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Introduction

Generalized complex geometry is a branch of differential geometry that was introduced
around 2002 by Hitchin [28] and Gualtieri [23, 24]. Its main feature is the study of com-
plex structures not on the ordinary tangent bundle of a manifold but instead on its so-called
double tangent bundle, which is the sum of the tangent and cotangent bundle. This bigger
bundle creates enough room to incorporate both complex and symplectic structures into
one single framework, as well as other new kind of geometries. Intuitively, a general-
ized complex structure on a manifold can be visualized as a Poisson structure, together
with a complex structure on the directions normal to the associated (singular) symplec-
tic foliation. As such, they can be thought of as geometries that interpolate between
the two extreme cases where the Poisson structure is zero or invertible, corresponding
to complex and symplectic structures respectively. An interesting aspect of generalized
geometry is the natural appearance of gauge-transformations, symmetries of the double
tangent bundle generated by two-forms. This makes the theory rather appealing to cer-
tain branches of physics such as string theory, where these gauge transformations play an
important role. Examples of generalized complex manifolds include complex and sym-
plectic manifolds, holomorphic Poisson manifolds, six-dimensional nilmanifolds [13] and
the connected sums mCP2#nCP2

for m odd [15]. The latter are known not to admit any
complex or symplectic structures if m is bigger than one, and the generalized complex
structures on them are realized with the help of the so-called logarithmic transformation
[14, 20]. As this example shows, in order to find new examples it is important to develop
surgery tools that change the topology of the manifold, but are compatible with the gener-
alized complex structure. Besides this, another main objective in the field is to investigate
which properties or constructions in complex and symplectic geometry are actually fea-
tures of generalized complex geometry. For instance, the concept of symplectic reduction
has an analogue in the setting of generalized complex geometry [9]. Another example is
the type-decomposition of forms in complex geometry [12]. This thesis is about such a
generalization, namely that of the blow-up.

Blow-ups were invented by algebraic geometers in their study of birational transforma-
tions. It is unclear to the author when and by whom precisely the notion of blowing up
was invented, but it dates back at least to Zariski [40], who introduced it in a modern
language in order to study singularities. His work lead to results by many others, includ-
ing the famous theorem by Hironaka [27] on the resolution of singularities. The study of
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singularities is a huge area of mathematical research, and we refer to [26] for a historical
overview and further references. On the symplectic side, Gromov [22] pointed out that
blow-ups can also be defined for symplectic manifolds. This was then worked out further
by McDuff [36], who used it to produce examples of simply-connected non-Kählerian
symplectic manifolds.

The first steps to introduce blow-ups in the setting of generalized complex geometry were
made by Cavalcanti and Gualtieri [15], who showed that a blow-up exists for a so-called
non-degenerate point in the complex locus of a generically symplectic four-manifold. Be-
sides the logarithmic transformation, this formed the main tool in the construction of the
generalized complex structures on the manifolds mCP2#nCP2 for m odd. To go beyond
this case of a point in four dimensions, we first need to understand which submanifolds are
suitable for blowing up. In the complex and symplectic categories these are the complex,
respectively, symplectic submanifolds. There are a number of different ways to define a
generalized complex submanifold. One such definition was given in [23], which are now
usually called branes due to their relation with string theory. In the symplectic category
branes are generalizations of Lagrangian submanifolds, so they are not the right ones for
blow-ups. Instead, a generalized complex submanifold in this thesis will be a submanifold
which inherits a generalized complex structure from the ambient manifold. Even though
this definition is the most natural one in the setting of blow-ups, it is a bit too general. For
instance, any point forms a generalized complex submanifold. If the generalized complex
structure at that point is a non-trivial mixture of complex and symplectic structures, it is
unclear how to endow the blow-up with a generalized complex structure, and we will in
fact give an example where such a blow-up does not exist (Section 3.3).

For this reason we restrict ourselves to two special subclasses. The first are called
generalized Poisson submanifolds. They are submanifolds which look complex in trans-
verse directions and they are Poisson submanifolds for the underlying Poisson structure
(i.e. they are unions of open subsets of the symplectic leaves). An important ingredient to
understand these manifolds is the local theory of generalized complex structures. In com-
plex and symplectic geometry we have the Newlander-Nirenberg and Darboux theorems,
telling us that all complex and symplectic structures look the same around a point. Par-
tial results about the local structure of a generalized complex structure were obtained by
Gualtieri [24] and Abouzaid and Boyarchenko [1], and the full description was obtained
by Bailey [6]. It says that locally, every generalized complex structure is isomorphic to the
product of a symplectic manifold and a holomorphic Poisson manifold. Using this result,
we prove that generalized Poisson submanifolds come naturally equipped with a special
ideal which gives them a holomorphic flavor, and we use that to construct the blow-up as a
differentiable manifold. The question of whether this blow-up has a generalized complex
structure for which the blow-down map is holomorphic then boils down to the analogous
question in the context of holomorphic Poisson geometry. This has been answered by
Polishchuk [37] and, building on that, we give necessary and sufficient conditions for
blowing up a generalized Poisson submanifold (Theorem 3.1.7).

The second class of submanifolds are called generalized Poisson transversals. These
look symplectic in transverse directions and form Poisson transversals for the underlying
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Poisson structure (i.e. they intersect the symplectic leaves transversally and symplecti-
cally). The construction of their blow-ups is based on the symplectic construction of the
blow-up, and it involves finding a normal form for the generalized complex structure in a
neighborhood of the submanifold. Such a neighborhood theorem was already constructed
by Frejlich and Mărcuţ [18] in the context of Poisson geometry, and it has a direct coun-
terpart in our setting. We then use this normal form to blow up the submanifold, provided
it is compact (Theorem 3.2.13). This last step uses reduction methods, just as the sym-
plectic blow-up can be performed using symplectic cuts as shown by Lerman [34]. In
contrast with the generalized Poisson submanifolds, there is no obstruction to blow-up,
but the blow-up is not canonical. It depends on the specific choice of neighborhood, as
well as the choice of level set for a specific moment map. The latter is analogous to the
symplectic area of the exceptional divisor in symplectic geometry.

The above mentioned results for generalized Poisson submanifolds and generalized
Poisson transversals are based on joint work with Bailey and Cavalcanti [4].

The blow-up construction also exists in Kähler geometry, and so it is natural to wonder
whether the obtained results have analogues in generalized Kähler geometry. A general-
ized Kähler structure consists of a pair of generalized complex structures that are com-
patible with each other. They were introduced in [23, 25] in the language of generalized
geometry, but they already existed for a long time in the guise of bi-Hermitian structures,
as introduced by Gates, Hull and Roĉek [19]. Such a bi-Hermitian structure consists of
a pair of complex structures that are compatible with a given metric and satisfy a certain
integrability condition. Besides some results in dimension four (Pontecorvo [38], Apos-
tolov, Gauduchon and Grantcharov [2]), bi-Hermitian structures proved difficult to work
with. The language of generalized geometry provided an alternative point of view and
allowed for some new developments. For instance, the before mentioned reduction theory
now also became available for generalized Kähler structures, with applications to moduli
spaces of instantons (Hitchin [29]; Burzstyn, Cavalcanti and Gualtieri [10, 11]). Another
development was the deformation theorem of Goto [21], which states that on a compact
manifold, a deformation of one of the two structures in a generalized Kähler pair can be
coupled to a deformation of the second, provided the second is of a special type (“gen-
eralized Calabi-Yau”). This theorem can be applied to compact Kähler manifolds with a
holomorphic Poisson structure, giving an important class of examples. These examples
generalized an earlier construction by Hitchin on Del Pezzo surfaces [30]. Despite these
developments the study of generalized Kähler manifolds remains difficult, and examples
where the underlying manifold does not support a Kähler structure are scarce. Notewor-
thy examples of the latter include even dimensional compact Lie groups (Gualtieri [25]),
and some specific solvmanifolds (Fino, Tomassini [17]).

On a generalized Kähler manifold, a generalized Poisson submanifold for one of the
two generalized complex structures is automatically a generalized Poisson transversal for
the other, and they are the natural candidates for the generalized Kähler blow-up. This
question was first addressed in [16], where it was shown that a blow-up exists in the case
of a non-degenerate point of complex type in a four-manifold. At first, one may think
that this question is easy, since both separate blow-ups have already been developed.
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However, the key ingredient of the generalized Kähler blow-up is to keep the generalized
complex structures compatible with each other. Consequently, we are forced to aban-
don the blow-up techniques for generalized Poisson transversals all together. Instead, we
blow up the submanifold using the techniques for generalized Poisson submanifolds, and
then show that the bi-Hermitian structure that underlies the generalized Kähler structure
lifts to a degenerate bi-Hermitian structure on the blow-up. Degeneracy here refers to
the metric. Subsequently, we develop a deformation procedure that transforms such de-
generate structures into non-degenerate ones. The idea underlying this deformation can
be traced back to [30], and was also used in [16]. The deformation itself requires some
geometrical input, which in the case of the blow-up boils down to geometric conditions
on the submanifold. We obtain two concrete situations where a blow-up exists (Theo-
rem 4.3.2). The first is when the exceptional divisor of the blow-up is again generalized
Poisson, while the second is when the submanifold in question is contained in a Poisson
divisor for one of the two complex structures in the bi-Hermitian picture. This will be the
case for instance when the structure for which Y is a generalized Poisson submanifold is
generically symplectic. Finally, we apply this to generalized Kähler structures on even-
dimensional compact Lie groups. We show that a maximal torus, which can be taken
generalized Poisson for a suitably chosen generalized Kähler structure, can be blown up
in a generalized complex way if and only if the Lie group equals (S1)n × (S3)m, with
n+m even (Theorem 4.4.2). The result is then automatically generalized Kähler.

Organization of the thesis:
This thesis is organized as follows. In Chapter 1 we give an introduction to generalized
complex geometry. Most of the material here is well-known and is presented in a way to
make it accessible to the non-expert as well. In particular, we include proofs of most of
the results. We discuss the natural pairing and the Courant bracket on the double tangent
bundle, together with their symmetries. Then we cover the basic theory of Dirac struc-
tures, including a detailed description of the underlying linear algebra, as well as some
functoriality properties. This is followed by the description of generalized complex struc-
tures, with particular emphasis on the notion of generalized complex submanifolds. We
end the chapter with a description of generalized Kähler geometry.

In Chapter 2 we review the blow-up construction. We first discuss this in the general
setting of smooth manifolds, where we give a definition of the blow-up by means of a
certain universal property. It involves the concept of a so-called holomorphic ideal for a
submanifold, and this way of defining the blow-up is basically the same as in algebraic
geometry. We then proceed to describe a normal form for holomorphic ideals and use it to
describe the manifold structure on the blow-up. This includes a well-known calculation
of the fundamental group and the integral cohomology groups. After this we discuss how
to perform the blow-up in the complex and symplectic settings. The latter mainly serves
as a warm-up for the constructions in the chapters that follow.

Chapter 3 is about blow-ups of generalized complex structures. We investigate two classes
of generalized complex submanifolds: generalized Poisson submanifolds and generalized
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Poisson transversals. For the first we show that there exists a canonical holomorphic
ideal and hence a canonical differentiable blow-up. We then give a necessary and suffi-
cient condition for the blow-up to admit a generalized complex structure for which the
blow-down map is generalized holomorphic. The resulting blow-up is, if it exists, always
canonical. In contrast, for generalized Poisson transversals we show that a blow-up al-
ways exists, at least when the submanifold is compact. This is achieved by constructing a
suitable normal form around the submanifold, which allows us to construct the blow-up in
the easier setting of the zero section in a vector bundle. The resulting blow-up is however
not canonical. Finally, we give an example of a generalized complex submanifold which
is not of the above two mentioned types and show that it does not admit a generalized
complex blow-up.

Finally, in Chapter 4, we discuss blow-ups of generalized Kähler manifolds. We consider
generalized Poisson submanifolds which can be blown-up for one of the two generalized
complex structures and show that the underlying bi-Hermitian structure lifts to a so-called
degenerate bi-Hermitian structure on the blow-up. We then introduce a certain deforma-
tion procedure that transforms degenerate structures into non-degenerate ones, which can
then be applied to the blow-up. This deformation however requires some geometric input
that is not always available. We identify explicitly two situations where the deformation
can be applied, leading to a generalized Kähler blow-up. We end with an investigation of
blow-ups on generalized Kähler Lie groups.
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Chapter 1

Generalized Complex Geometry

This chapter is meant as a short introduction to generalized complex geometry, focussing
mainly on the concepts that are relevant for later chapters. Most of the material here is
well-known, and the main reference for it is [24]. We include the proofs of most state-
ments in order to make this chapter self contained, and to establish the language and
notation. In Section 1.1 we provide the framework of generalized geometry. We intro-
duce the double tangent bundle and the Courant bracket, describe its symmetries and more
general kind of morphisms, and discuss spinors and generalized metrics. In section 1.2
we define Dirac structures. We give a detailed description of the linear algebra behind
them, in particular about the space of all Dirac structures on a vector space. We then dis-
cuss how to pull-back and push-forward Dirac structures along smooth maps. In Section
1.3 we discuss generalized complex structures. We define generalized holomorphic maps
and generalized complex submanifolds, with particular emphasis on generalized Poisson
submanifolds and generalized Poisson transversals, and discuss the notion of a general-
ized complex brane. We also give a short description of generalized Hermitian structures.
In the final section of this chapter we consider the theory of generalized Kähler geome-
try. We describe the associated bi-Hermitan picture and discuss in some detail the pair of
holomorphic Poisson structures underlying the bi-Hermitian structure.

1.1 The double tangent bundle

Let M be a smooth m-dimensional manifold equipped with a closed real three-form H .
The central object of interest in generalized geometry is the double tangent bundle TM :=
TM ⊕ T ∗M , replacing the role of the ordinary tangent bundle. Elements of TM are
denoted by X + ξ, Y + η, . . ., where X,Y ∈ TM and ξ, η ∈ T ∗M , or simply by
u, v, . . . , if the distinction between vectors and forms is not really necessary.

The bundle TM is endowed with two structures. The first is a symmetric bilinear
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form

〈X + ξ, Y + η〉 :=
1

2

(
ξ(Y ) + η(X)

)
, (1.1)

called the natural pairing. It is non-degenerate of signature (m,m), and both TM and
T ∗M are isotropic1 subspaces.

The second structure on TM is a bracket on its space of sections called the Courant
bracket :

JX + ξ, Y + ηK := [X,Y ] + LXη − ιY dξ − ιY ιXH. (1.2)

Some authors refer to (1.2) as the Dorfman bracket, reserving the name Courant for its
skew-symmetrization. Often we will write J·, ·KH to emphasize which three-form is being
used.

In the lemma below we list the main properties of the natural pairing and the Courant
bracket on TM . We will denote by π : TM → TM the projection map, also called the
anchor.

Lemma 1.1.1. For u, v, w ∈ Γ(TM) and f ∈ C∞(M) we have

i) Ju, Jv, wKK = JJu, vK, wK + Jv, Ju,wKK,

ii) π(Ju, vK) = [π(u), π(v)],

iii) Ju, fvK = fJu, vK + (π(u) · f)v,

iv) Ju, uK = d〈u, u〉,

v) 〈Ju, vK, w〉+ 〈v, Ju,wK〉 = π(u) · 〈v, w〉.

Remark 1.1.2. A vector bundle E over M equipped with a bracket J·, ·K, pairing 〈·, ·〉
and anchor π : E → TM satisfying the above axioms is called a Courant algebroid.
Property iv) makes sense in this more abstract setting as well, for there is an induced map
π∗ : T ∗M → E∗ ∼= E, the last isomorphism using the pairing on E. Axioms i), ii)
and iii) are precisely the axioms of a Lie algebroid over M , were it not for the failure of
skew-symmetry of J·, ·K as described by axiom iv).

1.1.1 Symmetries
In order to do geometry on TM it is important to understand its symmetries. If ϕ is a
diffeomorphism of M we will denote by ϕ∗ : TM → TM the corresponding tangent
map. There is an induced map on TM , again denoted by ϕ∗, given by

ϕ∗ :=

(
ϕ∗ 0
0 (ϕ−1)∗

)
: TM → TM. (1.3)

1A subbundle V ⊂ TM is called isotropic if 〈u, v〉 = 0 for all u, v ∈ V .
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Here the block form of the matrix refers to the splitting TM = TM ⊕T ∗M , and (ϕ−1)∗

denotes the pull-back of forms along the map ϕ−1. Throughout we will denote by ϕ∗
both the bundle map on TM as well as the induced map on sections thereof. Note that ϕ∗
preserves the pairing but not the bracket:

ϕ∗(Ju, vKH) = Jϕ∗u, ϕ∗vKϕ∗(H). (1.4)

We will denote by O(TM) the isomorphisms of (TM, 〈·, ·〉) that cover the identity on
M , whose Lie algebra is given by so(TM), the endomorphisms of TM that are skew-
symmetric with respect to 〈·, ·〉. Elements of so(TM) are of the form(

A β
B −A∗

)
, (1.5)

where A : TM → TM is an arbitrary endomorphism and β : T ∗M → TM and
B : TM → T ∗M are both skew-symmetric. We can thus regard β ∈ Γ(Λ2TM) as a
bivector and B ∈ Ω2(M) as a two-form. In particular, we obtain special subgroups of
O(TM) generated by the transformations

eA∗ (X + ξ) := eA(X) + e−A
∗
(ξ), (1.6)

eB∗ (X + ξ) := X + ξ − ιXB, (1.7)

eβ∗ (X + ξ) := X + ιξβ + ξ. (1.8)

These automorphisms all lie in SO(TM), the connected component of the identity of
O(TM). Symmetries of the form (1.7) play an important role in the theory and are called
B-field transformations. The reason for introducing the minus sign is conventional and
will be motivated later (c.f. the discussion above (1.19)). Just as with diffeomorphisms,
B-field transformations do not always preserve the bracket:

eB∗ (Ju, vKH) = JeB∗ u, e
B
∗ vKH−dB . (1.9)

Proposition 1.1.3 ([24, Proposition 2.5]).

i) Let F : TM → TM be an automorphism that satisfies F [X,Y ] = [FX,FY ]
for all X,Y ∈ Γ(TM). Then F = ϕ∗ for some diffeomorphism ϕ. In particular,
Aut(TM, [·, ·]) = Diff(M).

ii) Let F : TM → TM be an automorphism that satisfies F Ju, vKH = JFu, FvKH
and 〈Fu, Fv〉 = 〈u, v〉 for all u, v ∈ Γ(TM). Then F = ϕ∗e

−B
∗ for some diffeo-

morphism ϕ and two-form B, satisfying ϕ∗H = H + dB. In particular, we have
an exact sequence

0→ Ω2
cl(M)→ Aut(TM, 〈·, ·〉, J·, ·KH)→ Diff[H](M)→ 0 (1.10)

where Diff[H](M) denotes the diffeomorphisms ofM that preserve the cohomology
class of H .
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Proof. i): If F covers ϕ on M then (ϕ∗)
−1 ◦F covers the identity on M , so it suffices to

show that if F covers the identity then F = Id. Let X,Y ∈ Γ(TM) and f ∈ C∞(M).
We have

F [X, fY ] = F
(
f [X,Y ] + (X · f)Y

)
= f [FX,FY ] + (X · f)FY,

but also

F [X, fY ] = [FX, fFY ] = f [FX,FY ] + (FX · f)FY.

Since this holds for all X,Y and f , we get FX = X , i.e. F = Id.
ii): If F covers ϕ we consider again F ′ := (ϕ∗)

−1 ◦ F , now with ϕ∗ given by (1.3).
This new automorphism F ′ covers the identity on M , but it will take J·, ·KH to J·, ·Kϕ∗H .
However, both brackets satisfy Lemma 1.1.1, which is all we need to repeat the trick
applied in part i). We obtain π = π ◦ F ′, where π : TM → TM is the anchor. It is
readily verified that any F ′ ∈ O(TM) that satisfies π = π ◦ F ′ is of the form F ′ = e−B∗
for some two-form B, and so F = ϕ∗e

−B
∗ . From (1.4) and (1.9) combined we see that F

preserves J·, ·KH if and only if ϕ∗H = H + dB.

Remark 1.1.4. The above proposition reveals an asymmetry in the roles that TM and
T ∗M play in the double tangent bundle which is not immediately apparent from the def-
initions. Indeed, symmetries of TM include B-field transformations, but not their dual
versions given by (1.8). Moreover, B-field transformations do not respect the splitting
TM = TM ⊕ T ∗M , for they take TM into another isotropic subspace complementary
to T ∗M . As such, the splitting itself is not a natural thing to consider, and the only thing
that is invariant under symmetries is the exact sequence

0→ T ∗M
π∗→ TM π→ TM → 0. (1.11)

An isotropic splitting of (1.11), i.e. a section s : TM → TM of π with isotropic image,
recovers the identification TM = TM⊕T ∗M , withH measuring the lack of involutivity2

of s(TM):

H(X,Y, Z) = −2〈Js(X), s(Y )K, s(Z)〉.

Different splittings give rise to different three-forms, all cohomologous to each other by
(1.9). Therefore, it is really the cohomology class of H that is an invariant of TM , and it
classifies the isomorphism class of TM as an exact Courant algebroid3.

There is an infinitesimal version of (1.10) as well. If ϕt∗e
−Bt
∗ is a family of automor-

phisms with ϕ0 = Id and B0 = 0, we obtain an infinitesimal symmetry of TM given
by

Y + η 7→ d

dt

∣∣∣∣
t=0

ϕt∗e
−Bt
∗ (Y + η) = −LX(Y + η) + ιY b, (1.12)

2A subbundle V ⊂ TM is called involutive if Γ(V ) is closed under the Courant bracket.
3A Courant algebroid E (see Remark 1.1.2) is called exact if (1.11), with TM replaced by E, is exact.
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where X is the vector field on M induced by ϕt, and b := Ḃ0. The pair (X, b) satisfies
LXH = db, as a consequence of the identity ϕ∗tH = H + dBt. Hence, infinitesimal
symmetries of TM give rise to elements of

Der(TM) := {(X, b) ∈ Γ(TM)⊕ Ω2(M)| LXH = db}, (1.13)

acting on Γ(TM) via (1.12). There is an adjoint map ad : Γ(TM)→ Der(TM) given by
X + ξ 7→ (X, ιXH + dξ), and the induced action of ad(X + ξ) on Γ(TM) is the adjoint
action Y + η 7→ −JX + ξ, Y + ηKH . If (X, b) ∈ Der(TM) then b − ιXH is closed. If
it is exact, say b − ιXH = dξ, we have (X, b) = ad(X + ξ). Consequently, there is an
exact sequence

0→ Ω1
cl(M)→ Γ(TM)

ad→ Der(TM)→ H2(M ;R)→ 0.

The last map in this sequence is given by (X, b) 7→ [b−ιXH]. Given u = X+ξ ∈ Γ(TM)
there is a concrete formula for the family of automorphisms that integrates ad(u). Let ϕt
be the flow that integrates X and define

ψt := ϕt∗e
−Bt
∗ : TM → TM, (1.14)

where Bt :=
∫ t

0
ϕ∗s(dξ + ιXH)ds. Then we have

d

dt
ψt(v) = −Ju, ψt(v)KH .

We remark here that (1.14) makes sense for all elements (X, b) ∈ Der(TM), which
implies that (1.13) describes precisely the set of infinitesimal symmetries of TM . We
will however, only need (1.14) for infinitesimal symmetries of the form ad(X + ξ).

Note that u is not always preserved by its own flow:

ψt(u) = u− d
∫ t

0

ϕs∗〈u, u〉ds.

The following fact will be useful later.

Lemma 1.1.5. Let V ⊂ TM be a subbundle and u ∈ Γ(TM) with 〈u, u〉 = 0. If ψt
denotes the flow of u, then ψt(V ) = V if and only if Ju,Γ(V )K ⊂ Γ(V ).

Proof. By differentiation with respect to t we immediately see that ψt(V ) = V implies
that Ju,Γ(V )K ⊂ Γ(V ), so let us prove the converse. Since 〈u, u〉 = 0 we have ψt(u) =
u. Let vi be a local frame4 for V , and let αj be a frame for the annihilator of V in (TM)∗.
By assumption we have Ju, viK = −

∑
j Aijvj for certain functions Aij . Then,

d

dt
αj(ψt(vi)) =αj(−Ju, ψt(vi)K) = αj(−ψtJu, viK) =

∑
k

αj(ψt(Aikvk))

=
∑
k

(ϕ∗−tAik)αj(ψt(vk)),

4A local frame for a vector bundle is a collection of local sections that form a basis in every fiber.
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where ϕt is the diffeomorphism of M induced by ψt. Fix an index j and a point p ∈
M and define f : R → Rrank(V ) by fi(t) := αj(ψt(vi))(p). If we set Bik(t) :=
Aik(ϕ−t(p)), then the above equation gives d

dtf(t) = B(t) · f(t). Since f(0) = 0, we
get f(t) = 0 for all t and we deduce that αj(ψt(vi)) = 0 for all i and j. Consequently,
ψt(V ) = V .

1.1.2 Morphisms
We now discuss functoriality in generalized geometry. Given (M1, H1) and (M2, H2),
we need the notion of a map between them, which in addition should induce some kind
of “derivative” on the level of double tangent bundles.

Definition 1.1.6. A generalized map from (M1, H1) to (M2, H2) is a pair Φ := (ϕ,B),
where ϕ : M1 →M2 is a smooth map and B ∈ Ω2(M1), satisfying ϕ∗H2 = H1 + dB.

We will often abbreviate (ϕ, 0) by ϕ and drop the prefix “generalized”. Composition is
given by (ϕ,B) ◦ (ψ,C) = (ϕ ◦ ψ,C + ψ∗B), and (Id, 0) acts as the identity. In case
(M1, H1) = (M2, H2) and ϕ is invertible, we recover the same maps of Proposition 1.1.3
ii). Such an invertible generalized map induces on TM the bundle map ϕ∗e−B∗ . However,
if ϕ is not invertible, it is not possible to push-forward forms, just as we can not pull-back
vectors. So in general there is no bundle map associated to a map Φ : (M1, H1) →
(M2, H2). Nevertheless, it does give rise to a relation. We say that X + ξ ∈ TM1 is
Φ-related to Y + η ∈ TM2, and write X + ξ ∼

Φ
Y + η, if

ϕ∗X = Y, ξ = ϕ∗η − ιXB.

If ϕ is invertible this is equivalent to Y + η = ϕ∗e
−B
∗ (X + ξ). We denote by ΓΦ the

graph of Φ, defined by

ΓΦ := {(u, v) ∈ TM1 ⊕ ϕ∗TM2|u ∼Φ
v} ⊂ TM1 ⊕ ϕ∗TM2. (1.15)

This is not to be confused with the graph of the underlying map ϕ, which would be a
subspace of M1 ×M2. There is a short exact sequence

0→ ϕ∗(T ∗M2)→ ΓΦ → TM1 → 0,

where the first map is given by η 7→ (ϕ∗η, η) and the second by (u, v) 7→ π(u).
An important property of this relation is that it is compatible with Courant brackets.

To explain this properly we first remark that the notion of being Φ-related is a pointwise
condition, and really takes place between elements u ∈ TM1 and v ∈ ϕ∗TM2, as indi-
cated also in the definition of ΓΦ. A section v ∈ Γ(TM2) gives rise to a section ϕ∗v of
ϕ∗TM2, and when we say that u and v are Φ-related we really mean that u and ϕ∗v are
Φ-related.

Lemma 1.1.7. If u1, u2 ∈ Γ(TM1) and v1, v2 ∈ Γ(TM2) are Φ-related, i.e. ui ∼Φ vi,
then also Ju1, u2KH1 ∼Φ Jv1, v2KH2 .
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Proof. Write ui = Xi + ξi and vi = Yi + ηi. Then, by assumption, ϕ∗Xi = Yi and
ϕ∗ηi = ξi + ιXiB. Consequently, ϕ∗[X1, X2] = [Y1, Y2], and

ϕ∗(LY1
η2 − ιY2

dη1 − ιY2
ιY1
H2) =LX1

ϕ∗η2 − ιX2
dϕ∗η1 − ιX2

ιX1
ϕ∗H2

=LX1
(ξ2 + ιX2

B)− ιX2
d(ξ1 + ιX1

B)

− ιX2
ιX1

(H1 + dB)

=LX1
ξ2 − ιX2

dξ1 − ιX2
ιX1

H1 + ι[X1,X2]B,

where we used that [LX1
, ιX2

] = ι[X1,X2]. So indeed, Ju1, u2KH1
∼

Φ
Jv1, v2KH2

.

Remark 1.1.8. Note that the symbol ϕ∗ has different interpretations: it can denote the
pull-back of a form, the pull-back of a vector bundle, or the pull-back of a section of a
bundle to a section of the pull-back bundle. It should be clear in each context what is
meant.

1.1.3 Spinors
A pleasant aspect of metrics with split signature is that there is a concrete description of
their spinor bundles in terms of exterior algebras. First, recall that if (E, 〈·, ·〉) is any
vector bundle equipped with a non-degenerate metric5, there is an associated bundle of
Clifford algebras denoted by Cl(E, 〈·, ·〉), or simply Cl(E) if the metric is clear from the
context. It is defined as the free tensor algebra ⊕n≥0E

⊗n modulo the ideal generated by
elements of the form u⊗ u− 〈u, u〉. As vector bundles Cl(E) ∼= Λ•E, but this does not
respect the algebraic structure. A Clifford bundle for Cl(E) is a vector bundle V together
with a multiplication Cl(E)⊗ V → V that turns V into a Cl(E)-module. Concretely, to
give such a bundle we need to specify how elements u ∈ E act on elements ρ ∈ V , in
such a way that u · (u · ρ) = 〈u, u〉ρ.

We now specify to the case of (TM, 〈·, ·〉). Consider the action of TM on Λ•T ∗M given
by

(X + ξ) · ρ := ι
X
ρ+ ξ ∧ ρ. (1.16)

It satisfies u · (u · ρ) = 〈u, u〉ρ, hence induces an action of Cl(TM) on Λ•T ∗M . The
special feature of this particular Clifford bundle is the following.

Lemma 1.1.9. The induced map cl : Cl(TM)→ End(Λ•T ∗M) is an isomorphism.

