ) = b0, for constants a0, b0 > 0. Minimizing F then gives that η = 0 for
T ≥ Tc, and η =

√
−a0b0 (T − Tc) for T < Tc.

I.1.4 Order-parameters

We can generalize this discussion to general ordered media, using the example of a magnet. There
are however some differences we must take into consideration. Namely, a crystal and especially
a magnet has many particles that are all at fixed locations. These locations are described by the
crystal lattice, which is a specific manifold.

Definition 1 A topological n-manifold is a second-countable Hausdorff space that is locally
homeomorphic to Rn.

If the crystal has N identical particles, the total phase space X can be written as XN
1 , the product

of N factors of the phase spaces X1 of the individual particles. Choosing a manifold M to represent
the lattice illustrates the correspondence between XN

1 and XM
1 , where the latter is the space of

functionsM → X1. Furthermore, we can replace the discrete lattice with a connected manifold and
instead consider continuous functions from M to X1.5 A state f is then a function f : M → X1 and
is also called a configuration.

We can now describe the ferromagnetic medium and its Curie temperature Tc by the same method
as a gas. When heated above its Curie temperature, the medium demagnetizes, and cooling it down
below the Curie temperature remagnetizes it again. Take for example the planar ferromagnet,
which has spins s : M → S1 as configurations. The ferromagnetic Hamiltonian is H = −

∑
〈i,j〉 s(i) ·

s(j), where 〈i, j〉 are the pairs of nearest neighbours, and s(i)·s(j) is the dot product on S1 ⊂ R2. The
order-parameter is then the local magnetization m = s. Contrary to the density, the magnetization
is a local order-parameter. Landau theory again provides an expansion of the free energy

F =

∫
M

[
a〈m(x)〉2 + b〈m(x)〉4 + c(d〈m(x)〉)2

]
dx

which now includes a divergence term d〈m(x)〉 to describe the effect of spatial variations in m. The
coefficient c should be positive, and considerations for a and b similar to the previous argument must
be made. Assuming m is uniform, so that dm(x) = 0, minimizing F again gives a form of 〈m(x)〉
analogous to that for the global order-parameters η.

If m goes from being on average 0 to nonzero, a symmetry is broken in an ambiguous way, and
we must change our description. However, in practice, a system is never in a perfect disordered
phase and has a miniscule bias 0 < |〈m〉| � 1. In theory, we resolve this by introducing a conjugate
field h : M → R. The conjugate field defines an external term Hext = −

∫
M
f(x) · h(x) dx, which is

included in the Hamiltonian H ′ = H + Hext. Specifying any h 6= 0 fixes the direction of 〈m〉 after
the phase transition, but taking the limit h→ 0 brings us back to the original system. This fixes a
preferred direction of 〈m〉 without disturbing properties of the original system.

The planar ferromagnet is the prototype of symmetry breaking, and as a model is known as the
O(2)-model, precisely because it breaks O(2) symmetry. Namely, if we take S1 ⊂ R2 as the unit
circle at the origin, the Hamiltonian is invariant under the action of the orthogonal group O(2)

5This requires the assumption, for the microscopic length scale λ, the maps f :M → X only have spatial variations with
wavelengths larger than λ.
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rotating all the spins around the origin.6 At T > Tc, the average magnetization 〈m〉 is 0, which
is invariant under O(2) as well. However, when T < Tc, the average 〈m〉 becomes nonzero, and
is evidently no longer invariant under O(2). We conclude that the ferromagnetic phase transition
breaks the O(2) symmetry of the Hamiltonian.

Now that we know about general ordered media, we can return to the discussion of the deviation
from order and introduce the defects.

I.2 Defects

From the discussion of ordered media, we conclude that, at low temperatures, the configurations
of ordered media tend to be uniform. However, when a medium is cooled down and condenses to
uniformity through a process of nucleation, there exist multiple nucleation sites. In this case, there
can form two locally uniform regions in the medium that disagree at a shared boundary.

We say that a medium is ordered when it approximates local uniformity. Strictly speaking, a con-
figuration f : M → X is ordered if, given any δ > 0, there is an open cover {Uα} of the medium M ,
such that for each open Uα there is a constant C, so that |f(x) − C| < δ for all x in Uα. Conclude
that, if f has a discontinuity, it is certainly not ordered.

We call such a discontinuity a defect, and a configuration with a defect is called defective. Note that
if P is the defective region of f : M → X, then f restricts to a continuous map on M − P , which is
a fact we will use extensively later. In mild abuse of terminology, we may call P the defect of f .

Recall the planar ferromagnet, its disordered phase is characterized by the splitting into many
Weiss domains. Such domains are islands of local uniformity that disagree at their boundaries.

Consider two defective states. The first is illustrated in Figure 1a, and is called the island. It is
uniform everywhere with a single Weiss domain, which is one quarter rotated relative to uniformity.
The second is illustrated in Figure 1b, and is called the vortex. It has all spins pointing outward
from the origin.

The differences are evident, the island is only locally non-uniform, while the vortex has a defect
that sends small variations through the entire medium. We can summarize this as the island being
fundamentally closer to uniformity than the vortex, but we want can formalize this idea.

For this we resort to a bit of physical intuition, where we think of distances between configurations in
terms of thermal fluctuations. We model a thermal fluctuation at low temperature as the evolution
of a single small7 patch of the medium. In other words, given a small patch U , the configuration
f : M → X may evolve to f ′ : M → X, as long as f ′ extends the restriction f |M−U to M . When
discussing the distance to uniformity, we disregard everything but the defects, and say that f is
close to uniformity if it can fluctuate to uniformity.

Indeed, the island fluctuates to uniformity by extending the configuration to a constant on the ro-
tated domain. However, similar fluctuations on the vortex seem to leave a discontinuity somewhere.
This leads us to ask what obstructs the fluctuations to order in the vortex. It turns out that the
answer lies in the topology of the medium away from the defect M − P , the order-parameter space
X, and the configuration f : M → X.

Recall that for the vortex of the planar ferromagnet, the medium is M = R2, the defect is P =
{(0, 0)}, the order-parameter is X = S1 ⊂ R2, and the configuration can be written as f : M − P →
X, (x, y) 7→ (x, y)/|(x, y)|.

6The group O(n) is the group of n-by-n matrices preserving the inner product on Rn after all.
7Small means bounded.
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Given a bounded open U that lies in a ball of radius R around the origin, parametrize a circle in
M − U by γ : I → M − U, t 7→ (2R cos(2πt), 2R sin(2πt)), and remark that it winds once around the
origin. Also remark that γ(2t) winds twice around the origin. Extend this to all closed curves in the
plane, by counting each counterclockwise loop as +1 and each clockwise loop as −1.

We say that the sum of this sequence of ±1 is the winding number of the curve, and claim that this
winding number is constant under deformations of curves that don’t pass through the origin.

Now, we can reason about the vortex by observations on winding numbers. Namely, we can include
γ into M , which makes it possible to deform γ to a point. Note that composition of a loop γ with f
forms a loop fγ : I → X.

Suppose that f continuously extends to f ′ : M → X. Then fγ = f ′γ, and deforming γ to a point
deforms f ′γ to a point. Remark that a point has winding number 0, while fγ has winding number
1. This is a contradiction, so we conclude that f cannot extend continuously to M .

Returning to the original description, there is no f ′ that continuously extends f from M − U to M ,
and the obstruction is the nonzero winding number of fγ. The same observations can be applied to
a variety of systems, and form the foundation for the concept of local surgeries.

(a) The island (b) The vortex
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Part II

Classification of Defects
We would like to generalize the argument for vortices, described in Section I.2, to a classification
that applies to more general ordered media. The goal is to associate topological invariants to the
configurations of a given parameter in a given space.

Two key observations are that closed curves in the medium define closed curves in order-parameter
space, and that configurations themselves act as invariants under continuous transformations.

In this part we will first examine how continuous transformations partition the configurations into
equivalence classes. This is done in Section II.1. In Section II.1.1 we shall describe how images
under configurations of closed curves in physical space can obstruct extensions to other configura-
tions, which is the direct generalization of the argument in Section I.2. The equivalence of the two
schemes for a certain class of defects is shown in Appendix A.

II.1 Classifying configurations

In Section I.2 we illustrated how, under certain assumptions, a configuration f and a loop γ around
a point p can induce loops fγ that obstruct continuous extensions of f to include p. In this section we
will present an alternative concept that more easily generalizes to higher dimensions and different
shapes.

For this, it is essential that the configurations we consider are continuous. Recall the remark made
earlier: if a configuration f : M → X is discontinuous in a subset P , then its restriction f : M−P →
X is a continuous configuration.

The other way around, to investigate defects of a given shape P , it suffices to classify the continuous
maps M − P → X.

To model the defects of simple shapes, we introduce the following spaces.

Definition 2 A k-flat is a k-dimensional subspace of a Euclidean space that is itself a
Euclidean space. The standard k-flat is the subspace Ln,k = {0}n−k × Rk, and we write
Mn,k = Rn − Ln,k.

Lemma 1 The space Mn,k is homotopy equivalent to Sn−k−1.

Proof. Write Mn,k = Rn − {0}n−k × Rk as (Rn−k − {0}n−k) × Rk. Since R is contractible, Mn,k is
homotopy equivalent to Rn−k−{0}n−k. In turn Rn−k−{0}n−k deformation retracts onto Sn−k−1. �

Resorting to physical intuition again, we can model the equivalence of configurations by letting
them continuously transform over time. We choose this notion to model defects, as, opposed to the
arguments in Section I.2, it is more clearly independent of the choice of preferred points or loops.

Furthermore, it intuitively is an equivalence relation. Namely, a constant transformation illus-
trates reflexivity, reversing a transformation gives symmetry, and appending two transformations
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shows transitivity. Let us formalize the idea of continuous transformations and confirm our intu-
ition.

Definition 3 A homotopy is a continuous map H : X × I → Y , where I = [0, 1] is the closed
unit interval.

We say that a homotopy H : X × I → Y is relative to a subspace A ⊂ X if H(a, t) = H(a, 0)
for all a ∈ A and t ∈ I.

We say that two maps f, g : X → Y are homotopic if there exists a homotopy H : X × I → Y
such that H(x, 0) = f(x) and H(x, 1) = g(x), and denote this f ∼ g.

Lemma 2 Homotopy is an equivalence relation.

Proof. Given f : X → Y , define the homotopy H : X × I → Y, (x, t) 7→ f(x). Then, H(x, 0) =
H(x, 1) = f(x) so that f is homotopic to itself. Conclude that homotopy is reflexive.

Suppose f is homotopic to g : X → Y , so there is a homotopy H from f to g. Define the homotopy
H−1 : X × I → Y, (x, t) 7→ H(x, 1− t), so g is homotopic to f . Conclude that homotopy is symmetric.

