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Abstract

We study the singularity theorems of Hawking and Penrose in spacetimes with non-vanishing torsion (Einstein-
Cartan theory). Assuming that test particles move on geodesics we manage to generalize those theorems to
the case of totally anti-symmetric torsion. In doing so we derive the generalized Raychaudhuri equation for
timelike geodesics and arbitrary torsion. For totally anti-symmetric torsion we find that the vorticity of a
geodesic is directly related to the torsion. We find that the theorems are not directly extendable to spacetimes
that have non totally anti-symmetric torsion; other arguments are needed. However, we formulate a con-
struction that enables one to create a null geodesically incomplete spacetime with vectorial torsion starting
from a spacetime that is null geodesically incomplete with respect to the Levi-Civita connection.

The geometric assumptions of the singularity theorems can be translated to assumptions on the matter
content of spacetime via the equations of motion of the theory. We studied the two ways of deriving these
equations. It turns out that for totally anti-symmetric torsion the metric formalism, in which one takes the
metric and torsion as dynamical variables and assumes metric compatibility, is equivalent to the metric-affine
formalism, in which one takes the metric and connection as dynamical variables and does not assume metric
compatibility. Matter in the Standard model induces totally anti-symmetric torsion. We also generalize the
Bianchi identity and conservation of the energy-momentum tensor in general relativity to Einstein-Cartan
theory.

We examine the singularity theorems in FLRW spacetimes (assuming vanishing torsion). We argue that
one should not use the general definition of a singularity in these spacetimes but should define a singularity
as a comoving geodesic that is incomplete. We prove theorems for FLRW spacetimes about the relation
between conjugate points and a singularity. In particular we show that for a class of singular spacetimes all
points on certain geodesics are conjugate to the point at the singularity. Also when every point on a geodesic
is conjugate to a certain point, one must have a singularity. Lastly we show under which condition a geodesic
in an FLRW spacetime with flat spacelike three-surfaces has conjugate points.
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Introduction

Einstein’s theory of general relativity has been around for over a 100 years now. There has been a lot
of experimental evidence that proves the validity of this theory on macroscopic scales. Within the solar
system (weak field limit), precession of perihelia of planets, deflection of light and gravitational redshift
can be explained with general relativity. The theory has also been tested on larger scales, by explaining
gravitational lensing effects that can be observed in distant astrophysical sources and for stronger fields, by
explaining periapsis precession of pulsars around other stars.

Some intriguing objects predicted by general relativity are singularities. Loosely speaking they are points
where spacetime stops being a manifold and that can be reached by objects or light rays in a finite amount
of time. Massive particles and photons move on timelike geodesics and null geodesics respectively, so a more
rigorous definition of a singularity is that there exists a non-spacelike geodesic for which the affine parameter
cannot be extended to infinity (we call a geodesic incomplete if that is the case). Solutions in general relativity
that are singular are for instance the Schwarzschild metric, the Reissner-Nordstrom metric, the Kerr metric
and the Kerr-Newman metric which all describe black holes. The big bang at the beginning of the universe is
also an example of a singularity. Although these singular solutions theoretically exist, it is not immediately
clear that they really exist in our physical universe. If one considers the collapse of a star to a black hole,
in principle it would be possible that rotation of that star counteracts the collapse and keeps the singularity
from forming. This changed with the theorems of Hawking and Penrose [I}, 2, B]. They proved theorems for
general relativity that under reasonable conditions on the matter content of the universe singularities will
always form. In the example of the collapse of the star, the theorems state that it is impossible to prevent the
singularity from forming once an event horizon is formed. The presence of an event horizon (or a black hole)
can be observed from the interaction with the matter around it. The gas falling into a black hole will form
a disk-like structure (accretion disk) because of angular momentum conservation. Due to friction within the
disk angular momentum is transported outward such that matter can fall into the black hole. This releases
potential energy causing the gas near the black hole to become so hot that it emits enough radiation to be
detected by telescopes. Many of the more energetic phenomena in the universe are explained by accretion
disks of black holes. The active galactic nuclei are such phenomena. It is now widely accepted that nearly all
galaxies have a super massive black hole at the center (masses 10° — 10° Mgy, where Mgy, is a solar mass)
(e.g. [A]). Recently gravitational waves have been detected directly by the Advanced Ligo team [5]. Those
waves were generated from a black hole merger, so besides being the observation of gravitational waves, this
was also the first direct detection of a binary black hole merger.

Besides its successes, general relativity is not complete yet. On large scales, cosmological observations
imply that roughly 95 percent of the universe that is measured via its gravitational interaction must be
dark matter or dark energy, which basically means that it is unknown what it is. If the Standard model is
complete, general relativity has to be adapted on large scales to account for this extra energy. If general
relativity should be trusted, there is a need for extra particles to be added to the Standard model. A second
problem appears when one wants to combine general relativity with another main pillar of modern physics:
quantum mechanics. Both theories have to be applied at the same time when one considers large energy on
small scales, for instance when one studies black holes. Unfortunately, we are still far from a concrete theory
that unifies relativity with quantum mechanics.

The above mentioned sources of trouble with general relativity motivate to examine modifications of the
theory in such a way that its predictions on the solar system scale do not change. In general relativity the
metric g,,,, is fixed by the matter content of spacetime. The connection I', is fully expressed in terms of the

metric by requiring metric compatibility and vanishing torsion S”,,, = 2Fﬁ )" One modification one can make
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in general relativity is to loosen these restrictions. Metric compatibility makes sense from a physical point of
view: the inner product of two vectors that do not change, should stay the same. Vanishing torsion however,
cannot be motivated in such a way. This has been put to zero originally because torsion only modifies gravity
on small scales [6], scales that so far are out of reach of experiments. Because of the problems that appear
when combining general relativity with quantum mechanics, modification on small scales is exactly what we
are looking for, which motivates to examine the theory with non-vanishing torsion. In general relativity,
the geometric quantity that describes curvature is coupled to the energy-momentum tensor of matter, which
describes the distribution of energy. One can couple torsion to the spin tensor of matter:

qw__ —% 95
P /=detg0S°]

where Sy, is the matter action. It turns out that the spin tensor is only non-vanishing (for matter from the
Standard model) for particles with spin, therefore we can say it describes the distribution of spin. We want
to stress that torsion is not coupled to the spin of macroscopic objects as planets, it is merely coupled to
some intrinsic property of matter. The theory which has torsion and the metric as dynamical variables was
first proposed by E. Cartan [7, 8] and in other works [9] [10] and it has the name Einstein-Cartan theory.

In this thesis we will study what happens with the singularity theorems of Hawking and Penrose when
one considers Einstein-Cartan theory. One question that needs to be answered is what trajectories we want
to consider for the definition of a singularity. In general relativity we use the trajectories of massive particles
and light as motivation to define a singularity as an incomplete non-spacelike geodesic. It is not clear that
when torsion is non-vanishing particles and light still move on geodesics. In the literature there have been
two opinions:

(1)

1. particles and light move on geodesics, e.g. [111, 12];
2. particles and light move on curves of maximal length, e.g. [0, [13].

When torsion is totally anti-symmetric, the set of maximal curves and the set of geodesics are the same, but
for more general torsion this is not the case. When one assumes the second case, there is an easy extension
of the singularity theorems (e.g. [I4]) by using that one can integrate out torsion from the equations (all of
this will become more clear in this thesis). However, we will use a more cumbersome approach by directly
considering all of the propositions needed to prove the singularity theorems for general relativity and see
whether we can generalize them. We do this for two reasons: firstly because this will give a different proof of
what already has been done in [14], secondly because we also want to see what happens when one assumes
opinion 1). We will give the full proof for totally anti-symmetric torsion and then discuss the case of more
general torsion. We will give a way to construct a null geodesically incomplete spacetime with vectorial
torsion.

The singularity theorems are geometrical in nature and to see whether their assumptions make sense, we
need a translation to the matter content of spacetime. This translation happens via the equations of motion
of Einstein-Cartan theory. There are however different ways of deriving these equations. In the metric
formalism, the metric and torsion are treated as dynamical variables and metric compatibility is assumed.
In the 'more natural’ metric-affine formalism the metric and connection are treated as dynamical variables
and one has to see whether metric compatibility is enforced by nature via the equations of motion. We
will actually see that for totally anti-symmetric torsion the two formalisms are equivalent. We will also see
that matter of the Standard model only induces totally anti-symmetric torsion. In general relativity one
has the Bianchi identity and conservation of the energy-momentum tensor of matter. We will also derive
generalizations of those identities.

The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is the metric that describes a spatially ho-
mogeneous, isotropic spacetime. This metric is a good description of our universe, since from experiments as
WMAP and Planck, it follows that our universe is spatially homogeneous and isotropic when averaged over
large scales. Torsion can be introduced in an FLRW spacetime as an energy density. Since this spacetime
has a lot of symmetry it can be used to study the singularity theorems in this spacetime. We will discuss the
definition of (initial or big bang) singularities in this spacetime. It actually turns out that we should forget
about certain geodesics when looking for incomplete ones, since the particles that follow those geodesics have
an energy that becomes arbitrarily large when going back in the past. This means that their energy will
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become larger than the Planck energy at some time in the past and when that happens, a black hole will
form, breaking the description of that particle.

One of the assumptions of all the singularity theorems implies that when a geodesic is complete it has
conjugate points. Having conjugate points basically means that there is a one-parameter family of geodesics
that leaves from one of those points and comes back to the other point. We will study this occurrence of
conjugate points in FLRW spacetimes with and without initial singularity. We prove theorems that show
that for a certain class of singular FLRW models all points on certain geodesics are conjugate to the point of
the geodesic at the singularity. We also argue that when it happens that all points are conjugate to one point,
one must have a singularity. Lastly, we prove a theorem that gives the conditions under which a geodesic
in an FLRW spacetime with flat spacelike three-surfaces has conjugate points. After proving these theorems
we introduce torsion in FLRW spacetimes and see what happens in combination with a perfect matter fluid
and a perfect radiation fluid. We will find that a singularity is avoided.

As far as we know, the following results in this thesis are new:

e The direct generalization of the Einstein-Penrose singularity theorems to totally anti-symmetric torsion,
but we want to stress once again that the generalized theorems can also be proven in another way.

e The construction of null geodesically incomplete spacetimes with vectorial torsion.

e A derivation of the Raychaudhuri equation for timelike geodesics and arbitrary torsion. This equation
is needed for the proof of the singularity theorems. We find an extra term with respect to the literature,
because we use a different approach.

e Section [6.2] about the definition of a singularity in FLRW spacetimes. This section can also be found
in our paper [15].

e Section [6.3] in which we prove several theorems relating conjugate points to singularities in FLRW
spacetimes.

The thesis is organized as follows. In Chapter [I] we give a review of general relativity, introduce Einstein-
Cartan theory and discuss the definition of singularities. In Chapter [2] and [3] we generalize propositions that
are needed to prove the singularity theorems for totally anti-symmetric torsion. In Chapter 2| we do this
with propositions related to conjugate points and in Chapter [3| with propositions related to the length of
geodesics. After that, in Chapter ] we review the metric and metric-affine formalisms and examine when
they are equivalent. We also derive the generalizations of the Bianchi identity and conservation of the energy-
momentum tensor in general relativity. In Chapter [5| we finally state the singularity theorems, discuss their
assumptions and extendibility to non totally anti-symmetric torsion and give a construction to find null
geodesically incomplete spacetimes with vectorial torsion. In Chapter [ we study singularities in FLRW
spacetimes, prove some theorems about the relation between conjugate points and singularities and treat
torsion introduced as an energy density as example. We end with a conclusion, where we will also discuss
some possibilities for future work.
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Notation and Conventions

e Units are such that h=c=1.
e Lorentzian metrics g,, will have signature (—1,1,1,1).

e Index summation notation:

e Symmetrization and anti-symmetrization:

T(Hl/) = 5 (,‘TMV + TVM) ;

T[uy] = 5 (ﬂtv - TD/L) .

e Determinant of the metric g, is det g.
o Geodesics are denoted by v(7) where 7 is an affine parameter. Also

d

’YZEW

e The covariant derivative is denoted by V and the covariant derivative along a curve (or parametrized
vector field) parametrized by 7 by V5 = D,.

e Riemann curvature tensor

Rf,,, = 0.0, + FfAFZB — 9,10, — rﬁArgﬁ.

e Torsion:
P oo
v = 2
S, = Sppl,.

e Quantities with respect to the Levi-Civita connection
ro, = {6,} = 2 (0 0 0
v ,u.l/} = 59 ( wgux +0ugux — Ag,uv)

are denoted by  e.g. I:EW are the components of the Ricci tensor with respect to the Levi-Civita
connection.

e Energy-momentum tensor:
-2 65m

T,=——=—.
a V/—det g g

11
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e Spin tensor:

e S
P /=detg S’
I’ = I,

P
e Variation of the matter action with respect to the connection:

Aw_ 2 05
P /=detg oTh,’

12



Chapter 1

Review of the Theory

In this chapter we briefly review the theory. We first look at general relativity in Section [1.I] where we
introduce a lot of geometric quantities needed in the rest of this thesis. After that we will also consider the
matter content of the universe. In Section [1.2| we then introduce Einstein-Cartan theory. Lastly, in Section
[[-3] we give the definition of a singularity and compare this definition with other possibilities.

1.1 General Relativity

With the theory of General Relativity Einstein tried to explain gravity by curvature of spacetime. The
mathematical model that is used for spacetime is a pair (M, g) where M is a connected four-dimensional
smooth manifold and ¢ is a Lorentz metric on M, i.e. a metric with signature (1,3). We will denote the
tangent space of M by TM and a local frame of T'M induced by a coordinate system, by 0,,. For some more
background on manifold theory, see the appendix.

Spacetimes (M, g), (M’, ¢') are equivalent when there is a diffeomorphism ¢ : M — M’ such that ¢.¢' = g.
Such a function is also called an isometry. A pair (M’,g') is an extension of (M, g) if there is an isometric
imbedding ¢ : M — M’. We require the model to be inextendible, so if an extension exists we should have
that ¢(M) = M. This is to ensure that all non-singular points of spacetime are included.

A vector field is a section of the tangent bundle. We will denote the space of vector fields on the manifold
by 7 (M) and the space of vector fields along a (smooth) curve v : [r,7¢] = M by T(v). To differentiate
vector fields in a coordinate independent way, a connection V is introduced. Let now {E,} be a local frame
for TM. The well-known Christoffel symbols I'},, are then defined as

Vg, E, =T%,E,. (1.1)

1%

Differentiation of a vector field V = V#95 along the vector field X = X9, yields
VxV = X"V, (VY0,) = X (0,VY) 0, + XHVVTY,,0,. (1.2)

So in coordinates we get
V.VP = (VV)Z =0,V +T9, VY. (1.3)

It can be shown that when p € M, VxV (p) only depends on X (p) and on the value of V' in a neighborhood
of p. If we differentiate along a curve (7) or a parametrized vector field we will use the notation D, for the
covariant derivative. A useful construction is parallel translation. We say that a vector field V' along a curve
~ is parallel along v if D,V = 0. A curve v(7) is called a geodesic curve when D,¥ = f+% and a curve is called
a geodesic when

D:;4 =0, (14)

or in other words: when its tangent vector field is parallel along the curve. The parametrization 7 of a
geodesic is defined by up to an affine transformation: 7 = a7+ 3, where «a, 8 are constants. A geodesic
curve can always be reparametrized such that it becomes a geodesic and vice versa. Writing Eq.
in coordinates one finds a 2nd order linear differential equation and such an equation can always be solved

13



CHAPTER 1 REVIEW OF THE THEORY

locally. Solet p € M and X € T, M then there is a geodesic y(7) such that v(0) = p and 4(0) = X; we denote
this geodesic with yx. It can be proven that there is a neighborhood Ny of 0 € T),M that is diffeomorphic
to a neighborhood N, of p via the exponential map exp,(X) = 7x(1). Furthermore, N,, can be chosen such
that all points ¢, € IV, can be connected by a unique geodesic that lies in IV,; such a neighborhood will be
called a convex normal neighborhood.

Using the connection we can define the torsion tensor:

St T(M)xT(M)—=T(M) S(X,Y)=VxY —VyX —[X,Y]. (1.5)

In components we get

S, = 50, 0,)(dx?) =T},05(da?) — T, 0x(da?) =T%, —T,. (1.6)
Torsion can be decomposed as
_v A T
Splw = SPW, + SPW, + Spw,, (1.7)
where the vectorial part V'S” ,, totally anti-symmetric part 4S”,, and traceless part 7,57, are defined as
1
v .
S’pw, =3 <5ﬁSV — 555u) ;
ASp,uu = gp/\S[)\py]; (18)
2
T _ ¢ _ p_ g P
S = 5 (8= Sy = S0

Notice that all of these parts define a torsion by itself.
We can also define the Riemann curvature tensor R:
R: TIM)xT(M)xT(M)—=T(M) RX,Y)Z=Vx(VyZ)—Vy(VxZ)— V[X)y]Z. (1.9)
Components are defined as
R\, = (R(04,0,)05)"
= [Vu(Vu0r) = Vo (V0]
= [V, ([830a) — Vi (T020a)]”
= OI0, + T T0, — 9,10, — T IV, (1.10)

Apv

Contracting the curvature tensor, one can define the Ricci tensor Ric as the tensor with components

Ry, = R”)\pu. (1.11)
Taking the trace of the Ricci tensor we find the Ricci scalar
R=R' =g""R,,. (1.12)

In the discussion of the connection so far, we have not been talking about the metric. Since we normally
define the angle between two vectors via the metric, it seems natural to require that the ’inner product’ does
not change under parallel translation along a curve . Or in other words we require

L gV, W) = g(D,V, W) + g(V, D, W) (1.13)

for an arbitrary curve v and V, W € T (). This property is equivalent to
Vxg=0 (1.14)

for all X € T(M) and using this equation it is possible to express the Christoffel symbols via the torsion and
metric:
(1.15)

1
_ P
FZV - Zl/} - S(uy) + §SPMV7

14



CHAPTER 1 REVIEW OF THE THEORY

where

1
Zu} = Qgp)\(a,ugllk + 8ug/1)\ - 3,\QW) (116)

is the Levi-Civita connection. Indeed, using Eq. (1.14) we can write

1 (6%
0 = 7gp (vugow + Vugau - Vag;u/)

2
1 (6%
= {fu} = 59" (Thagsy + Ui Gap + Doagpu + U000 — Ta,u980 — Daugis)
1 o o
= fw} 5 (gp Sﬁﬂagﬁy +Ih, +g” Sﬁmggu + Fﬁu)
1
= {l.}- B (QFﬁl, =50, +S,,"+ Swp) ) (1.17)
Hence
r? = {r 1 SpP S r S P
pro T ;,w}+§( pry — Pop T ;,w)
1
= {ZV} - S(‘u,u)p + ispulj' (1.18)

Apart from metric compatibility, in General Relativity we also assume that the torsion is zero. So the
connection reduces to the Levi-Civita connection, which is completely determined by the metric.
Using the metric, the vectors in T, M at a point p € M can be divided into three classes:

Definition 1.1.1. A vector X € T,M is called timelike if g(X, X) < 0, it is called spacelike if g(X,X) > 0
and it is called a null vector if g(X, X) = 0. Timelike, spacelike and null curves are then defined as curves v
such that g(%,+) is negative, positive or zero respectively for the tangent vector field along the curve.

Notice that with metric compatibility, the norm of the tangent vector of a geodesic «y is constant:

9rg (%,7) = 29 (D+¥,7) = 0. (1.19)

This implies that we can define timelike, null and spacelike geodesics. We can also choose (using the freedom
of an affine transformation) the parametrization of the geodesic such that g (§,7) = —1 for timelike geodesics,
g (%,%) = 1 for spacelike geodesics and g (§,%) = 0 for null geodesics. Defining the length of a timelike curve
~ between v(7p) and v(71) as

r) = | G, (1.20)

we see that for a timelike geodesic with parameter such that g (¥,4) = —1, we get that
L(v) =11 — 7o, (1.21)

which is why we call this parameter 7 the proper time, or length of the geodesic.

So far we have only talked about the geometry of spacetime, but in the real world everything is made
out of matter. Matter is described via fields on M (for instance a complex function or a vector field) and
these fields obey equations which can be expressed as relations between tensors or spinors on M. We will
now discuss three postulates for a spacetime:

Local causality

The equations that describe the matter field must be such that in a convex normal neighborhood U a signal
between points p,q € U can only be send when p and ¢ can be connected by a curve that is either timelike
or null; such a curve is called non-spacelike.

15



CHAPTER 1 REVIEW OF THE THEORY

Local conservation of energy and momentum

For the matter fields one can define a tensor T, the energy-momentum tensor, which depends on the fields,
their covariant derivatives and the metric, and which has the properties:

1. T vanishes on an open set U if and only if all the matter fields vanish on U;
2. T obeys the equation V,T"" = 0;
3. TH =TvH,

The first property is that every field has a non-zero energy, the second property makes sure that energy and
momentum are locally conserved.

Field equations

The following equation holds on M in general relativity:
1
R, — iRgl“, + Agp = 8nGNT s (1.22)

where A is the so called cosmological constant (so it is a constant) and Gy is Newton’s constant. This is
the Einstein equation and the predictions of this equation agree, within the experimental errors, with the
observations done so far. Notice that in general relativity, we can find the metric when we know the energy-
momentum tensor (and have suitable boundary conditions), but the metric influences how particles move,
such that the energy-momentum tensor changes. So in general, Eq. is hard to solve. Only in situations
with a lot of symmetry, this equation can be solved analytically.

1.2 Einstein-Cartan Theory

As mentioned before, in general relativity, the torsion tensor Eq. , is assumed to be vanishing. The
theory with non-vanishing torsion is Einstein-Cartan theory [7, [8]. At the geometric side, the only difference
with general relativity is in the connection that is now given by Eq. . The introduction of torsion is
motivated because it modifies gravity only on small scales [6] where we encounter problems when we try to
combine general relativity with quantum mechanics. On large scales where general relativity is experimentally
confirmed, Einstein-Cartan theory predicts the same as Einstein’s theory. In a theory with torsion the
singularity at the beginning of the universe can be avoided [16]. Since the torsion is an extra component to
the theory, we need an equation that relates the torsion to the matter field. A derivation of the new equations
of motion that one gets in Einstein-Cartan theory can be found in Chapter [

1.3 Singularitied]]

There are many possible ways to define a singularity in spacetime, a first guess by analogy with electrody-
namics would be to define them as a point where the metric tensor is not defined anymore or not differentiable
enough. Unfortunately, those points should not be regarded as part of spacetime because one cannot do any
experiments when the laws of physics are not defined anymore. This is also why we defined spacetime as
smooth and not extendable. Spacetime without those points would be non-singular.

The question of determining of a spacetime is singular now becomes a question whether any singular
points have been cut out. You would expect that this can be determined by the completeness of spacetime in
any sense. Riemannian geometry, where the metric is positive definite, has two forms of completeness. First
of all, one can define a distance function d(x,y) : M x M — R where d(z,y) is the greatest lower bound
of the length of curves from x to y, where the length of a curve v, with v(7g) = z and v(r) = y is defined

(notice the analogy with Eq. (1.20)) as

L(v) = /ﬁ V9, y)dr. (1.23)

1This section is based on section 8.1 of [3].
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CHAPTER 1 REVIEW OF THE THEORY

Spacetime (M, g) is metrically complete if every Cauchy sequence with respect to the distance function
converges to a point in M. There also exists a definition based on geodesics. As we mentioned before, for
every point p € M, X € T, M there exists a geodesic v: U — M, where U C R is a neighborhood of 0, such
that v(0) = p, 4(0) = X. If we can expand the domain of the geodesic to R the geodesic is called complete.
In Riemannian geometry one has geodesic completeness if and only if one has metric completeness.

It is hard to find an analogy for metric completeness in Lorentzian geometry. One cannot define a distance
function as in Riemannian geometry because if one defines the length of curves as in this length can be
positive and negative. Hence, one is left with geodesic completeness. There actually are 3 different kinds of
geodesic completeness: null, spacelike and timelike geodesic completeness. One would hope the three forms
of geodesic completeness are equivalent, but that is not the case [I7]. One can construct examples that are
incomplete in one of the three ways and complete in the other two. From a physical perspective only timelike
and null geodesic completeness are really interesting. Massive test particles in general relativity are believed
to follow timelike geodesics. So when such a geodesic is incomplete, that means that that test particle reaches
the end of its trajectory in a finite time. This seems like a quite objectionable feature of spacetime and that
is why such a spacetime can be regarded singular. Photons are believed to follow null geodesics and while the
affine parameter of such a geodesic does not have the same interpretation as the affine parameter of a timelike
geodesic, one should probably also regard spacetimes that have an incomplete null geodesic as singular. This
can be motivated because the Reissner-Nordstrom solution that describes a charged black hole is timelike
complete but not null geodesically complete.

When torsion is non-vanishing in most literature the opinion is that test particles follow extremal curves
(curves of maximal length) with their tangent vector parallel transported with respect to the Levi-Civita
connection (i.e. [6, 13]). In [I2] it is claimed that the trajectories of point particles must be geodesics with
respect to the full connection in order to obtain a consistent path integral. In [I8] a new variational method
is found that indeed yields these trajectories. Unfortunately, it is impossible up to now to falsify one of these
claims experimentally. In this thesis, we will mainly use the second opinion in which we consider geodesics
with respect to the connection with torsion. However, we will only be able to give full proofs for totally
anti-symmetric torsion in which case both sets of trajectories are the same. We now define a singularity in
the following way:

Definition 1.3.1. A spacetime has a singularity if it contains a non-spacelike incomplete geodesic.

For generality relativity, theorems have been proven [I}, 2 [3] that state the existence of these singularities
under rather general assumptions. We would like to generalize these results to spacetimes with torsion.

There still are some spacetimes that are geodesically complete, but should be considered singular. For
example [I9] constructed an example that is geodesically complete but contains an inextendible timelike curve
of bounded acceleration and finite length. An observer with a suitable rocket ship can reach a point that is
not in the manifold anymore in a finite amount of time. This is why one should actually define a singularity
in such a way that also these kind of spacetimes are included. To do that one needs a generalization of the
affine parameter to all continuously differentiable curves. This is indeed possible [20] 2], but we will not
dive into this since we will not use it in the remainder of this thesis. Of course we have that non-spacelike
geodesic incompleteness implies this kind of incompleteness.

As one might remember from a course on general relativity, singularities are mostly seen as points where
one of the contractions of the Riemann curvature tensor (e.g. the Ricci scalar) blows up. Unfortunately, the
singular point is excluded from the manifold, so it is hard to give a precise definition of this statement. It
becomes even harder to prove theorems with such a definition. When one already has incomplete curves,
one can use such a curve to give a statement about the blowing up of a contraction of curvature near a
certain point (end of the curve). However, the Riemann curvature tensor is not completely determined by its
contractions (Penrose pointed out that for plane-wave solutions all these contractions are zero, but curvature
is not). Thus in principle it is possible that all contractions are finite but that curvature still blows up.
Instead, one can use the blowing up of components of the curvature tensor in a parallel translated basis
along a curve as definition for a singularity. In this thesis however, a singularity is defined as a non-spacelike
geodesic that is incomplete.
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Chapter 2
Conjugate points

It will be important for the proofs of the singularity theorems that families of geodesics that start from one
point or start from one surface will start converging again in a sense that will be made precise later by the
definition of conjugate points. That is why in this chapter, we study the behavior of families of geodesics and
prove that under certain conditions we always have those conjugate points. Everything will be developed in
dimension 4, but most of the results can easily be generalized to Lorentzian manifolds of other dimensions.
We will mainly try to follow arguments from [3] and [22] (where they derived the results for vanishing torsion)
and expand them where needed.

This chapter is organized as follows. We consider conjugate points on timelike geodesics, to a spacelike
hypersurface, on null geodesics and to spacelike two-surfaces in Sections and [2:4] respectively.
Before that we derive some theory that is needed in all sections. In particular we will derive a generalized
Jacobi equation. In Section [2.1] we will start with general torsion, but after that we will assume totally anti-
symmetric torsion. We will also assume totally anti-symmetric torsion in Sections 2.2} 2:3|and [2:4 The main
results of this chapter are the propositions that we prove (and are needed for the proofs of the singularity
theorems in Chapter . Also the derivation of the Raychaudhuri equation, Eq. , for timelike geodesics
and torsion is very interesting because as far as we know nobody used this more mathematical approach.
This results in an extra term with respect to the literature.

In this thesis we will be using one-parameter families of geodesics that are defined as follows.