Proof. Both Cl(TM) and End(Λ•T ∗M) have rank 22m, so it suffices to show that cl
is injective. Fix a basis e1, . . . , em for TM with dual basis e1, . . . , em for T ∗M , and
denote by eI := ei1 · . . . · eik for I = {1 ≤ i1 < · · · < ik ≤ m} and similarly
for eI . Then the elements eIeJ , where I, J run over all strictly increasing subsets of
{1, . . . ,m}, form a basis for Cl(TM). Suppose that cl(

∑
I,J λIJeIe

J) = 0. Fix a J0

and let Jc0 denote its complement in {1, . . . ,m}. Acting on the form eJ
c
0 , we obtain

5The Clifford construction actually makes sense for arbitrary bilinear forms, non-degenerate or not.
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∑
I λIJ0

ιeI (e
J0 ∧ eJc0 ) = 0. Since the terms ιeI (e

J0 ∧ eJc0 ) are all linearly independent,
it follows that λIJ0

= 0. As J0 was arbitrary, cl is indeed injective.

We will call Λ•T ∗M the spinor bundle for TM , and refer to differential forms as spinors.

Derived brackets

Even though the construction of the spinor bundle depends only on the natural pairing, it
gives rise to an intriguing relationship between the Courant bracket on Γ(TM) and the
operator dH on Γ(Λ•T ∗M). The latter is defined by

dHρ := dρ+H ∧ ρ. (1.17)

This relation follows from the theory of derived brackets. For the general set-up we refer
to [32], here we will be rather specific. We regard Γ(Cl(TM)) ∼= Γ(End(Λ•T ∗M))
as a subset of A := End

(
Γ(Λ•T ∗M)

)
, the algebra of all linear endomorphisms of

Γ(Λ•T ∗M). InsideA, Γ(Cl(TM)) is characterized as those linear maps that areC∞(M)-
linear, i.e. those that commute with the action of multiplication by functions. The alge-
bra A carries a natural Z2-grading, defined by declaring an operator A ∈ A even if it
preserves the parity of a form and odd if it reverses it. So in this sense, elements of
Γ(TM) ⊂ Γ(Cl(TM)) are odd. As for any Z2-graded algebra, we obtain a graded Lie
bracket {·, ·} on A, given by

{A,B} := AB − (−1)|A||B|BA

on homogeneous6 elements A,B, and extended bilinearly to all of A. Here |A| denotes
the degree of A. For u, v ∈ Γ(TM) we have the relation

{u, v} = 2〈u, v〉,

which follows immediately from the Clifford relation (1.16). Now, given an odd element
D ∈ A satisfying D2 = 0, its derived bracket on A is defined by

[A,B]D := {{A,D}, B}.

By the Jacobi identity for {·, ·} and the fact that D2 = 0, we obtain a Jacobi identity for
[·, ·]D:

[A, [B,C]D]D = [[A,B]D, C]D + (−1)(|A|+1)(|B|+1)[B, [A,C]D]D.

Note the shift of degrees on the right-hand side. In general, [·, ·]D will not be skew-
symmetric. For example if A is odd we have

[A,A]D = {D, {A,A}}.

The interesting aspect of this construction is that for some operators D ∈ A the derived
bracket preserves Γ(Cl(TM)) ⊂ A, or Γ(V ) for some subbundle V ⊂ Cl(TM). Here
are the main examples.

6An element ofA is homogeneous if it is either even or odd.
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Example 1.1.10. Consider D = d, the usual exterior derivative on Γ(Λ•T ∗M). Viewing
TM ⊂ Cl(TM), a vector field X ∈ Γ(TM) is identified with the operator ιX ∈ A.
Then, using the Cartan formula, we obtain

[ιX , ιY ]D = {{ιX , d}, ιY } = {LX , ιY } = ι[X,Y ].

In other words, Γ(TM) is closed under the derived bracket of d, and the induced bracket
coincides with the ordinary Lie bracket on TM .

Example 1.1.11. Again take D = d, but this time consider Λ•TM ⊂ Cl(TM). Since
TM is isotropic, this is in fact an inclusion of algebras. Sections of Λ•TM are called
polyvector fields and, as in Example 1.1.10, the space of polyvector fields is closed under
the bracket derived from d. The induced bracket on Γ(Λ•TM) is called the Schouten-
Nijenhuis bracket, and is explicitly given by

[X0 . . . Xp, Y0 . . . Yq] =
∑
i,j

(−1)i+j [Xi, Yj ]X0 . . . X̂i . . . XpY0 . . . Ŷj . . . Yq,

together with [X, f ] = X · f for f ∈ C∞(M). Here a hat means we omit the underlying
symbol.

Example 1.1.12. Now consider D = dH , defined by (1.17). This time Γ(TM) is not
closed under the derived bracket, because H transforms two vectors into a one-form.
However, Γ(TM) is closed and the induced bracket is precisely the Courant bracket. In
other words, we have

Ju, vK · ρ = {{u, dH}, v} · ρ. (1.18)

This equation gives some insight on the definition of the Courant bracket, and serves as
an efficient tool for computations.

Example 1.1.13. Let F be a closed p-form, where p ≥ 2, and consider the operator
D = dF := d+ F∧. Then TM ⊕ Λp−2T ∗M is closed under the derived bracket, which
is given by

JX + ξ, Y + ηKF = [X,Y ] + LXη − ιY dξ + (−1)pιY ιXF.

The bundle TM ⊕ Λp−2T ∗M shares some properties with TM . For instance, there are
gauge-transformations of the form X + ξ 7→ X + ξ − ιXA for A ∈ Ωp−1(M), changing
F to F + (−1)p+1dA.

Symmetries and the Chevalley pairing

In general, if (V, 〈·, ·〉) is a vector space endowed with a metric, one can form the so-called
Spin group Spin(V, 〈·, ·〉) or Spin(V ) for short, which is a subgroup of Cl×(V ), the group
of invertible elements of the Clifford algebra. The group Spin(V ) acts on Cl(V ) by con-
jugation and this action preserves the subspace V ⊂ Cl(V ). This induces a double cover
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Spin(V ) → SO(V ), where the latter equals the group of automorphisms of (V, 〈·, ·〉)
that preserve orientation. In particular, the Lie algebras of both groups are isomorphic.
Note that since Spin(V ) ⊂ Cl(V ), Spin(V ) acts on any module for Cl(V ) in a way that
is compatible with the action on Cl(V ) itself, i.e. g · (x · ρ) = (g · x) · (g · ρ) for every
g ∈ Spin(V ), x ∈ Cl(V ) and ρ an element of the module. In particular, the Lie algebra
of SO(V ) acts naturally on any Clifford module.

Applying this to the Clifford bundle of (TM, 〈·, ·〉), we obtain an action of the infinitesi-
mal symmetries so(TM) on the space of spinors, i.e. the space of differential forms. For
the specific infinitesimal symmetries given by two-forms and bivectors, the exponentia-
tion of this action is given by

eBρ :=
∑
n≥0

1

n!
Bn ∧ ρ, eβρ :=

∑
n≥0

1

n!
ιβnρ,

where we follow the convention that ιX1∧...∧Xp(ρ) := ιXp . . . ιX1
(ρ). Note that if we

did not insert the minus sign in (1.7), then it would have appeared in the formula for eBρ.
For a proof of these formulas we refer to [24]. The actions on TM and on Λ•T ∗M are
compatible in the sense that

eB(u · ρ) = (eB∗ u) · eBρ, eβ(u · ρ) = (eβ∗u) · eβρ. (1.19)

The spinor bundle is equipped with the so-called Chevalley pairing7:

(γ, ρ)Ch := (γ ∧ ρT )top, γ, ρ ∈ Γ(Λ•T ∗M). (1.20)

Here the superscript T stands for transposition, acting on a degree l-form by

(β1 . . . βl)
T := βl . . . β1 = (−1)

1
2 l(l−1)β1 . . . βl, (1.21)

and the subscript top stands for the highest degree component. The Chevalley pairing
takes values in the determinant line bundle ΛmT ∗M . Explicitly, if γ =

∑
i γi denotes

the decomposition in terms of degree and similarly for ρ, we have

(γ, ρ)Ch =

m∑
i=0

(−1)
1
2 i(i−1)γm−i ∧ ρi.

Furthermore, the pairing is compatible with the Clifford action in the sense that
(u · γ, ρ)Ch = (−1)m+1(γ, u · ρ)Ch for all u ∈ TM . In particular, both operations eB and
eβ are orthogonal for it.

1.1.4 Generalized metrics
The natural pairing has split signature and as a consequence its automorphism group,
O(m,m), is non-compact. On TM , we can reduce the non-compact structure group
GL(m) to its compact subgroup O(m) by choosing a metric. This has an analogue in
generalized geometry.

7Often also called the Mukai pairing.
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Definition 1.1.14. A generalized metric on M is a map G : TM → TM which satisfies
G2 = 1 and for which the pairing

(u, v) 7→ 〈Gu, v〉 =: G(u, v) (1.22)

defines a positive definite metric on TM .

Note that for G to be symmetric we need G∗ = G. There are a couple of different
descriptions of generalized metrics, summarized in the following lemma.

Lemma 1.1.15. There is a one-to-one correspondence between

i) Generalized metrics G.

ii) Subbundles V+, V− ⊂ TM which are orthogonal to each other with respect to the
natural pairing, which itself is positive definite on V+ and negative definite on V−.

iii) Isotropic splittings of TM and metrics g on TM .

Proof. i) ⇔ ii): From G2 = 1 we obtain a decomposition TM = V+ ⊕ V−, where
V± is the (±1)-eigenspace of G. On V+ and V− the natural pairing is then positive and
negative definite respectively, and V+ and V− are orthogonal to each other because G∗ =
G. Conversely, any decomposition of TM into subbundles V± with the last mentioned
properties defines a generalized metric, by declaring G to be ±1 on V±.

i)⇔ iii): Given G, the subspace G(T ∗M) ⊂ TM is isotropic and has zero intersection
with T ∗M , hence gives an isotropic splitting of TM . In this splitting G is anti-diagonal,
and the fact that G2 = 1 and that G is a metric on TM force G to be of the form

G =

(
0 g−1

g 0

)
(1.23)

for some metric g on M . Conversely, given a splitting TM = TM ⊕ T ∗M and a metric
g on TM , the above formula gives a generalized metric G.

Remark 1.1.16. a) The description of G in terms of V± in ii) shows that a generalized
metric on TM is the same as a reduction of the structure group O(m,m) to its maximal
compact subgroup O(m) × O(m). Note that V− is determined by V+ as its orthogonal
complement, so a generalized metric is the same as a maximal, positive definite subbundle
of TM .

b) If we are given an arbitrary isotropic splitting of TM then G need not be of the
form (1.23). However, since any two splittings are related to each other by a B-field
transformation, there is a two-form b on M such that

G = e−b∗

(
0 g−1

g 0

)
eb∗ (1.24)

for some metric g. In terms of g and b the bundles V± are given by

V± = {X ± g(X) + b(X)|X ∈ TM} ⊂ TM.
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Given a generalized metric G we will refer to the unique splitting in which G is anti-
diagonal as the metric splitting. We can always pass from a given splitting to the metric
splitting, but doing so might require a non-closed two-form b and hence induce a change
in the three-form.

1.2 Dirac structures
The main reason for studying TM is that it unifies a class of geometric structures into one
single framework. This unifying concept is that of Dirac structures.

Definition 1.2.1. A Dirac structure on (M,H) is a subbundle L ⊂ TM which is La-
grangian, i.e. isotropic and of maximal rank m = dim(M), and involutive;

JΓ(L),Γ(L)KH ⊂ Γ(L).

A Lagrangian subbundle which is not necessarily involutive is called an almost Dirac
structure. It is customary to call an almost Dirac structure integrable if it is Dirac, i.e. if
the involutivity condition is satisfied.

Example 1.2.2. Let B be a two-form on M and consider eB∗ (TM) = {X − ιXB|X ∈
TM} ⊂ TM . It is isotropic because B is skew and since its rank equals that of TM , it is
Lagrangian. To see when it is integrable, we use (1.9) to compute

JeB∗ (X), eB∗ (Y )KH = eB∗ (JX,Y KH+dB) = eB∗ ([X,Y ])− ιY ιX(H + dB).

Hence, integrability is equivalent to H + dB = 0. Note that any Dirac structure L
satisfying L ∩ T ∗M = 0 is of this type.

Example 1.2.3. Dual to the previous example, let π ∈ Γ(Λ2TM) be a bivector on M ,
giving rise to the subbundle eπ∗ (T

∗M) = {π(ξ) + ξ|ξ ∈ T ∗M}. As in the previous
example, this is Lagrangian because π is skew. To understand the integrability conditions
in this case we recall that for a function f we can form its Hamiltonian vector field Xf :=
π(df), and the Poisson bracket induced by π is defined by {f, g} = π(df, dg) = dg(Xf ).
Then, we have

JXf + df,Xg + dgKH = [Xf , Xg] + d{f, g} − ιXg ιXfH.

In particular, by Remark 1.2.5 below, eπ∗ (T
∗M) is integrable if and only if [Xf , Xg] =

X{f,g} − π(ιXg ιXfH). Since this is an identity of vector fields, we can test its validity
by acting on an arbitrary third function h. We obtain that π is Poisson, i.e. eπ∗ (T

∗M) is
integrable, if and only if

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = H(Xf , Xg, Xh).

In other words, for π to be Poisson we need the failure of the Jacobi identity for the
Poisson bracket to be governed by H . One often calls π twisted-Poisson in case H 6= 0,
reserving the name Poisson for the case when H = 0. Dual to the previous example, any
Dirac structure L with L ∩ TM = 0 is of this type.
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Example 1.2.4. Let ∆ ⊂ TM be a subbundle and consider L = ∆ ⊕ Ann(∆), where
Ann(∆) := {α ∈ T ∗M | α|∆ = 0}. This is clearly a Lagrangian subbundle and we see
from (1.2) that L is integrable if and only if ∆ is involutive for the Lie bracket andH|∆ =
0. By Frobenius’ theorem, involutivity of ∆ is equivalent to it defining a foliation on
M ; a decomposition of M into immersed connected p-dimensional submanifolds called
leaves, where p is the rank of ∆, and which locally fit together nicely. The latter means
that locally M is given by Rp × Rm−p, and the leaves of the foliation are unions of the
plaques Rp × constant. The bundle ∆ is then given by the tangent spaces of the leaves.
The condition on H is that it vanishes when evaluated on triples of vectors tangent to the
foliation.

Remark 1.2.5. Integrability of an almost Dirac structure L is encoded in its so-called
Nijenhuis tensor:

NL(u, v, w) := 〈Ju, vK, w〉, u, v, w ∈ L.

Using Lemma 1.1.1 and the fact that L is isotropic we see that NL is tensorial (i.e. linear
over C∞(M)) and skew-symmetric. In other words, NL ∈ Γ(Λ3L∗), and L is integrable
if and only if NL is zero. The fact that NL is tensorial means that it suffices to verify
integrability of L on an arbitrary collection of sections that span L at all points. This
justifies why in example 1.2.3 we investigated integrability only on sections of eπ∗ (T

∗M)
of the form Xf + df .

There is also a complexified version of Dirac structures, which in fact are the ones we are
really interested in. To define these we remark that both the pairing and the bracket on
TM can be transported to TMC := TM ⊗ C by complex linear extension.

Definition 1.2.6. A complex Dirac structure on (M,H) is a Lagrangian, involutive com-
plex subbundle L ⊂ TMC.

Note that the three-form H is still taken to be real. The space of real Dirac structures sits
inside the space of complex Dirac structures as those L which satisfy L = L. At the other
extreme, we have

Definition 1.2.7. A generalized complex structure on (M,H) is a complex Dirac struc-
ture L which satisfies L ∩ L = 0.

We will study these in more detail later from a slightly different perspective.

1.2.1 Linear algebra
In order to understand Dirac structures on a manifold properly we first need to take a step
back and study them at the level of linear algebra. Hence, in this section we ignore any
integrability issues, and focus only on how Dirac structures look inside TxM for x ∈M .
To this end we fix a real vector space V of dimension m, playing the role of TxM , and
consider its double V = V ⊕ V ∗. The natural pairing 〈·, ·〉 on V is defined as before, and
the corresponding Clifford algebra acts again on Λ•V ∗.
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In this context a Dirac structure on V is simply a Lagrangian subspace of (V, 〈·, ·〉).
We will denote the space of all of them by Dir(V ), and similarly DirC(V ) will denote
the space of all complex Dirac structures on V (i.e. Lagrangian subspaces of VC with
respect to the complexified natural pairing). Given L ∈ Dir(V ), we can consider its
image E := π(L) ⊂ V , where π : V → V denotes the projection. There is an exact
sequence

0→ Ann(E)→ L
π→ E → 0,

where Ann(E) = {α ∈ V ∗| α|E = 0} = L∩ V ∗. Moreover, given a splitting s : E → L
of this sequence, we obtain a two-form ε ∈ Λ2E∗ defined by

ε(X,Y ) := −2〈s(X), Y 〉.

Phrased differently, for X ∈ E there is a ξ ∈ V ∗ with s(X) = X + ξ ∈ L, and
ε(X,Y ) = −ξ(Y ). Since L is isotropic, ε is skew, and since the difference of two
splittings takes values in Ann(E), ε is independent of s. Then L is completely determined
by the data (E, ε) because

L = L(E, ε) := {X + ξ ∈ E ⊕ V ∗| ξ|E = −ιXε}.

Indeed, both L and L(E, ε) are Lagrangian and L ⊂ L(E, ε) by construction, hence they
must be equal for dimensional reasons. Consequently, there is a one-to-one correspon-
dence between Dir(V ) and pairs (E, ε), with E ⊂ V and ε ∈ Λ2E∗. For complex Dirac
structures we have the same description, but with E ⊂ VC.

Definition 1.2.8. The type of a Dirac structure L is the real codimension of π(L) in V .
Similarly, the type of a complex Dirac structure L is the complex codimension of π(L) in
VC.

The description of Dirac structures in terms of pairs (E, ε) does not shed much light on
the topology of Dir(V ), mainly because the type is not the same for all Dirac structures.
To gain additional insight into Dir(V ) we study it as a homogeneous space for O(V), the
group of orthogonal transformations with respect to 〈·, ·〉. First, we claim that O(V) acts
transitively on Dir(V ). Indeed, given any L ∈ Dir(V ), choose a Dirac structure L̃ which
is complementary to L, i.e. L ⊕ L̃ = V. We will see later that such an L̃ always exists.
The natural pairing then identifies L̃ ∼= L∗, and given any vector space isomorphism
A : V → L the induced map

g : V = V ⊕ V ∗ A⊕(A−1)∗−−−−−−−→ L⊕ L∗ ∼= L⊕ L̃ = V

lies in O(V) and satisfies g(V ) = L. In particular, Dir(V ) ∼= O(V)/Stab(L) for any
L ∈ Dir(V ), where Stab(L) = {g ∈ O(V)| gL = L}. This description is still not
very insightful, especially since the groups involved are rather large (e.g. they are non-
compact). It is possible to give a more economical description using compact groups, but
before doing so we first explain how the special subgroups of SO(V) given by (1.6)-(1.8)
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act on Dir(V ). Here SO(V) is the connected component of the identity in O(V). For
A ∈ GL+(V ), we denote by A ∈ SO(V) the map given by

A : V ⊕ V ∗ A⊕(A−1)∗−−−−−−−→ V ⊕ V ∗.

Then, for L = L(E, ε) we have

A(L(E, ε)) = L(AE, (A−1)∗ε). (1.25)

Next, for B ∈ Λ2V ∗ we have

eB∗ L(E, ε) = L(E, ε+B|E). (1.26)

Combining (1.25) and (1.26), we deduce that for any L,L′ ∈ Dir(V ) with the same type
there is a g ∈ SO(V) with gL = L′. It remains to study the effect of a transformation eβ∗
for β ∈ Λ2V . For this it is convenient to take a dual point of view. Let πV ∗ : V → V ∗

denote the other projection and consider F := πV ∗(L). As above, we obtain a two-form
γ ∈ Λ2F ∗ such that

L = L(F, γ) := {X + ξ ∈ V ⊕ F | X|F = ιξγ}.

Then, similar to (1.26), we have eβ∗L = L(F, γ + β|F ). Note that if both L = L(F, γ)
and L = L(E, ε), we have E ⊃ Ann(F ) = L ∩ V and

E/Ann(F ) ⊂ V/Ann(F ) ∼= F ∗

coincides with the image of γ : F → F ∗. In particular, dim(E) = codim(F ) + rank(γ).
Since a transformation eβ∗ fixes F but changes γ, we see that the type of L is not fixed by
eβ∗ . As skew-symmetric maps have even rank, this change of type will only happen in even
amounts. Consequently, for any two L,L′ ∈ Dir(V ) whose types agree modulo 2, there
is a g ∈ SO(V) with gL = L′. In particular, they lie in the same connected component
of Dir(V ). The same statement holds for complex Lagrangians as well. We will see
below that Dirac structures whose types have different parity are in different components
of Dir(V ).

Dirac structures in terms of generalized metrics

To obtain an efficient description of Dir(V ) and DirC(V ) we will use a fixed generalized
metric on V, i.e. a decomposition V = V+ ⊕ V− where V+, V− are mutually orthogonal
subspaces on which 〈·, ·〉 is positive and negative definite respectively. At this point the
story is a little different for real and complex Dirac structures and we start with the real
case. Since Dirac structures are isotropic they have zero intersection with both V+ and
V−, so they can be written uniquely as the graph of a map a : V+ → V−. Such a graph is
Lagrangian if and only if a is an isometry with respect to the metrics±〈·, ·〉 on V±. Hence
Dir(V ) ∼= O(m), albeit non-canonically. Let us be more specific and choose a generalized
metric of the form (1.24), for g a metric on V and with b = 0. Then V± = graph(±g), and
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via the isomorphism π : (V±,±〈·, ·〉)→ (V, g) we obtain a bijection between isometries
a : (V+, 〈·, ·〉) → (V−,−〈·, ·〉) and isometries A : (V, g) → (V, g). The Lagrangian
corresponding to a is then, in terms of A, given by

L(A) := {X +AX + g(X −AX)| X ∈ V }.

Note that L(Id) = V and L(−Id) = V ∗. Moreover, L(−A) is complementary to L(A),
showing that indeed all Dirac structures have a Dirac complement. Since π(L(A)) =
Im(1 +A), we obtain

type(L(A)) = dim(ker(1 +A)).

This is precisely the multiplicity of −1 as an eigenvalue for A, which modulo 2 is con-
stant on the connected components of O(m). We summarize the above discussion in the
following corollary.

Corollary 1.2.9. Dir(V ) is diffeomorphic to O(m), where m = dim(V ). It has two
connected components, corresponding to Dirac structures of even and odd types.

A similar trick can be done for complex Lagrangians but we have to be a bit careful, for
when we complexify the natural pairing we lose its split signature; all non-degenerate
bilinear forms over C are equivalent. Start again with a generalized metric G induced by
a metric g on V , so that V = V+ ⊕ V−. Inside VC, the spaces (V+)C and (V−)C contain
isotropic subspaces. However, V+⊕ iV− and iV+⊕ V− are positive and negative definite
respectively. The same reasoning as before thus applies, and we can write any complex
Lagrangian L as the graph of a map from V+ ⊕ iV− to iV+ ⊕ V−. For convenience we
rewrite this into a map from V+ ⊕ V− to itself, i.e. simply an endomorphism of V. We
obtain

L = L(J ) :=
{(1 0

0 i

)
(u− iJ u)| u ∈ V

}
(1.27)

for some endomorphism J : V→ V. The matrix in this expression is taken with respect
to the decomposition VC = (V+)C ⊕ (V−)C. For (1.27) to define a complex subspace of
VC we need J 2 = −1, i.e. J has to be a complex structure on V. Then, for L(J ) to be
Lagrangian we need

0 = 〈
(

1 0
0 i

)
(u− iJ u),

(
1 0
0 i

)
(u− iJ u)〉 = 〈G(u− iJ u), u− iJ u〉 ∀u ∈ V,

which is equivalent to J being orthogonal with respect to the positive definite metric
G induced by G on V (see (1.22)). Hence, DirC(V ) is diffeomorphic to the space of
complex structures on V which are compatible with G. Note that the Dirac structure VC
corresponds to the complex structure

JV : (X + gX)⊕ (Y − gY ) 7→ −(Y + gY )⊕ (X − gX), (1.28)
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in terms of the decomposition V = V+ ⊕ V−. Dually, V ∗C corresponds to −JV . Again,
for arbitrary J , L(−J ) is complementary to L(J ). In general, the space of all complex
structures on a 2m-dimensional vector space which are compatible with a given positive
definite metric is diffeomorphic to O(2m)/U(m). This has two connected components,
distinguished from each other by the induced orientation on the vector space. Specifically,
a complex structure J on V induces an orientation on V by declaring a basis of the form
u1,J u1, . . . , um,J um to be positive. But V already comes with a natural orientation,
defined by declaring a basis of the form e1, . . . , em, e

1, . . . em to be positive, where ei, ei

is a dual basis for V and V ∗. We say that the orientation induced by J is +1 if it agrees
with the canonical orientation and −1 otherwise. Accordingly, DirC(V ) decomposes into
two connected components. Because structures whose types have the same parity are in
the same component, there must be a direct relation between the parity of L(J ) and the
orientation induced by J . To understand this, it suffices to consider one specific Dirac
structure, say VC ∈ DirC(V ). This has type 0, and the associated complex structure is
given (1.28). To see what orientation it induces we pick an orthonormal basis e1, . . . , em
on V , with dual basis e1, . . . , em. Then, a positive basis with respect to JV is given by
e1 + e1, e1− e1, . . . , em + em, em− em. A quick calculation yields that this basis differs
from the canonical orientation of V by the sign (−1)

1
2m(m+1).

Corollary 1.2.10. Let G be a generalized metric on V . Then, if m = dim(V ),

DirC(V ) ∼= {J : V→ V| J 2 = −1, G(J u,J v) = G(u, v)} ∼= O(2m)/U(m).

Moreover, the type of the Dirac structure L(J ) is even if and only if the orientation
induced by J equals (−1)

1
2m(m+1).

Dirac structures in terms of spinors

We give yet another description of Dir(V ) and DirC(V ), this time in terms of spinors.
Given a nonzero spinor ρ ∈ Λ•V ∗ we can consider its annihilator

Lρ := Ann(ρ) = {u ∈ V| u · ρ = 0}.

For u, v ∈ Lρ we have 0 = {u, v} · ρ = 2〈u, v〉ρ, and since ρ 6= 0 we see that Lρ is
isotropic. If Lρ is maximal, i.e. dim(Lρ) = m, we call ρ a pure spinor. Note that two
spinors that are proportional to each other define the same annihilator.

Lemma 1.2.11. For every Dirac structure there is a unique line of pure spinors in Λ•V ∗

having L as its annihilator. The same is true for DirC(V ) and complex lines of pure
spinors in Λ•V ∗C . If L = L(E, ε), the pure spinors associated to L are those of the form
ρ = eB ∧ Ω where Ω ∈ det(Ann(E)) := Λtop(Ann(E)) is nonzero and B|E = ε.

Proof. Let L = L(E, ε) be any Dirac structure. Choose B ∈ Λ2V ∗ with B|E = ε, so
that L = eB∗ L(E, 0). Then, by compatibility of the Clifford multiplication with symme-
tries, i.e. (1.19), it suffices to describe all spinors for L(E, 0) = E ⊕ Ann(E). Let ρ be
any spinor and write ρ = ρ0 + . . . + ρm for its decomposition into degrees. Then ρ is
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annihilated by L(E, 0) if and only if it is annihilated by E and Ann(E) separately, which
amounts to ιXρi = 0 = ξ ∧ ρi for all i and X ∈ E, ξ ∈ Ann(E). These two conditions
together enforce ρ ∈ det(Ann(E)). In particular, det(Ann(E)) is the unique line of pure
spinors that has L(E, 0) as its annihilator, and so eBdet(Ann(E)) is the unique line of
pure spinors for L.

Note that ρ will have mixed degree in general, but it will always be either even or odd. In
fact, the type of L is given by the degree of Ω, and so the parity of L agrees with the parity
of ρ. Observe that when writing ρ = eB ∧Ω, the form Ω is unique up to scalar multiples,
but we can add to B any two-form B′ whose restriction to E vanishes, i.e. B′ ∧ Ω = 0.

Remark 1.2.12. Let L ∈ Dir(V ) with corresponding spinor line K, and fix a comple-
mentary L̃ ∈ Dir(V ). We can act repeatedly with L̃ on K, obtaining the subspaces
ΛkL̃ · K ⊂ Λ•V ∗. The natural pairing induces an isomorphism L̃ ∼= L∗, and for
u1, . . . , ul ∈ L, v1, . . . , vk ∈ L̃ and ρ ∈ K\0 we have

ul · . . . · u1 · v1 · . . . · vk · ρ =

{
det
(
(2〈ui, vj〉)i,j

)
ρ if l = k,

0 if l > k.

From this it follows that Clifford multiplication Λ•L̃ → Λ•L̃ · K ⊂ Λ•V ∗ is injective,
hence bijective for dimensional reasons. Consequently, we obtain a decomposition

Λ•V ∗ =

m⊕
k=0

ΛkL̃ ·K. (1.29)

Since forms in K might have mixed degree this decomposition is not compatible with the
Z-grading of Λ•V ∗. Nevertheless, there is a Z2-grading on the right-hand side, because
the parity of forms in K is either even or odd and the Clifford multiplication by elements
of L̃ changes parity by one. Although (1.29) depends on the choice of L̃, the subspaces⊕

l≤k ΛlL̃ ·K ⊂ Λ•V ∗ depend only on L, as can be seen from⊕
l≤k

ΛlL̃ ·K = {ψ ∈ Λ•V ∗| u1 · . . . · uk+1 · ψ = 0 ∀u1, . . . , uk+1 ∈ L}. (1.30)

We will use this in the next section to discuss the integrability of Dirac structures.

We now have a couple of different descriptions of Dirac structures and the following
lemma describes how to recognize the generalized complex ones in each of these (see
Definition 1.2.7).

Lemma 1.2.13. Let L = L(E, ε) = L(J ) be a complex Dirac structure with type(L) =
k, and let ρ = eB+iω ∧ Ω be a spinor8 for L. Then the following are equivalent.

i) L is generalized complex.

