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Chapter 1

Introduction

Supersymmetry has become an important concept in modern theoretical physics, especially in the
search of unified theories. Its most important aspect is the symmetry between bosons and fermions,
physical particles with integer and half–integer spin. One of the most notable occurrences of super-
symmetry is in particle physics, where the supersymmetric standard model predicts the existence of a
superpartner for every particle in the standard model. These superpartners would, among others, pro-
vide theoretical arguments for the qualitative differences between different kind of forces. Also very
important, but perhaps more distant from the experimental world, is the role supersymmetry plays
in string theory. The superstring, which is the model for string theory incorporating supersymmetry,
has the advantage that it does not predict the existence of a bad behaving particle called the Tachyon.
Beside these features, there is also a mathematical motivation to consider supersymmetry. It has been
proved by Coleman and Mandula [12] in 1967 that under some technical conditions, there are no
nontrivial extensions of the Poincaré algebra, which is the Lie algebra of the group of orthogonal
symmetries and translations of space–time. However, Haag, Lopuszanski and Sohnius [20] discov-
ered around 1975 that this theorem can be circumvented via the theory of superalgebras. They proved
that the most general superalgebras extending the Poincaré algebra are given by the supersymmetry
algebras which are, roughly speaking, classified by an integer N . In this sense, supersymmetry is the
obvious next step after considering the usual space–time symmetries.

Beside their physical relevance, supersymmetric field theories turned out to be intimately related
to geometry. One of the first who realized this was Zumino in 1979, who described in [38] non–
linear sigma models on Kähler manifolds. Two years later, Alvarez–Gaume and Freedman [1] gave a
classification of supersymmetric sigma models in terms of geometric structures. These sigma models
consist of maps between a two–dimensional space called the world–sheet and some target space, taken
to be a manifold in this setting. They established a connection between the amount of supersymmetry
on this model and the type of geometry on the target space, which turned out to belong to the area of
complex geometry. As most important case, the (2,2)–supersymmetric sigma model is associated to
Kähler geometry. Somewhat later in 1985, Gates, Hull and Roček investigated in [16] a wider class
of sigma models admitting the so–called B–fields, and they determined the associated geometries.
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6 CHAPTER 1. INTRODUCTION

The most notable of these are the bi–hermitian structures, associated to (2,2)–supersymmetry. In the
following years, little progress was made in finding examples of bi–hermitian manifolds that are not
Kähler, until around 20 years later in 2003 when the field of generalized complex geometry was in-
vented by Hitchin and Gualtieri [18]. They generalized the concept of Kähler geometry to generalized
complex geometry, which turned out to be equivalent to bi–hermitian geometry. Using this general-
ized language, interesting new examples were produced and new insights into their general properties
were obtained.

The link between supersymmetry and geometry became even stronger after Witten [36] invented the
so–called topological twist in 1988. Twisting the (2, 2)–supersymmetric sigma model produces a
topological field theory, a theory whose physical outcome is independent of the metric on the world–
sheet of the model. Witten performed this twist for Kähler manifolds in the absence of B–fields
and discovered two different models, called the A and the B model, where the B twist can only be
performed if the Kähler structure is in fact Calabi–Yau. The motivation behind the twist is that in
a topological field theory one can compute certain physical quantities more easily than in the orig-
inal theory, where we sometimes lack the tools to compute them exactly. On the topological side
the physical observables have the structure of a cohomology ring whose correlators, which are the
physical quantities mentioned earlier, are related to geometric data such as intersection numbers on
the manifold. In 2004, the topological twist for models with B–field was performed by Kapustin and
Li [26], who made explicit use of the generalized complex point of view. They discovered that the
twist can only be performed on generalized Calabi–Yau spaces, which include symplectic and ordi-
nary Calabi–Yau structures (hence the A and the B model) as special cases. The physical cohomology
ring is given by the Lie algebroid cohomology of the generalized complex structures, which on gener-
alized Calabi–Yau spaces can be seen as an interpolation between ordinary de Rham cohomology and
Dolbeault cohomology. In this sense, the idea of generalized geometry as a unification of complex
and symplectic structures is the mathematical analogue of the development of sigma models with flux.

This thesis is organized as follows. We start in Chapter 2 with a general introduction to sigma models,
and specify to the model we will be interested in. To this end we describe some basic ingredients from
string theory and explain in some detail what kind of model comes out. Following up, an introduction
to the concept of supersymmetry is given, focusing mainly on the relevant case of two dimensions.
Representations of the so–called (p, q)–supersymmetry algebra are constructed using a concept called
superspace. As mentioned above, incorporating these representations on our model enforces some
geometrical constraints on the target space, and this relation between the type of supersymmetric rep-
resentations and the types of geometries of the target space is the central theme of this thesis. The
focus in this chapter is on the conceptual, and the computations will have to wait for Chapter 4. In
this chapter there is not yet a B–field, and the main reference is [1].

In Chapter 3 we introduce the relevant mathematical theory, called generalized complex geometry,
whose main contributors are Hitchin, Gualtieri and Cavalcanti. To make a clear distinction between
the algebraic and differential structures we start with a linear algebraic discussion, and introduce the
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Clifford algebra and the space of spinors for vector spaces of the form V ⊕ V ∗, where V is a real
finite dimensional vector space. We then proceed to a manifold M , and introduce the Courant bracket
on T ⊕ T ∗, the tangent plus cotangent bundle of M . After the necessary ingredients are in place, we
introduce generalized complex structures, and following up, generalized Kähler structures of which
we also give an explicit example. In the end of this chapter we introduce the notion of a gerbe, which
is the mathematical theory behind the B–field. Most of the relevant material can be found in [18].

The technical computations that explicitly relate supersymmetry and geometry are the subject of
Chapter 4. In the presence of B–fields, these have first been done by Gates, Hull and Roček in
[16]. Care has been taken to present the calculations in such a way that a minimal effort is needed to
follow all the steps, without exaggerating on the amount of tedious intermediate steps. Readers not
interested in these detailed calculations can safely skip this part, as only the final outcome is relevant
to the other chapters.

Finally, Chapter 5 is centered on the topological twist. We begin with a discussion about quanti-
zation, in order to explain what it means for a theory to be topological. After this physical intermezzo,
we come back to the sigma model and discuss the problems that arise when the world–sheet is gen-
eralized to an arbitrary Riemann surface, and how the topological twist resolves these issues. The
part of the (2, 2)–algebra that survives the twist gives rise to a nilpotent operator Q, and we end the
chapter with a calculation of its associated cohomology ring. The main references for this chapter are
[36] and [26].
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Chapter 2

Sigma models

A sigma model is a theory studying maps from one geometric space to another, with the purpose of de-
scribing some physical process. These spaces usually come equipped with extra geometric structures,
depending on the particular type of model. For us these geometric spaces will always be manifolds,
perhaps with a smooth boundary. Phrased in such a general language, a lot of physical processes are
described by sigma models. Think of classical mechanics for instance, which can be regarded as the
study of maps from an interval to a symplectic manifold, or, perhaps, a field theory where one consid-
ers the sections of some vector bundle over space–time.

As diverse as these models can be, one feature that they share is the existence of an action1. If
we let X be the space of maps for the sigma–model, the action is a map S : X → C that describes
the physical behavior of the system. At the classical level, these laws follow from the stationary
points of S, in the sense that the physical solutions are those for which the action has an extremal
value. It is often the case that the maps of the sigma model, which from now on we refer to as fields,
are all defined on a ’source’ manifold that we appropriately denote by Σ, while the targets are per-
haps varying for the different kinds of fields. In these cases the action can be written in terms of a
more local quantity L, called the Lagrangian density, which is a function from the space of fields to
the space of densities on Σ. This Lagrangian usually looks like a partial differential operator, i.e. a
polynomial in the fields and their derivatives. The action can then be written as an integral ofL over Σ.

As an easy example, consider a set of n functions ϕ1, . . . , ϕn on Rm, acting for the moment as Σ.
The action is given by

∫
Rm L(x, ϕi, ∂µϕ

j , . . .)dx, where the Lagrangian L in general depends on the
space–time point x, and on ϕi and all its derivatives, although in most cases it does not depend on third
derivatives or higher. For (ϕ1, . . . , ϕn) to form a stationary point, we insist that d

dtS(ϕ+ tγ)|t=0 = 0

with γi arbitrary functions with compact support. This equation translates in

0 =
d

dt
S(ϕ+ tγ)|t=0 =

∫
Rm

∑
i,α

δL

δ(∂αϕi)
∂αγ

i =

∫
Rm

∑
i,α

(−1)|α|∂α

(
δL

δ(∂αϕi)

)
γi, (2.0.1)

1The word ’action’ is appropriate as its dimension equals energy times time, and has nothing to do with group actions.
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10 CHAPTER 2. SIGMA MODELS

where the α summation is over all multi-indices α = (α1, . . . , αm) with |α| := α1 + . . . + αm, and
we use the short-hand notation ∂α = ∂α1

x1 · · · ∂
αm
xm . So e.g., ∂(0,...,0)ϕ

i = ϕi. In the third equality we
performed a partial integration, which is allowed as the γi have compact support. Note that δL

δ(∂αϕi)

stands for the partial differentiation to the variable ∂αϕi. As the γi are arbitrary, this equation implies
the Euler–Lagrange equations ∑

α

(−1)|α|∂α

(
δL

δ(∂αϕi)

)
= 0. (2.0.2)

It is remarkable that all known physical theories allow for a description in terms of an action, and
perhaps more peculiar is that in the quantum theory not only the critical points, but the entire behavior
of S becomes important (cf. Chapter 5).

2.1 String theory as a two–dimensional sigma model

Although there are many examples of sigma models appearing everywhere in physics, we will be
focusing on one particular type. Let Σ be a two–dimensional manifold, possibly with boundary, and
let M be a compact manifold equipped with a Riemannian metric. The maps of this sigma model
will be smooth maps ϕ : Σ → M , later to be extended with fields of a different type to create a
super–symmetric theory (cf. Section (2.3)). The main reason for studying this particular model comes
from string theory, so we first give a short introduction to string theory and explain how it gives rise
to this model.

String theory is the generalization of point–particle physics to extended one–dimensional objects
called strings. String theory was invented to provide a unifying theory of quantum mechanics and
general relativity, two theories that seemingly cannot be merged together within the framework of
point particles. Strings can be either closed or open, as a one–dimensional compact manifold is ei-
ther a circle or a closed interval. If we denote by M our space–time, a pseudo-Riemannian manifold
of signature (1, n − 1) (1 being the ’negative direction’), the configuration space of a string prop-
agating in M is given by LM := {γ : S1 → M} (the loop space of M ) for closed strings and
PM := {γ : [0, 1]→M} (the path space of M ) for open strings.

As a string propagates through M , it sweeps out a two–dimensional region, which is referred to
as the world–sheet of the string. To be more precise, we define the world sheet for the non–interacting
closed string to be a cylinder S1 × [τ0, τ1]. The coordinate τ ∈ [τ0, τ1] should be thought of as the
eigentime of the string, and is not directly related to time of an external observer. We use the coordi-
nate σ for the space-like direction, i.e. the S1 part of the world–sheet. The propagation of the string
is now described by a map ϕ : Σ→M , and as such we recognize in string theory a two–dimensional
sigma model, but note thatM above is not yet compact nor Riemannian. Analogously there is a sigma
model for the open string, but for this entire thesis we will only be interested in closed strings.

What action should be written down for such strings? When describing a theory extending some
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older theory, an obvious requirement is that in the limit of the old theory, one should obtain the same
results. Hence, we should look for inspiration at the action for a point–particle, whose action is pro-
portional to the length of the worldline γ (the trajectory the particle follows):

S(γ) = −m
∫

[τ0,τ1]

√
−〈γ′(τ), γ′(τ)〉dτ, (2.1.1)

where we assume that the particle follows a time-like path 〈γ′(τ), γ′(τ)〉 ≤ 0, which means that it
is moving slower than the speed of light. To see that this is the correct action, take M = R1,3 and
parameterize the path via γ(t) = (t,−→x (t)), so that the above formula reduces to

S(γ) = −m
∫

[t0,t1]

√
1− (−̇→x (t))2dt. (2.1.2)

From this we can read off the momentum pi, defined by pi := δL
δẋi

, and the Hamiltonian (the energy)
which is defined via H := piẋi − L, and they are given by the well known expressions

−→p =
m−̇→x√

1− (−̇→x )2

, H =
√
m2 +−→p 2. (2.1.3)

The obvious analogue for a string is the area of its embedded worldsheet, i.e. the area of ϕ(Σ), which
can be written as

S(ϕ) = −T
∫

Σ
dσdτ

√
−detϕ∗g, (2.1.4)

where g is the metric on M and T is a constant related to the tension of the string, and the pullback of
the metric is defined via ϕ∗gp(v, w) = gϕ(p)(dpϕ(v), dpϕ(w)). This action is called the Nambu-Goto
action ([19]).

The square root in the Nambu-Goto action makes it complicated to quantize2, as it prevents us from
using the standard path–integral techniques for perturbation series (Feynman diagrams), a problem
which can be solved as follows. Instead of pulling back the metric g, we consider an independent
metric h on Σ, and define the Polyakov action ([19]):

S(ϕ) = − 1

4πα′

∫
Σ

√
−hhαβgij∂αϕi∂βϕjdτdσ, (2.1.5)

where α, β denote the coordinates τ, σ on Σ, i, j, . . . are coordinates on M , and h is the determinant
of hαβ . If we put h on–shell, meaning that we use the equation of motion as imposed by the action,
the Polyakov action reduces to the Nambu-Goto action, and in this sense both actions are classically
equivalent. In the quantum theory, this is not necessarily the case. For aesthetic reasons we drop the
proportionality constants, since they play no important role here, and the action (2.1.5) can then be
written mathematically in the form

S(ϕ) =

∫
Σ
g(dϕ ,̂ ? dϕ), (2.1.6)

2Quantization stands for the process of passing from a classical theory to a quantum theory.
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where the 2–form g(dϕ ,̂ ? dϕ) is defined by

g(dϕ ,̂ ? dϕ)(v, w) = g(dϕ(v), ?dϕ(w))− g(dϕ(w), ?dϕ(v)),

with the orientation on Σ given by the ordered pair τ, σ, and ? denoting the Hodge star induced by the
metric h and the specified orientation.

A well known feature of string theory is the existence of a critical dimension. If a classical theory
has gauge symmetries, which for strings is the conformal symmetry of the metric h, these symmetries
can be broken after quantization. In that case one says that the theory has obtained an anomaly. For
strings this is the case, and the particular type of string theory we described above, called the bosonic
string, has a conformal anomaly except in dimension 26. When we discuss supersymmetry, we will
come to the definition of the superstring, whose critical dimension is known to be 10. This makes
the latter a better candidate for a unifying theory, but in either case, there are some extra dimensions
that somehow are hidden to us. One way to hide them is via compactification. One assumes that
somehow these extra dimensions take the form of compact spaces, whose typical length scales are
so small that they are almost invisible. It is this compact part that we are interested in, and we will
assume that space–time is of the form N ×M , where N is a four–dimensional pseudo–Riemannian
manifold describing our visible space–time, while M is a compact Riemannian manifold describing
the compact, ’hidden’ part. Furthermore, we assume that the propagation of a string can be described
by studying separately its behavior in N and M . Effectively, if we write ϕ = (ϕ1, ϕ2) with respect to
the splitting N ×M , the action splits as

S(ϕ) = S1(ϕ1) + S2(ϕ2). (2.1.7)

So the fields of the sigma model we get from bosonic string theory are mapsϕ : Σ→M from compact
surfaces Σ to compact Riemannian manifolds (M, g), and metrics h on Σ. Finally, to simplify matters
we also assume these surfaces to be oriented.

2.2 What is supersymmetry?

As already mentioned in the introduction, for certain physical reasons it is advantageous to impose
supersymmetry on the sigma model. Before we show how to do this, we spend a few words on the
general concept of supersymmetry.

If one would ask a physicist what supersymmetry is, he or she would most likely phrase the answer
in terms of interchanging bosons or fermions. Although this is perfectly fine, let us phrase the answer
in more mathematical terms. A relativistic theory on flat Minkowski space (R1,d−1) is invariant under
the Poincaré group, which is defined as the group of isometries and translations of Minkowski space.
The natural question to ask for any theory is then, are there more symmetries beside these? Of course
there can be much more, but a ’no-go’ theorem due to Coleman and Mandula [12] tells us that under
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some mild conditions on the scattering matrix3, and the existence of a mass gap4, these symmetries
must be Lorentz scalars. To explain what Lorentz scalar in this context means, let us look at the
Lie algebra of the full symmetry group. The Poincaré algebra sits in there as a subalgebra, and the
Coleman–Mandula Theorem states that the full Lie algebra must be the direct sum of the Poincaré
algebra and the other symmetries under consideration. It thus tells us that any generator of the extra
symmetries commutes with the Poincaré generators, and in this sense form Lorentz scalars: invariant
under Lorentz transformations (perhaps ’Poincaré scalar’ would be a more appropriate name).

Now that we know that we cannot, in a non–trivial way, extend the Poincaré algebra to a bigger
Lie algebra, the next question is whether this is possible if we consider Lie superalgebras, and that
turns out to be the case. Firstly, recall that a Lie superalgebra consists of a vector space V (for us over
the field C) with a decomposition into an even and an odd part;

V = V0 ⊕ V1, (2.2.1)

equipped with a graded Lie bracket, i.e. a bilinear map

[, ] : V × V → V, (2.2.2)

satisfying

Graded anti–symmetry : [X,Y ] = −(−1)ab[Y,X]

Graded Jacobi identity : (−1)ac[X, [Y, Z]] + (−1)cb[Z, [X,Y ]] + (−1)ba[Y, [Z,X]] = 0, (2.2.3)

for homogeneous elements X ∈ Va, Y ∈ Vb and Z ∈ Vc, with a, b, c ∈ {0, 1}.

The structure of such a Lie superalgebra containing the Poincaré algebra is restricted due to the
Coleman–Mandula Theorem and the two constraints (2.2.3), and it turns out ([20]) that the most
general form is given by the usual Poincaré generators, plus N odd spinorial generators Qa (a =

1, . . . , N), also referred to as supercharges, and at most 1
2N(N − 1) even generators, referred to as

the central charges because they lie in the center of the algebra. Spinorial means that each Qa itself is
a spinor, so it has 2b

d
2
c components Qaα in d dimensions (bd2c denoting the largest integer smaller or

equal than d
2 ), and it behaves as a spinor with respect to the Lorentz generators. Here N is a positive

number, and we refer to the above algebra as the N extended Poincaré superalgebra, or N extended
supersymmetry.

For the precise general expression of all the generators and relations we refer to [17], Section 3.2c.
We shall only be considering this algebra in two dimensions without central charges, in which case
this algebra simplifies considerably. Also, in two dimensions the spin representation is reducible (see
appendix (A)), which implies that each spinorial charge Qa has two components Qa±, each compo-
nent living in a one–dimensional irreducible representation of Spin(1, 1). Therefore, there is no need

3The matrix of correlation functions between initial and final states.
4A nonzero energy difference between the vacuum and the first excited energy state.



14 CHAPTER 2. SIGMA MODELS

to consider the Qa as a single, spinorial object, but we can consider its components separately. In
particular, it is not necessary to take as many + as − components, so that in two dimensions there
is the notion of (p, q) extended supersymmetry, p standing for the number of Qa+ charges and q for
the number of Qa− charges. In summary, the algebra we will be interested in is the following (p, q)

extended Poincaré superalgebra, where p, q ∈ Z≥0:

Even generators: L,P±,

Odd generators: Q1
+, . . . , Q

p
+, Q

1
−, . . . , Q

q
−,

Relations: [L,P±] = ∓P±, [L,Qa±] = ∓1

2
Qa±, {Qa±, Qb±} = δabP±. (2.2.4)

The generator L denotes the Lorentz generator, which is just a boost in the spacial direction5, and P±
denote the translation generators (more commonly referred to as the momentum generators) in the
light–cone directions σ± = σ ± τ . The ± indices for the supercharges Q have a different origin, as
these denote the components of the spinor Q.

2.3 Superspace and (1,1)–supersymmetric sigma models

To define a supersymmetric field theory, we need to represent the Poincaré superalgebra as symmetries
acting on the fields, and for us it will suffice to represent the algebra on–shell, i.e. for fields satisfying
their equations of motion. An elegant approach to construct these representations was invented by
Salam and Strathdee [31], using the formalism of superspace. To understand their construction, ob-
serve that the natural way to represent the ordinary Poincaré algebra is by its action on space time or,
what is more convenient when considering fields on space time, by its induced action on the functions
on space time. Recall that if a Lie group G acts on a space M , it inherits a group action on the set of
functions on M , defined by (g · f)(x) := f(g−1 · x) where g ∈ G, x ∈ M,f : M → C. Differenti-
ating this action gives a representation of the Lie algebra of G on this space of functions, and we start
with this representation on Σ with coordinates6 σ± := σ ± τ and

L = σ+∂+ − σ−∂−, P± = −2i∂±, (2.3.1)

where ∂± := ∂
∂σ± . The particular factors and minus signs are conventional, but one quickly verifies

that this defines a representation of the Poincaré algebra in 2 dimensions. Now we want to extend this
to a representation of the Poincaré superalgebra, and the trick is to introduce extra coordinates. To also
incorporate the fermionic character of the supercharges, we let those coordinates be anti–commuting
Grassmann numbers. These will be denoted by θ+

1 , . . . , θ
+
p and θ−1 , . . . , θ

−
q . They transform under the

action of L as the components of a spinor, i.e. θ±a → e±α/2θ±a , see also appendix A. This immediately
suggests the following correction to the Lorentz generator

L = σ+∂+ − σ−∂− −→ L = σ+∂+ − σ−∂− +
1

2
θ+
a

∂

∂θ+
a
− 1

2
θ−a

∂

∂θ−a
, (2.3.2)

5Hyperbolic rotation in the (τ, σ)–plane.
6Recall that until now Σ is either a cylinder or a strip, which are both flat and have global coordinates τ, σ.
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where a summation over a is understood. Functions on both the even and odd coordinates are called
superfields and we assume these to be analytic in the odd coordinates. As these square to zero, this
means that every superfield is expressed through a finite power series in the θ’s. Furthermore, we
will only consider superfields of fixed statistics, meaning that all homogeneous terms in the θ’s are all
either bosonic or fermionic. We define odd derivatives in the obvious way:

∂

∂θ±a
θ±b = δab,

∂

∂θ±a
θ∓b = 0, (2.3.3)

and we extend them as odd derivations to arbitrary polynomials in the θ’s. Likewise we define an
integration, which is ordinary integration for the even coordinates and equal to differentiation for the
odd coordinates (so

∫
dθ±a θ

±
b = δab etc.). With these coordinates and derivatives there are a number of

operators we can pick to define the Q’s, but looking at the relations (2.2.4) we see that such operators
must have spin ±1

2 . This basically restricts us to the operators θ±a ∂± and ∂
∂θ±a

. Each of these has the
right commutation with the Lorentz generator, but will not square to the momentum operators P±.
Therefore we decompose them into the following operators

Qa± =
∂

∂θ±a
− iθ±a ∂± and Da

± =
∂

∂θ±a
+ iθ±a ∂±. (2.3.4)

We wrote Qa± for the first operator, suggestively indicating that this will define the representation of
the supercharges. Indeed, one quickly verifies that with these choices for L, P± and Qa± we have a
representation of the (p, q) Poincaré superalgebra. For later use we give the anti–commutator of the
D’s, which is opposite to that of the Q’s:

{Da
±, D

b
±} = −δabP±. (2.3.5)

So far we did not use the explicit form of our sigma model, and the representation theory above can
be applied to more general two–dimensional field theories. Moreover, there are no constraints on such
a field theory to have this supersymmetric representation. Let us now specialize to the sigma model
of Section 2.1. In local coordinates i, j, . . . on M the map ϕ is described by n functions ϕ1, . . . , ϕn,
and we can regard them as for instance the leading terms of bosonic superfields Φi. Imposing (p, q)

supersymmetry on these Φi straightaway using the above construction leads to a large number of
new fields, as the expansion of Φi in the odd variables in (p, q) superspace gives 2p+q coefficients.
Furthermore, it is a priori not clear what we must write down for the action, in order for the bosonic
part to reduce to (2.1.5). For these reasons we first try to incorporate (1, 1) supersymmetry on our
sigma model, where for the moment we gauge fix the metric h to be flat

h+− = h−+ = 0, h++ = h−− =
1

2
, (2.3.6)

and forget that it represents a dynamical field, so that our action reduces to

S(ϕ) =

∫
Σ
gij∂+ϕ

i∂−ϕ
jdσ+dσ−, (2.3.7)

in coordinates σ± = σ ± τ . Now we extend the bosonic fields φi to bosonic superfields Φi, whose
taylor expansions equal

Φi = ϕi + θ+ψi+ + θ−ψi− + θ−θ+F i. (2.3.8)
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The new fields ψi± and F i appear as a consequence of the superspace construction, and since Φi is
bosonic, the ψi± are fermionic and the F i are bosonic. We shall see later that the F i do not give
new physical degrees of freedom, and therefore are referred to as auxiliary fields. The most obvious
candidate for the action in analogy to (2.3.7) is

S(Φ) =

∫
Σ
dσ+dσ−dθ+dθ−gijD+ΦiD−Φj . (2.3.9)

This action has by construction a manifest symmetry generated by Q;

δεΦ
i := εαQαΦi = ε+Q+Φi + ε−Q−Φi, (2.3.10)

where ε is a constant spinor. We shall often abbreviate terms as εαQα by εQ. This symmetry is
manifest, because the effect of this symmetry on the action leads to a total derivative. We can perform
the odd integrations in (2.3.9) to rewrite everything in terms of the physical fields ϕi and ψi, where
F is put on its equation of motion. To recall, this means that we determine via the action the equation
of motion for F (obtained by varying the field F and looking for stationary points of S), which turns
out to be exactly solvable in terms of the other fields, and then substitute the result back in the action.
The end result is given by

S(ϕ,ψ) =

∫
Σ
dτdσ

(
gij∂+ϕ

i∂−ϕ
j + igijψ

i
+∇−ψ

j
+ + igijψ

i
−∇+ψ

j
− +

1

2
Rijklψ

i
+ψ

j
+ψ

k
−ψ

l
−

)
,

(2.3.11)
with ∇±ψiα = ∂±ψ

i
α + Γijk∂±ϕ

jψkα, Γijk the Christoffel symbols for the Levi-Cevita connection and
Rijkl its curvature. The supersymmetry in components is given by

δεϕ
i =εψi,

δεψ
i
+ =iε+∂+ϕ

i − ε−Γijkψ
j
−ψ

k
+,

δεψ
i
− =iε−∂−ϕ

i − ε+Γijkψ
j
+ψ

k
−. (2.3.12)

From now on, such expressions will be abbreviated with ± symbols. For instance, the last two equa-
tions in (2.3.12) are combined into a single equation:

δεψ
i
± =iε±∂±ϕ

i − ε∓Γijkψ
j
∓ψ

k
±. (2.3.13)

When reading this equation, the sign is always taken to be the top or the bottom one.

To understand the global form of (2.3.11), we first need to know what global object the ψi± repre-
sent. The combination θ±ψi± in the bosonic superfield (eqn. (2.3.8)) implies that these fields behave
under Lorentz transformation as ψ± 7→ e∓α/2ψ±. By convention we allow spin indices to be raised
and lowered using the rules θα = Cαβθβ and θα = θβCβα, where

Cαβ = −Cαβ =

(
0 −i
i 0

)
.
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When calculating with these quantities, one should keep in mind that objects transform according to
their index, with lower indices transforming oppositely to upper indices. As such, the ψi± form the
components of a spinor ψi, and the i, j, . . . indices indicate that these spinors also form the compo-
nents of an object with tangent indices to M . Putting this together, we deduce that the appropriate
bundle for ψ to live in is

SΣ ⊗ ϕ∗(TM), (2.3.14)

with SΣ the trivial spin bundle of Σ with respect to the flat metric h. This spin bundle decomposes
into SΣ = S+ ⊕ S−, so that in a local coordinate frame ∂i := ∂

∂xi
on M we can write ψ = ψi+ ⊗

∂i + ψi− ⊗ ∂i. As the components ψi± must be fermionic, i.e. anti–commuting with other fermionic
objects, ψ is a section of the bundle SΣ⊗ϕ∗(TM) with ’parity reversed fibers’. Parity in this context
has nothing to do with the symmetry that goes by the name of parity, which is about reflections of
the space coordinate on the world–sheet (cf. the text below Equation (2.4.3)). Instead, parity in this
context refers to the fact that ψ is an anti–commuting object. Perhaps a good way to think about this,
although mathematically not very rigorous, is as follows. Let {sα}α∈I be a basis for the space of
sections of SΣ ⊗ ϕ∗(TM), I being some index set. An ordinary section can then be expressed as
s =

∑
α∈I λ

αsα, where the sum is not really well defined in this setting. The λα are real numbers,
and for a fermionic section we replace these by the odd elements from a Grassmann algebra

G := R[{λα|α ∈ I}]/({λαλβ + λβλα|α, β ∈ I}). (2.3.15)

This way of looking at the fermionic fields will be convenient when discussing the path integral.

The covariant derivative ∇ appearing in (2.3.11) is the tensor product of the trivial connection on SΣ

(which for now is a trivial bundle) and the pullback of the Levi-Cevita connection on TM . The metric
on TM provides a bilinear form on this bundle, which in coordinates looks like g(ψ,ψ′) = gijψ

iψ′j ,
which is in fact antisymmetric as ψ and ψ′ anti–commute. Using this form we can write the terms with
the covariant derivative in (2.3.11) as ig(ψ±,∇∓ψ±). Similarly, the curvature tensor can be extended
to the fermionic fields, enabling us to write the last term in (2.3.11) as 1

2g(R(ψ+, ψ+)ψ−, ψ−) =
1
2g(R(ψ−, ψ−)ψ+, ψ+), where the last equality follows from the usual symmetry properties of the
Riemann tensor. A coordinate free7 expression of (2.3.11) is thus given by

S(ϕ,ψ) =

∫
Σ
dσ±

(
g(dϕ ,̂ ? dϕ) + ig(ψ+,∇−ψ+) + ig(ψ−,∇+ψ−) +

1

2
g(R(ψ+, ψ+)ψ−, ψ−)

)
.

(2.3.16)
We stress again that the metric on Σ is fixed to be the standard flat metric (2.3.6). The first term in
(2.3.16) can be generalized to arbitrary surfaces Σ and metrics, in fact its form is already well de-
fined for any of these choices. The other terms are not however, as for general metrics on surfaces
with higher genus it can happen that the structure group of the tangent bundle does not reduce to
SO+(1, 1), which means that there is no globally defined notion of + and − directions (cf. Section
5.3 for more information about this).

7With respect to coordinates on the target.
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To summarize; a representation of the (1, 1) extended Poincaré superalgebra on the sigma model of
Section 2.1 requires fermionic fields ψ ∈ SΣ ⊗ ϕ∗(TM), acting as the superpartners of ϕ : Σ→M .
This representation puts no constraints on M whatsoever. Furthermore, since the spin bundle decom-
poses into S±, we can forget one of the ± components and obtain also a representation of the (1, 0)

and (0, 1) algebras. From now on we will work with the (1, 1)–supersymmetric sigma model.

2.4 Extended supersymmetry and complex geometry

In the previous section we saw that the sigma model, for any target space M , could be extended
to a (1, 1) supersymmetric model. The next step is to enlarge these symmetries, e.g. define (2, 2)–
representations on it. However, the existence of more symmetries puts constraints on M , which turn
out to be strongly related to complex geometry. The necessary computations to understand this rela-
tion are rather tedious, and we postpone them to Chapter 4. In this way, this section becomes easier
to read and provides a better overview of the essential ingredients.