Suppose g is also homotopic to h : X → Y , so there is a homotopyH ′ from g to h. Define the homotopy
H ′′ : X × I → Y by

H ′′(x, t) =

{
H(x, 2t), t ≤ 1/2

H ′(x, 2t− 1), t > 1/2.

Then f is homotopic to h, and conclude that homotopy is transitive. �

From the fact that homotopy is an equivalence relation, it follows that we can define quotients of
sets of functions up to homotopy. Specifically, the homotopies then partition the set configurations
M → X into homotopy classes.

Definition 4 We denote C(X,Y ) for the space of continuous maps from X → Y .

The set of homotopy classes is the quotient of C(X,Y ) by the relation of homotopy, and is
denoted [X,Y ].

We say that two configurations in the same class are connected by a homotopy, and the other way
around, different classes are necessarily disconnected with respect to homotopy.

The statement that all continuous transformations of a configuration, equivalently all homotopic
configurations, are equivalent up to defects, is summarized in the following claim.

Axiom 1 The defects on a medium M with order-parameter X are the homotopy classes [M,X].

We will then refer to the purely mathematical defects derived from [M,X] as ‘the’ defects. However,
as is done in Section II.1.1, there are non-equivalent classifications and different ways to look at de-
fects. For example, instead of considering the defect as arising from the properties of a configuration
on a large scale, we can obtain similar information from only regions close to the defect.

Furthermore, the distinction between two defects suggests a form of topological stability, but nat-
urally, this topological stability is that of stability up to homotopies and does not necessarily imply
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physical stability. Precisely, topological stability could only hold if the system has infinitely many
components and is actually a continuum in the first place. How stable the defects are in practice
follows from considerations of energetic stability.

The other way around, continuous transformations are not necessarily physically feasible, as demon-
strated for example by the metastability of the non-unique ground states of the ferromagnet. This
does underline what topological stability does tell us, namely that if the physical processes are
a subset of the continuous transforms, then topologically distinct defects are certainly physically
distinct.

One may ignore metastability and still ask whether continuous transforms should be feasible at all,
as they do not necessarily provide differentiability over time or in intermediate states. Certainly,
if the states of a system are given as solutions of a system of differential equations of order k + 1, a
transform that is Ck is evidently not feasible. It, however, turns out that continuous maps X → Y
can be approximated by homotopic smooth maps X → Y . Furthermore, any homotopy between
smooth maps, can be approximated by a smooth homotopy8, that is, a smooth function X × I → Y ,
while preserving its value on X × ∂I → Y .

It follows that the property of configurations being homotopic is equivalent to being smoothly ho-
motopic.

II.1.1 Local surgery

For historical reasons, we also present the direct formalization of the classification by obstructions
of induced loops. The formalization and the concept of local surgery is introduced in [1].

The intuition behind a local surgery is that thermal fluctuations drive the equivalence of configura-
tions, and if the defective part of a configuration can fluctuate to the defective part of another, the
defects are equivalent. We must keep in mind that only applies to the defects, and two configura-
tions connected by a local surgery are only locally equivalent on the domain of the surgery.

Local surgery has some downsides, as it is defined in terms of basepoints and based loops, so that
one must confirm that the phenomena they wish to describe are indeed independent of those choices.
Unlike the homotopy picture, it does allow us to consider some phenomena which are filtered away
by the nature of homotopy, such as the crossing of lines.

Let us formalize the concept of a local surgery.

Definition 5 Let f and g be continuous maps f, g : M → X, and let U and V be open
subsets such that U ⊂ V ⊂M .

A local surgery from f to g on U in V is a continuous map h : M → X such that

h|M−V = f

h|U = g

We write η(f, g;U, V ) if there is a local surgery from f to g on U in V .

Unlike the case of homotopy, the conditions in this definition are not strong enough to ensure that
local surgery is an equivalence relation. A class of spaces on which the local surgery is equivalent
to the homotopy classification is described in Appendix A.

8This follows from the Whitney embedding theorem.
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(a) The θ vortex (b) The θ + π/2 vortex

Figure 2

Example 1 Let us present the application of the concepts of homotopy and local surgery in a
simple example.

Let f1 : (r, θ) → θ, f2 : (r, θ) → θ + π/2 and g : (r, θ) → 2θ be states of the planar ferromagnet, as in
Figure 2 and Figure 3.

To confirm that f1 and f2 are the same defect, we can construct the homotopy ht : r, θ 7→ θ + tπ/2
from f1 to f2.

We also see that f1 is locally equivalent to f2, as we can construct a surgery h|r<r1 = f1, h|r>r2 = f2
and otherwise

h(r, θ) = θ +
π

2

(
r − r1
r2 − r1

)
.

However, intuitively, f1 and f2 are different from the configuration g. We may prove that no homo-
topy exists from f1 to g by looking at the degrees of the mappings.

However, the more general methods introduced in Part III and Part IV will let us compute the
homotopy classes more directly, from which we would conclude that indeed [f1] = [f2] 6= [g].

(a) The interpolation from θ to θ + π/2 (b) The 2θ vortex

Figure 3
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Part III

Homotopy Theory
We presented a classification scheme for defects in Part II which associates a homotopy class to
each defect. In order to learn about the homotopy classes, we first learn more about homotopy in
general.

Therefore, we will give an elementary introduction into homotopy theory. For this, we largely follow
parts of the treatment of [2], with a few corollaries and relevant examples added in.

In Section III.1 we introduce the basic terms, concepts and methods of homotopy theory. On top
of the basic methods, we provide the tools for the calculation of specific homotopy classes in Sec-
tion III.2 and Section III.3.

III.1 Homotopy groups

In this section we will give an introduction into homotopy theory, which we will then use to shine a
light on the properties of homotopy classes.

Let us first describe some relations that can arise between topological spaces that we will find useful
to compare their homotopy related properties.

Definition 6 A retraction of a spaceX to a subspace A is a continuous map r : X → A such
that r|A = 1A.

A weak deformation retraction is a retraction r : X → A such that ιr is homotopic to 1X ,
where ι : A→ X is the inclusion.

A strong deformation retraction is a weak deformation retraction for which ιr is homotopic
to 1X relative to A.

A homotopy equivalence is a continuous map f : X → Y for which there is a continuous map
g : Y → X such that fg ∼ 1Y and gf ∼ 1X . We write X ≡ Y if there exists a homotopy
equivalence f : X → Y .

We can see that a deformation retraction is a special homotopy equivalence. Note that for a CW-
complex, as defined later, a weak deformation retraction is also a strong deformation retraction.

Example 2 Take the punctured plane X = R2 − {0}. We can write down a retraction r : X →
S1, x 7→ x

|x| . We can turn this into a deformation retraction by writing rλ : x 7→ (1− λ)x+ λ x
|x| .

Recall that, given a space Y , we found in our earlier arguments that it was useful to map loops into
Y , as a method of studying properties of Y . This motivates the loop space Ω(Y ), defined as C(S1, Y ).

However, we will find later that some properties of Y are described by the combination laws of loops
in Y . We define this combination in terms of paths, since a loop γ is simply a path with γ(0) = γ(1).
Given two paths γ, γ′ : I → X, we can only concatenate them to a path γ′γ : I → X if γ(1) = γ′(0).
Likewise, loops can only be combined if they share their basepoint.
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We see that it is equivalent and more concise to define a variant of spaces in which the loops are
fixed at a point to begin with.

Definition 7 A pointed space (X,x) is a topological space X with a distinguished point
x ∈ X.

Given a pointed space (Y, y), a pointed map is a map f : X → Y that respects the basepoints,
that is, f(x) = y. In this case the space maps of pointed mapsX → Y is also denotedC(X,Y ).

If A ⊂ X, we write f : (X,A) → (Y, y) for maps equivalent to pointed maps f : (X/A, a) →
(Y, y). Such a map is also referred to as the map f from X to Y , relative to A.

Definition 8 Let (X,x) and (Y, y) be pointed spaces.

A pointed homotopy is a homotopy H : X × I → Y such that H(x, t) = y for all t.

Like for the usual topological spaces, we can define the pointed analogues of homotopy classes.

Definition 9 The sets of pointed or relative homotopy classes are denoted [X,Y ], when X
and Y are pointed or relative spaces.

If it is necessary to distinguish pointed homotopy as opposed to the usual homotopy, the
latter is referred to as free homotopy and the set of pointed homotopy classes may also be
denoted as 〈X,Y 〉.

Remark 1 The set of path components of X is equivalent to [{∗}, X], and is denoted π0(X).

The set of homotopy classes [X,Y ] is equivalent to the set of path components of C(X,Y ), so we
write [X,Y ] = π0(C(X,Y )).

Using the pointed spaces, we can make the notion of combining loops more precise and general.

Definition 10 The n-th homotopy group πn(X,x) of a pointed space (X,x) is the group
([(In, ∂In), X], ·).

The underlying set [(In, ∂In), X] is the set of homotopy classes of relative maps (In, ∂In) →
(X,x).

The binary operation is defined as [g] · [f ] = [g · f ], where

(g · f)(x1, x2, . . . , xn) =

{
f(2x1, x2, . . . , xn), x1 ≤ 1/2

g(2x1 − 1, x2, . . . , xn), x1 > 1/2
.

For clarity, if n = 1, we may juxtapose [g][f ] instead of writing [g] · [f ]. If n > 1, we may write
[g] + [f ] instead. This notation also extends to define gf and g + f on the representatives.

We can prove some basic properties of πn(X,x).

14



f g f g fg fg

Figure 4: πn is abelian for n > 1.

Lemma 3 Let (X,x) be a pointed space and let f, g : (In, ∂In) → (X,x) be relative maps.
Let s : In → In be a reparametrization, that is, s|∂In = 1∂In .

Then, maps are homotopic to their reparametrizations, f ◦ s ∼ f .

If n > 1, the group πn(X,x) is abelian

g + f ∼ f + g.

The identity in πn(X,x) is the constant map x : In → X, y 7→ x

f · x ∼ f

The inverse of f is the map

f−1(s1, s2, . . . ) = f(1− s1, s2, . . . ).

Proof. Since s : (In, ∂In) → (In, ∂In) is relative and In is convex, there is the linear homotopy H
from s to 1In . Precomposing makes fH the homotopy from f ◦ s to f .

The proof of f + g ∼ g + f is sketched in Figure 4.

In words, one takes f + g and shrinks the domains of f and g to smaller cubes surrounded by the
constant map x. Then they can be slid around each other, and expand back to g + f .

This confirms πn is abelian, which why we use additive notation for the operation on πn.

The concatenation f · x is a reparametrization of f , thus f · x ∼ f .