8HereB and ω are real two-forms and Ω is a complex form of degree k = type(L). See also Lemma 1.2.11.
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ii) E + E = VC and Im(ε)|E∩E is non-degenerate.

iii) (ρ, ρ)Ch = (−1)
1
2k(k−1)(2iω)

m
2 −k ∧ Ω ∧ Ω 6= 0.

iv) JG + GJ is invertible, where G is the generalized metric that is used to write
L = L(J ) (see (1.27)).

Proof. i)⇔ ii): We have

L(E, ε) ∩ L(E, ε) = {X + ξ| X ∈ E ∩ E, ξ|E = −ιXε, ξ|E = −ιXε}.

For this to be zero we need the above three conditions on X and ξ to have 0 as their only
common solution. Clearly X = 0 and ξ ∈ Ann(E + E) is always a solution, so we
definitely need E+E = VC. Then, on E ∩E we have−ιX(ε− ε) = 0, and we need this
to enforce X = 0. This is equivalent to saying that Im(ε)|E∩E is non-degenerate.
ii)⇔ iii): E + E = VC if and only if 0 = Ann(E + E) = Ann(E) ∩ Ann(E), which
is equivalent to Ann(E) and Ann(E) being linearly independent, i.e. Ω ∧ Ω 6= 0. In that
case we have E ∩ E = ker(Ω ∧ Ω), whose complex dimension equals m− 2k. We have
(B + iω)|E = ε, so Im(ε) = ω|E . Then ω|E∩E is non-degenerate if and only if its top
power (ω|E∩E)

m−2k
2 is nonzero, which is equivalent to ω

m
2 −k ∧ Ω ∧ Ω 6= 0 in ΛmV ∗.

i)⇔ iv): We have

L ∩ L =
{
z ∈ VC| z =

(
1 0
0 i

)
(u− iJ u) =

(
1 0
0 −i

)
(v + iJ v) for some u, v ∈ V

}
.

The equation relating u and v can be rewritten as u− iJ u = G(v+ iJ v), which implies
that u = Gv and so −JGv = GJ v. Consequently, L∩L = 0 if and only if JG + GJ is
invertible.

Remark 1.2.14. Note that the existence of a generalized complex structure on V implies
that m is even. The space E ∩ E is invariant under complex conjugation, so it equals the
complexification of a real subspace (E ∩ E)R ⊂ V . The lemma tells us that this space
comes equipped with a symplectic structure. Moreover, the quotient V/(E∩E)R inherits
a complex structure from the decomposition

(
V/(E∩E)R

)
C = E/(E∩E)⊕E/(E∩E).

Hence, generalized complex structures on V can be thought of as symplectic subspaces
of V together with a complex structure on the quotient.

Functoriality

We end this linear algebra discussion by explaining how to transport Dirac structures from
one vector space to another by linear maps. Let A : V → W be a linear map. It induces
maps

FA : Dir(V )→ Dir(W ), BA : Dir(W )→ Dir(V ), (1.31)

called the forward- and backward image by A, respectively. They are defined as follows.
For LV ∈ Dir(V ) and LW ∈ Dir(W ) we set

FA(LV ) := {AX + η| X +A∗η ∈ LV }, BA(LW ) := {X +A∗η| AX + η ∈ LW }.
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To see that the outcomes are again Dirac, write LV = L(F, γ) and LW = L(E, ε),
for F ⊂ V ∗, γ ∈ Λ2F ∗ and E ⊂ W , ε ∈ Λ2E∗. We can regard A as a map A :
A−1E → E and A∗ as a map A∗ : (A∗)−1F → F , and as such consider the elements
A∗ε ∈ Λ2(A−1E)∗ and Aγ = (A∗)∗γ ∈ Λ2((A∗)−1F )∗. Then we have

Lemma 1.2.15. FA(LV ) = L((A∗)−1F,Aγ) and BA(LW ) = L(A−1E,A∗ε).

Proof. Both statements are dual to each other so it suffices to prove one of them, say the
second. We have

BA(LW ) = {X +A∗η| AX ∈ E, η|E = −ιAXε},

and we need to show that this coincides with

L(A−1E,A∗ε) = {X + ξ| X ∈ A−1E, ξ|A−1E = −ιX(A∗ε)}.

From these two expressions it is clear that BA(LW ) ⊂ L(A−1E,A∗ε). Conversely, for
X + ξ ∈ L(A−1E,A∗ε) we first observe that ξ ∈ Ann(Ker(A)), hence ξ = A∗η̃ for
some η̃ ∈ W ∗. This η̃ need not satisfy η̃|E = −ιAXε, but it will do so on the smaller
subspace E ∩ Im(A). In particular, η̃|E + ιAXε ∈ Ann(E ∩ Im(A)) ⊂ E∗, and we can
choose an extension α ∈ Ann(Im(A)) = Ker(A∗). Then ξ = A∗η, where η := η̃ − α
does satisfy η|E = −ιAXε, hence X + ξ ∈ BA(LW ).

Example 1.2.16. If LW = eω∗ (W ) is the graph of a two-form ω ∈ Λ2W ∗, it follows
from the lemma that BA(LW ) = eA

∗ω
∗ (V ), the graph of the pull-back of ω. Dually, if

LV = eπ∗ (V
∗) is the graph of a bivector π ∈ Λ2V , we have FA(eπ∗ (V

∗)) = eAπ∗ (W ∗),
the graph of the push-forward Aπ ∈ Λ2W of π.

Remark 1.2.17. If A : V →W and B : W → Z are linear maps, we have

BA(BB(LZ)) = B(BA)(LZ) and FB(FA(LV )) = F(BA)(LV ).

This follows immediately from the definition, but also from the previous lemma.
If L1 and L2 are Dirac structures on V , their product L1×L2 ⊂ V×V is a Dirac structure
on V × V . We can take the backward image along the diagonal map ∆ : V → V × V to
obtain a new Dirac structure called the Baer sum;

L1 � L2 := B∆(L1 × L2) = {X + ξ + η| X + ξ ∈ L1, X + η ∈ L2}.

The Baer sum is associative, and we have V �L = L and V ∗�L = V ∗. So, (Dir(V ),�)
is a semi-group with identity given by V , and an “infinity” given by V ∗. Moreover,
L(E, ε)�L(E, ε′) = L(E, ε+ ε′), hence for these Dirac structures � acts as some kind
of addition. It is also possible to multiply Dirac structures by nonzero numbers. Given
t 6= 0 we can form t · L := {X + tξ| X + ξ ∈ L}, and clearly t · L(E, ε) = L(E, tε).
Define the transpose of L by

LT := (−1) · L = {X − ξ| X + ξ ∈ L}. (1.32)

From L(E, ε)T = L(E,−ε) we see that if ρ is a spinor for L, then ρT is a spinor for LT .
Here ρT is the transpose of ρ, defined in (1.21).
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1.2.2 Integrability

We return to the context of Dirac structures on smooth manifolds. Let L be a real or
complex almost Dirac structure on M . We can regard L as a family of Dirac structures in
TxM , varying smoothly with x. Associated to L is its type, which now is a function on
M . From Corollaries 1.2.9 and 1.2.10 we deduce

Corollary 1.2.18. The type of L is, modulo 2, constant on connected components of M .

If the type of L is constant, E := π(L) ⊂ TM is of constant rank and hence a smooth
subbundle. Choosing a smooth section s : E → L we obtain a two-form ε ∈ Γ(Λ2E∗)
as before, and again L = L(E, ε). Then L(E, ε) is integrable if and only if E ⊂ TM is
involutive and dε + H|E = 0. Here dε ∈ Γ(Λ3E∗) denotes the leafwise derivative of ε,
defined by

dε(X,Y, Z) := X(ε(Y, Z))− ε([X,Y ], Z) + cyclic permutations, X, Y, Z ∈ Γ(E).

The proof of this integrability criterion is straightforward but it is not very useful in gen-
eral, as a lot of interesting Dirac structures exhibit type change.

A more convenient description can be given in terms of spinors. We know that at
each point x ∈ M there is a unique spinor line in Λ•T ∗xM corresponding to Lx. These
spinor lines fit together into a smooth line subbundle of Λ•T ∗M . One way to see this
is as follows. The connected component of Dir(TxM) containing Lx, for x ∈ M fixed,
has the form SO(TxM)/Stab(Lx). We can choose a local section s of the submersion
Spin(TxM) → SO(TxM)/Stab(Lx) that maps Lx to Id. Here the group Spin(TxM),
together with its double cover to SO(TxM) and its action on spinors was discussed in
Section 1.1.3. Then, regarding L on a neighborhood U of x as a smooth map L : U →
Dir(TxM), we have Ly = s(L(y)) · Lx for y ∈ U . In particular, we can define ρy :=
s(L(y)) · ρx, for ρx a nonzero spinor for Lx, and this defines a smooth spinor on U for L.

Lemma 1.2.19. Let L be a (complex) almost Dirac structure. Then L is integrable if
and only if for every local nonzero spinor ρ we have dHρ = u · ρ for some u ∈ Γ(TM)
(respectively u ∈ Γ(TMC)).

Proof. The almost Dirac structure L is integrable if and only if for all u, v ∈ Γ(L) we
have Ju, vK ∈ Γ(L), i.e. Ju, vK · ρ = 0. Using (1.18) and the fact that u · ρ = v · ρ = 0,
we get

Ju, vK · ρ = {{u, dH}, v} · ρ = −v · u · dHρ.

We see that L is integrable precisely when v · u · dHρ = 0 for all u, v ∈ L. If L̃ is a
complementary almost Dirac structure, not necessarily integrable, it induces the splitting
(1.29). From (1.30) we deduce that L is integrable if and only if dHρ ∈ Rρ⊕ L̃ · ρ. Since
dHρ and ρ have different parity, this is equivalent to dHρ ∈ L̃ · ρ. Since TM = L ⊕ L̃
and L annihilates ρ we have L̃ · ρ = TM · ρ, which proves the lemma.
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1.2.3 Functoriality
Given a map Φ = (ϕ,B) : (M1, H1)→ (M2, H2), we would like to know to what extent
Dirac structures can be pulled-back or pushed-forward under Φ. We already know how
to do that on the level of linear algebra, and now we study this on the level of smooth
manifolds. Throughout we will be talking about real Dirac structures, but all statements
hold equally well in the complex case.

In order to avoid potential confusion between the pull-back as an ordinary vector bun-
dle we will use the terminology from [8], which is also the reference for more information
about this topic. Let L2 be a Dirac structure on (M2, H2). We define the backward image
of L2 along Φ by

BΦ(L2) : = {u ∈ TM1|u ∼Φ v for some v ∈ L2} (1.33)
= {X + ϕ∗η − ι

X
B| ϕ∗X + η ∈ L2}.

Note that BΦ(L2) = eB∗
(
Bϕ(L2)

)
, where ϕ = (ϕ, 0) : (M1, ϕ

∗H2) → (M2, H2), and
for each x ∈M1, Bϕ(L2)x is nothing but the backward image of (L2)ϕ(x) along the map
ϕ∗ : TxM1 → Tϕ(x)M2 in the sense of (1.31). It thus follows from Lemma 1.2.15 that
BΦ(L2) defines a Lagrangian subspace of TxM1 over each point x ∈M1. Unfortunately
though, it is not always smooth.

Example 1.2.20. Let L2 = ∆ ⊕ Ann(∆) be the Dirac structure associated to a foliation
∆ on M2. Then by Lemma 1.2.15, Bϕ(L2) = ϕ−1

∗ ∆ ⊕ Ann(ϕ−1
∗ ∆). This is smooth if

and only if ϕ−1
∗ ∆ has constant rank on M1, which is not always the case.

We will now describe a sufficient condition that guarantees the smoothness of BΦ(L2).
From the definition of BΦ(L2) it follows that there is a short exact sequence

0→ ker(ϕ∗) ∩ ϕ∗L2 → ΓΦ ∩
(
TM1 ⊕ ϕ∗L2

) p1→ BΦ(L2)→ 0, (1.34)

where the graph ΓΦ was defined in (1.15), and p1 : TM1 ⊕ ϕ∗TM2 → TM1 denotes the
projection. Note again the double usage of the symbol ϕ∗; it denotes both the pull-back of
forms as well as the pull-back of vector bundles. The first two objects in this sequence are
intersections of smooth vector bundles, hence they are smooth precisely when their ranks
are constant. In that case we are guaranteed that BΦ(L2) is smooth, being the quotient
of a bundle map of constant rank. Since the sequence is exact, the alternating sum of the
ranks is zero. Moreover, BΦ(L2) has constant rank because it is Lagrangian, even when
it is singular. Hence, we obtain the following sufficient criterion for smoothness:

If ker(ϕ∗) ∩ ϕ∗L2 has constant rank then BΦ(L2) is smooth. (1.35)

Example 1.2.21. Consider again the case of a foliation L2 = ∆⊕ Ann(∆). In that case

ker(ϕ∗) ∩ ϕ∗L2 = ker(ϕ∗) ∩ ϕ∗Ann(∆) = ker(ϕ∗|Ann(∆)) = Ann
(
∆ + Im(ϕ∗)

)
.

Since rank
(
∆ + Im(ϕ∗)

)
= dim(M1) + rank(∆) − rank(ϕ−1

∗ ∆), ker(ϕ∗) ∩ ϕ∗L2 is of
constant rank if and only if ϕ−1

∗ ∆ is of constant rank on M1.
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Contrarily to what this example seems to suggest, (1.35) is not a necessary condition for
smoothness in general. Example 1.3.24 below will demonstrate this.

Lemma 1.2.22 ([8, Proposition 5.6]). If BΦ(L2) is smooth then it is automatically Dirac.

Proof. Since BΦ(L2) = eB∗
(
Bϕ(L2)

)
we may assume that B = 0. By Remark 1.2.5

we know that integrability is equivalent to the vanishing of the Nijenhuis tensor, and it
suffices to check this on some open dense set U ⊂ M1. By Lemma 1.1.7 it suffices to
show that for each x0 ∈ U and each element ux0

∈ Bϕ(L2)x0
, there is a local section u

of Bϕ(L2) around x0 which is ϕ-related to a local section v of L2 around ϕ(x0). Let

U := {x ∈M1| ϕ∗ and ker(ϕ∗) ∩ ϕ∗L2 have constant rank around x}.

Then U is open and dense and for x0 ∈ U the constant rank theorem for smooth maps
gives us a neighborhood of x0 of the form Ra × Y , together with a factorization

Ra × Y → Y ↪→ Y × Rb ⊂M2

of ϕ|Ra×Y into a submersion followed by an immersion. For ux0
∈ Bϕ(L2)x0

we first
pick an extension u ∈ Γ(Bϕ(L2)|Y ). Since Bϕ(L2) is smooth and ker(ϕ∗) ∩ ϕ∗L2

has constant rank, (1.34) is a sequence of vector bundles and we can pick a local smooth
pre-image for u under p1. In particular, this gives a v ∈ Γ(L2|Y ) which is ϕ-related to
u. We extend u in a constant way to a section defined over Ra × Y , which is then still
ϕ-related to v. Extending v in an arbitrary way to a section of L2 over Y ×Rb, we obtain
the desired ϕ-related sections.

If ρ2 is a local spinor for L2 then eB(ϕ∗ρ2) is annihilated by BΦ(L2) and so forms a
local spinor for the latter, provided it is nonzero. The latter can be verified as follows. If
we write ρ2 = eB+iω ∧ Ω at a particular point, then ϕ∗ρ2 6= 0 if and only if ϕ∗Ω 6= 0.
Since Ω ∈ Λtop(T ∗M2 ∩ L2), this amounts to the restriction of ϕ∗ to T ∗M2 ∩ L2 being
injective, which is equivalent to

ker(ϕ∗) ∩ ϕ∗L2 = 0. (1.36)

Hence, (1.36) not only guarantees smoothness of BΦ(L2), but also that pull-backs of
spinors for L2 are spinors for the backward image. The converse is true as well; if the
pull-back of a spinor for L2 is nonzero, then the backward image is smooth and defined
by that spinor.

In a similar fashion there is the forward image of a Dirac structure L1 on (M1, H1),
defined by

FΦ(L1) : = {v ∈ ϕ∗TM2|u ∼Φ v for some u ∈ L1} (1.37)
= {ϕ∗X + ξ| X + ϕ∗ξ − ιXB ∈ L1} ⊂ ϕ∗TM2.

Again we have FΦ(L1) = Fϕ(e−B∗ L1), and there is a short exact sequence

0→ L1 ∩ eB∗
(
ker(ϕ∗)

)
→ ΓΦ ∩

(
L1 ⊕ ϕ∗TM2

) p2→ FΦ(L1)→ 0,
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where now p2 denotes the projection to ϕ∗TM2. By the same argument as for backward
images, we obtain the following sufficient criterion for smoothness:

If ker(ϕ∗) ∩ e−B∗ L1 has constant rank then FΦ(L1) is smooth. (1.38)

Still, even if FΦ(L1) ⊂ ϕ∗TM2 is smooth, it is not guaranteed that it defines a subbun-
dle of TM2. Let us address this issue only in the case where ϕ is a surjective submer-
sion, as that is the only case in which we shall need the forward image. Then, we need
FΦ(L1) to be invariant on the fibers of ϕ. More precisely, for fixed y ∈ M2, we need
FΦ(L1)x = FΦ(L1)x′ for all x, x′ ∈ ϕ−1(y). Note that this is an equality between
Lagrangian subspaces of TyM2. If this is the case we can define, unambiguously, the
forward image on M2 by FΦ(L1)y := FΦ(L1)x for any x ∈ ϕ−1(y). To see that this
is smooth on M2, we pick a local section s of ϕ and observe that FΦ(L1) = s∗FΦ(L1)
inside9 s∗ϕ∗TM2 = TM2. Similar to Lemma 1.2.22, the result is then automatically
integrable on M2.

Lemma 1.2.23. Let (ϕ,B) : (M1, H1) → (M2, H2) be a map such that ϕ : M1 → M2

is a surjective submersion with connected fibers. Suppose that ker(ϕ∗) ⊂ e−B∗ L1 and that
ιX(H + dB) = 0 for all X ∈ ker(ϕ∗). Then FΦ(L1) ⊂ ϕ∗TM2 is smooth and constant
on the fibers of ϕ. If ρ2 is a form on M2 such that eBϕ∗ρ2 is a spinor for L1, then ρ2 is a
spinor for FΦ(L1).

Proof. Since ker(ϕ∗) ∩ e−B∗ L1 = ker(ϕ∗) is of constant rank, FΦ(L1) is smooth by
(1.38). To show that it is constant on fibers it suffices, by connectivity of the fibers, to
check this locally. Let X be a local vector field on M1 which is tangent to the fibers, i.e.
ϕ∗X = 0. By assumption, X ∈ Γ(e−B∗ L1), so by integrability of the latter (with respect
to H + dB), we deduce from Lemma 1.1.5 that e−B∗ L1 is invariant under the flow ψt of
X . Since by assumption ιX(H + dB) = 0, we have ψt = ϕt∗ (see (1.14)) where ϕt is
the flow of X . In particular,

Fϕ((e−B∗ L1)ϕt(x)) = FϕFϕt((e
−B
∗ L1)x) = F(ϕ ◦ ϕt)((e−B∗ L1)x) = Fϕ((e−B∗ L1)x),

which shows that the push-forward is indeed constant along the fibers of ϕ. The last
statement follows from immediate computations, using that ϕ∗ is injective on forms.

Remark 1.2.24. For maps Φ1 and Φ2 we have BΦ2 ◦ BΦ1 = B(Φ1 ◦ Φ2) and FΦ1 ◦
FΦ2 = F(Φ1 ◦ Φ2). Moreover, if ϕ is invertible, then BΦ = F(Φ−1) and FΦ(L1) =
ϕ∗(e

−B
∗ (L1)) if Φ = (ϕ,B).

As in Section 1.2.1 we can use the diagonal map ∆ : (M,H1 + H2) → (M,H1) ×
(M,H2) to define the Baer sum of Dirac structures

L1 � L2 := B∆(L1 × L2) = {X + ξ + η| X + ξ ∈ L1, X + η ∈ L2}.

From (1.35) we see that it is smooth whenever T ∗M ∩ L1 ∩ L2 has constant rank. Note
that there is a natural map L1×TM L2 → L1�L2 given by (X+ξ,X+η) 7→ X+ξ+η,

9To be precise, the left-hand FΦ(L1) refers to the one we just defined onM2, while the right-hand FΦ(L1)
refers to the subbundle of ϕ∗TM2.
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which is an isomorphism if and only if L1 ∩ L2 ∩ T ∗M = 0. The latter condition also
ensures that for (local) spinors ρ1, ρ2 for L1, L2, the product ρ1 ∧ ρ2 does not vanish and
forms a spinor for L1 � L2 (see the discussion above (1.36)).

1.3 Generalized complex structures
Recall that a complex structure on a manifold M can be defined as a complex structure
on TM , i.e. an endomorphism I : TM → TM with I2 = −1, for which the (+i)-
eigenbundle T 1,0M is involutive for the Lie bracket of vector fields, i.e.

[Γ(T 1,0M),Γ(T 1,0M)] ⊂ Γ(T 1,0M).

Replacing TM by TM and the Lie bracket by the Courant bracket, we obtain

Definition 1.3.1. A generalized complex structure on (M,H) is a complex structure J
on TM such that its (+i)-eigenbundle L ⊂ TMC is involutive, i.e. JΓ(L),Γ(L)K ⊂ Γ(L).

The bundle L is involutive and satisfies L ∩ L = 0, but for L to be Dirac we need it to
be isotropic. This is equivalent to J being orthogonal with respect to the natural pairing.
Somewhat surprisingly, this is already implied by the integrability condition.

Lemma 1.3.2 ([24, Proposition 2.8]). Let L ⊂ TMC be an involutive subbundle. Then L
is either isotropic or of the form π−1(∆) for some integrable distribution ∆ ⊂ TMC.

Proof. Suppose that L is not isotropic. Then there is a point x ∈ M and a u ∈ Lx with
〈u, u〉 6= 0. Extend u to a local section of L and let f be any function on M . Then, by
Lemma 1.1.1,

Jfu, uK = fJu, uK− (π(u) · f)u+ 2〈u, u〉df.

Since L is involutive and 〈u, u〉 is nonzero at x we obtain dxf ∈ Lx. Hence, T ∗xM ⊂ Lx
and so Lx = π−1(∆x) where ∆x := π(Lx) 6= 0. But then the rank of L is bigger than
m = dim(M), implying that it can not be isotropic at any point of M . Consequently, the
above trick applies at every point and we obtain T ∗M ⊂ L and so L = π−1(∆) where
∆ = π(L).

If J is generalized complex and L the associated (+i)-eigenbundle, the rank of L is m
as a consequence of the equation L⊕L = TMC. Therefore, by the lemma, L is isotropic
and hence Dirac. In particular, Definitions 1.3.1 and 1.2.7 are equivalent, i.e. there is
a one-to-one correspondence between generalized complex structures J and complex
Dirac structures L satisfying L ∩ L = 0. The latter condition on L is also referred to as
non-degeneracy. Occasionally we will talk about almost generalized complex structures,
which by definition are complex structures on TM which are orthogonal with respect to
〈·, ·〉, but with no integrability condition. These correspond to non-degenerate complex
almost Dirac structures. In section 1.2.2 we saw that Dirac structures L can also be
described by certain line bundles K ⊂ Λ•T ∗MC. For convenience we collect the three
equivalent descriptions of generalized complex structures in the following lemma.
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Lemma 1.3.3. There is a one-to-one correspondence between

• Generalized complex structures J .

• Complex Dirac structures L which are non-degenerate, i.e. L ∩ L = 0.

• Complex line bundles K ⊂ Λ•T ∗MC which satisfy the following three conditions:
i) K is pointwise spanned by spinors of the form

eB+iω ∧ Ω, (1.39)

where B,ω are real two-forms and Ω is a complex decomposable10 form.
ii) If ρ is a local section of K then dHρ = u · ρ for some u ∈ Γ(TMC).
iii) For every 0 6= ρx ∈ Kx we have (ρx, ρx)

Ch
= (ρx ∧ ρxT )top 6= 0.

The relation between J and L was explained above, while L and K are related via

L = {u ∈ TMC| u ·K = 0}.

The line bundle K associated to a generalized complex structure is called its canonical
line bundle. The degree of the form Ω appearing in (1.39) coincides with the type of the
Dirac structure L, and we will call it the type of J at x. We can give another description
of it in terms of J alone. Consider the map πJ given by

πJ : T ∗M
π∗→ TM J−→ TM π→ TM. (1.40)

Lemma 1.3.4. πJ is a Poisson structure on M .

Proof. Since β(πJ(α)) = 2〈β, Jα〉 is skew in α and β, πJ is skew and therefore given
by a bivector on M . Let L denote the (+i)-eigenbundle for J , and LT its transpose
defined in (1.32). Then

L� L
T

= {X + ξ + η| X + ξ ∈ L, X − η ∈ L}.

For such elements we have J (X + ξ) = i(X + ξ) and J (X − η) = −i(X − η).
Subtracting these equations from each other yields J (ξ + η) = i(2X + ξ − η), so in
particular 2iX = πJ (ξ + η). Hence L � L

T ⊂ e
−iπJ /2
∗ T ∗MC, and since both sides

are Lagrangian they must be equal. As L � L
T

is integrable with respect to the zero
three-form, we deduce from Example 1.2.3 that πJ is Poisson.

Note that πJ is an invariant of J in the sense that it is unchanged when we conjugate
J by a B-field transformation. The Poisson structure πJ induces a (possibly singular)
foliation on the manifold, with leaves that carry symplectic structures. The conormal
bundle to such a symplectic leaf agrees with the kernel of πJ and is given by

νJ := T ∗M ∩ J T ∗M.

10A differential form is called decomposable if it can be written as a product of one-forms.
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In general it might be singular, as its rank may vary from one point to the next. Since J
induces a complex structure on νJ , we can picture a generalized complex structures as
a possibly singular foliation of M , with symplectic leaves and with transverse complex
structures, integrable in a suitable sense. The type of J then coincides with the number
of transverse complex directions;

typex(J ) = dimC(νJ )x. (1.41)

This description coincides with the one given in Remark 1.2.14 at every point.
Next we give some examples of generalized complex structures.

Example 1.3.5. Let I be an almost complex structure on M . It defines an almost gener-
alized complex structure

JI :=

(
−I 0
0 I∗

)
. (1.42)

The corresponding almost Dirac structure is given by LI = T 0,1M ⊕ T ∗1,0M . It is
integrable with respect to J·, ·KH if and only if I itself is integrable andH is of type (2, 1)+
(1, 2) with respect to I . The spinor line corresponding to LI is given by Λn,0T ∗M , and
the type is n = 1

2 dimR(M) at all points.

Example 1.3.6. Let ω be a non-degenerate two-form on M . It defines an almost gener-
alized complex structure

Jω :=

(
0 −ω−1

ω 0

)
. (1.43)

The associated almost Dirac structure is given by Lω = eiω∗ (TMC) = {X− iω(X)|X ∈
TMC}. It is integrable for J·, ·KH if and only if ω is closed and H = 0 (see also Example
1.2.2). A spinor for J is given by eiω , and the type is 0 everywhere.

Example 1.3.7. Let I be an almost complex structure and Q a bivector that satisfies
QI∗ = IQ, viewed as maps T ∗M → TM . The bivector σ := Q − iIQ is then of type
(2, 0) with respect to I and

J(I,σ) :=

(
−I 4IQ
0 I∗

)
(1.44)

defines an almost generalized complex structure. The corresponding almost Dirac struc-
ture is given by

L(I,σ) := T 0,1M ⊕ eσ∗ (T ∗1,0M) = {X + σ(ξ) + ξ| X ∈ T 0,1M, ξ ∈ T ∗1,0M}

and the spinor line by eσ · Λn,0T ∗M . The type coincides with 1
2 corank(Q). Let us

investigate when L(I,σ) is integrable with respect to the zero three-form. For X,Y ∈
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T 0,1M we need [X,Y ] ∈ L(I,σ), which can only happen if T 0,1M is involutive, i.e. if I
is integrable. Next, consider

JX,σ(ξ) + ξK = LX(σ(ξ) + ξ) = (LXσ)(ξ) + (σ(LXξ) + LXξ).

Since X ∈ T 0,1M , ξ ∈ T ∗1,0M and I is integrable we have LXξ ∈ T ∗1,0M , so the
second term above is automatically in L(I,σ). Hence, what remains is the condition
(LXσ)(ξ) ∈ T 0,1M . This is equivalent to σ being holomorphic, as can be seen e.g.
in local coordinates. Finally, we have

Jσ(ξ) + ξ, σ(η) + ηK = [σ(ξ), σ(η)] + Lσ(ξ)η − ισ(η)dξ.

As [σ(ξ), σ(η)] lies in T 1,0M , the above expression lies in L(I,σ) if and only if it lies
in eσ∗ (T

∗1,0M). Just as in Example 1.2.3, this is equivalent to σ being Poisson, i.e. the
Poisson bracket, defined now on holomorphic functions, must satisfy the Jacobi identity.
To summarize, (1.44) defines a generalized complex structure if and only if (M, I, σ) is a
holomorphic Poisson manifold.

Example 1.3.8. Here is a less concrete example that is interesting from a topological
point of view. If M and N are smooth k-dimensional manifolds we denote by M#N
their connected sum, obtained by removing a small k-dimensional ball from both M
and N and glue the resulting manifolds with boundary to each other via an orientation
reversing diffeomorphism of Sk−1. We will abbreviate by mM := M#M# . . .#M the
connected sum of m copies of M . The manifolds Mm,n := mCP2#nCP2

, where CP2

denotes the manifold CP2 with the opposite orientation, are known to carry complex or
symplectic structures only for m = 1. However, it was shown in [15] that they carry a
generalized complex structure if and only if m is odd, which is precisely the condition for
Mm,n to admit an almost complex structure11.

Using the notions discussed in Section 1.1.2 we can talk about generalized holomorphic
maps.

Definition 1.3.9. A map Φ : (M1, H1,J1) → (M2, H2,J2) is called generalized holo-
morphic if for every u ∈ TM1 and v ∈ TM2 with u ∼

Φ
v, we have J1(u) ∼

Φ
J2(v).

As before, we will often drop the prefix “generalized” and simply say holomorphic. Let
us try to get some feeling for this notion. Using the splittings TMi = TMi ⊕ T ∗Mi we
can write Ji as

Ji =

(
Ai πJi
σi −A∗i

)
.