In [1], it was shown that the most general second symmetry commuting with the first one and preserv-
ing parity (cf. the text below Equation (2.4.3)) is of the form

δεΦ
i = IijεDΦj , (2.4.1)

with I a complex structure. Note that it is a priori not clear whether a second supersymmetry could
be expressed in superspace, but for these models this is possible. For the action to be invariant and the
corresponding charges8 Q2

± to satisfy the super-Poincaré algebra (M, g, I) must be a Kähler manifold.
This means that I is orthogonal with respect to g:

g(Iv, Iw) = g(v, w) ∀v, w ∈ TM, (2.4.2)

and that the fundamental 2–form ω := gI is closed. This last statement is equivalent to I being co-
variantly constant, in the sense that∇I = 0 where∇ is the Levi-Cevita connection.

The precise calculation of the constraints on (M, g, I, ω) can be found in Chapter (4), but we can
already try to argue why the symmetry must be of the form (2.4.1), by a ’what else can it be’ method.
As mentioned before, we will assume that the supersymmetry can be phrased in superspace language.
In this case this assumption is correct9, but there are also models in which this is not the case.

The only available tools in (1, 1)–superspace are the coordinates and their derivatives, and of course
the superfields Φi themselves. If we want to obey the algebra (2.2.4), the tools we pick must have
spin ±1/2 and that restricts us to Q± and D±. The number of these derivatives that can appear in

8Note that superscripts on the Q’s always refer to the type of supercharge, and not to some actual power of the charge.
9In [1] the entire calculation was done in component fields, without using superspace tools. This thus proves that the

most general form of symmetry respecting parity is indeed given by (2.4.1).
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the symmetry is restricted for dimensional reasons: Every physical quantity has a dimension, which
is a combination of the basic building blocks of nature, the relevant for us being mass, time and
length. For instance, speed, which is the ratio of length and time, has dimension length/time. In
order to express a dimension into an actual number one has to choose units, such as kilograms, me-
ters and seconds. There is one convenient choice of units, in which the speed of light c and the
Planck constant ~ are equal to 1. Since the dimension of c equals length/time, and that of ~ equals
mass · length2/time, with this choice we can express any dimension in terms of, say, the mass dimen-
sion, indicated by square brackets. Space and time coordinates have mass dimension [σ±] = −1,
because e.g. [length] = ~/(c · mass) = 1/mass. Hence space–time derivatives have dimension
[∂±] = +1. As fermionic derivatives have opposite dimension to the fermionic coordinates, D± has
a well–defined dimension only if [θ] = −[ ∂∂θ ] = −1

2 , so [D±] = 1
2 . Since the action appears in the

exponential of the path–integral, it must be dimensionless (otherwise the exponential as a power series
does not make sense), [S] = 0, and a quick perusal of (2.3.9) reveals that [Φ] = 0. A variation of Φi

must also be dimensionless, and since [ε] = −1
2 , we deduce that the second symmetry must be of the

form

δεΦ
i = ε+(Ii+jD+Φj + J i+jQ+Φj) + ε−(Ii−jD+Φj + J i−jQ−Φj), (2.4.3)

for certain tensors I±, J±. This form is further restricted by parity. In any field theory on space–time,
a parity transformation denotes the reflection of the space like coordinates. In our case, parity acts as
(τ, σ) 7→ (τ,−σ) and it effectively interchanges the + and − components of spinors. To understand
this, observe that we can tell the two components apart by their behavior under a Lorentz boost:

ψ± 7→ e∓α/2ψ±. (2.4.4)

However, if we interchange the space coordinate, we reflect the direction of the boost, and we change
the ∓ sign in the exponent above. In this way, the ± components of ψ are interchanged. For our
symmetry to preserve parity, everything must be symmetric in ψ±, so in particular I+ = I− =: I and
J+ = J− =: J in (2.4.3).

Finally, this symmetry must commute with the first one, which is given by δεΦi = εQΦi. In the
commutator [δ1, δ2]Φi the following term occurs:

J ijε
α
1 ε
β
2{Qα, Qβ}Φ

j = −2iJ ijε
α
1 ε
β
2δαβ∂αΦj , (2.4.5)

where we used the (2, 2)–algebra (Equation 2.2.4). Since this term cannot be canceled against any
other terms in the commutator, the only way out is the constraint J = 0, and we are indeed left with
a symmetry of the form (2.4.1).

Imposing (2, 2)–supersymmetry is thus not as innocent as (1,1), and the underlying reason is the
fact that {D±, D±} = −P±, while {Q±, Q±} = +P±. Therefore, if we had inserted a tensor in
front of Q when defining the (1,1) symmetry, that tensor should square to the identity. There is then
no harm to replace it by the identity operator, available on every manifold10. For the extra symmetries

10More generally, an endomorphism squaring to the identity is called a product structure. Given a product structure, the
tangent bundle splits into ±1 eigenbundles, and the algebra implies that the complex structures preserve those.
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we have to use D, and the corresponding tensors have to square to minus the identity. This is the
essential reason why complex geometry is needed for extended supersymmetries.

We can go even further, and try to define a representation of (p, p)–supersymmetry with p ≥ 3.
As for the (2, 2) case, these symmetries individually all have the form δεΦ

i = (Ia)ijεDΦj where
a ∈ {1, . . . , p− 1}. The algebraic part of the superalgebra imposes the constraint

IaIb + IbIa = 0, (2.4.6)

so the different I’s have to anti–commute. In particular, once we have two extra symmetries given by
I1, I2, we get a third one for free: I3 := I1I2. Now I3 is covariantly constant since both I1 and I2 are,
so in particular is integrable. These three complex structures form a quaterniotic algebra, and such a
structure on M is called a hyperkähler structure. It turns out that one cannot go further than (4, 4),
so that Table 2.1 gives a complete classification of parity preserving supersymmetries on the sigma
model.

Table 2.1: Relation between supersymmetry and target space geometry.

(p,q) Susy (1,1) (2,2) (4,4)
Geometry Riemannian Kähler Hyperkähler

One might wonder why we did not use the higher (p, q)–superspaces to construct the associated higher
representations. After all, this is the way we set up the general representation theory in Section 2.3.
The problem is that it is not a priori clear what to write down for the action in higher superspace.
Take for instance the (2, 2) case. On a general target space, it is not clear what to write down for
the action in (2, 2)–superspace. However, once we know that we are on a Kähler manifold, we can
use the so–called Kähler potential in local coordinates, and then it turns out to be straightforward to
write down an action [16]. The whole model can then be phrased in (2, 2)–superspace, and the whole
setup becomes manifest in the sense that almost no computations are needed to check all the algebra
relations, as well as the invariance of the action. But to know that the Kähler condition is necessary,
we first need to go through the tedious computations that we saved for Chapter 4.

Note that in these higher superspaces, there are many components of a superfield, and to reduce to
the desired number of independent fields one usually imposes constraints on the fields, such as chiral,
or twisted chiral constraints. For a definition of these and a more concise treatment on the matter we
refer again to [16].



Chapter 3

Generalized geometry

Gates, Hull and Roček [16] realized that the presence of a B–field in the (2, 2)–sigma model requires
a different kind of geometry on the target space M than the usual Kähler geometry. These so–called
bi–hermitian geometries generalize the concept of Kähler geometry, with the main difference that
bi–hermitian structures consist of two complex structures instead of one, and that there are two con-
nections with torsion instead of the usual, torsion-free, Levi-Cevita connection. Gualtieri showed in
[18] that bi–hermitian structures are equivalent to so–called generalized Kähler structures. The latter
is defined on the bundle TM ⊕ T ∗M instead of TM , and it is this extra freedom that allows for a
convenient description of the bi–hermitian picture. For instance, while the two complex structures do
not necessarily commute, they can be described by two commuting generalized complex structures on
TM ⊕ T ∗M .

The study of T ⊕ T ∗ is the main ingredient of generalized complex geometry, a field in differen-
tial geometry that unifies complex and symplectic structures. It was first introduced by Hitchin, and
further developed by Gualtieri and Cavalcanti. In this chapter we give a self-contained introduction
to this topic, emphasizing on the equivalence between generalized Kähler structures and bi–hermitian
models. Most of the material is based on [18].

3.1 Linear algebra

Generalized geometry is the study of TM⊕T ∗M , whereM is a smooth manifold of dimension n, and
the geometric structures hereon. This bundle, which we abbreviate as T ⊕ T ∗, has some interesting
structures on it, and we first focus on those that only involve the linear algebraic structure. Therefore,
we forget for the moment about M and consider a real vector space V of dimension n, and study
V ⊕ V ∗. Elements from V will be denoted by X,Y, Z, . . ., elements from V ∗ will be denoted by
ξ, η, ζ, . . . and elements from V ⊕ V ∗ by u, v, w,. . . .

The vector space V ⊕ V ∗ is equipped with a natural pairing, given by

〈X + ξ, Y + η〉 :=
1

2
(η(X) + ξ(Y )). (3.1.1)

21
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It is natural in the sense that it does not use any choice of basis for V or V ∗. This pairing has signature
(n, n), for if ei is a basis for V and ei a dual basis for V ∗, then ei±ei are mutually orthogonal of length
±1. The group of linear isomorphisms of V ⊕V ∗ preserving this pairing is denoted by SO(V ⊕V ∗),
with corresponding Lie algebra

so(V ⊕ V ∗) = {T |〈Tv,w〉+ 〈v, Tw〉 = 0 ∀x, y ∈ V ⊕ V ∗}. (3.1.2)

For an element (
A β

B D

)
to belong to this algebra, the anti–symmetry condition implies that B and β are skew, i.e. B ∈ ∧2V ∗

and β ∈ ∧2V , while D = −A∗. The most important symmetry will be the B part, which, after expo-
nentiating, acts as exp(B)(X + ξ) = X + ξ+ ιXB. We will call these transformations B-transforms
following the usual nomenclature, but we stress that it is unrelated to the B–field that will be intro-
duced in later sections.

The main objects of interest in generalized geometry are the maximal isotropic subbundles of TM ⊕
T ∗M , and so we first need a good understanding of the maximal isotropic subspaces of V ⊕ V ∗. A
subspace L < V ⊕ V ∗ is called isotropic if the pairing is zero on L, i.e.

L < L⊥ := {v ∈ V ⊕ V ∗|〈v, w〉 = 0 ∀w ∈ L}. (3.1.3)

If L is maximal with this property, it is called maximal isotropic, or a linear Dirac structure.

Given a subspace E < V and an element ε ∈ ∧2E∗ we can define

L(E, ε) := {X + ξ ∈ E + V ∗| ξ|E = ιXε}. (3.1.4)

The maximal isotropics of V ⊕ V ∗ are then described by these spaces:

Theorem 3.1.1. Every maximal isotropic is of the form L(E, ε).

Proof. One quickly verifies that these spaces are maximal isotropic, so let L be any maximal isotropic
and define E := πV (L). Since L is isotropic we have L ∩ V ∗ ⊂ Ann(E), where

Ann(E) := {ξ ∈ V ∗| ξ|E = 0}.

Clearly L + Ann(E) is still isotropic, so we have Ann(E) < L since L is maximal. Using the
equality E∗ = V ∗/Ann(E) we can define ε : E → E∗ as follows. For X ∈ E there is by definition
of E a ξ ∈ V ∗ with X + ξ ∈ L, and we define ε(X) = [ξ] ∈ V ∗/Ann(E). This is well defined,
for if ξ′ ∈ V ∗ also satisfies X + ξ′ ∈ L then ξ − ξ′ ∈ L ∩ V ∗ = Ann(E). Remains to verify that
L < L(E, ε), the maximality of L then gives an equality. But by definition of ε any element in L can
be written asX+ιXε+ξ where ξ ∈ Ann(E), and it is obvious that those elements lie in L(E, ε).
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3.1.1 Spinors for V ⊕ V ∗

In view of Theorem 3.1.1 one would expect that a maximal subbundle of T ⊕ T ∗ is described by a
subbundle of E < T and a 2–form ε ∈ Γ(∧2E∗), but this is not always the case. In fact, if L is a
maximal isotropic subbundle then the projection πT (L) is not necessarily of constant rank throughout
M . Fortunately, there is an alternative description using spinors.

Let CL(V ⊕V ∗) denote the Clifford algebra associated to V ⊕V ∗ with its natural pairing 1. There is
a natural choice of pinors for V ⊕ V ∗, presented by the space ∧•V ∗. The Clifford action is given by

(X + ξ) · ϕ := ιXϕ+ ξ ∧ ϕ. (3.1.5)

This is indeed well defined, since

(X + ξ)2 · ρ = (X + ξ) · (ιXρ+ ξ ∧ ρ) = ιX(ξ ∧ ρ) + ξ ∧ ιXρ = (ιXξ)ρ = 〈X + ξ,X + ξ〉ρ.

One readily verifies that this representation is both faithful as irreducible, justifying the name ’pinors’.
Following the nomenclature of the literature, we will abuse notation and call ∧•V ∗ the space of
spinors, instead of pinors. These ’spinors’ form one of the main tools of generalized geometry, as a lot
of structures on T⊕T ∗ and properties thereof can be described purely on the level of differential forms.

In signature (n, n) the Clifford algebra has a volume element ω satisfying ω2 = 1. This gives a
decomposition S := ∧V ∗ = S+ ⊕ S− where S± is the ± eigenspace for ω, and can be identified
with the actual space of spinors. Using an explicit basis e1, . . . , en for V with dual basis e1, . . . , en

for V ∗, the volume element is given by

ω = (e1 + e1) · · · (en + en)(e1 − e1) · · · (en − en) (3.1.6)

and indeed satisfies ω2 = (−1)
1
2

(2n−1)(2n)(−1)n = (−1)2n2
= 1. Using this form for ω one quickly

verifies that S+\− = ∧even\oddV ∗, where it depends on n whether the even or odd forms belong to the
+ or − eigenspace.

The double covering map ρ : Spin(V ⊕ V ∗) → SO(V ⊕ V ∗) given by ρ(x)w = xwx−1 for
x ∈ Spin(V ⊕ V ∗) and w ∈ V ⊕ V ∗ induces an isomorphism on Lie algebras

deρ : spin(V ⊕ V ∗)→ so(V ), (3.1.7)

given by deρ(X)(w) = [X,w]. For later use we need to understand what the inverse image is of the
element (

0 0

B 0

)
(3.1.8)

1We refer to appendix A.1 for definitions and properties of Clifford algebras, (s)pin-groups and (s)pinors.



24 CHAPTER 3. GENERALIZED GEOMETRY

under this isomorphism. Again let ei be a basis for V and ei a dual basis for V ∗. Writing B =
1
2bije

i ∧ ej , we claim that B = deρ(1
2bije

jei). Indeed,

deρ

(
1

2
Bije

jei
)

(ek) =
1

2
Bij(e

jeiek−ekejei) =
1

2
Bij(e

j(δik−ekei)−(δjk−e
jek)e

i) = Bkje
j = ιekB.

(3.1.9)
In particular, this inverse image acts on spinors via

(deρ)−1(B)ϕ =
1

2
Bije

j ∧ ei ∧ ϕ = −B ∧ ϕ, (3.1.10)

and taking exponentials we obtain exp(B)ϕ = e−B ∧ ϕ. One should keep in mind though that this
equation is misleading, as strictly speaking it is the inverse image under ρ of exp(B) that is acting on
spinors, and we have made a choice since there are two elements in this inverse image.

Every space of spinors comes equipped with a bilinear form which is invariant under the connected
component of the identity of the corresponding spin group, see also [11]. For ∧•V ∗ we can give an
explicit description. For forms α, β ∈ ∧•V ∗, we define

(α, β) := (αt ∧ β)top, (3.1.11)

where t : ∧•V ∗ → ∧•V ∗ is given on decomposable forms by (v1 ∧ · · · ∧ vk)t := vk ∧ · · · ∧ v1.
The subscript top implies that we take the top degree part. This bilinear form is called the Chevalley
pairing, or Mukai pairing. To verify that it is invariant under Spin0(V⊕V ∗), the connected component
of the identity, we first write (3.1.11) in a way that reflects the Clifford action. Let f be a nonzero
element in ∧nV , which acts on forms of top degree via inner contraction. More specifically, if we
write f in terms of a basis, f = e1 ∧ · · · ∧ en, then ιf (ϕ) = ιen · · · ιe1ϕ. If we regard ϕ as an
alternating multilinear map on V n, then this latter expression equals ϕ(e1, . . . , en). This defines a
nondegenerate pairing between ∧nV and ∧nV ∗, and we have

(ιf (α, β))f = (ιf (αt ∧ β))f = f t · αt · β · f = (α · f)t · β · f. (3.1.12)

Here · denotes Clifford multiplication, viewing ∧•V ∗ and ∧•V as subspaces of CL(V ⊕ V ∗), which
is allowed as both V and V ∗ are isotropic2. The second equality above is true because α(f) · f = 0,
so that we can move α(f) along α(s) · t at the cost of their graded commutator, which is exactly
ιf (α(s) ∧ t), after which α(f) kills f . From (3.1.12) we see that for v ∈ V ⊕ V ∗ we have

ιf (v · α, v · β)f = (v · α · f)t · v · β · f = (α · f)t · v · v · β · f = 〈v, v〉ιf (α, β)f, (3.1.13)

so that for a general element x = v1 · · · v2r ∈ Spin(V ⊕ V ∗) we have

(x · α, x · β) = (v1 · · · v2r · α, v1 · · · v2r · β) =

2r∏
i=1

〈vi, vi〉(α, β) = N(x)(α, β). (3.1.14)

2This condition is necessary as for a subspaceL < V⊕V ∗, the map v1⊗· · ·⊗vk 7→ v1 · · · vk fromL⊗k → CL(V⊕V ∗)
factors through ∧kL if and only if vi · vj = −vj · vi, which happens if and only if L is isotropic.
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Here N : Spin(V ⊕ V ∗)→ {±1} is the norm function and takes the value 1 on Spin0(V ⊕ V ∗) (cf.
Equation (A.0.2) in the appendix), so that the pairing (3.1.11) is indeed invariant.

To every nonzero spinor ϕ ∈ ∧•V ∗ we can associate its null space, which is defined by

Lϕ := {v ∈ V ⊕ V ∗| v · ϕ = 0}. (3.1.15)

For v, w ∈ Lϕ we have 0 = (vw+wv)ϕ = 2〈v, w〉ϕ, and because ϕ 6= 0 we see that Lϕ is isotropic.
If Lϕ is maximally isotropic, we call ϕ a pure spinor. We would like to know whether all maximal
isotropic subspaces of V ⊕ V ∗ can be obtained as such a null space, and whether the associated pure
spinor is unique. In order to answer these questions, we use the classification of maximal isotropics
given in Theorem 3.1.1. First, note that if v ∈ Lϕ and g ∈ Spin(V ⊕V ∗), then 0 = v ·φ = v · g−1gϕ

so that gvg−1 ∈ Lg·ϕ. In other words, Lg·ϕ = ρ(g)Lϕ. Using this equivariance property, we can prove
the following theorem, where we recall that for anm–dimensional vector spaceE, its determinant line
is defined by ∧mE.

Theorem 3.1.2. Let L = L(E, ε) be a maximal isotropic as in Theorem 3.1.1. There exists a pure
spinor for which L is the associated null space, and any such spinor is given by a nonzero element
in the line UL := exp(B) det(Ann(E)). Here B ∈ ∧2V ∗ is any 2–form such that i∗B = ε with
i : E → V the inclusion. UL < ∧•V ∗ is called the canonical line bundle associated to L.

Proof. First observe that L(E, ε) = exp(B)L(E, 0). Indeed, an element in exp(B)L(E, 0) looks like
X+ξ+ ιXB withX ∈ E and ξ ∈ Ann(E). Since (ιXB+ξ)|E = ιXε these elements lie in L(E, ε),
and since both spaces have dimension n they are equal. Next we claim that L(E, 0) = Lϕ where ϕ is
a nonzero element from det(Ann(E)). Indeed, X + ξ ∈ L(E, 0) if and only if X ∈ E and ξ|E = 0,
and this happens if and only if ιXϕ = 0 and ξ ∧ ϕ = 0. Conversely, if L(E, 0) = Lϕ for some ϕ, the
same equations hold and one readily verifies that this implies ϕ ∈ det(Ann(E))\{0}. This proves the
theorem for ε = 0. The general case follows immediately from the equivariance property described
above. More precisely, L(E, ε) = exp(B)L(E, 0) = exp(B)Lϕ = Lexp(B)·ϕ. Here exp(B) ·ϕ is the
spinorial action of B on ϕ, which was calculated in (3.1.10) and is given by e−B ∧ ϕ.

Remark. From this theorem we also see that any pure spinor can be written as exp(B)θ1 ∧ · · · ∧ θk

where B is a 2–form and θi are linearly independent 1–forms.

In the discussion above we only focused on vector spaces over R, but in the context of generalized
complex structures we will mostly be interested in maximal isotropic subspaces of (V ⊕ V ∗) ⊗ C.
All the results above however continue to be true over the complex numbers, in fact over any field of
characteristic zero.

We close the linear algebra part with a result which will be important when discussing complex struc-
tures later on.

Theorem 3.1.3. Let Lϕ and L′ϕ be two maximal isotropics associated to pure spinors ϕ and ϕ′. Then
Lϕ ∩ L′ϕ = {0} if and only if (ϕ,ϕ′) 6= 0.
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Proof. According to Theorem I.4.1 in [11] the action of SO(V ⊕V ∗) on the set of maximal isotropics
is transitive. Therefore, we can pick a g ∈ Spin(V ⊕V ∗) such that ρ(g)V ∗ = L′ϕ, and by equivariance
it follows that ϕ′ is a multiple of g · e, where e is any nonzero element from ∧nV ∗. Since the pairing
is Spin(V ⊕ V ∗) invariant (up to a ± sign), we may as well assume that L′ϕ = V ∗ = Le. Writing
ϕ = eB ∧ θ1 ∧ · · · ∧ θk, we see that (e, ϕ) = et ∧ exp(B)θ1 ∧ · · · ∧ θk. As e is already of maximal
degree, this product is zero if k > 0, and equal to ±e 6= 0 if k = 0. Recall that the θi span the space
Ann(πV (Lϕ)), so that (e, ϕ) 6= 0 if and only if Ann(πV (Lϕ)) = {0}, but we saw in the proof of
Theorem 3.1.1 that Lϕ ∩ V ∗ = Ann(πV (Lϕ)), which concludes the proof.

3.2 The Courant bracket

Having discussed the relevant linear algebra, we will now turn to the differential geometric content of
generalized geometry. Instead of giving straight away the definition of the Courant bracket, we derive
it in a way that makes it clear where it comes from. Besides this philosophical reason, this alternative
description is also convenient for actual computations.

3.2.1 Derived brackets

LetM be a smooth n–dimensional real manifold, and letA be the space of linear differential operators
on Ω•(M), the space of sections of the bundle ∧•T ∗M . A is equipped with a Z2-grading, where an
operator a is of degree k ∈ Z2 if a(Ωl(M)) ⊂ Ωl+k(M), where the Z2 grading on forms is according
to the parity of their degree. This grading induces a bracket on A given by

[a, b] := ab− (−1)|a||b|ba, (3.2.1)

where |a| is the degree of a, and this bracket turns A into a Lie superalgebra. Suppose that D is an
odd derivation, i.e. D : Ai → Ai+1, D([a, b]) = [Da, b] + (−1)|a|[a,Db], and D2 = 0. Then we can
define another bracket on A, given by

[a, b]D := (−1)|a|+1[Da, b]. (3.2.2)

This bracket is called the derived bracket for D, and it is a degree 1 bracket, in the sense that
[Ai,Aj ] ⊂ Ai+j+1. For a more concise treatment of the derived bracket we refer to [27]. A straight-
forward computation shows that [, ]D satisfies the (graded) Jacobi identity:

[a, [b, c]D]D = [[a, b]D, c]D + (−1)(a+1)(b+1)[b, [a, c]D]D. (3.2.3)

However, in general this bracket is not skew–symmetric. A way to produce such a derivation D is by
taking an element d ∈ Aodd, such that [d, d] = 0, and then define D to be

Da := [d, a] = (−1)a+1[a, d]. (3.2.4)

It is a derivation because [, ] satisfies the Jacobi identity, and squares to zero because [d, d] = 0. The
corresponding derived bracket will be denoted by [, ]d.
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The nice aspect about this construction is that some interesting subspaces of A turn out to be closed
under the derived bracket, for certain choices of d. As a first example, we take d to be the ordinary
exterior derivative on forms, which obviously satisfies [d, d] = 2d2 = 0, and look at the subspace
TM < A−1, where a vector field on M acts on Ω•(M) by inner contraction. Using the well–known
identity [LX , ιY ] = ι[X,Y ], with LX the Lie derivative in the direction of X , we obtain

[ιX , ιY ]d = [[ιX , d], ιY ] = [LX , ιY ] = ι[X,Y ], (3.2.5)

so that indeed the space of vector fields is closed under the derived bracket, and under the identification
X ↔ ιX the derived bracket is identified with the Lie bracket. This example can straightforwardly
be generalized to the subspace of A given by all polyvector fields, i.e. sections of ∧•TM . A similar
computation can be done, and it turns out that the induced bracket on Γ(∧•TM) is the Schouten-
Nijenhuis bracket:

[X1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl] =
∑
i,j

(−1)(i+j)[Xi, Yj ] ∧X0 ∧ · · · X̂i · · · ∧Xk ∧ Y1 ∧ · · · Ŷj · · · ∧ Yl.

(3.2.6)

As a second example, we consider the operator

dH := d−H∧ ∈ A, (3.2.7)

where H is a closed three–form on M . It is obvious that for the associated bracket the previous sub-
space is not closed, due to the presence of H , which turns a pair of vectors into a 1–form. Therefore,
besides vector fields we allow also 1–forms, i.e. we look at the subspace T ⊕ T ∗ < A, where the
inclusion is given by X + ξ 7→ ιX + ξ∧. On this subspace the derived bracket takes the form

[ιX + ξ∧, ιY + η∧]dH =[[ιX + ξ∧, dH ], ιY + η∧]

=[LX − ιXH ∧+dξ∧, ιY + η∧]

=ι[X,Y ] + LXη ∧+ιY ιXH ∧ −ιY dξ ∧ . (3.2.8)

In particular we see that T ⊕ T ∗ < A is closed under the derived bracket, which induces on T ⊕ T ∗

the so–called Courant bracket

[[X + ξ, Y + η]] := [X,Y ] + LXη − ιY dξ + ιY ιXH. (3.2.9)

We use explicit double brackets for the Courant bracket to distinguish it from the other brackets, al-
though it should be clear from the context which bracket is meant. Also, the Courant bracket depends,
besides the differential structure of M , also on the 3–form H , so in the literature one often finds an
H-subscript to stress that fact. We shall not mention any dependence on H in the Courant bracket, as
there will always be a flux present.

Note that a lot of authors take the anti–symmetrization of (3.2.9) as the definition of the Courant
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bracket, which then fails to satisfy the Jacobi identity. In those texts, the bracket in (3.2.9) is called
the Dorfman bracket. Instead, we will use the above definition which is more natural in the context of
derived brackets, with the slight disadvantage that it lacks skew–symmetry. Indeed, the graded Jacobi
identity for [, ] gives

[[ιX + ξ∧, dH ], ιY + η∧] =[ιX + ξ∧, [dH , ιY + η∧]] + [dH , [ιX + ξ∧, ιY + η∧]]

=[ιX + ξ∧, [dH , ιY + η∧]] + d(ιXη + ιY ξ),

which implies for the Courant bracket

[[X + ξ, Y + η]] + [[Y + η,X + ξ]] = 2d〈X + ξ, Y + η〉. (3.2.10)

Here the bracket is the natural pairing as defined in (3.1.1). Besides this relation between the bracket
and the pairing, we have the following identities.

Lemma 3.2.1. For u = X + ξ, v = Y + η, w = Z + ζ ∈ Γ(T ⊕ T ∗) and f ∈ C∞(M) we have

i) π(u)〈v, w〉 = 〈[[u, v]], w〉+ 〈v, [[u,w]]〉,

ii) [[u, fv]] = f [[u, v]] + (π(u)f)v,

where π(u)〈v, w〉 = X(〈v, w〉) = d〈v, w〉(X).

Proof. For i) we compute

〈[[u, v]], w〉+ 〈v, [[u,w]]〉 =〈[X,Y ] + LXη − ιY dξ + ιY ιXH,Z + ζ〉
+ 〈Y + η, [X,Z] + LXζ − ιZdξ + ιZιXH〉

=
1

2

(
ι[X,Y ]ζ + ιZ(LXη − ιY dξ + ιY ιXH)

)
+

1

2

(
ι[X,Z]η + ιY (LXζ − ιZdξ + ιZιXH)

)
=

1

2

(
ιZLXη + ι[X,Z]η + ιY LXζ + ι[X,Y ]ζ

)
=

1

2
(LX(ιZη + ιY ζ))

=π(u)〈v, w〉,

where in the penultimate equality we used again [LX , ιY ] = ι[X,Y ]. For ii), we compute

[[u, fv]] =[X, fY ] + LX(fη)− ιfY dξ + ιfY ιXH

=f [X,Y ] +X(f)(Y + η) + fLXη − fιY dξ + fιY ιXH

=f [[u, v]] + (π(u)f)v.

Remark. The triple (T ⊕T ∗, 〈, 〉, [[, ]]) satisfies all the axioms of an exact Courant algebroid, for more
information about these structures see [6].
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Given the natural pairing and the bracket, we may wonder what the symmetries of these structures
are, i.e. what bundle maps

T ⊕ T ∗ F−−−−→ T ⊕ T ∗yπ yπ
M

f−−−−→ M

(3.2.11)

preserve both the pairing as the bracket. To answer this question we first observe the following.

Lemma 3.2.2. The only automorphisms of TM preserving the Lie bracket are maps of the form
(f, f∗), where f∗ is the tangent map of f .

Proof. Given a general bundle automorphism (f, F ), we can compose with (f−1, (f∗)
−1), so that

without loss of generality we may assume f = id. For g ∈ C∞(M) and X ∈ Γ(TM) we have

F [X, gX] = F (X(g)X) = X(g)F (X),

but on the other hand

F [X, gX] = [F (X), gF (X)] = (F (X)g)F (X).

As F is supposed to be an isomorphism, we see that X and F (X) give the same derivations on
functions, hence are equal, so that F = Id.

For T ⊕ T ∗ we have more symmetries available, given by the B-transforms.

Theorem 3.2.3. Let (f, F ) be a bundle map as in (3.2.11), and suppose that F preserves both the
pairing as the Courant bracket. Then there exists a 2–form B with (f∗)−1(H) = H + dB, and F is
the composition of (f∗, (f

∗)−1) and exp(B).

Proof. Given (f, F ), the map π ◦ F ◦ i is a bundle map from T to itself, hence equals f∗ by the
previous lemma. Here π : T ⊕ T ∗ → T is the projection and i : T → T ⊕ T ∗ is the inclusion (which
is not a map of Courant algebroids for nonzero H). Applying F to both sides of the equality (3.2.10)
gives

F (d〈v, w〉) = d〈F (v), F (w)〉 ∀v, w ∈ Γ(T ⊕ T ∗). (3.2.12)

AsF preserves the bracket, the right-hand side equals d(f−1)∗〈v, w〉 = (f−1)∗d〈v, w〉, which implies
that F (ξ) = (f−1)∗(ξ) for ξ ∈ Γ(T ∗). This restricts F to be of the form

F =

(
f∗ 0

B ◦ f∗ (f∗)−1

)
. (3.2.13)

However, such a transformation does not necessarily preserve the Courant bracket:

F [[X + ξ, Y + η]]− [[F (X + ξ), F (Y + η)]] = ιf∗Y ιf∗X
(
(f∗)−1(H)− dB −H

)
, (3.2.14)

which vanishes precisely under the condition of the theorem.
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3.3 Generalized complex structures

Consider again a finite dimensional vector space V over R. We will first define the notion of a
generalized complex structure on V , then extend it to T ⊕ T ∗.