The homotopy from ff−1 to x can be explicitly constructed as

H(t1, . . . , tn, s) =

{
f(2t1(1− s), t2, . . . , tn), t1 ≤ 1/2

f(2(1− t1)(1− s), t2, . . . , tn) t1 > 1/2

�

Let us introduce some more operations on homotopy classes. Note that these apply to free or pointed
classes, and as a special case the homotopy groups alike. Specifically, we can use these to turn a
relation between X and Y into a relation between homotopy classes to or from X and Y .
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Definition 11 The pushforward of a continuous map f : X → Y is the map

f∗ : [Z,X]→ [Z, Y ], [γ] 7→ [fγ]

and the pullback is the map

f∗ : [Y,Z]→ [X,Z], [γ] 7→ [γf ].

Lemma 4 The pushforward and pullback are well-defined.

That is, given spaces X,Y, Z and a map f : X → Y , it holds that

[γ] = [γ′] ∈ [Z,X] =⇒ f∗[γ] = f∗[γ
′]

[γ] = [γ′] ∈ [Y,Z] =⇒ f∗[γ] = f∗[γ′].

Given a space W and a map g : Y →W , then

(gf)∗ = g∗f∗

(gf)∗ = f∗g∗.

Furthermore, the identity on X induces the identity on the sets of homotopy classes,

(1X)∗ = 1[Z,X]

(1X)∗ = 1[X,Z].

And finally, f∗ and f∗ are homotopy invariant, that is f ∼ g implies f∗ = g∗ and f∗ = g∗.

Proof. If H is the homotopy from γ to γ′, then fH is the homotopy from fγ to fγ′, and Hf is the
homotopy from γf to γ′f . Thus, f∗ and f∗ are well-defined.

We confirm that (gf)γ = g(fγ) and γ(gf) = (γg)f , so that (gf)∗ = g∗f∗ and (gf)∗ = f∗g∗.

Noting that 1Xγ = γ : Z → X and γ′1X = γ′ : X → Z confirms that (1X)∗[γ] = [γ] and (1X)∗[γ′] =
[γ′].

Let H be the homotopy from f to g : X → Y . For γ : Z → X and γ′ : Y → Z, the map Hγ is the
homotopy from fγ to gγ, and γ′H is the homotopy from γ′f to γ′g. �

With the pushforwards and pullbacks, we can finally demonstrate that homotopy equivalent spaces
are, indeed, completely equivalent when viewed through homotopies.

Lemma 5 For two homotopy equivalent spaces X ≡ Y , and a third space Z, the following
holds

[Z,X] = [Z, Y ]

[X,Z] = [Y,Z]

Proof. Because X ≡ Y , there is a pair of maps f : X → Y and g : Y → X for which fg ∼ 1Y and
gf ∼ 1X .
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Applying homotopy invariance of pushforwards, we get that (gf)∗ = g∗f∗ = 1[Z,X] and (fg)∗ = f∗g∗ =
1[Z,Y ]. It follows that f∗ is both injective and surjective, so that it is an isomorphism f∗ : [X,Z] →
[Y, Z].

Similarly, we find that (fg)∗ = g∗f∗ = 1[Y,Z] and (gf)∗ = f∗g∗ = 1[X,Z], from which again f∗ is an
isomorphism f∗ : [Y,Z]→ [X,Z]. �

III.2 Computing the fundamental group

We argued in Section III.1 and demonstrated already in Section I.2 that the homotopy classes and
groups contain a wealth of information about their spaces. In retrospect, the obstructions for ho-
motopies and local surgeries in the planar ferromagnet are precisely the classes of the fundamental
group π1(S1) of the circle.

It, however, remains for us to compute π1(S1) and prove that it is indeed non-trivial. For this we
will need the following tool.

Definition 12 A covering map p is a continuous map from a space C to a space X, such
that each point of X is evenly covered.

A point x ∈ X is evenly covered when there is an open neighbourhood U of x, such that p−1(U)
is a disjoint union of opens Ui, where each Ui is homeomorphic to U by the restriction p|Ui .

We say that C is a covering space of X if there is a covering map p : C → X.

Let Z be a space, and let f : Z → X and f̃ : Z → C be maps. We say that f̃ lifts f if pf̃ = f .

The universal cover X̃ of X is the unique simply connected covering space ofX, up to isomor-
phism.

p

Figure 5: R as a he-
lix lying above S1.

To compute π1(S1), we take the universal cover p : R → S1, t 7→ exp(2πit).
The even covering property of p is illustrated in Figure 5, intuitively, closed
loops in S1 correspond to paths of integer lengths in R.

This is formalized by the homotopy lifting property, proven in [2].

Lemma 6 The covering map p : R→ S1, t 7→ exp(2πit) has the homo-
topy lifting property for paths.

Given any homotopy γ : I × I → S1. Given any real number r and any
map γ̃0 : I → R lifting γ0 : I → S1.

There exists a homotopy γ̃ : I × I → R lifting γ which also satisfies
γ̃|I×{0} = γ̃0.

This completes our list of ingredients to prove that π1(S1) is indeed the addi-
tive group of winding numbers.

Lemma 7 The fundamental group π1(S1, 1) of the circle S1 is the in-
finite cyclic group Z.
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Proof. Define ωn(s) = e2πs, and a lift ω̃n(s) = ns.

Take any loop γ : I → S1 at 1 and a lift γ̃ : I → R satisfying γ̃(0) = 0. Since
γ(0) = γ(1) = 0 and γ̃(0) = 0, we find that γ̃(1) is an integer n.

Since R is convex, we can take the linear homotopyH between γ̃ and ω̃n. Then
pH is the homotopy between γ and ωn. Conclude that all loops at 1 in S1 are
homotopic to ωn for some n.

Suppose that there is a homotopy γt from ωn to ωm, with γt(0) = γt(1) = 1.
Lift the homotopy to γ̃t with γ̃t(0) = 0.

Then γ̃0 = ω̃n and γ̃1 = ω̃m. Because γt is 1 at the endpoints, the homotopy is
constant at the endpoint, that is, γ̃t(1) is constant. As γ̃0(1) = n and γ̃1(1) =
m, conclude that n = m.

We see that ωn · ωm lifts to ω̃n+m, so ωn · ωm is homotopic to ωn+m.

It follows that ωn = ωn1 , so we conclude that π1(S1) is the infinite cyclic group
Z. �

Let us summarize what we know about fundamental groups now.

Example 3 Since R deformation retracts to a point, we have π1(R) = 〈S1,R〉 = 〈S1, {0}〉 = 0.

On the sphere S2, any loop contracts to a point so π1(S2) = 0.

We showed that π1(S1) = Z.

Because f : Z → X × Y factors into f1 : Z → X and f2 : Z → Y , we have that maps S1 → X × Y
and homotopies S1 × I → X × Y factor as well. Hence, π1(X × Y ) = π1(X)× π1(Y ).

This gives for the torus T 2 = S1 × S1 that π1(T 2) = Z2.

III.3 Free homotopy

In Section III.2 we demonstrated that we can compute the pointed classes 〈M,X〉 when M = S1 or
if either M or X is contractible.

However, in our classification we claim that the defects correspond to the classes [M,X], rather than
the pointed ones. In this section, we set out to compute the classes [M,X], provided we know the
pointed classes 〈M,X〉 and the fundamental group π1(X).

For this section we follow [2] sections 4.1 and 4.A., and the figures in this section are reconstructed
from those in [2], with minor modifications.

III.3.1 Basepoints

We realize that the definition of pointed homotopy indeed depends on a choice of basepoint, so before
we can discuss free homotopy, we will have to ensure that certain properties are indeed invariant
under a change of basepoint. Therefore, in this section, we will prove that the n-th homotopy groups
of a path connected space X at distinct basepoints x1, x2 are isomorphic πn(X,x1) = πn(X,x2).

First we need to define the change of basepoint map, which we will use to transport cubes from one
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point to another.

Definition 13 Let γ : I → X be a path from x1 to x2, and let f : (In, ∂In)→ (X,x2) be a map.
Further, letC be a smaller concentric cube in In, and let φ1 : C → In and φ2 : In−C → ∂In×I
be homeomorphisms.

Define the change of basepoint βγ : f 7→ γf by the map γf : (In, ∂In)→ (X,x1) such that{
γf(x) = f(φ1(x)), x ∈ C
γf(x) = γ(p2φ2(x)), x /∈ C

where p2 : In × I → I is the projection on the second factor.

The map γf is illustrated in Figure 6. Such a change of basepoint can be visualized as attaching
a string to the base of the sphere, and fixing the string in place elsewhere, much like securing a
helium balloon.

Lemma 8 Let γ, η : I → X be paths from x2 to x3 and x1 to x2 respectively. Let x : I → X
denote the constant path t 7→ x.

The change of basepoint β is associative and has an identity

• (γη)f ∼ γ(ηf)

• xf ∼ f

and is a homomorphism βγ : πn(X,x3)→ πn(X,x2)

γ(f + g) ∼ γf + γg

Proof. Because γ(ηf) and (γη)f are reparametrizations of each other, they are also homotopic. In
the same fashion, xf is homotopic to f .

To show γ(f + g) = γf + γg, take γ(f + 0) + γ(0 + g) and write down the homotopy

ht(s1, . . . ) = γ(f + 0)((2− t)s1, s2, . . . ), s1 ∈ [0, 1/2]

ht(s1, . . . ) = γ(0 + g)((2− t)s1 + t− 1, s2, . . . ), s1 ∈ [1/2, 1]

f
x1

γ

x0

Figure 6: γf is defined by f on the smaller cube and γ along each radial line.
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This is the explicit homotopy γ(f + g) = γ(f + 0) + γ(0 + g) = γf + γg. �

The homotopy from γ(f + g) to γf + γg is portrayed in Figure 7.

Theorem 1 Let γ be a path from x2 to x1.

The evaluation map βγ : πn(X,x1)→ πn(X,x2), f 7→ γf is an isomorphism.

Proof. Remark that βγ(x1) ∼ x2. By Lemma 8, βγ(f + g) = βγ(f) + βγ(g), so it is a homomorphism.

Also, βγ has an inverse βγ−1 , since γ(γ−1f) = xf = f .

Conclude that βγ is an isomorphism. �

We confirm that all n-th homotopy groups of a path-connected space are isomorphic.

Using the evaluation map βγ , we can take [γ] ∈ π1(X) and investigate the relation between πn(X)
and [Sn, X] in terms of the orbits of the automorphism βγ : πn(X) → πn(X). In Section III.3.2 we
will explore the generalization of this idea.

III.3.2 Free homotopy as action of π1

Evidently, attaching loops is not limited to spheres and applies to other pointed spaces as well.
However, the parametrization of the loops does not generalize, as for the spheres it relied on the
parametrization of the spheres in terms of cubes instead.

Let us define the following action to model free homotopies of arbitrary pointed spaces.