Definition 2.0.1. Let v : [, %] — M be a non-spacelike geodesic segment. A wvariation of + is a smooth
function T' : (—e,€) x [1, %] = M, such that I'(0,7) = v(7) for all 7 € [n,7¢]. The variation field of T' is
the vector field J(7) = 9, ['(w, 7)|w=0 along v. We say that T is a variation through geodesics if every curve
I'(wp, T) is a geodesic segment. We will often use T'(w,7) = 0,;I'(w, ) and W(w, ) = 9, I'(w, 7).

Proposition 2.0.1. If a variation T is a variation through geodesics then its variation field J(T) obeys the
Jacobi equation:
D2J + D-S(J,%) + R(J,4)F = 0. (2.1)

Proof. Starting with a variation through geodesics, we have that
D, T =0. (2.2)

It can be shown (the proof in 23] is also valid in this case) that for a smooth vector field V' along

D.,D,V —D.D,V = R(W,T)V. (2.3)
Using this we find that
0 = DD, T
= D, D, W+ D, S(W,T)+ R(W,T)T, (2.4)
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where in the last line we have used that:

D,T - D, W =SW,T)+ [W,T] = SW,T). (2.5)

If we evaluate this at w = 0 we find that:
D?J 4+ D.S(J,%) + R(J,%)% = 0. (2.6)
O

The name Jacobi equation is usually given to the equation for vanishing torsion, but we will keep the
same name. It can be shown that if J(7) is a vector field along v that obeys Eq. (2.1]), there exists a variation
through geodesics with J as variation field [23].

Definition 2.0.2. A vector field J along a geodesic vy : [r, 7t] — M that satisfies the Jacobi equation
D2J + D-S(J,4) + R(J,4)§ =0 (2.7)
will be called a Jacobi field.

Notice that Eq. , when written in coordinates, is a linear system of second order differential equations.
Hence, we know that a unique solution is defined for all initial conditions J(7;) and D,J(7;) and therefore
the Jacobi fields form an eight dimensional subspace of 7 (), the vector fields along ~.

Using Eq. we also have that

D, W =-SW,T)+ D,T (2.8)
and evaluating at w = 0 yields
DTJ = 75(‘]7 ’Y) + vJjj|’LU:0 (29)
which in coordinates is equal to
(DTJ)p = 7SP;LV;YVJM + JMVILTP|U’:O
= (9°,4" + VuT’|u=0) J*. (2.10)

2.1 Timelike Geodesic

Assume now that +y is timelike. Let N(vy(7)) denote the 3 dimensional subspace of T',(,)M that consists of
vectors orthogonal to 4(7) and denote by P : T, M — N(v(7)) the projection onto this space. Let

N(y) = |N((r) (2.11)
denote the orthogonal bundle. We will now make the statement made in the beginning of this chapter about

geodesics that start converging again more precise.

Definition 2.1.1. If v is a timelike geodesic segment joining p, q € -, p is said to be conjugate to ¢ along ~y
if there exists a Jacobi field J along v with non-vanishing orthogonal part P(.J) such that P(.J) is zero at p
and gq.

If we now look at the Jacobi equation, Eq. (2.1]), we see that the component of the Jacobi field parallel to
4 has no influence on the components perpendicular to 4. That is why the projected Jacobi field also obeys
the equation

D?(PJ)+ D.PS(PJ,%) + R(PJ,%)% = 0. (2.12)
Let V be a vector field that lives in N(v) and obeys Eq. (2:12). Then

J=vV - / " g(S(V,A), A)dr' (2.13)

i
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is a Jacobi field with V' = PJ. That is why we will also refer to vector fields that live in N(v) and obey Eq.

(2.12) as Jacobi fields.

To simplify notation, we introduce

Sy(v) = 5 (v,9(1)). (2.14)
Let A: N(y) — N(v) be a smooth tensor field. Since g (R (v,%(7))%(7),%(7)) = 0 we can define maps
RyA: N(y(1)) = N(y(7)), PSyA: N(v(7)) = N(7(7)) by
RyA(T)(v) = Ry (A(7)(v)); (2.15)
PS,A()(v) = PIS, (A(r)(v))]. (2.16)
To study conjugate points we will introduce Jacobi tensors:

Definition 2.1.2. A smooth (1, 1) tensor field A: N(v) — N(v) is called a Jacobi tensor field if it satisfies

D2A + D, (PS,A)+R,A = 0, (2.17)
Ker(A(7)) NKer(D,;A(1)) = {0} (2.18)

for all 7 € [ry, 77]. Here Ker(A(r)) is the kernel of A(7).

If Ve N(y)\{0} is a parallel transported vector field along ~, i.e. D,V =0, and A(7) a Jacobi tensor
field, define J(7) = A(7)V (7). Substitution in Eq. (2.12) gives
D2(J(7)) + D, PS,(J(7),%) + R, (J(7),%)y = D;(D,;(A)V + AD,V) + D,(PS,A)V
+PS,AD.V + R,AV

= D2(A)V + D,(PS,A)V + R, AV

= (D2(A)+ D.(PS,A) + R,A)V

= 0. (2.19)
Hence J(7) is a Jacobi field. Condition (2.18) guarantees that J is non-trivial. Therefore A can be seen as
describing different families of geodesics at the same time. In the end we will define a Jacobi tensor field
that describes all solutions to Eq. that vanish at v(7;) to see under what conditions we have a conjugate

point to v(7;) but we first derive some more general theory for a Jacobi tensor field.
In a similar way as in Eq. (2.10) we can write for a Jacobi tensor field A that

DTAp)\ = (Spup,j/y + VNTp|w:0) AH)\- (220)

This T here is not well defined, it depends on which Jacobi field we consider. We will only use this equation
and the following analysis to motivate a definition, but we will not use it in the rest of the thesis. The tensor
A expresses how nearby geodesics change, for instance the separation of these curves from ~ and some sort
of volume that is marked out by nearby geodesics. The expression within the brackets,

Spuu;yu + VHTp|w:0a (221)
can therefore be seen as the rate these characteristics change. We have that

.y WA
S 4" + VT lu=o = D A%, (A71)° (2.22)

p
so that motivates the definition of the tensor

Ba=(D,A)A! (2.23)
at points where det A # 0. Then we can define the following quantities:
Definition 2.1.3. Let A be a Jacobi tensor field and B4 = (D, A) A~! at points where det A # 0
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1. The ezxpansion 04 is
= tl“(BA). (2.24)

2. The vorticity tensor wy is

1
wa=5(Ba— BY). (2.25)

3. The shear tensor o4 is

Oa ) (2.26)

1
o4 = §(BA+BL)— 3

where [ is the identity matrix.

Notice that
0
Ba :wA—FUA-i-?AI. (2.27)

Lemma 2.1.1. Singular points of a Jacobi tensor field A are precisely given by points where |0 4| — oo.

Proof. We find that

04 = tr((D,A) A7) = (det A) 'tr (D-A) adj(A)) = (det A)~F > (D, A) 5Cy, (2.28)

.3

where adj(A) is the adjungate of A and C;; is the (¢, j)th cofactor of A (Cramer’s rule). Now:

0. (det A) = Z 0- (€iy,...i,, Ariy A2y ... Ani,)

= Z [87— (A1i1) (61‘17___1'”1421'2...‘4”,'”) —+ ...+ 87- (Anin) (6,’17“_2‘”/111‘1 ~'~A(n—1)in,1)]

I
5
P
&
2

(2.29)

where €;, . ;, is the Levi-Civita symbol. Using an orthonormal parallel transported basis E; (i.e. g(E;, E;) =
d;;) for N(v) we find that

Or Aij = 0rg (A(Ej), Ei) = g (D-A) (E)), Ei) = (Dr A),; - (2.30)
With Egs. (2.28), (2.29) and (2.30) we get
04 = (det A)~10, (det A) (2.31)

and since det(A) does not depend on the coordinate system chosen, this holds in every coordinate system. We
approach a singular point of A exactly when det A will go to zero. The Jacobi tensor field A obeys Eq. ,
which is a system of linear differential equations in the components of A. This implies that A is well-defined as
long as the Riemann curvature tensor and torsion are well defined. Therefore we cannot have that 9, (det A)
blows up. This implies that when 64 blows up, we have a singular point. Since 84 = 9; (log(det A)) and
singular points of A should be isolated, we have a singular point exactly when |04] — oco. O

Proposition 2.1.1. The derivative of the expansion of a Jacobi tensor field A is given by

04 = —Ric(¥(7), (1)) —tr (D, (PS,)) —tr(PS,wa) —tr(PS,0.4) — %tr(PS,Y) —tr(w?y) —tr(c%) — %4. (2.32)
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Proof. Differentiating I = A~!'A we find that

0=D, (A HA+A D, A (2.33)
Hence
D;By = D (AA™")=(D?A)A™"' — (D, A) A" (D, A) A~
= —R,— D, (PS,A)A™" — B4Ba
= —R,— DT(PSW) — PS'yBA — BaBag, (2.34)
where we have used Eq. (2.17). Using Eq. (2.27) we then have that
04 = tr(D.By) (2.35)

= —tr(R,) — tr((PS;)") — tr(PS,Ba) — tr(BaBa)

= —tr(Ry) — tr (D,(PS,)) —tr [PS7 (wA +oa+ 95‘1)] —tr

04 \°
wA+0-A+?I

= —tr(R,) —tr (D (PS,)) — tr(PSywa) — tr(PS,04) — %tr(PS,Y) — tr(wi) — tr(azl) — @

3

because wy, 04 and wyo4 are traceless. Now choose an orthonormal basis E; = Ef@u of M (e.g.
g(E;, E;) = n;j) such that Ey = 4. Then

tr(R,) = Zg B, 3(1))i(7), i)

= 77”9( (E5 0, ¥(7))3(7), EY 0y)
= VB E} g(R(y, 4(m))i(r ) v)
WEME Rupp,/\’Y( )pW(T) (236)

where from the second equality sign onwards, we assume the Einstein convention (as usual). From g, E' EY =
15 it follows that Ef EY = 6%. This means that 8, = E., E; and implies g,,, = E, EJn;;. Hence n" El'EY = g
and

tr(Ry) = 0V B} B} Rypn(1)"4(7)* = BY, \3(r)*4(7)* = Rie(§(7), 4(7)). (2.37)
Substitution in Eq. (2.35) yields

2
A = —Ric(§(r),5(r)) —tr(D-(PS,)) —tr(PSywa) —tr(PS,o4) — %tr(PS,Y) —tr(w?) —tr(c%) — %4. (2.38)

O

When S = 0, this equation is called the Raychaudhuri equation or Ricatti equation. We will refer to Eq.
as the generalized Raychaudhuri equation. Notice that Eq. is slightly different from the expression
found in [24] because we have found the extra term —tr(D,(PS,)). That is because they considered an
expansion of V7, while we took into account the extra torsion term (see Eq. (2.22)).

To examine if there are conjugate points to v(7;) along v we Will construct a specific kind of Jacobi tensor
field that describes all Jacobi fields that live in N(v), obey Eq. and vanish at (7). Let us again
introduce a parallel transported orthonormal frame {E,}, p =0, 1, 2 3 along ~ such that Ey = 4 (we can do
this because * is timelike). Let J;(7), i € {1,2,3}, be the Jacobi ﬁeld with J;(73) = 0 and D, J; (7',) = E;(n).
Let A be the tensor such that the components in the basis E,are given by

AR () = (PJ(7); (2.39)

for k, 1 =1,2,3.
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Lemma 2.1.2. The tensor field A as constructed in Eq. is a Jacobi tensor field and a point (o) is
conjugate to ~(t; ) if and only if |64 — oo for T — 1.

Proof. From the way this tensor is constructed, it is clear that it represents a tensor field on N(v). It also
describes all Jacobi fields that live in N(v), obey Eq. and vanish at v(7;) since solutions of Eq. (2.12))
are uniquely determined once we know the V() and D,V (1) of a solution V' at v(n;). If we let v € N(y(7))
for a 7 € [n, 7¢] and expand v to a parallel vector field V' along « such that V(7) = v, we have that

(DZA+ D.(PS,A) + R,A) (V) = D2(AV) + D-(PS,AV) + R,AV =0 (2.40)

since AV is a Jacobi field. Suppose now that v € Ker(A(r)) N Ker(D,;A(7)) for some 7 € [ry,7]. Again
expanding it to a parallel vector field V' such that V(7) = v, we find that J = AV is a Jacobi field such that
J(1t) = D;J(7) = 0 and this implies that J = 0 which is impossible for v # 0 since the column vectors of
A describe linearly independent Jacobi fields so we cannot have that J = A\*J; = 0 when not all \? vanish.
Hence A is a Jacobi tensor. Notice that we also have that A(r;) = 0. The span of the columns of this matrix
forms the three dimensional subspace of Jacobi fields that vanish at v(7;). This means that if v(7p) for some
70 € [n,7t] is conjugate to (7)) along ~y, that A(7p) has to be singular. Suppose now that A(rp)v = 0 for
some 79 € [13,7¢), v € N(y(70)), v # 0. Let V be the unique parallel vector field along ~ such that V(7y) = v,
then J(7) = A(7)V(7) is a non-trivial Jacobi field that vanishes at 7; and (7). So points conjugate to ()
are exactly the points along v(7) where det(A(7)) = 0 and we have seen that those points are precisely the
points where |64| — oc. O

Totally Anti-Symmetric Torsion

From now on in this chapter and in Chapterwe will assume a totally anti-symmetric torsion (the other parts
of expansion vanish): in coordinates we assume S,,, = —S,,,. We already had that S,,, = —S,.,
which implies that PS, = S, or g(S(V,4(7)),¥(7)) = 0 for all vectors V' € T'yM. More generally, we have
that g(S(V,W),W) =0 for all vectors V,W € T’,;yM. Therefore

2g(J,4) = g(D2J,4) = —g(D+S(J,4),7) — g(R(J, %)%, %) = —0-9(S(J,%),7) = 0, (2.41)

where we have used the Jacobi Equation. That implies that if g(J,+) = 0 for two points on ~, it vanishes for
all points on ~. This happens in particular for the Jacobi field related to conjugate points, so those Jacobi
fields have to live in N(v).

For a totally anti-symmetric torsion we also have that

9(SyV, W) = gagp (Sﬂ/)a# VWS = — (Sy) /Lﬁvﬂwﬁ =g(V,=S,W) (2.42)
for arbitrary vectors V, W, which proves that
=-5,. (2.43)
Now let X be a tensor field along ~, then

g|(D:X)V,W] = ¢g[D,(XV)—-X (D, V), W]

2-9(V, XTW) — g(XV, D, W) — g(D,V, XTW)
= —g(XV,D,W)+g|[V,D. (X'W)]
= —g[V.X"(D:W)] + ¢ [V, (D XT) W] +g [V, X" (D-W)]
= g [V, (D-x")y W], (2.44)

which implies that .

(D.X)" = (D, XT). (2.45)
This also implies that D, S, is anti-symmetric. Using that and the anti-symmetry of S,, we find that S,
D, S, and Syo are traceless such that Eq. (2.32) reduces to

04 = —Ric(¥(7), 7(1)) — tr(S,wa) — tr(w?) — tr(o?) — %‘- (2.46)
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Lemma 2.1.3. The vorticity tensor of a Jacobi tensor field A that vanishes at v(7;) is

wa = fésv. (2.47)
Proof. Define the Wronskian of A by
W(A,A) = (D,A)'A—A'D A (2.48)
The time derivative of the Wronskian along ~ is given by

D,W(A,A) = D, [(DTA)T} A— ATD2A. (2.49)

Using property Eq. for X = D, A, Eq. reduces to
D.W(A,A) = (D24)" A - 4iD?4
= (=D,(S,A) — R,A)TA + AT(D, (S, A) + R, A), (2.50)
where we have used Eq. (PS, =5S,). Again with Eq. we find that
D.W(A,A) = —D.(S,A)'A— ATRIA+ ATD_(S,A) + ATR, A
= D.(A'S,)A+ A'D,(S,A) + A" (R, — Rl) A
D-(A")S, A+ A'S, D, A+2ATD,(S,)A+ A" (R, — R!) A. (2.51)

We will now examine R, — Rl;. We have that
(R,)’, = R\, 7" (2.52)

Writing
0, = {0+ s, (2.53)

(sI'f, is a tensor) and denoting the components of the curvature tensor that correspond to the vanishing

torsion case by R” e We find that

R = 0100} +sT0) + ({03 + 5T ) (1053 +T0s) = 8 (10} + 5T
— ({03 +sTin) (1} + sT25)
= R+ (OusTo0 + s bsTin = {adsT0s) = (BusThn + {LatsTin — {0a}sThs )
+sTh\sT0 5 — sTh sI'0
= RPAW + VyusThy + {5V}SFZA - Vvsrfm - {fu}sF’éA + Srf,\srﬁﬁ - SFS,\Srﬁﬁ
= RPAW + VusT)y = VusThy + SFE,\Sr,% - SFﬁASsz/,B' (2.54)

Using that for totally anti-symmetric torsion (Eq. (L.15))

1
SFﬁV = 55'0;“/7 (2.55)
we find
(pru = Rp)\;w"Y)\';/y
PP 1 p L s p s ALV

= R v T ivys M)‘+ZS N/\S Bv Y. (256)

This implies that

v 1 1

Ry=Ry— 3 (DTS)W + ZS’YS’Y' (2.57)
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We have that

D [S’Y(V)} - S’Y(DTV)
(D28, (V), (2.59)

where we have used that 7 is a geodesic. So
g 1 1
R, =R, - §DTS,Y + ZS,YS,Y (2.59)
and
P B pt ] 1 t 1 Lgigt
R,—R} = R,—-R] — §DTS7 + 5 (D:Sy)" + ZSVSW - ZSVS’Y
= —-D.S,, (2.60)
where we used that (DTSA,)T = D,SI = —D.S,. Substitution in Eq. 1} yields
D,W(A,A) = D,(A")S,A+ A'S. D, A+2ATD,(S,)A— ATD,(S,)A
= D, (A")S, A+ ATS, D, A+ ATD,(S,)A
= D,(A'S,A). (2.61)
Considering this as a matrix equation (working in components), we have that

0- (W(A,A)— ATS, A)" = —4°Th, (W(A, A) — ATSVA)AV +4°T, (W(A, A) — ATS, A)" | (2.62)

and at 7, (W(A,A)— ATS’A,A)MV =0 since A(r;) = 0. This is a linear system of first-order ODEs for the

functions (W(A,A) — ATS,YA) “U. Such a system has a unique solution and that implies that Eq. 1) is
uniquely solved by

(W(A,A) - ATS,4)" =0 (2.63)
and if this holds for one set of components, it should hold for the tensor. Hence
A'D,A = (D.A)" A-AtS A (2.64)
or
By = (D,A)A7!

(
= (AN (D)t -,
(A_l)T (D-A)" -8,
= Bl -8, (2.65)
where we have used that (A_l)T Al = (AA_l)Jr =1, so (AT)_1 = (A_l)T. Hence

1 1
wpa = i(BA—BL)Z—is,Y (266)

This implies that Eq. (2.46) for the Jacobi tensor field A constructed in Eq. reduces to
A . . . 1 2 2 9?4
04 = —Ric(¥(7),¥(7)) + Etr(Sn/) —tr(o%) — 3
Proposition 2.1.2. Letv: R — M be a timelike geodesic and let p = v(1p) for a 7o € R, let A be the Jacobi

tensor field, constructed as in Eq. such that A(to) = 0. If for some 71 > 70 the expansion 04(m1) <0
and if Ric(%,%) — itr(S,Qy) >0 for all T > 11, there will be a point conjugate to p along v between (1) and

(T — gA?ﬁ))-

(2.67)
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Proof. Since o4 is symmetric, tr(c%) > 0. So we find that all the terms at the right-hand side of Eq. (2.67)
are smaller or equal to zero such that we have

. 92
04 < —?A. (2.68)
Integration of this inequality yields that for 7 > 74:
3
04 < (2.69)

T_(Tl_%)’

hence, 4 will become infinite fora 7, < 79 < 1 — % and using lemma , this implies that there is a
conjugate point to p at y(7p)- O

Proposition 2.1.3. Let v: R — M be a timelike geodesic. If Ric(¥,7) — itr(S’%) > 0 for all T and if at
some point r = v(11), ]337 # 0, there will be points p = (1) and ¢ = (7)), 79 # T2, conjugate along .

Proof. A Jacobi tensor field A is uniquely defined once we know A(7) and D, A(7;). Consider the set
P = {A| A Jacobi tensor field with A(r;) = I, D, A(ry) — (D, A) (1) = —Sy(m) and 64(m) < 0}. (2.70)

Suppose A € P, at y(71):
W(A,A) — AtS A= (D, A —D,A- 5, =0. (2.71)

Then it follows in the same way as in lemma [2.1.3] that
1
wa = =55 (2.72)

This implies that 64 obeys Eq. (2.67). If 64(r1) < 0, it follows in the same way as in proposition [2.1.2]
that 04 — —oo for some 71 < 7 < 71 — %. If 04(m1) = 0, we see from Eq. 1} that 04(m) < 0
for all 7 > 71. When 04(73) < 0 for some 75 > 71, then again it can be proven that 4 — —oo for some

T3 < T < T3 — %. Suppose now that 4(7) = 0 for all 7 > 1. Then f4(7) = 0 for all 7 > 7;. From Eq.

(2.67) it follows that tr(c%) = 0 for all 7 > 7. Since o4 is symmetric, this implies that o4 = 0 for all 7 > 7.
Hence By = wy = f%Sﬁy for all 7 > 7. With Eq. 1} we then have that

R, = —D,;Ba—D,;S, —S,Bs— BaBs=0
1 1
= —5D-8y + Zsﬁ (2.73)

for all 7 > 7 contradicting }v{W =+ 0 (see Eq. . This proves that to every A € P we can associate the first
point on y where it becomes singular. If we start at a point 75 > 71 the Jacobi tensor field A as constructed
in Eq. such that A(72) = 0 will have vorticity ws = —15,. The Jacobi tensor C(7) = A(1)A™! (1)
will then have C(71) = I and at 7y

D,C - (D,C)' = (D,A) A~ — (A1 (D, 4)f

B, — B,

20.),4

S (2.74)

The tensor C' is in P, but obviously C' and A are singular at the same points. We can now finish the proof
by following the reasoning in proposition 4.4.2 of [3] working with the space of matrices D, A(71) such that
D, A(m1) — (DA () = =S, (n). O
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2.2 Spacelike Surface

Let H be a smooth submanifold of M and i : H — M be the inclusion map. We can consider T'H as subspace
of TM by identifying TH with i,TH. We can also identify i*¢ and g restricted to i, TH.

Definition 2.2.1. A submanifold H of M is said to be nondegenerate if for each p € H and nonzerov € T, H,
there exists a w € T,H such that g(v,w) # 0.

Definition 2.2.2. A nondegenerate submanifold H of M is said to be spacelike if g| T,H x T,H is positive
definite for each p € H.

Nondegeneracy of a manifold implies that we can define
T, H ={veT,M|g(v,w)=0foralwe T,H} (2.75)
such that T;-H NT,H = {0}. We may define the second fundamental form as follows.

Definition 2.2.3. Let H be a nondegenerate submanifold of M. Then the second fundamental form
Xt T, H x T,H x T,H - R (2.76)

is defined by
X(n,w7y) = g(vXY|Pan)> (277)

where X, Y are local extensions of x,y.

Note that VxY|, only depends on value X(p) = x, so the value of the second fundamental form is
independent of the local extension X of x. Furthermore, we have that when X,Y € T,H then [X,Y] € T, H
which implies that

X(na €z, y) = g(VXY‘IH n) = g(S(x, y)’ Tl) + X(n7 Y, x) (278)

Hence, the value of the second fundamental form is also independent of the local extension Y of y.

Definition 2.2.4. Let H be a nondegenerate submanifold of M. Then the second fundamental form operator
L, : T,H — T,H is defined by g(L,z,y) = x(n,z,y) for all z,y € T,H.

The second fundamental form operator may be constructed using a basis of T, H and the linearity of x.
Consider a spacelike hypersurface H and let n denote its unit timelike normal vector field, i.e. g(n,n) =
—1. n defines a tensor field L,, and it can be proven [22] that

Ly(x) =—=Vyn (2.79)

(the only property of the connection used in the proof is metric compatibility). The collection of unit speed
geodesics such that 4(0) = n (in this section 7 = 0 corresponds to the geodesic at the spacelike hypersurface)
determines a congruence of timelike geodesics normal to H. Let v be a geodesic of this congruence and let
I" be a one-parameter family of this congruence such that I' is a variation of v. Let J denote the variation
vector field of this variation along . Then J is a Jacobi field and J(0) is a vector tangent to H which implies
that J satisfies the initial condition

D.J0)=S5(,J)+ (Vn) |7(0) =S, J) = LpJ. (2.80)
This implies that we can define a conjugate point to a spacelike surface as follows.

Definition 2.2.5. Let v be a timelike geodesic which is orthogonal to a spacelike three-surface H. A point
q is said to be conjugate to H along ~ if there exists a non-vanishing Jacobi vector field J along ~ such that
J is orthogonal to 7, J vanishes at ¢ and satisfies D,J = S(¥,J) — L, J at H.
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From the definition of conjugate points to a surface it follows that to study these kind of conjugate points
we can, similar to the case of a conjugate point to a point, work with a parallel orthonormal frame F,, along
~ such that Fy = 4. Let now J; be the Jacobi field such that J; = E; at H and that satisfies Eq. at
H. Let A be the tensor field that in this basis has the components

AR(r) = (D) (2.81)
A% = AFg = A% = o,

for k,1=1,2,3.

Lemma 2.2.1. The tensor field A as constructed in Eq. is a Jacobi tensor field and a point (7o) is
conjugate to H if and only if |04] — oo for 7 — 79.

Proof. Tt follows in the same way as in lemma [2.1.2] that A is a Jacobi tensor field. We also have that
[D;A(0)] (E;) = D J;(0) = S(¥,J;) — LpJ; = —S,AE; — L, AE;, hence D;A(0) = —S, — L,,. Every Jacobi
field J which is orthogonal to 4 and obeys Eq. can then be expressed as AV where V is a parallel
vector field along v such that V' is orthogonal to 4. Therefore it follows that the points on ~y conjugate to H
will be given by the singular points of A. As before A will be singular if and only if | 4| becomes infinite. [

Lemma 2.2.2. The vorticity tensor of the Jacobi tensor field A constructed in Eq. 18
1
wa = —557. (2.82)

Proof. Using Eq. (2.78) we find that:

9(Lnz,y) = x(n,z,y)

9(S(z,y), %) + 9(Lny, )

= Sz 3" + g(Lny, )

= Sy + g(Lny, )

9(Syy, ) + 9(Lny, x). (2.83)

Thus L}, = S, + L,, which implies that at 7 = 0 (the spacelike hypersurface)

W(A,A) —AtS A = (D,A)'A— A'D,A— ATS A
(=S, — L)' +8,+L,—-5,
=S, —Lh+L,

=0 (2.84)

such that in the same way as in lemma [2.1.3| we can derive that
1
wa = 7557. (2.85)

O

By the previous two lemmas it follows that the derivative of the expansion related to the Jacobi tensor

field (2.81)) also obeys Eq. (2.67).

Proposition 2.2.1. Let H be a spacelike hypersurface and let v : R — M be a timelike geodesic, such that
7(0) € H and v is orthogonal to H. If —tr(Ls ) < 0 and Ric(7,¥) — itr(Sﬁ) >0 for all 7 > 0 there will be
a point conjugate to H along v between v(0) and 7(—%).

Proof. This can be proven as in proposition using the Jacobi tensor field A defined in (2.81)), realizing
that at v(0), 04 = —tr(Ls()) < 0 and using lemma [2.2.1 O
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2.3 Null Geodesic

We would like to also define conjugate points for a null geodesic 7 : [r, 7¢] — M. Since we consider totally
anti-symmetric torsion it can be seen from Eq. that Jacobi fields that vanish at two points along
have to live in N (7). Notice that for a null geodesic we also have that 4 € N(v), so since we will be interested
in the convergence of geodesics, it makes more sense to look at the projection of Jacobi fields to a quotient
space formed by identifying vectors that differ by a multiple of 4. This idea is implicitly used in [3] and
further developed in [25].