In general this decomposition is not very useful because it is only πJi that is invariant
under B-field transformations. Nevertheless, the condition for a map Φ = (ϕ,B) to be

11The topological obstruction for having an almost generalized complex structure coincides with that for an
almost complex structure, see Lemma 1.3.42.
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holomorphic becomes very explicit:

i) ϕ∗ ◦ (A1 − πJ1
B) = A2 ◦ ϕ∗,

ii) ϕ∗(πJ1
) = πJ2

,

iii) σ1 +A∗1B +B(A1 − πJ1
B) = ϕ∗(σ2). (1.45)

Note that the second equation tells us that ϕ has to be a Poisson map. Here are some
concrete examples.

Example 1.3.10. Let J1 = JI1 and J2 = JI2 , for complex structures I1 and I2. Then
(1.45) is equivalent to ϕ being holomorphic and B being of type (1, 1) with respect to I1.

Remark 1.3.11. As this example shows, generalized holomorphic maps need not satisfy
either BΦ(L2) = L1 or F(L1) = L2. Indeed, if ϕ : (M1, I1) → (M2, I2) is a constant
map between two complex manifolds then ϕ is generalized holomorphic, but Bϕ(L2) =
(TM1)C while Fϕ(L1) = (T ∗M2)C.

Example 1.3.12. Let J1 = JI1 and J2 = Jω2
, with I1 complex and ω2 symplectic.

Since πJ1
= 0 while πJ2

is invertible, there does not exist any holomorphic map in this
case.

Example 1.3.13. Let J1 = Jω1 and J2 = JI2 . The three equations in (1.45) reduce to

ϕ∗ ◦ ω−1
1 B = −I2 ◦ ϕ∗, ϕ∗(ω

−1
1 ) = 0, ω1 +Bω−1

1 B = 0.

The third equation says that I1 := −ω−1
1 B is an almost complex structure, while the first

equation says that ϕ should be pseudo-holomorphic, i.e. ϕ∗ ◦ I1 = I2 ◦ ϕ∗. The second
equation can be rephrased by saying that the fibers of ϕ should be coisotropic, meaning
that ω−1

1

(
Ann(ker(ϕ∗))

)
⊂ ker(ϕ∗). Since ϕ is pseudo-holomorphic, this is equivalent

to demanding coisotropicity with respect to B. Here is an example of this situation. Let
(M1, I1) be a complex manifold and let κ be a holomorphic symplectic form, i.e. a closed,
non-degenerate (2, 0)-form on M1. Then B := Re(κ) is closed and non-degenerate as
well, as is ω1 := BI1. Any holomorphic map ϕ : (M1, I1)→ (M2, I2) whose fibers are
coisotropic with respect to κ satisfies the above equations.

Example 1.3.14. Let J1 = Jω1
and J2 = Jω2

. Then (1.45) reduces to

ϕ∗ ◦ ω−1
1 B = 0, ϕ∗(ω

−1
1 ) = ω−1

2 , ω1 +Bω−1
1 B = ϕ∗ω2.

The Poisson condition, written as ω−1
2 = ϕ∗ ◦ ω−1

1 ◦ ϕ∗, shows that ϕ∗ has to be surjec-
tive, i.e. ϕ must be a submersion. Let V := ker(ϕ∗) denote the vertical tangent bundle
and V ω1 its symplectic orthogonal. Since V ω1 = ω−1

1 (Ann(V )) = ω−1
1 (Im(ϕ∗)) and

ϕ∗(ω
−1
1 ϕ∗α) = ω−1

2 α, it follows that V ∩ V ω1 = 0, i.e. V is symplectic. Moreover, the
induced symplectic structure on V ω1 coincides with ϕ∗ω2. The remaining two conditions
can be understood as follows. The first says that B(TM1) ⊂ ω1(V ), which is equiva-
lent to ιuB = 0 for all u ∈ V ω1 . Finally, the third equation is equivalent to ω−1

1 B|V
defining an almost complex structure on V . So if e.g. B = 0, the fibers have to be zero
dimensional and ϕ has to be a symplectic local diffeomorphism.
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As these examples show, the notion of generalized holomorphic maps in generalized com-
plex geometry behaves rather differently in different contexts.

When ϕ is a diffeomorphism we can give a more concrete description in terms of
spinors. If Ki is the canonical bundle for Ji, Φ being an isomorphism amounts to

K1 = eB ∧ ϕ∗K2.

Here ϕ∗K2 refers to the pull-back applied to forms, so ϕ∗K2 ⊂ Λ•T ∗M1. The following
lemma justifies calling structures of type 0 symplectic and those of type n = 1

2 dimR(M)
complex.

Lemma 1.3.15. Let J have type 0 (type n respectively). Then there is a two-form B
such that eB∗ J e−B∗ equals Jω for some symplectic structure ω (respectively JI for some
complex structure).

Proof. If J has type 0 then L ∩ T ∗MC = 0. From the complex version of Example
1.2.2 we deduce that L = eB+iω

∗ (TMC), where H = −dB and dω = 0. In particu-
lar, L is the B-field transform of a symplectic structure (see Example 1.3.6). If J has
type n, then π(L) ⊂ TMC is a complex subspace of dimension n. Since we always
have TMC = π(L) + π(L), we see that π(L) ∩ π(L) = 0. This equips M with an
integrable complex structure, by defining T 0,1M := π(L). Note that L ∩ T ∗MC is
also n-dimensional and annihilates π(L), hence L ∩ T ∗MC = T ∗1,0M . Consequently,
L = eB∗ (T 0,1M) ⊕ T ∗1,0M for some complex two-form B. The (2, 0) and (1, 1) com-
ponents of B are irrelevant in this expression, so we may replace B by a real two-form
without changing L. In particular, L is the B-field transform of a complex structure.

In other words, structures of type 0 and n are isomorphic to symplectic and complex struc-
tures respectively. We now state the analogue of the Newlander-Nirenberg and Darboux
theorems in generalized complex geometry.

Theorem 1.3.16 ([6]). Let (M,H,J ) be a generalized complex manifold. If x ∈M is a
point where J has type k, then a neighborhood of x is isomorphic to a neighborhood of
(0, 0) in

(R2n−2k, ωst)× (Ck, σ) := (R2n−2k × Ck,Jωst × J(i,σ)) (1.46)

where ωst is the standard symplectic form, σ is a holomorphic Poisson structure which
vanishes at 0, and Jωst and J(i,σ) are defined in Examples 1.3.5 and 1.3.6.

1.3.1 Generalized complex submanifolds
Our main objective in this thesis is to investigate which submanifolds of generalized com-
plex manifolds admit a blow-up. The starting point for that is to define the appropriate
notion of generalized complex submanifold. The one that we will use generalizes the
usual definition of complex and symplectic submanifolds, as those are the submanifolds
that are known to admit a blow-up in their respective categories (there is, for instance, no
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blow-up theory for (co)isotropic submanifolds of a symplectic manifold). In particular,
the definition that we will use should not be confused with so-called branes (see below),
which sometimes are also called generalized complex submanifolds. These branes are
generalizations of Lagrangian submanifolds in symplectic geometry.

Roughly speaking, a generalized complex submanifold for us will be one that inherits
a generalized complex structure from the ambient space. To state this precisely we use
the backward image operation on Dirac structures that was introduced in Section 1.2.3.

Definition 1.3.17. A generalized complex submanifold of (M,H,J ) is a submanifold
i : Y ↪→ M with the property that Bi(L) is generalized complex, i.e. is smooth and
satisfies Bi(L) ∩Bi(L) = 0.

Remark 1.3.18. Note that we are identifying the inclusion i with the generalized map
(i, 0), so the relevant three-form on Y is given by i∗H . It seems natural to also incorporate
a two-form B ∈ Ω2(Y ) in the above definition. However, this does not make a difference
since B(i, B)(L) = eB∗ Bi(L), which is generalized complex if and only if Bi(L) is.

The notion of being a generalized complex submanifold entails two conditions of rather
different natures. The smoothness condition is something that depends on how the bundle
L is varying along the submanifold, while the non-degeneracy condition is a linear alge-
braic condition that we can check at each given point of Y . The following lemma will
help us to recognize when these two conditions are satisfied. Below, the superscript ⊥
refers to the orthogonal complement in TM with respect to the natural pairing.

Proposition 1.3.19. Let Y be a submanifold of a generalized complex manifold (M,J ).

i) If N∗Y ∩ JN∗Y is of constant rank, then Bi(L) is smooth. (1.47)

ii) Bi(L) ∩Bi(L) = 0 if and only if JN∗Y ∩ (N∗Y )⊥ ⊂ N∗Y. (1.48)

Proof. i): The smoothness criterion (1.35) tells us that if ker(i∗)C ∩ i∗L has constant
rank, then the backward image Bi(L) is smooth. In this situation ker(i∗) = N∗Y , the
conormal bundle of Y in M , and ker(i∗)C ∩ i∗L is precisely the (+i)-eigenspace of the
restriction of J to the invariant subspace N∗Y ∩JN∗Y of N∗Y . Hence, ker(i∗)C ∩ i∗L
has constant rank if and only if N∗Y ∩ JN∗Y has constant rank, and this proves i).

ii): From the definition of the backward image it follows that

Bi(L) ∩Bi(L) = {X + i∗ξ = X + i∗η| X ∈ TYC, X + ξ ∈ L, X + η ∈ L}.

For such elements we have ξ − η ∈ N∗YC and J (ξ − η) = i(2X + ξ + η). In this last
equation the left-hand side lies in JN∗YC, while the right-hand side lies in π−1(TYC) =
(N∗YC)⊥. On the other hand, given α ∈ N∗YC and X + β ∈ π−1(TYC) with Jα =
X + β, then X + β + iα ∈ L and X + β − iα ∈ L and so X + i∗(β + iα) =
X + i∗(β − iα) ∈ Bi(L) ∩ Bi(L). Consequently, Bi(L) ∩ Bi(L) = 0 precisely if
the equation Jα = X + β above forces X = 0 and β ∈ N∗YC, which amounts to the
condition JN∗Y ∩ (N∗Y )⊥ ⊂ N∗Y .
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Remark 1.3.20. a) The intersection N∗Y ∩JN∗Y inherits a complex structure given by
J itself, and its complex rank can be thought of as the type of J in transverse directions
(see also (1.41)). Hence, (1.47) can be rephrased by saying that if J has constant type
in directions transverse to Y , then the backward image is smooth. This condition is not
strictly necessary, as Example 1.3.24 below will demonstrate.

b) We can give a more geometric interpretation of (1.48) as follows. We have

JN∗Y ∩ (N∗Y )⊥ = {Jα| α ∈ N∗Y ∩ π−1
J (TY )}.

For this to lie inN∗Y , we first of all need the tangential part of such a Jα to vanish. This
is nothing but πJ (α), so one condition we obtain is that πJ

(
N∗Y ∩ π−1

J (TY )
)

= 0, or
equivalently

TY ∩ πJ (N∗Y ) = 0. (1.49)

If this condition holds we have N∗Y ∩π−1
J (TY ) = ker(πJ )∩N∗Y , and so for (1.48) to

hold we need in addition that J (ker(πJ ) ∩N∗Y ) ⊂ N∗Y . Since πJ (Jα) = 0 for any
α ∈ T ∗M with Jα ∈ T ∗M , this is equivalent to demanding

J (ker(πJ ) ∩N∗Y ) ⊂ ker(πJ ) ∩N∗Y. (1.50)

Conditions (1.49) and (1.50) can be visualized as follows. Firstly, the symplectic distri-
bution πJ (T ∗M) on M induces the distribution ∆ := TY ∩ πJ (T ∗M) on Y . Then
∆ ⊂ πJ (T ∗M) is a symplectic subspace precisely when (1.49) holds. Hence, (1.49)
means that Y intersects all the leaves in symplectic subspaces. Furthermore, the annihi-
lator Ann(∆) ⊂ T ∗Y fits into the exact sequence

0→ ker(πJ ) ∩N∗Y → ker(πJ )→ Ann(∆)→ 0.

The space ker(πJ ) = T ∗M ∩ J T ∗M has a canonical complex structure induced by
J , so (1.50) amounts to Ann(∆) being the quotient of ker(πJ ) by a complex subspace.
In particular, Ann(∆) itself inherits a complex structure. Summarizing, (1.48) can be
rephrased by saying that Y intersects the symplectic leaves of M in symplectic subspaces
with an induced complex structure on the conormal bundles.
Now let us give some examples of generalized complex submanifolds.

Example 1.3.21. A point x ∈ M is always a generalized complex submanifold. Indeed,
(1.47) holds trivially in this case, while (1.48) is satisfied because N∗{x} = T ∗xM =
(T ∗xM)⊥.

Example 1.3.22. Suppose that J = JI for a complex structure I . Since JN∗Y =
I∗N∗Y ⊂ (N∗Y )⊥, (1.48) holds if and only if I∗N∗Y = N∗Y , i.e. Y is a complex
submanifold. Condition (1.47) is then automatically satisfied because N∗Y ∩ JN∗Y =
N∗Y .

Example 1.3.23. Let J = Jω for a symplectic structure ω. SinceJN∗Y = ω−1N∗Y ⊂
TM |Y , (1.48) is satisfied if and only if ω−1(N∗Y ) ∩ TY = 0. This is equivalent to i∗ω
being non-degenerate on Y , i.e. Y needs to be a symplectic submanifold. In that case
N∗Y ∩ JN∗Y = 0, so (1.47) holds as well.
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Note that if M is symplectic, i is holomorphic in the sense of Definition 1.3.9 if and only
if Y is an open subset (Example 1.3.14). Hence holomorphicity is not the right notion to
define submanifolds, for it would exclude symplectic submanifolds.

We now give an example to illustrate how (1.47), although sufficient, is not strictly
necessary.

Example 1.3.24. Consider (M = C3, H = 0) with coordinates (u, z, w), and consider
the spinor ρ = du ∧ (z + dz ∧ dw). On {z 6= 0} we can write it as ρ = zed log z∧dwdu,
while on {z = 0} we have ρ = du ∧ dz ∧ dw. In particular, ρ is a pure spinor at each
point in M . Moreover,

(ρ, ρ)Ch = −du ∧ dz ∧ dw ∧ du ∧ dz ∧ dw

is nowhere vanishing, so we obtain an almost generalized complex structure J on M .
Since dρ = −du ∧ dz = −∂w · ρ, the structure is integrable by Lemma 1.2.19.

On the open dense set {z 6= 0}, J is of type 1, with symplectic leaves given by
u = constant. On {z = 0}, J is of type 3, given by the standard complex structure.
Let Y = {w = 0, u − z = 0}. Then Bi(L) is given by the complex structure on Y
viewed as a complex submanifold of C3, so Y is a generalized complex submanifold of
M according to Definition 1.3.17. Indeed, on z 6= 0 we have i∗ρ = zdu, which defines
the standard complex structure on Y , while at z = 0 J is complex and Y is given by a
complex line through the origin. Nevertheless, at z = 0 we haveN∗Y ∩JN∗Y = N∗Y ,
while on z 6= 0 we have N∗Y ∩ JN∗Y = 0. So this is an example where (1.47) is not
satisfied, even though the submanifold is generalized complex.

Since there is no smoothness issue for submanifolds in the symplectic and complex cat-
egories, one may wonder whether it really appears in generalized complex geometry.
Could the smoothness of Bi(L) perhaps be deduced from the non-degeneracy condition
alone? Unfortunately it does not.

Example 1.3.25. Consider (M = C2, H = 0) with coordinates (z, w), and consider the
spinor ρ = z + dz ∧ dw + zdz ∧ dz̄. As in the previous example one verifies that ρ is
pure everywhere and that (ρ, ρ)Ch is nowhere zero. Furthermore, dρ = dz = −∂w · ρ, so
ρ defines a generalized complex structure J . On {z = 0} it is of complex type, while on
{z 6= 0} it is of symplectic type. Consider Y := {w = 0}. On Y ∩{z 6= 0} the backward
image is induced by i∗ρ = z(1 + dz ∧ dz̄), hence is generalized complex of symplectic
type. At z = 0 however, Bi(L) is given by the standard complex structure on Y . Hence,
Bi(L) is generalized complex at every point, but is not smooth. The latter follows from
the fact that for smooth generalized complex structures the type varies in even steps, so in
particular it will be constant on a manifold of real dimension 2 , where it will be either 0
or 1 throughout. This is thus an example of a submanifold which is pointwise generalized
complex, i.e. (1.48) holds, but not in a smooth manner.

For the purpose of blowing up, the class of all generalized complex submanifolds is too
large. For instance, in Example 1.3.21 we saw that any point x ∈ (M,J ) forms a gen-
eralized complex submanifold. If 0 < typex(J ) < n, there will be normal directions
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that are symplectic or complex, but there will also be normal directions which are neither.
It seems difficult to say anything reasonable about a blow-up in such a situation, and in
fact in Section 3.3 we will give concrete situations where these kind of points cannot be
blown-up in a generalized complex fashion.

We will therefore restrict our attention to a further subclass of submanifolds, namely
those which are purely complex or purely symplectic in transverse directions. Follow-
ing nomenclature from Poisson geometry we call these generalized Poisson submanifolds
and generalized Poisson transversals respectively, simply because they are Poisson sub-
manifolds and Poisson transversals for the underlying Poisson structure. The precise
definitions are as follows.

Definition 1.3.26. Let i : Y ↪→M be a submanifold.

• Y is a generalized Poisson submanifold if JN∗Y = N∗Y .

• Y is a generalized Poisson transversal if JN∗Y ∩ (N∗Y )⊥ = 0.

If Y is a generalized Poisson submanifold then JN∗Y ∩N∗Y = JN∗Y ∩ (N∗Y )⊥ =
N∗Y , hence both (1.47) and (1.48) are satisfied and so Y is a generalized complex sub-
manifold. Since πJ (N∗Y ) = 0, Y is a Poisson submanifold for πJ .

Similarly, if Y is a generalized Poisson transversal, JN∗Y ∩ N∗Y ⊂ JN∗Y ∩
(N∗Y )⊥ = 0 and both (1.47) and (1.48) are again satisfied, so that Y is a generalized
complex submanifold. Since (N∗Y )⊥ = π−1(TY ), the conditionJN∗Y ∩(N∗Y )⊥ = 0
is equivalent to TY + πJ (N∗Y ) = TM |Y . This is precisely the transversality condition
in Poisson geometry (see [18]), and is equivalent to Y intersecting the leaves not just
symplectically but also transversally. Note that generalized Poisson submanifolds inherit
a complex structure on N∗Y given by the restriction of J , while for generalized Poisson
transversals N∗Y comes equipped with a symplectic structure given by

(α, β) 7→ 〈Jα, β〉.

The fact that this form is non-degenerate is precisely the condition for Y to be a gen-
eralized Poisson transversal. Hence, generalized Poisson submanifolds and generalized
Poisson transversals really look complex, respectively, symplectic in transverse direc-
tions.

Looking at Example 1.3.21, we see that {x} ⊂ M is a generalized Poisson subman-
ifold precisely if typex(J ) = n, while it is a generalized Poisson transversal precisely
if typex(J ) = 0. Regarding Examples 1.3.22 and 1.3.23, we see that complex subman-
ifolds are always generalized Poisson submanifolds, while symplectic submanifolds are
always generalized Poisson transversals.

We already remarked that the inclusion of a generalized complex submanifold is rarely
generalized holomorphic. In fact, we can say precisely when this happens.

Lemma 1.3.27. Let i : Y ↪→ (M,J ) be a generalized complex submanifold. Then i is
generalized holomorphic if and only if Y is a generalized Poisson submanifold.
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Proof. Let us recall how the induced generalized complex structure JY on Y is defined.
Given X + ξ ∈ TY , we write it as X + i∗ξ′ for some ξ′ ∈ T ∗M . Then we decompose
X + ξ′ = (X1 + ξ′1) + (X1 + ξ′1) into L and L components so that, by definition,
X + ξ = (X1 + i∗ξ′1) + (X1 + i∗ξ′1) is the decomposition into LY components. In
particular,

JY (X + ξ) = i
(
(X1 −X1) + i∗(ξ′1 − ξ′1)

)
.

Now suppose that X + ξ is i-related to Y + η ∈ TM , i.e. Y = i∗X and ξ = i∗η. Then
η = ξ′1 + ξ′1 + α, where α ∈ N∗Y . In particular,

J (Y + η) = i
(
(X1 −X1) + (ξ′1 − ξ′1)

)
+ Jα.

This is i-related to JY (X + ξ) if and only if Jα ∈ N∗Y , i.e. if and only if Y is a
generalized Poisson submanifold.

Branes

We will see in Section 3.1 that when we blow up a point of complex type, the exceptional
divisor is not always a generalized Poisson submanifold. Nevertheless, it does carry the
structure of a so-called generalized complex brane, a concept which we will now explain.

Let Y ⊂ (M,H) be a submanifold, and denote by K := N∗Y its conormal bundle.
We have K⊥ = π−1(TY ), where the orthogonal complement is taken with respect to
the natural pairing and π : TM → TM denotes the anchor. The bundle K⊥/K inherits
a canonical bracket from TM as follows. Given u, v ∈ Γ(K⊥), we can choose exten-
sions ũ, ṽ ∈ Γ(TM) and consider the element Jũ, ṽK|Y . Since K⊥ = π−1(TY ), π is a
morphism of brackets, and TY ⊂ TM is involutive, it follows that Jũ, ṽK|Y ∈ Γ(K⊥).
We can see how this expression depends on the choice of extensions by looking at what
happens if we add, to either ũ or ṽ, something of the form fw, where w ∈ Γ(TM) and
f ∈ C∞(M) with f |Y = 0. By the Leibniz rule (Lemma 1.1.1 iii)) we have

Jũ, fwK|Y = (fJũ, wK + (π(ũ) · f)w)|Y = 0,

because π(ũ) is tangent to Y , along which f vanishes. Hence, Jũ, ṽK|Y is independent of
the choice of ṽ. Next, using Lemma 1.1.1 iii) and iv), we obtain

Jfw, ṽK|Y = (fJw, ṽK− (π(ṽ) · f)w + 2〈u, v〉 · df)|Y .

The first two terms vanish for the same reason as before, but the third term will in general
be nonzero. Hence, Jũ, ṽK|Y does depend on the choice of ũ, but since df |Y ∈ Γ(K) we
do get a well-defined operation Γ(K⊥) × Γ(K⊥) → Γ(K⊥/K). Finally, for v ∈ Γ(K)
and u,w ∈ Γ(K⊥), we have

〈Jũ, ṽK|Y , w〉 = π(u) · 〈v, w〉 − 〈v, Jũ, w̃K|Y 〉 = 0,
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because v is perpendicular toK⊥ and Jũ, w̃K|Y ∈ Γ(K⊥). Hence, Jũ, ṽK|Y ∈ Γ((K⊥)⊥) =
Γ(K). A similar argument holds when u ∈ Γ(K), and so we obtain a bracket

J·, ·K : Γ(K⊥/K)× Γ(K⊥/K)→ Γ(K⊥/K).

The natural pairing induces a non-degenerate pairing on K⊥/K and there is a short exact
sequence

0→ T ∗Y → K⊥/K → TY → 0, (1.51)

expressing K⊥/K as an exact Courant algebroid over Y (see Remark 1.1.4).

Definition 1.3.28. A trivialization of TM along Y is a splitting s : TY → K⊥/K of
(1.51) whose image is isotropic and involutive.

Since maximal isotropic subspaces ofK⊥/K correspond bijectively to maximal isotropic
subspaces τ ⊂ K⊥ that contain K, isotropic splittings of (1.51) are the same as isotropic
extensions of TY by K, i.e. short exact sequences

0→ K → τ → TY → 0

with τ ⊂ TM |Y isotropic (note that K ⊂ τ together with τ being isotropic implies
that τ ⊂ K⊥). The splitting that corresponds to τ is a trivialization precisely when
τ/K ⊂ K⊥/K is involutive. From now on, a trivialization will refer to the subspace
τ ⊂ K⊥.

Definition 1.3.29. A generalized complex brane in (M,H,J ) is a submanifold Y to-
gether with a trivialization τ on Y such that J τ = τ .

Remark 1.3.30. The definition of a brane given in [24] requires in addition the input of
a certain vector bundle over Y (a representation of the complex Lie algebroid τ1,0, to be
precise). For us the current definition will suffice.
Remark 1.3.31. Since πJ (N∗Y ) = π(JK) ⊂ π(J τ) = π(τ) = TY , we see that
generalized complex branes are always coisotropic submanifolds for πJ .
We can make things more concrete by choosing an isotropic splitting s : TM → TM ,
with corresponding three-form12 H . This induces an isotropic splitting of (1.51) with
three-form i∗H , where i : Y ↪→M is the inclusion. In particular, a trivialization along Y
exists if and only if i∗H is exact. In the given splitting, K⊥ = TY ⊕ T ∗M |Y , and any
trivialization τ can be written as

τ = τ(B) := {X + ξ ∈ TY ⊕ T ∗M |Y | ξ|TY = −ιXB} (1.52)

for a uniquely determined13 B ∈ Ω2(Y ). Then τ(B)/K is involutive if and only if
i∗H = −dB. Note that any symmetry eB̃∗ of TM maps a generalized complex brane τ
for (M,H,J ) to eB̃∗ τ , which is a generalized complex brane for (M,H−dB̃, eB̃∗ J e−B̃∗ ).
Moreover, we have eB̃∗ τ(B) = τ(B + i∗B̃).

12Recall that this is defined by H(X,Y, Z) = −2〈Js(X), s(Y )K, s(Z)〉.
13The proof of this fact is identical to the one we gave for writing a Dirac structure L in terms of a subspace

E ⊂ TM and a two-form ε ∈ Λ2E∗.
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Example 1.3.32. Let (M, I) be a complex manifold and H a closed three-form of type
(2, 1) + (1, 2), considered as a generalized complex manifold (see Example 1.3.5). Let
Y be a real submanifold and B a two-form on Y . From (1.52) we see that τ(B) is a
generalized complex brane if and only if i∗H = −dB, Y is a complex submanifold,
and B is of type (1, 1). In particular, putting H = 0, we see that generalized complex
branes on complex manifolds correspond to complex submanifolds equipped with closed
(1, 1)-forms.

Before giving more examples we explain how to take the preimage of a generalized com-
plex brane under a generalized holomorphic map. Let Φ = (ϕ,B) : (M1, H1,J1) →
(M2, H2,J2) be a generalized holomorphic map and (Y2, τ2) a generalized complex
brane in (M2, H2,J2). Suppose that Y1 = ϕ−1(Y2) is a submanifold of M1 for which
ϕ∗ : NY1 → ϕ∗NY2 is injective. This is the case for instance if ϕ is transverse to Y2, but
the application we have in mind is when Y1 is the exceptional divisor of the blow-up of
Y2 in M , and then the blow-down map is never transverse to Y2. Define

τ1 := {u ∈ TM1|Y1
| u ∼Φ v for some v ∈ τ2}.

Lemma 1.3.33. The pair (Y1, τ1) forms a generalized complex brane in (M1, H1,J1).

Proof. It is clear that for each y ∈ Y1 the subspace (τ1)y ⊂ TyM1 is obtained from
(τ2)ϕ(y) by the backward image construction (see Section 1.2.3). In particular, it is a
maximal isotropic subspace of TyM1. Since N∗Y2 ⊂ τY2

and ϕ∗ : ϕ∗N∗Y2 → N∗Y1 is
surjective, it follows that N∗Y1 ⊂ τ1 and therefore τ1 ⊂ (N∗Y1)⊥. The analogue of the
short exact sequence (1.34) for τ1 reads

0→ ker(ϕ∗) ∩ ϕ∗τ2 → ΓΦ|Y1
∩ (TM1|Y1

⊕ ϕ∗τ2)→ τ1 → 0.

Now ker(ϕ∗)∩ϕ∗τ2 = ker(ϕ∗)∩ϕ∗N∗Y2, which is of constant rank sinceϕ∗ : ϕ∗N∗Y2 →
N∗Y1 is surjective. Consequently, τ1 is smooth. By arguments similar to those used in
Lemma 1.2.22 it follows that τ1/N∗Y1 is involutive (alternatively, use Remark 1.3.34 be-
low) and since Φ is generalized holomorphic it follows that J1τ1 = τ1. Hence, (Y1, τ1)
is a generalized complex brane.

Remark 1.3.34. If τ2 = τ(B2) for B2 ∈ Ω2(Y2), then τ1 = τ(B1), where B1 :=
ϕ∗B2 + i∗1B and i1 : Y1 ↪→M1 denotes the inclusion.
Remark 1.3.35. Note that the analogous statement for generalized complex submanifolds
is not true, i.e. the pre-image of a generalized complex submanifold by a generalized
holomorphic map need not be generalized complex again (see Remark 3.1.15).

Example 1.3.36. Let (M,ω) be a symplectic manifold endowed with the zero three-
form14, considered as a generalized complex manifold (Example 1.3.6). Let us see when
(Y, τ(B)) is a generalized complex brane. If B̃ ∈ Ω2(M) denotes a local extension of B
we can write τ(B) = eB̃∗ (TY )⊕N∗Y . For ξ ∈ N∗Y we have

J (ξ) = −ω−1(ξ) ∈ τ(B) if and only if ω−1(ξ) ∈ TY and B̃(ω−1(ξ)) ∈ N∗Y.
14If H is nonzero we can always apply a symmetry to reduce to this case.
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In other words, Y has to be coisotropic and ιXB = 0 for all X ∈ TY ω := ω−1(N∗Y ) ⊂
TY . The subbundle TY ω ⊂ TY is involutive and the associated foliation is called the
characteristic foliation of the coisotropic submanifold Y . The condition onB implies that
it descends to a two-form on the normal bundle TY/TY ω of this foliation. Continuing,
for X ∈ TY we have

J (eB̃∗ X) = J (X − B̃(X)) = ω(X) + ω−1B̃(X),

which lies in τ(B) if and only if

ω−1B̃(X) ∈ TY and ω(X) + B̃ω−1B̃(X) ∈ N∗Y.