Definition 14 Let γ be a loop in X at x0 and let f : Z × I → X be a homotopy from f0 to f1
such that fs(z0) = γ(s).

Define the right-action of π1(X,x0) on 〈Z,X〉 by

[f0][γ] = [f1]

This action can be visualized as dragging the space Z around the given loop γ, where Z is potentially
deformed in the process.

Now, we can get a result that directly relates the free homotopy [Z,X] classes to the orbits of the
pointed classes 〈Z,X〉. This result, however, relies on the space Z having the homotopy extension
property.

f x1 gx1 fg g

Figure 7: The sequence of deformations for γ(f + g) = γf + γg.
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It turns out that most spaces we consider are a type of space known as a CW-complex. In particular,
CW-complexes have the homotopy extension property.

Definition 15 An n-cell is a copy of the open n-disk Dn − ∂Dn.

A CW-complex (closure-finite weak topology) is defined inductively as follows:

1. A 0-dimensional CW-complex is a set of zero or more points.

2. An n-dimensional CW-complex is a k-dimensional CW-complex, k < n, with one or more
n-cells adjoined.

The proof of the homotopy extension property for CW-complexes, is omitted and may be found in
[2].

We can now prove our claim that the orbits of the action of π1 on the pointed classes 〈Z,X〉 corre-
spond to the free homotopy classes [Z,X].

Theorem 2 If (Z, z0) is a CW-complex andX path connected, then the forgetful map induces
a bijection F : 〈Z,X〉/π1(X,x0)→ [Z,X], [γ] 7→ [γ].

Proof. Since X is path-connected any f : Z → X is homotopic to f ′ with f ′(z0) = x0 by homotopy
extension, thus F is surjective.

If f0, f1 : (Z, z0) → (X,x0) are homotopic via fs then by definition [f1] = [f0][γ] where γ(s) = fs(z0),
thus F is injective. �

Corollary 1 If we choose Z = S1, we recover that the action of π1(X,x) on itself is conjuga-
tion. Hence, the homotopy classes [S1, X] correspond to the conjugacy classes of π1(X,x).

Note that if π1(X) = 0, then the action of π1 is clearly trivial and 〈Z,X〉 ∼= [Z,X]. In general if the
action of π1 on πn is trivial, we say X is n-simple.

In fact, [2] shows that H-spaces are n-simple for all n. Recall that H-spaces are topological magmas
with identity elements.

Lemma 9 If (X, e) is a connected H-space, the action of π1(X, e) on 〈Z,X〉 is trivial for all
(Z, z0).

Proof. Take a map f : (Z, z0)→ (X, e), and a loop γ at e in X.

Let fs(z) = f(z)γ(s) be the homotopy from f to itself. Because fs(z0) = γ(s), we get that f1 = γf =
f . �
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Part IV

Methods of Computation
With the methodology of Part III we can compute part of the classification in Part II. We wish to
expand our methods to allow us to compute the second homotopy group, as this provides a coarse
classification of point defects.

In this part we present a set of powerful theorems, and formulate the subclass of order-parameters
on which these can be applied to compute higher homotopy groups.

The concept of a fibration is presented in Section IV.1 along with the derivation of the long exact
sequence for homotopy groups from the Puppe sequence. In Section IV.2 we describe the case where
the order-parameter space is a homogeneous or coset space, and we follow [3] section 6 to support
the claim that lets us apply all results for fibrations to those order-parameters.

The Seifert-Van Kampen theorem, which computes the fundamental groups of decomposable spaces,
is described in Section IV.3 and the proof by [2] is paraphrased. In Section IV.4 we introduce the
homology groups and their simplicial variants, together with the Hurewicz theorem, which relates
homology and homotopy.

IV.1 Fibrations

Like the covering maps, fibrations are special maps from some “larger” space to another space, with
specifically chosen properties to allow computations of π1 and sometimes even πn. The strength of a
fibration comes, like universal covers, from the fact that they satisfy the homotopy lifting property.

Definition 16 We say that a continuous map p : E → B has the homotopy lifting property
with respect to X if

• for any f : X × I → B

• for any f̃0 : X → E with f0 = pf̃0

there exists a homotopy lift f̃ : X × I → E such that f = pf̃ and f̃0 = f̃ |X×{0}.

Definition 17 A fibration is a continuous surjection p from the total space E to the base
space B, that satisfies the homotopy lifting property with respect to any space.

A fibration is denoted F ι−→ E
p−→ B, where some b0 ∈ B is chosen and F = p−1(b0) is called

the fibre.

A Serre fibration is a fibration that satisfies the homotopy lifting property with respect to all
cubes In.

Indeed, we see already that a universal cover with the homotopy lifting property is as good as a
fibration, and we can repeat the same steps we used to compute π1(S1) to compute π1(B) in terms
of the fibres.
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Using a construction known as the Puppe sequence, we can derive an even stronger result for fibra-
tions. This theorem and proof are given in [4] as Theorem 11.48.

Theorem 3 Given a fibration F → E → B with

b0 ∈ B, f0 ∈ F = p−1(b0), e0 = ι(f0)

there is a long exact sequence of homotopy groups

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ · · · → π0(F )→ π0(E)

where the maps are ι∗ : πn(F )→ πn(E), p∗ : πn(E)→ πn(B), and βn : πn(B)→ πn−1(F ).

The map βn is called the connecting morphism.

Proof. If f : X → Y is a pointed map, the Puppe sequence is the long exact sequence

· · · → Ω2(Mf)→ Ω2X → Ω2Y → Ω(Mf)→ ΩX → ΩY →Mf → X → Y

where Ω is the loop space, and Mf is the mapping fibre of f .

If f is a fibration p : E → B, then Mp and F have the same homotopy type. Hence, πn(Mp) =
〈Sn,Mp〉 = 〈Sn, F 〉 = πn(F ).

Then use that in pointed spaces π0Ω(X) = π1(X), and π1(ΩnX) = π0(Ωn+1X) = πn+1(X).

Applying π0 to the Puppe sequence of p then gives the wanted long exact sequence. �

Let us present the fibrations and their power in a simple and less simple example.

Example 4 Take the product space E = B × F and the projection p : (b, f) 7→ b.

Trivially, p satisfies the homotopy lifting property. Note that as β is trivial, we also recover that
πn(E) = πn(B)× πn(F )9.

This fibration is called the trivial fibration, or the trivial fibre bundle.

Example 5 The Hopf fibration is a special fibration S1 → S3 → S2, constructed as follows.

First identify R4 ∼= C2 and R3 ∼= C× R.

The Hopf map p : R4 → R3 is explicitly given as p(z0, z1) = (2z0z
∗
1 , |z0|2 − |z1|2).

By letting |z0|2 + |z1|2 = 1, one finds |p(z0, z1)| = 1, thus p restricts to S3 → S2 and can be proven to
be a fibration.

Applying the exact sequence with the fact that πn(S1) = 0 for n > 1, we find that πn(S3) = πn(S2)
for n > 1.

9Note that swapping B and F gives the opposite sequence, and we can easily check that both split.
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IV.2 Homogeneous spaces

Many physical systems have some symmetries, and much of physics is also motivated by under-
standing and exploiting those symmetries. Most systems have order-parameters in 3 dimensions
after all, and as a result are symmetric under SO(3) in their disordered phase.

The class of systems that breaks SO(3) symmetry in their phase transitions then has an ordered
phase which is only symmetric under some subgroup of SO(3). This subgroup will be referred to
as the isotropy group of the medium, and it is precisely the stabilizer of a reference point in the
order-parameter under the action of SO(3).

In this section, we will demonstrate how this observation simplifies the description of the order-
parameter to that of its symmetry and isotropy groups. From there, we will relate these in a fibra-
tion with which we can compute the groups πn of the order-parameter in a simpler way.

IV.2.1 Coset spaces

The statement that a certain order-parameter X has an SO(3) symmetry is equivalent to the claim
that X is a homogeneous space of SO(3). Definitions and properties of group actions, homogeneous
spaces and coset spaces can be found in Appendix B.

In this section we will illustrate the link between homogeneous spaces and coset spaces. Let us
refresh the concepts of quotient maps and spaces, to allow us to conclude that a coset space is a
special quotient space.

Definition 18 A quotient map is a surjective map q : X → Y such that the topology of Y is
τY = {U ⊂ Y |q−1(U) ∈ τX}. We say that Y is a quotient space of X.

The quotient of X by an equivalence relation ∼ is the quotient space of the quotient map
q : X → X/∼, x 7→ [x], and is denoted X/ ∼.

The quotient of X by a subset A is the quotient space X/∼ by relation x ∼ y ⇐⇒ x, y ∈
A ∨ x = y, and is denoted X/A.

Considering a transitive action of G on X, it is evident that fixing some reference point x0 ∈ X, all
other points x ∈ X are just as well described by the element of g relating them to x0. However, the
action is not necessarily free, and there may be many g bringing x0 to x.

Similarly, the isotropy groupGx0
describes all the elements bringing x0 to itself, and intuitively, the

isotropy of any x is just the isotropy of x0 “transported” to x. This suggests that we may view X as
G modulo Gx0 .

To make this more precise, we first need to following lemma:

Lemma 10 Let G be a compact Lie group with a transitive action a topological space X.

Then the evaluation map φx : G→ X, g 7→ gx is open for all x ∈ X.

With this we can confirm the relation between homogeneous spaces and coset spaces.
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Lemma 11 Let G be a compact Lie group equipped with a transitive action on a space X.

Given a reference point x0 ∈ X, take the stabilizer H = Gx0 . Take the coset space G/H with
the quotient map q : G→ G/H.

Then X is homeomorphic to G/H.

Proof. Define the map f : G/H → X, [g] 7→ gx0.

Suppose that [g] = [g′], then g ∈ g′H, so that there is an h ∈ H such that g = g′h. Then, because H
is the stabilizer, hx0 = x0 so gx0 = g′x0. Conclude that f is well-defined.

Suppose that f([g]) = f([g′]), that is gx0 = g′x0. Then g−1g′x0 = x0, so g−1g′ ∈ H. Hence, g′ ∈ gH,
so [g] = [g′]. Conclude that f is injective.

Given x ∈ X, transitivity of the action gives a g ∈ G with gx0 = x. Then immediately f([g]) = x.
Conclude that f is surjective, and bijective.

Define the evaluation φx : G→ X, g 7→ gx.

Given an open U ⊂ X, let V = f−1(U) = {[g]|g ∈ G, gx0 = x} = q(φ−1x0
(U)). Note that q is trivially

an open map because of the quotient topology. Because the action is continuous, we find that V is
open. Conclude that f is continuous.

Given an open V ⊂ G/H, let U = f(V ) = {gx0|g ∈ [g] ∈ V } = φx0
(q−1(V )). Because q is continuous

and φx0
is an open map, we find that U is open.