Definition 3.3.1. A generalized complex structure on V is a linear map J : V ⊕ V ∗ → V ⊕ V ∗

satisfying J 2 = −Id and 〈J v,Jw〉 = 〈v, w〉 for all v, w ∈ V ⊕ V ∗.

The first property mimics the definition of a complex structure, while the second condition, written
as J ∗ = −J (we identify (V ⊕ V ∗)∗ with V ⊕ V ∗ via the pairing), is the analogue of a symplectic
structure. It is therefore natural to expect for those two structures to provide the basic examples, and
indeed, if I is a complex structure and ω a symplectic structure on V , the following transformations
are easily verified to define generalized complex structures:

JI :=

(
−I 0

0 I∗

)
, Jω :=

(
0 −ω−1

ω 0

)
. (3.3.1)

If J is a generalized complex structure, its +i eigenspace L < (V ⊕ V ∗)⊗ C is isotropic due to the
orthogonality condition on J . Since L is the −i eigenspace of J , we have (V ⊕ V ∗)⊗C = L⊕ L,
hence L and L are maximal isotropics. Conversely, given L maximal isotropic in (V ⊕ V ∗)⊗C with
L ∩ L = {0}, it defines a generalized complex structure on V by letting L and L be the +i and −i
eigenspaces. The type of J is defined as the type of the corresponding maximal isotropic L, which
was defined as the complex codimension of πV⊗C(L) in V ⊗ C.

In order to study generalized complex structures on V it thus suffices to look at maximal isotrop-
ics L < (V ⊕ V ∗) ⊗ C satisfying L ∩ L = {0}. In terms of a representing pure spinor ϕL, this
condition translates into (ϕL, ϕL) 6= 0, as follows from Theorem 3.1.3. If we write ϕL = eB+iω ∧Ω,
we see that

(ϕL, ϕL) = ((eB+iω ∧ Ω)t ∧ eB−iω ∧ Ω)top = ((Ω)t ∧ e−2iω ∧ Ω)top. (3.3.2)

In order for this to be nonzero, the top degree on M should be even, i.e. M itself should be even
dimensional.

Remark. As it turns out, a generalized complex structure J can to some extent be regarded as the
product of a complex and a symplectic structure. This fact remains true in the context of differential
geometry (cf. definitions 3.3.4 and 3.3.5 below). There is a generalized Darboux Theorem (Theorem
4.35 in [18]), which states that in a regular neighborhood of a point, where the type k of J is constant,
the whole generalized complex structure is isomorphic to a product of an open set in Ck and an open
set in (R2n−2k, ω0) with ω0 the standard symplectic form on R2n. We will not go into this.

Since L and L are maximal isotropic and L∩L = {0}, L can be identified with L∗ via ιvw = 2〈w, v〉.
The factor of 2 is conventional, so that we have the relation ιvw = vw + wv as operators on spinors.
This induces a decomposition of the space of differential forms. More precisely, define Un := UL and
Un−k := ∧kL · Un. Then we have

∧•T ∗ ⊗ C = U−n ⊕ U−n+1 ⊕ . . .⊕ Un. (3.3.3)
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Indeed, if v1, . . . , v2n is a (complex) basis for L and v1, . . . , v2n a dual basis for L, we have

vik · · · vi1 · v
i1 · · · vikρ = ρ

for ρ ∈ UL and the indices ij mutually distinct, as follows immediately from the defining anti–
commutation relation (viv

j + vjvi) = 2〈vi, vj〉 = δji . From this equality one straightforwardly
verifies (3.3.3). In this sense elements from L (L) act as raising (lowering) operators. Note that this
grading is incompatible with the usual grading of forms by their degree, but there is still a Z2 grading,
i.e. forms in Un are even or odd depending on the type of J .

The decomposition (3.3.3) behaves well with respect to the Mukai pairing in the following sense.

Lemma 3.3.2. The Mukai pairing (3.1.11) is non–degenerate on Uk × U−k, while all other pairs are
orthogonal to each other.

Proof. The spaces Uk and Ul are spanned by elements of the form

α = v1 · · · vn−k · ρ, β = w1 · · ·wn+l · ρ,

where ρ ∈ Un\{0}, vi ∈ L and wi ∈ L. Using Equation (3.1.13) and the anti–commutation relation,
we see that (α, β) = 0 for k 6= −l, while for k = −l we have

(α, β) = 2n−k det(〈vi, wj〉)(ρ, ρ),

which is indeed non–degenerate becauseL∗ ∼= L and (ρ, ρ) 6= 0, sinceL∩L = {0} (see also Theorem
3.1.3).

There is an alternative interpretation of the spaces Uk as eigenspaces for the Lie algebra action of J .
Note that J defines an element of so(V ⊕ V ∗) (Equation (3.1.2)), and so it has an inverse under the
map deρ : spin(V ⊕ V ∗)→ so(V ⊕ V ∗), which acts on ∧•V ∗, the space of spinors.

Lemma 3.3.3. The space Uk is an eigenspace for the endomorphism (deρ)−1(J ) with eigenvalue ik.

Proof. Denoting the inverse image of J by J̃ , let ρ ∈ Un and consider the element J̃ · ρ. For v ∈ L
we have

v · (J̃ · ρ) = [v, J̃ ] · ρ = −iv · ρ = 0,

so that J̃ · ρ ∈ Un, and since this is a line, it equals λρ for some λ ∈ C. Note that we used here
the defining relation for J̃ , namely [J̃ , v] = J v. For a general element v1 · · · vk · ρ ∈ Un−k, where
vi ∈ L, we have

J̃ v1 · · · vk · ρ =
k∑
i=1

v1 · · · vi−1[J̃ , vi]vi+1 · · · vk · ρ+ v1v2 · · · vkJ̃ · ρ = (λ− ik)ρ.

Since U∗n−k = Uk−n = Un−(2n−k) and J̃ is real, it follows that (λ − ik)∗ = (λ − i(2n − k)),
which implies that λ = µ + ni where µ ∈ R, and it remains to show that µ = 0. This follows from
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Lemma 3.3.2 and the fact that J̃ is anti–symmetric with respect to the Mukai pairing (this follows
from differentiation of 3.1.14):

(µ+ ni− ik)(α, β) = (J̃α, β) = −(α, J̃ β) = −(µ− ni+ ki)(α, β),

for α ∈ Un−k and β ∈ U−n+k.

Having defined the linear algebraic content of a generalized complex structure, we can transport its
definition to a manifold M , of even dimension 2n. From the above discussion the proof of the next
definition/proposition is straightforward.

Definition 3.3.4. A generalized almost complex structure onM is given by the following three equiv-
alent data:

• An endomorphism J of T ⊕ T ∗ satisfying J 2 = −1 and J ∗ = −J with respect to the natural
pairing.

• A maximal isotropic subspace L < (T ⊕ T ∗)⊗ C satisfying L ∩ L = {0}.

• A pure spinor line (complex rank 1 sub-bundle) U < ∧T ∗ ⊗ C, satisfying (ϕ,ϕ) 6= 0 at every
point, for all ϕ ∈ U nonzero.

Integrability of a generalized almost complex structure J is analogous to integrability in ordinary
complex geometry, where we require that the +i eigenbundle is involutive with respect to the Lie
bracket.

Definition 3.3.5. A generalized complex structure onM is a generalized almost complex structure on
M such that its +i eigenbundle L is involutive with respect to the Courant bracket.

Remark. In case the 3–formH is not exact, the associated Courant bracket is often called twisted, with
H defining the twist. Similarly, every structure where there is a notion of integrability with respect to
the twisted Courant bracket is also called twisted. Note however that this name has nothing to do with
the so–called topological twist which will be discussed in Section 5.3.

For the structures defined in (3.3.1), one readily verifies that JI is integrable in the generalized setting
if and only ifH is of type (2, 1)+(1, 2), and I is integrable in the classical setting. Similarly, Jω is in-
tegrable if and only if ω satisfies idω = H . IfH = 0 this is nothing but the symplectic condition on ω.

Again it is natural to ask what condition integrability imposes on the canonical line bundle, and the
answer is similar to the complex case. Recall that on a complex manifold we have a (p, q) decompo-
sition of forms, and complex structures are integrable if and only if the equation d = ∂+ ∂ holds. We
will now generalize this concept to the context of generalized complex structures. From (3.3.3) we
know that the forms decompose as

∧• T ∗ ⊗ C = U−n ⊕ U−n+1 ⊕ . . .⊕ Un. (3.3.4)



3.4. GENERALIZED KÄHLER MANIFOLDS 33

In principle the operator dH decomposes as

dH =
n∑

k=−n
πk ◦ dH ,

with πk the projection onto Uk, but we can say more than that. Define

∂ := πk−1 ◦ dH : Γ(Uk)→ Γ(Uk−1) ∂ := πk+1 ◦ dH : Γ(Uk)→ Γ(Uk+1), (3.3.5)

and the Nijenhuis tensor

N :Γ(L)× Γ(L)× Γ(L)→ C∞(M)

(u, v, w) 7→ −2〈[[u, v]], w〉. (3.3.6)

Note that all spaces are over the complex numbers, e.g. C∞(M) denotes all smooth complex valued
functions. Using Lemma 3.2.1 we see that N defines an element of ∧3L, again identifying L with L∗.
The general expression for dH is given by the following result, which is Lemma 2.3 in [7].

Theorem 3.3.6. Let J be a generalized almost complex structure, inducing the grading Uk of forms
as in (3.3.4). The operator dH satisfies dH = ∂ + ∂ +N +N , where N and N act on spinors by the
Clifford action.

Corollary 3.3.7. J is integrable if and only if dH = ∂ + ∂.

Note that dH = ∂ + ∂ is equivalent to the inclusion dH(Γ(Un)) ⊂ Γ(Un−1). This follows from
Theorem 3.3.6, for the Clifford action of N on ∧•T ∗ ⊗ C is zero if and only if it is zero on Un. In
particular, a sufficient condition for integrability is the existence of a non–vanishing closed section of
Un, and these type of structures have their own name.

Definition 3.3.8. A generalized complex structure J on M is called generalized Calabi–Yau if there
exists a global, nowhere vanishing section of Un that is dH closed.

3.4 Generalized Kähler manifolds

As already mentioned in Section 2.4, Kähler manifolds play an important role in extended supersym-
metric sigma models, and in this section we generalize this concept to generalized complex manifolds.
Recall that a Kähler structure on M consists of a complex structure I and a metric g, such that I is
orthogonal with respect to g (cf. Equation (2.4.2)) and such that the fundamental 2–form ω = gI is
closed. Now we want to extend this idea to T ⊕ T ∗. We already have the notion of a generalized
complex structure, so what we need is a generalization of g.

Definition 3.4.1. A generalized metric on M is a map G : T ⊕ T ∗ → T ⊕ T ∗ satisfying G∗ = G and
G2 = 1. Furthermore, the bilinear form G(v, w) := 〈v,Gw〉 should be positive definite on T ⊕ T ∗.
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Remark. The idea behind this definition is that, as with all the structures in generalized geometry, the
desired metric G(, ) on T ⊕ T ∗ should be compatible with the natural pairing, which is expressed
through the map G. The property G∗ = G then ensures that the associated bilinear form G(, ) is
symmetric.

If J1 and G are a generalized complex structure and metric on M , the triple (M,J1,G) is called
generalized hermitian if J1 commutes with G. This is equivalent to J1 being orthogonal with respect
to the metric G(, ). In this case, we can define a generalized almost complex structure by J2 := GJ1.
For a generalized Kähler structure we require J2 to integrable, which is the analogue of the condition
dω = 0 for ordinary Kähler structures.

Definition 3.4.2. A generalized Kähler structure on M consists of two commuting generalized com-
plex structures J1 and J2 such that G := −J1J2 is a generalized metric on M .

Note that the only constraint on G as given in the above definition is the positive definite condition.
To justify this language we first verify that ordinary Kähler satisfy this condition. If (M, I, g, ω) is a
Kähler manifold, we obtain two generalized complex structures on T ⊕T ∗ given by the formula (with
JI differing from the one in (3.3.1) by a minus sign):

JI :=

(
I 0

0 −I∗

)
, Jω :=

(
0 −ω−1

ω 0

)
. (3.4.1)

A quick computation shows that

G := −JI · Jω = −Jω · JI =

(
0 g−1

g 0

)
, (3.4.2)

defines a generalized metric on M .

If G is a generalized metric, it induces a decomposition T ⊕ T ∗ = C+ ⊕ C−, with C± the ±1

eigenbundles of G. By the positive definite condition on G, it follows that C+ is positive definite
while C− is negative definite for 〈, 〉, and because the metric has signature (n, n) it follows that C±
are both n–dimensional. Furthermore, since both T and T ∗ are isotropic while C± are definite, they
intersect trivially and combining this fact with their dimensions we conclude that C± are both the
graph of map T → T ∗. We can write this map for C+ as the sum of a symmetric and antisymmetric3

part, say g + b, and the positive definite condition for C+ implies that g defines a metric on M . Since
elements of the form X + g(X) + b(X) are perpendicular to ones of the form X − g(X) + b(X) we
deduce that C− is the graph of the map −g + b. These two maps give isomorphisms T → C±, with
inverses the projections onto T , see also figure 3.1.

Now let (M,J1,J2) be a generalized Kähler manifold. Using the isomorphism T ∼= C±, we will
translate the structure as it is defined on T ⊕ T ∗, to a set of geometrical data on T . Note that G is

3We use the letter b to denote the antisymmetric part of this map because this is standard notation, but note that it is not
directly related to the B–field that we will define later. For instance, b in this context is globally defined, while the 2–forms
in the definition of the B–field are not.
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T

C+

C−
T ∗

g + b

Figure 3.1: Decomposition T ⊕ T ∗ = C+ ⊕ C−.

completely determined by its eigenspaces C±, which in turn are determined by g and b. Furthermore,
since J1 and J2 commute, (T ⊕ T ∗)⊗ C decomposes into eigenbundles for both

(T ⊕ T ∗)⊗ C = L1 ⊕ L1 = L+
1 ⊕ L

−
1 ⊕ L

+
1 ⊕ L

−
1 , (3.4.3)

where L1 is the +i eigenbundle for J1 and L1 = L+
1 ⊕ L

−
1 is the decomposition of L1 into the ±i

eigenbundles for J2. From the definition of G it is obvious that on C± we have J1 = ±J2, hence
C± ⊗ C = L±1 ⊕ L

±
1 . Thus J1 together with C± determines J2. Let πT denote the projection from

T ⊕ T ∗ onto T , and define almost complex structures I± on T via the formula

I±(πT (v)) = πT (J1(v)) for v ∈ C±. (3.4.4)

As J1 is orthogonal with respect to the natural pairing, it follows that I± are both orthogonal with
respect to g, so (g, b, I±) defines what is called an almost bi–hermitian structure (almost referring to
I± not necessarily being integrable). Conversely, I± determine J1 on C±, hence on the whole of
T ⊕ T ∗. So together, the almost bi–hermitian data (g, b, I±) contains all the algebraic content of the
generalized Kähler structure, and we want to determine how the integrability conditions on J1,J2

translate into these data. The answer is given by the following Theorem, proved in [18] in Sections
6.3 and 6.4.

Theorem 3.4.3. [18] The following four conditions are equivalent for an almost generalized Kähler
structure (J1,J2,G) and its associated data (g, b, I±):

1. J1 and J2 are integrable.

2. L+
1 and L−1 are involutive.
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3. I± are integrable and H + db = ∓dc±ω±, where dc± := i(∂± − ∂±) and ∂± is the usual
∂-operator for I±.

4. ∇±I± = 0, with∇± := ∇± 1
2g
−1(H + db) and H + db is of type (2, 1) + (1, 2) with respect

to I+ and I−.

To prove the equivalence of 3 and 4 we need a few equations that relate these different points of view,
and we present them here in a lemma.

Lemma 3.4.4.

i) Let N±(X,Y ) = [X,Y ] − [I±X, I±Y ] + I±[I±X,Y ] + I±[X, I±Y ] be the Nijenhuis tensor
with respect to I±. We have

N±(X,Y ) =(∇±Y I±)I±X − (∇±XI±)I±Y + (∇±I±Y I±)X − (∇±I±XI±)Y

∓ g−1(ιY ιX − ιI±Y ιI±X)(H + db)∓ I±g−1(ιY ιI±X + ιI±Y ιX)(H + db).

(3.4.5)

ii) The forms ω± = gI± satisfy

dω±(X,Y, Z) = g((∇±XI±)Y,Z)∓ (H + db)(X,Y, I±Z) + c.p., (3.4.6)

where c.p. stands for cyclic permutations in X , Y and Z.

Proof. i): Using the fact that the Levi-Cevita connection is torsion–free, one readily verifies that

∇±XY −∇
±
YX − [X,Y ] = ±g−1(H + db).

Using this we see that

N±(X,Y ) =
(
∇±XY −∇

±
YX ∓ g

−1ιY ιX(H + db)
)

−
(
∇±I±XI±Y −∇

±
I±Y

I±X ∓ g−1ιI±Y ιI±X(H + db)
)

+ I±

(
∇±I±XY −∇

±
Y I±X ∓ g

−1ιY ιI±X(H + db)
)

+ I±

(
∇±XI±Y −∇

±
I±Y

X ∓ g−1ιI±Y ιX(H + db)
)

=(∇±Y I±)I±X − (∇±XI±)I±Y + (∇±I±Y I±)X − (∇±I±XI±)Y

∓ g−1(ιY ιX − ιI±Y ιI±X)(H + db)∓ I±g−1(ιY ιI±X + ιI±Y ιX)(H + db),

where in the last equality we used I±∇±I± = −(∇±I±)I±.
ii): We have

dω±(X,Y, Z) =Xω±(Y,Z)− ω([X,Y ], Z) + c.p.

=Xg(I±Y,Z)− g(I±[X,Y ], Z) + c.p.

=g(I±∇±XY,Z) + g((∇±XI±)Y, Z) + g(I±Y,∇±XZ)

− g(I±
(
∇±XY −∇

±
YX ∓ g

−1ιY ιX(H + db)
)
, Z) + c.p.

=g((∇±XI±)Y, Z)∓ (H + db)(X,Y, I±Z) + c.p.
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Proof. (of Theorem 3.4.3):
1⇒ 2: If both J1 and J2 are integrable, then L1 = L+

1 ⊕ L
−
1 and L2 = L+

1 ⊕ L
−
1 are involutive. In

particular
[[Γ(L+

1 ),Γ(L+
1 )]] ⊂ Γ(L+

1 ⊕ L
−
1 ) ∩ Γ(L+

1 ⊕ L
−
1 ) = Γ(L+

1 ),

so L+
1 is involutive. Applying the same argument with L1 and L2 = L−1 ⊕ L

+
1 yields the same result

for L−1 .

2⇒ 1: Suppose L±1 are involutive. To show that L+
1 ⊕ L

−
1 is involutive, we have to check

[[u, v]] ∈ L1

for u ∈ Γ(L+
1 ), v ∈ Γ(L−1 ). Since L is maximal isotropic, it suffices to check that [[u, v]] is orthogonal

to L1. If w ∈ Γ(L+
1 ), we have

〈[[u, v]], w〉 = −〈[[u,w]], v〉 = 0

because [[u,w]] ∈ L+
1 . In the final equation we used anti–symmetry of the tensor 〈[[, ]], 〉.

2⇔ 3: By construction of I± we have

L+
1 = {X + (g + b)(X)|X ∈ T (1,0)

+ } = {X + (b− iω+)X|X ∈ T (1,0)
+ },

where we used g(X) = −igI+X = −iω+(X). Likewise

L−1 = {X + (−g + b)(X)|X ∈ T (1,0)
− } = {X + (b+ iω−)X|X ∈ T (1,0)

− }.

Observe that both bundles are of the form F := {X + c(X)|X ∈ Γ(E)} for a complex 2–form c and
some sub-bundle E < T ⊗ C. If X + cX ,Y + cY are two sections of this bundle we have

[[X + cX, Y + cY ]] = [X,Y ] + LXιY c− ιY dιXc+ ιY ιXH = [X,Y ] + ι[X,Y ]c+ ιY ιX(dc+H),

where in the last equality we used [LX , ιY ] = ι[X,Y ]. In particular, F is involutive if and only if E
is involutive with respect to the Lie bracket and ιY ιX(dc + H) = 0 for all X,Y ∈ E. So L±1 are
involutive if and only if T (1,0)

± are involutive with respect to the Lie bracket (i.e. I± are integrable)
and

ιY ιX(db+H ∓ idω±) = 0 ∀X,Y ∈ T (1,0)
± . (3.4.7)

Now recall that ω± is of type (1, 1) with respect to both I+ and I−, so that dω± = ∂±ω± + ∂±ω± is
of type (2, 1) + (1, 2) if I± are integrable. The condition (3.4.7) is then equivalent to

ιY ιX(db+H) = ±iιY ιX∂±ω± ∀X,Y ∈ T (1,0)
± ,

and since db+H is real4 this latter is equivalent to H + db = ∓dc±ω±.

4Note that dc = i(∂± − ∂±) can be written as dc = −I∗dI∗, hence is also a real operator.
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4⇒ 3: If∇±I± = 0, Lemma 3.4.4 i) implies

N±(X,Y ) = ∓g−1[ιY ιX − ιI±Y ιI±X ](H + db)∓ I±g−1[ιY ιI±X + ιI±Y ιX ]g−1(H + db).

(3.4.8)

The fact that H + db is of type (2, 1) + (1, 2) is equivalent to the equation

(H+db)(X,Y, Z) = (H+db)(I±X, I±Y,Z)+(H+db)(I±X,Y, I±Z)+(H+db)(X, I±Y, I±Z),

as one readily verifies. Using this together with the identity I±g−1 = −g−1I∗± we see that (3.4.8)
vanishes, so I± are integrable. Furthermore, Lemma 3.4.4 ii) implies

dω±(X,Y, Z) = ∓ ((H + db)(I±X,Y, Z) + (H + db)(X, I±Y, Z) + (H + db)(X,Y, I±Z)) ,

which is easily seen to be equivalent to dcω± = ∓(H + db).

3 ⇒ 4: Clearly H + db = ∓dc±ω± implies that H + db is of type (2, 1) + (1, 2) with respect to
I±. This fact, together with Lemma 3.4.4 i) and ii) imply

0 = (∇±Y I±)I±X − (∇±XI±)I±Y + (∇±I±Y I±)X − (∇±I±XI±)Y, (3.4.9)

and

0 = g((∇±XI±)Y,Z) + g((∇±Y I±)Z,X) + g((∇±ZI±)X,Y ), (3.4.10)

see the proof of 4⇒ 3 below for an explanation. We can use (3.4.9) to rewrite the term g((∇±Y I±)Z,X)

in (3.4.10), and using the fact that∇±I± is skew–symmetric with respect to g we obtain

g((∇±XI±)Y,Z)− g((∇±I±ZI±)I±Y, Z) + g((∇±I±Y I±)I±Z,X) = 0.

Replacing Y and Z by I±Y and I±Z, and using (3.4.10) again we obtain

g((∇±XI±)Y,Z) = 0,

so that indeed∇±I± = 0.

3.4.1 Example of a generalized Kähler manifold

In this section we give an example of a compact six–dimensional (twisted) generalized Kähler mani-
fold, which does not allow for any ordinary Kähler structure. This manifold will be the quotient of a
Lie group G, so we first recall some basic Lie theory. The construction is based on [15], in communi-
cation with the authors.

A Lie group G is called nilpotent if its Lie algebra g is nilpotent, which means that it is not abelian
and that its lower central series

g ⊃ [g, g] ⊃ [g, [g, g]] ⊃ . . .
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becomes zero in a finite number of steps. Similarly, we have the notion of a solvable Lie group G,
where we replace the lower central series by the derived series

g ⊃ [g, g] ⊃ [[g, g], [g, g]] ⊃ . . .

Given a nilpotent (solvable) group G, and a closed subgroup H , the quotient G/H is a manifold
which is called a nilmanifold (solvmanifold). Note that some authors require H to be discrete and
co-compact (i.e., G/H is compact) as part of the definition.

On such spaces we can try to construct invariant generalized complex structures, where invariant
means invariant under the group translations. Such invariant structures are completely determined by
their behavior on the Lie algebra g, which effectively reduces all computations to linear algebra on g.
In [9] it was shown that all six–dimensional nilmanifolds admit generalized complex structures, but
besides the torus, none of them admits an invariant generalized Kähler structure [5]. For solvmani-
folds there are no such restrictions, as the example will show.

Every element X ∈ g determines a left invariant vector field X̃ on G by left translation

X̃(g) := Telg(X),

where lg is the map h 7→ gh, and clearly every left invariant vector field is obtained in this way.
Similarly every element α ∈ T ∗eG determines and is determined by a left invariant form α̃ on G,
invariant in the sense that l∗g(α̃) = α̃. In this way ∧•g∗ becomes a subcomplex of ∧•T ∗G. If α̃ is such
an invariant 1–form, we can compute dα̃, which we know must be invariant again, by evaluating it on
invariant vector fields:

dα̃(X̃, Ỹ ) = X̃(α̃(Ỹ ))− Ỹ (α̃(X̃))− α̃([X̃, Ỹ ]) = −α([X,Y ]), (3.4.11)

since the functions α̃(X̃) and α̃(Ỹ ) are equal to α(X) and α(Y ), so in particular are constant. Note
the two different brackets in (3.4.11); the first is the Lie bracket of vector fields while the second is
the bracket of the Lie algebra itself. These brackets are related, in the sense that the map X 7→ X̃ is a
homomorphism of Lie algebras, i.e. [X̃, Ỹ ] = [̃X,Y ]. The differential d thus acts on ∧•g∗ via

dα(X,Y ) = −α([X,Y ]), (3.4.12)

and in particular contains all the information about the bracket on g. Indeed, if ei is a basis for g, and
ei the dual basis in g∗, then dei = −1

2f
i

jk e
j ∧ ek, where f i

jk are the structure constants of the algebra
([ej , ek] = f i

jk ei). We will abbreviate eij := ei ∧ ej , eijk := ei ∧ ej ∧ ek, etc.

The idea is now to construct a solvable Lie algebra, that admits a left–invariant generalized Kähler
structure (note that this can be verified on the Lie algebra itself) and whose corresponding Lie group5

5By a classical theorem of Lie, every finite dimensional Lie algebra belongs to a Lie group, which can be chosen such
that it is simply connected (in which case it is unique).
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G has a discrete subgroup H that is co-compact, i.e. M := G/H is compact. Note that this space has
the structure of a manifold, and is in fact locally diffeomorphic to G. Then we can transfer the gener-
alized Kähler structure from G to M , using the fact that the map G → M is a local diffeomorphism.
It might sound rather difficult to find this example, but there is a more or less standard recipe to find
it.

We first pick a matrix m in SL(3,Z) that has two conjugate eigenvalues α, α which are not real, and
a real eigenvalue c > 1, and let (c1, c2, c3) and (α1, α2, α3) be the eigenvectors corresponding to c
and α respectively. Due to the condition det(m) = 1, we have |α|2c = 1. Note that a general element
in SL(3,Z) is of this form. With these constants we define a group structure on G := R×R×C×C
by

(t, u, z, w) · (t′, u′, z′, w′) := (t+ t′, ctu′ + u, αtz′ + z, ei
π
2
tw′ + w). (3.4.13)

As a consequence of the equality |α|2c = 1 this group is easily seen to be unimodular, which
means that right multiplication preserves the left–invariant Haar measure (in this case just the or-
dinary Lebesgue measure) of the group. This property is necessary for a group to admit a cocompact
discrete group, see Section 9.1 in [13] for more details. This explains the choice of the matrix m in
SL(3,Z). To construct this subgroup, first observe that the three vectors (ci, αi) in R×C are linearly
independent over R. For if

∑
i λ

i(ci, αi) = 0, we would also have
∑

i λ
i(ci, αi, αi) = 0 because the

λi are real. This would imply that the matrixc1 α1 α1

c2 α2 α2

c3 α3 α3

 (3.4.14)

is singular, which contradicts the fact that its columns are eigenvectors with distinct eigenvalues. So
the (ci, αi) span R× C, and the lattice6 generated by the elements

(1, 0, 0, 0), (0, ci, αi, 0) i = 1, 2, 3, (0, 0, 0, 1) and (0, 0, 0, i), (3.4.15)

is a subgroup of G, which we denote by H . Indeed, looking at the group structure, we only have to
check that the element (1, 0, 0, 0) preserves this lattice under the group multiplication, and this follows
directly from

(1, 0, 0, 0) · (0, ci, αi, 0) = (1, cci, ααi, 0) =
∑
j

mij(0, cj , αj , 0) + (1, 0, 0, 0), (3.4.16)

and

(1, 0, 0, 0) · (0, 0, 0, 1) = (1, 0, 0, i), (1, 0, 0, 0) · (0, 0, 0, i) = (1, 0, 0,−1). (3.4.17)

H is discrete, hence closed, so that the quotient will be a manifold, and for this we use the fact that
c > 1 and that|α| < 1. The quotient M = G/H is indeed compact, and to see this, let us perform the

6Here we really mean lattice, in the sense that we take the Z-linear span of them in R2 ⊕ C2
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quotient in two steps: First, we quotient out the lattice Γ1, which equals the above lattice without the
(1, 0, 0, 0) direction. The group structure on Γ1 is just the addition in R⊕C2, as follows directly from
(3.4.13). So if π1 : G → R is the projection map onto the first factor, we see that π−1

1 (t)/Γ1 equals
({t} ⊕ R⊕ C2)/Γ1, and this is just the usual quotient of R5 by a lattice, so G/Γ1 is identified with a
five–dimensional torus, fibered over R. In performing the last quotient in the (1, 0, 0, 0) direction, the
line R becomes a circle, and in the identification x ∼ x + 1 the two fibers above x (isomorphic to a
5-torus) are identified with itself via

u ∼ cu, z ∼ αz, w ∼ iw, (3.4.18)

so in particular M is compact.

To construct the associated Lie algebra g we use the relation between the Lie bracket and the ex-
terior derivative as in (3.4.11), so that it suffices to find 6 linearly independent left–invariant 1–forms
and compute their exterior derivatives. The following forms are left–invariant:

dt, c−tdu, α−tdz, e−i
π
2
tdw. (3.4.19)

For instance, if g := (t′, u′, z′, w′) then

l∗g(c
−tdu) = (l∗g(c

−t))d(l∗gu) = c−t−t
′
d(ct

′
u+ u′) = c−tdu.

Now we split the complex forms up into their real and imaginary parts. To this end, write α =

c−1/2eiθ, z = x + iy and w = a + ib. Then (3.4.19) gives the following real forms on G that are
left–invariant:

e1 := dt e4 := ct/2(cos(tθ)dy − sin(tθ)dx)

e2 := c−tdu e5 := cos(
πt

2
)dx+ sin(

πt

2
)dy

e3 := ct/2(cos(tθ)dx+ sin(tθ)dy) e6 := cos(
πt

2
)dy − sin(

πt

2
)dx (3.4.20)

They satisfy the following algebra

de1 = 0 de4 =
1

2
ln(c)e14 − θe13

de2 = − ln(c)e12 de5 =
π

2
e16

de3 =
1

2
ln(c)e13 + θe14 de6 = −π

2
e15 (3.4.21)

From these equations it follows that [ei, ej ] = 0 if both i and j are not equal to 1, and that e1 6∈ [g, g],
so that [[g, g], [g, g]] = 0 and g is indeed solvable.