We start defining a pseudo-orthonormal basis for the tangent space at every point. Let Ey(r) = 4 and
Ei(1i) = n € Ty(-,)M be a null tangent vector such that g(n,¥(r;)) = —1. Choose spacelike tangent vectors
Ey, B3 € T, (7,yM such that g(n, E;) = g(¥(n1), £;) = 0 for j = 1,2 and g(E;, E;) = 6;;. Extend these vectors
to a parallel transported vector field along v and define

N1 (y(1)) = {\2Ex(7) + N E3(7)| N € R} (2.86)

Then N (y(7)) C N(y(7)) and consists of spacelike vectors. We have the direct sum decomposition

N((1)) = NL(v(7)) @ [¥(7)] (2.87)
for all T € [ry, ¢, where
[y(7)] = {M(7)|A € R}. (2.88)
Define now the bundle
Ni(y= | ] Ni(v(7). (2.89)

Obviously [¥(7)] is a vector subspace of N(v(7)), so we can define the quotient vector space

G(y(1)) = N(v(7))/[7(7)] (2.90)
and the quotient bundle
G =Nm/= || Ghr). (2.91)
Define the projection map o
m: N(v(1)) = G(y(7)) v— v+ [¥(7)] (2.92)

We can see N (7(7)) as the geometric realization of G(v(7)) via the isomorphism

¢: NL(Y(7) = G(y(r) v v+ (7)) (2.93)

The inverse ¢! of this map is constructed as follows. Given v € G(y(7)) choose an x € N(v(7)) such that
7(z) = v. Decompose x uniquely as x = x1 + Ay(7), where 1 € N (y(7)). We define ¢~1(v) = 7.

We will project the metric, covariant derivative, curvature tensor and torsion tensor to G(y(7)). Given
v,w € G(y(7)), let x,y € N(v(7)) be such that 7(z) = v, 7(y) = w. We define the projected metric by

g(v,w) = g(z,y). (2.94)

This is well-defined, because x,y are orthogonal to 7.
If we let () denote the piecewise smooth sections of G(v) and T (v) the piecewise smooth sections of
N(v), we can given V € Q(y) find a V € T () such that V = w(V). Define

D.V =m(D,V). (2.95)

Let Vi € T1(7) be such that we also have that 7(Vy) = V, hence V; = V + f+ for some smooth function
f: [n, %] = R and we get that DV} = D,V + f’y This implies that D,V is well defined. This covariant
derivative on (7) is also compatible with the metric g and has all the usual properties of a covariant
derivative. It can also be shown that for V € Q(y)

D,,.(;Sil(‘?) = d)il(D'rV)? (296)
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hence, covariant differentiation in G(v) and N (v) are the same.
We define the curvature endomorphism R, : G(v(7)) = G(v(7)) by

v Ry(v) = 7[Ry ()] (2.97)

where & € N(y(7)) such that v = w(x). This does not depend on the particular = we choose.
If we let v,w € G(y(7)), «,y € N(v(7)) such that v = 7w(x), w = w(y). Then

9(R,(v),w) = g(Ry(2),y). (2.98)
We define the torsion tensor S, : G(v(7)) = G(y(7)) by
v S, (v) =79, (2)] (2.99)
which also does not depend on the particular © € N(v(7)) we choose such that v = m(x). Notice that

g[Sy (v),w] = g
9

|

|
<
&
S

w)], (2.100)

SO (Sﬁy)T =-5,.
Definition 2.3.1. A smooth section J € Q(7y) is a Jacobi class in G(v) if J satisfies the Jacobi equation
D2J + D,S,(J)+ R, (J) = [4]. (2.101)

It can be shown (i.e. [22]) that given a Jacobi class J € §(v), there is a two-parameter class of Jacobi
fields Jy,, = J+ Ay +ury € Ti(7), A\, i € R, such that J = w(Jy ). It is not always the case that there lives
a Jacobi field J in N (y(7)) such that J = 7 (J). We will prove the following useful lemma (generalizing the
proof from [22]).

Lemma 2.3.1. Let J € Q(y) be a Jacobi class such that J(r;) = [y(71)], J(t) = [¥(71)]. Then there is a
unique Jacobi field J € T, () such that J =w(J) and J(1) = J(7r) = 0.

Proof. There exists a Jacobi field Y € T, (y) such that J = n(Y). Then Y (1) = c179(n), Y (1) = c29(7r)
with constants c1, co. Define X = (cori — c17¢) (s — 1) ~! and p = 77! [(c17¢ — com) (76 — 75) ™1 — ¢2]. The
vector field J =Y + Ay + ury € T1(y) is also a Jacobi field with 7(J) = J and it has J(r;) = J(1¢) = 0.
Suppose now that we have two Jacobi fields Jy, Jo € T, (y) with Ji(5) = Ji(7¢) = Jo(13) = Jo(1r) = 0 and
such that 7(J;) = 7(J2) = J. X = J; — Jo is a Jacobi field with 7(X) = [¥], which implies that X = f(7)7.
We have that B

0=D2X + D, S(X,%) + R(X,%)y = f, (2.102)

hence, using f(n) = f(7x) =0, f = 0. Therefore J; = Js. O
Using this lemma we can now make the following definition.

Definition 2.3.2. Let v : [r;, 7t] — M be a null geodesic. Let p = y(71), ¢ =y(r2) for 7 <7y <7 <73, piis
said to be conjugate to g along ~ if there exists a Jacobi class J € Q(v) such that J # [¥] and J(71) = [¥(71)],

J(r2) = [§(72)]-
Definition 2.3.3. A smooth tensor field A : G(v) — G(v) is said to be a Jacobi tensor field if
D?A+ D.S,A+RA = 0
Ker(A(7)) NKer(D, A(7)) = {0} (2.103)

for all 7.
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We can define B = (DTA) A~1 and define the expansion, vorticity tensor and shear tensor:

0z = tr(Ba);
R D
©p = 5(Ba—Bh); (2.104)

_ 1 = i
oi = 5(Bat BY) - f,
where there is a 2 in the definition of the shear tensor because G((7)) is two dimensional for all 7.

Proposition 2.3.1. The derivative of the expansion of a Jacobi tensor field A is given by

-
0-05 = —Ric(¥,%) — tr(S,04) — tr(@%) — tr(6%) — ?A (2.105)
Proof. Just as in the timelike case, we obtain D,B; = —R, — D;S, — S,B — BB and this leads to
] ) _ o o 04 ¢ ,2 PN
0-04 = —tr(R,) — tr(D;S,) — tr(Sywz) — tr(S,07) — ?tr(Sy) —tr(wi) — tr(03) — > (2.106)
which gives, using that S, is anti-symmetric
_ _ _ 62
0:-04 = —tr(R,) — tr(Sywy) — tr(@%) — tr(c%) — ?A. (2.107)

Let E; be an orthonormal basis for N (v) at every point of 7, ¢ € {2,3}. Expand this basis with Ey and E;
to an orthonormal basis along v, where Fj is a timelike vector and 4 = (Fy + F;)/v/2. Then

g (Ry(Ev), E1) — g(Ry(Eo), Eo) = g(R(E1,7)Y,E1) — g (R(Eo, %)Y, Eo)
= %9 (R(E1, Eo)Eo, E1) — %9 (R(Eo, Er)EL, Ey)
=0 (2.108)

where we used the anti-symmetry of the curvature tensor (to prove this property one only needs metric
compatibility). Hence

3
tr(Rv) = Zg(Rw(Ez)vEl)

3
= 29 (R, (E), Ei)
=2

3

= Z 9(Es, Ej)g (R’y(E’L')7 E;)
i,j=0

= nVELE} g (R(8,,7)%,0,)
— Ric(4,9), (2.109)

where the last step follows as in the timelike case. Substitution in Eq. (2.107) yields

_ _ 92
0-05 = —Ric(4,%) — tr(Sywg) — tr(@%) — tr(5%) — 71“ (2.110)
This is the generalized Raychaudhuri equation for null geodesics and totally anti-symmetric torsion. O

We will now construct a Jacobi tensor field A just as we did in the timelike case. Let E; = 7(E;) for
i = 2,3 be the projected basis vectors of the geometric realization of G(v). Let J; for i = 2,3 be the Jacobi
class in G(v) with J;(n) = [§(r)] and D, J;(7;) = E;(r;). Then the tensor that in this basis has components

Ak = ()" (2.111)
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for [,k = 2,3 is a Jacobi tensor field along 7. A point along v will be conjugate to v(7;) along v if and only
if A is singular there which happens precisely when |§| — co. In the same way as for the timelike case, we

can show that )
0= —55*7, (2.112)

such that Eq. (2.110) reduces to

N THpre _
0-0 1 = —Ric(V,7) + Ztr(Sz) —tr(6%) —

ro [

(2.113)

Expanding now the orthonormal basis E2, E3 of N, (v) with Fy and E; to an orthonormal basis along ~,
where Ej is a timelike vector and 4 = (Ey + E;)/v2. Then

1 1
o [$3(E0). Fo] +0 [0 1] = =[S, (S(Bo. B1)). o] + 750 15, (S(Er. Eo)). E]
= —g [SW(S(Eb?El))?’Y]
_ (2.114)
Hence
— 3 — — —
tr(S§> = §(S$(Ez)7Ez>
=2
3
= 29(53(E2)7E2)
i=2
3
= Y 9(Ei, E)g(S5(E), E;)
4,5=0
= nijEé‘Eéig(Si(Bu),ﬁy)
= ¢ (53),,
— (2.115)
Thus we find that Eq. (2.113) becomes
i 1 &
0,05 = —Ric(3,4) + Jtx(S]) — tx(6%) — 5. (2.116)

Proposition 2.3.2. Let v : R — M be a null geodesic, and let p = v(10). Let A the Jacobi tensor field
constructed as in Eq. (2.111)) such that A(ro) = 0. If for some 7 > 7¢ the expansion 0;(m1) = 61 < 0 and
if Ric(4,%) — itr(Sg) > 0 for all 7 > 71, there will be a point conjugate to p along v between v(71) and

v = F)
Proof. This can be proven as in proposition using Eq. (2.116]). O

Proposition 2.3.3. Let v: R — M be a null geodesic. If Ric(%,7) — itr(S%) > 0 for all T and if at some
point r = v(11) R, # 0, there will be points p = (7o), ¢ = v(12) 7o # T2 conjugate along .

Proof. This can be proven as in proposition 2.1.3] O

2.4 Spacelike Two-Surface

We also like to consider conjugate points to a spacelike two-surface P along a null geodesic that is orthogonal
to the surface. For a point p € P g restricted to T;-P is a 2-dimensional Lorentz metric. Hence, there are two
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null vector fields n1, ny orthogonal to P. These two fields define tensor fields L,,, on P. Locally we can then
define a pseudo-orthonormal basis on P: Ey = ny, E1 = fns and E,, E3 chosen such that g(Ey, Eq) = —1,
9(Eo, E;) = g(E1,E;) = 0 and g(E;, Ej) = §;; for 4,5 = 2,3. The null vector fields Ey and E; give rise
to second fundamental form operators L, and Lg, which are (1,1) tensors that are locally defined on
P. If v: [r, 7] = M is a null geodesic such that ¥(r;) = Fo(y(7)) we can parallel transport the pseudo-
orthonormal basis to get such a frame along . The space normal to 4 will be spanned by Ey, E2 and E3. Just
as in the previous section we can introduce the quotient space G(v(7)) = N(v(7))/[%(7)] with corresponding
quotient bundle G(v). If 7 : N(y) — G(v) denotes the projection then 7|7, i : T,H — G(y(11)) where
p = (1) is a vector space isomorphism. Therefore we can project the second fundamental form operators
to operators Lg, by

Lp, =moLp,o[rlr,u] ' (2.117)

Let now I' be a one-parameter family of the null geodesics defined by the null vector field £y = n; such that
I' is a variation of . Let J be the variation vector field of this variation, then J is a Jacobi field.

Lemma 2.4.1. Let J be the variation vector field of the variation defined above. Then D.J(7i) = —Ls7)(J(71))—
S(J(1),%(m)) + Ay(m) for a A € R.

Proof. Since ¢g(T,T) = 0 we have that
0= W(g(T,T)) = 29(DuT,T) = 29(S(W.T), T) + 29(D, W, T) = 29(D, W, T). (2.118)

Hence, ¢g(D.J(71),%(r1)) = 0 and this implies that D,J(r) € N(v). Extend v € T,H to a vector field
V € TH along the curve w — I'(w,73). Then

9(Lsrpy(J(11)),0) = g(ViV]p, T(0,7))
= awg (‘/v T) - g(v, DwT‘(O,Ti))
= —g(v,S8(J,%)) — g(v, D; J(11)). (2.119)

This holds for every v € T,H so we must have that D.J(7)|1,u = —Ls(r)(J(71)) — S(J,7¥) and that proves
the lemma. 0

This implies that the Jacobi class J = 7(.J) satisfies the initial condition

D7 J (1) = =Ly (J(11)) = Sy (J (7)) (2.120)
and this motivates the following definition.

Definition 2.4.1. Let 7 : [r, 7t] — M be a null geodesic which is orthogonal to a spacelike two-surface P
and such that y(7;) € P. A point ¢ = y(72) is said to be conjugate to P if there exists a non-vanishing Jacobi
class J € Q(v) such that J vanishes at ¢ and

D-J (1) = —Lir) (J(11)) = S (J (1)) (2.121)

Proposition 2.4.1. Let P be a spacelike two-surface and let v : R — M be a null geodesic, such that
7(0) € P and v is orthogonal to P. If 61 = —tr(Ls ) < 0 and Ric(7,¥) — %tr(S?Y) >0 for all 7 > 0, there
will be a point conjugate to P along v between ~(0) and 7(—%).

Proof. This can be proven using similar reasoning as in Section [2.2] that leads to proposition [2:2.1 O
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Chapter 3

Variations of the Arc Length

In this chapter we will prove more propositions needed for the singularity theorems in Chapter[5] In particular
we will examine the length of non-spacelike curves, Eq. , and prove propositions related to this length.
Furthermore we will see under which conditions we have a timelike curve between points or between a surface
and a point. The propositions in this section have been proven in [3] for the case of vanishing torsion. We
will extend them to totally anti-symmetric torsion. However, in the propositions and proofs we will often not
directly reduce to this kind of torsion such that in Section [5.2] we can easily discuss the case of torsion that
is not totally anti-symmetric.

In this chapter we consider curves v that are piecewise smooth but may have a finite number of singular
points; we only require that the two tangent vectors 97 = lim4,, 4 and 9] = lim,,, ¥ at a singular point 7
satisfy g(0;,0}) = —1. From now on we also assume that whenever we have a convex normal neighborhood
U of a point p € M, the map exp, will be restricted to the neighborhood of the origin in 7),M that is
diffeomorphic to U.

Lemma 3.0.1. Let U be a convex normal coordinate neighborhood of p € M. Then the timelike geodesics
through p are orthogonal to the three-surfaces of constant o(q) = g(exp;lq, exp;lq) when o < 0.

Proof. Notice that a curve that is given by constant o is given by A(w) = exp, (70X (w)), where X (w) is
a curve in T, M such that g(X(w),X(w)) = —1 and 7y is a constant. So we have to show that timelike
geodesics through p are orthogonal to these curves, where these are defined. Geodesics through p are given
by v(7) = exp,(TX(wo)) where X (wp) is timelike. In terms of the surface a(w,7) = exp,(7X(w)) we need
to prove that

g (O, 07) = 0. (3.1)
Now
O-g (a‘ra aw) =49 (DTaT7 aw) +g (87-7 DTaw)
0
= 900,500+ (0 Dy )
or
= 2000 (0:.0,) = 0. (3.2)
So g(9-, 0y,) does not depend on 7. At 7 =0, d,, = 0 and that proves this lemma. O

Since no arguments need to be used that include torsion, we will not give the proof of the following
proposition [3].

Proposition 3.0.1. Let U be a conver normal coordinate neighborhood of p € M. The points that are
connected to p by timelike (non-spacelike) curves in U are those of the form exp,(X), X € T,M where
9(X,X) <0 (<0)

Corollary 3.0.1. Let U be a convex normal coordinate neighborhood of p € M. If ¢ € U can be reached from
p by a non-spacelike curve, but not by a timelike curve, then q lies on a null geodesic from p.
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In analogy with Eq. (1.20) the length of a non-spacelike curve 7 : [ry,7¢] — M such that y(r) = p,
~v(1r) = ¢ between points can be defined as

L(v,p,q) = /Tf [~g(3, )"/ dr, (3.3)

where the integral is taken over the differentiable sections of the curve. Again, since we do not have to
consider torsion, we will state the following proposition (proposition 4.5.3 from [3]) without proof:

Proposition 3.0.2. Let q, p € U C M where U is a convex normal neighborhood. If ¢ and p can be joined
by a non-spacelike curve in U, the longest such curve is the unique non-spacelike geodesic in U between ¢
and p. Furthermore, defining p(p,q) as the length of this curve if it exists and as zero otherwise, p(p,q) is a
continuous function on U x U.

So far we have only been looking at curves between points that lie in the same convex normal neighborhood.
We now also want to look at more general curves and see what conditions need to be satisfied by a longest
curve. We will do this using proper variations of a curve between two points.

Definition 3.0.1. Let « : [1i, 7¢] = M be a timelike curve such that (1) = p, ¥(7r) = ¢. A proper variation
of this curve is a smooth map I' : (—¢,¢€) X [r3, 7¢] = M such that:

o T(0,7) =~(7);

e there is a subdivision 7; = 7y < ... < 7, = 7¢ of [7, 7¢] such that I is smooth on (—e¢,€) x [r;, 7;41] for
all1 <i<n—1;

o I'(w,n) =p and I'(w, 7¥) = ¢
o I'(wp,7) is a timelike curve for each wy € (—¢,€).
As before, we define W = 9,,I', T'= 0,;I" and V = W (0, 7) is the variation vector field of T.

Given a vector field V along v such that V(ri) = V(7¢) = 0, I'(w, 7) = exp,(,)(wV (7)) for w € (—¢,¢) for
some € > 0 defines a proper variation of ~.

Lemma 3.0.2. Under a variation of a curve v : [, 7t] — M between p,q € M, the derivative of the length
of the curve is equal to:

fehoo = X [+ av ol 7 - 12 o par
F 0[], 5.4

where f(1) = [—9(7(7),1(7))]1/2 and g (V, [f715],) is the discontinuity at ;.
Proof. Define

flw, ) = [~g(T(w,7), T(w,7))]"/>. (3.5)
We get:
oL == o [T
n_yo / —g(1. 7))/ dr
i=1 Ti
n—1 Tit1
_ / g(DuT,T)f \dr
A
_— / G(SOW,T),T) + g(D, W, T)] fdr
i=1YTi
n=l ey
= -3 [ asov). 4 SLawr) - gw Do) 1 (36)
i=1"Ti
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Evaluating at w = 0 we get:

O e = —Z/ (S(Vi4).3) + -g(ViA) — a(V. Doy)| £
aw w=0 — vt A g Y)Y 879 > Y g\v, 7y
n—1 Tit1 ) . . ) f
- % [ raswan oo - 25w bar+ zg ) G)
i=1 77
]
We can choose the parameter 7 such that g(5,%) = —1 and Eq. reduces to
TL+1 n—1
O o ofzf ViALA) +9(Vi DA dr + 3 g (Vi) (38)
=2

When the torsion is totally anti-symmetric, we see from Eq. that the first derivative vanishes for
an (unbroken) geodesic «, for all other curves there exists a variation such that the derivative is larger than
zero. Hence, a longest curve necessarily needs to be a geodesic. We need to consider the second derivative
to be able to say more.

Definition 3.0.2. We define a two-parameter proper variation of v by a map I' : (—e€1,€1) X (—e€2,€2) X
[1i, %] = M such that:

e T'(0,0,7) = v(7);

e there is a subdivision 13 = 7 < ... < 7, = 7% of [ry, 7¢] such that T' is smooth on (—e€y,€1) X (—€a, €2) X
[Ti, Tig1] forall 1 <i<n-—1;

i F(wlaw277-i) =P and F(w17w277'f) =gq;
o I'(wy,ws,7) is a timelike curve for each wy € (—e€1,¢€1), wo € (—€2,€2).

We define Wy = 0, I, Wy = 9,,,I' and T = 9,T" and let Vi = W1(0,0,7), Vo = W2(0,0,7) be the variation
vector fields of T" along ~.

Given two vector fields V;, Vs along v such that Vi () = Vi(1¢) = Va(n) = Va(rs) = 0,7 = expv(T)(wﬂ/l(TH—
wa V(1)) is a proper variation of v such that the variation vectors fields are V; and V5.

Lemma 3.0.3. Under a two-parameter variation of the geodesic timelike curve 7 : [1,7¢] — M between
points p,q € M, the second derivative of the length is equal to

e Y | ml{ga@,Di Vit g0i )i + oV ROAADT (39)
i=1"Ti
n—1
+DTS(V1W))}dT - Zg (Va, [D- (Vi + g(Vi, 9)9)];) -

37



CHAPTER 3 VARIATIONS OF THE ARC LENGTH

Proof. Starting from Eq. (3.6) we find that

82L Ti+1 a »
N _Zé‘wl/ [ (W2, 7). T) + 5—-g(W2.T) = (W2, D T) | [~"dr

Owy0ws —
Z/THI 78 (S(Wo,T) 1)_*8 (Do, W T)—fa (Wa, Dy, T) + (Do, Wa, D, T)
N 1 T 311)19 2 ’ 87-9 w1 V2, (97'9 2y Pwy g\, Wo, Ur

+9(Wa, Dy, D-T) | f71 + f72

S |8V ). T) 4 LW ) = 9002, D7) }dT

n—1 Tit1
= Z / { [_ag(S(Wz,T%T) + g(Dy, Wo, D, T) + g(Wa, leDTT)} =

=1 awl
f*Qaif +f72 af
or

= [9(Du, W2, T) + g(Wa, Dy, T')] wr [g(S(W2,T),T) — g(Wa, D;T]

of of
or dwy

_y 0%f 3
- g(W27T)+2f g(W27T) dr
T Owq

OT0wy

n—2

+Z{ (Du Wa, [£77T,) + g (W2, [lewlT]i)_g(W% [f 2 01 })} (3.10)

w1

In the end we will look at w; = wy = 0, so we already know that some terms will go to zero, using that ~ is
a geodesic parametrized such that f = 1. Though it is mathematically not correct, we will obtain the same
result if we already remove these terms:

9L n-l orig
81016’(112 o ZE_:Z_

1 k2

_aig g(Wa, T }dr—i— Z{ (Wa, [Du, T1,) — (WQ, {;ZCTD} (3.11)

9f
8w1

g(S(W,T),T)

0
{_ (S(W27T)7T) + g(W27 Dw1D‘rT) +
(9’LU1

1

Calculating the derivative of f with respect to wy, we find that:

a%lf - a% —oTT) = _gfmg<leT7 T) = — {1 g(SOW1, T),T) + g(D- W1, 7)) (3.12)

We also have that
g(Wa,Dy, D, T) =g (W, RW1,T)T + D, D,,,T) =g (Wg, R(Wy,T)T + D.S(W1,T) + DEWl) . (3.13)
Using these results and using that the torsion is totally anti-symmetric, we find that

0?L
awl 8w2

= Z /j"z‘Jrl {g (W27 R(Wl,T)T + DTS(Wl,T) + DEWl) + g(Wg,T)aaTg(DTWhT)}dT
n—1
+Z{g Wa, [D:W1],) + g (Wa, [9(D, W1, T)T],)}
/‘I—iJrl {g (W27D72- [Wl + g(leT)T]) +g(W27R(W17T)T + DTS(WlaT))}dT

+ > g(Wa, [D;Wy + g(W1, T)TT,) . (3.14)
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Evaluating at w; = wy = 0 yields:

82
8101 8w2

et Z/{ (Vo D2V + (V3. )])+9(V2,R(Vm)ﬁ+DTS(VM))}dT

+ZQ Va, [Dr (Vi 4+ g(Vi, 9)9)]5) - (3.15)

O

We see that this formula only depends on the components of the variation vector fields perpendicular to
4. So this means we only have to consider variations with perpendicular variation vectors. Notice also that
by construction we must have that L(Vy,V2) = L(Va,V7) and that L is linear in both arguments.

Proposition 3.0.3. Let v : [r, %] = M be a timelike geodesic such that v(7i) = p, v(¢) = q. When there is
a conjugate point r = (1) (1, <11 < 7¢) to p along v there is a timelike curve between p and q that has a
larger length than ~.

Proof. Let J be the Jacobi field that vanishes at p and r. Extend it to 71 < 7 < 7% by putting it to 0. Define
the vector field K such that

g(K(m1),D;J(11)) = -1 (3.16)
and K is orthogonal to 7. Let
1
V=eK+ EJ’ (3.17)
where € is a constant. Notice that V' is orthogonal to 4. With Eq. (3.9) we find that
1
L(V,V) = €L(K,K) +2L(K,J) + 5 L(J, J). (3.18)
€
For the Jacobi field J we find that
L(J,J) = / {gu, D2J + D.S(J, %) + R(J, v)v)}dT+g<J, D)), _, (3.19)
0
= 0.

because of the Jacobi equation and J(7;) = 0. In the same way we find that

T1
L(K,J) = / { (K. D2J + D,S(J.4) + R(U.A) >}dr +g (K, [D),_,
0

= g(K(n),—D-J(n)) = 1. (3.20)

Hence
L(V,V) = EL(K,K) + 2, (3.21)
and by taking e small enough, L(V, V) will be positive, such that there exists a longer curve than v between
p and q. O

We would like to prove similar results for a curve 7 between a spacelike three-surface H and a point
q € M. For that we can use a one-parameter proper variation of v that is defined as before, except that
instead of T'(wp, ;) = p we require I'(wg, ;) € H. We can also use two-parameter proper variations of v that
are defined as before, except that instead of T'(wy, w2, 73) = p, we require I'(wy,ws, 73) € H.

Lemma 3.0.4. Under a one-parameter proper variation of a curve v : [1,7¢] — M between a spacelike
hypersurface H and a point g € M the derivative of the length is given by:

n—1

Z/{ VA A) + oV DA 1 g, )}dT+g(Vf D et S g (V[F74])

=2

(3.22)
where f(r) = [=g(3(7), 7(r)]"/*.
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Proof. This goes in a similar way as in lemma [3.0.2] O

Using a parametrization such that f = 1 and using that we consider totally anti-symmetric torsion, we
obtain:

Ti+1
e 0—2/ 9(V, DAY + g (V,4) | T,+Zg (3.23)

From this expression we can also conclude that a longest curve should necessarlly be an unbroken geodesic
curve orthogonal to H.

Lemma 3.0.5. Under a two-parameter proper variation of a geodesic 7y : |1, 7t] — M between a spacelike
hypersurface H and a point ¢ € M, where vy and the other geodesics of the variation are orthogonal to H, the
second derivative of the length is given by:

0%L
8w18w2

n—l 7
wi=0 = Z/ {Q[V%D?—(Vl + 9V, 9] + 9 (Va, D-S(V1,4) + R(V1,A) )}dT

+Zg Va, [Dr (Vi 4+ g(Vi, 9)V)];) - (3.24)

Proof. Starting from the result of lemma we see that with respect to the result of lemma [3.0.3] we get
the extra terms
-1 —1 2 a.f
g (Dw1W27 f T) lr=ri +9 (WQa / leT) lr=r — Wa, wl lr=r, =
g (DUHWQ’ fﬁlT) |7'=Ti + g (W2a fﬁlD’wlT) |‘f'=7'i =+ f73g (leT, T) g (W27T) |T=Ti =
fﬁlleg (W2, T) | =7, + g (D, T,T) g (W2, T) [r=r, (3.25)

Now the variation is such that at 7 = 3 W3 lies in H, so g(W2,T) = 0 and that implies that these terms are
zero. Hence:

0?L
8w1 8w2

- Z/{ Vo, D2 (Vi + Vi, 4)7)] + 9 (Vo D S(VA,3 >+R<v1,v>w}df

+Zg Va, [Dr (Vi 4+ g(Vi, 9)9)];) - (3.26)

O

Proposition 3.0.4. Let vy : [1y,7¢] = M be a timelike geodesic from a spacelike hypersurface H to a point q
(i.e. v(1i) € H, v(1t) = q, 7(n) orthogonal to H). When there is a conjugate point r = y(11) (11 < 71 < T¢)
to H along ~y, there is a timelike curve between H and q that has a larger length than ~y.

Proof. This follows in the same way as in proposition [3.0.3} using Eq. (3.24)). O

We are now interested in what conditions need to be satisfied in order to have a timelike curve between
points in spacetime. So suppose that p,¢ € M and that we have a non-spacelike curve 7 : [y, 7¢] = M such
that v(7;) = p and y(7t) = ¢. We want to know when it is possible to find a one-parameter proper variation
['(w, 7) of v such that g(T,T) becomes negative everywhere, hence yields a timelike curve from p to g. With
a variation I' we get that

Owg(T,T) = 29(D,T,T)
29(S(W,T),T) +29(D-W,T)
Evaluating in w = 0 gives
Owg(T,T)|w=0 = 29(S(V.¥),7) + 20:9(V, ) — 29(V, D). (3.28)
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Proposition 3.0.5. Let p,q € M and let v : [n,77] = M be a non-spacelike curve which is not a null
geodesic curve such that (1) = p, v(7r) = q, then p and q can also be joined by a timelike curve.