Conclude that f is an open map, and also a homeomorphism. �

Indeed, any homogeneous space X is the quotient space of G known as the coset space. The other
way, we may ask what kind of space the coset space of a given group G and subgroup H is.

Lemma 12 Given a compact Lie group G and a closed Lie subgroup H, the coset space G/H
is a smooth manifold.

Proof. Let H act on G by left-translation. The quotient of G by this action is the coset space G/H.

As a Lie group, G is also a smooth manifold. Because H is closed, left-translation is smooth, free,
and proper.

The quotient manifold theorem then gives that the quotient G/H is a smooth manifold and q : G→
G/H a submersion. �

Let us give a concrete example.

Example 6 Take the special orthogonal group SO(3) with its usual action on S2.

The stabilizer of any p ∈ S2 is SO(2), so we conclude that S2 ∼= SO(3)/SO(2).
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IV.2.2 Fibre bundles

Given a homogeneous space X, we get a group G acting on X, and a stabilizer H of x ∈ X, so
that X ∼= G/H. Now the canonical map q : G → G/H has fibres q−1([g]) = gH, which are all
homeomorphic to H.

This suggests that H → G→ G/H might be a fibration. We will follow [3] for this section.

Let us define an intermediate step towards making q : G→ G/H into a fibration.

Definition 19 A principal G-bundle is a map p : E → B together with an action of G on E
such that

1. the action preserves the fibres, that is y ∈ p−1(b) =⇒ gy ∈ p−1(b),

2. for any x ∈ p−1(b), the map ψx : G→ p−1(b) : g 7→ gx is a homeomorphism,

3. p has enough local sections.

A local section is a continuous map s : U → p−1(U) such that ps = 1U . The map p has
enough local sections when each x ∈ B has an open neighbourhood U and a local section
s : U → p−1(U).

Note that p preserving the fibres is equivalent to p being invariant under G, namely both state
p(gy) = y.

We can indeed show that a coset space is a principal bundle.

Theorem 4 Let G be a compact Lie group and H be a closed Lie subgroup of G.

The canonical map q : G→ G/H is a principal H-bundle.

Proof. The action φ : G×H → G, (g, h) 7→ hg preserves the fibres, because y ∈ q−1(x) = xH implies
hy ∈ xH for all h ∈ H.

Further, the map H → q−1(x), h 7→ hy is a homeomorphism for all y ∈ xH.

By the quotient manifold theorem, the map q : G→ G/H is a submersion, and becauseG is compact,
q is also proper. By the Ehresmann’s theorem q then has enough local sections, so we conclude that
q is a principal H-bundle. �

However, the principal bundle is in fact a special case of a more general type of bundle, known as
the fibre bundle.

Definition 20 A fibre bundle is a continuous surjection p : E → B that has a local trivial-
ization at any b ∈ B.

A local trivialization is a homeomorphism φU : U × F → p−1(U) such that

π = pφU

where π : U × F → U is the projection.
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We can visualize a fibre bundle by its name, and thinking of how the fibres of the bundle all project
down onto points of the base space. A more vivid and perhaps more well-known example is the
Möbius band.

Example 7 A Möbius band M , defined as a square with one pair of opposite sides identified in
equal orientation, is a bundle (M,S1, p, I).

The base is the S1 running vertically along the middle, and the fibres are the horizontal intervals.

Let us confirm that principal bundles, and specifically coset spaces, are indeed special fibre bundles.

Theorem 5 A principal G-bundle is a fibre bundle with fibre G.

Proof. For any b ∈ B take a local section s : U → p−1(U) with b ∈ U .

Then define φU : U ×G→ p−1(U), (x, g) 7→ g · s(x), and note that it is continuous.

We see that pφU (x, g) = p(g · s(x)) = x, as the action preserves the fibres. This confirms that
π = pφU : U ×G→ U is the projection.

Recall that ψx : G → p−1(U), g 7→ g · x is a homeomorphism. Define δU : p−1(U) → U × G, x 7→
(p(x), ψ−1x (x)), and note that it is continuous.

Then δUφU (x) = δ(g · s(x)) = (p(g · s(x)), ψg·s(x)(g · s(x))) = (x, g). Thus, δU is the inverse of φU , so
we conclude that φU is a homeomorphism.

As this gives for any b ∈ B a homeomorphism φU with π = pφU , we see that p satisfies local trivial-
ization. Conclude that p is a fibre bundle. �

Furthermore, the fibre bundle we introduced is a special case of a fibration we defined and used in
Section IV.1.

Conjecture 1 Any fibre bundle is a Serre fibration.

The proof is given in [2], in essence, the proof of the following relies on repeated local trivialization
to inductively construct homotopy lifts.

We see that indeed H → G→ G/H is an H-bundle, a fibre bundle and a fibration.

With this information, we can now apply the long exact sequence for homotopy groups to the homo-
topy groups of coset spaces.

Corollary 2 If G is a Lie group andH closed subgroup, the fibration q : G→ G/H gives the
long exact sequence

· · · → πn(H)→ πn(G)→ πn(G/H)→ πn−1(H)→ · · · → π0(H)→ π0(G)

where g0H ∈ G/H, g0 ∈ g0H = p−1(g0H) and g0 = i(g0).

Note, however, that π0(H) is the set of path components of H, and is not necessarily a group. For-
tunately, we can recover the group structure because H is a group.
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Remark 2 Recall that π0(X) = 〈S0, X〉 and S0 = {∗, 1}. Now a homotopy H : S0 × I → X then
maps the basepoint to H(∗, t) = x, while H(1, t) is a path in X.

Hence, two maps f, g : S0 → X are homotopic if and only if there is a path γ from f(1) to g(1). That
is, if we let the class of x be [x] = {γ(1)|γ ∈ XI , γ(1) = x}, then π0(X) is the quotient set {[x]|x ∈ X}.

In particular, for a topological group H, we write H0 for the connected component of the identity,
that is H0 = [e].

Since conjugation is continuous, and heh−1 = e we see that H0 is a normal subgroup of H.

Let us recover the group structure on π1(G/H).

Theorem 6 Let G be a simply connected Lie group and H be is a closed Lie subgroup of G.

Then π1(G/H,H) is isomorphic to H/H0.

Proof. Use that q : G→ G/H is a fibration.

Define the map
φ : π1(G/H,H)→ H/H0, [γ] 7→ γ̃(1)H0

where γ̃ is the lift of γ for which γ̃(0) = e.

Suppose φ[α] = φ[β]. Then α̃(0) = β̃(0) = e, α̃(1) = a, and β̃(1) = b. Here aH0 = bH0, so a ∈ bH0.

As G is simply connected, there is a homotopy η̃ from α̃ to β̃, relative to H0 and aH0. Let η = pη̃ be
the homotopy from α to β, relative to H. Then [α] = [β], so φ is injective.

Suppose we have a coset hH0. Choose a path γ̃ in G, from e to h. Then for γ = pγ̃ is a loop for which
φ[γ] = hH0. Conclude that φ is a surjection, and also a bijection.

Take αβ ∈ π1(G/H,H). Lift α and β to α̃ and β̃ with again α̃(0) = β̃(0) = e. The concatenation α̃β̃
then lifts αβ and has α̃β̃(0) = e, and α̃β̃(1) = ab. Conclude that φ([α][β]) = φ([α])φ([β]), thus φ is an
isomorphism. �

Using this machinery we can compute some homotopy groups of homogeneous spaces X. However,
there are some results that let us choose the group G acting on X to have trivial groups π1(G) =
π2(G) = 0.

Conjecture 2 For a path-connected Lie group G, there is always a universal covering group
G̃, and G/H ∼= G̃/H̃, where H̃ = p−1(H).

Remark 3 A path-connected Lie group G is in particular locally path-connected and semilocally
simply connected, from which it follows that there is a universal cover G̃.

The homeomorphism between the coset spaces is simply the induced map of the covering map.

Conjecture 3 Any connected Lie group G deformation retracts onto a maximal compact
subgroup G′.
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Remark 4 A theorem due to Malcev gives the stronger result that G is diffeomorphic to G′ × Rn
where G′ is a maximal compact subgroup.

A theorem due to Cartan gives the following.

Conjecture 4 If G is a compact Lie group, then π2(G) = 0 and π3(G) = Zr.

We can apply the triviality of the homotopy groups to find the second homotopy group of the homo-
geneous space.

Corollary 3 Since π1(G) = π2(G) = 0, our fibration H → G→ G/H gives us the sequence

π2(G) = 0→ π2(G/H)→ π1(H)→ π1(G) = 0

which implies an isomorphism π2(G/H) = π1(H).

When πk(H) = 0 for k > 0, we see that πk(G/H) = πk(G).

IV.3 The Seifert-Van Kampen theorem

The Seifert-Van Kampen theorem is a powerful theorem, that simplifies the computation of π1 of
spaces that are nicely decomposable.

Unfortunately, the proof of the theorem for fundamental groups is mildly tedious and no more in-
sightful than a sketch of the proof. A complete proof can be found in [2], but we will only give the
idea behind it.

There is also a variant for fundamental groupoids, which lies closer to abstract nonsense than
homotopy, and there are also higher homotopy Van Kampen-type theorems, which are esoteric at
best.

We will only need the fundamental group variant, but one may keep in mind that the groupoid
variant gives an almost equivalent statement in the category of groupoids instead.

Theorem 7 Let X be the union A ∪ B of path connected opens A and B, so that A ∩ B is
path connect and contains the basepoint.

The inclusions
i1 : A ∩B → A, i2 : A ∩B → B, j1 : A→ X, j2 : B → X

have induced maps π1(i1), π1(i2), π1(j1), π1(j2) that form a pushout square.

That is, π1(X) is the amalgamated free product π1(A) ∗π1(A∩B) π1(B).
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Corollary 4 An equivalent result is that Φ : π1(A) ∗π1(B)→ π1(X) is surjective with kernel
N = ker(Φ).

Then N is generated by elements of the form i1(ω)i2(ω)−1 for ω ∈ π1(A∩B). And hence, π1(X)
and π1(A) ∗ π1(B)/N are isomorphic.

The surjectivity of Φ is equivalent to factorizing loops inX into loops in A and B. [2] treats the gen-
eral case whereX =

⋃
α Uα, and to showN is the kernel of Φ, he defines two moves on factorizations

of loops in π1(X).

The first move accumulates loops in the same factor π1(Uα), while the second sorts the loops in
π1(Uα ∩ Uβ) to π1(Uα). In particular, if any two factorizations of any [f ] ∈ π1(X) are equivalent
under these moves, then Φ : ∗απ1(Uα)/N → π1(X) is injective.

To show that two factorizations are equivalent, he takes the homotopy F : I × I → X between the
two. Then, the rectangle I × I is partitioned into smaller rectangles, each mapping to a single Uα.