We define two left–invariant almost complex structures I± on G by defining their (1, 0)–forms to
be

f1
± := e1 ± ie2, f2

± := e3 + ie4, f3
± := e5 + ie6. (3.4.22)
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To show that both I± are integrable, we have to show that d = ∂± + ∂±, which amounts to showing
that the forms df i± are of type (2, 0) + (1, 1) with respect to I±. Using (3.4.21) we compute

df1
± =

1

2
ln(c)f1

± ∧ f
1
±

df2
± =

1

2
(
1

2
ln(c)− iθ)(f1

± ∧ f2
± + f

1
± ∧ f2

±)

df3
± = − iπ

4
(f1
± ∧ f3

± + f
1
± ∧ f3

±), (3.4.23)

so that indeed both I± are integrable. Let g be the standard Euclidean metric onG, i.e. g =
∑

i e
i⊗ei,

for which I± are obviously orthogonal. The 2–forms ω± = gI± are given by

ω± = ±e12 + e34 + e56, (3.4.24)

and satisfy

∓dc±ω± = ∓(I∗±)−1dI∗±ω± = ±I∗±d(±e12 + e34 + e56) = ±I(ln(c)e134) = − ln(c)e234 =: H.

(3.4.25)

Note that dH = − ln(c)(− ln(c)e1234 + 1
2 ln(c)e1234 + 1

2 ln(c)e1234) = 0, so H is a closed 3–form,
hence the data (g, I±, H) defines a generalized Kähler structure by condition 3 of Theorem 3.4.3, with
b equal to 0. We will see later thatH is not exact, and that the dimension of the first cohomology group
ofM is 1, so that in particularM does not admit any Kähler structure7. Let us determine the canonical
line bundles associated to the generalized complex structures J1 and J2. From the discussion in the
previous section we know that

L±1 = {X ± g(X)| X ∈ T (1,0)
± }, (3.4.26)

and a global frame for T (1,0)
± M is given by the left–invariant vector fields associated to the Lie algebra

elements

e1 ∓ ie2, e3 − ie4, e5 − ie6. (3.4.27)

Using (3.4.26), (3.4.27) and the equalities L1 = L+
1 ⊕ L

−
1 , L2 = L+

1 ⊕ L
−
1 one readily verifies that

the canonical line bundles for J1 and J2 are generated by the (left–invariant) forms

ρ1 := (1 + ie12)(e3 − ie4)(e5 − ie6),

ρ2 := (e1 − ie2)(1 + ie34)(1 + ie56). (3.4.28)

Let us check that J1 and J2 are integrable using corollary 3.3.7. For this it suffices to show that
dHρi = v · ρi for some v ∈ (T ⊕ T ∗)⊗ C, because of the remark made below corollary 3.3.7.
A straightforward calculation gives

dHρ1 = (
1

2
ln(c) + iθ − iπ

2
)e1 · ρ1,

dHρ2 = − ln(c)e1 · ρ2, (3.4.29)

so indeed J1 and J2 are integrable, as they should be. We also see that both J1 and J2 are not
generalized Calabi–Yau (Definition 3.3.8).

7Due to Hodge-decomposition, the odd dimensional cohomology groups on a Kähler manifold are even dimensional.
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3.5 Lie algebroids

The +i eigen-bundle L of a generalized complex structure is isotropic and as a consequence the
Courant bracket restricted to it is skew–symmetric (cf. (3.2.10)), hence defines a Lie bracket on Γ(L).
Furthermore, L comes with a projection map π : L → T , which besides being a homomorphism of
Lie algebras, satisfies [[u, fv]] = f [[u, v]] + π(u)(f)v for u, v ∈ Γ(L), f ∈ C∞(M). These properties
are important enough to deserve a special name.

Definition 3.5.1. A vector bundle L over M is called a Lie algebroid if there is a Lie bracket on Γ(L)

(i.e., a skew symmetric bracket [[, ]] satisfying the Jacobi identity) and there is a map π : L → TM

that induces a homomorphism of Lie algebras Γ(L)→ Γ(TM), and satisfies

[[u, fv]] = f [[u, v]] + π(u)(f)v ∀u, v ∈ Γ(L), f ∈ C∞(M). (3.5.1)

Similarly, we have the notion of a complex Lie algebroid, where we replace T by T ⊗ C.

The bracket on a Lie algebroid L endows the exterior algebra of its dual L∗ with a differential dL :

Γ(∧kL∗)→ Γ(∧k+1L∗), defined by

dL(α)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1π(Xi)α(X1, . . . , X̂i, . . . , Xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jα([[Xi, Xj ]], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

(3.5.2)

The fact that d2
L = 0 is readily verified, which is actually the same computation as for the ordinary

exterior derivative. The cohomology of dL is called the Lie algebroid cohomology, and it will be
important later on when discussing the cohomology of physical observables.

Let us turn our attention again to generalized complex structures, so let L be the +i eigen–bundle
for a generalized complex structure J . The Courant bracket endows Γ(L) with a Lie bracket, since
the bracket is skew–symmetric on isotropic bundles. Together with the projection onto T ⊗ C, L has
the structure of a complex Lie algebroid. We want to relate the Lie algebroid cohomology of L, which
at the moment seems rather abstract, to some kind of cohomology on the space of differential forms
on M . Recall that L induces the decomposition

∧•T ∗ ⊗ C = U−n ⊕ . . .⊕ Un,

where Un is the pure spinor line of L and Un−k = ∧kL · Un. On the space of forms we have the
operator dH = d −H∧, and integrability of J is by corollary 3.3.7 equivalent to the decomposition
dH = ∂ + ∂. The relation between dL and dH is expressed through the following lemma.

Lemma 3.5.2. For α ∈ Γ(∧•L∗) and ρ ∈ ∧•T ∗ we have

[∂, α] · ρ = (dLα) · ρ. (3.5.3)

Here [, ] stands for the graded commutator for operators acting on spinors.
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Proof. First recall that we identify L with L∗ via the natural pairing: β(v) = 2〈β, v〉 for β ∈ L and
v ∈ L. It suffices to prove (3.5.3) for α ∈ L, since both sides satisfy the same sort of Leibniz rule for
k–forms:

[∂, α1 ∧ · · · ∧ αk] =

k∑
i=1

(−1)iα1 ∧ · · · ∧ [∂, αi] ∧ · · · ∧ αk,

and

dL(α1 ∧ · · · ∧ αk) =

k∑
i=1

(−1)iα1 ∧ · · · ∧ dL(αi) ∧ · · · ∧ αk.

So let α ∈ L and ρ ∈ Uk, and pick any v ∈ L. We have

[v, [∂, α]] · ρ = πk−1([v, [dH , α]] · ρ) = πk−1(−[[α, v]] · ρ) = (πL(−[[α, v]])) · ρ,

and
[v, dLα] · ρ = (ιvdLα) · ρ,

where we used again the rule (vβ+βv) ·ρ = (ιvβ) ·ρ for an arbitrary form β ∈ ∧•L, see the proof of
Theorem 3.3.6 for an explanation. We claim that πL(−[[α, v]]) = ιvdLα. Indeed, for w ∈ L we have

2〈w,−[[α, v]]〉 = 2〈w, [[v, α]]− 2d〈α, v〉〉
= 2πT (v)(〈w,α〉)− 2〈[[v, w]], α〉 − 2πT (w)(〈α, v〉)
= dLα(v, w).

Again, note the various factors of 2 appearing everywhere. We see that [v, [∂, α] − dLα] = 0 as
operators on spinors, for all v ∈ L. Looking at the decomposition of ∧T ∗ ⊗ C = U−n ⊕ . . . ⊕ Un,
v acts as a degree 1 operator, while both [∂, α] and dLα are degree −2 operators. It follows that for
ρ ∈ Un,

0 = [v, [∂, α]− dLα] · ρ = v · ([∂, α]− dLα) · ρ.

Since v is arbitrary, we conclude that

[∂, α] · ρ = dLα · ρ ∀ρ ∈ Un.

For ρ ∈ Un−1 we can proceed with the same trick, since we now know that on Un the two operators
are equal. Continuing with this procedure, we see that [∂, α] = dLα as operators on Uk for all k.

If J is generalized Calabi–Yau and ρ ∈ Γ(Un) is the corresponding dH–closed form, consider the
following map:

∧•L −→ ∧•T ∗ ⊗ C

α 7→ α · ρ. (3.5.4)

This map is an isomorphism because ρ is nowhere vanishing, and because dHρ = ∂ρ = 0, Lemma
3.5.2 implies that ∂(α · ρ) = (dLα) · ρ. In other words, the map (3.5.4) intertwines the operators
dL and ∂, so that it induces an isomorphism on cohomology of the two operators. So for generalized
Calabi–Yau spaces, Lie algebroid cohomology can be computed in terms of differential forms with
the help of the ∂ operator.
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Example 3.5.3. Suppose J is associated to an ordinary complex structure, with H = 0:

JI :=

(
−I 0

0 I∗

)
. (3.5.5)

We have L = T (0,1) ⊕ (T ∗)(1,0), so that Un = ∧(n,0)T ∗. It follows that

∧kL =
k⊕
p=0

∧pT (1,0) ⊗ ∧k−p(T ∗)(0,1), (3.5.6)

hence

Un−k = ∧kL · Un =
k⊕
p=0

∧(n−p,k−p)T ∗. (3.5.7)

The exterior derivative can be written as d = ∂I + ∂I where ∂I is the ordinary operator from complex
geometry, hence it maps ∧(n−p,k−p)T ∗ into ∧(n−p+1,k−p)T ∗ ⊕ ∧(n−p,k−p+1)T ∗. The first summand
lies in Un−(k−1) = Un−k+1, while the second lies in Un−(k+1) = Un−k−1, so that the operators ∂
and ∂ indeed agree with the ’generalized’ ∂ and ∂. For J to be generalized Calabi–Yau, there must
exist a nowhere-vanishing section of Un = ∧(n,0)T ∗, that is d–closed. This is precisely the usual
definition for I to be Calabi–Yau, and the isomorphism in (3.5.4) is well–known, and usually denoted
by α 7→ α ` Ω, with Ω the Calabi–Yau (n, 0)–form. So, Lie algebroid cohomology of Calabi–Yau
manifolds is given by the ordinary Dolbeault cohomology.

Example 3.5.4. Now let J be associated to a symplectic structure (again, H = 0):

Jω :=

(
0 −ω−1

ω 0

)
. (3.5.8)

The associated eigenbundle is given by L = {X − iιXω| X ∈ T}, but the Uk decomposition is a bit
more complicated.

Lemma 3.5.5. Let Λ := −ω−1 be the Poisson bi-vector corresponding to ω, and let dJ := [d, J̃ ],
where J̃ is the lift of J to the Lie algebra of the spin group, see also Lemma 3.3.3. Then

i) dJ lowers the degree of a form by 1,

ii) Uk = {eiωeΛ/2iα| α ∈ ∧n−kT ∗ ⊗ C},

iii) d(eiωeΛ/2iα) = eiωeΛ/2i(dα− 1
2id
Jα),

where Λ acts on forms by inner contraction.

Proof. See Lemma 2.2 and Theorem 2.3 in [8].
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In particular, we see that Un has a global non–vanishing section given by eiωeΛ/2i · 1 = eiω, which
is obviously closed. The generalized Calabi–Yau condition thus imposes no extra conditions on sym-
plectic manifolds. Note that iii) implies that under the identification ∧kT ∗ ⊗ C ↔ Un−k induced
by the operator eiωeΛ/2i, the ∂ operator is identified with the usual exterior derivative, so that the Lie
algebroid cohomology of symplectic manifolds equals the de Rham cohomology of the underlying
manifold.

Remark. In the context of twisting (Chapter 5), the above two examples are often referred to as the B
and A model respectively.

Example 3.5.6. In the example from Section 3.4.1, both J1 and J2 are not generalized Calabi–Yau,
as follows from (3.4.29). Nevertheless, let us compute the dH–cohomology of M . We will first
compute it on the Lie algebra, and then show that it equals the actual dH–cohomology. Consider first
the d–cohomology of g.

Degree 1: We know that e1 is closed, while for the others only a combination of e3 and e4 has
a chance of being closed. We have

d(ae3 + be4) = (
a

2
ln(c)− bθ)e13 + (aθ +

b

2
ln(c))e14,

which is zero if and only if

a =
2bθ

ln(c)
and b(2θ2 +

1

2
ln2(c)) = 0.

The second equation implies b = 0, and the first then implies a = 0. So there is no closed
1–form besides e1.

Degree 2: The exact 2–forms are spanned by:

{e12, e13, e14, e15, e16}. (3.5.9)

The remaining closed forms are of the form

β = a1e
23 + a2e

24 + a3e
25 + a4e

26 + a5e
34 + a6e

35 + a7e
36 + a8e

45 + a9e
46 + a10e

56.

(3.5.10)

Using (3.4.21) we can compute dβ, which vanishes when ai = 0 for i = 1, 2, . . . , 9, while a10

can be arbitrary. Hence the closed 2–forms are spanned by

{e12, e13, e14, e15, e16, e56}. (3.5.11)

Degree 3: The space of exact 3–forms is spanned by

{e123, e124, e125, e126, e134, e145, e146, e135, e136}. (3.5.12)
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The remaining closed forms must be of the form

β =a1e
156 + a2e

234 + a3e
235 + a4e

236 + a5e
245 + a6e

246 + a7e
256 + a8e

345

+ a9e
346 + a10e

356 + a11e
456. (3.5.13)

dβ = 0 when ai = 0 for i = 3, 4, . . . , 11, while a1, a2 can be arbitrary. So the closed 3–forms
are spanned by

{e123, e124, e125, e126, e134, e145, e146, e135, e136, e156, e234}. (3.5.14)

Degree 4: The space of exact 4–forms is spanned by

{e1235, e1236, e1245, e1246, e1256, e1345, e1346, e1356, e1456}. (3.5.15)

Remaining closed forms are of the form

β = a1e
1234 + a2e

2345 + a3e
2346 + a4e

2356 + a5e
2456 + a6e

3456, (3.5.16)

which is closed when ai = 0 for i = 2, 3, 4, 5, 6, with no restriction on a1. Hence the closed
4–forms are spanned by

{e1235, e1236, e1245, e1246, e1256, e1345, e1346, e1356, e1456, e1234}. (3.5.17)

Degree 5: The space of exact 5–forms is spanned by

{e12345, e12346, e12356, e12456, e13456}. (3.5.18)

There is one 5–form left, e23456, which is closed. So all 5–forms are closed.

Degree 6: There are no exact forms, and there is only one 6–form, given by e123456 which is of
course closed.

We want to relate this to the de Rham cohomology of M , for which we need the following result

Theorem 3.5.7. [30] For every solvmanifold M = G/H , the inclusion ∧•(g∗) ⊂ ∧•T ∗(G/H)

induces an injective map on cohomology.

Therefore, to show that the above cohomology equals the de Rham cohomology ofM we only need to
know the Betti-numbers of M (the dimensions of the cohomology groups). To compute these, we use
the observation made above Equation (3.4.18), which states that M is a torus fibration over a circle.
We will make use of the Mayer-Vietoris sequence in cohomology:

Theorem 3.5.8. [21] Let X be a topological space and A, B be two subspaces whose interiors
together cover X . Then we have the following long exact sequence in cohomology:

. . .→ H i(X,R)
(i∗A,i

∗
B)

−−−−→ H i(A,R)⊕H i(B,R)
j∗A−j

∗
B−−−−→ H i(A ∩B,R)

δ−→ H i+1(X,R)→ . . .

(3.5.19)

where iA/B is the inclusion of A/B into X , jA/B is the inclusion of A ∩ B into A/B, and δ is a
co-boundary map (its precise definition will not be important to us).
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We apply this to M with A := π−1
1 ([−1

8 ,
5
8 ]) and B := π−1

1 ([3
8 ,

9
8 ]), where π1 : M → R/Z is the

projection onto the first factor. Both A and B are then homotopic to the 5-torus, whose cohomology
in degree k has dimension

(
5
k

)
. An easy way to see this is to view an n-torus as the n-fold product

(S1)×n and use the Künneth formula

Hk(X × Y,R) ∼=
⊕
i+j=k

(H i(X,R)⊗H i(Y,R)). (3.5.20)

Note that A ∩ B consists of two connected components, both homotopic to the 5-torus. For the map
j∗A − j∗B , we identify the fiber of A with that of B using the identity map at one of the connected
components of A ∩ B, and by the map (3.4.18) on the other. Now we have to fill in the long exact
sequence, which starts with the terms

0→ H0(M) = R→ H0(A)⊕H0(B) = R⊕ R f−→ H0(A ∩B) = R⊕ R→

→ H1(M)→ H1(A)⊕H1(B) = R5 ⊕ R5 g−→ H1(A ∩B) = R5 ⊕ R5 → . . . (3.5.21)

The map f is given by (a, b) 7→ (a − b, a − b) and has one–dimensional co–kernel. The map g is
given by (cf. (3.4.18))

(du, 0) 7→ (du, du) (0, du) 7→ (−du,−cdu)

(dz, 0) 7→ (dz, dz) (0, du) 7→ (−dz,−αdz)
(dz, 0) 7→ (dz, dz) (0, dz) 7→ (−dz,−αdz)
(dw, 0) 7→ (dw, dw) (0, dw) 7→ (−dw,−idw)

(dw, 0) 7→ (dw, dw) (0, dw) 7→ (−dw, idw) (3.5.22)

and so has, because c 6= 1, zero kernel. It follows that b1(M) := dim(H1(M)) = 1. The computation
of the other dimensions is similar, and we only need to know the kernels of the maps H i(A) ⊕
H i(B) → H i(A ∩ B). For i = 2 we have H i(A) = R10, spanned by du ∧ dz, du ∧ dz, . . . and
it is easily verified that the kernel is spanned by (dw ∧ dw, dw ∧ dw). For i = 3 the kernel is also
one–dimensional, with basis (du∧dz∧dz, du∧dz∧dz), as a consequence of the identity c|α|2 = 1.
Using the long exact sequence and Poincaré duality8 we obtain all the Betti-numbers of M :

b0 = 1, b1 = 1, b2 = 1, b3 = 2, b4 = 1, b5 = 1, b6 = 1. (3.5.23)

These dimensions are the same as we found for the Lie algebra cohomology, hence both cohomologies
are equal by Theorem 3.5.7. Now finally we are ready to compute the dH–cohomology. For this we
consider dH as a map from even/odd forms to odd/even forms, and we start with the even ones. Recall
that H = − ln(c)e234.

Even forms: For an even form φ0 + φ2 + φ4 + φ6 to be dH–closed we must have

dφ0 = 0, H ∧ φ0 = dφ2, H ∧ φ2 = dφ4. (3.5.24)

8Poincaré duality on an oriented compact m–dimensional manifold M states that there is a non–degenerate pairing
between Hi(M) and Hm−i(M), implying that both have the same dimension.
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Since H is not exact, the second equation implies φ0 = 0 so that φ2 is closed. Then φ2 is
a linear combination of the forms in (3.5.11), but observe that the forms e12, e13 and e14 are
already dH exact, because dei = dHei for i = 2, 3, 4. Since we are dividing out those classes
anyway, we assume that φ2 = ae15 + be16 + ce56. The third equation above then implies

ln(c)(ae12345 + be12346 − ce23456) = dφ4.

In particular the left-hand side is exact, and looking at (3.5.18) we see that c = 0, so that φ4

is of the form φ4 = −2a ln(c)
π e2346 + 2b ln(c)

π e2345 + β where β is a closed 4–form. Including
φ6, which is just a multiple of e123456, the even dH–closed forms are spanned by (modulo some
forms that were already seen to be dH–exact)

{e15 − 2 ln(c)

π
e2346, e16 +

2 ln(c)

π
e2345, e123456} ∪ {closed 4–forms}. (3.5.25)

The forms in the first set are all dH–exact:

e15 − 2 ln(c)

π
e2346 = dH(− 2

π
e6)

e16 +
2 ln(c)

π
e2345 = dH(

2)

π
e5)

e123456 = dH(− 1

ln(c)
e156). (3.5.26)

We claim that the closed 4–forms are also dH–closed. For the exact ones, this is easy to see,
because the forms in (3.5.15) are the d of an element of the form (3.5.13) with a1 = a2 = 0.
All these forms however carry at least one of the indices 2, 3 or 4, so give zero when wedged
with H , and so dH applied to such a form gives the same as d applied to it. The only remaining
closed 4–form is e1234, but we have dH(− 1

ln(c)e
1) = e1234. We conclude that there is no

dH–cohomology in even degree.

Odd forms: For an odd form φ1 + φ3 + φ5 to be dH–closed we must have

dφ1 = 0, H ∧ φ1 = dφ3, H ∧ φ3 = dφ5. (3.5.27)

The first equation implies that φ1 is proportional to e1, but since e1234 is not exact, the second
equation implies φ1 = 0. Then φ3 must be closed, so belongs to the span of (3.5.14). From
these, the exact ones are also dH–exact, precisely for the same reason as for the exact 4–forms.
We may therefore take φ3 = ae156+be234, so that the third equation gives dφ5 = a ln(c)e123456,
which implies a = 0 as the right-hand side is not exact. Therefore, again modulo some dH–
exact ones, the dH–closed odd forms are given by

{e234} ∪ {closed 5–forms}. (3.5.28)

Again, the exact 5–forms are also dH–exact, and the one that is not exact, e23456, is in fact
dH–exact:

dH(
1

ln(c)
e56) = e23456.

Finally, we have the obvious identity dH( 1
ln(c)) = e234, so we conclude that there is also no

dH–cohomology in odd degree.
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3.6 Gerbes

The essential new feature of the bi–hermitian model is the so–called ”B–field”, and the mathematical
theory behind it is that of gerbes. We will give a short introduction to the concept of gerbes, and
explain what role it plays in generalized geometry and string theory. Most of the material is based on
[10] and [28].

3.6.1 Complex line bundles

Let M be a smooth manifold. Before we introduce the structure of a gerbe on M , we first recall some
facts about complex line bundles (complex vector bundles of rank 1). These will be denoted by L,
not to be confused with any Lie algebroid on M . If L is a line bundle over M , a local non–vanishing
section of L, also called a local frame, defines a local trivialization. Choosing a hermitian metric and
restricting to orthonormal frames, the structure group of L can always be restricted to U(1), which is
to say that transition maps between different trivializations take values in U(1), and in this sense the
theory of complex line bundles is equivalent to the theory of principal U(1)-bundles. In what follows
we shall assume that an explicit choice of hermitian metric has been made. We will denote such a
metric by (., .), Lx will denote the fiber of L over x ∈ M and L|U the restriction of L over a set
U ⊂M .

Given a line bundle L, we can always choose an open cover {Uα}α∈I of M such that L over each
Uα is trivial. If eα are the frames defining these trivializations, i.e. eα : Uα → L are sections
with (eα, eα) = 1 at every point of Uα, on an overlap Uαβ := Uα ∩ Uβ there must be a function
gαβ : Uαβ → U(1) such that eβ = gαβeα on Uαβ . Obviously these functions satisfy

gαβ = g−1
βα and gαβgβγgγα = 1. (3.6.1)

Conversely, L is completely determined by the data {Uα, gαβ} with gαβ satisfying the above two
conditions, as we can obtain L by gluing the sets Uα × C with the ’gluing data’ gαβ . If {Uα, g′αβ} is
another set of transition functions, one readily verifies that it defines a bundle that is isomorphic to L
if and only if there exist hα : Uα → U(1), satisfying gαβ(g′αβ)−1 = hβ/hα. Isomorphism classes of
line bundles are thus classified by elements in the first Čech cohomology Ȟ1(M,U(1)).

A unitary connection∇ on L is a connection in the usual sense, such that in addition

X(v1, v2) = (∇Xv1, v2) + (v1,∇Xv2) for X ∈ TM, v1, v2 ∈ Γ(L). (3.6.2)

In terms of a local frame eα that satisfies (eα, eα) = 1, we can define a 1–form Aα such that∇Xeα =

−iAα(X)eα. The above condition becomes

(−iAα(X)eα, eα) + (eα,−iAα(X)eα) = 0, (3.6.3)

and we see that the 1–form iAα takes values in the Lie algebra u(1) = iR, so in particular Aα is
real. In an overlap Uαβ we see that ∇eβ = −iAβeβ = −iAβgαβeα, but on the other hand ∇eβ =
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Local data Relations Gauge transformations
gαβ gαβgβγgγα = 1 gαβ 7→ hαh

−1
β gαβ

Aα d log(gαβ) = i(Aα −Aβ) Aα 7→ Aα − id log(hα)

F F |Uα = dAα F 7→ F

Table 3.1: Data specifying a line bundle with connection. The first two columns describe the line
bundle in terms of local data, and the third column expresses the effect of a gauge transformation
associated with (hα).

∇(gαβeα) = dgαβeα − gαβiAαeα from which we deduce that

i(Aα −Aβ) = g−1
αβdgαβ. (3.6.4)

In particular there is a globally defined 2–form F which on Uα is given by dAα, and one can show
that the cohomology class of F/2π is integral, i.e. the integral of F/2π over any closed surface gives
an integer9.

As is the case for any connection, there is the usual notion of parallel transport, which assigns to each
path γ : [0, 1]→M a linear map Lγ(0) → Lγ(1). Since the connection is metric this parallel transport
preserves the inner product, so in particular we obtain an element in U(1) for each loop in M , that
describes the parallel transport around it. This number is called the holonomy of the loop, denoted by
Hol(γ).

If γ is a loop, we can subdivide it into a finite number of segments γα where γα is contained in a
local trivialization Uα, and we denote the point where two segments γα and γβ meet by γαβ . One can
show that

Hol(γ) = exp

i∑
γα

∫
γα

Aα −
∑
γαβ

log gαβ(γαβ)

 . (3.6.5)

It is not obvious that this is indeed the holonomy along γ, in fact it is not even clear why (3.6.5)
is well–defined (i.e., independent of all choices involved). The interpretation of (3.6.5) is however
relatively easy to understand. Consider parallel transport in one local trivialization (Uα, eα). A path
in L|Uα covering the segment γα in Uα looks like fα(t)eα(γα(t)) for some function fα : Iα →
C where Iα ⊂ [0, 1] is the interval corresponding to γα, and this path is horizontal if and only if
dfα
dt − iAα(γα(t)) = 0. Clearly, the solution to this equation takes the form

f(t)eα = fα(t0) exp(i

∫ t

t0

Aα(γα(t))dt)eα,

where t0 is the starting point of γα. At the endpoint γαβ we have to switch to the frame eβ , pro-
ducing the factor g−1

αβ (γαβ), and continue the transport along γβ . This explains Equation (3.6.5), and

9More precisely, the class F/2π can be identified with the first Chern class of the line bundle, which is an integral
cohomology class. See [35] Chapter III for more details.
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in particular shows that it is well defined and independent of all choices, because holonomy itself is
something intrinsic to (L,∇).

Remark. In practice, one can always ’gauge-away’ the terms involving the co–cycle g in (3.6.5). More
precisely, a complex line bundle over a circle is always trivial, because its Chern class is a degree 2
cohomology class and thus vanishes on S1. Note that this heavily relies on the fact that we are working
over the complex numbers, as over the real numbers we have the Möbius band as counterexample.
Pictorially, the difference between complex and real numbers is that C∗ is connected, while R∗ is not,
so that we can ’undo’ any twisting of the line along a circle over the complex numbers, but not over
the reals. The expression in (3.6.5) is among physicists known as a Wilson loop.

3.6.2 U(1)-Gerbes

Now we come to the definition of a gerbe, or more precisely a U(1)-gerbe. To give a motivation for
the defining axioms for a gerbe, think of a line bundle L not as some total space over the manifold,
but rather as an assignment that assigns to each member of a particular open cover {Uα}α∈I of M
a line bundle Lα, and assigns to each intersection Uαβ an isomorphism between Lα and Lβ . These
should be compatible on triple intersections, and if the Uα are such that Lα are trivial, we recover the
transition functions gαβ of the previous section. Of course this description looks rather silly, but it
helps to understand the following definition.

Definition 3.6.1. Let {Uα}α∈I be an open cover of M . A U(1)-gerbe G over M with respect to this
open cover is a rule that assigns to each double intersection Uαβ a line bundle Lαβ , and to each triple
intersection Uαβγ a trivialization (local frame) σαβγ of the bundle Lαβγ := LαβLβγLγα. These data
are subject to the following axioms:

1 Lαβ = L−1
βα.

2 σs(α)s(β)s(γ) = σ
sign(s)
αβγ for all permutations s ∈ S3.

3 δσαβγδ = σβγδσ
−1
αγδσαβδσ

−1
αβγ = 1.

To understand this last condition observe that the bundle LβγδL−1
αγδLαβδL

−1
αβγ is already trivial due to

condition 1, and condition 3 merely requires that δσαβγδ coincides with the standard trivialization 1.

Remark. There is also the more general notion of a p-gerbe with values in U(1), that assigns to each
(p + 2)-tuple Uα1 , . . . , Uαp+2 a p − 1 gerbe over the intersection Uα1 ∩ . . . ∩ Uαp+2 , for which line
bundles (p = 0) and our definition of a gerbe (p = 1) are special cases. See [10] for more details.

The definition above is not very useful to work with in practice, but we can describe a gerbe in terms
of some other local data, similarly as a line bundle can be described by local transition functions. To
this end, we refine our cover10 such that the line bundles Lαβ are all trivial, and denote by σαβ a frame

10There is an obvious notion of refinement for a gerbe, by refining its defining open cover and restricting all structures to
the smaller open sets.
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for Lαβ with σαβ = σ−1
βα . With this choice there exist maps gαβγ : Uαβγ → U(1) with the property

that

σαβγ = gαβγσαβσβγσγα. (3.6.6)

The conditions 1 and 2 above for σ translate into

gs(α)s(β)s(γ) = g
sign(s)
αβγ ∀s ∈ S3, δgαβγδ = gβγδg

−1
αγδgαβδg

−1
αβγ = 1. (3.6.7)

As such, g defines an element of Ȟ2(M,U(1)), and we want to know whether different cohomology
classes define different gerbes. However, we have not yet defined what it means for two gerbes to be
isomorphic.

Definition 3.6.2. Two gerbesG andG′ are isomorphic if there is a common refinement {Uα} for both
the open cover of G and of G′, on which there are isomorphisms Lαβ → L′αβ over Uαβ , such that the
induced maps Lαβγ → L′αβγ take σαβγ to σ′αβγ .

Now if G and G′ are isomorphic, after refining the open cover {Uα} if necessary, we may choose
frames σαβ, σ′αβ for Lαβ and L′αβ , so that the isomorphisms Lαβ → L′αβ are given by σαβ 7→ hαβσ

′
αβ

for certain functions hαβ : Uαβ → U(1). The last condition of the definition then implies

g′αβγg
−1
αβγ = hαβhβγhγα, (3.6.8)

meaning that g and g′ define the same Čech cohomology class. The converse is also true, i.e. two
cohomologous elements define the same gerbe, and the proof is straightforward. Hence, isomorphism
classes of gerbes are classified by Ȟ2(M,U(1)). The cohomology class of gαβγ is denoted by c(G),
and is called the Dixier-Douady class of the gerbe. We also have the notion of the trivial gerbe, as-
signing the trivial bundle to each Uαβ and σαβγ = 1.

There is an alternative description for two gerbes to be isomorphic, in terms of what [10] calls an
’object’. Although this looks somewhat more involved than the definition above, it is more convenient
in the context of connections.

Lemma 3.6.3. Two gerbes G and G′ are isomorphic if and only if there exists line bundles Kα on Uα
(refining the Uα if necessary) and isomorphisms mαβ : Kβ → L′αβL

−1
αβ ⊗Kα over Uαβ satisfying

mαβ ◦mβγ ◦mγα = σ′αβγσ
−1
αβγ ⊗ 1. (3.6.9)

This last map is defined by (σ′αβγσ
−1
αβγ⊗1)(v) = (σ′αβγσ

−1
αβγ)(πα(v))⊗v for v ∈ Kα and πα the line

bundle projection Kα → Uα.