The first condition amounts to ω−1B̃ mapping TY to itself and is dual to the condition
that B̃ω−1 maps N∗Y to itself, which is precisely the condition we already imposed on
B. The second can be reformulated by saying that 1 + (ω−1B̃)2 maps TY to TY ω . Note
that ω−1B̃ : TY → TY preserves the subspace TY ω , so it induces a map from TY/TY ω

to itself. The last condition is then equivalent to this map being a complex structure. Now
ω induces a symplectic form on TY/TY ω whileB induces a two-form on TY/TY ω , and
we have ω−1B̃ = ω−1B on this space. Note that the fact that ω−1B is complex implies
that B + iω is non-degenerate of type (2, 0) on15 TY/TY ω .

Summarizing, (Y, τ(B)) is a generalized complex brane if and only if Y is coisotropic,
B annihilates vectors tangent to the characteristic foliation TY ω , and ω−1B induces
a complex structure on the normal bundle TY/TY ω . Since Y is coisotropic we have
dimR(Y ) ≥ n = 1

2 dimR(M), with equality if and only if Y is Lagrangian. In that case
B is forced to be zero, so Lagrangians are examples of generalized complex branes. In
general, since TY/TY ω carries a non-degenerate complex two-form it has even complex
dimension, so dimR(Y ) = rankR(TY ω) + 4k for some k ∈ Z≥0. Since rankR(TY ω) =
codimR(Y ) = 2n − dimR(Y ), we have dimR(Y ) = n + 2k. These higher dimensional
generalized complex branes first appeared in the work of Kapustin and Orlov [31].

One way to obtain these kind of branes would be by combining Example 1.3.32 and
Lemma 1.3.33: if (ϕ,B) : (M,Jω) → (N,JI) is a generalized holomorphic map as in
Example 1.3.13, then any regular fiber Y ⊂ M , together with the restriction of B to Y ,
forms a generalized complex brane in (M,Jω).

Example 1.3.37. Let (M, I, σ) be a holomorphic Poisson manifold, considered as gener-
alized complex manifold with respect to the zero three-form (Example 1.3.7). If Y ⊂M
is a complex submanifold which is coisotropic for σ, then TY ⊕ N∗Y = τ(0) equips
Y with the structure of a generalized complex brane. The particular case of Y = M is
usually called a space filling brane, because it is supported on the entire manifold.

We have talked about generalized complex submanifolds and about generalized complex
branes, so at this point it seems natural to ask what the intersection is between these two
definitions.

15In general, ifα, β are non-degenerate two-forms on a vector space V such thatα−1β is a complex structure,
then β + iα is a non-degenerate (2, 0)-form on V .
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Lemma 1.3.38. Let Y be a submanifold of a generalized complex manifold (M,H,J ).
Then Y is both a generalized complex submanifold and a generalized complex brane if
and only if Y is a generalized Poisson submanifold for which the induced generalized
complex structure JY is B-field equivalent to a holomorphic Poisson structure (with zero
three-form).

Proof. We continue to abbreviate K = N∗Y and K⊥ = π−1(TY ). If Y is a brane, then
JK ⊂ τ ⊂ K⊥, so that JK ∩K⊥ = JK. Condition (1.48) for Y being a generalized
complex submanifold then reduces to JK ⊂ K, which is equivalent to the generalized
Poisson submanifold condition JK = K. In that case, the induced structure JY on TY
can be described explicitly via the isomorphism TY = K⊥/K. A generalized complex
brane in Y is nothing but an isotropic, involutive subbundle τ/K ⊂ K⊥/K, such that
J τ = τ . Since JK = K, we then also get J (τ/K) = τ/K. We can view τ/K
as giving a splitting K⊥/K = TY ⊕ T ∗Y with zero three-form, with the property that
J (TY ) = TY . By Example 1.3.7, this must be a holomorphic Poisson structure.

Remark 1.3.39. Applying this lemma to the case of a point (which is always a generalized
complex submanifold), we see that a point in (M,H,J ) supports the structure of a brane
if and only if the point lies in the complex locus. Similarly, since the entire manifold is
always a generalized Poisson submanifold, it carries the structure of a brane if and only if
J is equivalent to a holomorphic Poisson structure. In other words, space filling branes
are given by holomorphic Poisson manifolds.

1.3.2 Generalized Hermitian structures

Given a complex manifold (M, I) it is often useful to choose a Hermitan metric, i.e. a
metric g for which I is orthogonal. This induces a non-degenerate two-form ω := gI ,
which need not be closed in general. Moreover, the space of all metrics that are compatible
with I forms a closed convex cone in the space of all metrics, hence is contractible.

Similarly, if (M,ω) is symplectic one can pick a compatible almost complex structure
I , i.e. one for which g := −ωI defines a metric. Again, the auxiliary structure I is not
necessarily integrable. It is a well-known fact that the space of compatible almost complex
structures is non-empty and contractible.

A similar construction is possible on a generalized complex manifold (M,J ), using
the notion of a generalized metric (see Section 1.1.4)

Definition 1.3.40. A generalized metric G is compatible with J if GJ = JG. The pair
(G,J ) is then called a generalized Hermitian structure.

It is not immediately clear from this definition that a compatible generalized metric G
exists.

Lemma 1.3.41. Let (M,J ) be an almost generalized complex manifold. Then there is
a generalized metric G compatible with J , and the space of all compatible generalized
metrics is contractible.
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Proof. Since (TM,J ) is a complex vector bundle in the ordinary sense, we know that
the space of associated Hermitian metrics for it is non-empty and contractible. If (·, ·)
is one, we have 〈u, v〉 = (G̃u, v) for some isomorphism G̃ of TM . Since both pairings
are symmetric and compatible with J , it follows that G̃ is symmetric with respect to
(·, ·) and commutes with J . Consequently, G̃2 is positive and has a positive square root,
which we denote by |G̃|, and we define G := |G̃|−1G̃. It commutes with J and satisfies
G2 = 1. Moreover, since 〈Gu, v〉 = (|G̃|u, v) is positive definite and symmetric, it follows
that G is a generalized metric. The above construction realizes the space of compatible
generalized metrics as a retract of the contractible space of Hermitian metrics, and as such
is itself contractible.

Recall that G induces a splitting TM = V+ ⊕ V− into (±1)-eigenspaces, where V± is
the graph of ±g + b for some metric g and two-form b. Since G commutes with J , we
get induced complex structures on V±. Using the isomorphism π : V± → TM we can
transfer these to TM , giving two almost complex structures I± on M that are compatible
with g. Thus J , as an almost generalized complex structure, is completely determined by
the data (g, b, I+, I−), and conversely any such tuple (g, b, I+, I−) gives rise to an almost
generalized complex structure. This correspondence is not one-to-one, as there is a whole
contractible space of tuples giving rise to the same J . It is therefore of limited use for
studying J , but it will play a prominent role later in the context of generalized Kähler
geometry. One thing that is trivial to see in this picture, but which is not immediately
obvious from the definition alone, is the following.

Lemma 1.3.42. There exists an almost generalized complex structure on M if and only
if there exists an ordinary almost complex structure on M .

Hence the topological obstructions for having a generalized complex structure are the
same as those for having an ordinary complex structure.

In Section 1.2.1 we saw that, given a generalized metric G onM , there is a one-to-one
correspondence between complex almost Dirac structures on M and complex structures
on the bundle TM that are compatible with the metric G that is induced by G. To see
what this gives if the Dirac structure L corresponds to a generalized complex structure
J , we choose G so that (G,J ) is Hermitian. It is not difficult to see from (1.27) that the
complex structure on TM that induces L is precisely J itself. From Corollary 1.2.10 we
deduce the following.

Lemma 1.3.43. Let (G,J ) be a generalized Hermitian structure and (g, b, I±) the asso-
ciated bi-Hermitian structure on M . If dim(M) = 2n, then type(J ) = n mod 2 if and
only if I+ and I− induce the same orientation on M .

Proof. By Corollary 1.2.10 we know that the orientation induced by J agrees with the
canonical orientation on TM if and only if type(J ) ≡ n mod 2. Moreover, if we choose
any orientation on TM and transport it to V± via the isomorphisms π : V± → TM , then
the canonical orientation on TM = V+ ⊕ V− coincides with the product orientation (in
general they differ by the sign (−1)dim(M)). Since J preserves this decomposition, its
induced orientation equals the product of the induced orientations on V+ and V−. Since
these are precisely the orientations induced by I+ and I−, the lemma follows.
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The study of generalized complex structures via pairs of Hermitian structures (g, I+, I−)
is made difficult by the fact that the two complex structures do not commute in general.
We will see in the next section that the commutator [I+, I−] plays an important role in
generalized Kähler geometry, for now we give an elementary but useful lemma regarding
this commutator.

Lemma 1.3.44. ker([I+, I−]) = ker(I+ + I−)⊕ ker(I+ − I−).

Proof. Clearly ker(I+ + I−) ∩ ker(I+ − I−) = 0, and using

[I+, I−] = (I+ − I−)(I+ + I−) = −(I+ + I−)(I+ − I−)

we see that ker([I+, I−]) ⊃ ker(I+ +I−)⊕ker(I+−I−). As both I± anti-commute with
[I+, I−], they preserve ker([I+, I−]). On this subspace I+ and I− commute with each
other, so they admit a simultaneous eigenspace decomposition, all of whose eigenvalues
are ±i. The result follows.

1.4 Generalized Kähler geometry
Generalized complex geometry provides a framework that incorporates both complex and
symplectic geometry. On a Kähler manifold we have both a complex and a symplectic
structure which are compatible with each other. Here is the generalized version.

Definition 1.4.1. A generalized Kähler structure onM is a pair of commuting generalized
complex structures (J1,J2) such that G := −J1J2 defines a generalized metric.

Put differently, a generalized Kähler structure is a generalized Hermitian structure (G,J1)
for which the induced almost generalized complex structure J2 = GJ1 is integrable as
well.

Example 1.4.2. The natural example is given by an ordinary Kähler manifold (M, I, ω).
Define J1 := JI and J2 := −Jω , which commute because I is compatible with ω, and

G =

(
0 g−1

g 0

)
is indeed positive, where g := −ωI is the associated Kähler metric.

As discussed in Section 1.3.2, the Hermitian structure (G,J1) is equivalently described
by a tuple (g, b, I+, I−), where graph(±g + b) = V± equals the (±1)-eigenspace of G,
and I± are the almost complex structure on TM that correspond to J1|V± . As J2 equals
±J1 on V±, we obtain

L1 = V 1,0
+ ⊕ V 1,0

− , L2 = V 1,0
+ ⊕ V 0,1

− . (1.53)

Here (V±)C = V 1,0
± ⊕ V 0,1

± is the decomposition associated to J1|V± . Since now both
J1 and J2 are part of the data, there is no ambiguity in the tuple (g, b, I±) anymore. We
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will refer to such a tuple as an almost16 bi-Hermitian structure. The above construction
can be reversed, giving a bijection between almost bi-Hermitian structures (g, b, I+, I−)
and almost generalized Kähler structures (J1,J2). As explained in Section 1.1.4 there is
a unique splitting of TM , the metric splitting, in which b = 0. It can be obtained from the
given splitting by applying eb∗, which transforms the data (g, b, I±, H) to (g, 0, I±, H −
db). In the sequel we will always position ourselves in this metric splitting, and refer to
(g, I±, H) as the bi-Hermitian structure associated to (G,J1,J2).

Proposition 1.4.3 ([23, Theorem 6.28]). Let (J1,J2) be an almost generalized Kähler
structure and (g, I+, I−, H) the associated almost bi-Hermitian structure. Then the fol-
lowing are equivalent:

i) (J1,J2) is generalized Kähler.

ii) V 1,0
± are both involutive.

iii) I± are both integrable complex structures and ±dc±ω± = H , where17 ω± = gI±
and dc± = i(∂̄± − ∂±).

iv) I± are both integrable and ∇±I± = 0, where ∇± := ∇ ∓ 1
2g
−1H and ∇ is the

Levi-Cevita connection associated to g.

Proof. i)⇔ ii): From (1.53) we see that L1 and L2 are involutive if and only if both V 1,0
±

are involutive and18

JV 1,0
+ , V 1,0

− K ⊂ V 1,0
+ ⊕ V 1,0

− , JV 1,0
+ , V 0,1

− K ⊂ V 1,0
+ ⊕ V 0,1

− . (1.54)

However, (1.54) is in fact a consequence of the involutivity of V 1,0
± . For instance, to verify

the first inclusion it suffices, since V 1,0
+ ⊕V 1,0

− is Lagrangian, to check that 〈Ju, vK, w〉 = 0

for all u ∈ V 1,0
+ , v ∈ V 1,0

− and w ∈ V 1,0
± . Using Lemma 1.1.1, we compute

〈Ju, vK, w〉 = π(u) · 〈v, w〉 − 〈v, Ju,wK〉 = −π(v) · 〈u,w〉+ 〈u, Jv, wK〉.

If w ∈ V 1,0
+ then this vanishes by the first equality, while for w ∈ V 1,0

− this follows
from the second equality. Hence, J1 and J2 are integrable if and only if V 1,0

± are both
involutive.
ii)⇔ iii): By definition we have

V 1,0
± = {X ∓ iω±(X)| X ∈ T 1,0

± M} = e
±iω±
∗ (T 1,0

± M),

where T 1,0
± M denotes the (+i)-eigenbundle of I±. Using (1.9) we compute

Je±iω±∗ (X), e
±iω±
∗ (Y )KH = e

±iω±
∗ ([X,Y ])− ιY ιX(H ± idω±).

16The adjective “almost” refers to a structure without assuming any integrability conditions. The appropriate
integrability conditions in this case are given by Proposition 1.4.3 ii).

17Here and in the rest of this text, an equation of the form ±dc±ω± = H refers to two separate equations,
one for which the signs are the overlying ones, and the other for which the signs are the underlying ones.

18For notational convenience we identify below all bundles with their spaces of sections.



1.4 — Generalized Kähler geometry 43

This lies in V 1,0
± if and only if I± are integrable and ιY ιX(H ± idω±) = 0 for all

X,Y ∈ T 1,0
± M . This last condition can be rewritten as H(3,0)+(2,1) = ∓i∂±ω±, where

the type decomposition on the left is taken with respect to I±. Since H is real, this is
equivalent to H = ±dc±ω±.

ii)⇔ iv): We will show that V 1,0
+ is involutive if and only if I+ is integrable and

∇+I+ = 0, the case of V 1,0
− being similar. Since (V 1,0

+ )⊥ = V 1,0
+ ⊕ (V−)C, involutivity

of V 1,0
+ is equivalent to 〈JV 1,0

+ , V 1,0
+ K, V 1,0

+ ⊕ (V−)C〉 = 0. Now for u, v ∈ V 1,0
+ and

w ∈ (V−)C we have

〈Ju, vK, w〉 = −〈v, Ju,wK〉 = 〈v, π+Jw, uK〉.

This vanishes if and only if π+Jw, uK ∈ V 1,0
+ , which by Lemma 1.4.4 below is equivalent

to∇+I+ = 0. In that case JV 1,0
+ , V 1,0

+ K ⊂ (V+)C. Since πJu, vK = [π(u), π(v)], we have
JV 1,0

+ , V 1,0
+ K ⊂ V 1,0

+ if and only if I+ is integrable.

Lemma 1.4.4. For X,Y ∈ Γ(TM) we have

JX − gX, Y + gY K =
(
∇+
XY + g∇+

XY
)

+
(
∇−YX − g∇

−
YX

)
. (1.55)

Proof. We will show that ∇̃+
XY := ππ+JX − gX, Y + gY K coincides with ∇+

XY , the
case of ∇− being similar. Here π+ denotes the projection to V+ and π the projection to
TM . Now ∇+ is characterized as the unique connection that preserves g and has skew-
symmetric torsion given by −g−1H , so we need to show the same for ∇̃+. By Lemma
1.1.1 we see that

∇̃+
fXY = f∇̃+

XY, ∇̃+
X(fY ) = f∇̃+

XY +X(f)Y,

so ∇̃+ indeed defines a connection on TM . Since

g(∇̃+
XY, Z) + g(Y, ∇̃+

XZ) =〈∇̃+
XY + g∇̃+

XY, Z + gZ〉+ 〈Y + gY, ∇̃+
XZ + g∇̃+

XZ〉
=〈JX − gX, Y + gY K, Z + gZ〉

+ 〈Y + gY, JX − gX,Z + gZK〉
=X · 〈Y + gY, Z + gZ〉
=X · g(Y,Z),

we see that ∇̃+ preserves g. Finally, the torsion of ∇̃+ is given by

g(∇̃+
XY − ∇̃

+
YX − [X,Y ], Z) =〈JX − gX, Y + gY K− JY − gY,X + gXK

− 2[X,Y ], Z + gZ〉
=−H(X,Y, Z).

Hence ∇̃+ = ∇+.
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It is useful to have an explicit relation between (J1,J2) and (g, I±). From the decompo-
sition

X + ξ =
1

2

(
(X + g−1ξ) + g(X + g−1ξ)

)
+

1

2

(
(X − g−1ξ)− g(X − g−1ξ)

)
and the definition of I+ and I− we deduce that

J1(X + ξ) =
1

2

(
I+(X + g−1ξ) + gI+(X + g−1ξ)

)
+

1

2

(
I−(X − g−1ξ)− gI−(X − g−1ξ)

)
,

and similarly for J2 with I− replaced by −I−. Consequently,

J1 =
1

2

(
I+ + I− −(ω−1

+ − ω−1
− )

ω+ − ω− −(I∗+ + I∗−)

)
, J2 =

1

2

(
I+ − I− −(ω−1

+ + ω−1
− )

ω+ + ω− −(I∗+ − I∗−)

)
.

(1.56)

From this we see that

πJ1
= −1

2
(ω−1

+ − ω−1
− ), πJ2

= −1

2
(ω−1

+ + ω−1
− ). (1.57)

In particular, πJ1
+πJ2

= −ω−1
+ is invertible, hence TM = Im(πJ1

) + Im(πJ2
). So the

symplectic leaves of πJ1
and πJ2

are transverse to each other, and consequently

type(J1) + type(J2) =
1

2
codim

(
Im(πJ1

)
)

+
1

2
codim

(
Im(πJ2

)
)

=
1

2
codim

(
Im(πJ1

) ∩ Im(πJ2
)
)
≤ n,

where 2n = dim(M). From Lemma 1.3.43 we see that type(J1) = n mod 2 if and
only if I+ and I− induce the same orientation, while type(J2) = n mod 2 if and only if
I+ and −I− induce the same orientations. For example, in four dimensions this leaves
three possibilities. If I+ and I− induce opposite orientations then both J1 and J2 are
everywhere of type 1. If I+ and I− induce the same orientation then both J1 and J2 are
of even type, so either they are both generically of type 0 with disjoint type change loci19,
or one is symplectic and the other is complex (with no type change).

Example 1.4.5. Let (M, g, I, J,K) be a hyper-Kähler manifold, i.e. I, J,K are inte-
grable complex structures compatible with g, such that IJ = −JI = K and dωI =
dωJ = dωK = 0. Here ωI , ωJ and ωK are the two-forms associated to the Hermitian
structures (g, I), (g, J) and (g,K) respectively. Then (g, I, J) defines a bi-Hermitian
structure (with respect to the zero three-form), hence a generalized Kähler structure on
M . Since (I−J)(I+J) = 2K, both I±J are invertible and therefore so are ω−1

I ±ω
−1
J .

From (1.57) we deduce that both J1 and J2 are everywhere of type 0 .
19The type change locus of a generalized complex structure is the subset of points where the type does not

assume its global minimal value. If the manifold is connected then this is a nowhere dense set, by Theorem
1.3.16.
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Example 1.4.6. Here we present an example that we will more thoroughly investigate
in Section 4.4, where we will also give proofs of the following statements. Let G be
a compact, connected, even dimensional Lie group, equipped with a bi-invariant metric
〈·, ·〉. There exists a complex structure I on the Lie algebra g which is compatible with
〈·, ·〉, and whose (+i)-eigenspace g1,0 ⊂ gC is closed under the Lie bracket. It follows
that its left and right invariant extensions over G give integrable complex structures I+
and I−. There are two connections ∇+ and ∇− on G, characterized by the property
that left-, respectively, right-invariant vector fields are parallel, and we have ∇±I± = 0.
The torsion of∇± is given by the Cartan three-form on G, which is a closed, bi-invariant
three-formH that on g is given byH(ξ, η, ζ) = 〈[ξ, η], ζ〉. By Proposition 1.4.3 it follows
that the tuple (〈·, ·〉, I±, H) defines a generalized Kähler structure on G. Furthermore, if
T is a maximal torus inG, then the above generalized Kähler structure can be constructed
in such a way that T acts by symmetries of the structure. Since I+ = I− at the identity
of G, I+ = I− at all points of T , which by (1.57) implies that T is a submanifold of the
complex locus. In fact, T turns out to be the connected component of the complex locus
containing the identity, hence T is a generalized Poisson submanifold with respect to J1.

Remark 1.4.7. If (J1,J2) is generalized Kähler then so is (J2,J1), with the same gener-
alized metric G. So when considering e.g. a generalized Poisson submanifold for one of
the two structures, we may as well assume this to be J1.

The difficult feature of bi-Hermitian geometry lies in the fact that I+ and I− do not
commute in general. Therefore, standard techniques in complex geometry such as the
decomposition of forms into types, become difficult as they can be performed only for
one of the two complex structures at a time. This failure of commutativity suggests that
important information about the generalized Kähler structure is contained in the tensor

Q := −1

2
[I+, I−]g−1 : T ∗M → TM. (1.58)

A quick calculation shows thatQ is skew-symmetric so we can regard it as a bivector, and
it was observed in [2] in the four-dimensional case and in [29] in the general case, that Q
is Poisson. In fact, it turns out to be the real part of two holomorphic Poisson structures

σ± := Q− iI±Q. (1.59)

One can prove this directly in local coordinates using the integrability conditions (see
[29]), or in the following more abstract way (see [25]). In the proof of Lemma 1.3.4 we
saw that

L� L̄T = {− i
2
πJ (ξ) + ξ| ξ ∈ T ∗MC} = e

− i
2πJ
∗ (T ∗MC).

This allowed us to conclude that πJ is integrable. In a similar spirit we have the following
proposition, which follows from the results in [25].

Proposition 1.4.8. Let (J1,J2) be a generalized Kähler structure with associated Dirac
structures L1 and L2, and let (g, I±, H) be the corresponding bi-Hermitian structure.
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Then

L̄T1 � L2 = L(I+,− 1
8σ+), L̄T1 � L2 = L(I−,− 1

8σ−),

where L(I±,− 1
8σ±) was defined in Example 1.3.7 and the Baer sum was introduced in

Section 1.2.3. In particular, σ± are both holomorphic Poisson.

Proof. We will show thatL(I+,− 1
8σ+) ⊂ L̄T1 �L2; equality then follows from dimensional

reasons, and the case of σ− is similar. The fact that σ± are holomorphic Poisson then
follows from Example 1.3.7. We have

L(I+,− 1
8σ+) = {X + σ+(ξ)− 8ξ| X ∈ T 0,1

+ M, ξ ∈ T ∗1,0+ M},

where T 1,0
+ M denotes (+i)-eigenspace for I+. For X ∈ T 0,1

+ M we write X = X −
g(X) + g(X), and since X + g(X) ∈ V 0,1

+ = L1 ∩ L2 we see that X ∈ L̄T1 � L2. Next,
let us denote by P± := 1

2 (1 − iI∗±) the projections onto T ∗1,0± M . A quick calculation
yields

σ+ = 4g−1P+P−P+.

For ξ ∈ T ∗1,0+ M , using ξ = P+ξ and 1 = P± + P±, we obtain

σ+(ξ) = 4g−1(ξ − P+P−ξ)− 4g−1(P−ξ) (1.60)

= −4g−1(P+P−ξ) + 4g−1(P−ξ). (1.61)

Note that (1.60) and (1.61) are decompositions of σ+(ξ) in T 0,1
+ M+T 0,1

− M and T 0,1
+ M+

T 1,0
− M respectively. Writing ζ := 4(ξ − P+P−ξ + P−ξ) and η := −4P+P−ξ − 4P−ξ,

we have

σ+(ξ)− 8ξ = σ+(ξ)− ζ + η.

Equation (1.60) implies that σ+(ξ) + ζ ∈ L1 while (1.61) implies that σ+(ξ) + η ∈ L2.
In particular σ+(ξ)− 8ξ ∈ L̄T1 � L2, so indeed L(I+,− 1

8σ+) ⊂ L̄T1 � L2.

The fact that L̄T1 � L2 is smooth can also be seen directly from L̄T1 ∩ L2 ∩ T ∗MC =
V 0,1

+ ∩ T ∗MC = 0, which in addition shows that

ρ̄T1 ∧ ρ2 = e−
1
8σ+Ω+, (1.62)

where Ω+ is a suitably scaled (n, 0)-form for I+ and ρ1 and ρ2 are spinors for L1 and L2.
Similarly,

ρ̄T1 ∧ ρ2 = e−
1
8σ−Ω−. (1.63)
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Chapter 2

Blowing up Submanifolds

In this chapter we introduce the concept of blowing up in the category of smooth mani-
folds. The definition that we will give resembles very much the algebro-geometric one.
Specifically, for a given submanifold we introduce the notion of a holomorphic ideal for
it, and use that to define the blow-up of the submanifold by means of a universal property.
The advantage of this approach is that it is canonical, and from the point of view of the
submanifold the only choice that has been made is that of a holomorphic ideal. In Section
2.2 we give a normal form that describes all the holomorphic ideals for a given subman-
ifold, and use it to study the topology of the blow-up. This includes a calculation of the
fundamental group and its cohomology. Then, in Sections 2.3 and 2.4 we discuss how to
endow blow-ups with complex and symplectic structures. This part is well-known, and
serves as both a review as well as a warm-up for the constructions in Chapters 3 and 4.

2.1 Blow-ups in differential geometry
Blowing up a submanifold consists of replacing it by all complex directions normal to it.
As such it as a surgery procedure, where a subset of the manifold is removed and a new
piece is glued back in. When performing surgeries on differentiable manifolds one often
needs to make specific choices, such as a tubular embedding of the submanifold. In the
following, we present a way to blow up submanifolds in which this choice takes the form
of an ideal of functions, that has the submanifold as its zero set.

Definition 2.1.1. Let M be a smooth manifold and C∞(M ;C) the sheaf of complex
valued smooth functions. Let Y ⊂ M be a closed1 submanifold of real codimension 2l,
with l ≥ 1. A holomorphic ideal for Y is an ideal sheaf IY ⊂ C∞(M ;C) with the
following properties:

i) IY |M\Y = C∞(M ;C)|
M\Y .

1Closed in the sense of topological subspace, we do not necessarily assume that Y is compact. Our subman-
ifolds will always be embedded.
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ii) Each y ∈ Y has a neighborhood U together with z1, . . . , zl ∈ IY (U), such that
z := (z1, . . . , zl) : U → Cl is a submersion with Y ∩ U = z−1(0), and IY |U =
〈z1, . . . , zl〉.

Remark 2.1.2. It follows from properties i) and ii) that Z(IY ) := {x| f(x) = 0 ∀f ∈
(IY )x} = Y , where (IY )x denotes the stalk of IY at x. So basically IY is an ideal which
has Y as its zero set, but makes it look complex in transverse directions. In particular, a
holomorphic ideal turnsNY into a complex vector bundle via the decompositionN∗YC =
N∗1,0Y ⊕N∗0,1Y , where N∗1,0y Y := 〈dyz| z ∈ (IY )y〉. In terms of sheaves, N∗1,0Y =
(IY /I

2
Y )|Y . Note that if IY and I ′Y are holomorphic ideals for Y with IY ⊂ I ′Y , then

IY = I ′Y .

For any smooth map f : M1 → M2 and ideal sheaf I ⊂ C∞(M2;C) we can form the
pull-back f∗I , which by definition is the ideal generated by {f∗g| g ∈ I}. We have
Z(f∗I) = f−1Z(I) and if f is transverse to a submanifold Y2 then it pulls back any
holomorphic ideal for Y2 to a holomorphic ideal for Y1 := f−1Y2. Note that f∗IY2 = IY1

implies that the induced map df : NY1 → f∗NY2 is complex linear and injective, but the
converse is not true in general.

Example 2.1.3. Let Y = {0} ⊂ C. One possible holomorphic ideal for Y is given by
the ideal IY := 〈z〉, where z is the holomorphic coordinate on C. However, for each
k ∈ Z≥2 the ideal IY (k) generated by the function z + (z)k is also a holomorphic ideal
for Y . Note that the ideals IY and IY (k) are all mutually distinct holomorphic ideals for
Y that induce the same complex structure on N∗Y .

We will mainly be interested in holomorphic ideals for smooth submanifolds, but in order
to state the definition of the blow-up we also want to consider singular submanifolds in
complex codimension 1.

Definition 2.1.4. A divisor on M is an ideal sheaf IY ⊂ C∞(M ;C) which locally can
be generated by a single function, and whose zero set Y is nowhere dense in M .

As in complex geometry, there is an alternative description of divisors in terms of line
bundles. Let L be a complex line bundle and s a section whose zero set Y := s−1(0) is
nowhere dense. Then there is a map Γ(L∗)→ C∞(M ;C) given by evaluation on s, and
the image will be a divisor in the above sense. Conversely, given a divisor IY , choose
an open cover {Uα} of M together with generators fα ∈ IY (Uα). On Uα ∩ Uβ both
fα and fβ generate the same ideal, so we have fα = gαβfβ for some function gαβ . In
particular fα = gαβgβαfα and fα = gαβgβγgγαfα. Since the zero set of fα is nowhere
dense, we see that (Uαβ , gαβ) defines a line bundle on M , which is trivial over each
Uα. The functions fα then glue together to form a section of this bundle, giving a pair
(L, s) as above. Note that in this language, a divisor (L, s) is a holomorphic ideal in the
sense of Definition 2.1.1, i.e. is smooth, if and only if s intersects the zero-section of L
transversally.
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Equipped with this language we can define the blow-up of a holomorphic ideal IY in M .

Definition 2.1.5. Let Y ⊂ M be a closed submanifold and IY a holomorphic ideal for
Y . The blow-up of IY in M is a pair (M̃, p), consisting of a smooth manifold M̃ and
a smooth blow-down map p : M̃ → M such that p∗IY is a divisor and which satisfies
the following universal property: For any smooth map f : X → M such that f∗IY is a
divisor, there is a unique f̃ : X → M̃ such that the following diagram commutes:

X

f   

f̃ // M̃

p

��
M

Given (M̃, p), we define E := p−1(Y ) and IE := p∗IY . This E is called the exceptional
divisor of the blow-up.