Proof. If v is not a timelike curve, it must have some parts where it is a null curve. The set U C [r, 7¢] where
~ is null is a closed set, so without loss of generality we can assume 7 to be a null curve. If 7 is not a null
geodesic curve, it either has a singular point or there must be an open interval where D, is non-zero and
not parallel to 7. Consider first the second case. We then have that

9(D4,3) = 50- (9(3,4)) = 0. (329)

This implies that D,~ is a spacelike vector field at points where it is non-zero and not parallel to . We can
also define a vector field X € T () such that g(X,5) < 0. Define now the following functions along ~:

hi(t) = g(Dr7, DrY); (3.30)
hao(r) = —9(X,7); (3.31)
hs(t) = g9(X, Dr¥); (3.32)
ha(t) = g(S(D79,%),%); (3.33)
hs(m) = g(S(X,%),9) (3.34)
T o1
holr) = [ o (hal) = b)) . (3.35)
Let I" be the variation of v with variation vector
V = fiX + f2D,%, (3.36)
where -
A0 = o [ e Bl = () b (3.37)
and fy is an arbitrary function on [r, 7¢] with fo(7) = f2(7¢) = 0 and such that
fl(Tf) = h2(17_f)eh6(7'f) /Tf e—hs(T') (l + fQ(T’)]M(T/) _ fQ(T')hl(T/)) dr’ = 0. (3.38)

This only does not work when hy(7) — hyi(7) = 0 for all 7 € [r,7¢]. For a totally anti-symmetric torsion
ha(T) — hi(7) = —hi(7) < 0. Because of condition Eq. (3.38)), fi(7i) = fi(7r) = 0. We now have that:

= —fiha — f10:h
. 1
= —hefihs — hjeh%_hﬁ (1 + foha — fah1) ha

= —hefiha — 1 — fohy + fohy
= h3fi —hsf1 —1— foha + fohi. (3.39)

So using Eq. (3.28) we get:

L 0wg(T. T)luo = 9g(S(ViA).4) + 0rg(Vi4) — 9(V. D)

2
= fihs + faha +0:9(V,5) — fihs — fahu
= -1, (3.40)

which is exactly what we wanted.

Suppose now that 4 is continuous on segments [, 7;11] where 1 <i<n—land 7 =7, 7, =7 If a
segment [7;,7;+1] is not a null geodesic curve, it can be varied to give a timelike curve between the points
~v(1;) and y(7;41). So we only have left to show that if v is a curve that is geodesic on segments [7;, T;41],
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we can obtain a timelike curve between p and q. The parameter 7 can be taken such that D,¥ = 0 on each
segment [7;,7;4+1]. Since the discontinuity 9} — 07 at singular points is a spacelike vector, one can find a
vector field X along [7;—1,711] such that g(X,%) <0 on [r;,_1, 7] and g(X,%) > 0 on [r;, Ts41]. Define

T 1
h7i(1) = / mh5(7'/)d7" Ti-1 ST < Tiq1 (3.41)

Let g~ = g(X,07) < 0 and g" = g(X,0}) > 0. Let then I' denote the variation with variation vector
V = f1X where

f ;%gr(TiH —7i)(T = Tim1)ehmi () Tic1 ST <73 (3.42)
1= v .
ZThLZ(Ti_Tifl)(TiJrl_T)eth(T) Ty ST < Tig,

such that V is continuous and smooth on the two segments. Using Eq. (3.28) we find for 7 € [r;_1, 4]

1
iawg(T, T)lw=0 = fihs —(0-f1) ha — f10:h

1 1 .
fihs + thfﬁarhz - F(ﬂ'-&-l —7)eM iy — fihoOrhy ;i — f107ho
2 2
= 7(7'1'_’_1 — Ti)€h7'i < 0. (343)
In the same way we find for 7 € [r;, 7;41] that

+

1
50ug(T D)o = gi(nﬂ —1)ehmi < 0. (3.44)

O

We would now like to do the same for a null geodesic v : [0,1] — M, but this is a bit trickier. In case of
totally anti-symmetric torsion Eq. (3.28) reduces to

0wg(T, T) |0 = 20,9(V. ). (3.45)

Since for a proper variation we need to have V(0) = V(1) = 0, the variation vector should be orthogonal to
4 to yield a timelike curve (if g(V,%) becomes non-zero, the derivative will be positive somewhere on [0, 1]).
So we should consider the second derivative of g(T,T) :

1
5009(T,T) = Oug(S(W,T),T) + 0u0rg(W, T) = ug(W, D-T). (3.46)
Using that g(S(W,T),T) = 0 and evaluation in w = 0 yields, using D% = 0:
1 . N
50u9(T. Dlu=o = 7 [0ug(W. T)], o = 9(V. D2V + D S(V.4) + R(V.4)4)- (347)

We would now like to generalize proposition 4.5.12 from [3] to the case of non-vanishing (totally anti-
symmetric) torsion. We will basically give the proof from [22] with a small adaptation because of the
torsion.

Proposition 3.0.6. Let p,q € M and~y : [0,1] — M be a null geodesic such that v(0) = p, v(1) = q. Suppose
there is a point (1) =1, 0 < 19 < 1, conjugate to p along . Then there is a variation of vy which will give
a timelike curve from p to q.

Proof. We will suppose that r is the first conjugate point to p along ~y. Notice that using proposition [3.0.5]
it is sufficient to find a variation that will give a timelike curve between p and ~(7) for a 70 < 7 < 1. Since
r is a conjugate point to ¢ along ~, there exists a non-trivial Jacobi class J along ~ such that J(0) = [¥(0)],

J(10) = [¥(70)]. We can write

~

J(t) = f(t)J (1), (3.48)
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~ o~

)=1and f:]0,1] — R is a smooth function. Since
0 and we can assume that f( )>0forall 0<

):
[§(70)]. Using D, J(7) = f(r)J(7)+ f () D I (7) it
ere T

70 < 11 < 1. Define now the continuous functlon

where J is a smooth vector class along « such that g(J, J
r is the first conjugate point to p we have that f(0) = f(m
T < 7p. J is non-trivial and J(m0) = [¥(70)], so D J (7o) #
follows that f(79) # 0, hence f(7) < 0 for 7 € (9, 7] wher

h(r) =g (Dﬁf + D, 8,(1) + Ry (), j) . (3.49)
On [0,71] h has a minimum value hg such that we have a constant a € R, a > 0 and
a® 4 ho > 0. (3.50)
Define now the vector class - R R
V=[be""-1)+ f]J=r(r)], (3.51)
where )
71
b = — . 2
prr— (3.52)

to make sure we have V(0) = [¥(0)], V(71) = [¥(1)]. J is a Jacobi class, hence

0 = g(DszrDTS (J) + Ry (J), f)

I
~
+
(\)
.
@

§(V,D2V + R, (V) +D,S,(V)) = 3 (f #J +2¢DrJ +rD2J 4+ 1Ry (J) + 5, () + rDTSW(J))

= ri+7r2h
— [ba2 T L F 4 beSh — bh + fh}
= 7 [be"™ (a® + h) — bh] . (3.55)

Notice that b,a? 4+ h > 0, so be®” (a2 + h) —bh >0 (a2 + h) — bh = ba? > 0. So expression 1} is larger
than zero precisely when r is. Since f(7) > 0 for 7 € (0,79) we have that r(7) > 0 for 7 € (0,72) and
r(12) = 0, where we can choose 79 < 7o < 71. Let now V € T () such that =(V) = V. Since V(0) = [%(0)]
and V(72) = [¥(7)] we must have that V(0) = u5(0), V(72) = M(r2) for u, A € R. Define

V:f/—;m—i—'u

T, (3.56)

T2

then V(0) = V(r2) = 0 and 7(V) = V, hence g [V, D2V + R(V,%)5 + D;S(V,%)] > 0 for all 0 < 7 < 7.
Hence we have § € R such that

1 3
0<d< min{ (V,D2V + R(V,%)y + D;S(V,%)) | T € {472, 472] } : (3.57)
Define the function
—0T 0 <7< }172,
p(1) =4 8(r — %7’2) 7-2 <7r<3 $T2, (3.58)
§(ma — 1) Sp<1t<m.
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Using the pseudo-orthonormal frame Fy, Fi, E3, FE, that we saw before, we can now define the proper
variation I' : (—¢,€) x [0, 72] = M of v|jo 5,] by

wW(0,7) = V(1)
D ,W(0,7) = [g(V,D;V) — p(T)] Er. (3.59)

We then have that

07 [0wgW,T)] g = 07 [9(DuW.T) + g(W, DyT)],,—o
= 0: [9(DuW.T) + g(W, D;W)],,_
= 0;[g([9(V,D:V) = p(7)] E1, ) + g(V, D, V)]
= 0, [ gVD V) +p(r) +9(V,D; V)]
0<r<i 172,
= 372 <7< 37, (3.60)

37 <1<

With Eq. (3.47) we then find that 82 g(T, T)|w—o0 < 0 such that this variation gives a timelike curve between
p and y(72). O

Proposition 3.0.7. Let v: [0,1] — M be a null geodesic between a spacelike two-surface P and a point q
(i.e. v(0) € P and v(1) = q), such that v is orthogonal to P. If there is a point r = v(r1), 0 < 11 < 1,
conjugate to P along -y, then there is a variation of v that gives a timelike curve from P to q.

Proof. This follows in a similar way as in proposition [3.0.6] O
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Chapter 4

Equations of Motion and Generalized
Identities

In Chapters [2| and [3| we have completely focused on the geometric side of Einstein-Cartan theory. However,
when treating the singularity theorems in Chapter [5| we need to translate geometric assumptions to the
matter content of the universe. In general relativity we have the Einstein equation to do this, so to do the
same in a theory with torsion, we need to derive the equations of motion of Einstein-Cartan theory. That
is why in this chapter we derive the equations of motion that follow from the Einstein-Hilbert action plus
a matter action. In Section we do this in the metric formalism, where metric compatibility is assumed
and the metric and torsion are taken as dynamical variables. In Section we derive the equations in the
metric-affine formalism, in which metric compatibility is not assumed and the metric and connection are
taken as dynamical variables. Notice that in the latter formalism, the connection has no a priori dependence
on the metric. After deriving the equations of motion in both formalisms we will show in Section that
they are equivalent for the Lagrangian of the Standard model and that the matter in this model induces
totally anti-symmetric torsion. This equivalence was already known in the literature (e.g. [26, 27]), but what
is done in this chapter can be seen as a nice review. When that is done, a generalized Bianchi identity and
generalized conservation of energy-momentum is derived in Section [£.4]

Before doing all of this, we need to derive some geometric identities, in particular an application of Stokes
theorem. This will be done for a manifold with dimension n.

Definition 4.0.1. The divergence of a vector field V € T (M) is defined by
d(iydVy) = (div(V))dVy, (4.1)
where d is exterior differentiation, ¢ is interior multiplication and dVj is in coordinates equal to

V=gd"z. (4.2)

Lemma 4.0.1. In coordinates:
. 1
div(V) =9, V* — §gpl,8ﬂ(gp”)V“. (4.3)
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Proof. The left-hand side of Eq. (4.1) is in coordinates equal to
d(iydVy) = (\/— det Z Ve (Vydat Ao Ada T Adat T A LA dx")
=d (N/— det g Z(—l)”’IV“dxl Ao AdaP A dat A LA d:c")

p=1
Ov/—detg
= ZZ 7eud g Ads A oAdZP T AdePE A LA da
v=1 pu=1 Oz
Oy —detgV*
= Z — —d"x
OxH
p=1
n 71 .
= g [mau (det g) VH +vV - det gaﬂvu d"x. (44)
The derivative of the determinant of the metric can be calculated by using the identity
det g = exp(trace(log(g))). (4.5)
We find
Oy (det g) = det g0, trace(log(g))
= det gtrace(g™9,.9)
= (det g) gp/\augp/\- (4.6)
Hence:

n

1
d(iydVy) = Z {2 —det 9”0 (gp) V¥ 4+ /—det gﬁuV“] d"x

p=1

[
Mﬁ

{—\/ det 99,00, (g7) VH 4+ / —det g@HV“} d"z, (4.7)

I_L:
and this implies, using the definition of divergence .1} that in coordinates

div(V) = 9,V — %gwaﬂ(gﬁu)w. (4.8)

O

Normal coordinates Normally normal coordinates are defined for a covariant derivative that is metric
compatible and has vanishing torsion, but we will consider the general case. In this general case, geodesics ~y
are still defined by

Vi =0, (4.9)

such that we have an exponential map exp,, at a point p € M defined by
exp, : TyM — M Vi qy(1), (4.10)

where 7y is the geodesic such that vy (0) = p and 4y (0) = V. This map is a diffeomorphism when restricted to
a small enough neighborhood U of 0 € T}, M. Using that, we can define normal coordinates in a neighborhood
of p by choosing an orthonormal basis of T, M and letting exp, (V) for V' € U having coordinates of V' in this
orthonormal basis. This immediately implies that in these coordinates

9w () = Npuor- (4.11)
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Furthermore, geodesics vy for V € U (in normal coordinates) are given by
w(r) = (V.. V") (4.12)

because vy (0) = p and 41/ (0) = V and vy (1) = exp,(7V'), which has the coordinates given above. Using the
defining formula for a geodesic, we find that in normal coordinates at p

0=0,V* +4yI7, 4y =T(,,V"'V" (4.13)
for all V' € U, which implies that
Ffw)(p) =0. (4.14)

Now we have enough tools to prove the following lemma.

Lemma 4.0.2. Let V be a vectorfield defined on a manifold (M ,g) with boundary OM such that V|asnr = 0.

Then
1
/M d"z+/—detgV,VH = /M d"z+/—detg <Qgp,,V,L(g’”’) + S,L> VvV, (4.15)
where Sy, = 5",
Proof. Choosing normal coordinates based on p € M as our particular coordinate system gives FE’W) =0 at
p. Therefore, using Eq. (4.3), it follows that at p
22— 12 123 14
V.Vt = 90,V" + F[W]V
1 1
= div(V) + igpyﬁu(gp”)V“ + §SHV“
) 1 y 1 y 1 5 1
= div(V) + §gpuvu(9p JVH — §gf)vr[pm9A VE— §9pur[,u]9p’\V“ + §SMV”
. 1 y 1 1
= le(V) + Qgpl/v,u(gp )VH - §S>\H>\Vﬂ + §S,LV“
1
= div(V) + igpyvﬂ(g’”’)V“ + S5, VH. (4.16)
It follows from Stokes theorem that
/ d"z+/—detgdiv(V) = / div(V)dV, = / d(ivdVy) = / ivdVy =0 (4.17)
M M M oM
because V =0 on OM. Using Eq. (4.16]) we find that
1
/M d"xz+/—detgV,V# = /M d"x+/—detg <div(V) + §gpyvu(gp”)V“ + SMV“>
1
= / d"z+/—detg <2gpyvﬂ(g””) + Sﬂ) V. (4.18)
M
O
Corollary 4.0.1. In case of metric compatibility:
/ d"z+/—detgV V" = / d"z+/—detgS, V", (4.19)
M M
4.1 Metric Formalism
We derive the equations of motion for an action
St + Sm, (4.20)

- 167TGN
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where Sy is the Hilbert action, defined by

d*z+/—detgR, (4.21)

and Sy, is the matter action. We will take the variation with respect to the metric g"” and the torsion S,
We first define some tensors for the matter part of the action:

Definition 4.1.1. The energy-momentum tensor of matter is given by

-2 6Sh
Ty = ————— 4.22
a v/ —det g g ( )
and the spin tensor of matter is given by
4 -
M= 4 05 (4.23)

P V/—detg 65%

Proposition 4.1.1. The variation of the action S (Eq. ) with respect to the metric g** leads to the
following equation of motion (e.g. [6]):

Gy +5° (_S(W)p + SpGuv — S(MgV)P) -V (_S(W)p + SpGuv — S(ugl’)p) = 87GNT - (4.24)

Proof. Varying Sy with respect to the metric g*¥ yields

0gSu = /d4x [59 (\/—detg) R+ +/—detgR,,0,9"" + —detgg”/\éngA} . (4.25)
Using that
1
g (\/—detg) = —5\/—detggw599“” (4.26)
(this follows in the same way as in Eq. (4.6)) reduces Eq. (4.25) to
1
dgSu = [ d"x+/—detg K — gWR> dgg™” +g”’\69Rp,\] . (4.27)

With Eq. (1.10) it follows that
SgRon = 0udgT5, + (8,75, ) Tap + TR, (3,7%5) = 0r0,Ts, — (0,02,) TS5 — T, (3,755)

= Vad,I'5, + Fg/\ (0,T5,) — VadgI'a, — Ffa (0475,)
= Vad, IS, — Vad,Ts, + 57\ (6,15,) - (4.28)

Then by metric compatibility and Corollary (the variation is as always assumed to be 0 at the boundary):

d'z —detgg’»‘éngA

d'zy/=detgg™ [Vad, T, = Vad,Ta, + 500075, |

d'zy/=detg [Va (96,15, — 76,15, ) +9*5%,\0,1%, ]

/d4 —detg [S (gAp(SgFKép - 9”0‘5grgp) o Sﬁp@é&grgﬂ}

/d4 —detg (=S, + Sag"” — Spotg"”?) 6,I%

nv
d*z/—detgS",5,T%,,. (4.29)

where we defined 3
S = —=S*  + Sag"” — Sgégg”ﬁ. (4.30)

48



CHAPTER 4 EQUATIONS OF MOTION AND GENERALIZED IDENTITIES

Notice that S’Wa is anti-symmetric in the last two indices. We calculate §,I'j;, using metric compatibility:

[ [
0=V, (gu + 0gus), where V is the covariant derivative defined by the varied connection.

0 = %p(gw +0g9uw)

Vo (guv + 0gguv) — 591“;‘# (9x0 + 0g9a0) — 591“;; (gux + Gggun)

= Vo9 + 0g9u0) — QAV‘SQF;);;L - 9;0\591—‘;\1/

= VbgGur — 90T, — gurdel), . (4.31)

Hence
V,u849up + Vidygup — V0 = g0 T0 + 90T + 90u0o T, + 9rp0gT, — 90T, — gy T
n9g9vp vOgYpup pOg99uv IawOgl 1 T Grp0gl iy T GApOgl vp T GApOgl vy = GA0gl oy — GrpOgl 0
= g)\V(S{]SANp + g/\pégrﬁu + g/\u(SgSAyp + g)\p(sgr;);u - g)\p(SgSA,W
29000410, + 900095, + 90095, — Gap0g S, - (4.32)

This implies

« « 1 (e}
0gl, =9 pgp,\égl“f;l, = 59" (Vu(sggl/p + Vilg9up — Vpogguw — g)\V(S!JS)\up - gz\u‘SgS)\up + gkp‘sgSAuu) -

2
(4.33)
Since we consider the variation with respect to the metric:
1
04T, = 59 (Vidogus + Vudogus = Vadgguv) (4.34)
Substitution in Eq. (4.29) and application of Corollary [4.0.1|yields:
q- ([@:29) pp y y
1 .
d*z —detggp’\éng)\ =3 d*z+/—detgg®? SH (Vidggus + Vidggus — Vdgguy)
1 ~ -
=3 d*z+\/—detg (S’W’BV,L(Sggl,g — 25’””BV5699W)
= —/d4x\/—detg (Sﬁg“yﬁ + Vﬁg’“’ﬁ) S99
= /d4x\/—detg (SQS”M + vasvp)\a) Gpudrv0gg"” . (4.35)
We have used that
5ggp)\ = *gp#gm(sgg“”. (436)
Substitution in Eq. (4.27) yields
1 N .
0gSH = d*z+\/—detg (RW — §gWR + 505, — VQS’W“> 09" . (4.37)
Hence
1 6SH 1 o o« O e}
W&gﬁ = R(l/”’) - igMyR‘F SQS(MU) - VO‘S(;,LV) (438)

1
= Riuw) — §9MVR + 5 (_S(W)/J + SpGuv — S(#QV)p) -V (_S(HV)P + SpGuv — S(MgV)P) :

So for the total action
Sy + S, (4.39)

- 167TGN
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we obtain
V/—detg dg
o 1 6Su 1 68m
= T67Gx v—dotg 0" | y/=detg 5g"
1 1 6Sq 1

- T, 4.40
167Gy /—detg ogrv 27 (4.40)

Thus the equation that follows from variation with respect to the metric is given by:

Gy + 57 (7‘5‘(#”)0 + Spguv — S(ugu)p) -V (*S(W)p + Spgur — S(MgV)P) = 8mGNT - (4.41)
]

Proposition 4.1.2. Tﬁe variation of the action S (Eq. ) with respect to the torsion S°,, leads to the
Cartan equation (e.g. [6]):

SV SHY S Y28V Ek 4 25188 = 8rGN L. (4.42)

Proof. To obtain the Cartan equation, we vary with respect to S”,,,. In a similar way as in proposition

using Eqs. (4.27)), (4.29) and (4.33)), we find

(5551{ = d4l' —detggpA(Sst)\
= [ d*zy/ —detgg‘“’a(SSFfjl,
1 -
= 3 d*a\/—detgS"? (—gr 05, — 9au0S™,, + 920057,,)
1 Quv Qv
=3 / d'zy/=detg (25", + 5,") 557, (4.43)
Hence, with Eq. (4.30):
1 5SH _ 1 40 ng ng 12597 wn sy
T ag35%, 9 (S¥H, — SHY, + 8,1 — 2875l 4 25157 . (4.44)
Again considering the total action
1
S = St + Sm, 4.45
TonGy 0 " (4.45)
we find
0 = 1 0S
~ /—detg 65,
B 1 1 0Su n 1 0Sm
o 167TGN 1/ —detg (SSp’uy \V —detg 6Sp/ﬂ/

1 1 0Su 1
_ g 4.46
167Gn /—detg 657, 47° (4.46)

Thus the Cartan equation is given by

SVH MY S Y25V 4 2515Y = 8rGNIL . (4.47)

Corollary 4.1.1. The Cartan equation can also be written as

1
Syup = 8TGN (HW]V -3 gy[pHAM] A) ) (4.48)
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Proof. Eq. (4.42)) can be written as:
— Supu + Supy + Spur — 25,9, + 25,90, = 8TGNIL . (4.49)

Contracting this equation with g yields

Sy =2nGNIY . (4.50)
Substitution of this result in Eq. gives:
— Supu + 2S(upyw = 8GN (H,,,“, + %gwnky \ - ;gwn%) . (4.51)
Taking the anti-symmetric part in p, p gives
— Sypu = —Sy[py = 8TGx (H[W]V — %gy[pmul A) . (4.52)
Hence
Syup = 87GN (H[,,,L]V — % gy[pHAW> . (4.53)
O

4.2 Metric-Affine Formalism

Within the metric-affine formalism we take the variation with respect to g"*” and I'? | where the connection

uvo
is independent from the metric.

Definition 4.2.1.
A hv -2 65,

T v/—detg 0T,

Proposition 4.2.1. Variation of the action (Eq. @)} with respect to the metric g"* yields the equation
G(MV) = 87TGNTW,. (4.54)

Proof. Following the derivation in proposition replacing every &, by dr, this can be seen from Eq.
(14.27). O

Proposition 4.2.2. Variation of the action (Eq. @)} with respect to the connection gives the equation

1 1
=V (6") + 59" 905V, (97) + 8 | Va (97) = 597952 Val9™) (4.55)

+9"" S, — 059" S — S*, = 8rGNA M.
Proof. When we vary the Hilbert action with respect to I'j,, we find using Eqs. (4.27) and (4.28):
orSg = d*z —detggp’\épRp,\

= [ d'z/=detgg™ [VadiTs, — VadrTs, + 5%, (0rT4,) | (4.56)

d*zy/=detg [Va (90075, = g™00T5, ) = Va (9°) 0TS, + Va (9°) rTs, + 95°,, (075, |
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Using lemma [£.0.2] we find

1
orSu d4xm[<2gﬂuva(gﬂV) + Sa) (gp)\(sl"]-—w))fp _ gpaérl—xgp>
~Va (9°2) 6rTS, + Vi (¢°2) 6rTS, + 9757 | (5prgp)]

= d*z+\/—detg

1 Y 1 v
59V a(9")g" + 9" S0 — 59w V(9" )95,

—05972Sx = Va (9°°) + Va (9°*) 85 — SP7, | 6075, (4.57)

Thus when we vary the total action, Eq. (4.20), with respect to the connection I'f,, we get the equation:

ST () 50 00T 0" + 6 |V ) - 500l
+9""' S, — 859" So — S, = BTGNA M. (4.58)
O
We would like now to derive an expression for the covariant derivative of the metric.

Proposition 4.2.3.

v 1 v 1 v v 8 4 v v 4 v n4
V(") = =39" Sy = 3058 = SM, 4 mGNGL AN +ATGn g Ay = S mGng™ AR, —8TGNA . (4.59)

3
Proof. Contracting Eq. (4.55) with g, gives
1 v «
§9va (9") + 9upVa (™) = =25, +87GNA M. (4.60)

Contraction of Eq. (4.55) with 0/, gives
v 3 v « 1% v
3V (9") = 59" 905V (g ) =28 +8rGNA M, (4.61)

and contracting Eq. (4.61) with g,, yields

1% 3 «
395V, (g") — 5gagvp(g ) =28, +8rGnA¥,,. (4.62)
Using Eqs. (4.60) and (4.62), we get
3 (07 v
igagvp(g B) = 39,V (g") — 28, — 8rGNAY,,
1
=3 (—25,; + SWGNAW“ - igagvp (go‘ﬁ)> - 2§, - 8rGNAY,, (4.63)
or g g
908V, (") = —gsp +87GNA N — gWGNA)\/\p' (4.64)
In the same way we find from Egs. (4.61)) and (4.64) that
1% 3 1% « 14 v
8V (9") = 59" 9asVlg ) +25" + 87GNA !
3 vp 8 A 8 A v Av
= 39 —gSp + 8TGNA N — gﬂ'GNA Ap | T257 +871GNA,
= —25” + 120GNA"A, + 47GN AN . (4.65)
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Or
2 4
Vo (9™) = =55 + ATGNAY + ngNAQ”. (4.66)

Substitution of Eqgs. (4.64) and (4.66) in Eq. (4.55) yields

v 1 LV (e} L v 1 ro ns Y e ns ns
Vo (") = 59"905V (") + 6 |:Voz (9™) = 59 gmva(g“)] +g" S, — 0hg " Se — S, — 8TGNA,)

1 8 8
= 7g,U.I/ <3Sp + SWGNAp)\A — 37TGNA>\)\p> + 65

2 v 1% 4 17
5 —35" +4nGNA At ngNAQ

1 8 8
—59" (—3sa + 87GNA L — 37TGNAAM> + 9" S, — 61g S — S*, — 8TGNA M

1 v 1 v " 8 v v 4 " v
= =508, = 0,8 = S, 4 SmGNGL ALY + AmGng At = SmGNgM AR, — STGNAMY

3
(4.67)
O

4.3 Equivalence Metric and Metric-affine Formalism

In this section we will show that for the Standard model Lagrangian (not including any renormalization
terms), the metric-affine formalism yields the same equations of motion as the metric formalism does. In
particular, in the metric-affine formalism metric compatibility follows from the field equations instead of
assuming it as we did in the metric formalism. We will do this separately for matter actions independent of
the connection and the Dirac action before coming to the full Standard model.

The Hilbert action is invariant under the projective transformation (e.g. [28])

FZV — le, + 55@. (4.68)
This is because the Ricci tensor transforms as
Ry — Ry — 20,8, (4.69)

which implies that
R — R. (4.70)

If the matter action is also invariant under this transformation, it can be seen as a gauge transformation and
it can be used to fix 4 degrees of freedom of the connection. A very convenient gauge choice is

S, =0. (4.71)

This will be enough to derive equivalence of the two formalisms for the matter in the Standard model. The
observation of this equivalence is not new, it has been partly done in e.g. [26] and [27].
A problem of Eq. (4.55) is that when contracted with 6%, it yields

0 = 8tGnAM. (4.72)

This can be seen as an inconsistency of Eq. (4.55)), because matter for which the right-hand side of Eq.
(4.72) does not vanish cannot be described using these equations (for the matter in the Standard model the
right-hand side already vanishes). The inconsistency can be resolved by adding a term

d*z\/—det gB"S,,, (4.73)

to the total action, Eq. (4.20). Here, B* is a Lagrange multiplier. This basically results in S, = 0 and
an extra term in Eq. (4.55). With this extra term the Hilbert action is not invariant under projective
transformations anymore. See e.g. [26] for a discussion of the resulting action.
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4.3.1 Matter Action Independent of Connection

In this subsection we will consider actions that are independent of the connection. Two very familiar examples
are the action of a scalar field

1
Sy = 3 d*z\/—detg (g4 0updue — V() (4.74)

and the (kinetic part of the) action of the electromagnetic field

1
Sa=7 d*z\/—det gF* ' F,,, (4.75)

where
F=dA (4.76)

for a vector field A, such that in coordinates
F, =0,A,-0,A,. (4.77)
We start with the metric-affine formalism. For a matter action that does not depend on the connection
A =0. (4.78)

Independence of the connection also implies that the total action, Eq. (4.20)), is invariant under the projective
transformation (4.68]). Therefore we can choose the gauge

S, =0, (4.79)

such that Eq. (4.59)) reduces to
V,(g") = —5",. (4.80)

The right-hand side is symmetric under interchanging 1 and v and anti-symmetric under interchanging v
and p and this implies that it vanishes because

SHVP — QVHP — _ GQVPH — _ GPVI — GPHV — GHPV _ _ GHVP. (4.81)

Therefore we have metric compatibility and vanishing torsion.