Proof. Assuming the cover is such that all bundles involved are trivial, pick frames kα for Kα and
σαβ for Lαβ . The relation between the mαβ of this lemma and the hαβ of Equation (3.6.8) is given by
mαβ : kβ 7→ hαβσ

′
αβσ

−1
αβ ⊗ kα. It is readily verified that the mαβ satisfy the conditions of the lemma

if and only if hαβ satisfies g′αβγg
−1
αβγ = hαβhβγhγα.
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Next we come to the definition of connections.

Definition 3.6.4. LetG be a gerbe as in Definition 3.6.1. A connection∇ onG is given by connections
∇αβ on each Lαβ subject to the conditions:

1 ∇αβ +∇βα is the trivial connection on the trivial bundle Lαβ ⊗ Lβα.

2 ∇αβγθαβγ = 0 where∇αβγ = ∇αβ +∇βγ +∇γα.

This can be represented in terms of local data just as for line bundles. Assume that the open cover
for the gerbe is refined such that each Lαβ is trivial with trivializing frame σαβ , and let gαβγ be
the corresponding co–cycle. The connections ∇αβ on Lαβ are represented by real 1–forms Aαβ via
∇αβσαβ = −iAαβσαβ . The two conditions on∇αβ imply the constraints

Aαβ = −Aβα and d log(gαβγ) = i(Aαβ +Aβγ +Aγα). (3.6.10)

Here d log(g) = dg/g is well defined, even though log(g) perhaps is not. In particular it follows that
dAαβ defines a co–cycle, i.e. an element in Ȟ1(M,Ω2(M)). However, Ω2(M) is a fine sheaf, i.e. it
allows for partitions of unity, and so has no cohomology in degrees greater than 0. Therefore, dAαβ is
a co-boundary, meaning that (after possibly again a refinement of the open cover) we can find 2–forms
Bα on Uα with

dAαβ = (δB)αβ = Bα −Bβ. (3.6.11)

This gives a globally defined 3–form H , which on Uα is given by dBα, called the curvature of the
connection.

For line bundles we noted that the curvature 2–form defines an integral cohomology class, and one
may wonder what kind of closed 3–forms can arise as the curvatures of a gerbe. The answer is similar
as that for line bundles. Firstly, it was mentioned above that isomorphism classes of gerbes are in
bijective correspondence withH2(M,U(1)), which is isomorphic toH3(M,Z). To see this, consider
the exponential sequence of sheaves

0→ Z→ R e2πi·−−−→ U(1)→ 0, (3.6.12)

where Z, R, and U(1) stand for the sheaves of smooth functions with values in these groups, all of
them equipped with their standard smooth structure. The long exact sequence in cohomology then
gives an isomorphism H2(M,U(1)) ∼= H3(M,Z), since the sheaf R is fine and has no cohomology
in positive degrees. Furthermore, one can show that H/2π defines the same cohomology class as the
image of c(G) under this isomorphism, so that the condition on H to be the curvature for a gerbe is
that H/2π is integral.

Given the additional structure of connection, we have to extend the notion of isomorphism to gerbes
with connection.
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Definition 3.6.5. Two gerbes with connections (G,∇) and (G′,∇′) are isomorphic if they are iso-
morphic as gerbes, and if (Uα,Kα,mαβ) is the data giving the isomorphism as in Lemma 3.6.3, there
should exist connections∇α on Kα such that:

1 The maps mαβ are connection preserving: ∇β 7→ ∇′αβ +∇∗αβ +∇α, where ∇∗αβ denotes the
dual connection on L−1

αβ .

2 The corresponding 2–forms B′α and Bα satisfy Bα = B′α +K(∇α) with K(∇α) the curvature
2–form of∇α.

If the Kα are trivial with frames kα, the ∇α are given by 1–forms Aα, and the maps mαβ are repre-
sented by hαβ . The two conditions above then translate into

1 i(A′αβ −Aαβ +Aα −Aβ) = d log(hαβ).

2 Bα −B′α = dAα.

There is a lot of notation involved in all these definitions, but most of them are for theoretical purposes.
For computational use, we summarize the most relevant information in Table 3.2.

Local data Relations Gauge transformations
gαβγ gβγδg

−1
αγδgαβδg

−1
αβγ= 1 gαβγ 7→ hαβhβγhγαgαβγ

Aαβ i(Aαβ +Aβγ +Aγα)= d log(gαβγ) Aαβ 7→ Aαβ +Aβ −Aα − id log(hαβ)

Bα Bα −Bβ= dAαβ Bα 7→ Bα − dAα
H H|Uα= dBα H 7→ H

Table 3.2: Data specifying a Gerbe with connection. The first two columns describe the gerbe in
terms of local data, and the third column expresses the effect of a gauge transformation associated
with (hαβ, Aα).

The following result will prove useful to relate gerbes to line bundles on the loop space of M later on.

Lemma 3.6.6. Let G be a trivial gerbe, i.e. c(G) = 0, and suppose that (Uα,Kα,mαβ) defines
a trivialization as in Lemma 3.6.3. If ∇ is a connection on G, there are connections ∇α on Kα

such that the mαβ are connection preserving in the above sense. If there is another such choice
(Uα,K

′
α,m

′
αβ,∇′α), the difference between the two trivializations defines a line bundle on M with

connection.

Proof. Refining the cover, the maps mαβ are of the form kβ 7→ hαβσαβ ⊗ kα, with (δh)αβγ = gαβγ .
We have to find 1–forms Aα, such that −iAβhαβ = dhαβ − ihαβ(Aαβ +Aα) or

Aα −Aβ = −Aαβ − id log hαβ.

The right hand side is a co–cycle, i.e. an element of Ȟ1(M,Ω1(M)), which is zero because Ω1(M)

is a fine sheaf, hence we can always find a solution to this equation. If (Uα,K
′
α,m

′
αβ,∇′α) is a second
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trivialization, consider the line bundle K−1
α ⊗K ′α over the open set Uα. On an overlap Uαβ we have

transition maps

m−1
αβ ⊗m

′
αβ : K−1

β ⊗K
′
β −→ K−1

α ⊗ L−1
αβ ⊗ Lαβ ⊗K

′
α = K−1

α ⊗K ′α,

k−1
β ⊗ k

′
β 7→ h−1

αβh
′
αβk

−1
α k′β.

Since (δh)αβγ = (δh′)αβγ = gαβγ , these transition maps satisfy the co–cycle condition, hence define
a line bundle on M . Furthermore, each K−1

α ⊗K ′α is equipped with the connection∇∗α+∇′α, and the
transition functions m−1

αβ ⊗m
′
αβ are connection preserving because of condition 1 in Definition 3.6.5,

and because∇αβ +∇∗αβ is the trivial connection on Lαβ⊗L−1
αβ (condition 1 of Definition 3.6.4). The

line bundle constructed thus has a globally defined connection, and the connection 1–forms are given
by A′α −Aα on Uα.

Finally, we come to what for us will be the most important notion for a gerbe with connection, namely
its holonomy. The holonomy for a line bundle with connection has a nice geometrical interpretation
in terms of parallel transport, but unfortunately for gerbes the notion of holonomy is less intuitive.
Let (G,∇) be a gerbe with connection, with corresponding local data (Uα, gαβγ , Aαβ, Bα). If Σ is a
closed oriented surface11 in M , we can restrict G to Σ, which by dimensional reasons must be trivial.
Using Lemma 3.6.6 we can find data (hαβ, Aα) such that on Σ we have

(δh)αβγ = gαβγ

Aα −Aβ = −Aαβ − id log hαβ. (3.6.13)

We can then define a 2–form ε on Σ by ε|Uα = Bα + dAα, which is globally defined because of the
above relations and the defining relation Bα − Bβ = dAαβ . The holonomy of the gerbe along Σ is
then defined by

Hol(Σ) = exp(i

∫
Σ
ε). (3.6.14)

One can show that (3.6.14) is independent of the chosen local data, see [10] or [28] for more details.
To gain more insight in this rather abstract quantity we give a more local expression. Suppose we
have a triangulation of Σ such that each face lies in some Uα, and such that each vertex meets only
three triangles. We denote these faces by Σα, and we denote by Σαβ the common edge of the faces
Σα and Σβ . The orientation of Σαβ is such that it is negative with respect to Σα and positive with
respect to Σβ , when considering Σαβ as the boundary of Σα and Σβ . Finally, we denote by Σαβγ the
common vertex of the faces Σα, Σβ and Σγ , which are aligned along the orientation of Σ. In other
words, when tracing a loop around Σαβγ along the orientation, we pass through the associated faces
in that particular order. Part of this triangulation is shown in figure 3.2, and computing the integral of

11Closed in this context means compact without boundary.
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ε on this piece gives∫
ε =

∫
Σ1

(B1 + dA1) +

∫
Σ2

(B2 + dA2) +

∫
Σ3

(B3 + dA3)

=

∫
Σ1

B1 +

∫
Σ2

B2 +

∫
Σ3

B3 +

∫
ac

(A2 −A1) +

∫
ab

(A1 −A3) +

∫
ad

(A3 −A2)

=

∫
Σ1

B1 +

∫
Σ2

B2 +

∫
Σ3

B3 +

∫
ac
A12 +

∫
ab
A31 +

∫
ad
A23 − i log(g123(a)), (3.6.15)

where we ignored contributions coming from the boundary, and used Stokes’ Theorem. We thus see
that the holonomy in terms of this data is given by

Hol(Σ) := exp

i∑
Σα

∫
Σα

Bα + i
∑
Σαβ

∫
Σαβ

Aαβ +
∑
Σαβγ

log(gαβγ(Σαβγ))

 . (3.6.16)

a

b

c

d

Σ1

Σ2

Σ3

Figure 3.2: Part of the triangulation Σα. The orientation is counterclockwise.

Remark. Just as for line bundles, in practice one does not work with the formula (3.6.16). Instead,
one uses a gauge choice for which the g’s and A’s drop out of the formula. Indeed, as we already
mentioned above, the gerbe restricted to the surface Σ is trivial so that we can gauge away the g′s.
Next, we want to gauge away the Aαβ’s, and to do this we follow the same steps as in the proof of
Lemma 3.6.6.

3.6.3 Relation with generalized geometry

When we introduced the Courant bracket we mentioned that whenH is non–zero, the bracket is called
twisted. In this section we will give a precise geometric interpretation of this ’twist’, via the theory of
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gerbes. In this section only, [[, ]] denotes the Courant bracket with zero H .

Let (Uα, gαβγ , Aαβ, Bα) be the local data of a gerbe G. Let E be the vector bundle over M which on
Uα is given by (T ⊕ T ∗)|Uα , and has transition maps(

1 0

dAαβ 1

)
. (3.6.17)

on Uαβ . Since dAαβ is a co–cycle (see Equation (3.6.10)), these maps satisfy the co–cycle condition
and so indeed form transition functions. Moreover, since dAαβ is closed, Theorem 3.2.3 implies that
these transition maps are automorphisms of the Courant bracket (with zero H) on (T ⊕ T ∗)|Uα . In
particular E itself is a Courant algebroid, i.e. there is a globally defined bracket on E that satisfies
similar properties as the Courant bracket on T ⊕ T ∗. Over Uα, E is just given by T ⊕ T ∗ with the
untwisted bracket, but globally the bracket is twisted.
To explicitly determine this bracket, observe that we have an exact sequence

0→ T ∗
i−→ E

p−→ T → 0, (3.6.18)

where i is the inclusion, and p is the projection, defined in the following way. Over Uα we have the
canonical inclusion i and projection p

T ∗|Uα
i−→ T ⊕ T ∗|Uα

p−→ T |Uα , (3.6.19)

and we have to verify that they extend to the whole of E. For this observe that for ξ ∈ T ∗,(
1 0

dAαβ 1

)(
0

ξ

)
=

(
0

ξ

)
, (3.6.20)

so that the inclusion indeed extends globally. Likewise, as the transitions do not affect the ’T part’,
the projection is also well defined.

The existence of the 2–forms Bα has the nice feature that this sequence splits. Again, we first de-
fine this split locally, and then extend it globally. On Uα we define it by

T |Uα → EUα = (T ⊕ T ∗)Uα ,
X 7→ X + ιXBα. (3.6.21)

On overlaps Uαβ we have(
X

ιXBα

)
=

(
X

ιXBβ + (ιXBα − ιXBβ)

)
=

(
1 0

dAαβ 1

)(
X

ιXBβ

)
, (3.6.22)

so indeed our local expression agrees on overlaps. Now that we know that E ∼= T ⊕ T ∗, we can
compute what the bracket of E becomes on T ⊕ T ∗ under this isomorphism. Denoting the splitting
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T ∗ → E by s, we have s+ i : T ⊕ T ∗ ∼−→ E and we have

[[X + ξ, Y + η]]”Twisted” =(s+ i)−1 ([[(s+ i)(X + ξ), (s+ i)(Y + η)]])

=e−Bα [[eBα(X + ξ), eBα(Y + η)]]

=[[X + ξ, Y + η]] + ιY ιXH

=[[X + ξ, Y + η]]H , (3.6.23)

Thus a Gerbe with connection induces a deformation from the Courant bracket with zero 3–form to the
Courant bracket with 3–form H . However, one should keep in mind that the gerbe is not completely
determined by its curvature, so that not all the structure of the gerbe is contained in the Courant
bracket.

3.6.4 Relation with string theory: Charged strings

Now that we have a basic understanding of gerbes, we turn our attention to the role they play in
physics. Let us quickly recall the theory of electromagnetism for point–particles, which for simplicity
we take in Minkowski space–time M = R(1,3). To define the electromagnetic field, one introduces
a line bundle L with connection ∇ on the configuration space of the particle, which equals M . As
M is contractible, we may assume L to be trivial so that the connection ∇ is described by a global
1–form, usually denoted A, with associated curvature 2–form F called the ’field strength’. In four
dimensions, F has six independent components which are identified with the electric field E and the
magnetic field B. To couple A with the particle, one introduces in the action the term∫

x([0,1])
A =

∫
[0,1]

ẋµAµ, (3.6.24)

where x : [0, 1]→M is the trajectory of the particle. The equations of motion for the particle turn out
to depend only on the field strength F , which is mathematically clear because for a small deformation
x′(t) of the path x(t) we have

δS = −e
∫
x([0,1])

A− (−e
∫
x′([0,1])

A) = −e
∫
X
dA =

∫
X
F, (3.6.25)

whereX is a surface with ∂X = x([0, 1])−x′([0, 1]). To determine the equations of motion it suffices
to consider infinitesimal variations of the path, so classically only the form of F matters. However,
in the Bohm-Aharonov experiment it was shown that charged particles can be affected by an electro-
magnetic field, even if it is identically zero in the neighborhood of the particle. What happens is that
the field A can be non–zero because of the presence of a electromagnetic field elsewhere, and cannot
be gauged to zero. Classically this makes no difference, but quantum-mechanically the entire shape
of the action is important and not just its stationary points, and so the presence of A becomes visible
through the holonomy of the line bundle. This holonomy can be non–trivial, for instance if we form
a loop around the region with the electromagnetic field. It is a fact that a line bundle with connection
is completely determined by its holonomy, in fact there are explicit formulas to recover the transition
functions and connection forms out of the holonomy.
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Now we want to define a similar electromagnetic theory for closed strings, and the most natural way
to generalize the concept described above is by introducing a line bundle on the configuration space of
the string, which is given by the loop space LM := {γ : S1 →M}. The interaction of the string with
this electromagnetic field takes place through a collection of locally defined 2–forms Bα, in direct
analogy with the interaction for point–particles and electromagnetism, which takes place through the
locally defined 1–forms Aα. To distinguish between point–particles and strings, the electromagnetic
field for strings is called the B–field.

To construct this line bundle on LM we first have to discuss very briefly the topology of LM . One
natural choice of topology on such a space of maps is the compact open topology, which has as a basis
for its topology sets of the form

L(K,U) := {γ ∈ LM |γ(K) ⊂ U} (3.6.26)

where K runs over the compact sets of S1, and U over the open sets of M . Since S1 is compact, it
suffices to take K closed. An open set U in M thus produces an open set in LM , consisting of all the
loops contained in U , and we will denote this set by Û .

Given a gerbe G with connection ∇, we can pick an open cover Ui such that G|Ui is trivial, and
such that the Ûi cover LM . This is indeed possible, for if γ is a loop in M , we can thicken it to a
solid open torus in M . This set is homotopic to γ itself, hence has zero third cohomology groups. As
γ runs over all possible loops, these open sets cover M and the corresponding open sets in LM cover
LM . We labeled the cover with Latin indices to stress that it has nothing to do with a cover for G, i.e.
there is not necessarily a line bundle defined over the intersection Uij .

Now we construct the line bundle on LM . On each Ûi consider the trivial bundle Ûi × C. We
have to specify gluing data, i.e. we have to define functions ĝij : Ûi ∩ Ûj → C∗ satisfying the co–
cycle condition. Since we have trivializations of (G,∇) (in the sense of Lemma 3.6.6) both on Ui
and on Uj , Lemma 3.6.6 gives us a line bundle Lij with connection on Uij (again, this is not the line
bundle that the gerbe itself associates to Uij , for this last set may not even be in the open cover of the
gerbe). This provides an obvious candidate for ĝ, namely

ĝij(γ) = Holij(γ) for γ ∈ Ûi ∩ Ûj , (3.6.27)

where Holij is the holonomy of the connection on Lij .

Theorem 3.6.7. The transition maps ĝij satisfy the co–cycle condition, hence define a line bundle on
LM .

Proof. We have to verify the constraints

ĝij = ĝ−1
ji andĝij ĝjkĝki = 1.
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Let (Vα,Kα,∇α,mαβ) and (Vα,K
′
α,∇′α,m′αβ) be the two trivializations of (G,∇) on Uij com-

ing from Ui and Uj respectively. The corresponding line bundle on Uij is locally on Vα given by
K−1
α ⊗K ′α, has transition functions m−1

αβ ⊗m
′
αβ and the 1–forms defining the connection are given

by A′α − Aα. If we do the same construction for Uji we get the dual bundle with the dual connec-
tion, and so it follows from Equation (3.6.5) that ĝij = ĝ−1

ji . Now suppose (Vα,K
′′
α,∇′′α,m′′αβ) is

another trivialization of (G,∇) on Uijk, coming from Uk. Again by inspecting (3.6.5) we deduce that
ĝij ĝjkĝki = 1, because

(A′α −Aα) + (A′′α −A′α) + (Aα −A′′α) = 0 and (h−1
αβh

′
αβ)(h′−1

αβ h
′′
αβ)(h′′−1

αβ hαβ) = 1.

Here the hαβ : Uαβ → C∗ correspond to mαβ as in the proof of Lemma 3.6.6.

One could expect the holonomy of the gerbe to be related to some connection on this line bundle, but
there are some subtleties. First, we have not discussed any smooth structure on LM , so we cannot use
the familiar differential geometric concepts. Second, to make this correspondence we have to view
a closed surface as a path in LM . It is clear that every path of loops defines a closed surface in M ,
but the converse is not obvious, as a surface can have holes for instance. Intuitively, such surfaces
describe loops that somewhere split into multiple loops, and these do play an important role in string
theory, but as such it is difficult to relate gerbe holonomy with the above constructed line bundle. We
will not go further into this.
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Chapter 4

The general supersymmetric sigma model

In Chapter 2 we saw the construction of the (2, 2)–supersymmetric sigma model, that was invariant
under parity. One can generalize the model by ignoring this symmetry, and this was first investigated
by Gates, Hull and Roček in [16]. These new models involve a B–field, and are only defined on
manifolds admitting a bi–hermitian structure, which we know from Chapter 3 to be equivalent to a
generalized Kähler structure. In this chapter we reproduce the results from [16], and give the relation
between the B–field appearing in the action, and gerbes.

4.1 (2, 2)–sigma models with B–field

Once parity can be broken, there are two things that allow for a modification. The first one is the
appearance of an antisymmetric tensor in the action (2.3.9):

S(Φ) =

∫
d2σdθ+dθ−(gij + bij)D+ΦiD−Φj , (4.1.1)

where the bosonic part of the integral is taken over the world–sheet Σ, which equals a cylinder. The
term involving b breaks parity, because when we integrate out the θ’s there is a term bij∂+ϕ

i∂−ϕ
j . In

terms of σ and τ , this term is proportional to bij∂τϕi∂σϕj by anti–symmetry of b. Clearly this term
is not invariant under the parity transformation (τ, σ) 7→ (τ,−σ).

To define (4.1.1) globally, it is not necessary for the 2–form b to be globally defined on M , and
we will see later that this term represents a gerbe with connection, for which b is a local potential in
the sense of (3.6.11). The only restriction on b is then that the 3–form H = db is globally defined,
and that H/2π is integral (cf. the discussion below (3.6.11)).

The next change is the form of the second supersymmetry. Recall from Section 2.4 that the second
supersymmetry is given by

δεΦ
i = Iijε

+D+Φj + Iijε
−D−Φj ,

where I is a complex structure. Parity, which on spinors interchanges the ± components (recall our
discussion about parity from Section 2.4), forces the two I’s above to be equal. Now this can be
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generalized to

δεΦ
i = Ii+jε

+D+Φj + Ii−jε
−D−Φj , (4.1.2)

with I± not necessarily equal. Before we investigate whether (4.1.2) satisfies the (2, 2)–algebra (eqn.
2.2.4) and leaves the action in (4.1.1) invariant, we look at the equations of motion implied by (4.1.1).
After all, we are looking for on–shell supersymmetry so it is important to know which conditions are
vacuous for on–shell fields1.

The equations of motion can be computed using the stationary point principle as we discussed in
Chapter 2. Under a small deformation δΦi of the superfield the action changes as:

δS =

∫ (
(gij,k + bij,k)D+ΦiD−ΦjδΦk + (gij + bij)

(
D+δΦ

iD−Φj +D+ΦiD−δΦ
j
))
, (4.1.3)

where we suppressed the integration measure d2σdθ+dθ−. We can perform a partial integration using
the identity

∫
D±(. . .) = 0, which is a consequence of∫

dθ
d

dθ
= 0 (4.1.4)

and the fact that there are no boundary terms in the ordinary, bosonic integral, if we assume that the
fields vanish at infinity. Keeping in mind that D± anti–commutes with other fermionic objects, we
have

δS =

∫ (
(gij,k + bij,k)D+ΦiD−ΦjδΦk − (gij,k + bij,k)D+ΦkδΦiD−Φj

− (gij + bij)δΦ
iD+D−Φj + (gij,k + bij,k)D−ΦkD+ΦiδΦj + (gij + bij)D−D+ΦiδΦj

)
=

∫ (
(−2Γij,k +Hijk)D+ΦiD−Φj + 2gjkD−D+Φj

)
δΦk. (4.1.5)

For this to vanish for all infinitesimal deformations δΦi, Φ must satisfy the following equations of
motion

D−D+Φk − Γ−kij D+ΦiD−Φj = 0. (4.1.6)

Here Γ±ijk = Γijk ±
1
2g
riHrjk are the Christoffel symbols for the connections∇± = ∇± 1

2g
−1H , and

H = db. We take the convention that n–forms are written as α = 1
n!αi1...indx

i1 ∧ · · · ∧ dxin , so that
Hijk = bij,k + bki,j + bjk,i.

Now we are ready to look at the constraints on I±. First of all, observe that Ii±j form the compo-
nents of a tensor, i.e. I± are sections of TM ⊗ T ∗M . This follows from (4.1.2), since both δεΦi and

1Strictly speaking, we have to determine the equations of motion but also determine whether all our symmetries that
we define respect these equations. Mathematically, we need to verify whether our symmetries induce well–defined maps
X/I → X/I , where X is the space of fields and I is the ideal generated by the equations of motion. An example of such
an explicit calculation can be found in Appendix B in [37].
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D±Φi have the same behavior under a change of coordinates. Now let us see whether (4.1.2) satisfies
the (2, 2)–algebra. Recall that the supersymmetry charges Q1

± and Q2
± are defined via

δaε = εQa, a = 1, 2. (4.1.7)

We explicitly label the symmetries δ1 and δ2 to distinguish them, this should not be confused with
applying the symmetry δ once or twice. It is important to realize (4.1.7) in actual computations, as the
Qa are only implicitly defined on the Φi. It implies for instance that Qa acts via the chain rule on any
function of the Φi:

Qa(f(Φ)) =
∂f

∂Φi
QaΦi. (4.1.8)

Furthermore, we have the following identity:

[δaε1 , δ
b
ε2 ]Φi =δaε1(ε2Q

bΦ)− δbε2(ε1Q
aΦ)

=ε2Q
b(δaε1Φ)− ε1Qa(δbε2Φ)

=ε2Q
b(ε1Q

aΦ)− ε1Qa(ε2QbΦ)

=εα1 ε
β
2{Q

a
α, Q

b
β}Φ, (4.1.9)

where once again we stress that ε and Q are fermionic objects, hence anti–commute. According to
(2.2.4) and (2.3.1) we can write (4.1.9) as

[δaε1 , δ
b
ε2 ]Φi = −2iδab

(
ε+1 ε

+
2 ∂+ + ε−1 ε

−
2 ∂−

)
Φi, (4.1.10)

and this imposes a constraint on the left hand side. We know this to be true for a = b = 1 as it follows
straightforwardly from the definition of Q1 in (2.3.4). For a = b = 2 we have

[δ2
ε1 , δ

2
ε2 ]Φi =δ2

ε1

(
ε+2 I

i
+jD+Φj + ε−2 I

i
−jD−Φj

)
− (1↔ 2)

=ε+2 I
i
+j,k

(
ε+1 I

k
+lD+Φl + ε−1 I

k
−lD−Φl

)
D+Φj + ε+2 I

i
+jD+

(
ε+1 I

j
+lD+Φl + ε−1 I

j
−lD−Φl

)
+ ε−2 I

i
−j,k

(
ε+1 I

k
+lD+Φl + ε−1 I

k
−lD−Φl

)
D−Φj + ε−2 I

i
−jD−

(
ε+1 I

j
+lD+Φl + ε−1 I

j
−lD−Φl

)
− (1↔ 2)

=2ε+1 ε
+
2

(
(Ii+j,kI

k
+l + Ii+kI

k
+l,j)D+ΦjD+Φl + Ii+jI

j
+lD

2
+Φl

)
+
(
ε+1 ε
−
2 + ε−1 ε

+
2

)(
(Ii+jI

j
−l − I

i
−jI

j
+l)D+D−Φl+

(Ii−j,kI
k
+l + Ii−kI

k
+l,j − Ii+l,kIk−j − Ii+kIk−j,l)D−ΦjD+Φl

)
+ 2ε−1 ε

−
2

(
(Ii−j,kI

k
−l + Ii−kI

k
−l,j)D−ΦjD−Φl + Ii−jI

j
−lD

2
−Φl

)
. (4.1.11)

Using D2
+ = i∂+, and the definition of the Nijenhuis tensor

N±(X,Y ) := NI±(X,Y ) = [X,Y ]− [I±X, I±Y ] + I±[I±X,Y ] + I±[X, I±Y ], (4.1.12)

which in components looks like

N±kij = I l±iI
k
±j,l + Ik±lI

l
±i,j − (i↔ j), (4.1.13)
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we can rewrite (4.1.11) as

[δ2
ε1 , δ

2
ε2 ]Φi =ε+1 ε

+
2

(
2iIi+jI

j
+l∂+Φl −N+i

jl D+ΦjD+Φl
)

+ ε−1 ε
−
2

(
2iIi−jI

j
−l∂−Φl −N−ijl D−ΦjD−Φl

)
+ (ε+1 ε

−
2 + ε−1 ε

+
2 )

(
(Ii+jI

j
−l − I

i
−jI

j
+l)D+D−Φl+

(Ii−j,kI
k
+l + Ii−kI

k
+l,j − Ii+l,kIk−j − Ii+kIk−j,l)D−ΦjD+Φl

)
.

(4.1.14)

This last expression is not very promising, but with the help of (4.1.6) we can rewrite the term
D+D−Φl, and we can replace derivatives by covariant derivatives using

Ii±j,k = ∇±k I
i
±j − Γ±ikr I

r
±j + Γ±rkj I

i
±r. (4.1.15)

Why we use ∇+ for I+ and ∇− for I− will become clear later, but for now we observe that it
transforms (4.1.14) into the more readable equation

[δ2
ε1 , δ

2
ε2 ]Φi =ε+1 ε

+
2

(
2iIi+jI

j
+l∂+Φl −N+i

jl D+ΦjD+Φl
)

+ ε−1 ε
−
2

(
2iIi−jI

j
−l∂−Φl −N−ijl D−ΦjD−Φl

)
+ (ε+1 ε

−
2 + ε−1 ε

+
2 )

·
[
(∇−k I

i
−j)I

k
+l − (∇+

k I
i
+l)I

k
−j + Ii−k(∇+

j I
k
+l)− Ii+k(∇−l I

k
−j)
]
·D−ΦjD+Φl.

(4.1.16)

As this must equal (4.1.10) for all choices of ε1, ε2, we obtain three independent equations:

1. I2
± = −1, so I± must be almost complex structures on M . This puts already topological

restrictions on M , e.g. it must be even dimensional and orientable.

2. N± = 0, implying that I± are both integrable complex structures.

3. (∇−k I
i
−j)I

k
+l−(∇+

k I
i
+l)I

k
−j+Ii−k(∇

+
j I

k
+l)−Ii+k(∇

−
l I

k
−j) = 0.At this stage it is not clear what

this equation tells us, but we will see in a moment what to do with it (cf. Equation (4.1.24)).

Remark. The second condition about integrability is necessary to close the (2, 2)–algebra on–shell, but
one could look at more general models where N± is not necessarily zero. If the complex structures
satisfy gijIi±kI

j
±l = gkl and ∇±I± = 0 (cf. Equation (4.1.19) and (4.1.24)), it can be shown that

∇±N± = 0, which implies that the terms N±ijl D±ΦjD±Φl define a symmetry of the action. So
although the algebra does not close, the commutator of two symmetries is again a (new) symmetry.
In [29] these models are investigated in full generality, and in [14] they are worked out in superspace
together with a nontrivial example, in which it turns out that the obtained symmetry algebra is infinite
dimensional. We shall not investigate these kind of models, but always assume the second condition
to be fulfilled.
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We have not computed the full algebra yet, as we still have to verify the constraint [δ1
ε1 , δ

2
ε2 ]Φi = 0.

To keep the computation short we take ε−1 = ε−2 = 0, the general case is entirely similar.

[δ1
ε1 , δ

2
ε2 ]Φi =δ1

ε1

(
ε+2 I

i
+jD+Φj

)
− δ2

ε2

(
ε+1 Q+Φi

)
=ε+2 I

i
+j,k

(
ε+1 Q+Φi

)
D+Φj + ε+2 I

i
+jD+

(
ε+1 Q+Φi

)
− ε+1 Q+(ε+2 I

i
+jD+Φj)

=ε+1 ε
+
2

(
−Ii+j,kQ+ΦkD+Φj + Ii+jD+Q+Φj + Ii+j,kQ+ΦkD+Φj + Ii+jQ+D+Φj

)
=0, (4.1.17)

since {Q+, D+} = 0. Thus the two supersymmetries already commute, without any assumptions on
the target space.