The moves can be explicitly performed on this partition for any pair of factorizations, which com-
pletes the proof.

Corollary 5 In particular, if π1(A∩B) = 0, thenN = {e} and it follows that the fundamental
group of a wedge sum

∨
αXα is ∗απ1(Xα).

Example 8 As π1(S1) = Z, it follows that π1(S1 ∨ S1) = Z ∗ Z.

Similarly, because π1(S2) = 0, the sphere with two distinct points identified W = S2/{a, b} is homo-
topy equivalent to S2 ∨ S1, hence π1(W ) = Z.

IV.4 Simplicial Homology

In the simplest terms, the n-th homotopy groups measure the number of ways one can fit an n-sphere
into a space X.

This is roughly the motivation for the homology groups, which instead measure n-dimensional holes
in X. Homology comes in many variants, of which we will introduce simplicial homology, as it is
most readily computable provided we can triangulate our spaces.

Given the homology groups of a space X, we may apply the Hurewicz theorem, which links the
homology and homotopy groups. In particular, if n > 1 and X is (n− 1)-connected, the n-th groups
are isomorphic πn(X) = Hn(X).

IV.4.1 Homology groups

We abridge the treatment in [2]. All variants of homology are pointed around the (co)chain complex
C(X) of X.
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Definition 21 A chain complex C(X) of X is a sequence of abelian groups (or modules) Cn
connected by boundary operators ∂n, and is denoted

· · · ∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ · · · ∂1−→ C0
∂0−→ 0

The boundary operators are homomorphisms such that ∂n∂n+1 = 0, equivalently im(∂n+1) ⊂
ker(∂n).

The boundaries are the elements of im(∂n+1), and the cycles are the elements of ker∂n. We
say that two cycles are homologous when their difference is a boundary.

The homology of cycles is an equivalence relation, so homology gives rise to homology classes of
cycles.

Definition 22 The n-th homology group is the quotient group Hn(X) = ker(∂n)/im∂n+1.

We will use the variant of homology defined on simplicial complexes. 10

Definition 23 The n-th homology group of a simplicial complex S is Hn(S) =
ker(∂n)/im(∂n+1).

The n-th chain group Cn is the free abelian group on the set of n-simplices in S, equivalently
it is the abelian group on n-chains or formal sums

N∑
i=1

ciσi

where ci are integers and σi are n-simplices.

The boundary operator ∂n : Cn → Cn−1 is defined on a simplex σ = (v0, . . . , vk) by

∂n(σ) =

n∑
i=0

(−1)i(v0, . . . , vi−1, vi+1, vn).

To practically compute n-th homology group Hn(X) of a smooth manifold, we can triangulate it.

Definition 24 A triangulation of a space X is a simplicial complex K with a homeomor-
phism h : K → X.

Then it follows that Hn(X) = Hn(K), where the latter can be computed by simplicial homology.

Example 9 LetX = S2∨S2. Indeed,X is triangulated byK, the complex of two tetrahedra joined
at a vertex.

After a long calculation, we may find that H0(X) = Z and H2(X) = Z⊕ Z.
10The cellular variant, adapted to CW-complexes, indeed applies more directly to the spaces we are interested in. Manually

computing the simplicial homology groups of the tetrahedron is a nice exercise. Another exercise is to find a triangulation of
the tetrahedron with only one face. This should also elucidate why cellular homology is more suitable to apply to a sphere.
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Note that the same computation can be easily generalized by using the Mayer-Vietoris sequence.

IV.4.2 The Hurewicz theorem

The absolute version of the Hurewicz theorem relates elements f of πn(X) to elements of Hn(X) by
pushing forward generators of Hn(Sn) by f .

A proof of the Hurewicz theorem is given in [2] Section 4.2.

Conjecture 5 For a space X with π0(X) = 0 and n > 0 the map

h∗ : πn(X)→ Hn(X), [f ] 7→ [f∗(un)]

is a homomorphism, where f∗ : Hn(Sn) → Hn(X) is the homology pushforward and un is a
generator of Hn(Sn).

If n = 1, then h∗ induces the isomorphism

h̃∗ : π1(X)/[π1(X), π1(X)]→ H1(X).

If n > 1 and πk(X) = 0 for k < n, then h∗ : πn(X) → Hn(X) is an isomorphism and h∗ :
πn+1(X)→ Hn+1(X) is an epimorphism.

We can apply the Hurewicz theorem to get the familiar result of homotopy groups of spheres.

Corollary 6 Because πk(Sn) = 0 for k < n, the Hurewicz theorem gives that πn(Sn) =
Hn(Sn) = Z.

Example 10 Let X = S2 ∨ S2.

We know that π1(S2) = 0, so by the Seifert-Van Kampen theorem π1(X) = 0.

Hence, the Hurewicz theorem gives that π2(X) = H2(X) = Z2.
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Part V

Secondary Phenomena
Using the theorems from the previous parts, we can classify most defects of many order-parameters,
if not all naturally occurring defects. In this discussion, we considered only the isolated defects,
while in practice it is not uncommon to encounter defects in pairs or larger groups.

This part presents the generalization of the description of specific spaces and single defects to dif-
ferent realizations of distinct homotopy classes and multiple defect states.

In Section V.1 we motivate the interest in ring defects, as studied in [5], and the non-defective
states distinct from the ground state, known as solitons. When two line defects meet, they may
interact and entangle in ways other defects cannot. This is described in Section V.2 following the
treatment of [1]. In Section V.3 we illustrate how the motion of a defect can generate solitons in its
medium. Similarly, in Section V.4 the effect of winding defects around π1 type defects is examined
and generalized to the case of arbitrary numbers of defects.

V.1 Generalized defects

Until now, we have only demonstrated defects arising in Mn,k, but in fact we can find defects corre-
sponding to the classes [M,X] for any M . Note that our usage of the term “defects” suggests that
something is “defective” in M , like the vortices in M2,0 which are broken when the medium is con-
sidered to be part of R2. In general, there can be different kinds of configurations that arise on M
that are homotopically distinct, when M is not considered as a subspace. Such structures are also
known as solitons. Other literature also refers to some kinds of solitons as textures.

For example, it is possible to make a ferromagnetic sphere, when modelled by the O(3) model on S2,
we would find solitons [S2, S2] = Z. Solitons with different integers are not homotopic, but also do
not contain discontinuities.

However, this also highlights their dubious stability in some cases. The sphere S2 is compact, thus
all solitons can be brought to uniformity by a local surgery. They are still metastable, and become
exponentially “more stable” proportional to the size of the sphere.

Let us give two cases of these topological solitons that open the door to new theories.

V.1.1 Ring defects

Instead of taking a line or a point defect, we can go halfway and take a ring defect. Locally a ring
looks like a line, while it fits inside a sphere like a point. A detailed discussion of ring defects can
be found in [5].

Let us model a ring defect in R3. Embed a circle into R3 via a : S1 ↪→ R3 and let the defective region
be P = im(a). The space modelling the ring defects is then M = R3 − P .

We see that M deformation retracts to a sphere where two points xN , xS are connected, which is
homotopy equivalent to S2/∼ with xN ∼ xS . Then, S2/∼ is homotopy equivalent to S1 ∨ S2.

To classify the ring defects, we have to calculate [S1 ∨ S2, X], but unfortunately our theory is not
adapted to calculate [Z,X] for Z 6= Sn. Intuitively, as a ring defect is halfway between a point and
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a line, the classes 〈S1 ∨ S2, X〉 are some kind of product of π1(X) and π2(X).

The confirmation of this intuition and the computation of [S1∨S2, X] is demonstrated in [5], where it
is denoted τ2(X). Here τ2(X) is computed by constructing sequences on a space of functionsW → X
where W ≡ S1 ∨ S2 directly.

Alternatively, classes [M,X], and in particular M = S1 ∨S2 as dim(M) = 2, may be computed more
algebraically by using a theorem due to J.H.C Whitehead, given as Theorem 1.1 in [6].

V.1.2 Solitons

Let us demonstrate that the homotopy classes [S3, X], which seem unrelated to the 3 dimensional
situation, can classify solitons in M .

Shortly put, a defect and the local uniformity of media constrain the behaviour away from the de-
fect. Dually, a constraint outside some region and the local uniformity, may let a distinct stable
configuration arise inside: the soliton.

Often, and as we will show later, soliton form naturally in the wake of a moving defect. We define
the spaces modelling the boundary conditions as follows.

Definition 25 Let Cn,k = [−1, 1]k × Rn−k the long box.

Let Rn,k = Rn − Cn,k, the exterior of the box.

Define Sn,k = Rn/Rn,k as the quotient space with quotient map q : Rn → Sn,k. The boundary
condition is represented by the image q(Rn,k). Let the image be ∗ and consider (Sn,k, ∗) to be
pointed.

Define Vn,k(X) = {f ∈ C(Rn, X) : f |Rn,k = c}, the constrained space of maps, for a fixed c.

We claim that the homotopy classes of constrained maps f |Rn,k = c correspond to solitons. For
this, we first simplify the constrained map space Vn,k(X) ∼= C(Sn,k, X), so that its homotopy classes
simplify to π0(Vn,k(X)) ∼= 〈Sn,k, X〉. Then finding a homotopy equivalent space for Sn,k completes
the calculation.

Lemma 13 The map space Vn,k(X) is homeomorphic to C(Sn,k, X).

The homotopy classes π0(Vn,k(X)) ∼= 〈Sn,k, X〉.

The space Sn,k is homotopy equivalent to Sk.

Proof. We see that a map f : (Sn,k, ∗)→ (X, c) corresponds bijectively to a map f ′ : Rn → X,x 7→ fq,
then it holds f ′|Rn,k = c. Hence, Vn,k(X) ∼= C(Sn,k, X).

The connected components π0(Vn,k(X)) are then the homotopy classes 〈Sn,k, X〉, which are pointed
as (Sn,k, ∗) is a pointed space.

We can simplify Sn,k to Cn,k/∂Cn,k. The boundary is then ∂Cn,k = ∂([−1, 1]k×Rn−k) ∼= (∂[−1, 1]k)×
Rn−k.

Let us construct a deformation retraction from [−1, 1]k×Rn−k/∂([−1, 1]k×Rn−k) to [−1, 1]k/∂[−1, 1]k.
Write ~x ∈ [−1, 1]k and ~y ∈ Rn−k.
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(a) The O(2) soliton.
(b) The O(3) soliton, note that the arrows in
the centre are pointing up, while those at
the edges are pointing down.

Figure 8

Define the retraction as
rλ : Cn,k/∂Cn,k → Cn,k/∂Cn,k

[(~x, ~y)] 7→ [(~x, (1− λ)~y)]

Because rλ(∂Cn,k) ⊂ ∂Cn,k we see rλ is indeed well-defined. Embedding ι : [−1, 1]k/∂[−1, 1]k →
Cn,k/∂Cn,k, [~x] 7→ [(~x, 0)] shows that r1 retracts Cn,k/∂Cn,k to [−1, 1]k/∂[−1, 1]k ⊂ Cn,k/∂Cn,k.