Vanishing torsion is also what you find in the metric formalism from Eq. . Since the matter action
does not depend on the connection, the energy-momentum tensor in both formalisms is the same, which
implies that the equations of motion that follow from varying with respect to the metric (Egs. and
are the same). Hence, for matter actions that do not depend on the connection, the two formalisms
are equivalent. This became clear after choosing a gauge.

4.3.2 Dirac Action

Before we can explain what the Dirac action looks like in curved spacetime, we need to introduce some more
geometric tools. Normally vectors are always expressed in a basis 9, that is defined by a choice of coordinates
a#. Of course at every point p € M one can choose arbitrary frames of 7, M to express vectors in. A property
of a vectorbundle is that locally one can choose an orthonormal frame e; = eé‘@u such that g(e;, e;) = n;5.
Such a frame does not have to be related to a choice of coordinates. In this new frame, the metric has

components 7;; such that we can consider it as flat spacetime. To transfer back to the coordinate frame 9,
we need the inverse of the matrix defined by ef'. Let e = niig,, e/, then ele’ = nikg, ele! = niFn,, = (5{
and we have found the inverse matrix. The matrix defined by e/’ is also called a vierbein or tetrad. Using the
vierbein every tensor can now be expressed in terms of its components in this orthonormal basis. We will use
Latin indices for the orthonormal basis and Greek indices for a basis induced by a coordinate system. The
vierbein enables us to switch back and forth between Latin and Greek indices. We can even consider mixed

tensors where some of the indices are Latin and some of them Greek.
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Notice that the vierbein can be chosen in many different ways, let ¢; denote another orthonormal frame,
then e = A*,t¢ for some matrix A and e}, = A “t,. This implies that the metric in the new coordinate

system has components o
gab = N, Ay 15 (4.82)

Requiring that the new frame is also orthonormal implies that the transformations A we consider are local
Lorentz transformations.

There are now two choices: a choice of coordinate system and a choice of orthonormal frame. Since 9,V
does not transform as vector under a transformation to another orthonormal frame, we need to define

VW V=08,V +wiyV?, (4.83)
where wy, is called the spin connection. We will now derive a relation between wy, and I'f,,

Lemma 4.3.1.

wyp = epeply, —epou(e}) . (4.84)
Proof. Using V = V*#9, = V%, we find
VV =V, (VP9,)dat = (0,V? +T%, V") dz" ® 8, (4.85)
and
VV = V,(V%,)dz"
= 0.V +wi V) da" @ eq
= (0u (elV") +wiey, bVY) da* @ (e00,)
= el (e l‘f(?uV”—i—a (ex) V" +wie, bVY) dz* @ 0,
= (0,VP +eb0, () VY +w be”e VY)dat @ 0,. (4.86)
Comparing Eqs. (4.85) and (4.86) yields:
L7, =eho, (e 9+ Wipehe, el (4.87)
or
Wiy = epe I, —epdy (e2). (4.88)
O
Lemma implies
Ve, = 0ue;, — T e + w#be = 0ue, — I 65 + e, (eb eZI‘Z/\ eba (ei)) =0. (4.89)

This result is sometimes mentioned as the tetrad postulate, but it is always true.
In the same way as we have a covariant derivative for tensors, we also have a covariant derivative for a
spinor :
=0, +T . (4.90)

Notice that since V1 has to transform as a spinor: under a local Lorentz transformation A(x)

b= S(e) = exp(—iw“waab)w, (4.91)
where o, = ['ya, Y], w® constants such that w® = —w"® and the gamma matrices v form a representation
of the Clifford algebra that is defined by

(77"} =21 (4.92)
When
I, —ST,S™ '~ (9,8)S™* (4.93)

95



CHAPTER 4 EQUATIONS OF MOTION AND GENERALIZED IDENTITIES

then
Vb = (8,9) 0 + S0, + [ST,S™! = (0,5) 5] S = SV .0, (4.94)

exactly what we wanted. We also have that
Y —PpST (4.95)

where ¢ = 140, It immediately follows that with

V,ﬂ/; = a/ﬂ/; - J)F/L (4-96)

Vb — (8,@)) ST+ 49,8t — STt (SFMS_l — (0,9) S_l)
= (6,#3) S+ 99,87t — ¢St (SI“MS_1 + S@HS_l)
= (V) 87" (4.97)
To derive an expression for I',, in terms of the affine connection, we will roughly follow [29].

Lemma 4.3.2. )
T, = —wh e, 7] — Ay, (4.98)

where A, is a multiple of the unit matriz.

Proof. Notice that

O (V7™ ) = Vi (V7" 0) — wiyy" = 9, (V7)) — Ty + 9 (Vuy®) ¥ + ¥y Tutp — wi oy, (4.99)

hence
Vir® = wip?” + Ty = 7T = wipy + L, 1) (4.100)
Now
1
V' =5 (Van™) w (4.101)
[30] such that
a a 1 a
WYY’ + 9Ly = 400 = 5% (V") - (4.102)

We solve Eq. (4.102)) by a solution of the form

T = éw,‘izﬁwb - éwﬂw”% — Ay, (4.103)
where A,, has two spinor indices and one vector index. Substitution of Eq. in Eq. and

YY"V = 20075 = VYt = 29%9" = 29790 + 4P = g’ (4.104)
yields

1 a 1 a a 1 a 1 a Ci ac 1 a C 1 a C
@i Ya?’ + 59 Ve = YaAuy " + 44, = S%a (Vanl™) 1 = 57 (Wien™ + wieti®™) W = 5@5cYaY + 59 Y

(4.105)

such that
— YAy + 44, = 0. (4.106)
This implies that A, should be a multiple of the unit matrix. O

In the literature (e.g. [29]) this A,, is usually set to zero by viewing it as an extra non-gravitational field.

This 1mp11es that we have
1 a b 1.107
T w [f}/ )Y ] ( - )
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Now we have all the tools to derive what the Dirac action looks like in curved spacetime.
action in flat spacetime is given by

_ 4 i a _z 7/ a 7
Sp = [ ate (0 - 50 () 1% + miw )
= [ d*z\/—detyg (;%avaw - %va (V)" + mzﬁw) ;

The Dirac

(4.108)

where g,,, = 1, and V, = 9,. Take this as the form of the Dirac action when in curved spacetime we work

in flat coordinates. We can then transform to obtain the Dirac action in curved coordinates:
7 - i _ _
d'zy/~det g (2wvm ~ 5V (§) 7w + mw) :

where
=l
and
1
v/ﬂ/) (9”’(/) + Fu¢ A¢ + w,ub [’Yav W 6u1/) +

v/ﬂ/_) = (@ﬂ[’fi/;ru) = uw 8 uqu[}haa ] 6/”/)*

ey epTh, — €0, (1)) a1

Il
| =
0| = /\

Lemma 4.3.3. For the Dirac action
)
Ap‘“’ = —56 ebe“nadwv[c @ b]z/J.

Proof. From Eq. (4.109)

Aw o 2 05

A \/Wdl“ﬁy

— 9 161/;( o, 7+ [0 7 1) ¥
i -
= *gq/){’yuahpv’yy]}w'
Hence:

v { vV /s c a

Ap” = —geﬁebeénacﬂ/} {’Y 7[7 ,’yb]}w

Consider the following equality:

{v*, [} = % (VAT + AT+ A + % (7 + Sy I + [ 2e) -

The right-hand side is clearly anti-symmetric under interchanging a and b. Now using

Aanbyd = 2 ([, ¢ + AP, v + ¢, AY)

(v + ey Iy + [ 2°)

D= O =

we find that
{7, 7771} = 29199° 7T 4 2919909 = 41245,
Substitution of this result in Eq. (4.114) yields

l
A = =z eperelnaaty'y .
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This implies that AP*¥ is totally anti-symmetric such that also the Dirac action is invariant under the
projective transformation (4.68)). Hence, we can fix the gauge by setting S, to zero. From Eq. (4.59) we
then find:

V, (g") = =S, — 8tGNA . (4.119)
Taking the (anti-)symmetric part in x4 and v, we obtain
V(") = =51,
Sl = —8rGnA M. (4.120)
But even more, Eq. implies that
Vip9uyu =0, (4.121)

such that V,g,, is anti-symmetric in its first 2 indices and symmetric in its last 2 indices, which implies:
- S(“”)p =V, (¢")=0. (4.122)
So we have metric compatibility, the torsion is totally anti-symmetric and:
S = —8TGNA M. (4.123)

In the metric formalism, the only part of the connection that couples is the torsion part (since the tensor
that is coupled to the connection is totally anti-symmetric), this implies that:

AP =TL P (4.124)

and from that and Eq. (4.48) it follows that the Cartan equations in both formalisms are the same. In
the same way it turns out that the Einstein equation in both formalisms gives the same. Hence, the two
formalisms are equivalent for fermions.

4.3.3 Standard Model

The analysis of the previous two sections shows that the metric and metric-affine formalism are equivalent for
the Standard model, because the Lagrangian of the Standard model is build from the three specific actions
we considered. All extra terms in this Lagrangian that cannot be rewritten as one of the three actions do not
contain covariant derivatives and it follows from Section that the two formalisms are also equivalent
for these terms. When terms from renormalization are included, the projective symmetry is possibly broken
and the two formalisms are not equivalent anymore.

4.4 Generalized Identities

In this section we generalize the Bianchi identity V,G*” and conservation of the energy-momentum tensor
V,IT* = 0 that we know from general relativity. To do this, we use diffeomorphism invariance, i.e. that

/¢*w = /w, (4.125)

where w is a 4-form and ¢ is a diffeomorphism. A globally defined vector field V' on M defines a flow
¢(r,m): D — M where D C R x M such that (0,m) € D for all m € M and V(m) = 0,¢(7,m)|,=o. For a
fixed 7, all m € M such that (7,m) € D form a set M’ and ¢, : M’ — M m — ¢(r,m) is a diffeomorphism
to its image. The idea is now that if we take 7 infinitesimally small, we get a diffeomorphism ¢ : M — M
such that we can calculate the difference of the two integrals in Eq. which should be equal to 0.
Taking an action we obtain

) oS 0S
— — L+ ——06,I7 — il 4.12
0=10d45 / <5gw/ 0 G + 5Ffw dg T S dgpp ) ( 6)
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where @; are the matter fields in the action. When the equations of motion are obeyed:

oS _
dp; B

0. (4.127)
Since we consider 7 infinitesimally small, we must have that

o 9796, ) — 9o _
Opglp = lim === = (Lvg) |p, (4.128)

where £ is the Lie derivative and p € M. In components this is equal to (e.g. [3I]):

Ss9u = (Lvg),,
= V(gw) + 90,V + 9,00,V
= VVagu + V00w + VTS 00a + 90w ViV = g Ina Ve + VoV — gl Ve
= VVagu + V5% 000 + V5% Gua + 930V V> + gnV, VA
= VAVagu + V2 Sunn + VS0 + 90 ViV + guia Vo VA (4.129)

We now derive what the Lie derivative of the connection looks like

Lemma 4.4.1.

o100, = (LyT),, =V, V, VP =SV, VA=V, (57 )V + R, V. (4.130)

Nz

Proof. In the same way as we had for the metric we have that:

T -T
5¢F|p = lim (;S‘r ¢T(7Ii) |P

7—0

= (LyT) . (4.131)

The pullback of the covariant derivative is defined by
(6*V)x Y = 6.1 (Vg x6.Y) (4.132)

for arbitrary vector fields X, Y € T(M) |23]. In components this is equal to

A (o~ 1) 0¢P [ 0* N el gt 99 .,
xva, v+ xo oy, v — LS00 9 (G @ e @) ) TG

—1\P 1\« _1\«
_ () aqsﬂXﬂl P 9(67Y)" L, 0000 (07Y)

8 (e}
9, YY + Fgaa%yw

oz'r  Oxh O0z*0zv  Oz'P oxv 0x'B

8(¢71)p 32¢)\
ox'r  Ox*Ozv

a(¢—1)ﬂ 82¢)\

= XH*YY 4+ XH0,Y?
oz'»  OzrOzY + (i

9 (¢7")" 0¢° dg”
ox'r  Oxt Oxv
9 (¢7Y)" 0¢P g

dr'™  Oxh OV

= ooXH YV 46000 X 0,Y" + I3, XYY"

IR, XYY, (4.133)

This implies that

—1\P o
@y, xeyv = 240) [a%% 09” 09

v A nwy v
dz'r | Oxrdxr  Oxt dxv Fﬁa} Xy (4134)

for arbitrary X, Y. Hence:

0(671)" [ °¢* | 0997 99"
(0D = Ox' <8x“8x” + Oxt Oz Fﬁa) ' (4.135)
For the infinitesimal diffeomorphism ¢ we can write
o(x) = (xo +7VO(x), ..., 23 + TVS(I')) (4.136)
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such that
¢~ H(2!) = (2% —7VO2)),..,a" — TV3(2))). (4.137)

Therefore to first order
("), (2) = (5§ - TGIAV’)) [70,0,V + (6 +70,V7) (67 +70,V*) (Pha () + TV 05T 5, ()]
= (8§ = 7\V?) [70,0,V* + T}, (x) + TV79,T, () + 713, ()0, V7 + 1T}, ()0, V]
= 70,0,V° +T%, (x) — 70, (2)O\V? + 7V TS, (x) + 715, (2)0,V* + 71, ()9, V.
(4.138)
So
(LvD)h, = 0,0,VP =T, 0\VP + V> O\, + 15,0,V + 10,8,V
= 0, (V, VP =T0, V) =T, 0\V? + V2T, + 15,0,V + 17,0,V
= V,V, V24T, VaVP T8, V, VA =9, (T),)V* — FﬁAGMVA —T5,0.V"
+VAONIE, + 15,0,V + 17,0,V
= V,V, VP 4T, I,V - FﬁAFﬁaV“ =0, (T0) VA= 82,0,V + V3 o,Is,

= V.U«VVVP - Spu/\aﬂv)\ + (a)‘FZV - al»l« (Spu)\) - aﬂriu + Fgu‘spak
+T0, T8 — ST, — ;urﬁa> VA
= V.V, VP =820,V =V, (S )V} =T25°,, V*+ R, VA

= V.V, VP =57 \V, VA=V, (5", )V} + R, V. (4.139)

Since Ly T is a tensor, this is its expression in coordinates. O

Expression (4.130) agrees with the one in [32], but notice that they use slightly different conventions.
With Eqs. (4.126)), (4.127), (4.129)) and (4.130]), we obtain:

0 = 6,9
~ [ o/ [ g + et
= /d4$\/T€tg l\/%etg 5251, (VAV,\QW + 0wV VA + g0V VA +VAS,\, + VASNAV)
+\/%etgaérg,, (VauVe + 82,V 4+ VAVLS?, + R, V) | (4.140)

Using lemma we find that

0S 1 oS 1
d4 A/ — det l( )\g/w — ;L < ) |: goz[i‘vlt( ) + S/L:| 9 v

V_det 69;1,1/ g)\l/\/ det (59/“/
SRR S U I N LD B R 3
v—det g 69, \/—detgégu,,g“)‘ gJasVvld Y \/—detgégwg”)‘

1 5S 1 5S 1 5S
— 38, S |V -V == | V.V
+\/—detgégw wet Vv—detg 09, ’“\> +< ”(\/—detgéffw>
1 5S 1 5S

1 o 1 .

+ [Q%BVH(Q )+ u] W(SFZVV VP =V, (’Tetgél“ﬁyslj”) V> + [2gaﬁvu(9 5+ S,t]
1 48 Ay 105 s 1 43S \

aegart, o Wt Faegarn, . Vet g o, oV | (4.141)
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Again with lemma [4.0.2}

0 = [ d*az\/—detyg

08 5 o v, 1
\/—dt 0w S g/\V\/ det g 59;“/

gaﬁv aﬁ +S:|

L 95 o (1 58 >+ Lo
gxy\/—detgégw v \/—detg(Sgwg’"\ g Jas

1 éS 1 éS 1
751/)\;1 + 775}1AV + vuvu ( )
+

\/W 5gwg’“
T et dg M et g g WW
e85 ) = [esio5) s]
- :;gmvu(g‘”) +Su} Bgaﬁvu(g”‘ﬂ) +5 } \/—Zitafﬂf Y (\/%etg(;;?w ? V>
+ :;gaﬁv,b(gaﬁ) +S,L} J%etgé‘;*gy Sy, + \/%etgg‘gyv N \/%5?13 VA
(4.142)
We then find that
Al e =71 R A AR e 7
-V, <% Zetg(;;igw) + [;gaﬁvu(gaﬁ) + Su] —_— detg(;;i, gur + ————= zletgé(;i Suap
+\/z—etg(;;fy5m+vuvﬂ (\/%;rf ) - [;gaavu(go‘ﬁ) + Sy ] (\/%55{2 )
9| [30000uta) 4 5, frf - (4.143)
+ [;gmvu(g”) + Su] [;gaﬂvu(gaﬁ) + Su] \/%etg;rf —Vu (\/%etg(gfﬂgys’) u)
(g™ +52] et e

This can be rewritten as

1 1
0 5 ( 5

v 1 0S
- /—detg g, A

v a \Y b 25 vV ——
A V—detg 59;w) * [g sVulg™) + ”] A V—detg 09,
1 35S

1 0S 1 1 S
_2 v v — |39« 14 ab v
\/—detg(?g,wsﬂ)\—'_v v“(y/—detgﬂ‘fw> {29 sVulg )+S}v“<\/—detgél“f;y>
1 1 0S
-V, HZQaﬁvu(Qa )+ } ]

V—det g 0T,
1 1 1 0S 1 0S
- oy - af _ - = P
+ |:2.ga’yvu(g ) + SU:| |:2904[3V/L(g ) + S/L:| \/W(SFA v <m6rﬁu) v
1 1 ) 1 )
— of e p 4.144
+ |:29015vu(g ) + Su:| \/Tetg(srzys \/W(SPP R’ VAR’ ( )

where we used the symmetry of g,,. Using now that for the Standard model we can work in a gauge such
that S, = 0 and we have metric compatibility, Eq. (4.144) reduces to:

1 oS 1 0S 1 6S
0 = -2V v -2 Sy V.V
“<gA /—detg 59,“,> V—det g 69, w #<\/ det g 6T >
1 0S 1 6S
SP —_——— R, . 4.145
<\/—det 5FZV> a V—detg 6%, VM ( )
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We now apply this identity to different actions.

Hilbert action Using

09px = —Ypugrv09"” (4.146)
we find
) )
— g, = 69PN = ——— g N5, 4.14
S 00 5go3 09 sgn 99 00n (4.147)
Hence 55 55
= - PG 4.14
L 59’))‘9 g ( 8)

For the Hilbert action we find from Eqgs. (4.27) and (4.57) that in the gauge S, =0

R A
V—detgdgrr (PA)s

1 )
—_— = =S 4.14
V/—det g 6T, P (4.149)

Substitution of these results in Eq. (4.145) yields the generalized Bianchi identity for the case S;, = Vg, =0
(so what we have when the matter Lagrangian is the one from the Standard model):

0 = 2g>\,,VMG(’W) + 2G(”V)S(U#))\ -V,V, (S’WA)
+V, (87,) 8%y, = S*,RC - (4.150)

The second term in the right-hand side of Eq. (4.150) is zero for totally anti-symmetric torsion.

Matter action independent of connection In this case we have seen that we obtain metric compatibility
and vanishing torsion. Also

SR N
V—det g dg,m ) ’
1 0Sm
™ _ . 4.151
vV det g 5FZV ( )
The identity we obtain is thus
0=V, 1. (4.152)

Dirac Action Working in the gauge S, = 0, we found metric compatibility. Also:

R
vV—detgdg, 2 ’

1 5S 1
- 9om DA 4.153
V/—det g 6T, 2-° 7 ( )

which results in the following identity:

v 1% 1 v 1 v 1 v
0 = —gnVu (T") =TS — §v”vu (A7) + §Vu (A,1) 8%\, = §Apﬂ R\

1 , 1
~ga Vi (T") = 5V V0 (A) + ATGN Vo (AM) Ay + G AP Ry (4.154)

This means that the energy-momentum tensor corresponding to the Dirac field is possibly not conserved,
which implies that energy and momentum is locally not conserved.
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Chapter 5

Singularity Theorems in Einstein-Cartan
Theory

In this chapter we will finally generalize the singularity theorems of Hawking and Penrose [11, 2, 3] to spacetimes
with totally anti-symmetric torsion. In Chapter [2|and [3| we extended all the propositions that are needed that
involve torsion. The other propositions that are used in [3] only use arguments not dependent on torsion so
do not have to be generalized, they can be found in Chapter 6 of [3]. In Chapterwe derived the equations of
motion for the theory that can be used to translate geometric conditions to conditions on the matter content
of the universe.

This chapter is organized as follows. In Section [5.1] we state the singularity theorems that we obtain for
totally anti-symmetric torsion and discuss their assumptions. We will also compare with a different method
to prove these theorems. In Section [5.2] we discuss whether the singularity theorems can also be generalized
directly to non totally anti-symmetric torsion. In particular we give a way to construct a null geodesically
incomplete spacetime with vectorial torsion.

5.1 Totally Anti-Symmetric Torsion

For the discussion of singularities it will be useful to have a certain arrow of time. In our daily life this
seems to be well-defined. This makes it reasonable to believe that there is a local arrow of time defined
continuously at every point in spacetime. In the language of manifolds this is called an orientation and we
require that it should be possible to define continuously a division of non-spacelike vectors in two classes:
future- and past-oriented. We call such a spacetime time-orientable. There are spacetimes (M, g) that are
not time-orientable but they always have a double cover that has a time orientation. From now on we will
assume that the spacetime is time-orientable or that we are dealing with its time-oriented covering space. If
there is a singularity in the cover, there should be one in the space itself. Using the time-orientability we can
say that curves are future or past directed.
To formulate the generalized singularity theorems, we need a couple of definitions:

Definition 5.1.1. The chronological future It(P) of a set P C M is the set of all points ¢ € M such that
there is a p € P and a future-directed timelike curve « : |7, 7¢] = M such that vy(r;) = p and ~v(7¢) = q.

Definition 5.1.2. The causal future J*(P) of a set P C M is the set of all points ¢ € M such that there is
a p € P and a future-directed non-spacelike curve « : [, 7¢] = M such that v(7;) = p and v(77) = ¢.

Definition 5.1.3. A set P C M is said to be achronal if IT(P)N P = (), so there exists no two points in P
with timelike separation.
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Definition 5.1.4. The future (past) horismos of a set P C M is EY(P) = JH(P) — IT(P) (E~(P) =
J=(P) = 1~(P)).

Definition 5.1.5. The future (past) Cauchy development DT (P) (D~ (P)) of a set P C M, is the set of all
points ¢ € M such that every past (future)-inextendible non-spacelike curve through ¢ intersects P.

Definition 5.1.6. A Cauchy surface is a spacelike hypersurface P which every non-spacelike curve intersects
exactly once and such that
D(P)=D"(P)uD (P)= M. (5.1)

Definition 5.1.7. A closed trapped surface P is a C? closed (i.e. compact without boundary) spacelike
two-surface such that the two families n; of null geodesics orthogonal to P are converging at P, i.e. —tr(Ly,)
is negative at the surface.

Definition 5.1.8. The strong causality condition holds at a point p € M if for every neighborhood U of p
there exists a neighborhood V' such that p € V' C U and such that no non-spacelike curve intersects V' more
than once.

The singularity theorems in the case of totally anti-symmetric torsion can then be stated as follows (proofs
are the same as the proofs of theorem 1, 2, 3 and 4 in Chapter 8 in [3]):

Theorem 5.1.1. A spacetime (M, g) cannot be null geodesically complete if all of the following conditions
are met:

1. Ric(K, K) — 3tr(5%) > 0 for all null vectors K ;
2. There is a non-compact Cauchy surface in M;

3. There is a closed trapped surface in M.

Theorem 5.1.2. Spacetime (M, g) is not timelike and null geodesically complete if the following conditions
all hold:

1. Ric(K, K) — 1tr(5%) > 0 for all non-spacelike vectors K ;

2. The generic condition is satisfied, i.e. every timelike geodesic vy contains a point at which ]% # 0 and

every null geodesic v contains a point at which }237 #0;
3. The chronology condition holds on M (i.e. there are no closed timelike curves);

4. There ezists at least one of the following:

(a) A compact achronal set without edge,
(b) A closed trapped surface,

(c) A point p such that on every past (or every future) null geodesic from p the expansion 0 ; of the
null geodesics from p becomes negative (i.e. the null geodesics from p are focused by the matter or
curvature and start to reconverge).

64



CHAPTER 5 SINGULARITY THEOREMS IN EINSTEIN-CARTAN THEORY

Theorem 5.1.3. The following conditions cannot all hold:

1. Every inextendible non-spacelike geodesic contains a pair of conjugate points;
2. The chronology condition holds on M ;

3. There is an achronal set P such that ET(P) or E~(P) is compact.

Theorem 5.1.4. If all of the following holds:
1. Ric(K, K) — 1tr(5%) > 0 for all non-spacelike vectors K ;
2. The strong causality condition holds on (M, g);

3. There is some past-directed unit timelike vector W at a point p and a positive constant b such that
if V is the unit tangent vector to the past-directed timelike geodesics through p, then on each such

geodesic the expansion 04 of these geodesics becomes less than —3c¢/b within a distance b/c from p,
where c = —g(W, V),

then there is a past incomplete non-spacelike geodesic through p.

Notice that one can indeed use the proof of theorem 3 in Chapter 8 of [3] since for totally anti-symmetric
torsion we find from Eq. (2.22) that for a timelike geodesic

04 = tr (=S, + VuT?)weo) = tr (VuT?)wm0) , (5.2)

and similarly for a null geodesic, which is what is used in the proof (notice that this is mathematically not
well-defined and ideally we would like a proof that uses the tensor A).

Theorem 5.1.5. Spacetime is not timelike geodesically complete if the following two conditions hold:
1. Ric(K, K) — 1tr(5%) > 0 for all non-spacelike vectors K ;

2. There ezists a compact spacelike three-surface P (without edge) such that the unit normals to P are
everywhere converging, i.e. —tr(L,) <0 (or everywhere diverging, i.e. —tr(Ly) > 0) on P.

Theorems and are equivalent [3]. We will now discuss some of the assumptions of the theorems.
The geometric condition

Ric(K,K) — %tr(S%() >0 (5.3)

that appears as assumption in every theorem has to hold for all null and/or timelike geodesics because every
non-spacelike vector corresponds to such a geodesic. Via the equations of motion the Ricci and torsion
tensors can be coupled to the matter in the universe. For the matter in the Standard model the equations
derived from the metric formalism and metric-affine formalism are equivalent (classically). Using that torsion
is totally anti-symmetric, Eqs. and can be rewritten as

1
R(pu) 8rGN (Tul/ - 29;WT> (54)
S#l,p = *SWGNH‘MW),

where T' = ¢"*T),,,. Using the Einstein and Cartan equations, condition (5.3 becomes

1
(T,“, = 59T = 2WGNHaﬂ#H5M) KFKY > 0. (5.5)

Since the term 727rGNH”‘ﬁHHBMK“K” is positive it seems that this condition is easier satisfied than the
one for vanishing torsion (TW — %gu,,T) K*KY > 0, the strong energy condition. This seems to imply that
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singularities should form ’easier’ in spacetimes with totally anti-symmetric torsion. Quantum corrections can
of course cause violation of condition (5.5).
The condition

R, #0 (5.6)
for timelike geodesics v can be understood for vanishing torsion using Eq. (2.1)), the Jacobi equation
D2J = —D,8,(J) — Ry(J) = —R,(J). (5.7)

In Newtonian theory, the acceleration of each particle is given by the gradient of the potential & and the
relative acceleration of two particles with separation J* is given by J*0, (V®). For vanishing torsion Rw is
analogous to 9, (V®). The effect of this term can be seen as follows. If one considers a sphere of particles
falling towards the earth, this sphere will deform because particles closer to the earth fall faster than particles
further away from the earth. Hence, we can say that R7 = 0 if the test particle moving on ~ will encounter
some matter or radiation on its way. In a physical universe one can expect this to be the case. If torsion is
not vanishing, it seems to be less clear if condition is satisfied in a physical universe. If we want to do
a similar analysis as for the vanishing torsion case, we have that

D, S, + Ry #0 (5.8)

at some point on + if the test particle moving on « will encounter some matter or radiation on its way.
However from Eq. (2.57)) it follows that this is not equivalent to condition (5.6). Of course, when the test
particle encounters matter or radiation that does not induce torsion (i.e. when it encounters bosons), it is

equivalent to condition . For the condition ll_BAY = ( for null geodesics v we can have a similar discussion.