Beside the algebraic relations, the action must also be invariant under the symmetry δ2
ε , where again

we take ε− = 0 for aesthetic reasons. In dealing with the commutators we worked with fields on shell,
but here we do not. Indeed, fields on shell are by definition those for which the action is invariant under
any variation, so in particular a supersymmetry variation. We have

δ2
εS =

∫ (
(gij,k + bij,k)ε

+Ik+lD+ΦlD+ΦiD−Φj + (gij + bij)D+(ε+Ii+kD+Φk)D−Φj

+ (gij + bij)D+ΦiD−(ε+Ij+kD+Φk)

)
=

∫
ε+
(
−
(

(gij + bij)I
i
+k + (gki + bki)I

i
+j

)
D2

+ΦkD−Φj

+

(
(gij,k + bij,k)I

k
+l − (gkj + bkj)I

k
+i,l + (gik + bik)I

k
+l,j − (gik,l + bik,l)I

k
+j

− (gik + bik)I
k
+j,l

)
D+ΦlD+ΦiD−Φj

)
, (4.1.18)

which must vanish for all ε+ and all superfields Φi. In the second equality we used again a par-
tial integration. Observe that the term D2

+ΦkD−Φj = i∂+ΦkD−Φj is independent of the term
D+ΦlD+ΦiD−Φj , i.e. we can find superfields for which the first expression is zero while the second
is not, and vice versa. Therefore the two expressions in (4.1.18) must separately vanish. Vanishing of
the first term gives anti–symmetry:

(g + b)(I+v, w) + (g + b)(v, I+w) = 0, (4.1.19)

and since g is symmetric and b is anti–symmetric this holds also for g and b separately2.

As for the second term in (4.1.18), rewriting derivatives of g in terms of the Christoffel symbols
and derivatives of I+ as covariant derivatives (with respect to the torsion-free Levi-Cevita connec-
tion) most terms cancel against each other or vanish, because they are contracted with the term

2This is a standard polarization argument: for v = w, the equation gives g(I+v, v) = 0 and using bi-linearity of g this
implies g(I+v, w) + g(v, I+w) = 0. Together with (4.1.19) this must then also be true for b.
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D+ΦlD+ΦiD−Φj which is antisymmetric in l and i. After that, the constraint on the second term
can be written as

0 =
(
gik∇jIk+l + bij,kI

k
+l − ∂l(bikIk+j) + ∂j(bikI

k
+l)− bik,jIk+l − bkjIk+i,l

)
D+ΦlD+ΦiD−Φj

=
(
gik∇jIk+l + (bij,k + bjk,i + bki,j)I

k
+l

)
D+ΦlD+ΦiD−Φj

=

(
gik∇jIk+l +

1

2
HijkI

k
+l −

1

2
HljkI

k
+i

)
D+ΦlD+ΦiD−Φj

= gik

(
∇jIk+l +

1

2
Hk

jrI
r
+l −

1

2
Hr

jlI
k
+r

)
D+ΦlD+ΦiD−Φj

= gik∇+
j I

k
+lD+ΦlD+ΦiD−Φj . (4.1.20)

In the second line we used the identity bikIk+j = bjkI
k
+i, and in the third line we used the covariant

derivative of I+

∇+
j I

k
+l = Ik+l,j + Γ+k

jr I
r
+l − Γ+r

jl I
k
+r = ∇jIk+l +

1

2
Hk

jrI
r
+l −

1

2
Hr

jlI
k
+r, (4.1.21)

together with the identity

HljkI
k
+i = gskH

s
lj Ik+i = −gikH s

lj Ik+s = gikH
s
jlI

k
+s, (4.1.22)

using anti–symmetry of I+ with respect to g. Therefore, for the action to be invariant we must have

∇+I+ = 0. (4.1.23)

A similar calculation can be done for I−, but we can read off the result straight away from (4.1.1).
Commuting D+Φi with D−Φj in the action and interchanging the indices i and j we see that the
action gets an overall minus sign and b changes into −b. Then δ2

εS for ε+ = 0 is given by (4.1.18)
with −b instead of b and + interchanged with −. Therefore, every constraint on I+ can be translated
to one on I− by replacing b by its negative, so the total constraints are

∇±I± = 0. (4.1.24)

Observe that (4.1.24) implies that the third condition coming from the (2, 2)–algebra is automati-
cally fulfilled, and so gives no extra constraint. We summarize the above discussion in the following
theorem.

Theorem 4.1.1. ([16]) Let (M, g) be a Riemannian manifold equipped with an U(1)-gerbe, with
curvature 3–form H . The (1, 1)–supersymmetric sigma model on a flat world–sheet Σ (a cylinder)
with target space M , admits an extension to (2, 2) on–shell supersymmetry if and only if M admits
two integrable complex structures I± that satisfy the constraints

1. g(I±v, w) = −g(v, I±w), and if b is a local potential for the gerbe then b(I±v, w) = −b(v, I±w),

2. ∇±I± = 0.
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Equivalently, from Theorem (3.4.3), M must be twisted generalized Kähler with H the form defining
the twist of the Courant bracket.

Remark. Note that the condition b(I±v, w) = −b(v, I±w) is not gauge–independent, i.e. for different
choices of b, in which the holonomy could be more complicated (involving g’s andA’s) this condition
could be different. What is gauge–independent is the fact that H is of type (2, 1) + (1, 2) with respect
to both I±, which is a direct consequence of the integrability of I± and the constraint b(I±v, w) =

−b(v, I±w).

To end this section we discuss briefly some other types of representations one can consider besides
(2, 2). First of all, since we do not require any relation between the + and − sectors, we can drop one
of the complex structures and consider (2, 1) or (1, 2) representations. In effect, half of the data and
the constraints above drops out, and what is left is called a SKT structure(Kähler with strong torsion).
For more information about those we refer to [7].

If we look for (3, 3) representations, we obtain a second pair of complex structures J± satisfying
the same constraints as above, together with the constraint that J± must anti–commute with I±. We
can then form a third pair K± := I±J±, which satisfies ∇HK± = 0 by the Leibniz rule. If H would
be (2, 1) + (1, 2) for K±, we would conclude that K± are both integrable, but at present the author
does not know whether this is always the case. Certainly this seems very likely, but in any case we
know that (4, 4) supersymmetry corresponds to a generalized Hyperkähler structure: three general-
ized complex structures that mutually anti–commute, and commute with one fixed generalize metric.
This discussion is summarized in Table 4.1, which is the extension of Table 2.1.

Table 4.1: Relation supersymmetry and target space geometry.

(p,q) Susy (1,1) (2,2) (2,1) (4,4)
Geometry Riemannian Gen.Kähler SKT Gen.Hyperkähler

4.2 The action in terms of the physical fields

To investigate the structure of the generalized sigma model we only worked in superspace, which is
convenient for computations but has the drawback that the physical content of the theory is hidden
in the components of the superfields. Also, it is not immediately obvious what the coordinate free3

expression for (4.1.1) is without looking at these components, so we first perform the integration over

3With respect to coordinates on M .
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the Grassmann variables θ±. Using the identities

D+Φi = ψi+ − θ−F i + iθ+∂+ϕ
i + iθ+θ−∂+ψ

i
−,

D−Φj = ψj− + θ+F j + iθ−∂−ϕ
j + iθ−θ+∂−ψ

j
+,

gij(Φ) + bij(Φ) = (gij(ϕ) + bij(ϕ)) + (gij,k(ϕ) + bij,k(ϕ))(θ+ψk+ + θ−ψk− + θ−θ+F k)

+
1

2
(gij,kl(ϕ) + bij,kl(ϕ))(θ+ψk+ + θ−ψk−)(θ+ψl+ + θ−ψl−), (4.2.1)

we compute

S =

∫
d2σ

(
(gij + bij)(iψ

i
+∂−ψ

j
+ − F iF j + ∂+ϕ

i∂−ϕ
j + iψj−∂+ψ

i
−)

+ (gij,k + bij,k)(−iψk+ψi+∂−ϕj − ψk+ψ
j
−F

i + ψk−ψ
i
+F

j − iψk−ψ
j
−∂+ϕ

i + F kψi+ψ
j
−)

+
1

2
(gij,kl + bij,kl)(ψ

k
+ψ

l
−ψ

i
+ψ

j
− − ψk−ψl+ψi+ψ

j
−)

)
. (4.2.2)

We can partially integrate some of the terms above, e.g.∫
d2σbijψ

i
+∂−ψ

j
+ = −

∫
d2σ
(
bij,k∂−ϕ

kψi+ψ
j
+ + bij∂−ψ

i
+ψ

j
+

)
,

allowing us to write bijψi+∂−ψ
j
+ = −1

2bij,k∂−ϕ
kψi+ψ

j
+ in the integral. Together with the identity

gij,k = Γik,j + Γjk,i,

the action simplifies to

S =

∫
d2σ

(
(gij + bij)∂+ϕ

i∂−ϕ
j + igijψ

i
+∇+
−ψ

j
+ + igijψ

i
−∇−+ψ

j
−

+ (gij,kl + bij,kl)(ψ
k
+ψ

l
−ψ

i
+ψ

j
−) + (−gijF iF j + 2Γ−ik,jψ

k
−ψ

i
+F

j)

)
. (4.2.3)

Here∇+
− is an abbreviation for∇+

∂
∂σ−

, so that

∇+
−ψ

j
+ = ∂−ψ

j
+ + Γ+j

kl ∂−ϕ
kψl+, (4.2.4)

and similarly for∇−+. Equation (4.2.3) immediately yields the equation of motion for F :

F i = Γ−ijkψ
k
−ψ

j
+. (4.2.5)

This equation for F allows one in principle to eliminate F from the classical theory, but is this also
allowed in the quantum theory? The answer is yes, because of the following. The F dependent term
in the path integral4 schematically looks like∫

DF exp(−aF 2 + bF ),

4See Chapter 5 for the definition of the path integral.
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with a and b functions of the other fields. This is a gaussian integral whose value we know exactly to
be ∫

DF exp(−aF 2 + bF ) =

∫
DF exp(−a(F − b

2a
)2 +

b2

4a
) ∼ exp(

b2

4a
),

where we dropped an irrelevant constant from the integration. However, the equation of motion for F
is F = b

2a and if we substitute that for F in the action we get the term

−a(
b

2a
)2 + b(

b

2a
) =

b2

4a
,

so indeed, evaluating the path integral for F simply amounts to put it on shell. Since the symmetry
algebra closes only on shell, there is no harm to integrate out F . After that, the action is given by

S =

∫
d2σ

(
(gij + bij)∂+ϕ

i∂−ϕ
j + igijψ

i
+∇+
−ψ

j
+ + igijψ

i
−∇−+ψ

j
−

− (gik,jl + bik,jl + Γ−ik,rΓ
−r
jl )(ψi+ψ

j
+ψ

k
−ψ

l
−)

)
. (4.2.6)

The last term looks like a curvature term so let us compute

R±rjkl =∂kΓ
±r
lj + Γ±slj Γ±rks − (k ↔ l)

=∂k

(
1

2
grs(gls,j + gjs,l − gjl,s ±Hslj)

)
+ Γ±slj Γ±rks − (k ↔ l)

=− 1

2
grmgsngmn,k (gls,j + gjs,l − gjl,s ±Hslj) +

1

2
grs (gls,jk + gjs,lk − gjl,sk ±Hslj,k)

+ Γ±slj Γ±rks − (k ↔ l). (4.2.7)

Hence,

R±ijklψ
i
+ψ

j
+ψ

k
−ψ

l
− =

(
− (Γik,n + Γnk,i)(2Γnlj ±Hn

lj) + (gli,jk − gjl,ik ±Hilj,k)

+ 2Γ±slj Γ±ks,i

)
ψi+ψ

j
+ψ

k
−ψ

l
−

=− 2(glj,ik ± bjl,ik + Γ±ki,rΓ
± r
lj )ψi+ψ

j
+ψ

k
−ψ

l
−. (4.2.8)

So finally, we conclude that the action is given by

S =

∫
d2σ

(
(gij + bij)∂+ϕ

i∂−ϕ
j + igijψ

i
+∇+
−ψ

j
+ + igijψ

i
−∇−+ψ

j
− +

1

2
R+
ijklψ

i
+ψ

j
+ψ

k
−ψ

l
−

)
.

(4.2.9)

By construction this action is invariant under the global symmetry δΦi = εQ1Φi+ ε̃Q2Φi that induces
a symmetry on the components via

δΦi = δϕi + θ+δψi+ + θ−δψi− + θ−θ+δF i. (4.2.10)

In order to determine these variations, we have to expand δΦi in the Grassmann variables, keeping in
mind that I± also depends on these:

Ii±j(Φ) = Ii±j(ϕ) + θ+Ii±j,kψ
k
+ + θ−Ii±j,kψ

k
− + θ−θ+(Ii±j,klψ

k
+ψ

l
− + Ii±j,kF

k). (4.2.11)
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Using this we compute

δΦi =ε+Q+Φi + ε−Q−Φi + ε̃+Ii+jD+Φj + ε̃−Ii−jD−Φj

=
(
ε+ψi+ + ε−ψi− + ε̃+Ii+jψ

j
+ + ε̃−Ii−jψ

j
−

)
+ θ+

(
iε+∂+ϕ

i − ε−F i + ε̃+(−iIi+j∂+ϕ
j − Ii+j,kψk+ψ

j
+) + ε̃−(−Ii−jF j − Ii−j,kψk+ψ

j
−)
)

+ θ−
(
ε+F i + iε−∂−ϕ

i + ε̃+(Ii+jF
j − Ii+j,kψk−ψ

j
+) + ε̃−(−iIi−j∂−ϕj − Ii−j,kψk−ψ

j
−)
)

+ θ−θ+

(
iε+∂+ψ

i
− − iε−∂−ψi+

+ ε̃+
(
−iIi+j∂+ψ

j
− − Ii+j,kψk+F j − iIi+j,kψk−∂+ϕ

j + Ii+j,klψ
k
+ψ

l
−ψ

j
+ + Ii+j,kF

kψj+

)
+ ε̃−

(
iIi−j∂−ψ

j
+ + iIi−j,kψ

k
+∂−ϕ

j − Ii−j,kψk−F j + Ii−j,klψ
k
+ψ

l
−ψ

j
− + Ii−j,kF

kψj−

))
.

(4.2.12)

The variation for F is not very elegant, but fortunately we are only interested in ϕi and ψi±, whose
variations with F on shell (Equation (4.2.5)) are given by:

δϕi =ε+ψi+ + ε−ψi− + ε̃+Ii+jψ
j
+ + ε̃−Ii−jψ

j
−,

δψi+ =iε+∂+ϕ
i − ε−Γ+i

jkψ
j
−ψ

k
+ + ε̃+

(
−iIi+j∂+ϕ

j − Ii+j,kψk+ψ
j
+

)
+ ε̃−

(
−Ii−jΓ

+j
kl ψ

k
−ψ

l
+ − Ii−j,kψk+ψ

j
−

)
,

δψi− =ε+Γ+i
jkψ

j
−ψ

k
+ + iε−∂−ϕ

i + ε̃+
(
Ii+jΓ

+j
kl ψ

k
−ψ

l
+ − Ii+j,kψk−ψ

j
+

)
+ ε̃−

(
−iIi−j∂−ϕj − Ii−j,kψk−ψ

j
−

)
, (4.2.13)

where we have rewritten derivatives on I± using (4.1.24).

The action and the symmetries as they are given in (4.2.9) and (4.2.13) depend on the coordinates
on M so we still have to understand their global, intrinsic definitions. In the action the only term that
needs explanation is the kinetic term bij∂+ϕ

i∂−ϕ
j , as the other ones were already discussed in Chap-

ter 2, see also Equation (2.3.16). Interpreting bij as a local potential of a gerbe, the term bij∂+ϕ
i∂−ϕ

j

in the action is not well defined, but once we look at the term eiS , it will correspond exactly to the
gerbe holonomy as given in Equation (3.6.16), in a gauge where the co–cycle gαβγ = 1 and Aαβ = 0,
see also the remark at the end of Section 3.6.2.

To verify that the symmetry, as given in (4.2.13), extends globally, we have to explicitly perform
a coordinate transformation ϕ 7→ ϕ′(ϕ) and determine whether both sides transform in the same way.
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The transformation rules of the relevant quantities are given by

ψ′i± =
∂ϕ′i

∂ϕj
ψj±,

I ′i±j =
∂ϕ′i

∂ϕk
∂ϕl

∂ϕ′j
Ik±l,

Γ′±ijk =
∂ϕ′i

∂ϕl
∂2ϕl

∂ϕ′m∂ϕ′n
+
∂ϕm

∂ϕ′j
∂ϕn

∂ϕ′k
∂ϕ′i

∂ϕr
Γ±rmn. (4.2.14)

With these equations one can compare the transformation behavior of both sides of (4.2.13), which
we will not explicitly do here.
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Chapter 5

The topological model

So far we have been studying the classical theory of the sigma model, mostly focussing under which
conditions it allows for (2, 2)–supersymmetries. These models were only defined on a cylinder, and
in this section we will use a method called the topological twist to extend everything to arbitrary
worldsheets. Under certain conditions, this procedure transforms the sigma model into a topological
field theory. Before we come to the twist we briefly discuss the concept of quantization, in order to
explain the definition of the path–integral which is important to understand topological field theories
from the physical point of view.

5.1 Quantization

Quantization is the process of transforming a classical theory into a quantum theory. Instead of diving
into the general theory, which would be outside the scope of this thesis, we start with a classical rela-
tivistic point–particle moving in space–time, which we take to be a manifold M , and then generalize
to strings.

The time evolution of the physical system is described by a Lagrangian, which in this setting is a
function on TM (it depends both on the position and the velocity of the particle). Note that time
in this context refers to a parametrization of the path the particle follows in space–time. As ex-
plained in Chapter 2, the action S becomes a functional on the space of all paths in M defined by
S(γ) =

∫
[0,1] L(γ(τ), γ̇(τ))dτ , and it determines the evolution of the system completely by picking

out the path for which it has an extremal value. It is often convenient to pass from the Lagrangian
formalism to the Hamiltonian formalism, which is to say that we replace TM by T ∗M . This is done
by means of the momentum map p : TM → T ∗M , given in local coordinates on TM and T ∗M by

pi(x, y) =
∂L

∂yi
, (5.1.1)

where xi are local coordinates on M , yi the coordinates on the fibers of TM (i.e., a point in TM is
described by (xi, yi)) and pi are coordinates on the fibers of T ∗M . Due to the transformation rule of
the yi and the chain rule, one can verify that pi transform in the right way (oppositely to the yi) so that

75
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this map is globally well defined. Note that this map is not necessarily an isomorphism, as the matrix
∂pi
∂yj

can be singular.

The Hamiltonian is defined locally by

H(x, p) := piy
i − L(x, y), (5.1.2)

assuming that we can express this in terms of the momenta pi (which is the case if, for instance, (5.1.1)
is an isomorphism, but this is not a necessary condition). Passing to the Hamiltonian formalism has
the advantage that T ∗M is a symplectic manifold, whose symplectic form in local coordinates (x, p)

is given by
∑

i dpi∧dxi. Note that we always have, in any physical system, the relation {xi, pj} = δij ,
but the form of p depends on the Lagrangian and so the Poisson bracket in this sense is different for
different physical systems.

The classical deterministic point of view is changed drastically in quantum mechanics. Instead of
having a well defined location in M , the state of the particle is described by a wave–function, a square
integrable C−valued function Ψ ∈ L2(M), that is normalized in the sense that

∫
M |Ψ|

2 = 1. We
can no longer speak about a particle’s position, but only about the probability of finding it in a region
U ⊂ M , which is given by

∫
U |Ψ|

2. There are basically two different approaches for a mathemati-
cal setup of quantum mechanics. One of them is called the canonical formalism, the other is called
the path–integral formalism. Continuing with our example, in the canonical formalism, quantization
replaces the classical configuration space M by the Hilbert space H := L2(M), and the functions
on T ∗M (called observables in the classical theory) by operators on H. These operators can be un-
bounded, i.e. they are not necessarily bounded nor defined on the whole Hilbert space, and we will
denote the set of unbounded operators by O(H). This map C∞(T ∗M) → O(H) is usually denoted
by f 7→ f̂ , and is required to satisfy

{̂f, g} = −i[f̂ , ĝ], (5.1.3)

the bracket being defined on the common domain of f̂ and ĝ. The reason for the factor i is that physical
operators should be hermitian1, f̂ † = f̂ , so that the commutator must satisfy [f̂ , ĝ]† = −[f̂ , ĝ]. If
there were no i in (5.1.3), we would have [f̂ , ĝ]† = ({̂f, g})† = {̂f, g} = [f̂ , ĝ], which would be
inconsistent. In the canonical formalism itself there are different points of view, the most important
two are called the Schrödinger picture and Heisenberg picture. In the Schrödinger picture the operators
are fixed and the states (the wave functions) are time evolving, and their evolution is governed by the
quantized Hamiltonian Ĥ , by means of

|Ψ(τf )〉 = e−iĤ(τf−τi)|Ψ(τi)〉, (5.1.4)

so that wave functions satisfy the familiar Schrödinger Equation:

i
d

dτ
|Ψ(τ)〉 = Ĥ|Ψ(τ)〉. (5.1.5)

1The eigenvalues of these operators correspond to the physical measurable quantities, which must be real.
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In the Heisenberg picture the states are time independent, while the operators are time dependent and
evolve according to

d

dτ
O =

∂

∂τ
O + i[Ĥ, O]. (5.1.6)

The Heisenberg picture resembles more the classical point of view, as classically the states are the
points on M (clearly time independent) and the time evolution of the observables is governed by the
Hamiltonian and the Poisson bracket via

df

dτ
=
∂f

∂τ
− {H, f}. (5.1.7)

Despite the differences, the Heisenberg and Schrödinger picture give the same physical information,
which is all contained in the expectation values. The expectation value of an operator O on a system
in a state Ψ is defined by

〈O〉Ψ := 〈Ψ|O|Ψ〉, (5.1.8)

which in our example is just
∫
M dxΨ∗(x)(OΨ)(x) (dx being the density used to define the space

L2(M)), and agrees with the probabilistic interpretation of expectation value.

The other approach to quantum mechanics is via the path–integral, and to introduce this technique
let us define, still in the context of the classical relativistic particle, for each point x ∈ M a spe-
cial state |x〉 corresponding to the delta function based at x. This is of course not an element in
H = L2(M), but rather a linear functional onH given by evaluation of functions in the point x. Note
that this functional is not continuous, hence can not be represented by an element fromH via the inner
product2. For a state |Ψ〉 representing the function Ψ ∈ L2(M) we define 〈x|Ψ〉 := Ψ(x), and we
formally write

|Ψ〉 =

∫
M
dx〈x|Ψ〉|x〉 =

∫
M
dxΨ(x)|x〉, (5.1.9)

which is often written as
∫
M dx|x〉〈x| = 1. The state |x〉 can be thought of as representing the classi-

cal state x, with the quantum state being smeared out over the various classical states. Note that |x〉 is
an eigenstate of the position operator acting on functionals by transposition.

The fundamental identity in the path–integral approach is the following:

〈y|e−iĤτf Ôn(τn) · · · Ô1(τ1)eiĤτi |x〉 =

∫ ϕ(τf )=y

ϕ(τi)=x
D[ϕ]eiS(ϕ)On(τn) · · ·O1(τ1), (5.1.10)

the integral being taken over all possible paths in M with starting point x and ending point y, and
τn ≥ . . . ≥ τ1. We end our discussion about the point–particle with the observation that Equations

2More rigorously, the correct setup here is that of a ’rigged Hilbert space’. This consists of a so–called ’nuclear’ subspace
S ⊂ H (the term nuclear referring to some technical conditions which we will not discuss), that is in the common domain
of the operators of interest and represents the set of physical states. The space S∗ (the space of linear functions on S), which
itself is not contained inH, contains the eigenstates of the physical operators, like the |x〉 discussed above.
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(5.1.4), (5.1.9) and (5.1.10) imply that the evolution of wave functions is given by

Ψ(y, τf ) =

∫
M
dx

∫ ϕ(τf )=y

ϕ(τi)=x
D[ϕ]eiS(ϕ)Ψ(x, τi), (5.1.11)

and in this sense the path–integral acts as an integral operator describing the evolutions of wave
functions.

5.1.1 Strings and the operator state correspondence

Now consider a closed string moving in space–time, again denoted by M . Its configuration space is
not M , as it was for the point–particle, but equals LM := {γ : S1 → M}, which is the space of
all possible string shapes in M . The phase space can also be defined, namely T ∗LM which has as
fiber over a loop γ the space T ∗γLM := Γ(γ∗T ∗M). As before, canonical quantization requires us
to replace this configuration space by the Hilbert space of square integrable wave functions on it, i.e.
H := L2(LM). However, to the author’s knowledge there is no natural choice of measure on LM for
general M , but we will assume that this is not a serious problem and proceed as for the point particle.
A state Ψ is thus a functional, assigning a complex number to each possible loop, giving a probability
for the string to be in a certain shape.

Analogously to the state |x〉 we have for each loop γ a ’state’ |γ〉, and the analogue of (5.1.9) is

|Ψ〉 =

∫
LM

dγ Ψ(γ)|γ〉. (5.1.12)

The time evolution in terms of these states is again described by

〈γf |e−iH(τf−τi)|γi〉 =

∫
D[ϕ]eiS , (5.1.13)

the integral taking place over all paths in LM with start and ending points γi and γf . Such a path
can be described on M as a particular type of cobordism between the image of γi and γf in M . With
particular type we mean that such a cobordism can not have a hole in it, as this is not interpreted as a
path in LM . Here we see already a big difference with point–particle physics, for if we consider all
possible cobordisms between γi and γf , we already see string interactions taking place. In contrast,
for point particles one has to add appropriate interaction terms to the lagrangian to create these inter-
actions. This is a fortunate coincidence, as adding such interaction terms for strings would endanger
the conformal symmetry, and if present, also the supersymmetry.

If we allow for string interactions to take place, the relevant quantities to compute are

〈γ1
f , . . . , γ

n
f |e−iH(τ1−τ0)|γ1

i , . . . , γ
m
i 〉, (5.1.14)

for which the path–integral formalism tells us to sum over all possible surfaces Σ with boundary
∂Σ = Σi ∪ Σf , where the bar stands for reversed orientation and Σi, Σf are the unions of the γi and
γf respectively. The precise meaning of the measure D[ϕ] depends on the particular type of theory
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one looks at. For the closed superstring, it involves also an integral over the metric h on the world–
sheet, as well as an integral over the fields ψ±. Intuitively it is clear that the space of cobordisms falls
into different connected components, corresponding to the number of holes in the surface establishing
the cobordism, and so the final amplitude becomes

〈γ1
f , . . . , γ

n
f |e−iĤ(τf−τi)|γ1

i , . . . , γ
m
i 〉 =

∑
g≥0

∫
D[hg]D[ϕ]D[ψ±]eiS(ϕ,hg ,ψ±), (5.1.15)

where the sum is over all genera, and each path integral is over all cobordisms with g holes in
it. There are two subtleties in this equation. First, the term τf − τi in this equation is no longer
well–defined, as there is no longer a global τ coordinate on the worldsheet. We will therefore write
〈γ1
f , . . . , γ

n
f |γ1

i , . . . , γ
m
i 〉 for the amplitude instead of the formula above, and not mention the evo-

lution operator that is associated to the cobordism. Secondly, for reasons that will be explained in
Section 5.3, in order to properly define the action over a general cobordism we first have to Wick
rotate τ 7→ t = iτ , so that the factor iS in the path–integral becomes −S.

Now in an actual process the states are given by wave functionals and not by the states |γ〉, so what
we really have to calculate are amplitudes of the form

〈Ψ1
f , . . . ,Ψ

n
f |Ψ1

i , . . . ,Ψ
m
i 〉 =

∫
LM

dγ1
f · · · dγnf dγ1

i · · · dγmi (Ψ1
f (γ1

f ))∗ · · · (Ψn
f (γnf ))∗Ψ1

i (γ
1
i ) · · ·Ψm

i (γmi )·

· 〈γ1
f , . . . , γ

n
f |γ1

i , . . . , γ
m
i 〉. (5.1.16)

Fortunately, conformal symmetry of the theory allows for a simplification of this formula. The ana-
logue of (5.1.11) for a noninteracting string is

Ψ(τf , γ) =

∫
LM

dγ′
∫ ϕ(τf )=γ

ϕ(τi)=γ′
Dϕe−S(ϕ)Ψ(τi, γ

′), (5.1.17)

where the integral over ϕ is taken over all ϕ ∈ Map(S1 × [τi, τf ],M) restricting to γ and γ′ on
the boundaries. For notational convenience we suppress the additional integrals over the metric h
and the fields ψ±. Such a cylinder is conformally equivalent to an annulus in the complex plane, by
mapping (τ, σ) to eτ+iσ. In the plane the time direction is replaced by the radial direction, so the limit
τi → −∞ corresponds to shrinking the inner circle of the annulus to a point. In taking this limit,
(5.1.17) reduces to

Ψ(τf , γ) =

∫ ϕ(τf )=γ

Dϕe−S(ϕ)OΨ(0), (5.1.18)

where OΨ is a local operator whose value at the point 0 in the plane replaces the factor Ψ(τi, γ
′)

in (5.1.17), as we take the limit τi → −∞. Note that this operator, besides being a functional of
the field ϕ, can also depend on the fields ψ±, whose contribution we suppressed in (5.1.17). Hence
asymptotic states, i.e. states whose corresponding boundary is stretched out to an infinitely long
cylinder, are represented by a path integral over a hemisphere with a local operator put at the top,
where the hemisphere is put in the place of the infinite cylinder. This identification is called the
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’operator–state correspondence’. In particular we can take as local operator just the identity, and we
call the corresponding state the vacuum |0〉. For a general (local) operatorO the corresponding state is
denoted by |O〉 = O|0〉. We will only look at these asymptotic states, because in physical scattering
processes these are the only states that can be detected. The string interactions, which take place
through all these cobordisms, are not directly detectable. So the basic observables that one computes
in string theory are the so–called n–point correlation functions:

〈O1 · · ·On〉 :=
∑
g≥0

∫
Σg

dx1 · · · dxn〈O1(x1) · · ·On(xn)〉g, (5.1.19)

with Σg a compact connected oriented surface3 of genus g, and the last term is defined as

〈O1(x1) · · ·On(xn)〉g :=

∫
D[h]D[ϕ]D[ψ±]e−S(ϕ,h,ψ±)O1(x1) · · ·On(xn), (5.1.20)

where the integral over h is over all possible metrics on Σg (Riemannian metrics as we performed a
Wick rotation), the integral over ϕ is over all possible maps ϕ : Σg → M , and the fermionic integral
over ψ± is over all possible fermionic sections of SΣg ⊗ ϕ∗TM with SΣg the spinor bundle of Σg.
There is an integration over the insertion points in (5.1.19) because the strings can hit the surface at
all possible points. An analogous treatment can be done for open strings, albeit that the operator–state
correspondence is a bit more subtle, as instead of closed surfaces one obtains surfaces with boundary.

Due to conformal invariance, a large part of the integration over h (namely those in the direction of
conformally equivalent metrics) is trivial, and after a procedure called ’Fadeev–Popov gauge–fixing’,
the integral reduces to an integral over all conformally inequivalent metrics, which is precisely the
space of complex structures on Σg. This goes at the cost of a Jacobian due to the change of variables
in the integral, which gives rise to some extra terms, called ghosts, in the action.

Remark. To set up a perturbation theory for the term in (5.1.19), one usually adds an additional
kinetic term for the metric h to the action, given by the Einstein–Hilbert term λ

∫
ΣRh with Rh the

Ricci scalar and λ a coupling constant. In four dimensions such a term is non–trivial and leads to the
Einstein Equations for gravity, but in two dimensions this term is by Gauss’ Theorem proportional
to the Euler characteristic of Σ, given by χ(Σ) = 2 − 2g. Therefore, the contribution of a genus g
surface to the path integral is weighted by the factor e−4πλ(2−2g), so for eλ small (5.1.19) is indeed a
perturbative expansion in the genus.