Theorem 2.1.6. The blow-up (M̃, p) exists and is unique up to unique isomorphism.

Proof. The uniqueness part follows immediately from the universal property. Since Y is
closed in M , we can cover M by charts which are either disjoint from Y , or of the form
Cl×Rm with coordinates (z1, . . . , zl, x1, . . . , xm), where the zi are as in Definition 2.1.1
ii) and xi are real coordinates on Y . We will construct the blow-up on each individual
chart, so that the universal property implies that all the local constructions can be glued
together uniquely to form the desired manifold M̃ . On a chart not intersecting Y we do
nothing, i.e. take p to be the identity, as IY is already (trivially) a divisor there. On a
chart U = Cl × Rm as above with Y ∩ U = {0} × Rm, we define Ũ := C̃l × Rm and
p = (p′, Id) : Ũ → U , where C̃l is defined by

C̃l := {(z, τ)| z ∈ τ} ⊂ Cl × CPl−1 (2.1)

and p′ : C̃l → Cl is given by the first projection. The manifold C̃l has a cover by l
different charts, given by

(v1, . . . , vi−1, zi, vi+1, . . . , vl)↔
(
zi · (v1, . . . , vi−1, 1, vi+1, . . . , vl),

[v1 : . . . : vi−1 : 1 : vi+1 : . . . : vl]
)

for 1 ≤ i ≤ l. On these charts p′ is given by

p′ : (v1, . . . , vi−1, zi, vi+1, . . . , vl) 7→ (ziv1, . . . , zivi−1, zi, zivi+1, . . . , zivl). (2.2)

Now suppose that f : X → U is a map such that f∗(IY |U ) is a divisor, with corre-
sponding nowhere dense zero set D = f−1(Y ∩ U). The desired lift f̃ : X → U is
already uniquely determined and smooth on X\D, because p′ is an isomorphism over
Cl\{0}, so we only have to show that f̃ extends smoothly over D. To that end, write
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f = (f1, . . . , f l, f ′1, . . . , f ′m), so that f∗(IY |U ) = 〈f1, . . . , f l〉. By definition of being
a divisor there exists, on a neighborhood V of any x0 ∈ D, a function g ∈ C∞(V ;C)
with 〈g〉 = 〈f1, . . . , f l〉. Therefore there exist ai, bi ∈ C∞(V ;C) with f i = aig and
g =

∑
i bif

i and so, since g 6= 0 on a dense set, we obtain
∑
i a
ibi = 1. In particular

there is an index i0 such that, after possibly shrinking V , ai0 is nowhere zero. The map
f̃ : V \(D ∩ V ) → Ũ has its image contained in the chart (2.2) for i = i0, where it is
given by

f̃ : x 7→
( f1(x)

f i0(x)
, . . . , f i0(x), . . . ,

f l(x)

f i0(x)
, f ′1(x), . . . , f ′m(x)

)
.

Since f i/f i0 = ai/ai0 and ai0 is nonzero on V , we see that f̃ indeed extends smoothly
over the whole of V , and therefore over the whole of D. Hence, the blow-up exists over
each chart, and from the above discussion we conclude that the blow-up p : M̃ → M
indeed exists and is unique.

Remark 2.1.7. It follows from the universal property that the blow-up construction is
functorial in the sense that for any map f : (M1, IY1) → (M2, IY2) with f∗IY2 = IY1 ,
there is a unique map f̃ : M̃1 → M̃2 making the obvious diagram commute.

2.2 Topology
In Remark 2.1.2 we saw that a holomorphic ideal IY for a submanifold Y ⊂ M turns
the normal bundle NY into a complex vector bundle. It is then natural to ask whether
any complex structure on NY is induced by such an ideal. In this section we will show
that this is the case, and moreover prove that any two ideals that induce the same complex
structure on NY are related to each other by a diffeomorphism around Y . We then use
this to describe the topology of the blow-up, including a computation of the fundamental
group and the cohomology groups.

Suppose NY has the structure of a complex vector bundle, so that NYC = N1,0Y ⊕
N0,1Y . Viewing Y as a submanifold of the total space of NY given by the zero section,
there is a natural holomorphic ideal I lin

Y for Y generated by Γ(N∗1,0Y ), considered as
fiberwise linear complex functions on NY . We call this the linear ideal associated to the
complex structure on NY . Explicitly, if q : N1,0Y → Y denotes the projection2 and
U ⊂ Y is an open set over which q−1U ∼= U ×Ck, then I lin

Y |q−1U = 〈z1, . . . , zk〉, where
the latter are the coordinates on Ck. If ι : NY → M is any tubular embedding, we
obtain a holomorphic ideal for Y on the image of ι by pushing forward I lin

Y . As this ideal
coincides with the trivial one on the complement of Y , we can extend it to the rest of M ,
obtaining a holomorphic ideal for Y on M that induces the given complex structure on
NY . We now show that in fact all holomorphic ideals for Y arise in this way.

2NY and N1,0Y are isomorphic as complex vector bundles, so we will often implicitly identify them with
each other.
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Proposition 2.2.1. Let IY be a holomorphic ideal for Y , inducing a complex structure
on NY . Then there exists a tubular embedding ι : NY →M such that ι∗IY = I lin

Y .

Proof. Let κ : NY → M be any tubular embedding and consider κ∗IY . This is a
holomorphic ideal for Y on NY that induces the same complex structure on NY as
I lin
Y , and it suffices to show that there exists a diffeomorphism ϕ of NY defined in a

neighborhood of Y , that fixes Y and satisfies ϕ∗κ∗IY = I lin
Y . Then ι := κ ◦ ϕ will be

the desired tubular embedding. We will construct ϕ on N1,0Y , which is isomorphic as a
complex vector bundle to NY .

Pick an open cover {Uα} of Y together with trivializing frames eα = (eα1 , . . . , e
α
k )

for N1,0Y over Uα, with k = codimC(Y ). Such a local frame induces an identification
q−1Uα ∼= Uα × Ck, by letting (x, zα) ∈ Uα × Ck correspond to

∑
i z
i
αe
α
i (x). Here

q : N1,0Y → Y denotes the projection. Let eαi = (gαβ) ji e
β
j be3 the transition on a double

overlap Uα∩Uβ , so that in particular ziβ = (gαβ) ij z
j
α. By taking the Uα sufficiently small

we may assume that κ∗IY is generated, on a neighborhood of Uα in q−1Uα, by functions
w1
α, . . . , w

k
α. By assumption, we know that

dwiα|Uα = (hα)ijdz
j
α|Uα (2.3)

for some family of invertible matrices hα on Uα. We may absorb hα in the local frame
eα and assume without loss of generality that hα = Id. Let {ρα} be a partition of unity
subordinated to {Uα}. The expression wαq∗(ραeα) defines a map from a neighborhood
of Y in N1,0Y to N1,0Y , given by

v 7→
∑
i

wiα(v)ρα(q(v))eαi (q(v)).

It sends fibers to fibers and restricts to the identity on Y , and outside of Uα it maps all
fibers to zero. Note that the same expression without the ρα would only be defined over
Uα. Define

ψ :=
∑
α

wαq
∗(ραe

α) : N1,0Y ⊃→ N1,0Y. (2.4)

Again, this map is fiber preserving and restricts to the identity on Y . We claim that its
derivative along Y is the identity, so that it induces a diffeomorphism of neighborhoods
of Y in NY . Indeed, to check this we look in a particular coordinate chart q−1Uα ∼=
Uα × Ck. There, ψ is given by

ψ : (x, ziα) 7→
(
x,
∑
β

ρβ(x)(gβα(x)) ij w
j
β(x, zα)

)
. (2.5)

3In an expression with a repeated index an implicit summation over that index is understood.
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Using (2.3) with hα = Id we see that

d
(∑

β

ρβ(x)(gβα(x)) ij w
j
β(x, zα)

)
|Y =

∑
β

ρβ(x)(gβα(x)) ij dw
j
β(x, zα)|Y

=
∑
β

ρβ(x)dziα|Y = dziα|Y

which implies that dψ|Y = Id, hence ψ is a local diffeomorphism around Y . From
the local expression (2.5) it is clear that ψ∗I lin

Y = κ∗IY , so ϕ := ψ−1 is the desired
diffeomorphism.

The main point in the above proof is the construction of the map ψ in (2.4) which relates
any holomorphic ideal for Y on NY to its linearization. Since the functions wα(t) :=
(1−t)zα+twα all satisfy dwα(t)|Y = dzα|Y , the family ψt, defined by the same equation
as ψ but with wα replaced by wα(t), defines an isotopy from the identity to ψ = ψ1 on a
small enough neighborhood of Y in NY . Consequently, if Y is compact we may use the
isotopy extension theorem to obtain the following corollary.

Corollary 2.2.2. If Y is compact and if IY and I ′Y are two holomorphic ideals for Y that
induce the same complex structure on NY , then there is a diffeomorphism ϕ of M with
ϕ∗IY = I ′Y .

Remark 2.2.3. In particular, the two associated blow-ups are diffeomorphic. The diffeo-
morphism itself is however not unique, so the differentiable blow-up is not canonical.

This last remark admits a generalization.

Corollary 2.2.4. If Y is compact and IY and I ′Y are holomorphic ideals whose induced
complex structures on NY are isotopic, then the blow-ups are diffeomorphic.

Proof. Let Jt be a family of complex structures on NY such that J0 corresponds to the
complex structure induced by IY and J1 to that of I ′Y . By Proposition 2.2.1 there exist
tubular embeddings ι and ι′ which pull-back IY and I ′Y to their respective linearizations.
We can view {Jt}t as a complex structure on the normal bundle of Y ×[0, 1] ⊂M×[0, 1],
and there exists a tubular embedding κ of the latter intoM× [0, 1], which restricts to ι and
ι′ at times 0 and 1. This induces a holomorphic ideal for Y × [0, 1] on M × [0, 1], denoted
by IY×[0,1], and by construction we have i∗0(IY×[0,1]) = IY and i∗1(IY×[0,1]) = I ′Y ,
where i0, i1 : M → M × [0, 1] denote the two inclusions. Let X denote the blow-up of
IY×[0,1] in M × [0, 1]. The composition

X
p→M × [0, 1]

π2→ [0, 1]

is a submersion, whose fibers over 0 and 1 correspond to the blow-ups of IY and I ′Y in
M . Since the restriction of π2 ◦ p to X\p−1(Y × [0, 1]) is a trivial fiber bundle over [0, 1]
and p−1(Y × [0, 1]) is compact, the statement of the corollary follows from the following
lemma, which is a slight variant of the theorem of Ehresmann. It is in that lemma that we
need that Y is compact.
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Lemma 2.2.5. Let p : M → N be a surjective submersion and let K ⊂M be a compact
subset such that p|M\K : M\K → N is a locally trivial fiber bundle. Then p itself is a
locally trivial fiber bundle.

Proof. Let My denote the fiber of a point y ∈ N . By assumption there exists a neigh-
borhood V of y in N such that p−1(V )\K is diffeomorphic to My\K × V , and we can
think of this as a tubular neighborhood of My\K in M . On the other hand, since My is a
submanifold of M , it has itself a tubular neighborhood U . Then over My\K we have two
tubular neighborhoods, and after interpolating between them we obtain a tubular neigh-
borhood W of My in M , which near My ∩K is given by U and away from My ∩K is
given by p−1(V )\K. Since K ∩My is compact there exists an open neighborhood V ′ of
y in N such that p−1(V ′) ⊂ W . Let r : p−1(V ′) → My denote the retraction coming
from the tubular neighborhood W , and consider the map (p, r) : p−1(V ′) → V ′ ×My .
It is invertible away from r−1(K ∩My), and since its derivative is invertible at points in
My and K ∩My is compact, we can shrink V ′ to ensure that (r, p) becomes invertible,
exhibiting p−1(V ′) as a product V ′ ×My .

Let us now focus on the topology of the blow-up of one fixed ideal. First we do this for
the linear ideal on NY , associated to some given complex structure on the bundle NY .
Define

ÑY = {(z, l) ∈ NY × P(NY )| z ∈ l} ⊂ NY × P(NY ), (2.6)

where P(NY ) denotes the complex projectivization of NY . Let p : ÑY → NY be the
restriction to ÑY of the projection NY × P(NY ) → NY . The pair (ÑY , p) gives the
blow-up of Y in NY , and the exceptional divisor is given by E := p−1(0) = P(NY ).

Now suppose that IY is a holomorphic ideal for Y in M , and let ι : NY
∼→ U ⊂ M

be a tubular embedding with ι∗IY = I lin
Y , as provided by Proposition 2.2.1. Here U is

an open neighborhood of Y in M . We can write M as a glueing of two manifolds along
open subsets,

M = M\Y ∪ι NY,

where the glueing is given by ι : NY \Y ∼→ U\Y . Since ι∗IY = I lin
Y , it follows by

naturality of the blow-up that M̃ is given by

M̃ = M\Y ∪ι̃ ÑY (2.7)

where ι̃ : ÑY \E p→ NY \Y ι→ U\Y .

Corollary 2.2.6. The restriction p : M̃\E → M\Y is a diffeomorphism, IE = p∗IY is
smooth and p : E → Y is isomorphic to P(NY )→ Y .

The first statement actually follows from the universal property, while the other statements
could also be deduced from the construction of the blow-up itself. Nevertheless, (2.7)
gives a nice way to see these things directly. In some cases we can be more explicit about
the topology of the blow-up.



54 Blowing up Submanifolds

Lemma 2.2.7. If Y is a point and dimR(M) = 2n, then4 M̃ ∼= M#CPn.

Proof. Consider the map π : CPn\[0 : . . . : 0 : 1]→ CPn−1 given by

π([z0 : . . . : zn]) = [z0 : . . . : zn−1].

The fiber over any point naturally forms a complex line, and over an affine chart Ui :=
{zi 6= 0} in CPn−1 we have a nonzero section ei of π given by ei([z0 : . . . : zn−1]) :=
[z0 : . . . : zn−1 : zi]. On an overlap Ui ∩ Uj we have ei = zi

zj
· ej . On the other hand, the

tautological bundle π : C̃n → CPn−1 (see 2.1) also has sections over the opens Ui, given
by

e′i([z0 : . . . : zn−1]) := ((
z0

zi
, . . . ,

zi−1

zi
, 1,

zi+1

zi
, . . . ,

zn−1

zi
), [z0 : . . . : zn−1]).

This time we have e′i =
zj
zi
·e′j onUi∩Uj , hence we see that CPn minus a point is identified

with the dual of the tautological line bundle. In general, the dual of a complex line bundle
L is equal to its complex conjugate. This can be seen by choosing an Hermitian metric,
which gives an isomorphism L→ L∗. Consider the manifold CPn\[0 : . . . : 0 : 1], which
is the same as CPn\[0 : . . . : 0 : 1] but with the opposite orientation, and let π denote the
same map onto CPn−1. The change of orientation has, from the point of view of CPn−1,
the effect of conjugation in the fibers. Hence, CPn\[0 : . . . : 0 : 1] is diffeomorphic to
C̃n. Since the blow-up of a point consists of glueing the complement of a disc in M to
C̃n, which we now know to be equal to the complement of a disc in CPn, we see that the
blow-up is given by the connected sum.

Let us return to the general case. We can use (2.7) to compute the fundamental group.

Lemma 2.2.8. π1(M̃) = π1(M).

Proof. Since codimR(Y ) ≥ 4, we have π1(M\Y ) = π1(M). Moreover, ÑY de-
formation retracts onto E, which is a bundle over Y with fiber given by CPk−1 for
k = codimC(Y ). Since this is simply connected, we have π1(E) = π1(Y ). Similarly,
ÑY \E ∼= NY \Y is homotopy equivalent to a sphere bundle over Y , with fiber given by
S2k−1. Again, this implies that π1(ÑY \E) = π1(NY \Y ) = π1(Y ). Using Seifert-Van
Kampen we obtain

π1(M̃) = π1(M\Y ) ?
π1(ÑY \E)

π1(ÑY ) = π1(M) ?π1(Y ) π1(Y ) = π1(M).

As far as cohomology is concerned we have the following lemma.

Lemma 2.2.9. There is an exact sequence 0 → H∗(M)
p∗→ H∗(M̃) → A∗ → 0, where

A∗ ∼= H∗(P(NY ))/H∗(Y ) is a free module over H∗(Y ) generated by α, α2, . . . , αk−1

for a certain class α of degree 2. Here k = codimC(Y ), and cohomology is taken over Z.
4The symbol # stands for connected sum, see also Example 1.3.8.
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Proof. The map of pairs p : (M̃,E)→ (M,Y ) induces the commutative diagram

. . . −→ Hi−1(E) −→ Hi(M̃,E) −→ Hi(M̃) −→ Hi(E) −→ Hi+1(M̃,E) −→ . . .x x x x x

. . . −→ Hi−1(Y ) −→ Hi(M,Y ) −→ Hi(M) −→ Hi(Y ) −→ Hi+1(M,Y ) −→ . . .
(2.8)

whose rows are exact and all vertical maps are given by p∗. By homotopy invariance we
have H∗(M,Y ) ∼= H∗(M,U), where U is a neighborhood of Y in M that deformation
retracts onto Y , and similarly H∗(M̃,E) ∼= H∗(M̃, p−1U). Using excision and the
fact that p : (M̃\E, p−1U\E) → (M\Y,U\Y ) is a diffeomorphism, we deduce that
p∗ : H∗(M,Y )→ H∗(M̃,E) is an isomorphism.

Since E = P(NY ), there is a tautological line bundle L over E, whose fiber over a
point l ∈ NY is the line l itself. In fact the total space of L is precisely ÑY , see (2.6).
Denote by α := c1(L) ∈ H2(E). Since the fiber of p : E → Y equals CPk−1 and
the restriction of L to such a fiber is precisely the tautological bundle over CPk−1, the
restriction of the classes 1, α, . . . , αk−1 form a Z-basis of the cohomology of the fiber.
By the Leray-Hirsch theorem we deduce that 1, α, . . . , αk−1 form a basis for H∗(E) as a
module over H∗(Y ). In particular, p∗ : H∗(Y )→ H∗(E) is injective.

We would like to conclude, via some version of the five-lemma, that p∗ : H∗(M) →
H∗(M̃) is injective. In general, given a diagram like (2.8), a sufficient condition for
the third vertical arrow to be injective is that the first vertical arrow is surjective and
that the second and fourth vertical arrows are injective. We just saw that the second
and fourth arrows are injective, but the first vertical arrow is not surjective, its coker-
nel being generated by the classes α, . . . , αk−1 over H∗(Y ). However, the tautologi-
cal bundle over E is actually the restriction of a line bundle on M̃ , given by the line
bundle corresponding to the divisor E itself. In particular the class α is the restriction
of a class5 in H2(M̃), which we will continue to denote by α. Consequently, the map
H∗(E)→ H∗+1(M̃,E) kills the classes αi for i > 0, hence its image coincides with that
of the composition H∗(Y ) → H∗(E) → H∗+1(M̃,E). This implies that the version of
the five-lemma described above still holds, and we conclude that p∗ : H∗(M)→ H∗(M̃)
is injective. Given this fact, a quick diagram chase along (2.8) shows that the cokernel of
p∗ : H∗(M)→ H∗(M̃) coincides with that of p∗ : H∗(Y )→ H∗(E), which proves the
lemma.

Let bi(M) = dimR(Hi(M ;R)) denote the i-th Betti number, understood to be zero when-
ever i is negative.

Corollary 2.2.10. bi(M̃) = bi(M) +
∑k−1
j=1 bi−2j(Y ).

5Another interpretation of this class is as the Poincaré dual of E in M̃ . Note that since E is co-oriented it
has a Poincaré dual, even if M is not oriented.
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2.3 Complex blow-up
We have seen how to construct a blow-up differentiably, now it is time to endow all man-
ifolds with geometric structures. We first discuss the complex setting.

The complex blow-up fits nicely in the language introduced in Section 2.1. If (M, I)
is a complex manifold and Y ⊂ M is a complex submanifold, there is a canonical holo-
morphic ideal for Y , given by the holomorphic functions that vanish on Y . Consequently,
there is a canonical differentiable blow-up M̃ .

Proposition 2.3.1. The blow-up M̃ carries a unique complex structure such that the
blow-down map is holomorphic.

Proof. Recall that the construction of M̃ was performed locally, using the universal prop-
erty to glue all local constructions together. On a local holomorphic chart Cl×Cm, where
Y is given by {0} × Cm, the blow-up is given by C̃l × Cm, where C̃l is the blow-up of
the origin in Cl (see (2.1)). This clearly carries a unique complex structure for which the
blow-down map is holomorphic. The glueing maps over intersections of charts, as pro-
vided by the universal property, will be holomorphic on a dense set, hence everywhere.
In particular, M̃ is a complex manifold.

Remark 2.3.2. What we observed in this proof is that the differentiable blow-up M̃ satis-
fies not only the universal property of Definition 2.1.5, but also its analogue in the category
of complex manifolds and holomorphic maps. Note that in this category the condition
f∗IY2

= IY1
, for a holomorphic map f : (M1, Y1) → (M2, Y2), is in fact equivalent to

f−1(Y2) = Y1 and injectivity of the bundle map df : NY1 → NY2.

The most important application of the complex blow-up is to resolutions of singularities.
Here is a concrete example that shows the intuition behind this.

Example 2.3.3. Consider the curve C := {y2 − x2(x + 1) = 0} in C2, which has a
singularity at (0, 0). Let p : C̃2 → C2 denote the blow-up of the origin with excep-
tional divisor E ∼= CP1. Then C̃2 is covered by two charts with coordinates (u1, v1)
and (u2, v2), where p(u1, v1) = (u1, u1v1) and p(u2, v2) = (u2v2, v2). There are two
analytic subspaces of C̃2 associated to C, the total transform given by p−1(C), and the
proper transform C̃ which is the closure of p−1(C)\(E∩p−1(C)) in C̃2. The total trans-
form is given by the equation p∗(y2−x2(x+ 1)) = 0, which on the two charts looks like
u2

1(v2
1 − (u1 + 1)) = 0 and v2

2(1 − u2
2(u2v2 + 1)) = 0 respectively. It follows that the

proper transforms are given by v2
1 − (u1 + 1) = 0 and 1− u2

2(u2v2 + 1) = 0. In partic-
ular, C̃ is smooth. Note that the intersection of the proper transform with the exceptional
divisor is given by the two points (u1, v1) = (0,±1) (or (u2, v2) = (±1, 0) in the other
chart), which on CP1 correspond precisely to the two tangents of the curve C at (0, 0).

This example can be generalized to the case of any complex curve C in a smooth complex
surface S. Each point in C comes with a multiplicity, which by definition is the lowest or-
der nonzero homogeneous component of an equation for the curve in local coordinates on
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S centered at the point in question. The singular points are those for which the multiplic-
ity is bigger than one. If x ∈ C is a singular point, let p : S̃ → S denote the blow-up of S
in x. The total transform p−1C and the proper transform C̃ are defined as in the example
above, and the intersection C̃ ∩ E is the set of points that correspond to the lines in TxS
that are tangent to C at x. By a careful analysis of what happens to the local equation for
the curve under the blow-up, similar to the example above, one can show that after a finite
number of blow-ups the multiplicity of a singular point must decrease. In particular, a
finite number of blow-ups will transform the singular point into a set of smooth points on
a new curve C̃. Therefore, a locally finite number of blow-ups in S transforms the curve
C into a smooth curve. For details we refer to Theorem 7.1 in [7].

In much greater generality, Hironaka [27] proved that any complex analytic space ad-
mits a desingularization. The proof is very hard, but the notion of local multiplicity (now
intrinsically defined on the singular space itself) and the theory of blow-ups still play a
major role in the construction.

2.4 Symplectic blow-up
The construction of the symplectic blow-up is different from the complex one, the rea-
son being that symplectic submanifolds do not carry a canonical holomorphic ideal. In
particular, we can not define the blow-up immediately via a universal property. Another
difference is that in this context we need to require the submanifold to be compact, for
reasons that will become clear later in Section 3.2. In this section we will only describe
the symplectic blow-up of a point in (M,ω), since that already describes the main ideas.
The fine details of the construction, as well as the symplectic blow-up in general, are left
to Section 3.2 where we discuss blow-ups of generalized Poisson transversals. This in-
cludes symplectic submanifolds as a special case.

The construction we present here is due to [36]. Let Y be given by a point y0 ∈ M ,
and pick a Darboux chart Cn around y0 on which ω = i

2

∑
i dz

idz̄i (in the case of a gen-
eral submanifold Y we need to pick a tubular embedding that puts the symplectic structure
in a normal form around Y , which is provided by the symplectic neighborhood theorem).
The blow-up of the origin in Cn is given by C̃n = {(z, l) ∈ Cn × CPn−1| z ∈ l},
and comes equipped with maps p : C̃n → Cn and π : C̃n → CPn−1 induced by the
two projections. The latter realizes C̃n as the tautological line bundle over CPn−1, with
zero section given by E. The pullback p∗ω is symplectic on C̃n\E, but degenerates on
E itself. To remedy this, consider the Fubini-Study form ωFS on CPn−1. Then π∗ωFS
is positive on E, and ωε := p∗ω + επ∗ωFS is positive on C̃n for all ε > 0. We saw in
Section 2.2 that the blow-up M̃ is given by the glueing of M\{y0} to C̃n via the iso-
morphism p : C̃n\E ∼→ Cn\{0} ⊂ M\{y0}. This glueing map does not pull-back ω to
ωε because of the extra Fubini-Study term in ωε. Fortunately, π∗ωFS has the convenient
property that its restriction to C̃n\E is exact, i.e. π∗ω|C̃n\E = dα for a specific one-form
α, whose precise expression does not concern us at the moment. If τ is a function on Cn
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with compact support and which equals 1 on a neighborhood of 0, the form

ω̃ε :=

{
p∗ω + επ∗ωFS on E
p∗ω + εd((p∗τ)α) on C̃n\E

(2.9)

is smooth and symplectic on C̃n for ε small enough. It agrees with p∗ω outside a neigh-
borhood ofE. Specifically, letU be a neighborhood of 0 in Cn which contains the support
of τ , so that p−1U is a neighborhood of E in C̃n, outside of which ω̃ε equals p∗ω. Then
we can write M̃ as the result of glueing M\U to C̃n via the same glueing map, but now
restricted to C̃n\p−1U → Cn\U . This glueing map is symplectic, equipping M̃ with a
symplectic structure ω̃ε. The blow-down map is symplectic on M̃\p−1U , but not near the
exceptional divisor E. Note that the parameter ε is related to the symplectic volume of
E: if i : E ↪→ Y denotes the inclusion, then∫

E

i∗ω̃ε = ε

∫
CPn−1

ωFS.

Example 2.4.1. In [36] the symplectic blow-up was used to construct new examples
of non-Kählerian symplectic manifolds. At the time such examples, especially simply
connected ones, were rather scarce. The idea is as follows. Given any symplectic manifold
(M,ω) of dimension 2n, there exists a symplectic embedding ofM into CP2n+1 (see [22,
Section 3.4] or [39]). From Section 2.2 we know that the blow-up of M in CPn, call it
X , is simply connected, and b3(X) = b1(M). Hence if b1(M) is odd, X is a simply
connected symplectic manifold which can not be Kähler. For instance, M can be taken to
be Thurston’s manifold, which is a compact symplectic four-manifold with b1(M) = 3.

Symplectic cuts

An elegant alternative approach to symplectic blow-ups uses symplectic cuts, and is due
to [34]. This approach will be useful for us when we discuss blow-ups of generalized
Poisson transversals.

We first discuss symplectic cuts in general. Let (M,ω) be a symplectic manifold, en-
dowed with a Hamiltonian S1-action with moment map µ : M → R. Recall that this
means that ιXω = dµ, for X the action vector field on M given by

X(x) =
d

dt

∣∣∣∣
t=0

eit · x. (2.10)

If ε is a regular value for µ, it separates M into the regions {µ ≥ ε} and {µ ≤ ε},
which are manifolds with boundaries given by µ−1(ε). Intuitively, the symplectic cut
disconnects these two regions, and collapses their boundaries via the S1-action to form
two new manifolds without boundaries, denoted by M≥ε and M≤ε. Here is the precise
construction. Consider the symplectic manifold (N, ω̃) := (M,ω) × (C, ωst), where
ωst = i

2dwdw̄, and consider the S1-action on N given by eiθ · (x,w) = (eiθ · x, eiθw).
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This action also carries a moment map ν : N → R, given by ν(x,w) = µ(x)− 1
2 |w|

2. A
regular value ε for µ is also a regular value for ν, and

ν−1(ε) = {(x,w)| µ(x) = ε+
1

2
|w|2}.

This is a union of two subsets which are S1-invariant, namely ν−1(ε) ∩ {w = 0} and
ν−1(ε) ∩ {w 6= 0}. The former coincides with µ−1(ε), while on the latter we can write
down a slice6 for the S1-action:

ϕ : {µ > ε} → ν−1(ε) ∩ {w 6= 0}, x 7→ (x,
√

2(µ(x)− ε)). (2.11)

Clearly ϕ∗ω̃ = ω, hence the induced diffeomorphism {µ > ε} → (ν−1(ε) ∩ {w 6=
0})/S1 is a symplectomorphism, with respect to the restricted symplectic structure on
{µ > ε} and the reduced symplectic structure on the quotient. Consequently, we see that
the reduced symplectic manifold M≥ε := ν−1(ε)/S1 (which has no boundary), has an
open subset which is symplectomorphic to {µ > ε}, whose complement is given by the
codimension 2 symplectic submanifold µ−1(ε)/S1. This confirms the above described
intuitive picture of the cut.
Similarly, we can also consider the S1-action onN given by eiθ ·(x,w) = (eiθ ·x, e−iθw),
with moment map ν̃(x,w) = µ(x) + 1

2 |w|
2. As above, the quotient M≤ε := ν̃−1(ε)/S1

has an open set which is symplectomorphic to {µ < ε}, whose complement is given by
µ−1(ε)/S1.

Now let us apply this to blow-ups. Consider the S1-action on M := Cn given by
eiθ · z := e−iθz. A moment map for this action is given by µ(z) = 1

2 |z|
2, and every

ε > 0 is a regular value with level set given by the sphere of radius
√

2ε.