Conclude that Cn,k/∂Cn,k ≡ [−1, 1]k/∂[−1, 1]k.

We can then use that [−1, 1]k/∂[−1, 1]k is homeomorphic to Sk. Conclude that Sn,k ≡ Sk. �

With these observations we classify the solitons.

Theorem 8 The solitons of parameterX with boundary conditionRn,k correspond to πk(X).

Equivalently π0(Vn,k(X)) ∼= πk(X).

Proof. This is a corollary of Lemma 13.

Namely, the maps f : Rn → X with boundary condition f |Rn,k = c correspond to maps from Sn,k to
X. This map space is Vn,k(X).

Then because Vn,k(X) ∼= C(Sn,k, X), it follows that π0(Vn,k(X)) ∼= 〈Sn,k, X〉.

Finally, using that Sn,k ≡ Sk we get 〈Sn,k, X〉 ∼= πk(X). �

One may question the relevance of cubical solitons or π3 in this picture, when one may be lead to
think that π3 is 0 for most 1 or 2-dimensional spaces, like S1, T 2, S1 ∨ S1.

Surprisingly, the same is not true for S2. In fact the Hopf fibration shows that π3(S2) = Z and more
generally πn(S2) = πn(S3) for n > 2.

Consequently, the solitons associated with π3 in theO(3) model are also known as the Hopf solitons,
or, the Hopfions.
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V.1.2.1 Stability

The physical stability of solitons is rather subtle in two ways. First, if we disregard the boundary
conditions, there are homotopies moving the non-uniform part out of the medium11, or zooming in
to a constant patch. Hence, for the solitons to be stable, there needs to be a restoring force that
compresses the non-uniformity to a small region, like [−1, 1]k.

Second, we need to be careful with local surgery on solitons, while we can replace [−1, 1] with larger
intervals, no matter how large the replacement, there is the local surgery η(f, c;Cn,k, Cn,k), where
c is the constant configuration.

However, if we do preserve the boundary condition, there is no homotopy from f to c. The barrier
preventing such a homotopy is not “strong”.

We can take a “homotopy” of f on [0, 1), such that ft → c as t → 1, effectively contracting Cn,k to a
point. During this contraction, ft goes towards a singularity at 0.

Since the volume of Cn,k scales as rk but df scales with r−1, we see E =
∫
Cn,k
|df |2 dx ∼ rk−2. Thus,

if k > 2, we see that the energy E goes to 0 as r goes to 0. If k = 2 then E is constant.

By shrinking Cn,k we in fact obliterate the singularity at the last moment and end up in uniformity.
[1]

However, we can prevent Cn,k from shrinking completely by introducing higher terms dp f in the
local energy, so that if p > k the energy E diverges as r goes to 0.

V.2 Entanglement of line defects

When we consider two point defects, we can look at how the combine when brought close together.
Lines have the property that they, unlike points, can form knots and braids, or get stuck in some
other way.

Consider in R3 two line defects represented by the pushforwards of π1(M,x) to α and β in π1(X).

Let us attempt to move one across the other continuously. Keep β still, and move α to the other side,
creating a loop pinched around β as shown in Figure 10.

Clearly the types of the lines are the same as before, thus we only need to look at the pinched
segment γ. Draw a loop around γ so that we can push it forward to X and find its type. Figure 10
illustrates that γ = [α, β].

11Out of the medium is the boundary of Rn, so to speak.

Figure 9: Left: the 1-Hopfion. The right three figures are from left to right the one-third radial
slices of the Hopfion.

36



Figure 10: Illustrating the loop pinched around β, and the class γ around that loop.

From this, we observe that if the medium is abelian γ ∼ 0 and lines can pass through each other
without leaving a trace.

One can demonstrate that such a connecting line segment contributes energy proportional to the
separation of the lines, preventing them from moving far away.

V.3 Formation of solitons

When we introduced solitons, we claimed they could be generated by moving defects; we illustrate
this process in 2 dimensions, and generalize it to higher dimensions. The situation inM2,1 is shown
in Figure 11.

Let the initial configuration be f : M → X and take the paths shown, so that fγ1 ∼ fγ2 ∼ e. These
paths are indeed maps S1 →M , since the endpoints touch R2,1 thus go to the same basepoint.

Now, we suppose that moving the defect above γ1 gives us the configuration f ′ : M → X, which
satisfies f ′γ2 ∼ e.

Draw a loop γ3 around the defect. We see that γ3 is homotopic to γ−11 γ2. As f ′γ2 ∼ e, we see that
f ′(γ−11 γ2) ∼ f ′γ−11 ∼ f ′γ3.

Conclude that moving the defect across γ1 turned fγ1 ∼ e into f ′γ1 ∼ f ′γ−13 .

(a) The initial configura-
tion.

(b) The configuration after
the defect crosses γ1.

Figure 11
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(a) After crossing the lower
sphere

(b)

Figure 12: Example for R3 and C3,2

Figure 13: The formation of a plane soliton in R3 and C3,1

If we brought in the defect from infinity and moved it towards the opposite side, we would see that
all γ would have f ′γ ∼ τ−1(fγ), writing τ for the type of defect in π1. Thus, this process turns the
γ ∈ π1(X) soliton into the τ−1γ ∈ π1(X) soliton.

This generalizes to Mn,k by instead moving a (n− k− 1)-flat defect parallel to Cn,k across M . Again
this time the maps (Ik, ∂Ik)→ (Dk

ε , ∗) are maps Sk →M . See Figure 12 and Figure 13.

V.4 Winding of defects

The solitons suggest that moving defects along non-trivial paths may generate some topologically
stable quantities. Such non-trivial paths may also be loops around other defects, as we consider
here.

V.4.1 Double exchange

Fix a basepoint x and consider the case of an n − 2-flat defect, corresponding to γ ∈ π1(X), and an
arbitrary defect corresponding to α ∈ πn(X).

Take a loop around the γ defect, and move the α defect along this loop. Pulling the sphere fixed at
x along with α gives the shape in Figure 14.

This shape is homeomorphic to the original sphere with the loop around γ attached. Since this
shape pushes forward to α, we conclude that the spherical part pushes forward to γα.

We see that the action of winding α around γ is the same as the action of π1 on πn. Hence, one form
of a defect can be brought to any other form by winding it around the appropriate γ.
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Figure 14: Moving α around γ.

V.4.2 Braiding

When we have multiple defects corresponding to elements of π1, there are more ways to braid defects.

The braid group on k strands Bk gives us a way to represent all braids. We may then consider the
action of Bk on our configuration, by shuffling the defects in accordance with the crossings in the
braid.

The action of a crossing is described that of the Π1 action on π1. This action is not well-defined as it
depends on the representative of the defect. For example, if X = S1, we may have a loop around a
vortex in which the first half is null homotopic as a path, while the second half completes the loop
in S1.

We conclude that with homotopy groups we can only describe the situation where the defects end
where they start. This is captured by the pure braid group Pk, which is the kernel of the map
φ : Bk → Sk, σi 7→ τi.

It must be noted that the pure braid group still allows for braids that aren’t clearly composed of
closed loops. [7] gives that Pk is generated by the pure crossings Ai,j . As a consequence, we get
that a pure braid decomposes into a product of closed loops. Thus, any pure braid can be written
in terms of Ai,j of which the actions are again those of the winding of 2 defects around each other:
conjugation.
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Part VI

Defects in SO(3) symmetry-broken media
With Part III, Part IV and Part V we can essentially compute all classes of simple defects, solitons,
and some other phenomena. And so we will.

In this part we focus on the n = 3 case of SO(n), and we apply the knowledge our ancestors used
long ago to explain the elements of matter.

We can directly describe all order-parameters of broken SO(3) symmetry, since we know all the
closed subgroups and hence all possible isotropies after symmetry breaking.

Theorem 9 The closed subgroups of SO(3) are:

• Zn

• Dn (sometimes D2n)

• A4

• S4

• A5

• SO(2)

• D∞

Proof. The finite subgroups of SO(3) are classified in [8].

We confirm that SO(2) as the rotation around a nonzero vector v and the infinite dihedral group
D∞, as the generalized dihedral group of SO(2), are both closed subgroups. We claim that SO(2)
and D∞ are the only infinite, closed and proper subgroups of SO(3).

Let H ⊂ SO(3) be infinite, and assume it is closed. Because SO(3) is compact, H is also compact.

Then H cannot be discrete, because then it has an infinite open cover with no finite subcover.

Because H is not discrete, it has a nontrivial connected component. Define the absolute angle of
rotation map α : SO(3) 7→ [0, π].

As H has a nontrivial connected component, α(H) does too. The irrationals are dense in [0, π], so H
contains a rotation by r/π where r is irrational. The multiples of r/π, modulo π, are dense in [0, π].
Hence, this rotation in H is dense in all rotations around an axis.

Conclude that H has contains SO(2). We say that this subset SO(2) are the rotations around some
vector v.

If H contains an element that does not fix v, then we may iteratively construct a subset homeomor-
phic to SO(2) of rotations around an orthogonal vector w. Then, H = SO(3).

Conclude that the only infinite closed proper subgroups are isomorphic to SO(2) and D∞. �

Using these subgroups, we can apply Corollary 3 to find some homotopy groups of the order-parameter.
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First we can compute the higher homotopy groups in the simpler cases. In particular, for the finite
subgroups of SO(3), we see that πk(SO(3)/H) = πk(SO(3)) when k > 1.

We can use the fact that S2 is a homogeneous space of SO(3) to compute homotopy groups of SO(3).

Theorem 10
πk(SO(3)) = πn(S2), n > 2

Proof. Because the coset space SO(3)/SO(2) is homeomorphic to S2, we can apply Corollary 2 to
the long exact sequence.

However, we have πn(SO(2)) = 0 for n > 1, so the sequence breaks into sequences

0→ πn(SO(3))→ πn(S2)→ 0

for n > 2, which confirms the wanted result. �

Note that SO(3) is also a compact Lie group, so it has π2(SO(3)) = 0.

Because SO(3) is not simply connected, before we can compute the fundamental groups, we first
need to lift the subgroups to the universal cover of SO(3).

Example 11 The universal cover of SO(3) is SU(2) and can be explicitly constructed as follows12.

Write g(φ, θ, ψ) ∈ SO(3), and define the covering map as

p : ±

(
cos θ2e

iφ+ψ2 i sin θ
2e
iφ−ψ2

i sin θ
2e
−iφ−ψ2 cos θ2e

−iφ+ψ2

)
7→ g(φ, θ, ψ).

Corollary 7 We attempt to compute π1(SO(3)/H) = H̃/H̃0.