So far we have treated torsion on the same footing as the metric. One can actually also use Eq. (2.54])
to expand Eq. in terms corresponding to the Levi-Civita connection and torsion terms (e.g. [6} [13]).
Then one can use Eq. to substitute for torsion. This way one finds the Einstein equation of general
relativity with an adapted energy-momentum tensor (this is called ’integration out torsion’). Hence, we have
general relativity with a changed Einstein equation. If one does that, the assumption ]:27 = 0 is expected to
be satisfied in a physical universe, while in our approach this is not immediately clear. So to improve upon
what we have done, one can prove propositions and under conditions for which it is more clear
that they are satisfied in a physical universe. Below, we will come back to integrating out torsion since it
gives an easy and elegant way of extending the singularity theorems.

That there must be a closed trapped surface somewhere in a physical spacetime is proved in Chapter 9
of [3]. Tt seems that some and probably most stars with masses M > 1.5Mg,, will collapse when they are
gone through their stages of fusion. For spherical symmetric collapse the solution outside of the star will
be described by the Schwarzschild solution (when other matter is sufficiently far away), so when the star is
collapsed to within its event horizon we automatically have a closed trapped surface. If the collapse is not
spherically symmetric (this will happen when the star is rotating or has a non-vanishing magnetic field) it
can be shown [3] that if the deviations from spherical symmetry are small, one still obtains a closed trapped
surface. There are at least 10° stars in our galaxy that have masses larger than 1.5Mg,, and the number
of black holes in our galaxy formed by the collapse of a star is estimated to be between 107 and 10°. That
means that there are a large number of trapped surfaces.

As discussed in [3], the existence of a Cauchy surface is a weakness of theorem An example by
Bardeen shows that it is a necessary condition. In that example one takes the same global structure as the
Reissner-Nordstrom solution except that the singularity is smoothed out such that they are just the origin
of polar coordinates. The spacetime obeys all conditions of theorem [5.1.1] except for the Cauchy surface.
The existence of a Cauchy surface is a weakness of theorem [5.1.1] and that is why theorem [5.1.2] is more
convenient. In that respect is also theorem [5.1.4] very useful, since also the assumptions of that theorem are
satisfied in a number of physical situations. However it is possible that violation of causality (e.g. in theorem
one can have a closed timelike curve) prevents the occurrence of a singularity. Theorem shows
that not in all cases singularities can be prevented by violation of causality.

In this thesis we gave very direct generalizations of the proofs given in [3] for totally anti-symmetric
torsion, but as for instance observed in [6] [I3] one can also generalize the proofs by integrating out torsion.

Using Eq. (2.54) one can write
Ric(K, K) = Ric(K, K) + (V,isTly = VusThy + sToysTlh — sThysTly ) VK. (5.9)
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For totally anti-symmetric torsion we have

1
STl = 55 (5.10)

and we find that
. 1 1
. _ A B L A v
Ric(K,K) = Ric(K,K) + 5 (VMS“VA — 55 M)\Sluﬁ> KK
. 1
= Ric(K,K) + Ztr(S%(). (5.11)

Realizing now that the geodesics for the Levi-Civita connection are the same as for totally anti-symmetric
torsion, we can also use the theorems from Hawking and Penrose to say something about their completeness.
In their theorems one has the assumption

Ric(K,K) > 0 (5.12)

which is equivalent (at the geometric side) to the one we found, , which can be seen using Eq. (5.11).
Notice that tr(S%) < 0. When using the Einstein equation to translate the left-hand side of Eq. 0
the matter content of the universe, one finds that after integrating out torsion one has general relativity with
an adapted energy-momentum tensor (substitute Eq. for the torsion).

[6l 13] used their method of integrating out torsion because they claim that test particles move on curves
with maximal length, hence the curves that are geodesics with respect to the Levi-Civita connection. Using

expansion (j5.9)) with

1
STh = =St + 55w (5.13)

one can express the Einstein equation in terms of the metric, torsion and the energy-momentum tensor. Then
one can substitute Eq. and one has the Einstein equation of general relativity with an adapted energy-
momentum tensor. Since the curves considered are geodesics with respect to the Levi-Civita connection, one
can apply the singularity theorems of Hawking and Penrose with an adapted energy-momentum tensor.
When one assumes that test particles also for general torsion have geodesics as their trajectories, it
becomes more complicated. That is why we generalized the proofs in the way we did it. This way it is easier
to see where things go wrong when one considers general torsion. This is what we will do in the next section.

5.2 General Torsion

For general torsion it seems hard to give a direct generalization of the proofs of the theorems in [3]. Since
for general torsion in general a geodesic between two points is not the curve between those points that has
maximal length, the proofs of theorems [5.1.2} [5.1.3} [5.1.4] and [5.1.5] directly fail because they use that fact.
For the proof of theorem one needs the proof of proposition (also needed in the proofs of theorems
and [5.1.3). This proof becomes very hard to generalize since one cannot use that g(S(W,T),T) = 0
which alters expression . The proof of proposition that is needed in the proof of theorem
only does not hold when g(S(D-%,%),%) = g(D+%, D,%) for all points on « between the points p and q.

All the theorems also need the propositions about the existence of conjugate points. They correspond to

conditions (5.3) and (5.6). From the proof of proposition and Eq. (2.32) it is clear that condition ({5.3)
needs to be replaced by

Ric(¥(7),4(7)) + tr(D-(PS,)) + tr(PSywa) + tr(PS,04) + %tr(PSV) +tr(w?) >0 (5.14)

for all timelike geodesics v and all starting points (7) (the matrix A is related to this starting point). For
totally anti-symmetric torsion we could calculate the vorticity tensor w4, but for general torsion this seems
to be quite impossible which is why condition is more complicated. We would also need a condition
for null geodesics, but we did not derive a Raychaudhuri equation for general torsion in that case since it
was not clear to us how to do that. Condition seems like a rather hard condition to check for an
arbitrary spacetime and even harder to motivate from a physics point of view. There has been some work on
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singularity theorems in spacetimes with non totally anti-symmetric torsion [I1], [33] and they indeed assumed
something similar to condition (5.14). They also had to assume that the length of the geodesics is maximal.
Both assumptions seem to be way too restrictive and one can doubt about how much sense it makes to do
that.

Vectorial Torsion

Despite the increasing difficulty for general torsion, we succeeded in giving a construction of a null geodesically
incomplete spacetime with a specific kind of torsion, namely vectorial torsion (see the decomposition (|1.7)):

Sp,uu - gZAu - gﬁAm (515)

where A" is a vectorfield. This is possible because under sufficient assumptions on A", an incomplete null
geodesic with respect to \Y (the connection with respect to the Levi-Civita connection) can be mapped to an
incomplete null geodesic with respect to V (the connection with torsion). First of all it is interesting to see
from what sort of matter action we obtain vectorial torsion. According to the equation of motion for torsion,
Eq. in the metric formalism, we need a matter action such that

4 0Sm
nmt=————- 5.16
’ V—det g 65 (5.16)
satisfies
8rGNIL,M = SYF, — S 4S5 1 — 28V 58 + 2516

= 8glArl. (5.17)

One way to obtain this torsion is by a matter action that is non-minimally coupled to gravity:

1
S = [ d*z\/—detyg (FWF”” + 4GSHA“> (5.18)
TGN

where F,, = 0,A, —0,A,. When one integrates out torsion, using S,, = 34, one finds the Proca action (in
curved spacetime) that describes a massive vector field.

Lemma 5.2.1. Let v; be a null geodesic with respect to ﬁ, then we can reparametrize y; such that locally it
is a null geodesic with respect to V. Let v1 be a null geodesic with respect to V, then we can reparametrize
v1 such that it locally is a geodesic with respect to V.

Proof. For a null curve «, we have that
(Vs)" = 4"0u3" + T, 49"
= . P c v
(V34)" = S
= . P c v
- (Vw) + (90 A = g A”) 41

= (935)" +g(4,9)7". (5.19)

Therefore, when ~; is a null geodesic with respect to V we have that
(Vi) = g(A, A7 - (5.20)

Let p = 71 (70) be a point on v, and define

f(r) =710+ /T ! dr’, (5.21)

ro Coy + [T g(A41)dr”
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where the constant C,, # 0. This function will be well-defined and monotonously increasing or decreasing
for T € Iy = [1p — €, 70 + €] for € small enough. Let 7 € I = (19 — 8, 70 + 6) where § is chosen such that f(I3)
is a subset of the domain of definition of v, and I C I;. Defining

V(1) =n(f(7), (5.22)

we find that

Pyt
(Vi) = Sl + 4T

or?
- §<f71)+f2 AT
I

g(A, "Yl)] A7

_ | 9(A, 1) . ( 1
o ’ 2 ! i

(Cm + fTTO Q(Aﬂl)dT”) Cy + fm g(A, A )dr"
- (5.23)

2
) g(A, )| 47

Hence around 1 (79) is 1 a null geodesic with respect to V.
When ~; is a null geodesic curve with respect to V we find that

2 . p . .
(o) = —g(A )5 (5.24)
With a similar argument as before we find that locally v, is a geodesic with respect to V. O

Notice that using this lemma one can construct spacetimes with vectorial torsion that are null geodesically
incomplete. To do this one starts with a spacetime that is null geodesically incomplete if we consider null
geodesics with respect to v (e.g. choose a spacetime that satisfies the conditions of theorem. Therefore,
there is a maximal null geodesic v : I — M such that I # R. We can assume I to be bounded from above
because if it is not, we can do an affine transformation 7/ = —7 + «, where « is a constant. Choose a vector
field A, such that there are a 79 € I and constant C, such that the function

f(T)ZTo+/TC —|—f L )dT”dT/TE [10,00) N T (5.25)

is well-defined, strictly increasing and f(7) > 7. It follows from the proof of lemma that vy : [70,71) —
M, v1(1) = v(f(7)) (where 7 is such that f ([70,71)) = [r0,00) N I) is a null geodesic with respect to V for
T > 79- The geodesic y; cannot be expanded to 7 > 7 because with lemma [5.2.1] one can expand -y outside
I, which is impossible. Hence, we have an incomplete null geodesic with respect to V.

The function is strictly increasing when

>0 (5.26)
c, —I—f ,y)dT"

is positive, hence

Co+ [ gt (5.27)

0

should be positive. Notice that when one chooses a vectorfield A such that f:o g(A,¥)dr’" is positive and
/ 1| g(A,4)dr" is well-defined (and not oo), we can consider aA for a constant « and get
T0,00)

1
1+a f:ol g(A,5)dr"

>1 (5.28)
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for all 7 € [1,00) NI by choosing « small enough. Then
f(r) = (5.29)

To give an example where we can apply this construction, we take the metric
2 2
ds® = —dt* + ¢y _ (da') (5.30)
i=1

for ¢ > 0. This is the FLRW metric with x = 0 and a(t) = v/t. We treat spacetimes with this metric
extensively in Chapter [6] but for now the only thing that is really important is that we have a singularity
when ¢ = 0. Let a geodesic be given by (1) = (¢(7),z'(7)) and let u* = dy*"/dr. All geodesics will be
incomplete (when t — 0). The geodesic equations (with respect to V) are given by

du® 1, .2
el P =0
dr + 2 (u )
dut 1
—u’u' = 0. 5.31
dr + tu u ( )
The second equation can be rewritten as
d .
— [tu'| =0 5.32
s (5.32
with solution
i Ci
u' = < (5.33)

where C; are constants. The constraint equation for null geodesics is

0=—(u0)” +¢(u)?, (5.34)
such that
u’ = — % (5.35)
where C'= 3", C?. This can be solved by
3 2/3
t= <1 - 2\707) , (5.36)
choosing 7 = 0 to correspond to ¢ = 1. For an arbitrary vector A we then get
: 0, /C i
g(A,4)=A T + A'C; (5.37)
Integration yields
™ ¢ P 2 AiC,
/ g(A,3)dr" = —/t (A° + \%Azci)dt’ =A%t —ty) — 3UC (t3/2 - tg/Q) (5.38)
70 0

which is well-defined when ¢ — 0 and A and tp can be chosen such that this is positive for all ¢ < tg (e.g. by
choosing A° > 0 and A* such that A'C; > 0). Hence, we have seen that we can construct a spacetime with
vectorial torsion that is null geodesically incomplete.
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Chapter 6

FLRW Spacetime

In this chapter we will study singularities and torsion in spacetimes that are spatially homogeneous and
isotropic, but evolving in time. The most general metric that corresponds to such a spacetime is given by
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

2

1—

ds? = —dt* + a(t)? 5 + 12 (d6? +sin®(0)dy?) |, (6.1)

where we use spherical coordinates, x represents the (constant) curvature of spacelike 3-surfaces and a :
R D> I — Rs¢ (I connected) is the scale factor. The interval I has the form [to,t1], to,t1 € R, when
a(ty) = a(ty) = 0 and a(t) > 0 on (tp,t1). It has the form [ty, c0), t9 € R, when a(tg) = 0 and a(t) > 0
for t > to and it has the form (—oo,t] when a(tp) = 0 and a(t) > 0 for ¢t < to. This metric is a good
description of our universe, since from experiments as WMAP and Planck, it follows that our universe is
spatially homogeneous and isotropic when averaged over large scales.

This chapter is organized as follows. In Section we describe the geodesics in an FLRW spacetime using
its symmetries. Then we argue in Section [6.2] that such a spacetime contains an initial singularity if and only
if a(t) vanishes for a certain ¢ € I (one can do the same for a future singularity, but we restrict our attention
to singularities in the past). Then in Section we examine the relation between the existence of conjugate
points and singularities in this spacetime. One of the conditions of the singularity theorems in Chapter
implies that if a geodesic is complete, it contains conjugate points. We will show that for certain FLRW
spacetimes with x < 0 the existence of a singularity implies that all points on a geodesic are conjugate to the
point of the geodesic at the singularity. To do this we slightly adapt the definition of conjugate points. All
the points on a geodesic conjugate to a certain point also implies a singularity. Lastly we give a condition for
a geodesic in a spacetime with x = 0 to have conjugate points. In the first sections we will put torsion to zero,
however in Section [6.4] we will model torsion as an energy density and combine it first with a perfect radiation
fluid and then with a perfect matter fluid. We will see that in this case a singularity at the beginning of the
universe is avoided. As far as we know, the work done in this chapter is new.

6.1 Geodesics

In this section we will study the geodesics in an FLRW spacetime using the symmetry of this spacetime.
This spacetime has 6 Killing vectors &, given by

& =0
€ = 1—kr2{sin(f) [cos(v)as + sin(p)as] + cos(f)as} (6.2)
¢ = v1—wr? {cos(8) [cos(p)as + sin(p)as] — sin(f)az} + sin(p)by — cos(p)by

r

VvV1i—kr? 1
T sin(6)

&Y = [cos(p)as — sin(p)aq] + cot(8) [cos(p)by + sin(p)bs] — b3,
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where a; and b; are six constants [34]. Let v be a geodesic, then we can use 2 of the 3 rotation symmetries
to choose coordinates such that § = 7/2 for 4. The quantity ,¥* is conserved along v when ¢ is a Killing
vector. The Killing vectors that give non-vanishing £, ¥* are

¢ =0
€ = V1 — kr?[cos(p)as + sin(p)as]
£ = @ [cos(p)as — sin(p)a;] — bs.

r
With d, as Killing vector we find the conserved angular momentum
L = a*r?4%. (6.4)

Choosing a; = 1 and ag = b3 = 0 in (6.3) we find the conserved quantity

2

K, = & So5Y) cos(¢) A" —ra®\/1 — krZsin(p)i?

V1 — kr?
2 /1 — 2
= Ls(‘p)y — LY T () (6.5)
VI—r? r
and choosing a; = 1 and a1 = b3 = 0 in (6.3) we find the quantity
2 .
Ky = g Sy 15111(90)2 A"+ ra® /1 — kr2cos(p)A¥
— KT
2 o3 /1 — 2
— M:f F LY o). (6.6)
V1—kr? r

Vanishing angular momentum L = 0 corresponds either to a radial geodesic or to a geodesic that has constant
r, 8, ¢ (a comoving geodesic). When the geodesic passes the point that corresponds to » = 0, we can choose
different coordinates from the start such that v is not radial. Hence for a geodesic that is not comoving, we
can always choose coordinates such that L > 0 for ~.

With Egs. (6.5) and we find that
= V1—kr2Kqyr + L(1 — sr?)sin(p) V1 — kr2Kaor — L(1 — k%) cos(p)

a? cos(p)r a? sin(p)r (67)
Using the normalization of a geodesic €, where ¢ = 0 for null geodesics and ¢ = —1 for timelike geodesics,
and Eqs. (6.4) and (6.7]), we find that
- L1\ 2 2 N2 2.2 ()2
e = —(%) +m(7) + a”r® (¥%)
w2 1 [ K#r? + L2(1 — wr?)sin®(p) + 2K 1rLsin()V1 — k2 L2
= - ('V ) +— 2 2 + 3
a r2 cos?(p) T
1
= (") + o (K7 + K3 + vL?). (6.8)
Hence
;yt::t\/K%—i-K%;—mLQ—ea?. (6.9)
Using Eq. (6.7) we find that
Kyrsin(p) + L1 — kr2sin®(p) = Korcos(¢) — L1 — kr2 cos?(p), (6.10)
which leads to
[K1sin(p) — Kacos(p)]r = —Ly/'1 — kr2. (6.11)
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When we take the square of both sides and rewrite it, we find that (when L # 0)

r= L (6.12)

\/(Kz cos(p) — Ky sin(g))? + nLQ’

(when L is negative, one gets an extra minus sign) which leads, using Egs. (6.4) and (6.9), to

do _ drdg

dt dt dr
1 L

VEK? + K32+ kL2 — a2 ar®
(K3 cos(p) — K sin(<p))2 +rL?

— 6.13
al\/K? + K3 + kL2 — ea? (6.13)
Hence "
@ L 1
/ - 5 dy' = / dt'. (6.14)
o1 (Kacos(¢') — Ky sin(y'))” + kL2 t, a\/K} + K2 + kL2 — ea?
A primitive of the integrand on the left-hand side is given by
. I K1K2—(K12+RL2) tan(p)
k>0: ,7KK%+KK§+H2L2 arctan ( L\/an+nK§+'€2L2
. 1 1 K1K27(Kf+nL2) tan(p)
p<0: V—KK?—xK3—r2L2 tanh ( Ly/—kK?—rK3—K2L2 (6.15)
_ . L sin(p)
k=0, Ky 7é 0: Ko (Ko cos(p)— K1 sin(p))
R = 0, K2 =0: —W.

The last one follows because it is impossible that Ky = K7 = 0.

6.2 Singularitied|

Hubble’s law, the observed abundance of elements, the cosmic background radiation and the large scale
structure formation in the universe are strong evidence that the universe expanded from an initial very high
dense state to how we observe it now. However, what happened exactly during this hot density state is still
an open problem. One of the questions that needs to be answered is whether there was a singularity at the
beginning of spacetime. Such a singularity is defined as a non-spacelike geodesic that is incomplete in the
past. We would like to stress that the motivation behind this definition is that test particles move on these
trajectories and thus have only traveled for a finite proper time.

The flatness, horizon and magnetic monopole problem can be solved with a period of exponential expansion
in the very early universe [35], [36]. To avoid a singularity before that period, it was suggested that one can
have past-eternal inflation in which the universe starts from an almost static universe and flows towards a
period of exponential expansion. This way the universe would not have a beginning. One of the characteristics
of inflationary models is that the Hubble parameter H = a/a is positive. In [37] it was shown that when
the average Hubble parameter along a geodesic H,, is positive, the geodesic is past-incomplete such that we
would have a singularity. This is also applicable to models of eternal inflation in which the average Hubble
parameter along geodesics does not go to zero sufficiently fast (i.e. such that we do not have that H,, is
zero). In [38], a model of eternal inflation was given with all non-spacelike geodesics complete, but in [39]
these kind of models were shown to be quantum mechanically unstable. Hence, this would imply that also
models of eternal inflation start from a singularity.

In [40] it was pointed out that in De Sitter space the test particles that follow those past-incomplete
trajectories and have a non-vanishing velocity, will have an energy that becomes arbitrarily large when going
back in the past. In this section we generalize this to general Friedmann-Lemaitre-Robertson-Walker (FLRW)

1The material of this section can also be found in [I5]. We only added a few extra comments.
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spacetime. It means that the energy of such a test particle can become super-Planckian at some initial time
such that their description breaks down. This is the reason one should not consider those trajectories when
defining a singularity. When one only considers the trajectories of test particles that do not have a breakdown
of the description of their trajectory, one finds that the only FLRW spacetimes that start from a singularity
are the ones with a scale factor that vanishes at some initial time. This implies that models of eternal inflation
or bouncing models are singularity free provided one requires sub-Planckian test particles at all times.

In this section we first consider the past-(in)completeness of geodesics in spacetimes with an FLRW metric.
We review the general singularity theorems of [3] (that can be found in Chapter [5) applied to these models
and we review the more general (in the context of cosmology) argument of [37]. After that we consider how
the energies of test particles change in time.

6.2.1 Past-(in)completeness of Geodesics

Normalize the scale factor a, such that a(t1) = 1 for a certain time ¢; and let v be a future-directed geodesic.
From Eq. we find that

, K? + K2 + kL% — ea? |V (t1)]2 — ea?
’Yt: \/ 1 2a = a B (6.16)

where |X7|2 = gijﬁi"yj . We thus have a past-incomplete geodesic when

/ dr = / R — (6.17)
t1 )|? — ea?

for an initial velocity |V (¢1)| is finite. Here t is —oc if a(t) > 0 for all ¢, otherwise t; € R is taken such that
a(ty) = 0 (one can also do this when a blows up at o).
Consider first ¢y € R, then using normalization € = —1

t t
to |‘7(t1)|2—|—a2 to \/an

which is finite. This means these models are always singular, but notice that in this case we can have that
all the null geodesics are complete. The null geodesics are also incomplete in case a(typ) = 0. An example
when the null geodesics are complete is given by a(t) = 1/t for ¢t > 0.

When ty = —oco and the integral is converging, we cannot immediately conclude that geodesics are
past-incomplete. It is possible that we only consider a part of the actual spacetime manifold. An example
is given by x = 0, and the Hubble parameter H = a/a satisfying H/H? = 0, in which case a(t) = e/t
with H constant. If the whole manifold would be covered by these coordinates, it would result in past-
incomplete geodesics. However, this model only describes one half of the larger De Sitter space; the whole
space is described by choosing k = 1, a(t) = cosh(Ht)/H which yields complete geodesics. See also [41]
and [42].When the integral is diverging one can conclude that geodesics in that specific coordinate
patch are past-complete. Of course, one can also assume that a certain model with ¢t = —oo covers the
whole spacetime. Then the past-(in)completeness of a geodesic is determined by the integral .

a(t) > A € Rog for all ¢t < t; we find that since a/y/|V (¢1)|? + a2 is increasing as function of a, that

a A
>

> (6.19)
VIZ@R +a2 17 + 42

such that
dt' = 0o (6.20)

t t
/ #dt’z/ #
T/ IV(E)P + a? TV ()P + A2

74



CHAPTER 6 FLRW SPACETIME

and in the same way null geodesics are complete. This implies that such spacetimes are non-singular. Hence
for a spacetime to have a non-spacelike geodesic that is past-incomplete, a(t) needs to become arbitrarily
small.

There are a few theorems that prove that an FLRW spacetime contains a (past-)incomplete geodesic. We
considered the theorems of Hawking and Penrose ([2], [3]) in Chapter [5| (here we put torsion to 0). These
theorems state that when

R,K'KY >0 (6.21)
for all non-spacelike vectors K and the spacetime obeys a few other conditions such as containing a trapped
surface, there is a non-spacelike geodesic that is incomplete. Using Eqgs. and , one finds that the
non-vanishing components of the Ricci tensor for the metric are given by

Roo = —39;
a
ad + 26% + 2k
Ry = —— 0
1 1—krz
Ry = r%(aa + 24> + 2k); (6.22)

Rsz = r%(ad + 24> + 2k) sin?(9).
Using these components we find that condition (6.21)) yields:

0< Ry KAK” = =32 (K°)? 4 (aid + 24% + 2x) ( S (K?)? 4 sin®(0) (K3)2>

a 1— kr2
= 3% (K) 4 oy (aii + 207 4 20) (K7 + (K9)°)
a a2 K a & kK 2
= <a+2a2+2a2>K22[aa2a2] (K°)". (6.23)

We can restrict to K being the tangent vector of null and timelike geodesics. Substitution of Eq. in

Eq. (6.23) yields

- 52 p 52 V()2 — ea?
OSRMwazz(a+fg+2z>6_2P_a_ﬁ]l<0|al
a a a a

. yd 2 . .9
3a2V%N{aaﬁ]. (6.24)
a a

This should hold for all timelike and null geodesics, so for all values of |V (¢;)] and for € € {0, —1}. For e = 0
it yields

a a K
- =<0 6.25
a a? a2~ ( )
and for e = —1 it yields that
i V)2 [a > «
SR, L M G- VA B 6.26
a~ a? a a? a2 (6.26)

The right-hand side is positive by condition (6.25) and this inequality should hold for all |V (¢1)| > 0 which
implies that we have the following two conditions:

IA

0;
a < 0. (6.27)

Notice that for x > 0 the second condition implies the first, but that this does not happen for x < O.
Concluding, the geometric condition of the singularity theorems for this metric reads:

k>0 : a<0;

o .2
a_ a4 Ko <.
k<0 : {_‘_1 @ er = (6.28)

75



CHAPTER 6 FLRW SPACETIME

In particular a < 0 at all time, or that the spacetime is non-accelerating. Notice that when a < 0, a will
always be zero at some time to (this might be in the future), unless a is a positive constant (H = 0) in which
case we do not have past-incomplete geodesics. Hence, when we want to use the theorems of Hawking and
Penrose to say something about an initial singularity in an FLRW spacetime, we need a metric that has a
scale parameter a that becomes zero at some time in the past.

Describing the matter content of the universe by a perfect fluid

T/w = (,0 —I-p)Uqu + PG, (6-29)

where p is the pressure, p the energy density and U* = (1,0,0,0), the condition (6.28]) translates via the
Friedmann equations (Einstein equation for this metric),

N 2
a 8GN K
(a) =3 P (6.30)
a 47TGN
o = ——3 (p+3p),

to
k>0 : p+3p=0;

> .
k<0 : prp 20 (6.31)
p+3p >0

Although it seems that for k > 0 we have less restrictions, it is actually impossible to have an FLRW
spacetime with non-negative spatial curvature and p+ 3p > 0 and p+ p < 0, because from Eq. (6.30) we see
that we need p > 0 for £ > 0. In Fig. [6.1] one finds an illustration of condition (6.31).

p

~10 5 0 5 10

Figure 6.1: Illustration of condition . For k < 0 one needs (p,p) in the blue area above the
dashed line to apply the Hawking-Penrose singularity theorems. For x > 0, we have less restrictions,
the red shaded area below the dashed line is also included, but it is impossible for an FLRW spacetime
with non-negative spatial curvature to be in that area.

Another theorem that proves that a geodesic is past-incomplete was published in [37] and is also applicable
to spacetimes that have a(t) > 0 for all ¢. It says that when the average Hubble parameter H = a/a along
a non-spacelike geodesic, H,y, satisfies H,, > 0, the geodesic must be past-incomplete. For the metric (6.1)),
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the argument is as follows. Consider a non-spacelike geodesic v(7) between an initial point () and a final
point y(7¢). We can integrate H along the geodesic, using Eq. (6.16):

Tf te .
/ Hdr = / —dt
Ti t; tl |2 _ 6(12

a(tf
_ (6.32)
/ |V t1)]? — ea?

m la(ts) — a(t;)], e=0
~ Vlog <a<m+ |\7(t1>2+a<tf>2) ce 1

a(t)+V/ |V (t1) [ +a(t:)?
a(te) —
V(t1)]’ e=0
a(te)+V/|V (t1)> Fa(te)? _
V()| ) e=-1

IN

log

Notice that for the second equality sign, one should break up the integration domain into parts where a = a(t)
is injective, but that one will end up with the same result. Hence, this integral as function of the initial affine
parameter 7; is restricted by some fixed final 7¢. This means that when

1
Hy - / Hir >0 (6.33)
T — T3 X

7; has to be some finite value such that the geodesic is past-incomplete. Notice, that it is still possible to
construct an FLRW spacetime that has H > 0 at all times and complete geodesics. For this we need that
H,., must become zero when 7; — —oo. Examples are for instance given by spacetimes with H > 0 and
a — ag > 0 for t — —oo (in this case we will have that H — 0 as t — —o0).