Lemma 2.4.2. M≥ε/2 = C̃n, the blow-up of Cn at the origin, with symplectic struc-
ture given by p∗ωst + επ∗ωFS. Here p and π are the two projections to Cn and CPn−1

respectively.

Proof. Let ν : Cn × C → R be the moment map ν(z, w) = 1
2 |z|

2 − 1
2 |w|

2 used for the
symplectic cut. Consider the map κ : ν−1(ε/2)→ Cn × CPn−1 given by

κ : (z, w) 7→
(wz
|z|
, [z]
)
. (2.12)

It is S1-invariant with image C̃n = {(x, l)| x ∈ l}, and induces a diffeomorphism
ν−1(ε/2)/S1 ∼= C̃n. Since π ◦ κ : ν−1(ε/2) → CPn−1 factors through the quotient
map Cn\{0} → CPn−1, we have κ∗π∗ωFS = i

2∂∂̄ log(|z|2), basically by definition of
ωFS. Consequently,

κ∗(p∗ωst + επ∗ωFS) = (p ◦ κ)∗(
i

2
duidūi) +

iε

2
∂∂̄ log(|z|2)

=
i

2
d
(wzi
|z|
)
d
( w̄z̄i
|z|
)

+
iε

2
∂∂̄ log(|z|2).

6A slice for a G-action on a manifold M is a submanifold S ↪→M such that the action map G× S →M
is a diffeomorphism onto an open neighborhood of S in M . It implies that S →M/G is an open embedding.
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As usual, a double index implicitly implies a summation over that index. We have

d
(wzi
|z|
)
d
( w̄z̄i
|z|
)

=
( w
|z|
dzi +

zi

|z|
dw − wzi

2|z|3
(zjdz̄j + z̄jdzj)

)
∧
(
complex conjugate

)
=
|w|2

|z|2
dzidz̄i + dwdw̄ +

w

|z|2
(z̄idzi)dw̄ +

w̄

|z|2
dw(zidz̄i)

− |w|
2

|z|4
(z̄idzi)(zjdz̄j)− w̄

2|z|2
dw(zjdz̄j + z̄jdzj)

− w

2|z|2
(zjdz̄j + z̄jdzj)dw̄

=
|w|2

|z|2
dzidz̄i + dwdw̄ +

1

2|z|2
(wdw̄ + w̄dw)(zidz̄i − z̄idzi)

− |w|
2

|z|4
(z̄idzi)(zjdz̄j)

=dzidz̄i + dwdw̄ − ε
( 1

|z|2
dzidz̄i − 1

|z|4
(z̄idzi)(zjdz̄j)

)
=dzidz̄i + dwdw̄ − ε∂∂̄ log(|z|2).

In the fourth step we used that ν−1(ε/2) = {(z, w)| |z|2 = ε+ |w|2}, so that in particular
wdw̄ + w̄dw = zidz̄i + z̄idzi. We obtain κ∗(p∗ωst + επ∗ωFS) = ωst on Cn × C, which
proves the lemma.

Besides providing an alternative construction of the symplectic manifold C̃n, the nice
feature of the cut is the slice given by (2.11), which in this context gives rise to a sym-
plectomorphism

ϕ :
(
Cn\Bε, ωst

)
→
(
C̃n\E, p∗ωst + επ∗ωFS

)
.

Here Bε denotes the ball of radius
√
ε in Cn. We can use this to give an alternative

description of the blow-up. Consider again a point y0 ∈ M and choose a Darboux chart
Cn around it. Via the chart we consider Bε, for ε small enough, as a subset of M , and we
define the blow-up of y0 in M by

M̃ := (M\Bε) ∪ϕ C̃n. (2.13)

This is a symplectic manifold again because the glueing map ϕ is symplectic. As com-
pared to the construction given before, the advantage of this approach is that we do not
need the choice of a bump function to create the symplectic form. The only choices in-
volved are that of the symplectic coordinate chart and the parameter ε. Note that the latter
again has to be chosen sufficiently small, this time in order for the ball of radius

√
ε to fit

into the Darboux chart.
The disadvantage of this approach is the fact that now there is no canonically defined

blow-down map. Indeed, using (2.11) and (2.12), we see that the blow-down map p :
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C̃n → Cn corresponds to the map p ◦ ϕ : Cn\Bε → Cn given by

p ◦ ϕ : z 7→
(
1− ε

|z|2
) 1

2 · z.

Since this is not the identity map, we can not canonically extend the blow-down map on
C̃n to all of M̃ . However, for |z| → ∞we do have that p◦ϕ converges to the identity map,
so it is possible to interpolate between p ◦ ϕ and the identity, which can then be extended
to the rest of M̃ . This interpolation step basically consists of choosing a bump function
again. No matter the construction, the blow-down map is never going to be symplectic in
a neighborhood of the exceptional divisor.

Remark 2.4.3. The symplectic blow-up is, in contrast to the complex one, not unique.
Even in the above described case of a point, the problem is that different Darboux charts
around it are not necessarily symplectically isotopic.
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Chapter 3

Blow-ups of Generalized
Complex Structures

Our objective in this chapter is to study which kind of generalized complex submanifolds
admit a blow-up that is again generalized complex. We will give three answers to this
question. First, we consider generalized complex submanifolds which look complex in
transverse directions, i.e. generalized Poisson submanifolds. We show that these inherit
a canonical holomorphic ideal, and hence a canonical blow-up. We then give a neces-
sary and sufficient condition for the blow-up to admit a generalized complex structure for
which the blow-down map is generalized holomorphic. Secondly, we consider general-
ized complex submanifolds which look symplectic in transverse directions, i.e. general-
ized Poisson transversals. For these we construct a global neighborhood theorem, which
we then use to endow the blow-up with a generalized complex structure, if the submani-
fold is in addition compact. This structure agrees with the original structure outside of a
neighborhood of the exceptional divisor. There is no obstruction to blow-up in this case,
but the blow-up is not canonical. Finally, we describe explicitly a class of generalized
complex submanifolds which are not of the above mentioned types, and show that they
do not admit a generalized complex blow-up. The results in this chapter are based on joint
work with Bailey and Cavalcanti [4].

3.1 Generalized Poisson submanifolds

In this section we will look at generalized Poisson submanifolds, which were introduced
in Section 1.3.1. For convenience we recall the definition here.

Definition 3.1.1. Let (M,J ) be a generalized complex manifold. A generalized Poisson
submanifold is a submanifold Y ⊂M such that

JN∗Y = N∗Y. (3.1)
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We saw in Section 1.3.1 that these are generalized complex submanifolds and that they
are Poisson submanifolds for the underlying Poisson structure πJ , for which the inclu-
sion map is generalized holomorphic. The key fact in the blow-up theory of generalized
Poisson submanifolds is the following.

Proposition 3.1.2. Let Y ⊂ (M,J ) be a closed generalized Poisson submanifold. Then
there is a canonical holomorphic ideal IY for Y , whose induced complex structure on
N∗Y is given by J .

Proof. Consider a generalized complex chart U = (R2n−2k, ωst)×(Ck, σ) around a point
in Y , as provided by Theorem 1.3.16. Since Y is a union of symplectic leaves we have
Y ∩ U = W × Z, where W ⊂ R2n−2k is open and Z ⊂ Ck is a complex submanifold
which is Poisson for σ. By choosing appropriate holomorphic coordinates zi on Ck, we
may assume that Z = {z1, . . . , zl = 0}, and a natural choice of holomorphic ideal for
Y in U is then given by 〈z1, . . . , zl〉. To patch these local ideals together into a global
one we need to show that on the overlap of two charts the corresponding ideals match.
So suppose (R2n−2k, ωi) × (Ck, σi), i = 1, 2, are two local charts1, and suppose that
(ϕ,B) is a generalized complex isomorphism between them which maps Y to itself.
Let (x, z) and (y, w) be coordinates on the two charts, where x, y and z, w denote the
symplectic and complex directions respectively, and such that IY is given by 〈z1, . . . , zl〉,
respectively 〈w1, . . . , wl〉. By symmetry, it suffices to show that ϕ∗wi ∈ 〈z1, . . . , zl〉
for all i ≤ l. As is shown in [35, Ch.VI], this condition may be verified on the level of
Taylor series, and since we already know that ϕ∗wi ∈ 〈z1, . . . , zl, z̄1, . . . , z̄l〉 because
ϕ(Y ) = Y , we only need to verify that

∂rwi

∂z̄i1 . . . ∂z̄ir

∣∣∣∣
Y

= 0, ∀r ≥ 0, ∀i, i1, . . . , ir ∈ {1, . . . , l}. (3.2)

Here we are abusing notation slightly in writing wi instead of ϕ∗wi. The case r = 0 reads
wi|

Y
= 0, which is satisfied since ϕ(Y ) = Y . To verify (3.2), we first write out what it

means for (ϕ,B) to be an isomorphism on the level of spinors:

eiω1eσ1(dz1 . . . dzk) = ef+B+iω2eσ2(dw1 . . . dwk). (3.3)

The scaling factor ef is there because representatives for spinor lines are unique only up
to scaling. At Y , using that Y is Poisson, (3.3) becomes

eiω1(dz1 . . . dzl)eσ1(dzl+1 . . . dzk) =ef+B+iω2(dw1 . . . dwl)eσ2(dwl+1 . . . dwk).

Now apply dwi ∧ ι∂
z̄i1

, with i, i1 ≤ l, to both sides. The left-hand side vanishes, while
the only survivor on the right is given by

∂wi

∂z̄i1
ef+B+iω2(dw1 . . . dwl)eσ2(dwl+1 . . . dwk),

1Strictly speaking we should look at open neighborhoods of 0 but for sake of notation we suppress this. Also
note that we can assume that the “k” in both charts is the same, as the type can only jump in even steps and
(R4s, ωst) is isomorphic to (C2s, σ0) for σ0 an invertible holomorphic Poisson structure.



3.1 — Generalized Poisson submanifolds 65

so (3.2) holds for r ≤ 1. This implies in particular that the forms dz1 ∧ . . . ∧ dzl and
dw1 ∧ . . . ∧ dwl are proportional along Y , where we think of wi as a function of (x, z).

Suppose inductively that for some m ≥ 1 (3.2) is satisfied for all r ≤ m. Apply
dwi ∧ L∂

z̄i1
. . .L∂z̄im , for any i, i1, . . . , im ≤ l, to both sides of (3.3) and evaluate the

resulting expression at Y . The left-hand side will vanish again because ω1 is independent
of z and σ1 is holomorphic. Using multi-index notation, the Leibniz rule gives

0 = dwi
∑

ItJtKtL
={i1,...,im}

L∂z̄I (ef+B+iω2)L∂z̄J (eσ2)L∂z̄K (dw1 . . . dwl)L∂z̄L (dwl+1 . . . dwk).

(3.4)

Claim: We have L∂z̄J σ2(dwj)|
Y

= 0 for all J ⊂ {i1, . . . , im} and j ≤ l.

Let us accept this claim for the moment and continue with the proof. We compute

L∂z̄K dw
j =

∑
1≤a≤k

∂|K|+1wj

∂za∂z̄K
dza +

∑
1≤a≤k

∂|K|+1wj

∂z̄a∂z̄K
dz̄a +

∑
1≤b≤2n−2k

∂|K|+1wj

∂xb∂z̄K
dxb.

(3.5)

If j ≤ l, the function ∂|K|wj/∂z̄|K| vanishes along Y by the induction hypothesis.
Hence, at Y , the first and second terms above with a > l together with the entire third term
vanish, because we differentiate in directions tangent to Y . If in addition |K| < m, the
second term vanishes by the induction hypothesis. It follows that for K ( {i1, . . . , im},
(L∂z̄K (dw1 . . . dwl))|

Y
is proportional to (dw1 . . . dwl)|

Y
. Using the Claim, these terms

all disappear from (3.4) because we wedge everything with dwi. Hence, (3.4) reduces to

0 = ef+B+iω1eσ2

∑
1≤im+1≤l

∂m+1wi

∂z̄i1 . . . ∂z̄im+1
dz̄im+1dw1 . . . dwk

at Y . Since dz̄im+1 is a linear combination of dw̄1, . . . , dw̄l, the terms in this summation
are all linear independent. So (3.2) holds for r = m+ 1 as well, and therefore for all r by
induction.

Proof of the Claim. If we write σ2 = σab2 ∂wa∂wb , the Poisson condition implies that σab2

vanishes at Y for a ≤ l or b ≤ l. A repeated Lie derivative on σ2 will be a sum of terms
of the form

∂rσab2

∂z̄i1 . . . ∂z̄ir
(L∂

z̄j1
. . .L∂z̄js ∂wa)(L∂

z̄k1
. . .L∂

z̄kt
∂wb). (3.6)

Using the chain rule and the fact that σ2 is holomorphic we can rewrite the first term
in terms of w-derivatives. By the induction hypothesis there are no derivatives in the
wi-directions for i ≤ l, because these come together with a term of the form ∂wi/∂z̄ij

or a further derivative thereof (note that i1, . . . , ir ≤ l). Moreover, if either a ≤ l or
b ≤ l there are also no wi-derivatives for i > l because these are tangent to Y along
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which σab is constantly equal to zero. Hence (3.6) will only be nonzero at Y for a, b > l,
and so to prove the Claim it suffices to show that (L∂

z̄j1
. . .L∂z̄js ∂wa)(dwj)|

Y
= 0 for

a > l, j ≤ l. Abbreviating J = {j1, . . . , js}, we have

0 = Lz̄J (dwj(∂wa)) =
∑

J1tJ2=J

(Lz̄J1dw
j)(Lz̄J2∂wa).

From (3.5) and the comments below that we see that Lz̄J1dw
j is either a linear combina-

tion of dw1, . . . , dwl, or it is proportional to dw̄b for some b. The latter can only happen
if J1 = J = {i1, . . . , im}, but then obviously Lz̄Jdwj(∂wa) = 0. The result now follows
by induction over s.

Having a canonical holomorphic ideal for Y , we obtain a canonical blow-up M̃ as a
smooth manifold. We now investigate whether M̃ carries a generalized complex structure
for which the blow-down map p is holomorphic. Clearly this structure exists and is unique
on M̃\E, where E is the exceptional divisor, and we need to verify whether it extends
over E. From the definition of the ideal IY and the construction of the blow-up given in
the proof of Theorem 2.1.6, the blow-down map p is locally given by

R2n−2k × Bl
Z
Ck → R2n−2k × Ck,

where Y is locally given by R2n−2k × Z ⊂ R2n−2k × Ck, and Bl
Z
Ck denotes the com-

plex blow-up of Z ⊂ Ck. The target is equipped with the generalized complex structure
determined by the standard symplectic form on R2n−2k and a holomorphic Poisson struc-
ture σ on Ck. Clearly, this structure lifts if and only if σ lifts to Bl

Z
Ck. So we are led

to the following question: When does a holomorphic Poisson structure lift to a complex
blow-up? This was addressed by Polishchuk in [37], and for completeness we review
the results here. Let (X,σ) be a holomorphic Poisson manifold, and Z ⊂ X a holo-
morphic Poisson submanifold. Recall that this means that Z is a complex submanifold,
and that σ(N∗1,0Z) = 0. The latter is equivalent to the ideal IZ of Z being a Poisson
ideal in the ring of holomorphic functions on X . In particular, N∗1,0Z inherits a fiber-
wise Lie algebra structure, given by the Poisson bracket under the natural isomorphism
N∗1,0Z ∼= IZ/I

2
Z . Explicitly, if f and g are two local holomorphic functions that vanish

on Z, then [df, dg] = d{f, g}.
To state the blow-up conditions on Z, we need the following terminology.

Definition 3.1.3. A Lie algebra g is degenerate if the map Λ3g→ Sym2(g) given by

x ∧ y ∧ z 7→ [x, y]z + [y, z]x+ [z, x]y

vanishes.

This is a rather abstract condition, so we first give an alternative characterization which is
more geometric.

Lemma 3.1.4. A Lie algebra g is degenerate if and only if [x, y] ∈ k · x + k · y for all
x, y ∈ g, where k is the field over which g is defined.
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Proof. If dim(g) ≤ 2 then both conditions are always satisfied, so assume that dim(g) ≥
3. If g is degenerate, then for x, y ∈ g we choose a z which is not in the plane spanned by
x, y, and from

[x, y]z = −[y, z]x− [z, x]y

we see that [x, y] must be a linear combination of x and y. Conversely, suppose that
the bracket of any two elements lies in their linear span. Then, for x, y and z linearly
independent we have [x, y] = ax + by, [y, z] = cy + dz and [z, x] = ez + fx for
some a, b, c, d, e, f ∈ k. Moreover, we also have [y, x + z] = gy + h(x + z) for some
g, h ∈ k. Since x, y, z are linearly independent it follows that a = −d, and similarly we
have b = −e and c = −f . Consequently,

[x, y]z + [y, z]x+ [z, x]y = (c+ f)xy + (e+ b)yz + (a+ d)zx = 0,

showing that g is degenerate.

Remark 3.1.5. The notion of degeneracy depends on the base field over which g is defined.
For instance, the complexification of a degenerate Lie algebra over R is degenerate over
C, but a degenerate Lie algebra over C need not be degenerate over R when we restrict
scalars. It is shown in [37] that degeneracy is equivalent to being either Abelian, or
isomorphic to the algebra generated by e1, . . . , en−1, f , with relations [ei, ej ] = 0 and
[f, ei] = ei. Note that 2-dimensional Lie algebras are always degenerate.

If Z ⊂ (X,σ) is a holomorphic Poisson submanifold, we call N∗1,0Z degenerate if its
fiberwise Lie algebra structure is degenerate over C. This is equivalent to the condition

{f, g}h+ {g, h}f + {h, f}g ∈ I3
Z ∀f, g, h ∈ IZ . (3.7)

Now let p : X̃ → X denote the complex blow-up along a complex submanifold Z, which
for the moment we do not assume to be a Poisson submanifold, and let E denote the
exceptional divisor. We say that σ can be lifted if there exists a holomorphic Poisson
structure σ̃ on X̃ for which p is a Poisson map. Such a lift is necessarily unique, because
p is an isomorphism almost everywhere.

Proposition 3.1.6 ([37]). There exists a lift σ̃ on X̃ if and only if Z is a Poisson subman-
ifold and N∗1,0Z is degenerate. The exceptional divisor is a Poisson submanifold with
respect to σ̃ if and only if N∗1,0Z is Abelian.

Proof. Let (z1, . . . , zk) be local coordinates on X with Z = {z1, . . . , zl = 0} for some
l ≤ k. This chart is covered by l charts on the blow-up X̃ on which the projection has the
form (see (2.2))

p : (v1, . . . , za, . . . , vl, zl+1, . . . , zk) 7→ (zav1, . . . , za, . . . , zavl, zl+1, . . . , zk) (3.8)

for a ≤ l. Then p is an isomorphism on the open dense set {za 6= 0}, where we have
vj = zj/za. We have to verify when the Poisson brackets extend smoothly over the
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exceptional divisor {za = 0}. There are two types of brackets that cause trouble. Firstly,
we have

{zi, vj} = {zi, z
j

za
} =

1

(za)2

(
za{zi, zj} − zj{zi, za}

)
, (3.9)

for i = a or i > l, and j ≤ l with j 6= a. On the blow-up we know that something of the
form f/za, where f ∈ IZ = 〈z1, . . . , zl〉, defines a non-singular function. In particular,
(3.9) is smooth on the blow-up if and only if za{zi, zj} − zj{zi, za} lies in I2

Z . Since
j 6= a, this can only happen if both {zi, zj} and {zi, za} lie in IZ . Since this must hold
for all a ≤ l, we need that IZ is a Poisson ideal, i.e. Z has to be a Poisson submanifold.
The second type of brackets that may become singular are

{vi, vj} = { z
i

za
,
zj

za
} =

1

(za)3

(
za{zi, zj}+ zi{zj , za}+ zj{za, zi}

)
, (3.10)

for 1 ≤ i, j ≤ l, i 6= a 6= j. As above, this is smooth on the blow-up if and only if the
term between brackets lies in I3

Z , which is precisely condition (3.7) for degeneracy of IZ .
Finally, to check whether E is Poisson we need to check whether its ideal, which on the
above chart is generated by za, is a Poisson ideal. In other words, we need to check when
za divides the brackets {zi, za} for i > l and {vj , za} for 1 ≤ j ≤ l, j 6= a. The Poisson
condition on Z implies that {zi, za} ∈ IZ , which means that it is divisable by za on the
blow-up. However, for the second one we have

{vj , za} =
1

za
{zj , za}.

For this to be divisable by za, we need {zj , za} ∈ I2
Z . Since this must hold for all the

local charts, this means that {IZ , IZ} ⊂ I2
Z , i.e. N∗1,0Z needs to be Abelian.

If Y ⊂ (M,J ) is a generalized Poisson submanifold then Y is in particular a Poisson
submanifold for πJ and so N∗Y inherits a fiberwise real Lie algebra structure [·, ·]πJ in
the same manner as discussed above in the holomorphic Poisson context. Specifically, for
α, β ∈ N∗yY , we extend them to one-forms α̃, β̃ and set

[α, β]πJ := dy(πJ (α̃, β̃)).

This is independent of the choice of extensions since πJ (N∗Y ) = 0. Note that for
functions f and g with f |Y = g|Y = 0 we have [dyf, dyg]πJ = dy{f, g}. Hence, the
bundle N∗Y has a fiberwise Lie algebra structure, as well as a complex structure induced
by J . These two are compatible, in the sense that [·, ·]πJ is complex linear. This can for
instance be seen in a local chart, see also the proof of the theorem below. We call N∗Y
degenerate if [·, ·]πJ is degenerate over C.

Theorem 3.1.7. Let Y ⊂ (M,J ) be a generalized Poisson submanifold and let p :

M̃ → M denote the blow-up with respect to the canonical holomorphic ideal IY from
Proposition 3.1.2. Then M̃ has a generalized complex structure for which p is generalized
holomorphic if and only if N∗Y is degenerate. The exceptional divisor is a generalized
Poisson submanifold if and only if N∗Y is Abelian.
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Proof. Pick a local chart where Y = W×Z ⊂ (R2n−2k, ωst)×(Ck, σ), withW open and
Z a holomorphic Poisson submanifold (see the proof of Proposition 3.1.2). As explained
in the discussion above Definition 3.1.3, the generalized complex structure lifts to the
blow-up if and only if σ lifts to the blow-up of Z in Ck, which we now know to be
equivalent to N∗1,0Z being degenerate. It remains to relate degeneracy of N∗1,0Z to
that of N∗Y . The latter coincides with N∗Z, the normal bundle of Z considered as
a real submanifold of Ck, which inherits a complex structure because Z is a complex
submanifold. If Q = Re(σ), we have

[α, β]Q = d
(
Q(α̃, β̃)

)
=d
(1

2
σ(α̃1,0, β̃1,0) +

1

2
σ̄(α̃0,1, β̃0,1)

)
=

1

2
[α1,0, β1,0]σ +

1

2
[α0,1, β0,1]σ̄,

for α, β ∈ N∗Z and α̃, β̃ ∈ Γ(T ∗M) smooth extensions. Consequently, the complex
linear isomorphism N∗Z → N∗1,0Z given by α 7→ α1,0 carries [·, ·]Q over to 1

2 [·, ·]σ and
so [·, ·]Q is complex linear. In particular,N∗1,0Z is degenerate if and only if (N∗Z, [·, ·]Q)
is degenerate as a complex Lie algebra. Now in the local chart, πJ = −ω−1

st ⊕ 4IQ, so
that [·, ·]Q and [·, ·]πJ agree up to a complex multiple. In particular, [·, ·]πJ is complex
linear and degenerate over C if and only if [·, ·]Q is. Finally, the statement about the
exceptional divisor follows from Proposition 3.1.6.

Since degeneracy is automatic for Lie algebras of dimension 2 , we obtain

Corollary 3.1.8. Let Y ⊂ (M,J ) be a generalized Poisson submanifold of complex
codimension 2 . Then it can be blown up in a generalized complex way.

Example 3.1.9. Let (M,J ) be a generalized complex manifold. In [5] it is shown that
the complex locus, i.e. the points of type 0, carries canonically the structure of a complex
analytic space. In a local generalized complex chart, this structure is induced by regard-
ing the complex locus as the vanishing set of the corresponding holomorphic Poisson
structure2. As such, any complex submanifold of the complex locus is automatically a
generalized Poisson submanifold. In particular, such a submanifold can be blown up as
soon as its conormal bundle is degenerate. For example, any point in the complex locus
on a generalized complex four-manifold can be blown up. This generalizes the corre-
sponding result from [15], where it was assumed that the point lies in the smooth part of
the complex locus.

Example 3.1.10. An example where the submanifold has positive dimension is the max-
imal torus S1 × S1 ⊂ S3 × S3. Here we view S3 = SU(2) as a compact Lie group,
so that S3 × S3 is a compact, connected, even dimensional Lie group. From Example
1.4.6 we know that it carries a generalized complex structure (even a generalized Kähler
structure) for which the maximal torus S1 × S1 is a generalized Poisson submanifold,
which is automatically degenerate because it has complex codimension 2 . More details
on this example, as well as a study of other Lie groups will be given in Section 4.4.

2Note that both the holomorphic structure as well as the holomorphic Poisson tensor on the chart are not
unique, but, and this is the crucial point proved in [5], they do induce the same structure on the complex locus.
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Example 3.1.11. Let (M,J ) be a four-dimensional generalized complex manifold which
is generically symplectic, with non-empty complex locus Z. Since Z is locally described
by the vanishing of a holomorphic Poisson tensor in two complex dimensions, it looks
locally like a complex curve on a complex surface. By example 3.1.9 we can blow up M
at any point inZ, and use this to “desingularize”Z. Indeed, as is proven for example in [7]
(see also Section 2.3), if C ⊂ X is any complex curve on a smooth complex surface X ,
one can perform a locally finite number of blow-ups on X so that the underlying analytic
set of the total transform of the curve C has only ordinary double points. In particular, the
total transform3 itself will be a normal crossing divisor with possible multiplicities (so in
local coordinates (z1, z2), it will be given by za1z

b
2 = 0 for some a, b ∈ Z≥0). Now we

do not have a global complex structure available, but this desingularization procedure is
of a local nature, so we conclude that after a (locally finite) number of blow-ups, we get
a generalized complex manifold whose complex locus, as a complex analytic space, has
only normal crossing singularities.

In general there is not so much we can say about the structure of the exceptional divisorE,
except for the fact that it is coisotropic for πJ , i.e. πJ (N∗E) ⊂ TE. This is equivalent
to the ideal of E being a Poisson subalgebra, which is indeed the case because it is the
pull-back of the ideal of Y by the Poisson map p, and Y is a Poisson submanifold (so in
particular coisotropic). From Lemma 1.3.33 we obtain the following corollary.

Corollary 3.1.12. Let Y be a generalized Poisson submanifold with degenerate conormal
bundle, and let E denote the exceptional divisor of the blow-up. If Y carries the structure
of a generalized complex brane then so does E.

In the special case that Y is given by a point x ∈M we can say more.

Proposition 3.1.13. Let x ∈ (M,J ) be a point of complex type such that T ∗xM is degen-
erate. Then the exceptional divisorE of the generalized complex blow-up is a generalized
complex brane. Moreover, E is a generalized Poisson submanifold if and only if T ∗xM is
Abelian, which is the case if either J is everywhere of complex type, or if x is a singular
point of the complex locus. If T ∗xM is not Abelian, then the complex locus of M is a
smooth complex curve around x, and E intersects the complex locus of M̃ transversally
at the point that corresponds to the tangent of this curve.

Proof. The statement about E being a brane follows from the previous corollary, since
any point of complex type carries the structure of a generalized complex brane. Let
(Cn, σ) be a holomorphic Poisson structure serving as a local model for (M,J ) around
x. We already know that E is a generalized Poisson submanifold if and only if T ∗xM is
Abelian. If we write σ =

∑
i,j σ

ij∂zi∂zj , then the complex locus is given by the common
vanishing locus of the holomorphic functions σij . The induced Lie algebra on T ∗0 Cn is
given by

[dzi, dzj ] =
∑
k

(∂zkσ
ij(0))dzk.

3The total transform of a subset C under a blow-up equals p−1(C) where p is the blow-down map, while
the proper transform is given by p−1(C)\E.
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If this is Abelian then either the σij are identically 0 on Cn (the complex case), or x is
a singular point4. From Remark 3.1.5 we know that if T ∗xM is not Abelian, then there
exists a basis α1, . . . , αn−1, β of Cn such that [αi, β] = αi, with all other brackets van-
ishing. By a linear change of coordinates we may assume that αi = dzi and β = dw for
coordinates (z1, . . . , zn−1, w) on Cn. If we write σ =

∑
i,j σ

ij∂i∂j +
∑
i σ

i∂i∂w where
∂i := ∂zi , we obtain σij(0) = σi(0) = 0, d0σ

ij = 0 and d0σ
i = dzi. Consequently,

C := {σ1 = 0, . . . , σn−1 = 0} is a smooth curve in a neighborhood of 0 ∈ Cn, and
we claim that it equals the complex locus, i.e. the set of points where σ = 0. For that
we need to show that the σij vanish whenever the σi do. By the Jacobi identity we have
0 = {w, {zi, zj}}+ {zj , {w, zi}}+ {zi, {zj , w}}, which translates into

0 = σi∂wσ
j − σj∂wσi + 2

∑
k

(
σkj∂kσ

i + σik∂kσ
j − σk∂kσij

)
.

On C, where all the σi vanish, we obtain the equation

σij(∂iσ
i + ∂jσ

j) = −
∑
k 6=i,j

(σkj∂kσ
i + σik∂kσ

j).

Since ∂iσj = δji at 0, we see that (∂iσ
i + ∂jσ

j) is invertible around 0, while the right-
hand side of the equation vanishes to third order at 0. But this implies that σij vanishes to
third order at 0, which implies that the right-hand side actually vanishes to fourth order at
0. Continuing in this fashion we deduce that σij |C vanishes to infinite order at 0, hence
σij |C = 0. For the final statement, consider the coordinate charts on the blow-up C̃n
given by (v1, . . . , zi, . . . , vn) for i < n and (v1, . . . , vn−1, w) (see (2.2)). On the first
n− 1 charts we have

{zi, vn} =
1

zi
{zi, w} =

σi

zi
.