Using the universal cover SU(2) → SO(3), we find the following pre-images of the finite sub-
groupsa

H Zn Dn A4 S4 A5

H̃ Z2n Dicn 2T 2O 2I.

The names are rather uninformative, as A4
∼= T , S4

∼= O and A5
∼= I.

The infinite groups lift to themselves

S̃O(2) ∼= SO(2), D̃∞ ∼= D∞.

Unlike the discrete groups that are their path components themselves, SO(2) only has 1 com-
ponent, while D∞ has 2.

aThese may be found in most listings of small groups.

To describe the flat defects, we need to compute [Sn, SO(3)/H] now. Let us first describe the line
defects in 3 dimensions, as they are the n = 1 case.

12Usually Spin(n) is the universal cover of SO(n), but Spin(3) is exceptionally isomorphic to SU(2)
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Corollary 8 In M3,1, the line defects correspond to the homotopy classes [M3,1, SO(3)/H] ∼=
[S1, SO(3)/H].

Use that set [S1, SO(3)/H] corresponds to the conjugacy classes of π1(SO(3)/H).

Summarizing the numbers conjugacy classes of the finite H

H Zn Dn A4 S4 A5

[S1, SO(3)/H] 2n n+ 3 7 8 9
.

The numbers of conjugacy classes of π1(SO(3)/H) for SO(2) and D∞ are then respectively 1
and 2.

To compute [Sn, SO(3)/H] for n > 1, we need to compute the action of π1 on πn. Fortunately, this
action greatly simplifies in some cases, and is for example trivial for all H-spaces.

Corollary 9 Let H be a finite subgroup of SO(3).

We simplify 〈Sn, SO(3)/H〉 = πn(SO(3)/H) = πn(SO(3)) = 〈Sn, SO(3)〉, for n > 2. Because
SO(3) is a topological group, the action of π1(SO(3)/H) on 〈Sn, SO(3)/H〉 is trivial.

Conclude that [Sn, SO(3)/H] = πn(SO(3)) = πn(S2), for n > 2.

Note that, to us, this is only relevant for Mn,k with n− k − 1 > 2, that is the k-flats in 4 + k or
more dimensions.

The point defects in 3 dimensions are classified by [S2, SO(3)/H], and are again given by Corollary 3.

Corollary 10 Using the universal cover, we get π2(SO(3)/H) = π2(SU(2)/H̃). Then
π2(SU(2)/H̃) = π1(H̃) by Corollary 3.

Conclude that the finite subgroups H have no point defects.

For SO(2), we have π2(SO(3)/SO(2)) = π1(SO(2)) = Z, and similarly for D∞ we have
π2(SO(3)/D∞) = π1(D∞) = Z.

As π1(SO(3)/SO(2)) = 0, we get that [S2, SO(3)/SO(2)] ∼= Z.

For D∞, π1(SO(3)/D∞) = Z2. Because the action is nontrivial, we get that the classes
[S2, SO(3)/D∞] ∼= N correspond to pairs of n and −n in Z.
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We write X = SO(3)/H. This table summarizes the defects and solitons, as the numbers of classes
[M,X] or as groups. Recall that [Sn−k−1, X] represents the k-flat defects in n dimensions, and πn(X)
represents the n− 1 solitons.13

π1(X) π2(X) π3(X) |[S1, X]| |[S2, X]|
Zn Z2n 0 Z 2n 0
Dn Dicn 0 Z n+ 3 0
A4 2T 0 Z 7 0
S4 2O 0 Z 8 0
A5 2I 0 Z 9 0

SO(2) 0 Z Z 1 |Z|
D∞ Z2 Z Z 2 |Z|

13Note that π2 for SO(2) and D∞ are computed by computing π2(S2) and π2(RP2).
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Appendix

A Flat defects

This appendix assumes knowledge of homotopy theory to present more general results. If one is
unfamiliar with homotopy equivalences and deformation retractions, refer to Section III.1.

In this appendix we will show that for sufficiently simple spaces, the description of defects as homo-
topy classes and local surgery classes coincide. Specifically, the Euclidean spaces with flats removed
are simple enough for this purpose.

A.1 Homotopy groups and surgery

Let us establish that the classes induced by local surgeries correspond to the free homotopy classes
[M,X] when M is a flat-removed space Mn,k.

We will prove the retraction homotopy lemma.

Lemma 14 Given topological spaces X, Y ⊂ X, and Z.

Suppose there is a deformation retraction r : X → Y , with inclusion ι : Y → X.

Let a : X → Z and b : X → Z be continuous maps, and let a′ = aι : Y → Z and b′ = bι : Y → Z.

Then a and b are homotopic if a′ and b′ are homotopic.

Proof. Let H0 : X × I → X be the homotopy from ιr to 1X .

Push this homotopy forward to H1 = aH0 and H3 = bH0, so H1, H3 : X × I → Z. Conclude that a is
homotopic to a′r, and b is homotopic to b′r.

Let H2 : Y × I → Z be the homotopy from a′ to b′. Pulling the homotopy H2 back to H ′2 : X × I →
Z, (x, t) 7→ H2(r(x), t) gives that a′r and b′r are homotopic.

Conclude that a and b are homotopic. �

We can now prove a general result that relates the pushforwards of configurations to their surgeries.

Theorem 11 Given a medium M and an embedding a : K ↪→M of K = Sn × Y × I, where
Y is contractible.

Write at : Sn × Y →M, (s, y) 7→ (s, y, t). Require that ∂im(a) = im(a0) t im(a1).

Given a closed subset U ⊂M such that ∂U = im(a1). Let V = U ∪ im(a).

Then two configurations f, g : M → X have equal pushforwards on im(a0) if and only if there
is a surgery between them on U, V , that is

(fa0)∗ = (ga0)∗ ⇐⇒ η(f, g;U, V )
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Proof. Note that ∂V = im(a0).

Suppose (fa0)∗ = (ga0)∗. Let r : Sn × Y → Sn be the contraction of Y , and let ι : Sn → Sn × Y be
the inclusion so that rι is homotopic to 1Sn . Conclude that ι∗ is bijective.

Note that fa0, ga0 are maps Sn × Y → X. We see that (fa0ι)∗ = (ga0ι)∗, but fa0ι, ga0ι are maps
Sn → X, so they are also homotopic.

The retraction homotopy lemma gives that fa0 and ga0 are homotopic. Because at is the homotopy
from a0 to a1, we see that fa0 and ga1 are homotopic.

Let H : Sn × Y × I be the homotopy from fa0 to ga1.

Define the local surgery for η(f, g;U, V ) as

h(x) =


g(x), x ∈ U
f(x), x /∈ V
H(a−1(x)), otherwise

Conclude that the equality of pushforwards implies the existence of a surgery.

Next, suppose h is the surgery for η(f, g;U, V ). We see that fa0 = ha0 and ga1 = ha1. Then hat is
the homotopy from fa0 to ga1.

Further, gat is the homotopy from ga0 to ga1. Then fa0 is homotopic to ga0, and because of the
homotopy invariance of the pushforward (fa0)∗ = (ga0)∗.

Conclude that the surgery implies equality of pushforwards. �

Corollary 11 We see that on Mn,k, the only nontrivial domains for surgery are embeddings
of K = Sn−k−1 × (0, 1)k × I around the removed flat Ln,k.

If a is the embedding, then a0 induces the map [Mn,k, X]→ [Sn−k−1×(0, 1)k, X] ∼= [Sn−k−1, X].

Then equality of pushforwards f∗ = g∗ is equivalent to being freely homotopic, that is [f ] = [g]
in [Mn,k, X].

Hence, we state k-flat defects in n dimensions are classified up to local surgery by [Sn−k−1, X].

B Group theory

In this appendix we give a short introduction into the relevant group theory, namely group actions
and long exact sequences.

45



Definition 26 An automorphism is an isomorphism f : X → X. The set of automorphisms
is denoted AutX.

Given a map h : A→ CB , we write ac = h(a)(c) for the evaluation of a.

An action of a group G on a set X is a map φ : G→ AutX such that

ex = x

g(hx) = (gh)x

The orbit Gx of x is the set G · x = {gx|g ∈ G}. An action is transitive when G · x = X for all
x.

The action quotient of X by G is the set of orbits X/G = {Gx|x ∈ X}.

A homogeneous space of G is a manifold X together with a transitive action of G on X.

The stabilizer Gx of x is the set {g ∈ G|gx = x}.

Note that currying gives the described correspondence between maps G→ XX and maps G×X →
X.

Definition 27 Given a group G and a subgroup H, the coset space G/H is defined as the
action quotient of left-translation of G by H.

That is, G/H is the quotient space with quotient map q : G→ G/H, g 7→ gH. The topology of
G/H is defined as the quotient topology.

Lemma 15 If G is a group with an action on X, then

1. the stabilizer Gx is a subgroup of G,

2. stabilizers of the same orbit are conjugate, that is, y = hx implies Gy = hGxh
−1,

3. conjugation φh : g 7→ hgh−1 is an isomorphism,

4. stabilizers of the same orbit are isomorphic Gx ∼= Gy.

Proof. Take g, h ∈ H. Then hx = x, so h−1x = h−1hx = x and gh−1x = x thus gh−1 ∈ H.

If y = hx then

Gy = {g ∈ G|gy = y} = {g ∈ G|ghx = hx} = {g ∈ G|h−1ghx = x} = {hgh−1 ∈ G|gh = x} = hGxh
−1

Conjugation is a homomorphism since hxy−1h−1 = (hxh−1)(hyh−1)−1. The inverse is φ−1h = φh−1 so
φh is an isomorphism.

Since φh restricts to Gx → Gy, conclude that Gx is isomorphic for all x. In fact if G is also a
topological or Lie group, conjugation is also continuous or smooth and so a homeomorphism or
diffeomorphism. �
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Definition 28 A long exact sequence is a sequence of groups Gn and homomorphisms fn
such that the image of fn+1 is the kernel of fn.

· · · → Gn+1
fn+1−−−→ Gn

fn+1−−−→ Gn−1 → · · ·

C Variational calculus

We usually take for granted that the entropy −E[log f ] of a density f : X → R is maximal when f
is constant. Let us confirm this fact.

Maximizing −E[log f ] is equivalent to minimizing J [f ] =
∫
X
L(f) dx where L(f) = log f . Because f

is a probability density, we impose the constraint
∫
X
M(f) dx = 1, where M(f) = f .

Then from variational calculus and the Euler-Lagrange equation, we find that J [f ] is minimal for

∂L− λM
∂f

− d

dx

(
∂L−λM
∂f ′

)
= 0.

Evaluating gives ∂L−λM
∂f = − 1

f − λ and ∂L−λM
∂f ′ = 0. Hence, f = − 1

λ so f is constant.
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