5.2 Topological field theories

The difficulty of string theory lies in its integral over all worldsheet metrics. One way to handle this
problem is by considering actions whose path–integral in (5.1.20), before doing the integral over all
metrics, is actually independent of the metric. Quantum field theories whose physical outcome only
depends on the global properties of the space on which they are defined, are called topological field

3Recall that we assumed our world–sheets to be oriented.
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theories. This name can be very misleading, as usually it means that the theory is independent of
the metric but can still depend on other quantities, like for instance the differentiable structure on the
space. For a concise treatment about topological field theories we refer to [3].

Topological theories are classified into two different classes, namely those of Schwarz type and those
of Witten type. Roughly speaking, in a theory of Schwarz type (also called quantum–type) the theory
is metric independent because the metric does not appear in the action at all. This sounds rather trivial,
but it can lead to interesting (and certainly non–trivial) theories, one of the most familiar one being
Chern–Simons theory.

For the supersymmetric sigma model however, the relevant type is that of Witten. In these theories,
which are also referred to as ’cohomological field theories’, the topological invariance is achieved
with the aid of a nilpotent fermionic symmetry, and the physical observables are those invariant under
this symmetry. One of the first models of this type were Witten’s topological strings of type A and B
([36]), which we will discuss later as special cases of our sigma model with H–flux.

5.2.1 Cohomological field theories

From Noethers Theorem we know that a symmetry of a quantum system leads to a conserved charge
Q, that generates the symmetry on an operator O via

δεO = ε[Q,O],

where the bracket is graded, as operators can be either fermionic or bosonic, and the parameter ε is
either a complex number or a grassmann number depending on whether the symmetry is bosonic or
fermionic. A cohomological field theory is a field theory with a fermionic symmetry whose corre-
sponding charge Q satisfies the following axioms.

1 Q is nilpotent: Q2 = 0.

2 The vacuum is invariant: Q|0〉 = 0.

3 The energy momentum tensor is Q–exact: Tαβ := δS
δhαβ

= [Q,Gαβ] for some (necessarily
fermionic) operator Gαβ .

The second property can be understood by writing the symmetry generated by Q as exp(εQ), with ε
the Grassmann symmetry variable. The symmetry is then invariant, exp(εQ)|0〉 = |0〉, if and only if
Q|0〉 = 0.

The third property is usually ensured by an action that is Q–exact modulo metric independent terms,
i.e.

S = {Q,V }+ Stop (5.2.1)

for some functional V , and Stop denotes a topological term, i.e. independent of the worldsheet metric.
One readily verifies the Q–exactness of the energy momentum tensor in this case. The operator Q is



82 CHAPTER 5. THE TOPOLOGICAL MODEL

often called the BRST operator, as such an operator usually arises in the BRST procedure in gauge
theories.

The physical observables of the theory are defined to be the h–independent operators that are symme-
try invariant, i.e. satisfy [Q,O] = 0. If an operator can be written as [Q,O], all expectation values
involving this operator will be zero, as follows from

〈0|O1 · · ·Or([Q,O])Or+1 · · ·On|0〉 = 0,

since we can (anti–) commute the Q past all the Oi, eventually annihilating the vacuum. Note that
we suppress the dependence on the insertion points in this correlator, for in a topological theory the
correlators are independent of those. Under a variation of the metric δhαβ , we have

δ

δhαβ
〈O1 · · ·On〉 =

∫
D[ϕ]O1 · · ·On(

δ

δhαβ
(−S))e−S(ϕ) = −〈O1 · · ·On[Q,Gαβ]〉 = 0.

So indeed, a cohomological theory is topological.

5.3 Twisting the (2, 2)–model

In Chapter 4 we constructed a model with (2, 2)–supersymmetry in the case of a flat worldsheet, i.e. a
cylinder for the closed string. We would like to extend it to arbitrary surfaces, for example to describe
interacting strings. After performing a Wick rotation, which we will define in a moment, the action
can straightforwardly be extended to arbitrary surfaces, but for the symmetries it is not that simple.
In all computations we used Grassmannian variables, ε and ε̃, which we assumed to be constant.
However, on a general surface these parameters are not just functions, instead they are sections of
some vector bundle. To demand that they are covariantly constant with respect to some connection
can be too restrictive. However to obtain a topological field theory the nilpotent symmetry is crucial,
so fortunately there exists a trick called ’topological twisting’, which was first introduced by Witten
in [36], that allows us to avoid this problem. To explain this trick, and make the preceding discussion
more precise let us look at the action of the generalized (2, 2)–sigma model, which we recall for the
reader’s convenience:

S =

∫
d2σ

{
(gij + bij)∂+ϕ

i∂−ϕ
j + igijψ

i
+∇+
−ψ

j
+ + igijψ

i
−∇−+ψ

j
− +

1

2
R+
ijklψ

i
+ψ

j
+ψ

k
−ψ

l
−

}
.

(5.3.1)

The presence of the metric h on Σ is somewhat hidden in this equation, but that is due to the fact that
until now we defined it to be flat. The generalization to arbitrary metrics is not straightforward, as the
spinor bundles depend on the metric, so that the kinetic terms of the fermions obtain nontrivial correc-
tions (due to spin–connections) when passing to a general spinor bundle. Furthermore, in all previous
discussions the Lorentz transformations on Σ belonged to SO+(1, 1), the connected component of
SO(1, 1), which is to say that they are of the form σ± 7→ e±ασ±. Under these transformations the
fermionic fields transform as ψ± 7→ e∓α/2ψ± (see appendix A) and for this reason a quantity such as
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ψ+∇+
−ψ+ is Lorentz invariant. Under the other type of Lorentz transformations, σ± 7→ −e±α/2σ±

so that the kinetic terms for the fermions are not globally defined. Now on an arbitrary surface with
a metric of signature (1, 1), it is not possible to restrict the structure group of the tangent bundle to
SO+(1, 1). For if it were possible, we could choose local orthonormal frames (Ui, e

1
i , e

2
i ) with Ui

an open cover of Σ and e1
i , e

2
i a frame on Ui in which h = diag(−1, 1). Suppose that the transition

functions of the tangent bundle belong to SO+(1, 1), i.e. the frames ei are related to each other in
overlaps by Lorentz transformations of the form(

cosh(α) sinh(α)

sinh(α) cosh(α)

)
. (5.3.2)

If we define e±i := e1
i ± e2

i , then on Ui ∩ Uj we have e±i = e±αe±j for some α. We can then define
a real line bundle on Σ, which on Ui is given by the line spanned by e+

i . This is indeed globally
defined, by the relation between the different eαi on overlaps. In particular this line bundle is oriented,
as the transition functions are positive (eα > 0). An oriented line bundle is trivial, hence admits a
global nowhere vanishing section, so there should be a nowhere vanishing vector field on Σ. This
gives restrictions on the genus g, as the theorem of Poincaré–Hopf tells us that∑

i∈I
indexxi(v) = χ(Σ) = 2− 2g, (5.3.3)

where v is an arbitrary vector field on Σ with an isolated set of zeroes {xi}i∈I , and the index at such
a zero is defined as follows. Embed Σ in some Euclidean space, and pick a small circle around the
zero such that v is nonzero on that circle. Then v

‖v‖ is a map S1 → S1, and the index is defined as
the winding number4 of that map. In particular, we see that a restriction of the structure group of the
tangent bundle to SO(1, 1)+ restricts the genus to 1.

To avoid this difficulty we perform a Wick rotation τ 7→ t = iτ . On a cylinder, where we have
global coordinates, we know how to make sense of this, but on an arbitrary surface there is to the
author’s knowledge no obvious generalization of this concept. Therefore, we perform a Wick rotation
for the action as given in (5.3.1), and try to extend the result to an arbitrary Riemann surface. In
this step we gain a positive definite metric, which does not present the problems discussed above, but
has the drawback that we lose the distinction between the time and space like directions. Recall that
the time direction on the surface gives the direction in which strings are propagating while the space
direction gives coordinates on the strings ’frozen in time’. Such a time direction on a curved surface
will be impossible to define at some points, which is exactly what the Poincaré–Hopf Theorem tells us.

After this Wick rotation, the action becomes

S =

∫
Σ
dzdz

{
(gij + bij)∂zϕ

i∂zϕ
j + igijψ

i
+∇+

z ψ
j
+ + igijψ

i
−∇−z ψ

j
− +

1

2
R+
ijklψ

i
+ψ

j
+ψ

k
−ψ

l
−

}
,

(5.3.4)

4More precisely, the Brouwer degree.
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where z := σ − it = σ + τ = σ+, ∇+
z is an abbreviation of ∇+

∂
∂z

and similarly for ∇−z . So for

instance,∇+
z ψ

j
+ = ∂zψ

j
+ + Γ+j

kl ∂zϕ
kψl+.

Now that we have somewhat artificially changed the signature we can extend (5.3.4) to arbitrary
surfaces. First, note that a Riemannian metric h, or rather its conformal class, together with an ori-
entation determines a complex structure IΣ. In a local positively oriented orthonormal frame e1, e2,
it is given by IΣ(e1) = e2 and IΣ(e2) = −e1. Since the orientation of Σ is defined locally by t, σ,
this implies that the complex coordinates z and z are indeed the complex coordinates associated to
IΣ. Since the metric is positive definite, Lorentz transformations are now rotations, i.e. z 7→ eiαz for
some α ∈ [0, 2π). This suggests that ψ± now transform as e∓

iα
2 ψ±. Indeed, while in signature (1, 1)

spinors are real, in signature (2, 0) they are complex and transform in the way just described. Again,
see appendix A for the details.

These transformations for the spinors remind us to the way differential forms transform. On a Rie-
mann surface we have the notion of a canonical and anti–canonical line bundle K and K, which are
the bundles of 1–forms of type (1, 0) and (0, 1) respectively. Note that their definitions are metric
dependent; different conformal classes give rise to different complex structures, hence different K’s.
Under a rotation with angle α, a (1, 0)–form dz transforms as dz 7→ eiαdz and a (0, 1)–form dz

transforms as dz 7→ e−iαdz, so that the component of a 1–form in these local coordinates transforms
in the opposite way. Combining these two facts, we see that the spinor bundle on a Riemann surface
is given by K1/2 ⊕ K1/2, where for a line bundle L we denote by L1/2 a line bundle5 that satisfies
L1/2 ⊗ L1/2 = L. On a Riemann surface both K1/2 and K1/2 exist. The easiest way to see this is
to consider their Chern classes c1(K), c1(K) ∈ H2(Σ) ∼= Z, which are even. Since line bundles are
classified by their Chern class, and products of line bundles corresponds to addition of Chern classes
we can take any bundle whose Chern class is half of that of K and K.
The fermionic fields are then sections of these bundles, and if σ and σ are local non–vanishing sec-
tions of K1/2 and K1/2 respectively, these sections are given by ψ+σ and ψ−σ.

As the bundleK1/2 is holomorphic andK1/2 is anti–holomorphic, there are canonical (anti–)holomorphic
connections defined on them, given in local trivializations σ and σ as above, by ∂(ψ+σ) = (∂ψ+)σ

and ∂(ψ+σ) = (∂ψ+)σ respectively. One easily verifies that this gives globally defined operators

∂ : Γ(K1/2)→ Ω(0,1)(K1/2),

∂ : Γ(K
1/2

)→ Ω(1,0)(K
1/2

), (5.3.5)

because the transition maps are (anti–) holomorphic. IfE is any vector bundle on Σ, then Ω(p,q)(E) =

Γ(∧(p,q)T ∗Σ ⊗ E) denotes the (p, q)–forms with values in the vector bundle E. The operators ∇+

5Note that choosing a square root, just as for ordinary numbers, involves a choice. After twisting however, any explicit
dependence on the choice disappears.
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and ∇− on the bundles K1/2 ⊗ ϕ∗(TM) and K1/2 ⊗ ϕ∗(TM) are then defined via

∇+ := ∂ ⊗ 1 + 1⊗ π(0,1) ◦ ϕ∗(∇+) : Γ(K1/2 ⊗ ϕ∗(TM))→ Ω(0,1)(K1/2 ⊗ ϕ∗(TM)),

∇− := ∂ ⊗ 1 + 1⊗ π(1,0) ◦ ϕ∗(∇−) : Γ(K
1/2 ⊗ ϕ∗(TM))→ Ω(1,0)(K

1/2 ⊗ ϕ∗(TM)). (5.3.6)

Here π(p,q) denotes the projection of forms onto their (p, q)–part, and ϕ∗(∇±) denotes as usual
the pull–back of the connections ∇± on TM . If s and t are sections of K1/2 ⊗ ϕ∗(TM) and if
∂1, . . . , ∂n is a frame for TM , then s and t can be written as s = si∂i and t = ti∂i, with si and
ti sections of K1/2. ∇+tj is then a section of ∧(0,1)T ∗Σ ⊗ K1/2, so that gijsi∇+tj is a section of
∧(0,1)T ∗Σ⊗K = ∧(1,1)T ∗Σ. In other words, gijsi∇+tj is a (1, 1)–form on Σ and can be integrated,
and its local expression is precisely the kinetic term for the ψ+ fermion in (5.3.4). A similar con-
clusion holds for the kinetic term of ψ−. Thus indeed, after performing the Wick rotation the action
becomes globally defined for any worldsheet Σ.

Now that the action has been taken care of, the issue of the symmetry remains. From the above dis-
cussion it follows that the spinorial parameters ε+ and ε̃+ are sections of K−1/2, while ε− and ε̃− are
sections of K−1/2. For the action to remain invariant under the symmetries, we need ∂ε+ = ∂ε̃+ = 0

and ∂ε− = ∂ε̃− = 0, in order for the calculations in Chapter 4 to remain correct. So what we need for
the symmetry to survive are holomorphic sections ofK−1/2 and anti–holomorphic sections ofK−1/2.
However, for a vector bundle E on a Riemann surface Σ, the number of zeroes minus the number of
poles (counted with multiplicities) of any non–zero meromorphic section s is given by an invariant of
E, called its degree. In particular, if the degree is negative, there are no holomorphic sections. For
the particular case of the holomorphic tangent bundle TΣ, the degree equals the Euler degree which
equals 2− 2g, where g is the genus of Σ. Since K is the dual of TΣ, K−1/2 = T 1/2, hence its degree
equals 1 − g. In particular for g > 1, there are no holomorphic sections. Similarly, for g > 1, there
are no anti–holomorphic sections of K−1/2. One may wonder what kind of model can arise in genus
0 and 1, since there non–trivial sections do exist. Besides the fact that these theories would probably
be more difficult, physically it seems unnatural to define a theory only for surfaces of genus 0 and 1.

Here is where the topological twist comes in. Instead of working with the square roots of K and
K, let us redefine the fields such that half of them become sections of K and K, while the other half
become sections of the trivial bundle, i.e. functions on Σ. If we do this in the right way we can define
half of the symmetry parameters to be zero, and the other half to be constant, as we will see shortly.
The difficulty lies in finding the right field redefinition, but the answer is presented by the bi–hermitian
structure on M . The two complex structures I± define a splitting of TM ⊗ C into ±i eigenspaces:

TM ⊗ C = T
(1,0)
± M ⊕ T (0,1)

± M, (5.3.7)

where the subscript reminds us with respect to which complex structure we are decomposing TM .
We can thus choose two decompositions for ψ±, giving 4 choices in total. However, in the action
ψ± is accompanied with the covariant derivative ∇±, and we know that ∇±I± = 0. Since it is
very convenient to be able to commute the eigenspace projections with the covariant derivatives, the
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natural choice is to decompose ψ+ with respect to I+ and ψ− with respect to I−. Using the projection
operators P± := 1

2(1 + iI±) and P± := 1
2(1− iI±), we define

χ := P+ψ+ ∈ Γ
(
K1/2 ⊗ T (0,1)

+ M
)

χ := P+ψ+ ∈ Γ
(
K1/2 ⊗ T (1,0)

+ M
)

λ := iP−ψ− ∈ Γ
(
K

1/2 ⊗ T (0,1)
− M

)
λ := −iP−ψ− ∈ Γ

(
K

1/2 ⊗ T (1,0)
− M

)
. (5.3.8)

The factor i in the definition of λ is for later convenience. Using that ∇± are metric (∇±g = 0) and
commute with I±, plus the fact that T (1,0)M and T (0,1)M are both isotropic with respect to g, we
have

g(ψ+,∇+ψ+) = 2g(χ,∇+χ) = 2g(χ,∇+χ), (5.3.9)

and similarly for ψ−. In other words, we can choose which of the fields in the decomposition are
’acted upon by ∇’. The next step is then to pick one of χ, χ and one of λ, λ to become scalars on
Σ, which in the action we choose to be the fields on which the covariant derivatives acts. The role
of the other fields is then completely determined, as the products χχ and λλ must still lie in K and
K respectively, for the action to remain well–defined. These choices give 4 different twists, which is
related to the natural Z2 × Z2 symmetry on the generalized Kähler structure. Let us for definiteness
make the following choice:

χ ∈ Γ(T
(0,1)
+ M), χ ∈ Γ(K ⊗ T (1,0)

+ M),

λ ∈ Γ(T
(0,1)
− M), λ ∈ Γ(K ⊗ T (1,0)

− M). (5.3.10)

The model this choice leads to is often referred to as the B–model, giving yet another meaning to the
letter B. The other three choices for the scalar fields are6

• χ, λ, corresponding to I± 7→ ±I±, i.e.: J1 ↔ J2,

• χ, λ, corresponding to I± 7→ ∓I±, i.e.: J1 7→ −J2, J2 7→ −J1,

• χ, λ, corresponding to I± 7→ −I±, i.e.: J1 7→ −J1, J2 7→ −J2.

Note that G = −J1J2 is invariant under these transformations of J1 and J2. For our choice the action
(5.3.4) becomes

S = 2

∫
dzdz

{
1

2
(gij + bij)∂zϕ

i∂zϕ
j + igijχ

i∇+
z χ

j + igijλ
i∇−z λj +R+

ijklχ
iχjλkλ

l
}
,

(5.3.11)

where we used (5.3.9) and the two identities

g(R±(X,Y )V,W ) = −g(R±(X,Y )W,V ), g(R±(X,Y )V,W ) = g(R∓(V,W )X,Y ),

(5.3.12)
which follow immediately from the facts that∇± are metric and have torsion ±g−1H .

6Recall from Section 3.4 the relation between J1, J2 and I±.
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Next we have to rewrite the symmetries in terms of the new fields, and we first work this out be-
fore performing the twist. Define the following complex combinations

α+ := ε+ − iε̃+ ∈ Γ(K−1/2), α+ := ε+ + iε̃+ ∈ Γ(K−1/2),

α− := −iε− − ε̃− ∈ Γ(K
−1/2

), α− := iε− − ε̃− ∈ Γ(K
−1/2

). (5.3.13)

In terms of these parameters, the symmetry (4.2.13) becomes

δϕi =α+(P+ψ+)i + α+(P+ψ+)i + α−(iP−ψ−)i + α−(−iP−ψ−)i,

δψi+ =iα+

(
(P+∂zϕ)i − 1

2
Ii+j,kψ

k
+ψ

j
+

)
+ iα+

(
(P+∂zϕ)i +

1

2
Ii+j,kψ

k
+ψ

j
+

)
+ iα−

(
−P i−jΓ

+j
kl ψ

k
−ψ

l
+ −

i

2
Ii−j,kψ

k
+ψ

j
−

)
+ iα−

(
P
i
−jΓ

+j
kl ψ

k
−ψ

l
+ −

i

2
Ii−j,kψ

k
+ψ

j
−

)
,

δψi− =α+

(
P i+jΓ

+j
kl ψ

k
−ψ

l
+ −

i

2
Ii+j,kψ

k
−ψ

j
+

)
+ α+

(
P
i
+jΓ

+j
kl ψ

k
−ψ

l
+ +

i

2
Ii+j,kψ

k
−ψ

j
+

)
+ α−

(
−(P−∂zϕ)i +

1

2
Ii−j,kψ

k
−ψ

j
−

)
+ α−

(
(P−∂zϕ)i +

1

2
Ii−j,kψ

k
−ψ

j
−

)
. (5.3.14)

The variations of χ, χ, λ and λ will involve derivatives of the projection operators, but before going
into that we first observe that

δϕ = α+χi + α+χi + α−λi + α−λ
i
, (5.3.15)

which is only well defined after the twist if α+ and α− are functions, while α+ ∈ Γ(K−1) and
α− ∈ Γ(K

−1
). Requiring them to be (anti–)holomorphic implies for the first two that they are

constant, while the last two must be zero for genus bigger than 1. We can thus put the first two
equal to a (not necessarily equal) constant, and the last two equal to zero. This solves the issue of
the covariant constant parameters, and simplifies computations considerably. The symmetries of the
other fields can now straightforwardly be computed.

δχi =P i+jδψ
j
+ + P i+j,kδϕ

kψj+

=α+

(
i

2
Ii+j,kχ

kψj+ −
i

2
P i+jI

j
+k,lψ

l
+ψ

k
+

)
+ α−

(
i

2
Ii+j,kλ

kψj+ − iP i+jP
j
−kΓ

+k
lmψ

l
−ψ

m
+ +

1

2
P i+jI

j
−k,lψ

l
+ψ

k
−

)
. (5.3.16)

Using the fact that the Nijenhuis tensor of I+ is zero (Equation (4.1.13)), we can rewrite

Ii+jI
j
+k,lψ

l
+ψ

k
+ =

1

2
(Ii+jI

j
+k,l− I

i
+jI

j
+l,k)ψ

l
+ψ

k
+ =

1

2
(Ij+lI

i
+k,j − I

j
+kI

i
+l,j)ψ

l
+ψ

k
+ = Ii+k,jI

j
+lψ

l
+ψ

k
+,

hence

P i+jI
j
+k,lψ

l
+ψ

k
+ = Ii+k,jP

j
+lψ

l
+ψ

k
+ = Ii+k,jχ

jψk+,
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which implies that the term proportional to α+ in (5.3.16) vanishes. Next, we can rewrite derivatives
on I± using (4.1.24) and substitute I± = −i(P± − P±), so that (5.3.16) becomes

δχi =α−
(

1

2

(
Γ+r
kj (P+ − P+)i+r − Γ+i

kr (P+ − P+)rj

)
λkψj+ − iP i+jP

j
−kΓ

+k
lmψ

l
−ψ

m
+

− i

2
P i+j

(
Γ−rlk (P− − P−)j−r − Γ−jlr (P− − P−)r−k

)
ψl+ψ

k
−

)
=− α−Γ+i

jkλ
jχk. (5.3.17)

This last step can readily be verified by the reader, using only the definition of P± and the decompo-
sitions ψ+ = χ+ χ and ψ− = −iλ+ iλ. Exactly the same computation can be done for δλ, and the
result is (by symmetry we actually know this without doing any computation)

δλi = −α+Γ−ijkχ
jλk. (5.3.18)

The variations of χ and λ are a bit more involved:

δχi =P
i
+jδψ

j
+ + P

i
+j,kδϕ

kψj+

=α+

(
iP

i
+j∂zϕ

j − i

2
Ii+k,lψ

l
+ψ

k
+

)
+ α−

(
−iP i+jP

j
−kΓ

+k
lmψ

l
−ψ

m
+ +

1

2
P
i
+jI

j
−k,lψ

l
+ψ

k
− −

i

2
Ii+j,kλ

kψj+

)
. (5.3.19)

Again, we can remove the derivatives on I± using (4.1.24), and a few simple algebraic manipulations
yield

δχi =α+

(
iP

i
+j∂zϕ

j − 1

4
(P+ − P+)ijH

j
lkψ

l
+ψ

k
+ +

1

2
Γ+i
jkψ

j
+(χk − χk)

)
− α−

(
Γ+i
jkλ

jχk
)
.

(5.3.20)

Since H is of type (2, 1) + (1, 2) with respect to both complex structures, we have

HijkP
i
±aP

j
±bP

k
±c = 0 and complex conjugate.

With the aid of gijIi±k = −gikIi±j , this translates into

P
i
±aH

a
jkP

j
±bP

k
±c = 0 and complex conjugate.

Using these equalities we conclude that

δχi =α+
(
iP

i
+j∂zϕ

j + Γ+i
jkχ

jχk − P i+jH
j
klχ

kχl
)
− α−

(
Γ+i
jkλ

jχk
)
. (5.3.21)

By symmetry arguments the variation of λ can be deduced from (5.3.21), keeping in mind that ∂z
needs to be replaced by ∂z and H by −H:

δλ
i

=α−
(
iP

i
−j∂zϕ

j + Γ−ijkλ
j
λk + P i−jH

j
klλ

kλ
l
)
− α+

(
Γ−ijkχ

jλ
k
)
. (5.3.22)
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We can identify two global symmetry charges QL and QR, defined by δ = α+QL + α−QR. In terms
of the old charges they read QL = 1

2(Q1
+ + iQ2

+) and QR = i
2(Q1

− + iQ2
−), and it follows from the

(2, 2)–algebra that Q2
L = Q2

R = {QL, QR} = 0. Their action on the fields is summarized below:

{QL, ϕi} = χi {QR, ϕi} = λi

{QL, χi} = 0 {QR, χi} = −Γ+i
jkλ

jχk

{QL, λi} = −Γ−ijkχ
jλk {QR, λi} = 0

{QL, χi} = iP
i
+j∂zϕ

j + Γ+i
jkχ

jχk − P i+jH
j
klχ

kχl {QR, χi} = −Γ+i
jkλ

jχk

{QL, λ
i} = −Γ−ijkχ

jλ
k {QR, λ

i} = iP
i
−j∂zϕ

j + Γ−ijkλ
j
λk + P i−jH

j
klλ

kλ
l

(5.3.23)

We define
Q := QL +QR, (5.3.24)

and this will be the BRST operator for the model. To show that the theory is topological, i.e. that Q
satisfies the axioms for a cohomological field theory, we need to find a Q–invariant vacuum and an
operator V , such that

S = {Q,V },

modulo some topological terms. A choice for V that works in the case when there is no B–field (see
[36]) is given by

V := −i
∫

Σ
d2zgij

(
χi∂zϕ

j + λ
i
∂zϕ

j
)
. (5.3.25)

However, in the more general models with B–field this expression does not work, and the solution to
this problem is not yet solved. There are two special cases in which the answer is known:

• The first generalized complex structure J1 is of symplectic type, i.e. its pure spinor is of the
form ρ = eω for ω a complex 2–form. This case is worked out in [37].

• I+ and I− commute. These include for example the classical A and B models, in which I+ =

I− and H = 0. This case is worked out in [25].

We will say more about the Q–invariant vacuum in Section 5.5.

5.4 Anomalies

To obtain a (2, 2)–supersymmetric sigma model on an arbitrary Riemann surface we needed to twist
the original model. Mathematically, all this amounts to is to change some of the input of the theory,
i.e. change some of the vector bundles that are involved. Physically, the situation is more subtle, as the
procedure of twisting is not always well defined at the quantum level. This has to do with a specific
type of symmetry that is used to perform the twist, calledR–symmetry, and there are some constraints
on the model in order for R–symmetry to survive the quantization process.
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If a classical action is invariant under some symmetry, it is not guaranteed that after the quantiza-
tion the symmetry is still present. Whenever this happens we say that the symmetry has an anomaly.
Usually the way this happens is that although the action itself is invariant, the measure used to de-
fine the path integral is not invariant. If a symmetry is anomalous, there are essentially two ways
to proceed. Either the symmetry is not important and could be ignored from the beginning, or there
are some constraints that one imposes on the model, in order for the symmetry to remain present. A
well–known example happens in string theory, where the conformal symmetry has an anomaly that
constrains the dimension of the target space to be 26–dimensional for the bosonic string, and 10–
dimensional for the superstring. There are many more examples of anomalies in physics, and for a
nice treatment of the subject we refer to [2].

Back to the sigma model. Besides Lorentz symmetry, which on the fermionic fields is given by

L(α) : χi 7→ e−iα/2χi, χi 7→ e−iα/2χi, λi 7→ e+iα/2λi, λ
i 7→ e+iα/2λ

i
, (5.4.1)

we have two more independent U(1)–symmetries, commonly known as R–symmetries:

RV (α) : χi 7→ e+iα/2χi, χi 7→ e−iα/2χi, λi 7→ e+iα/2λi, λ
i 7→ e−iα/2λ

i
,

RA(α) : χi 7→ e+iα/2χi, χi 7→ e−iα/2χi, λi 7→ e−iα/2λi, λ
i 7→ e+iα/2λ

i
, (5.4.2)

where the subscripts stand for Vector and Axial. Note that this symmetry does nothing with the
bosonic fields, and on superspace they correspond to rotations in the odd coordinates, leaving the
even coordinates fixed. Comparing (5.3.10) with (5.4.1), it follows that in the twisted model the
Lorentz symmetry is given by

Ltw(α) = L(α) ◦RA(α) = RA(α) ◦ L(α). (5.4.3)

In other words, to obtain the twisted model we have to use the axialR–symmetry, so to check whether
our models have quantum anomalies, we have to inspect if (5.4.1) and (5.4.3) are also symmetries of
the path–integral measure.

As the bosonic fields ϕi are Lorentz scalars both in the twisted as untwisted theory, we will only
focus on the fermionic fields. Recalling our discussion in Section 2.3 about fermionic sections of
vector bundles, we write

χ =
∑
a∈I

χasa, χ =
∑
a∈I

χasa,

λ =
∑
a∈I

λata, λ =
∑
a∈I

λ
a
ta, (5.4.4)

where {sa}a∈I and {ta}a∈I form a basis for the space of sections of K
1
2 ⊗ ϕ∗(T (0,1)

+ M) and K
1
2 ⊗

ϕ∗(T
(0,1)
− M) respectively, and similarly for the complex conjugates. Note that χa, χa, λa and λ

a
are

Grassmann numbers (cf. (2.3.15)). The measure DχDχDλDλ in the path–integral can be written as

DχDχDλDλ =
∏
a∈I

dχadχadλadλ
a
, (5.4.5)
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which is interpreted as an infinite limit. The measure (5.4.5) itself is perfectly invariant under the
transformations (5.4.1) and (5.4.2), but this is not the end of the story. One of the peculiar things
about Grassmann integration is the identity∫

dθ(”independent of θ”) = 0.

It implies for instance, that if the integrand in the path integral misses some χa, λa, χa or λ
a
, then the

whole integral vanishes. If we insert (5.4.4) in the fermionic part of the action (Equation (5.3.11)),
and ignore the curvature term7 we get∑

a,a′∈I

(
χa
′
χag(sa′ ,∇+

z sa) + λ
a′
λag(ta′ ,∇−z ta)

)
. (5.4.6)

Considering the discussion above, we see that if ∇± have a nonzero kernel, the path integral without
any operator insertions vanishes. Elements in the kernel of∇± are called zero modes, and if we define

l+ :=dim
(

Ker[∇+
z : Γ(K1/2 ⊗ T (0,1)

+ M)→ Γ(K1/2 ⊗ T (0,1)
+ M)]

)
,

l+ :=dim
(

Ker[∇+
z : Γ(K1/2 ⊗ T (1,0)

+ M)→ Γ(K1/2 ⊗ T (0,1)
+ M)]

)
,

l− :=dim
(

Ker[∇−z : Γ(K
1/2 ⊗ T (0,1)

− M)→ Γ(K
1/2 ⊗ T (0,1)

− M)]
)
,

l− :=dim
(

Ker[∇−z : Γ(K
1/2 ⊗ T (1,0)

− M)→ Γ(K
1/2 ⊗ T (1,0)

− M)]
)
, (5.4.7)

then the only operators with possibly nonzero correlators are the ones whose fermionic part is of the
form

〈χl+χl+λl−λl−(. . .)〉. (5.4.8)

Here the part between the brackets can be anything, but the important part is the specific combination
of fields in front of the brackets. Writing each field in the decomposition (5.4.4), this factor produces
precisely the correct amount of zero modes, in order for the correlator to have a chance of being
nonzero. Note that the superscripts refer to actual powers, and not to space–time indices on M .