6.2.2 Energy of Test Particles

As stated before, the definition of a singularity is based on the trajectories of massive test particles and
massless particles. For cosmological spacetimes with an FLRW metric, we would like to study the energies of
test particles over time. We will generalize the argument given in [40] for De Sitter space to a general FLRW
spacetime.

Using Eq. we find that for massive test particles

V()P

s (6.34)

- i 0N 2
VI = g7y =e+ (3°) =
We already saw that in order for a spacetime to have a past-incomplete non-spacelike geodesic, the scale
parameter a needs to become arbitrarily small. With Eq. (6.34]) this then implies that when the particle has
—_ Ve 2
a velocity |V (t1)| at time t1, the velocity and hence the energy E? = m? (1 + %) of a test particle with
mass m becomes arbitrarily large when moving back to the past.
The statement above for massive test particles carries over to photons. In this case the angular frequency
as observed by a comoving observer goes as

w=4" = . (6.35)

Thus also the energy of photons E = hw will become arbitrarily large when moving back to the past.

In [40] it was noted that one cannot have particles with arbitrarily high energies because if such a particle
has a nonvanishing interaction cross section with any particle with a non-zero physical number density, then
the particle will interact with an infinite number of them, breaking the Cosmological principle. However,

the particle’s energy cannot become arbitrarily high because it will reach the Planck energy Ep = ,/G—F; ~
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1.22-10' GeV at some time t. With this energy, the particle’s Compton wavelength is approximately equal
to its Schwarzschild radius such that it will form a black hole. Therefore, the description of the particle’s
trajectory will break down. Scattering processes involving vacuum fluctuations may cause the test particle’s
energy to never reach the Planck energy. If these processes are significant the particle’s trajectory is not a
geodesic anymore. Near the Planck energy scattering processes are dominated by processes that involve the
exchange of a graviton [43]. To estimate this effect we consider photon-photon scattering with the exchange
of a graviton. We model the loss of energy of the photon when going back in time as

d
—FE=(—H —on)E, (6.36)
dt
where n is the number density of virtual photons and o is the cross section of the scattering process. The
particle gains energy from the expansion of the universe because —H is positive (when going back in time)
and it looses energy from the scattering with virtual photons. We estimate the density of virtual photons as
one per Hubble volume:

1 3H?

n=—=———. 6.37

\% 4 ( )
The differential cross section for photon-photon scattering with the exchange of a graviton for unpolarized
photons is [44]

do (167Gx)* k2 6 (1 A
70 = 57 snl(0) 1+ cos 50 + sin 59 (6.38)

where £ is the momentum of the photon and 6 is the scattering angle. Since we are primarily interested in
large momentum exchange, we neglect small angle scatterings when calculating the total cross section of this

process:
do
= g Q
o /de
BN Ly AT (LE e LR
. 4 ) 14e 1—22
RRCLLHI AN LI
_ y
_ (6rGn)* R ) 1 363 1+ o) (6.39)
N A T ’ '

where we have the relation sin(6/2)=+/¢/2. Taking only angles .26m < 6 < .74w into account for the
scattering, we have that 2log% — 363 4 log(4) ~ 1. With Egs. 1' 1} and 1) we find that the

energy of the test photon does not increase when
H ~ on = 48G%E*H?, (6.40)

where £/ = k is the photon energy. Using the Hubble parameter of cosmic inflation which typically is about
—hH ~ 10'3 GeV, we find from (6.40) that the scattering process becomes significant when

EY B 1
=) ~ ~ 1010, 6.41
(Ep) 4A8Kh2H? (6.41)

Hence, processes involving gravitons will not cause the particle’s energy to stay smaller than the Planck energy
and a black hole will form. This implies that the description of the particle’s trajectory (as a geodesic) breaks
down, either because of interaction processes or by the formation of a black hole. The latter definitely happens
when the initial energy is near the Planck energy.

Up to now, the maximum energy of a single particle that has been measured is of the order of 10?° eV
[45] which is eight orders of magnitude smaller than the Planck scale. These particles were all cosmic ray
particles, so their probable origin is a supernova, an active galactic nucleus, a quasar or a gamma ray-burst.
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Even when using this energy as an upper bound for the energy of test particles, we have that the description
of the trajectories of non-comoving test particles breaks down at times that are certainly later than the Planck
era, the period where we have to take quantum gravitational effects into account. In [40] the arbitrarily high
energies of test particles were used to argue that these particles should be forbidden in De Sitter space. This
can be done by using a different time arrow in the two patches of De Sitter space that one has in the flat
slicing. That way the two coordinate patches become non-communicating and describe eternally inflating
spacetimes. We will not look into these kind of constructions for general FLRW spacetimes but we want to
use the arbitrarily high energies of test particles to give a consistent definition of a singularity. When the
particle’s description breaks down before it reaches the beginning of its trajectory, it is not very useful to
use that particle as an indication for an initial singularity. That is the reason why we suggest to define a
singularity in spacetimes with an FLRW metric that has a parameter a that becomes arbitrarily small, as a
timelike geodesic with |V (¢;)] = 0 that is past-incomplete. For such trajectories, we have that dt = dr which
means that a spacetime has no initial singularity when a(¢) > 0 for all ¢ € R. Hence, an FLRW spacetime
starts from a singularity precisely when a(tg) = 0 at some initial finite time ;.

6.3 Relation between Conjugate Points and Singularities

Since the relation between the occurrence of conjugate points and singularities is evident in the singularity
theorems, we would like to study these conjugate points in FLRW spacetime. It is sometimes stated that in
this spacetime the singularity is equivalent to the occurrence of conjugate points. In this section we will first
change the definition of conjugate points a bit motivated by an example. After that we will prove a couple
of theorems about a singularity implying conjugate points and vice versa for certain FLRW models.

Let us first start to examine a specific model. We will study the FLRW metric with x = 0 and a(t) = v/%.
This models a universe with a perfect radiation fluid for which p o 1/a*. To derive the geodesics we use
Cartesian coordinates for the metric ([6.1))

ds® = —dt* + a(1)? (da)”. (6.42)

Let a geodesic be given by v(7) = (¢(7),2'(7)) and let u* = dy*"/dr. The geodesic equations are given by

0

= +ai(u)’ = 0
W 980y — g (6.43)
—uut = 0. .
dr a
The second equation can be rewritten as
d i
- [a*u'] =0 (6.44)
with solution
i Ci 4
where C; are constants. The constraint equation is
02 2 ()2
e=—(u")" +a®(u')", (6.46)

SO

) C \/C—ea2
0 2 12 —
u’ =1/ —e+a? (u?) —\/—e—i— 5 = , (6.47)

where C' = ", C? (this corresponds with expression ) Let us now consider timelike geodesics, € = —1
and choose C' = 1. We can then solve Eq. (6.47) for a(t) = v/t by

ViE+ 2 —sinh™! (\/i) =7 (6.48)

79



CHAPTER 6 FLRW SPACETIME

where we chose 7 such that 7 = 0 at the singularity. From Eq. (6.45) and Eq. (6.47) we find that

ddit _ \/Jiazi (6.49)
which is solved by
2t = 20;sinh™* (\/i) 1Dy, (6.50)
where D; are constants (notice that we have the restriction 1 =", C?). We consider the geodesic
y= <t,231nh_1 (\/Z) ,0,0) (6.51)

and we want to examine conjugate points along this geodesic. In the spirit of Chapter 2] we construct the
matrix A of Eq. (2.39) corresponding to the point ¢; = 10 for this geodesic. An orthonormal basis that is
parallel transported along this geodesic is given by

T+a(t)? 1 1+t 1
Eo :< a(?) ’a(t)2’0’0>:< t’t’0’0>

(1 Tta(t? (1 VIt
E1‘<a<t>’ al0? ’0’0>‘<  00)

E, = <o,o,a(1t),0) = (o,o,lt,o
Es = (0,0,0,(1(115)) = (o,o,o,%). (6.52)

We now need the Jacobi fields .J; for i € {1,2,3} such that J;(¢;) = 0 and D, J;(¢t1) = E;(t1). The differential
equations for the first 2 components of the Jacobi fields only depend on each other. The differential equation
for JF, k € {2,3} is given by
(1+2t) (JF) + 261+ t) (JF)”
t

=0. (6.53)
This implies that
Ji = (la(t), ho(t),0,0)

J2 = (0,0, hs(t),0) (6.54)
Js = (0,0,0,hs(1)).

We can solve for hs explicitly and find
ha(t) = —2v/10 (sin}r1 (\/ﬁ) ~ sinh™! (\/i)) . (6.55)

We have to solve for hy and ho numerically. We can use the function g(J1, Eo) to see how good this numerical
solution is since this function should be identically 0. The matrix A is then given by

—%h1+\/1+th2 0 0

A= 0 Vihs 0], (6.56)
0 0 Vths
which has determinant )
det A=t (_\/ihl +V1+ thg) h% (657)

Notice that at ¢t = 0, v/ths(t) = 0, which means that v(10) is conjugate to the point at the singularity.
However, we do not have a Jacobi field that vanishes in the usual sense. Indeed from Eq. (6.55) we see
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that this Jacobi field does not vanish when we use another coordinate system. The norm of the Jacobi field
however, is zero in both coordinate systems. This strange behavior is caused because the metric is not well
defined at the singularity.

We use this example as a motivation to generalize the definition of conjugate points. From a physical
point of view it is the norm of the Jacobi field that matters since this corresponds to the distance between
particles moving on nearby geodesics. That is why we will also say that we have conjugate points on a
timelike geodesic when the norm of the Jacobi field vanishes. Such a Jacobi field should in principle still be
perpendicular to the geodesic (otherwise one could just get that it is a null vector). As long as the metric is
well defined this definition is the same as our original definition. Notice that the vanishing of the determinant
of the matrix A is equivalent to a Jacobi field J perpendicular to 4 and such that g(FE;, JJ) = 0 for all ¢. From

9(J, 1) =D _9(Ei, J)? (6.58)

we conclude that g(E;, J) = 0 for all i is equivalent to g(J,J) = 0.

With this new definition two points on a geodesic can be conjugate in two different ways. The first one
is that geodesics are indeed converging to one point (to first order), the second one is that that does not
happen, but that the norm of the Jacobi field vanishes. We found that the vanishing of the determinant of
A is equivalent to this new definition if the Jacobi field is perpendicular to the geodesic. In the same way
one can give a generalized definition of conjugate points for null geodesics.

6.3.1 A Singularity Implies Conjugate Points

We will now first prove a theorem that states that under a certain condition on a(t), every point on a geodesic
is conjugate to the point of the geodesic at the singularity. Here we do not know whether geodesics actually
converge to that point.

Theorem 6.3.1. Let y(7(t)) be a non-comoving geodesic (such that C = K? + K2+ kL? # 0) in a spacetime
with FLRW metric such that a(ty) = 0 for a certain ty and a is smooth for t > ty. Let

. Cla & &
f)=3q+2- |22 & .
ft)=3a+ " L e aQ} (6.59)
and define
t or t where f(t) >0
{10 IOE 6.0
0 for t where f(t) <0
f(t) = —f(t) for t where f(t) <0
o for t where f(t) > 0.
Every point v(7(t)) for t # to is conjugate to v(7(to)) if the following conditions are satisfied:
. " ’ “1fa @ K 1 34t
t1
. r_
thj?() t fydt! = a€Rxg (6.62)

for a ty > tg.

Proof. Let v be a timelike geodesic. Let y(7(t2)) be a point on this geodesic and let A denote the corre-
sponding matrix that describes the Jacobi fields that vanish at this point (Eq. (2.39)). To show that v(7(¢2))
is conjugate to y(7(t9)), we will show that lim;,;, det A = 0, or equivalently lim;_,:, log (det A) = —oo.
Unfortunately, we cannot use Lemma [2.1.2] because the metric is not well-defined at ¢y. However we can use
that

04 = 0;log(det A). (6.63)
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Consider the Raychaudhuri equation, Eq. (2.67) and use Eq. (6.24) to obtain

d@A - dr d@A - a a C la d2 R 2 9?4
W d D - Jore (%”a [ ]“("A)g
< 1 Cla a2 K
~ V/C + a2 ala a® a2

1

We find from condition (6.61) that

ty

t1 a d2 K t1
lim / (3(1 + 2— [ - - 2]) dt'"dt’ = 3a(t1)/ adt — 3 lim aadt’
t—to v a Qa a t—t t

—to
t1 1 -2
+2C lim / / [ . 2] dt" dt’
t—=to Jy a a

— 34 (t1>/ adt—fa(tl)

1 a?
—|—2C hrn / / |: — 7 — 2:| dt//dt/
t—to Jy a a

= (6.65)
Hence:
tl t1 t1 ty t1 t1
— 00 = lim (fr — fo)dt"dt' = hm a/ fydt"dt' — lim a fodt"at'. (6.66)
t—to + t t—to t t
From condition (6.62)) it follows that
ty
frdt! (6.67)
t
is a function that is « at ¢g, 0 at t; and strictly decreasing. Hence
t1
alt) / Fodt (6.68)
t
is vanishing at ty and ¢; and continuous and positive in between. This implies that
11 11
lim / a / frdt"dt = B € Ry (6.69)
t—to t # -
and together with Eq. this gives
t1 t1
lim a fodt"dt' = oo. (6.70)

t—=to Jy v

Choose t3 < t; such that (¢3) is not conjugate to y(t2). Then for ¢ < t3 we find with Eq. (6.64) that

0.a(ts)

0a(t) = — /9 L 0t 0alts)
N L dt’ +6
> — | ——— (fe — fo)dl +04(¢
jtl . m(f"r f ) A( 3)
1 t3 1 t3
> - at’ + —— _dt’ 4+ 04(t3), 6.71
2 -7= I+ e f A(ts) (6.71)
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where amax = max{a(t)|to <t < t3}. Then

ts
— | = fadt’ + log (det A(ts))

log (det A(t)) t \/7

t3

f+dt”dt/ -

IN

1 / - a4 - f_dt"dt’
VO +aZa Ji VC+a?Jv

dt’ +log (det A(t3))
ts  ts
/ a fdt"dt’
t/

dt’ + log (det A(t3)) . (6.72)

t3
\F/ C’—|—a2

—04(ts)

[t

ts ta 1" 340 1
at'dy — ——
C/ I+ C + a2

de

IN

—04(t3)

[

With Egs. (6.69), (6.70) and (6.72)) (notice that the integral of fi over the interval [t3,t1] is finite) it then
follows that

ts t3
. 1411 7 !
tlgrtlg log (det A(t)) < —tll>11t10/t / frdt"t" — 2 t_glo/t a ) fodt"dt
—04(t ———dt' + log (det A(t3)) = —o0. 6.73
A( 3) ' m g( ( 3)) ( )

That means that v(7(t9)) is conjugate to y(7(¢t2)) along ~.
Consider now a null geodesic v. The Raychaudhuri equation, Eq. (2.113)), reads:

iy o (,CTa & & oy 0%
dt_\/@<2a2{a_a2_a?]_tr(0‘4)_2

VO [a & &
<Ytk 6.74
- a {a a? az} (6.74)
Choosing again a t3 < t; such that v(¢3) is not conjugate to y(t2), it follows that for t < ¢3
-~ 04 (t3) _
Ga(t) = —[ d0s + O5(ts)
04(t)
> 2@/31 @@ m ) gt (6.75)
- . ala a? a? AV '
This then implies that
_ ts a
log (det A(t)) = ——=0zdt’ +log (det Alts))
t
ts ‘ " /! n ]‘ fa /! A
< / / [ - - aQ} dt" dt 79‘4(753)%/)5 adt’ + log (det A(t3)) . (6.76)
Condition (6.61)) then implies
lim log (det A(t)) < 2 li 1 At — 05 () — - dt’ + log (det A(t3)) =
tl)moog(e tiglot 7_7_a2 _A(3)ﬁ toa +log (det A(t3)) = —oc.
(6.77)

Hence lim;_,¢, log (det A(t)) = —oo such that v(7(to)) is conjugate to every point on ~ along this geodesic. [
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Notice that one can rewrite condition (6.61) by partially integrating the first term such that one obtains

t1 1 .
—00 = lim / { - — 2] dt’ dt’
t—to + Qa
“1d
= lim a(t) / { H— ]dt”dt/
t=to J, o dt a?
G (t t1 t1 - t1 t1 »2
- a2( ) / adt’ — lim [ Zat' + Lm [ a(t) / L
a?(ty) t=to J, a t—to J, 4 a3
(tl) i1 d2 — K

a(t) (" . o
- /t adt’ ~log(a(t1)) + Jim log(a(0)) + Jim [ a(t) /t a'dt,  (6.78)

t—to ’ a

such that condition (6.61)) is definitely satisfied when

lim / / T (6.79)
t—to t
is not oo.

Also condition ([6.62)) is satisfied as soon as f is negative for ¢t € (tg, tg + €).
Theorem [6.3.1] can also be proven under different conditions. One set of such conditions would be for
instance

b a b 1 Cla a2 K
li —_— —— 30+ 2= |- — = — = | |ddt' = —o0; 6.80
i [ o L e (et [ ) o (640)

t1 t1 1Ta -2
i (a2 [a_az_*;] " dt
t—to ¢ ¢ a|a a a

which would have made the proof really easy.

Theorem [6.3.1] is applicable to FLRW spacetimes with physical realistic scale factors. Take for instance
a(t) = t'/™ for n > 1 (n = 2 corresponds to the scale factor of an FLRW spacetime with x = 0 and a perfect
homogeneous radiation fluid and n = 3/2 to k = 0 and a perfect homogeneous matter fluid). We then find
that for n # 3

h h 1 a [12 K s /1
I e _ /n _ 7
/t a/tl " [a 2 az] at'dt’ = / / { 751/n+2 tS/n] dt" dt’

— t/l/n 1 1 n K " dt/
A Tt n i/t 3 pp/nt v

|
|
8

t1 ty
1 1 n K
= 1/t — / - dt’ 6.81
a/t i T+ni  3_ngin (6.81)
n / 1 n K h
L A Vo 1/n+1) _
= t t logt
al—i—n(l {1—&— o8 +3—n2n—2t2/" Q]t’
where
1 1 n K

= . 6.82
1+nt}/"+1+3fnti’/"_1 ( )

We find that this scale factor obeys condition (6.61). Similarly, one can show that condition (6.61)) is satisfied
for n = 3.
Also
. Cla & & 1.1 1 11 K

which goes to —oo when ¢ — 0 and that implies that condition (6.62) is satisfied.
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Notice that when a(t) =¢

.. . t1
/tla/hl 9—“%—% at'dt’ = _/tlt’/tll?{dt”dt’zl/ht' LEs) gy
' v ala a2 a ' vt 2/, 2 ],

11+k 1
= 1 (1) = 5 (L+r) (logts —log(1)), (6.84)
1

such that condition ([6.61)) is not satisfied for k < —1.

We will now give a more general proof when x < 0. For that we first need to examine when a timelike
non-comoving geodesic (7) has a well defined point v(79) at the singularity. We observe from Eq. (6.12))
that for k < 0, r — oo at a certain angle. This is because

(K5 cos(p) — Ky sin(g))® = —kL?, (6.85)

will be satisfied at two angles ¢ (when —xL? = 0 only for one angle, but that does not matter for the
argument), because the left-hand side takes values between 0 and K? + K3, and

K2 K2 _ a’4 < r\2 L2 L2
1+ 2—1_1‘%2(7)"'7?2_“ (6.86)
which means that

0<—kL? <K} +Kj. (6.87)

The divergence of r at a finite angle implies that lim_,,, ¢(7) is converging because from Eq. (6.4) we see
that ¢ is monotonously increasing or decreasing and ¢ is bounded by the value where r — co. This means
that (1) is a well defined point, precisely when r does not diverge for 7 — 79.

Theorem 6.3.2. Let () be a timelike non-comoving geodesic in a spacetime with FLRW metric with x < 0
such that a(ty) = 0 for a certain to. If v(10) = v(7(to)) is a well defined point in the manifold, then every
point y(7(t)) for t # to is conjugate to v(1p).

Proof. Let v(7) be a timelike non-comoving geodesic with constants Ky, K, and L ((6.4), (6.5) and (6.6)),
let (1) be an initial point where 71 corresponds to a time ¢; and let 79 correspond to to:

to a

5 > 5 2dt
n VEI+KZ+kl2+a

To=T1+ (6.88)

Let now ¢g = v¥#(70).

To prove this theorem we will construct a one parameter family of geodesics in such a way that we can
calculate the Jacobi field related to it. In Fig. [6.2] one can find an example where we used the FLRW metric
with a(t) = v/t, Kk = —1 and showed the evolution of r and ¢ for geodesics with initial point (t,7,6, ) =
(2,0.5,7/2,0.1) and initial velocity 4% (71) = 1+w, 4% (71) = 0 and 4¢ (1) = 0.1 (1 + w) for w € {-0.5,0,1}.
At the singularity ¢ = 0 the Jacobi field that corresponds to this family of geodesics is well defined, such
that its norm vanishes (assume that all geodesics in the family have equal length) and we have that ~(0) is
conjugate to y(71).
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—0.5+

-1.0r
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-2.5¢

—-3.0F

(b)

Figure 6.2: Tllustration for this proof. Choose initial parameters such that all geodesics have equal
length and such that one can calculate ¢ and r at the singularity. That way one gets a Jacobi field
such that its norm vanishes at the singularity.

We will now do this for a general geodesic in an FLRW spacetime with x < 0.

We will construct a one-parameter family of geodesics 7,,(7) = I'(w, 1), where w € (—4,9), (0 to be
determined later) such that vo(7) = v(7) and v (71) = v(m1) = (t1,71,7/2,1). Since L # 0 we have that
4¢ (1) # 0. We choose 7% (1) = 7/2 and as initial conditions

Yo(m1) = 4"(r1)f(w), (6.89)
Yo (m) = 7(m)f(w),
where f : (=4,0) — R and f(0) = 1. The only other parameter left to vary is the normalization e(w)

(e(0) = —1). Notice, that the constants (6.4), (6.5) and that follow from the Killing vectors for -,, are
related to the constants of v = vy by

Kl,w = Klf(w)
KQ,w = Kgf(w) (690)
L, = Lf(w).

We now first require that ~% (19) = to to get J*(79) = 0. We do this by considering the function

to
a
=7'1+/
o (K} + K3+ kL2) f2 — ea?

hi(f,e) dt'. (6.91)

This function gives the value of the affine parameter corresponding to the geodesic with parameter f, e at
t = to. We want this parameter to be the same:

hi(f,€) = To. (6.92)

The integrand of h; is partial differentiable with respect to f and € and the partial derivatives are continuous
for (f,e) € V aneighborhood of (f,€) = (1, —1). This means that h; is continuous differentiable for (f,€) € V.
The partial derivative with respect to € is given by

1 to 3
@E:,/ a 3t (6.93)
0c ~ 2 )i (Ki+ K31 nl?) 2 — e

which is certainly non-zero in (1,—1) since the integrand is positive for all ¢t € [tg,¢1]. By the implicit
function theorem we then have a continuous differentiable function € : (1 — 41,1 + d;) — W for a certain
61 (choose it such that (K7 + K3 + xL?) f2 > 0), where W an open interval around —1. Thus all geodesics
with parameters f, ¢(f) have the same length.
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We will now construct f in terms of w such that v (t9) = po(w+1) and therefore we consider the function

to 1 /
half) :/t1 a\/(Kf—&-KQQ—I—mLQ)fQ—e(f)ant. (6.94)

This is again a continuous differentiable function of f for f € (1 — 1,14 d1). Since 7%, (7o) = to we can use

Eq. (6.14) to obtain:

Ly/=rKF—rK3—r?L? tanh (y/=rK3 —kK3 —x? L2 fha(f)) K1 Ko

1
5g arctan —(KF?) - k<0
=< 1 ha(f)K3f _ 6.95
U}(f) % arctan m} -1 R = 0, K2 7é 0 ( )
1 L — —
Earctan 7W -1 KZ—O, K2 =0.

We want to use the inverse function theorem and for that we need to show that %}ﬁ’(l) # 0. Consider first
the case K = 0 and K # 0. We have ‘fT;j(l) # 0 precisely when

d ho(f)K3 f
df [L + h2(f)K2K1f]f_1 7 0. (6.96)
Now
L dhy
4 [ ha(f)K3f ] _ af [+ ha(f) 2 P @)+ ha(1) K21 6.97)
df [ L+ hao(f)K2K 1 f F=1 N (L+h2(f)K2K1f)2 2 - = (L+h2(1)K2K1)2 2L. ‘

We have that

dhs

i at

(1) + ha(1) :/

to —K? — K3+ %g—;(l)aQ + K2+ K3 — e(l)azdt B /to %g—;(l)az + a?
ty a(K? + K2 —¢(1)a?) t1 af

3/2 K2 + K2 + kL2 + a2)*/”
(6.98)
and we must have that 9¢(1) > 0 because otherwise we can never have that hi(f,e(f)) is independent of
f. Since Ks # 0 and L # 0 we have that w is a continuous differentiable function of f around 1 and
its derivative is non-zero in f = 1. By the inverse function theorem, there exists a continuous function
f:(=6,0) = (1 =461,1+81) and such that v% () = wo(w + 1).
For k =0, Ko = 0 we find in a similar way that

i {_ s ] C[E(en %] L(ro+S0) 699)
df | K¥fha(f)lper | K7 (FR2(f)? | K7 (ho(1)) '
so w(f) can be inverted by similar reasoning as in the previous case.
For k < 0, ‘Z—;f(l) # 0 precisely when
d
i {\/—an kK2 - /Q?L?fh(f)} . £ 0. (6.100)
Now
% |:\/—KJK12 — kK3 — ,<;2L2fhz(f)L1 = \/—me — kK2 — K212 {CZ}?(U + hz(l)} (6.101)

Hence, we have that w(f) can be inverted by similar reasoning as for x = 0.
Hence we have constructed the family of geodesics 7,,. This family corresponds to a Jacobi field J such
that J(71) = 0. Furthermore using Eq. (6.12) we find that:

L

yr = , (6.102)
\/(Kg cos(pw) — K1 sin(pw))? + kL2
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which we can use to calculate J at 7p:

L (K3 cos(pp) — K1 sin(pg)) (K2 sin(pg) + K1 cos(vo))

J(TO) = OuwYw (t)|w:0,-r:7—0 =10, o7
{(K2 cos(wo) — K1 SiIl(<,00))2 + &LQ}

900707900 ) (6103)

which is well-defined. This means that g (J(79), J(79)) = 0 which proves that ~(71) is conjugate to (7o)
along ~. Notice that we not necessarily have that g(J,4) = 0, but at least J is a spacelike vector at the
singularity. O

We want to stress that theorem is less satisfactory than theorem because in this case the Jacobi
field that has vanishing norm is not necessarily perpendicular to the geodesic. To improve on this theorem
one should try to use a similar construction to find a Jacobi field with vanishing norm that is perpendicular
to 7.

Theorem only holds for non-comoving timelike geodesics v with a well defined point ~(¢y) at the
singularity. We would like to prove a similar theorem for timelike geodesics that do not satisfy this condition,
hence have that r — oo for ¢ — to. From Eq. (6.12)) it follows that geodesics have this behavior if and only
if (K4 cos(p) — K1 sin(@))? + kL% — 0. Let ¢ be an angle such that (Ks cos(p) — Kj sin(p))? 4+ £L2=0, then

K7 [K3 cos® () + K7 sin®(p) — 2K1 Ko sin(p) cos(p) + kL?] =
—kL? (K3 cos?(¢) + K7 sin®(p) — 2K Ko cos(p) sin(p) + kL?) . (6.104)

This can be rewritten as

K2KZ cos®(p) + (K2 + kL%)° (1 = cos®(p)) — 2K, Ky (K? + kL?) sin(p) cos(p) =
L? (=kK} — kK3 — K°L?) cos”(). (6.105)
Dividing by cos?(y) yields
(KK — (K7 + wL%) tan(p)]” = L2 (—kK? — kK7 — k2L?). (6.106)
This implies that for x < 0, lim;_,;, 7 = oo is equivalent to

K1K; — (K} + kL?) tan(p)

im =-1, 6.107
t=to [\/—kK} — kK3 — k2L2 ( )
but then it follows from Eq. (6.15) and Eq. (6.14) that
¢
1
lim "= —c0. (6.108)

dt
t=to /i, a\/K? + K2 + kL2 + a2

When x = 0, r — oo is equivalent to K» cos(p) — K1 sin(¢) — 0. Thus also in this case it follows from Eq.