Now, looking at (5.4.2), these operators are invariant under the axial R–symmetry only if

l+ − l+ − l− + l− = 0. (5.4.9)

So in order for the quantum anomaly to vanish, we have to impose this constraint on the sigma model.
At first sight these numbers seem impossible to calculate in practice, but fortunately the combinations
l+ − l+ and l− − l− turn out to depend only on some topological data on M . In order to explain this,
we need a result known as the Hirzebruch–Riemann–Roch Theorem.

7The limit in which this is allowed, is when the string size is very small compared to the size of the target space, in the
sense that the curvature term acts as a very small perturbation. However, the author does admit that mathematically this
statement is not very convincing, and a more rigorous argumentation is needed.
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Theorem 5.4.1. [22] Let E be a holomorphic vector bundle on a compact complex manifold X of
complex dimension n. Then we have the following equality:

2n∑
i=0

(−1)idim H i(X,E) =

∫
X
ch(E)Td(X), (5.4.10)

where the integral is extended to arbitrary forms by defining it to be zero on forms not of highest de-
gree. Here H i(X,E) denote the cohomology groups associated to the sheaf of holomorphic sections
of E, ch(E) denotes the Chern character of E and Td(X) denotes the Todd polynomial in the Chern
classes of the holomorphic tangent bundle of X .

We will not give the explicit definitions of the Chern character and the Todd polynomial, as for us it
will suffice to know that they are of the form

ch(E) =rank(E) + c1(E),

Td(X) =1 +
c1(TX)

2
, (5.4.11)

where we ignored all cohomology classes of degree greater than 2, because in our case X will be
two–dimensional.

We would like to apply this theorem to X = Σ, and E being one of the bundles belonging to the
fermionic fields. There is one problem however; since the map ϕ can be arbitrary, it does not need to
be holomorphic, so the bundles ϕ∗(T±M) are generically not holomorphic over Σ, preventing us to
apply the theorem. To avoid this problem, we will simply give the bundles a holomorphic structure
such that their degree zero cohomology groups are precisely the kernels we are interested in. To be
more precise, let E be a complex vector bundle over Σ, not necessarily holomorphic, and suppose we
have a connection∇ : Γ(E)→ Ω1(E). By projecting onto the (0, 1)–forms, it gives a map

∇(0,1) : Γ(E)→ Ω(0,1)(E). (5.4.12)

Suppose that we can find, in a neighborhood around every point, a frame s1, . . . , sk where k is the
complex rank of E, with the property that

∇(0,1)si = 0. (5.4.13)

In local coordinates (z, z) on Σ, this means ∇zsi = 0. If s′i is another such frame in that same
neighborhood, it is related to si by means of s′i = gijsj for some transition function g. Applying
∇(0,1) to both sides we get

0 = ∇(0,1)s′i = ∇(0,1)(gijsj) = (∂gij)sj + gij∇(0,1)sj = (∂gij)sj , (5.4.14)

which implies that gij is holomorphic. We can thus cover Σ with frames whose transition functions
are holomorphic, hence E is holomorphic. A section of E can locally be written as fisi, and is
holomorphic precisely when ∂fi = 0, which can be written as∇(0,1)(fisi) = 0. So H0(Σ, E), which
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can be identified with the space of holomorphic sections of E, is nothing else as the kernel of∇(0,1).
The question thus remains, can we find local frames satisfying (5.4.13)? This is a local question, so
we choose coordinates (z, z) on some open set, and take an arbitrary local frame ei. Let Aij be the
matrix of 1–forms on Σ such that ∇ei = Aijej , and let A(0,1) be its (0, 1)–part. Writing our desired
frame si = gijej , the condition∇(0,1)si = 0 translates into

(
∂gij
∂z

+ gikA
z
kj) = 0, (5.4.15)

where we write A(0,1)
kj = Azkjdz. Since we can always find local solutions to (5.4.15), we can indeed

find the si we need.

Applying this procedure to our bundles of interest, we obtain8

l+ =dimH0(Σ,K1/2 ⊗ T (0,1)
+ M), l+ = dimH0(Σ,K1/2 ⊗ T (1,0)

+ M),

l− =dimH0(Σ,K
1/2 ⊗ T (0,1)

− M), l− = dimH0(Σ,K
1/2 ⊗ T (1,0)

− M). (5.4.16)

There is one more result that we need to conclude our computation, which is the concept of Serre
duality.

Theorem 5.4.2. [35] Let E be a holomorphic vector bundle over a compact manifold X of complex
dimension n. Then there is an isomorphism

Hp(X,∧(q,0)T ∗ ⊗ E) ∼= (Hn−p(X,∧(n−q,0)T ∗ ⊗ E∗))∗. (5.4.17)

For X = Σ, which has complex dimension 1, this implies that dimH0(Σ, E) = dimH1(Σ,K ⊗ E∗)
(recall that by definition K = ∧(1,0)T ∗Σ). In particular, we obtain

dimH0(Σ,K1/2 ⊗ T (1,0)
+ M) =dimH1(Σ,K ⊗ (K1/2)∗ ⊗ (T

(1,0)
+ M)∗)

=dimH1(Σ,K1/2 ⊗ T (0,1)
+ M), (5.4.18)

where in the last equality we identified (T
(1,0)
+ M)∗ with T (0,1)

+ M using the metric g on M . So finally,
we come to the conclusion that

l+ − l+ =dimH0(Σ,K1/2 ⊗ T (0,1)
+ M)− dimH1(Σ,K1/2 ⊗ T (0,1)

+ M)

=

∫
Σ
ch(K1/2 ⊗ T (0,1)

+ M)Td(Σ), (5.4.19)

where in the last equality we used Theorem 5.4.15. Using (5.4.11) we get

ch(K1/2) = 1 + c1(K1/2) = 1 +
1

2
c1(K),

ch(ϕ∗(T
(0,1)
+ M)) = n+ ϕ∗c1(T

(0,1)
+ M),

Td(Σ) = 1 +
1

2
c1(TΣ), (5.4.20)

8Note that the above considerations can equally well be applied for ∂ instead of ∂, by symmetry between z and z.
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so we obtain

l+ − l+ =

∫
Σ

(
(1 +

1

2
c1(K))(n+ ϕ∗c1(T

(0,1)
+ M))(1 +

1

2
c1(TΣ))

)
=

∫
ϕ(Σ)

c1(T
(0,1)
+ M) + n(1− g) + n(g − 1)

=

∫
ϕ(Σ)

c1(T
(0,1)
+ M). (5.4.21)

A similar computation can be done for l−, except that we have to interchange the roles of z and z. The
computations are then exactly the same, but in the end result the integral over Σ gets an extra minus
sign because the orientation has been reversed. Therefore, the result is

l− − l− = −
∫
φ(Σ)

c1(T
(0,1)
+ M). (5.4.22)

Coming back to our anomaly condition (5.4.9), the constraint takes the form

0 =

∫
ϕ(Σ)

(c1(T
(0,1)
+ M) + c1(T

(0,1)
− M)) =

∫
ϕ(Σ)

c1(L1), (5.4.23)

where L1 is the +i eigenbundle for J1. In this last equality we used the isomorphisms L+
1
∼= T

(0,1)
+ M

and L−1 ∼= T
(0,1)
− M , which follows from the correspondence between bi–hermitian structures and

generalized Kähler structures discussed in Section 3.4. Since (5.4.23) must hold for all maps ϕ :

Σ→M , we deduce that the constraint on (M,J1,J2) in order for the twist to be well–defined at the
quantum level is given by

c1(L1) = 0. (5.4.24)

5.5 Local observables and Q–cohomology

The local operators, also called the local observables of the theory, are constructed out of the fields
ϕi, χi and λi, since χi and λ

i
are sections of K and K which depend on the metric. We assume these

observables to be analytic in the fermionic fields, which implies that such an operator is given by

f = fa1...apb1...bq(ϕ)χa1 · · ·χapλb1 · · ·λbq , (5.5.1)

where fa1...apb1...bq is completely anti–symmetric in the indices ai and bi. The action of QL and QR
on f is given by

QL(f) =
(
fa1...apb1...bq ,c − Γ−dcb1fa1...apdb2...bq − Γ−dcb2fa1...apb1db3...bq − . . .
. . .− Γ−dcbqfa1...apb1...bq−1d

)
χcχa1 · · ·χapλb1 · · ·λbq , (5.5.2)

QR(f) =
(
fa1...apb1...bq ,c − Γ+d

ca1fda2...apb1...bq − Γ+d
ca2fa1da3...apb1...bq − . . .

. . .− Γ+d
capfa1...ap−1db1...bq)λ

cχa1 · · ·χapλb1 · · ·λbq . (5.5.3)
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These expressions very much resemble a covariant derivative acting on some kind of tensors on M .
Indeed, we can make an identification

Local operators←→ Ω
(0,p)
+ (M)⊗ Ω

(0,q)
− (M), (5.5.4)

by mapping χi to the 1–form dual to 1
2(1 + iI+)ij∂j , and λi to the 1–form dual to 1

2(1 + iI−)ij∂j .
One should view the χi as the 1–forms dzi in complex coordinates for I+, and similarly for λi. To
see what the forms of the operators QL and QR are under this isomorphism we have to recall some
basic facts about covariant derivatives.

If two bundles E and E′ are equipped with connections ∇ and ∇′, the tensor product E ⊗ E′ in-
duces a product connection ∇⊗ 1 + 1⊗∇′. Also, if E∗ is the dual of E, it carries a connection ∇∗

defined by the formula

X(α(v)) = ∇∗Xα(v) + α(∇X(v)) for X ∈ TM, v ∈ Γ(E), α ∈ Γ(E∗). (5.5.5)

These two constructions applied to the connections∇± on TM yield two connections on
⊗n

i=1 T
∗M ,

and after taking the usual quotient, they induce connections on ∧nT ∗M . Now this last space has a
(p, q) decomposition with respect to both I±, which we claim is preserved under ∇±, i.e. ∇±Y pre-
serves the space Ω

(p,q)
± for all vectors Y ∈ TM . To see this, let α ∈ Ω

(p,q)
± and pick Y,X1, . . . , Xn ∈

TM , n = p+ q, where the Xi are either holomorphic or anti–holomorphic. We compute

∇±Y α(X1, . . . , Xn) = Y (α(X1, . . . , Xn))− α(∇±YX1, X2, . . . , Xn)− . . .− α(X1, . . . ,∇±YXn).

(5.5.6)

Since∇± commutes with I±, it preserves the ±i eigenspaces. Therefore, the right hand side is possi-
bly nonzero only if p of the Xi are holomorphic, and q of them are anti–holomorphic.

Now recall that if ∇ is a connection on a vector bundle E, it has a natural extension to the space
of p–forms with values in E, i.e. the space Ωp(E) = Γ(∧pT ∗M ⊗ E), by imposing the Leibniz rule

∇(α⊗ s) = dα⊗ s+ (−1)deg(α)α ∧∇s. (5.5.7)

More explicitly, the map∇ : Ωp(E)→ Ωp+1(E) is given by the formula

∇α(X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1∇Xiα(X1, . . . , X̂i, . . . , Xp+1)

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1). (5.5.8)

Applying this to the bundle ∧(0,q)T ∗−M , which by the arguments preceding Equation (5.5.6), has the
connection∇− on it, we obtain the map

∇− : Ωp ⊗ Ω
(0,q)
− → Ωp+1 ⊗ Ω

(0,q)
− . (5.5.9)
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Using (5.5.8) and involutivity of T (0,1)
+ M it is readily verified that this map satisfies

∇− : Ω
(0,p)
+ ⊗ Ω

(0,q)
− −→

(
Ω

(1,p)
+ ⊗ Ω

(0,q)
−

)
⊕
(

Ω
(0,p+1)
+ ⊗ Ω

(0,q)
−

)
. (5.5.10)

We define D+ by the composition of ∇− and the projection onto Ω
(0,p+1)
+ ⊗ Ω

(0,q)
− . Similarly, we

obtain a map

D− : Ω
(0,p)
+ ⊗ Ω

(0,q)
− → Ω

(0,p)
+ ⊗ Ω

(0,q+1)
− . (5.5.11)

Under the identification (5.5.4) we claim thatQL andQR are identified withD+ andD− respectively.
Let us check this forQL. Pick α ∈ Ω

(0,p)
+ ⊗Ω

(0,q)
− , letX1, . . . , Xp+1 be anti–holomorphic vector fields

for I+ and let Y1, . . . , Yq be anti–holomorphic vector fields for I−. By definition, we have

D+α(X1, . . . , Xp+1, Y1, . . . , Yq) =

p+1∑
i=1

(−1)i+1∇−Xiα(X1, . . . , X̂i, . . . , Xp+1)(Y1, . . . , Yq)

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)(Y1, . . . , Yq)

=

p+1∑
i=1

(−1)i+1

{
Xi

(
α(X1, . . . , X̂i, . . . , Xp+1)(Y1, . . . , Yq)

)
−

q∑
j=1

α(X1, . . . , X̂i, . . . , Xp+1)(Y1, . . . ,∇−XiYj , . . . , Yq)
}

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)(Y1, . . . , Yq).

(5.5.12)

In local coordinates, the terms involving the Lie bracket drop out, and using anti–symmetry of α
(5.5.12) reduces precisely to (5.5.2).

Having determined the cohomology of the operators QL and QR in terms of intrinsic, coordinate
free objects, we now relate it to the Lie algebroid cohomology9 of J1. Recall that the relation be-
tween J1 and I± is given by the isomorphism L±1

∼= T
(1,0)
± , where L1 = L+

1 ⊕ L
−
1 . As such, we

have

∧kL =
k∑
i=0

∧iL+
1 ⊗ ∧

k−iL−1 , (5.5.13)

and we can identify ∧pL+
1 ⊗ ∧qL

−
1 with Ω

(0,p)
+ ⊗ Ω

(0,q)
− , and we will denote this space by ∧(p,q)L1.

Under this identification we claim that the differential dL on the exterior algebra ∧•L corresponds to
Q = QL + QR. First, using Equation (3.5.2) and the involutivity of L+

1 and L−1 , we observe that dL
satisfies

dL|∧(p,q)L1
= π(p+1,q) ◦ dL + π(p,q+1) ◦ dL. (5.5.14)

9See Section 3.5 for the definition.
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We will verify that π(p+1,q) ◦ dL corresponds with D+, which in turn is related to QL, and that
π(p,q+1) ◦ dL corresponds to D−, hence to QR. Observe that all the operators involved satisfy the
same kind of Leibniz rule, so to relate them it suffices to look at 1–forms. First, for X ∈ T (1,0)

+ and
α ∈ Ω

(0,1)
+ = (T

(1,0)
+ )∗ we denote by X+ and α+ their images in L+

1 and L+
1 respectively, under the

isomorphism discussed above. Similar notation will be used for the − components. For α ∈ Ω
(0,1)
+

and X1, X2 ∈ T (0,1)
+ M , using (5.5.12) we get

D+α(X1, X2) = X1(α(X2))−X2(α(X1))− α([X1, X2]). (5.5.15)

On the other hand, we have

dLα+(X1+, X2+) =π(X1+)α+(X2+)− π(X2+)α+(X1+)− α+([[X1+, X2+]])

=X1(α(X2))−X2(α(X1))− α([X1, X2]), (5.5.16)

where in the last equality we used the equality [[X1+, X2+]] = [[X1, X2]]+. For α ∈ Ω
(0,1)
− , X ∈

T
(0,1)
+ M and Y ∈ T (0,1)

− M , we have

D+α(X,Y ) = X(α(Y ))− α(∇−XY ), (5.5.17)

as follows from (5.5.12). At the Lie algebroid level we have

dLα−(X+, Y−) = π(X+)(α−(Y−))− α−([[X+, Y−]]) = X(α(Y ))− α(∇−XY ), (5.5.18)

where in the last equality we used the following equality to relate the covariant derivative with the
Courant bracket:

∇±X(Y ) = πT (([[X∓, Y±]])±) , (5.5.19)

where for X ∈ T , we denote by X± its image in C± under the map ±g + b, and for v ∈ T ⊕ T ∗,
we denote by v± its decomposition into C± components. To prove this, it suffices to check that the
righthand side defines a connection, which is metric and has ±g−1H as torsion. These facts follow
directly from the properties of the Courant bracket, and for more specific details we refer to [24].
Similar equalities hold for D−, so indeed the operator Q = QL + QR is identified with dL, hence
both have the same cohomology.

Given the Q–cohomology of local operators, one may wonder how it relates to the cohomology of
states. In [26] this has been worked out, and it turns out that the Hilbert space of states is isomorphic
to the space of differential forms, and the action of the local operators on them is given by the Clifford
action (3.1.5). The quantization of Q is computed, and turns out to agree with ∂. Recall that dH can
be written as dH = ∂ + ∂, with respect to the decomposition

∧•T ∗ ⊗ C = U−n ⊕ U−n+1 ⊕ . . .⊕ Un. (5.5.20)

The local operators, being elements of ∧•L, act as lowering operators on these states. In particular, a
vacuum vector for the theory is a nowhere-vanishing section of Un. For the vacuum to be Q–invariant
(axiom 2 of a cohomological field theory), it must be ∂ closed, so that the topological twist only makes
sense on generalized Calabi–Yau spaces! For these, there is an isomorphism between the cohomology
of operators and the cohomology of states, as follows directly from our discussion in Section 3.5.
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Chapter 6

Outlook

As is probably the case in any thesis, due to the limited amount of time there are a lot of questions
that remain unanswered. The most important ones are summarized below.

• The main open problem in the twisted models on generalized Calabi–Yau spaces is the one
addressed in Section 5.3, and amounts to solving the equation S = {Q,V }+ Stop. For general
spaces this remains unsolved.

• A lot of the computations, especially those in Chapter 4, seem to underly a more intrinsic ge-
ometric computation. Obviously, it is a ’remarkable’ coincidence that commutator brackets of
the symmetries lead to expressions involving only the Nijenhuis tensors and covariant deriva-
tives with closed skew torsion. Since this is precisely the data that is encoded in the Courant
bracket, we expect that supersymmetry can be formulated in pure geometric terms on T ⊕ T ∗.
However, most likely this description will use the concept of supermanifolds, a concept we have
carefully avoided in this thesis to reduce the amount of technicalities.

• Perhaps the most interesting feature of topological field theories is that the correlation functions
of the physical quantum model provide differential geometric invariants of topological spaces1.
This completely reverses the roles of physics and mathematics, in the sense that the physical
model is now used to study geometric properties, instead of the other way around. The (2, 2)–
supersymmetric sigma model with flux could thus serve as a tool to study e.g. generalized
Kähler geometry, as a generalization of the classical Gromov–Witten invariants in symplectic
geometry. Although the previous problems could possibly have been answered, this problem is
most likely beyond the level of this thesis. Nevertheless, for the particular type of models that
have been proved to be topological, there is nothing that obstructs us to find these invariants,
and we hope to come back to this aspect in the near future.

1Numbers that depend only on the smooth structure of the space.
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Appendix A

Spin groups and spinors

In this section we give a brief overview of the theory of spin and state some results that are used
throughout the text. We will first recall the basics of Clifford algebras, through which we then con-
struct the spin groups and the corresponding spinors.

Let V be a finite dimensional vector space over R and 〈, 〉 a symmetric bilinear form on V , not
necessarily non–degenerate or positive definite. We can form the tensor algebra TV :=

⊕∞
i=0 V

⊗i,
and look at the quotient by the ideal generated by elements of the form

v ⊗ v − 〈v, v〉, v ∈ V. (A.0.1)

This quotient is called the Clifford algebra of the pair (V, 〈, 〉) and is denoted by CL(V ) (we suppress
the dependence on the bilinear form, as it is always clear from the context which one is used). In terms
of a basis e1, . . . , en of V this is nothing else as the algebra freely generated by 1 and the ei’s, subject
to the anti–commutation relations eiej+ejei = 2〈ei, ej〉. One readily verifies that dimRCL(V ) = 2n,
basically by the same argument that is used to prove dim ∧• V = 2n. Since we quotient out a non–
homogeneous ideal, CL(V ) does not inherit the Z−grading from TV , but it does have a Z2 grading.
Indeed, the relation v ⊗ v = 〈v, v〉 identifies elements of different degrees but does not change the
parity (the degree mod 2) of an element. Hence we can writeCL(V ) = CL0(V )⊕CL1(V ), CL0(V )

denoting the even part and CL1(V ) the odd part, and algebras with this property are called superal-
gebras.

For later use we define a couple of natural operations available on CL(V ):

Transposition : (v1 · · · vr)t := vr · · · v1,

Involution : α(φ0 + φ1) := φ0 − φ1, where φi ∈ CL(V )i,

Norm : N(φ) = φ · α(φt). (A.0.2)

Now assume that the bilinear form on V is non–degenerate. As is well known, any such form over the
reals is classified by its signature, which is a pair of integers (r, s) with r + s = d = dim(V ), such
that there are subspaces V + and V − of dimensions r and s respectively, where 〈, 〉 is positive definite
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on V + and negative definite on V −. Clearly any two forms of the same signature are equivalent, and
we will denote the Clifford algebra associated to a form of signature (r, s) by CL(r, s). The structure
of CL(r, s) and its even subalgebra CL0(r, s) can be classified completely, and without proof we
state the result in Table A.1 (for a proof we refer to [4], Section I.4).

r − s mod 8 CL(V ) CL0(V )

0 R(2d/2) R(2(d−2)/2)⊕ R(2(d−2)/2)

1 R(2(d−1)/2)⊕ R(2(d−1)/2) R(2(d−1)/2)

2 R(2d/2) C(2(d−2)/2)

3 C(2(d−1)/2) H(2(d−3)/2)

4 H(2(d−2)/2) H(2(d−4)/2)⊕H(2(d−4)/2)

5 H(2(d−3)/2)⊕H(2(d−3)/2) H(2(d−3)/2)

6 H(2(d−2)/2) C(2(d−2)/2)

7 C(2(d−1)/2) R(2(d−1)/2)

Table A.1: Classification table for CL(r, s), where d = r + s. We use the notation R(m) to denote
the ring of m×m matrices with entries in the ring R.

A consequence of this classification is that the irreducible representations 1 for CL(r, s) are also
completely classified. Indeed, a basic result in linear algebra tells us that the only irreducible repre-
sentation (up to isomorphism) of matrix ring K(m), with K a field, is given by Km with the natural
action. Furthermore, one can easily show that for two ringsR1 andR2, the irreducible representations
for R1 × R2 are just the irreducible representations for one of the two factors with the other factor
acting trivially. Combining these two facts, we see that CL(r, s) has one or two irreducible represen-
tations, depending on whether it is of the form K(m) or K(m)⊕K(m).

Now that we understand the basics of Clifford algebras, we can introduce the concepts of Pin and
Spin. Consider the following two subsets of CL(V ):

Pin(V ) := {v1 · · · vr| r ∈ Z≥0, vi ∈ V, 〈vi, vi〉 = ±1},
Spin(V ) := {v1 · · · v2r| r ∈ Z≥0, vi ∈ V, 〈vi, vi〉 = ±1}. (A.0.3)

Both of them are in fact groups, because for v ∈ V of norm ±1 we have v · v
〈v,v〉 = 1. These groups

are important, because there exists a map

ρ :Pin(V )→ O(V ),

ρ :Spin(V )→ SO(V ), (A.0.4)

where O(V ) denotes the group of transformations of V that are orthogonal with respect to 〈, 〉, and
SO(V ) its subgroup consisting of maps with unit determinant. For v ∈ V with 〈v, v〉 = ±1, we

1Since CL(r, s) is not a group but a ring, the correct terminology would be ’simple module’ instead of ’irreducible
representation’, but this is just a matter of language. Henceforth we will call a module simply a representation.
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define the value of ρ on v via

ρ(v)w := −vwv−1 = −vw v

〈v, v〉
= w − 〈w, v〉

〈v, v〉
v for w ∈ V, (A.0.5)

where in the last equality we used the Clifford relation, and then extend ρ to Pin(V ) and Spin(V )

in the obvious way. From the definition above it is clear that ρ maps Pin(V ) into O(V ), as the map
ρ(v) given in (A.0.5) is simply the orthogonal reflection in the plane orthogonal to v ∈ V . By a
theorem of Cartan–Dieudonné, every orthogonal map can be written as the decomposition of at most
dim(V ) orthogonal reflections, and so the map ρ is in fact surjective. Moreover, the restriction of ρ to
Spin(V ) indeed maps into SO(V ), and this is also a surjective map. It is not difficult to compute the
kernel of ρ, and it turns out to consist only of the elements ±1 (note that −1 is indeed an element of
Spin(V )). Therefore, ρ gives double–coverings of O(V ) and SO(V ), which are nontrivial (i.e., not
of the form O(V )

∐
O(V ) or SO(V )

∐
SO(V )) for dim(V ) ≥ 2 and (r, s) 6= (1, 1).

There are a lot of irreducible representations of Pin(r, s) and Spin(r, s) in general, but there is
one type that deserves a special name.

Definition A.0.1. A representation π : Pin(r, s) → GL(W ) for some vector space W is called a
pinor representation if it is the restriction of an irreducible representation of CL(r, s) on W . In this
case W is called a space of pinors. Similarly, a representation π : Spin(r, s) → GL(W ) is called a
spinor representation if it is the restriction of an irreducible representation for CL0(r, s) on W , and
W is called a space of spinors.

One readily verfies that both pinor and spinor representations are irreducible, for CL(r, s) is gener-
ated as a vector space by Pin(r, s) as well as CL(r, s)0 is generated by Spin(r, s). One should think
about pinors and spinors as being those irreducible representations of Pin(r, s) and Spin(r, s), that
also have a well defined action of the whole CL(r, s) and CL0(r, s) respectively on them.

Due to the classification given in Table A.1 we can easily compute the spaces of pinors and spinors for
CL(r, s), with the use of our remarks above about the representation theory of CL(r, s). The result
is given in Table A.2 below.
The spaces P and S are closely related to each other by means of the volume element of the Clifford
algebra. This volume element, denoted by ω, is defined in terms of an orthogonal basis e1, . . . , ed

(orthogonal in the sense that 〈ei, ej〉 = ±δij) by

ω := e1 · · · ed,

and satisfies ω2 = (−1)s+d(d−1)/2. If we choose another such basis, it must be related to the old one
by means of an orthogonal transformation, so ω is determined up to sign. If we also fix an orientation,
ω is completely fixed, and one can then use the volume element to relate P and S. For details see [4],
Section I.5.

Next we illustrate the general theory by some examples, which are the cases we need for the text.
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r − s mod 8 Pinors Spinors
0 P ∼=R2d/2 S± ∼=R2(d−2)/2

1 P± ∼=R2(d−1)/2
S ∼=R2(d−1)/2

2 P ∼=R2d/2 S ∼=C2(d−2)/2

3 P ∼=C2(d−1)/2
S ∼=H2(d−3)/2

4 P ∼=H2(d−2)/2
S± ∼=H2(d−4)/2

5 P± ∼=H2(d−3)/2
S ∼=H2(d−3)/2

6 P ∼=H2(d−2)/2
S ∼=C2(d−2)/2

7 P ∼=C2(d−1)/2
S ∼=R2(d−1)/2

Table A.2: The space of pinors and spinors for CL(r, s), where again d = r + s. If there is a
± subscript on P or S, then this space has two representations on it, as the corresponding (even)
Clifford algebra has the form K(m)⊕K(m).

Example A.0.2. Consider the case (r, s) = (1, 1). Let us first work out an explicit isomorphism
CL(1, 1) ∼= R(2) and CL(1, 1)0

∼= R(1) ⊕ R(1), which will be needed for an explicit form of
the Lorentz transformation of spinors on a world–sheet of signature (1, 1). We start with a two–
dimensional vector space spanned by e1 and e2, with 〈e1, e1〉 = −〈e2, e2〉 = 1. Then CL(1, 1) =

R ⊕ Re1 ⊕ Re2 ⊕ Re1e2, and one readily verifies that the algebra map CL(1, 1) → R(2), given on
the generators by

e1 7→

(
0 1

1 0

)
, e2 7→

(
0 1

−1 0

)
, (A.0.6)

is an isomorphism. Now CL(1, 1)0 is generated by 1 and elements of the form

(ae1 + be2) · (ce1 + de2) = (ac− bd) + (ad− bc)e1e2,

which under the isomorphism above is mapped to the matrix(
(ac− bd)− (ad− bc) 0

0 (ac− bd) + (ad− bc)

)
. (A.0.7)

So we see that under the identification CL(1, 1) ∼= R(2), CL(1, 1)0 is identified with the diagonal
matrices, and indeed CL(1, 1)0

∼= R(1)⊕ R(1).

Obviously P , the space of pinors, in this signature is equal to R2, and splits into ±1 eigenspaces
of the volume element

ω =

(
−1 0

0 1

)
,

and these eigenspaces are preserved by CL(1, 1)0. Moreover, these eigenspaces correspond exactly
to the two inequivalent spinor representations! This holds more generally for signature (r, r), as the
volume element squares to 1 and commutes with CL(r, r)0.
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Now we work out the double cover Spin(1, 1) → SO(1, 1). First, observe that SO(1, 1) is given
by matrices (

a b

b a

)
with a2 − b2 = 1. (A.0.8)

Obviously this has two connected components, corresponding to a = ±
√
b2 + 1. Observe that

Spin(1, 1) is generated by elements of the form (A.0.7), with a2 − b2 = ±1 = c2 − d2. One
easily checks that in that case (A.0.7) is of the form(

λ 0

0 ±λ−1

)
for λ ∈ R\{0}, (A.0.9)

and that every matrix of that form is an element in Spin(1, 1), which therefore has four connected
components and therefore is a trivial double cover of SO(1, 1). To actually compute this map
Spin(1, 1)→ SO(1, 1), we have to compute the matrix associated with the conjugation of the matri-
ces e1 and e2 by (A.0.9), which is just a straightforward calculation and it turns out that the map ρ in
(A.0.4) is given by (

λ 0

0 ±λ−1

)
7→

±(λ2+λ−2

2

)
±
(
λ2−λ−2

2

)
±
(
λ2−λ−2

2

)
±
(
λ2+λ−2

2

) . (A.0.10)

If we restrict to the connected component of the identity in Spin(1, 1), and write λ = eα/2 for α ∈ R,
the map above simplifies and takes the form(

eα/2 0

0 e−α/2

)
7→

(
cosh(α) sinh(α)

sinh(α) cosh(α)

)
. (A.0.11)

Example A.0.3. After Wick–rotating the world–sheet, the signature changes from (1, 1) into (2, 0),
so we will also take a closer at this second case now. It is a little different than the previous one, as
we can already see from the table. Indeed, the volume element now squares to −1, so that the space
of pinors P , which is real, splits into ±i eigenspaces of ω only after complexification. This can be
made explicit as follows. Again we have a two–dimensional vector space spanned by e1 and e2, but
this time with e2

1 = e2
2 = 1. There is an isomorphism CL(2, 0)⊗ C→ C(2) given by

e1 7→

(
0 1

1 0

)
, e2 7→

(
0 −i
i 0

)
,

extended complex linearly to the whole of CL(2, 0)⊗ C. Now CL(2, 0)0 is generated the elements(
(ac+ bd) + i(ad− bc) 0

0 (ac+ bd)− i(ad− bc)

)
, (A.0.12)
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which shows that indeed CL(2, 0)0
∼= C. Then Spin(2, 0) is described by these elements but with

a2 + b2 = c2 + d2 = 1, so that we can write them as(
eiα/2 0

0 e−iα/2

)

for some α ∈ [0, 4π). The double cover Spin(2, 0)→ SO(2, 0) is then given by(
eiα/2 0

0 e−iα/2

)
7→

(
cos(α) sin(α)

sin(α) cos(α)

)
. (A.0.13)

Note that now both groups are connected and the double cover is just the map of the circle to itself
with winding number 2.
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