(6.15) and Eq. (6.14) that

t
1
lim / dt’ = —oo. (6.109)
t=to Jt, ay/K? + K2 + kL? + a2
In principle one can do a similar construction as in theorem (6.3.2)) for a geodesic v with property (6.109)
and initial point (7). Namely construct a family of geodesics 7,, such that v9 =7, Y (71) = y(71) and
Yo(m) = 7" (1) f(w),
Yo(m) = ¥ (m)f(w), (6.110)
where f: (—6,0) — Rsg and f(0) = 1. The constants (6.4), (6.5) and are related to the constants of
Y =0 by

Kl,w = Klf(w)
Kg,w = Kzf(w) (6.111)
L, = Lf(w).
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The normalization ¢( of ’yw can be ﬁxed in the same way as in theorem such that ~¢,(10) = to.

From Eqs. -, and ( it follows now that

) 1 1 KlKg—(Klz+nL2)tan(<pu,) _
p<0: f(w)\/anlzangfnsz tanh ( L\/anlzan§7K2L2 T
o . Lsin(pw) 6.112
k=0, Ky #0: Fw)K2(Ka COS(@f)—Kl sin(pw)) ( )

k=0, Ko =0: — —00.

T F@)K? tan(pw)

This means that
K1K27(K12+KL2)tan(gpw)

Ly/—kK?—rK3—K2L2

- . Lsin(¢pw) _ 6.113
k=0, Ko #0: T (i cos(pn) — sty — ( )
k=0, Ko=0:

— -1

k<0:

K7 tan(pw) T

and this will give a unique solution for ¢,, independent of w (and the function f). This means that v% (1) — g
when 7 — 79. The radius, Eq. (6.12), does not depend on f, but it goes to oo for all w. Ideally one would
like to prove that ., /4" — 1, because in that case one would have a Jacobi field corresponding to 7, that
vanishes in the limit of 7 — 79. It seems hard to do this unfortunately.

6.3.2 Conjugate Points Imply a Singularity

In the previous section we proved two theorems that show that when a(tp) = 0 for some ¢, it is possible
that all points on a geodesic are conjugate to the point (). This seems like strange behavior and must
come from the metric not being well-defined at ty. Indeed, from Morse Index Theory it follows that there
can only be a finite number of points of v between some point v(¢;) and ~(¢y) conjugate to v(tg) when the
metric is well-defined (see e.g. [22]). In the timelike version of this theory one considers a timelike geodesic
v: [n, 7] = M and the index form 1 : V+(y) x V() = R

T
1Y) == [ g(D:X.D.Y) g (R(X.3)3.V ] dr. (6.114)
Let V() be the subspace of V+(v) with elements X such that X (7;) = X (7¢) = 0. The index of v is then

Ind (y) = limsup {dim A : Ais a vector subspace of V;"(v) and I|A x A is positive definite}. (6.115)

If J-(vy) denotes the R—vector space of smooth Jacobi fields along v such that J(r ) = J(7) = 0 for
7; < 7 < 7%, then one can show that Ind () is finite and

Ind(y) = > dimJ( (6.116)

T <T<Ts

For a null geodesic 7y one can use a similar argument using null Morse index theory. This proves that whenever
we find that all the points of a geodesic v are conjugate to a certain point y(ty) we have that a(tp) = 0 and
hence a singularity.

We now prove a theorem that shows in which cases an FLRW spacetime with « = 0 has conjugate points.

Theorem 6.3.3. Let v be a timelike geodesic with constant C in an FLRW spacetime with k = 0, let a(t) > 0
for all t and let v(1;) and ~v(1¢) be two points on this geodesic. These points are conjugate if and only if

te 1 — aa?
dt dt, 6.117
/i aq/C+a2 /i a3/ C+a23/2 ( )

where

= (6.118)
j;it (C+a2)3/? dt
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Proof. We will use Cartesian coordinates (t,x1,x2,x3). We can choose these coordinates such that for =,
r9 = x3 = 0. We furthermore have that

‘ VC +a?

(6.119)

(Eq. [6.45) and as usual we choose g (¥,7) = —1. Let v(r) = (ti,#{,0,0). A Jacobi field that vanishes at
two points (), ¥(7¢) corresponds to a variation I'(w,7) such that I'(0,7) = ~(7), I'(w,n) = (7)) and
0wI'(0,7¢) = 0. We know that 7, (7) = I'(w, 7) satisfies

. C(w) — e(w)a?

o = VOl
LT Cl(w)

’y/uj = a2 )

. Co(w

Yo' = 2;2 ); (6.120)
. Cs(w

jo = Slw)

a

where C(w) = C1(w)? 4+ C2(w)? + Cs(w)?. Consider first the function

Flu,w) = / a dt. (6.121)
t VC(w) — e(w)a?
We know that for i <7 <7, 7 — 7y = F(t(w, 7),w) = G(w) for all w, hence
dG 9F 8t _OF a o 1t a(Cw) - éwa)
& TR 9T = L dt. (6.122)
dw  Oudw Ow C(w) —e(w)a2 0w 2 J, (C(w) — e(w)a2)?/
Evaluation in w = 0 yields
ta(C(0) — é(0)a?
e o )= 3/ ( . )dt (6.123)
VC + a2 dw 2 )y (C+a2)*
Hence
o Lora a0 -doe)
- lw=0(T) = 5 / dt (6.124)
ow 2  a b (C+ a2)3/2
(here v!(7) = t). Evaluation in 7 = ¢ (t = t;) yields
toa (c‘(o) - é(O)aZ)
0= / rdt. (6.125)
t (C +a?)
Therefore:
€(0) = aC(0). (6.126)

We can integrate Eq. (6.120):

D(w,7) = (t(w,T),/: %m’ —I—x(l),/: %drﬂ/: %m’) : (6.127)

i i i
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It then follows that

) = T Cl(w) B Cy(w)ady,t(w, ")

Gull7) (awt’/ﬂ <a2<t<wm’>) B, ) )
T Cy(w) 5 Ca(w)adut(w, ') L T Cs(w) 5 Cs3(w)adut(w, ') L
/ <a2<t<w,r'>> 2 1w, 7)) )d gl <a2<t<w,r'>> 2 B tw, ) )d )

Evaluation in (w, ) = (0, 7¢) yields

0 = 8,00, 7) (6.129)

_ Tf CI(O) . C’1(0)a5'wt(0,7) - . Tf# n . Tfi .
_ (o/ (CLQ(T) 2 >d ,02(0)/? GZ(T)d,cg(O)/T_ a2<7)d>’

i i

which implies C5(0) = C5(0) = 0. Eq. (6.124) and the z! coordinate in Eq. (6.129) yield

fCy(0) 40,0, 7(t))
————dt = 2C4(0 / 2t 6.130
4 av/C+a? 1(0) 4 2\/C’—|—(12 ( )

ts t a 0)a2>
/ — / S5 dt'dt.
. a C + a2 /

ty

Using Eq. (6.126]) we find
1 —aa )

te
= 2 _ £ 131
/i - C+a2dt C2(0)C1 (0 / a3/ oiw ) at'dt. (6.131)

If C1(0) = 0, we have that ¢(0) = 0 and we find the Jacobi field J = 0. Hence Eq. (6.131) yields condition

(6.117) if (7)) and (7¢) are conjugate. If condition (6.117) is satisfied, it follows with Eq. (6.131) that we
can choose a variation with C}(0) # 0, C5(0) = C3(0) = 0 and é(0) = aC( ). From Eqs. (6.123), (6.128) and

(6.131) we find that 9,,I'(0,7¢) = 0. -

Notice that when a is constant, the right-hand side of Eq. vanishes, which implies there are no
conjugate points in an FLRW spacetime with this scale factor. This makes sense, because this is Minkowski
space. Also comoving geodesics (that have C' = 0) do not have conjugate points. Notice that when one can
choose times t;, t¢ and a constant C' > 0 in such a way that condition is satisfied, there are conjugate
points in a spacetime with a(¢) > 0 at all times. This means that conjugate points do not necessarily imply
a singularity. At the other hand, when all points on a geodesic are conjugate to the point at the singularity,
that does imply a singularity.

6.4 Including Torsion

We will now study torsion in a spatially homogeneous, isotropic universe in two settings. First together
with a perfect radiation fluid and then with a perfect matter fluid. Torsion is induced by fermions and by
integrating out torsion in the Einstein equation, and studying the Dirac equation in conformal spacetime it
turns out that for torsion

ps = — % (6.132)

where p; > 0.

6.4.1 Radiation and Torsion

Consider a spatially homogeneous, isotropic universe in which we have a perfect homogeneous fluid of radia-

tion, which density goes as
Po

o (6.133)

Pr =
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where pg > 0, and torsion, which density goes as Eq. (6.132)). The Friedmann equation, Eq. (6.30) reads
a>  87Gx /po  p1 K
e= 5 i %) (6.134)
We will examine the behavior of a using the right-hand side of Eq. (6.134):

87TGN 2 87TGN
poa~ — 3

f(a) = —ka* + p1- (6.135)

We have ¢ = 0 exactly when
fla) =0, (6.136)

a=+, /2L (6.137)
Po

Since f — oo for a — oo and f(0) < 0, this always results in a bounce and therefore a non-singular
spacetime. When k # 0 Eq. (6.136)) is solved by

which is solved for x = 0 by

8rG 8rG 2 327G
e e e

=+ 6.138
a “on (6.138)
For xk > 0, this has two positive and two negative real solutions in case that
27GN
<= I (6.139)

and otherwise it has zero real solutions and is f(a) < 0. When Eq. has solutions, we find that for
a — oo, f(a) = —oo and f(0) < 0 so in this case we have that a solution a(¢) will be bounded by two
values. This means that for non-vanishing torsion we do not have a singularity.

For k < 0, f(a) = 0 always has two real solutions: one positive and one negative. Now f(a) — oo for

a — Fo0o so we find that
4’/TGN 3K P1
t) >/ — a1 1/1— — 6.140
a( ) = 3k Po + 27TGN pga ( )

which will result in complete geodesics and hence no singularity.
We will now expand on the example that we started with in Section We will work in conformal time

Juv = a(n)277;wv (6'141)

since in this way we can solve for the scale parameter explicitly. Notice that we can transform back and forth
between time ¢t and conformal time 7 using the relation

dt = a(n)dn. (6.142)
The Friedmann equation, Eq. (6.134]) (we take x = 0), in conformal time reads

a? 8rGx (po  p1
a” _ P p1 6.143
at 3 (a4 a6) ’ ( )
where we denote
,  da
a = (6.144)

=
Eq. (6.143) is solved by

G
a(n) = Py mnz

Va+ B2 6.145
o 3 U (6.145)
We have chosen the integration constants such that the bounce or singularity takes place at n = 0. In Fig.
one can find this a for & = 8 = 1. Taking o = 0 and transforming to time ¢ using Eq. (6.142)), one indeed
finds that a(t) o V1.
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Using that dt = a(n)dn, we find that the geo- 107
metric condition from the singularity theorems, Eq.
(6.24) (which is used to predict conjugate points) in 8l
conformal time is given by:

a” a\?%\ ¢ C
3 (% N
(a <a>>a2+ at

| %
|
[\
VRS
|8
N——
no
| I
IA
(@)
am)
N

(6.146)
For Eq. (6.145) this yields: 2
a — 28n? 0=, ‘ : =
—3(a—PBn*)e+20 | ——2—| <0. (6.147 -10 -5 0 5 10
(o= 6m’) { o+ fn? ] B ( )
So for & = 0, we see that we get that Figure 6.3: Scale parameter of a spatially
3602 — 4C <0 (6.148) homogeneous, isotropic universe with radiation and
- torsion.
which is clearly satisfied. Of course we also have a
singularity here. For o > 0 we find that the condi-
tion gets broken for some timelike geodesics for
2 3p1
<—=—-— 6.149
(take C small enough). It gets broken for all geodesics when
3
I L — (6.150)

28 167GNpE

This model has a bounce for p; > 0. Since it becomes singular for p; = 0 it is an excellent example to
examine the relation between conjugate points and singular points. For that we first have to construct the
geodesics. Let a geodesic be given by

v = (n,2"), (6.151)

and let u* = %7“, where 7 is an affine parameter. Then the geodesic equation gives rise to two equations:

i ((«ﬂf 5> (ui>2) -0 (6:152)

2—u'u' = 0. 6.153
dr + au b ( )
Using that a’u’ = +La and that we can write (uZ)2 = (u0)2 + %, Eqs. (6.152) and (6.153) can be written as
d
n [a4 (u0)2 + aQG} = 0; (6.154)
d 5
e [a uz] = 0.
which leads to
O~ a2
W = Y= (6.155)
a
i &
u = o (6.156)

Normalization implies
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Let us now focus on timelike geodesics: e = —1. Then Eqs. (6.155) and (6.156]) can be written as

,/C 2
W0 = %; (6.157)

a _ er i i 6.158
dn dn VO + a2 ( )

For the scale parameter that we are considering, Eq. (6.157)) reads

dn  C+a+pn?
= (6.159)

and Eq. (6.158)) gives us

dz' C;
zt (6.160)

Ay \JCta+pBpR

This is solved by

i Ci )
o= log (ﬂn+ \/C’ﬁ+o¢5+[32n2> + D, (6.161)

We consider the geodesic

1
v=|n —=log (ﬂn +VB+as+ 527]2) ,0,0) (6.162)
(158 (o1
and construct the matrix A (Eq. [2.39) corresponding to the point v(—10) for this geodesic. An orthonormal,
parallel transported basis along ~y is given by

Fo = ( jn?zn) ’a<117>2’0’°>
a(n)2

(a(im’ Cos ’0’0>

(o,o,o,a(ln)).

We now need the Jacobi fields J; for ¢ € {1,2,3} such that J;(—10) = 0 and D.J;(—10) = E;(0). We
solve for the Jacobi fields numerically (although just as in Section one can solve for 2 of the Jacobi
fields analytically). When we look at the determinant of the matrix A (which is zero at a conjugate point
to 7(—10)) for different values of a and B, we find that this function goes through a minimum. A plot of
the determinant of A can be found in Fig. We see that the determinant of A is 0 at n = —10 and
becomes bigger at first, then it decreases again and has a minimum a little bit before the bounce at n = 0
after which it keeps increasing. In Fig. the more familiar expansion parameter 64 is shown. Here we
see that indeed 64 is increasing for —1 < 1 < 1 where the singularity condition is broken. We observe that
there is no conjugate point along this geodesic to v(—10).

B

0 (6.163)

Es
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(a) Determinant of the matrix A corresponding to v(—10). (b) The expansion parameter corresponding to v(—10).
The determinant vanishes at the initial point and has a Notice that 64 is increasing for —1 < n < 1 where the
minimum just before n = 0. singularity condition is broken.
Figure 6.4

This minimum in the determinant is a common feature for different values of «, S if the initial point (1)

is far enough from ~(0). In Fig. we show the dimensionless variable /3 (1/+/5 is a typical time for the
bounce) at which the determinant of A has a minimum for different values of a, 8. We see that this minimum

is further away for larger o because the minimum value of a is v/a.

1.07
08
0.6/
Q,
04
02
~d1
0.2 04 06 0.8 1.0

[0

Figure 6.5: The value of 771/ at which the determinant of A has a minimum as function of o and 3.

6.4.2 Matter and Torsion

Consider a spatially homogeneous, isotropic universe where we have a perfect homogeneous fluid of matter,
which density goes as

Po
and torsion, which density goes as Eq. (6.132)). The Friedmann equation, Eq. (6.30) reads
a?  87GN [p0 K
e= 5 (%)= (6.165)
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We will examine the behavior of a using the right-hand side of Eq. (6.165):

o 87TGN

fla) = =5

(poa® — p1) — Ka*. (6.166)
We have that ¢ = 0 exactly when
f(a)=0. (6.167)

For x = 0 this results in one solution which means we have a bounce and a(t)® > p—;. This immediately implies
that all geodesics are complete as we have seen in Section[6.2] For x > 0 we see that f has a maximum for a; =

Q’TGTN”O and the only other extremum can be found at a—0, but this is a saddle point. f(0) = —%m <0
and f(ai) = 5%7W4f§pg — —8”3GN p1. Hence when
3G3 4
pr < 27100, (6.168)

f crosses zero twice for 0 < ag < a1 < as such that a bounces back and forth between ag and as and when

3013 4

™G

pr > 2 NP0 (6.169)
K

f is negative everywhere. This implies that for non-vanishing torsion we always have complete geodesics.

For k < 0 we see that the function f has a minimum at a; = Q”GTNPO < 0 and the only other extremum is

4~4 4
at a = 0. The function f has the value—%m < 0in 0 and 5% il fjgf”o — %pl < 01in ay. This implies that
f is zero twice for ag < a; < 0 < as. Hence we again have a bounce for non-vanishing torsion and therefore
no singularities. Also all geodesics are complete.

The Friedmann equation corresponding to matter, torsion and x = 0, Eq. (6.165)), is solved by

1/3
a(t) = Py 98mGnpo 2 = (a+ ﬂt2)1/3 (6.170)
po 4 3

where the bounce (a > 0) or singularity (o = 0) takes place at t = 0.
We can again look at the singularity condition (6.23) to see what we get in this case:

0 > 20(a — Bt?) + (=3a + Bt2)(a + ft?)* e, (6.171)

This leads to a violation of the condition for certain timelike geodesics (C' small enough) when

2 o P1
and for all geodesics when
2 @ P1

Oue finds similar behavior as in the radiation and torsion case when considering the matrix A (Eq. (2.39))
corresponding to an initial point v(¢1). The determinant of A can again have a minimum before the bounce
at t =0.
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Conclusion

In this thesis we studied the singularity theorems of Hawking and Penrose in the context of spacetimes with
non-vanishing torsion. Assuming that test particles also move on geodesics for general torsion, we used an
incomplete non-spacelike geodesic as definition of a singularity. We started with a very general approach
to see whether we could generalize the propositions proven by Hawking and Penrose and used to prove the
singularity theorems in the context of general relativity to spacetimes with arbitrary torsion. To do this we
needed to study the generalized Jacobi and Raychaudhuri equations. We found an extra term with respect
to the literature in the Raychaudhuri equation for a timelike geodesic and arbitrary torsion. We succeeded
in proving the propositions of Hawking and Penrose for the case of totally anti-symmetric torsion and found
that the resulting singularity theorems agreed with the ones proven in a different way in [14]. An important
step in doing that was to derive that the vorticity wa = —%Sw where ~ is a geodesic. Our way of proving
the singularity theorems is more cumbersome than what has been done in [I4], but we did it because we
were hoping that we could generalize the theorems to spacetimes with non totally anti-symmetric torsion.
In that case the proofs in [I4] are not valid anymore because they assumed particles to move on curves of
maximal length instead of on geodesics. Only for totally anti-symmetric torsion both sets of curves are equal.
Unfortunately, we had to conclude that it is impossible to generalize the Hawking-Penrose theorems to non
totally anti-symmetric torsion in a very direct way (using the theorems that already exist). One has to come
up with completely new arguments to attack this problem. We only succeeded in giving a construction of
null geodesically incomplete spacetimes with vectorial torsion, by observing that we can map null geodesics
with respect to the Levi-Civita connection to null geodesics with respect to the connection with vectorial
torsion. It would be very interesting if one could generalize the singularity theorems to spacetimes with non
totally anti-symmetric torsion.

We also reviewed the ways to derive the equations of motion for Einstein-Cartan theory. We compared the
metric formalism, in which the metric and torsion are taken as dynamical variables and metric compatibility
is assumed, with the metric-affine formalism, in which the metric and connection are taken as dynamical
variables and no metric compatibility is assumed. It turned out that for the case of totally anti-symmetric
torsion (this is the torsion one gets for the matter in the Standard model) the both formalisms are actually
equivalent. Metric compatibility follows from the equations of motion in the metric-affine formalism. To
derive this equivalence one has to use a gauge symmetry of the action and since this symmetry is probably
broken when adding renormalization corrections to the action, the equivalence does possibly not hold anymore
when one introduces quantum corrections. This part was not new, although there are a lot of mistakes in
the literature. It would be interesting to see what happens with the conditions of the singularity theorems
when one includes quantum corrections, so this is something for future work. If the two formalisms are not
equivalent anymore, one has to use the metric formalism to make the translation from geometry to matter
in the singularity theorems since in the proofs one uses metric compatibility extensively.

In general relativity one has the Bianchi identity and conservation of the energy-momentum tensor that
follow from diffeomorphism invariance of the theory. We derived a generalization of these equalities to
spacetimes with torsion.

We concluded by studying the singularity theorems in FLRW spacetimes, mostly with respect to an initial
singularity. To do this we put torsion to zero. We first argued that one should not consider all geodesics
when looking for an incomplete one, but that one should only consider the comoving ones (this part can
also be found in our paper [I5]). This is because non-comoving particles that follow an incomplete geodesics
have an energy that blows up when going back to the past. This means that (if they kept following that
geodesic) their energy will be larger than the Planck energy at some initial time at which point they form a
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black hole. This means that those particles do not reach the beginning of their incomplete trajectory which
is why they should not indicate a singularity. After defining what a singularity is in FLRW spacetimes, we
examined the relation between conjugate points and singularities which plays an important role in many
of the singularity theorems. We showed that for a class of singular FLRW spacetimes all points on certain
geodesics are conjugate to the point of the geodesic at the singularity. We also argued that when all points
on a geodesic are conjugate to a certain point one must have a singularity. Lastly we showed under which
condition a geodesic in an FLRW spacetime with flat spacelike three-surfaces has conjugate points. We have
to mention that we used a slightly different definition of conjugate points. Normally, this is defined as two
points along a geodesic where a Jacobi field vanishes. Loosely speaking, one can see this as a one-parameter
family of geodesics leaving from one point and coming back at another point. We extended this definition
and also included cases where the norm of a Jacobi field vanishes at two points along the geodesic (this is not
equivalent at the singularity) because it is the distance between geodesics that matters. As far as we know
the part on the relation between conjugate points and singularities is completely new. There is still some
work to do, since we did not have time to treat all kind of models extensively. One can try to prove similar
theorems as we did here for other classes of FLRW spacetimes. For instance examine under what conditions
one has conjugate points in spacetimes with positive or negative curved spatial three-surfaces. One can also
examine what happens in spacetimes that are small perturbations of FLRW spacetime.

After this we introduced torsion in FLRW spacetime as an energy density, combined it with a perfect
radiation fluid and a perfect matter fluid, and examined what happened with singularities and conjugate
points. This part was mainly meant as example and also to see what happens with the initial singularity. We
actually found that one gets a bounce, but this has been noticed before and more rigorously, even including
quantum corrections, e.g. [16].
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Appendix

In this appendix we intend to give a very brief overview of tensors and differential forms. We will omit all
proofs, see e.g. [46] for a very thorough introduction to manifolds.
Tensors
Definition. Let V be a vector space. A covariant k-tensor T on V is a multi-linear function
T: Vx.xV->R

where we have k copies of V. The wvector space of covariant k-tensors on V is denoted by T*V

Definition. The tensor product ® of a ki-tensor T7 and a ks-tensor 15 is

(Ty @ T2) (X1, ooy Xiy ko) = T1( X1, ooy Xooy ) T2 (Xiey 41, -y Xy )

Proposition. Let (E;) be a basis for a vector space V and let (¢') be its dual basis (so ¢ (E;) = 67). Then
the set of all covariant k-tensors of the form

€' R..Qe*

forms a basis of T*V .

Since the dual space V* is also a vector space, we can give the following definition.

Definition. Let V be a vector space. A contravariant l-tensor T on V' is a multi-linear function
T: V' x..xV*=>R

where we have 1 copies of V*. The space of contravariant l-tensors on V' is denoted by T;V.

Definition. Let V be a vector space. A mized tensor T of type (k,1) on V is a multi-linear function
T: Vx.xVxV*x..xV*=R

where we have k copies of V' and 1 copies of V*. The space of mized (k,l)-tensors on V is denoted by leV.

Let now M denote an n-dimensional smooth manifold. For each point p € M, T),M is a vectorspace with
a corresponding space of k-vectors.
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Definition. The bundle of covariant k-tensors on M is
"M = [] TT,M);
peM

The bundle of contravariant l-tensors on M is

M = [] Ti(T,M);
pEM

The bundle of mized (k,l)-tensors on M is
M = T THT,M).
pEM
Definition. A covariant k-tensor field is a map
T: M- TFM.
This map can locally be expressed as
T=T, pde'" Q.. Qdch.
A covariant k-tensor field is smooth when the components T}, .. ,, are smooth in every coordinate chart.
Smooth contravariant I-tensorfields and smooth mixed (k,l)-tensorfields are defined in a similar way.
Definition. The space of smooth covariant k-tensor fields is denoted by
THM).
The space of smooth contravariant I-tensor fields is denoted by
THM).
The space of smooth mized (k,l)-tensor fields is denoted by
T (M).

An example of a covariant 2-tensor that we use over and over in this thesis is of course the metric.

Differential Forms

Differential forms are tensors that are totally anti-symmetric. They are needed to define integration on
manifolds. We will again first focus on a vector space V' with dimension n.

Definition. An alternating k-tensor on a vector space V is a covariant k-tensor T' such that
T(X1, o, Xiy ooy Xjy ooy, Xp) = =T( X0, o, Xy, o, Xy oo, Xi)
Denote the space of alternating k-tensors by AF(V).

Notice that the space of these tensors is again a vector space. We will now define a basis for this vector
space.

Proposition. Let I = (iy,...,i) such that 1 < iy < ... < iy < n (this is called a multi-indez). The covariant

k-tensors ) )
e (Xy) ... e (Xy)

f(X1, ..., X) = det
€r(Xy) ... €R(Xy)

form a basis of A¥(V).
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We will now define a product on the space of alternating tensors.

Definition. Let S denote the symmetric group. The alternating projection of a covariant k-tensor T is
given by

AW(T) (X1, 0, Xi) = o5 > sign(0) T (X (1), s Xor)-

Definition. The wedge product of a tensor w € A*(V) and n € AH(V) is

k1)
wAn = ( k!l!) Alt(w ® 7).

Lemma. For multi-indices I, J,
el nel =€’

where IJ = (i1, .oy ik, J1y -y J1)-
Proposition. The wedge product is bilinear, associative and anti-commutative: forw € A*(V) andn € AY(V)
wAn=(—1)*nAw.
Furthermore for a multi-index 1
ETN L NEF = 61,
and for any covectors w', w* € V*.
WA L AWR (X, e X)) = det(W(X5)).
We now turn to the definition of differential forms on a manifold M.

Definition. The bundle of alternating k-tensors on M is denoted by

AfM =TT AMT,M)
peM

and a differential k-form or a k-form is defined by a smooth tensor field
w: M — AM.

The space of k-forms is denoted by
AF(M).

Definition. Let V € T(M). Interior multiplication is the map
iv . AF(M) — AFY(M);
ivw(Yi, ., Vi) = w(V,Ya,..., Yi). (6.174)
Lemma. Let V € T(M) and w?,...,w* € AL. Then

iv (W' A LA wk) = z:(—l)i_lwi(v)w1 A AW AW A LA WE
i
Definition. Egzterior differentiation is the map, locally expressed by

d: AF(M) — AFL(M);

d (Z wrdz™ A ... A dx“) = Z Z %dzi Adx™ A ... Ada' (6.175)
1 T

Definition. Let ¢ : M — N be a smooth map and w a k-form on N. The pullback ¢*w of w is
d)*w(Xl, ceey Xk) = W(¢*X1, ceey ¢*Xk)7
where (6.X1) () = X1(f 0 ).
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Integration on Manifolds

On an n-dimensional manifold integration of n-forms can be defined. The manifold should also have an
orientation and the form should be compactly supported, but we will not go into the details of how exactly
integration is defined. First of all, notice that an n-form w always (locally) has the form

w= fdz' A ... \Ndz"

where f is a smooth function. dz! A ... Adz™ is often denoted as d"z, such that integrals have the expression

o Lo

where V' C M. We now state two propositions, which are very important.

Proposition. Diffeomorphism invariance. Let ¢ : M — N be a diffeomorphism. Then
/w:/ o*w.
N M

Theorem. Stokes theorem. Let w € A" Y1(M), then

/dw:/ w.
M oM
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