Since σi = zi modulo terms of order at least two, {zi, vn}|E = 1, showing that in these
charts the intersection ofE with the type change locus is empty. In the final chart we have

{vi, w} =
1

w
σi, {vi, vj} =

σij

w2
+ vi

σj

w2
− vj σ

i

w2
.

Note that σi = zi modulo terms of higher order, so the first bracket vanishes at 0. Fur-
thermore, the singular part of viσj/w2 cancels agains that from vjσi/w2. Finally, σij is
of order two at 0, and by the computation above we know that ∂

2σij

∂w2 (0) = 0. In particular,
the second bracket also vanishes at 0.

Remark 3.1.14. If T ∗xM is Abelian, E may or may not be contained in the complex locus
of M̃ . In a holomorphic Poisson chart (Cn, σ) around x as above, the intersection of

4The notion of singularity here is in the context of complex analytic geometry. Specifically, even when 0 is
an isolated zero of the σij , we still consider it singular if the Lie algebra is Abelian, because the Jacobian of the
defining equations has zero rank at 0.
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E ∼= Pn−1 with the complex locus is given by the common zero set on Pn−1 of the
homogeneous polynomials

F ijk :=
∑

1≤r,s≤n

(
σijrsz

kzrzs + σjkrsz
izrzs + σkirsz

jzrzs
)
,

where
∑
r,s σ

ij
rsz

rzs is the homogeneous term of degree two of the holomorphic function
σij . This statement follows from (3.10). In particular, if dimR(M) = 4 or if the order
of vanishing of the σij at x is bigger or equal than three, then E is fully contained in the
type change locus.
Remark 3.1.15. In contrast to the blow-up in complex geometry, the exceptional divisor
of a generalized complex blow-up need not be a generalized complex submanifold again.
Indeed, consider the holomorphic Poisson manifold (C2, σ = z1∂z1∂z2). It is of complex
type on {z1 = 0} and of symplectic type on {z1 6= 0}. The generalized complex blow-
up of 0 ∈ C2 is given by (C̃2, σ̃) where σ̃ is the lift of σ. It is of complex type along
the proper transform of {z1 = 0}, and of symplectic type on the complement. On this
symplectic piece we have σ̃ = κ−1, where κ is a holomorphic symplectic form. Since E
has complex dimension 1 it is Lagrangian for κ, and so E is not a generalized complex
submanifold of (C̃2, σ̃).

3.2 Generalized Poisson transversals
We now turn our attention to submanifolds which are symplectic in transverse directions,
i.e. generalized Poisson transversals (see Section 1.3.1). We recall the definition here for
convenience.

Definition 3.2.1. Let (M,J ) be a generalized complex manifold. A generalized Poisson
transversal is a submanifold Y ⊂M with

J (N∗Y ) ∩ (N∗Y )⊥ = 0. (3.11)

As explained in Section 1.3.1, a generalized Poisson transversal is automatically a gener-
alized complex submanifold, and condition (3.11) is equivalent to

πJ (N∗Y ) + TY = TM |Y ,

which means that Y intersects the symplectic leaves of (M,πJ ) symplectically and
transversally. We will show that any compact generalized Poisson transversal can be
blown-up. In order to do so we will first give a normal form, i.e. a tubular embedding of
the conormal bundle that puts the generalized complex neighborhood of Y into a standard
form. We then only have to construct a blow-up for the latter.

3.2.1 A normal form
Let Y ↪→ (M,J) be a generalized Poisson transversal. Since Y is a generalized complex
submanifold it has its own generalized complex structure JY . Moreover, the splitting
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TM |Y = TY ⊕NY , withNY := πJ (N∗Y ), induces a decomposition (πJ )|Y = πJY +

ωY , where πJY equals the Poisson structure on Y induced by JY and ωY ∈ Γ(
∧2

NY )
is non-degenerate. The suggestive notation for the latter indicates that we will consider
ωY as a symplectic form on the bundle N∗Y . In what follows, we will identify Y with
the zero section in N∗Y , and denote by p : N∗Y → Y the projection. Before we can
state a neighborhood theorem we first need to give a normal form associated to the data
above. For that we need two lemmas.

Recall that T (N∗Y ) has a canonical decomposition along Y given by

T (N∗Y )|Y = N∗Y ⊕ TY. (3.12)

Lemma 3.2.2. There exists a closed two-form σ on the total space of N∗Y , which along
Y is given by ωY ⊕ 0.

Proof. Choose an Hermitian structure (g, I) on N∗Y compatible with ωY . Let ej be a
local unitary frame on N∗Y with dual frame ej , such that ωY =

∑
j
i
2e
j ∧ ēj . We obtain

local coordinates (x, z) on N∗Y by identifying (x, z) with the point
∑
j z

jej(x). Note
that the z-coordinates are complex. If ρα is a partition of unity on Y and eαj are local
frames as above, define

λ :=
∑
α,j

p∗(ρα)
i

2
zjαdz̄

j
α. (3.13)

Then σ := dλ restricts to ωY on Y and its restriction to each fiber of N∗Y is the trans-
lation invariant extension of ωY . In addition, this particular choice of λ is also U(1)-
invariant.

If σ is such a closed extension of ωY , we define a Dirac structure Lσ on N∗Y by5

Lσ := eiσ∗ (Bp(LY )). (3.14)

Since p is a submersion, ker(p∗) = 0 and hence (1.36) is satisfied. In particular Bp(LY )

is a smooth Dirac structure, integrable with respect to the three-form H̃ := p∗HY where
HY := i∗H . Along the zero section Y we have

Lσ|Y = {X + ξ + e− iωY (e)|X + ξ ∈ LY , e ∈ N∗Y },

where we used the decomposition (3.12). In particular, Lσ ∩Lσ = 0 at Y , hence also in a
neighborhood of Y in N∗Y . We will denote the resulting generalized complex structure
by Jσ . This will be our candidate for the normal form. In order to show that it does not
depend on the choice of σ we need the following.

Lemma 3.2.3. Let σt be a smooth family of closed two-forms extending ωY . Then there
exists a family Φt = (ϕt, Bt) of generalized diffeomorphisms around Y with Φ0 =
(Id, 0), that satisfies FΦt(Lσ0

) = Lσt and which fixes Y up to first order, i.e. ϕt|Y = Id,
dϕt|Y = Id and Bt|Y = 0.

5For the definition of the backward image see Section 1.2.3.
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Proof. Since σt−σ0 vanishes on Y , Lemma 3.2.4 below provides a family ηt ∈ Ω1(N∗Y )
with σt − σ0 = dηt, and such that ηt and its first partial derivatives vanish along Y . By
definition,

Lt := Lσt = eiσt∗ (Bp(LY )) = eidηt∗ (Lσ0
).

Since ηt and dηt vanish along Y , Lt defines a family of generalized complex structures
Jt in a neighborhood of Y , integrable with respect to the (fixed) three-form H̃ . Consider
the time-dependent generalized vector field Jtη̇t =: Xt+ξt and let ψt,s be its flow, given
by

ψt,s = (ϕt,s)∗ ◦ e
−

∫ t
s
ϕ∗r,s(dξr+ιXr H̃)dr

∗ , (3.15)

where ϕt,s is the flow of the time-dependent vector field Xt. It satisfies ψs,s = Id and

d

dt
ψt,s(u) = −JJtη̇t, ψt,s(u)K.

Since ηt together with its first derivatives vanish along Y , ϕt,s is well defined in a neigh-
borhood of Y and fixes Y to first order. We claim that

Lt = ψt,0L0. (3.16)

From the formula for Lt this amounts to showing that e−idηt∗ ψt,0L0 = L0. We have

d

dt
e−idηt∗ ψt,0(u) = −iJη̇t, e−idηt∗ ψt,0(u)K− e−idηt∗ JJtη̇t, ψt,0(u)K

= J−iη̇t − J0η̇t, e
−idηt
∗ ψt,0(u)K. (3.17)

Here we used (1.9) and the definition of Jt. This shows that e−idηt∗ ψt,0 integrates the
adjoint action of−iη̇t−J0η̇t ∈ Γ(L0). Since Γ(L0) is involutive, (3.16) indeed holds on
the account of Lemma 1.1.5. The desired family of diffeomorphisms is then given by

Φt = (ϕt, Bt) := (ϕt,0,

∫ t

0

ϕ∗r,0(dξr + ι
Xr
H̃)dr).

In the proof above we used the following parametrized version of the Poincaré lemma.

Lemma 3.2.4. Let αt ∈ Ωkcl(E) be a smooth family of closed forms on a vector bundle
E over M which vanish along M . Then there exists a smooth family ηt ∈ Ωk−1(E)
with dηt = αt, such that for each t the form ηt together with its first partial derivatives
vanishes along M .

Proof. Let V denote the Euler vector field on E, i.e. Vξ = ξ for ξ ∈ E. Its flow is given
by ϕs(ξ) = esξ, and we have

αt = lim
s→−∞

(
ϕ∗0αt − ϕ∗sαt

)
=

∫ 0

−∞

d

ds
ϕ∗sαtds = d

(
ι
V

∫ 0

−∞
ϕ∗sαtds

)
=: dηt.

Another formula for ηt is given by ηt = ι
V

∫ 1

0
1
sL
∗
sαtds, where Ls denotes multiplication

by s on E. The forms ηt satisfy all the desired properties.
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With the help of the previous results we can now properly construct a normal form around
a generalized Poisson transversal.

Theorem 3.2.5. Let Y ⊂ (M,J ) be a generalized Poisson transversal. For any σ ∈
Ω2

cl(N
∗Y ) which extends ωY there is a generalized complex structure Jσ on a neighbor-

hood of Y in N∗Y given by (3.14). If σ′ is another extension of ωY then there is a family
of generalized diffeomorphisms fixing Y up to first order and taking Jσ to Jσ′ .

Proof. We already know that Jσ is a generalized complex structure on a neighborhood
of Y in N∗Y . If σ′ is another closed extension of ωY , we can apply Lemma 3.2.3 to
σt := (1− t)σ + tσ′ to produce the desired family of generalized diffeomorphisms.

Theorem 3.2.5 shows that any symplectic vector bundle over a generalized complex man-
ifold has a generalized complex structure for which the base is a generalized Poisson
transversal, and which up to isomorphism depends only on the symplectic vector bundle
and the generalized complex manifold. The following theorem shows that all generalized
Poisson transversals locally arise from this construction.

Theorem 3.2.6. Let Y ⊂ (M,J ) be a generalized Poisson transversal. Then a neigh-
borhood of Y in (M,J ) is isomorphic to a neighborhood of Y in (N∗Y,Jσ), where Jσ
is one of the generalized complex structures of Theorem 3.2.5.

Remark 3.2.7. In particular, this result tells us that on a neighborhood of Y , J is com-
pletely determined by the induced generalized complex structure JY on Y and the in-
duced symplectic structure on the vector bundle N∗Y .

Proof. We will prove this theorem by constructing an embedding of N∗Y into M that
pulls back J to one of the structures of Theorem 3.2.5. This embedding will only depend
on the choice of a connection on TM , and all such embeddings will turn out to be isotopic
to each other.

Let p : T ∗M → M be the cotangent bundle, and choose any connection ∇ on TM ,
whose dual connection on T ∗M we also denote by ∇. Using the Poisson structure πJ
we obtain a vector field V on T ∗M whose value at ξ ∈ T ∗M is given by Vξ := πJ (ξ)hξ ,
where the superscript h denotes the horizontal lift. We denote by ϕt : T ∗M ⊃→ T ∗M
the flow of V .

Lemma 3.2.8. The map exp := p ◦ ϕ1|N∗Y : N∗Y ⊃→M gives a diffeomorphism from
a neighborhood of Y in N∗Y onto an open neighborhood of Y in M . If ∇′ is a different
connection then exp′ is isotopic to exp via maps which are constant on Y up to first order.

Proof. By definition of V we haveL∗sV = sV for s ∈ R, whereLs denotes multiplication
by s on the fibers of T ∗M . It follows that6 ϕt(Lsξ) = Ls(ϕst(ξ)) for ξ ∈ T ∗M . Hence,

dyϕt(ξ) =
d

ds

∣∣∣∣
s=0

ϕt(Lsξ) = ξ + tπJ (ξ),

6This equality is analogous to the more familiar equality γsX (t) = γX (st) for geodesics.
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for y ∈ Y ⊂ N∗Y . Since V vanishes at Y , we have exp|
Y

= Id, and so

dyϕt(ξ, v) = (ξ, v + tπJ (ξ)) (3.18)

in terms of the decomposition (3.12). Composing with p gives dyexp(ξ, v) = v+πJ (ξ),
hence by transversality of Y we see that exp is a local diffeomorphism. Since exp|

Y
= Id

and Y is closed in M , exp is a diffeomorphism around Y . If∇′ is a different connection,
there is a path of connections∇t from∇ to∇′, whose exponentials expt give the desired
isotopy. Since (3.18) is independent of ∇t, the expt all agree up to first order along
Y .

We will now construct explicitly one of the generalized complex structures Jσ from The-
orem 3.2.5 together with a two-form B on N∗Y , such that (exp,B) is holomorphic with
respect to J on M and Jσ on N∗Y . For the proof of the following lemma, recall that if
ωcan denotes the canonical symplectic form on T ∗M and if X,Y ∈ TM , α, β ∈ T ∗M ,
we have

(ωcan)y(α+X,β + Y ) = α(Y )− β(X), (3.19)

in terms of T (T ∗M)|
M

= T ∗M ⊕ TM .

Lemma 3.2.9. Define

σ̃t := −
∫ t

0

(ϕs)
∗ωcands ∈ Ω2

cl(T
∗M), (3.20)

where ϕs is the flow of the vector field V . Then σ := i∗σ̃1 is a closed extension of ωY ,
where i : N∗Y ↪→ T ∗M denotes the inclusion.

Proof. Using (3.18) and (3.19), we see that

σ
y
(α+X,β + Y ) =−

∫ 1

0

(ωcan)y
(
α+ (X + sπJ (α)), β + (Y + sπJ (β))

)
ds

=−
∫ 1

0

2sα(πJ (β))ds = ωY (α, β)

for all α, β ∈ N∗Y and X,Y ∈ TY , proving the lemma.

Observe that V is the vector part of the generalized vector field V ∈ Γ(T(T ∗M)), where
Vξ := (J ξ)hξ . If ψt denotes the flow of V on T(T ∗M), then ψteiσ̃t∗ equals the flow
of V + iλcan where λcan denotes the canonical one-form on T ∗M (compare (1.14) and
(3.20)). In particular, ψteiσ̃t∗ integrates the adjoint action of−iλcan−V . Since (−iλcan−
V)ξ = (−iξ−J ξ)hξ ∈ Bp(L) and Bp(L) is involutive, Lemma 1.1.5 implies that ψteiσ̃t∗
preserves Bp(L). Consequently,

eiσ̃t∗ Bp(L) = ψ−tBp(L), (3.21)
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as Dirac structures on the total space of T ∗M . Here is an overview of all the maps
involved:

N∗Y

p

��

i // T ∗M

p

��

ϕt // T ∗M

p
zz

Y // M

The left square is commutative but the right triangle is not. Now if we apply Bi to (3.21)
at t = 1, the left-hand side becomes eiσ∗ BiBp(L) = eiσ∗ Bp(LY ) where σ = i∗σ̃1. This
is precisely one of the structures from Theorem 3.2.5. If we write ψt = (ϕt)∗e

−Bt
∗ (see

(1.14)), the right-hand side becomes

Bi(ψ−1Bp(L)) = BiBΦ1Bp(L) = B(p ◦ Φ1 ◦ i)(L),

where Φt := (ϕt, Bt). Now p ◦ Φ1 ◦ i = (exp, i∗B1), so if we define B := i∗B1, then
(exp,B) is indeed holomorphic. This completes the proof of Theorem 3.2.6.

3.2.2 Blowing up
In this section we will use the normal form (Theorems 3.2.5 and 3.2.6) to construct the
blow-up of generalized Poisson transversals. The construction we are about to give is
inspired by the symplectic blow-up using symplectic cuts, as outlined in Section 2.3. To
use that in our setting, we need a reduction procedure for generalized complex structures.
General reduction methods have been introduced in [9], but we will only need a very
special case of this. In what follows, an S1-action on a generalized complex manifold
(Z,H,J ) is understood to be an S1-action on the manifold Z that preserves J and for
which ιXH = 0, where X is the associated action vector field (see (2.10)). In particular,
this implies that H is S1-invariant. In analogy with symplectic geometry we call
µ : Z → R a moment map if JX = dµ. Since dµ(X) = 2〈JX,X〉 = 0 because J is
skew-symmetric, the level sets of µ are S1-invariant.

Proposition 3.2.10. Suppose we are given a free S1-action on (Z,H,J ) with moment
map µ. If i : µ−1(c) ↪→ Z is a regular level set with quotient map q : µ−1(c) →
µ−1(c)/S1, then Fq(Bi(L)) gives a generalized complex structure J ′ on µ−1(c)/S1. If
there is a spinor ρ for J which is S1-invariant, then i∗ρ = q∗ρ′ for a unique form ρ′ on
the quotient, forming a spinor for J ′.

Proof. Let us abbreviate by Zc := µ−1(c) the regular level set and by i : Zc ↪→ M the
inclusion. Since Zc has real codimension 1 we have N∗Zc ∩ JN∗Zc = 0, so Bi(L) is
smooth by (1.47). A quick computation gives

Bi(L) ∩Bi(L) = C ·X. (3.22)

Since dH = 0 and ιXH = 0 by assumption, we can writeH = q∗H ′ for a (unique) three-
form H ′ on the quotient, so we can regard q as a generalized map. It satisfies ker(q∗) ∩
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Bi(L) = C · X , which is of constant rank 1, so that the forward image Fq(Bi(L)) is
smooth by (1.38). By Lemma 1.2.23 it projects down to Zc/S1 and it is generalized
complex because of (3.22) and the fact that X spans the kernel of q∗.

Suppose that ρ is a local spinor for L which is S1-invariant. Then, as JN∗Zc ∩
N∗Zc = 0, (1.36) holds and so i∗ρ is nonzero on Zc and gives an S1-invariant spinor for
Bi(L). Moreover,

0 = (X − iJX) · ρ = (X − idµ) · ρ

implies that ι
X
i∗ρ = 0. Hence i∗ρ comes from a unique differential form on Zc/S1

which, by Lemma 1.2.23, forms a spinor for the induced generalized complex structure
on the quotient.

Consider now a generalized Poisson transversal Y ⊂ (M,J ), with ωY the induced sym-
plectic structure on N∗Y . As in the proof of Lemma 3.2.2, we choose a compatible
Hermitian structure (g, I) on the bundle N∗Y and use it to construct an S1-invariant one-
form λ on the manifold N∗Y , of the form (3.13). In particular, its differential σ = dλ
is a closed extension of ωY which is S1-invariant, and whose restriction to the fibers is
translation invariant. Consider the S1-action on Z := N∗Y × C given by

eiθ · (z, w) = (e−iθz, eiθw),

and denote by X the induced action vector field on Z. We equip Z with the three-form
p∗HY , where p : N∗Y × C → Y is the obvious map, and the generalized complex
structure JZ which is the product of the standard symplectic structure on C and Jσ on
N∗Y as defined by (3.14). We then have an S1-action on (Z, p∗HY ,JZ).

Lemma 3.2.11. The map µ : Z → R given by µ(z, w) := 1
2g(z, z)− 1

2 |w|
2 is a moment

map.

Proof. We can write X = (X1, X2) on N∗Y × C, with Xi the corresponding action
vector field on the separate factors. In particular,X1 is vertical onN∗Y , and by definition
of Jσ we have JZ(X1, X2) = (σ(X1), ωst(X2)). Since σ+ωst = d(λ+λst), where both
λ and λst are S1-invariant, we get JZX = −dιX(λ+λst). Hence, it suffices to show that
µ = −ιX(λ + λst) = −ιX1

λ − ιX2
λst. This is a fiberwise equality and can readily be

verified, e.g. by using a unitary frame.

Remark 3.2.12. If one starts with an arbitrary extension σ = dλ of ωY , one can average
it over S1 to make it invariant, and the map −ιX(λst + λ) is again a moment map. The
advantage of our choice above is that the moment map has an explicit description in terms
of a metric.

For ε > 0, Proposition 3.2.10 implies that Ñ∗Y ε := µ−1(ε2/2)/S1 has a generalized
complex structure, obtained from Jσ by taking a backward and forward image succes-
sively. As a manifold, Ñ∗Y ε is given by the blow-up of Y in N∗Y . Indeed, as in Section
2.4, define

Ñ∗Y := {(z, l)|z ∈ l} ⊂ N∗Y × P(N∗Y ).
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This is the blow-up of Y inside N∗Y , and we have a diffeomorphism

κ : Ñ∗Y ε → Ñ∗Y , (w, z) 7→ (
wz

|z|
, [z]).

Here we abbreviate |z| :=
√
g(z, z). It remains to be shown that this blow-up can be

glued back into the original manifold M to produce the blow-up of Y in M . For that, we
consider the slice for the S1-action given by

ϕ̃ : N∗Y \Bε ↪→ µ−1(ε2/2) ⊂ Z, z 7→ (z,
√
|z|2 − ε2). (3.23)

Here Bε is the disc bundle of radius ε. If q denotes the quotient map of the S1-action, we
obtain a diffeomorphism

ϕ := q ◦ ϕ̃ : N∗Y \Bε −→ Ñ∗Y ε\E. (3.24)

Here E is the exceptional divisor, given by the image under q of µ−1(ε2/2) ∩ {w = 0}.
To see whether ϕ is holomorphic, we look at what happens if we pull back a spinor. Since
ρ = eiωst+iσ ∧ p∗ρY is an S1-invariant spinor on Z, Proposition 3.2.10 implies that we
can choose a spinor ρ′ on Ñ∗Y ε\E so that q∗ρ′ = i∗ρ. In particular,

ϕ∗ρ′ = ϕ̃∗i∗ρ = eiσ ∧ p∗ρY ,

which is a spinor for Jσ on N∗Y \Bε. So indeed, ϕ is holomorphic.

Theorem 3.2.13. Let Y ⊂ (M,J ) be a compact generalized Poisson transversal. For
any tubular embedding as in Theorem 3.2.6, the associated blow-up carries a general-
ized complex structure which is, outside of a neighborhood of the exceptional divisor,
isomorphic to the original structure.

Proof. Let ι : N∗Y ⊃→ M be a tubular embedding as provided by Theorem 3.2.6. By
Theorem 3.2.5 we may precompose ι by an isotopy to ensure that ι is holomorphic with
respect to J on M , and a Jσ of our choosing on N∗Y . Note that this isotopy does
not change the differentiable structure of the blow-up. Hence, we may assume that ι is
holomorphic with respect to the Jσ on N∗Y that we have been using above to construct
Ñ∗Y ε. The rest of the argument now proceeds as in Section 2.4. Let U be a neighborhood
of Y in N∗Y on which Jσ and ι are defined, and pick ε > 0 such that Bε ⊂ U . Here we
use that Y is compact. We can write

M = M\ι(Bε) ∪ι U,

using the holomorphic glueing map ι : U\Bε → ι(U)\ι(Bε). Then we define the blow-
up by

M̃ := M\ι(Bε) ∪ι◦ϕ−1 Ũ , (3.25)
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where Ũ := ϕ(U\Bε) ∪ E, and the glueing is performed by the holomorphic map

ι ◦ ϕ−1 : Ũ\E → ι(U)\ι(Bε).

Here ϕ is the slice that we defined in (3.23) and (3.24). Note that the map M̃\Ũ →M\U
is an isomorphism.

Remark 3.2.14. i) As in Section 2.4, there is no natural blow-down map from M̃ to M .
It is possible to create one, but it requires an additional choice. See Section 2.4 for more
details.

ii) The blow-up for generalized Poisson submanifolds, even though it does not always
exist, is uniquely defined. In contrast, we say nothing about the uniqueness of the blow-up
for generalized Poisson transversals. In fact, even in the symplectic setting it is unknown
whether two symplectic blow-ups of the same point are always symplectomorphic. One
of the main problems is that it is unknown whether any two symplectic embeddings of a
ball into a symplectic manifold are always symplectically isotopic to each other.

Example 3.2.15. Let (M,J1,J2) be a generalized Kähler manifold and Y ↪→ M a
generalized Poisson submanifold for J1, i.e. J1N

∗Y = N∗Y . By Lemma 4.0.1, Y is
a generalized Poisson transversal with respect to J2. In Example 3.1.10 we discussed
how the maximal torus in a compact even-dimensional Lie group is a generalized Poisson
submanifold for J1 which, because of the degeneracy condition, can almost never be
blown up. With respect to J2 however, there are no restrictions, so all maximal tori can
be blown up for J2. In Section 4.4 we will give a more thorough investigation of these
examples, and show that if the maximal torus can be blown up for J1 and J2, then the
blow-up is again generalized Kähler.

3.3 Other types of submanifolds
Our definition of a generalized complex submanifold is, besides a smoothness criterion,
characterized by

JN∗Y ∩ (N∗Y )⊥ ⊂ N∗Y. (3.26)

In the previous sections we investigated the blow-up theory of the two extreme cases,
namely those for which the above inclusion is either an equality (the generalized Poisson
case) or when the intersection is zero (the generalized Poisson transversals). An obvious
question at this point is whether the “intermediate” cases admit a blow-up theory as well.
The techniques we used for generalized Poisson submanifolds and generalized Poisson
transversals are so different from each other that it does not seem likely that we can use
either of them when the type in the normal direction is mixed. We will now give an
example where we can explicitly prove that there does not exist a blow-up. For that we
will use the following fact that was proven by Atiyah [3], for which we give an elementary
proof.
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Proposition 3.3.1 ([3]). LetM be a compact four-dimensional generalized complex man-
ifold of type 1. Then the Euler characteristic χ(M) is even.

Proof. Since the type can only change in even amounts, a structure which is of type 1
somewhere on a four-manifold is of type 1 everywhere. This gives rise to a decomposition
TM = L1 ⊕ L2, where L1 is the distribution tangent to the symplectic foliation and L2

is a choice of normal bundle. In particular L1 and L2 are orientable and we can think
of them as complex line bundles7, giving an almost complex structure on TM . By Wu’s
formula, using that c1(TM) ≡ w2(M) mod 2 and c1(TM) = c1(L1) + c1(L2), we
obtain

α2 ≡ α ∪ c1(L1) + α ∪ c1(L2) mod 2 ∀α ∈ H2(M,Z).

Applying this to α = c1(L1), we see indeed that χ(M) = c1(L1)c1(L2) is even.

Now let M be a compact four-dimensional generalized complex manifold of type 1.
From Lemma 2.2.7 we know that the blow-up of a point in M is differentiably given by
M̃ = M#CP2

, which has Euler characteristic χ(M̃) = χ(M) + 1. This is odd, which
means that M̃ does not admit a type 1 structure. In particular, if M̃ admits a generalized
complex structure, then it must be of type 0 or 2, or a mixture of these. In particular, such
a structure would nowhere be related to the original structure on M , so it can not come
from a blow-up construction.

In the example above, Equation (3.26) is neither zero nor an equality at any point. How-
ever, as Example 1.3.24 illustrates, it can happen that (3.26) is zero at some points, and an
equality at others. There seems to be no easy argument to rule out a blow-up theory for
these kind of submanifolds, hence further study is needed to see what can be said about
them.

7In fact, L2 inherits a canonical almost complex structure, being the normal to the symplectic foliation in a
generalized complex manifold.
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Chapter 4

Blow-ups of Generalized Kähler
Manifolds

In the previous chapter we learned that there are two natural classes of submanifolds in
generalized complex geometry that, under suitable conditions, admit a blow-up: those
that look complex and those that look symplectic in transverse directions. On a Kähler
manifold (M, I, ω), we know that a submanifold Y which is complex for I is automati-
cally symplectic for ω (but not the other way around). Moreover, the complex blow-up of
Y in M carries again a Kähler structure, at least when Y is compact. The first of these
two facts admits a straightforward generalization.

Lemma 4.0.1. Let (M,J1,J2) be a generalized Kähler manifold. A submanifold Y ⊂
M which is a generalized Poisson submanifold for J1 is a generalized Poisson transversal
for J2.

Proof. By the generalized Kähler condition we have

〈J1α,J2α〉 > 0 ∀α ∈ N∗Y.

So if J1N
∗Y = N∗Y , then necessarily J2N

∗Y ∩ (N∗Y )⊥ = 0.

In light of this we are led to the following question:

If (M,J1,J2) is a generalized Kähler manifold and Y ⊂ M a compact generalized
Poisson submanifold for J1 with degenerate conormal bundle, is the blow-up again gen-
eralized Kähler?

Here the degeneracy condition is to ensure that the blow-up with respect to J1 exists.
Note that there is no loss of generality to assume that Y is generalized Poisson for J1,
by symmetry of the pair (J1,J2). In the present chapter we will give a partial answer to
this question. Specifically, we will give sufficient conditions on (M,J1,J2) that ensure
that the answer to the above question is positive. We will also give a concrete example,
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on compact Lie groups, to illustrate.

To understand and appreciate the steps that we will take in the coming sections, it is
instructive to sketch the analogy with blow-ups in ordinary Kähler geometry. The way
one constructs a new Kähler form on the blow-up of a complex submanifold is by pulling
back the original Kähler form, and then adding to it a two-form which is positive on all
the fibers of the blow-down map. This two-form can be written as ddcf , where f is a
function on M̃ with a singularity along E. We will refer to f as a “potential”. Here is
another way to look at this. We first pull back the Kähler structure to obtain a “singu-
lar” Kähler structure, whose metric is no longer non-degenerate. Then, we deform the
structure to become non-degenerate. Of course this last sentence is quite an exaggeration
in this context; we are merely adding a closed two-form to the Kähler form. However,
it is a useful point of view in the generalized Kähler context. If p : M̃ → M denotes
the blow-down map, we can consider the backward image Bp(L2) on M̃ . It is smooth,
but no longer non-degenerate along the exceptional divisor. In analogy with the story
above, we could try to remedy this by deforming Bp(L2) to a genuine generalized com-
plex structure, in such a way that it remains compatible with J1. Even though this would
be an elegant way to proceed, it is not clear how to write down such a deformation for
Bp(L2). Instead, we will operate on the level of the underlying bi-Hermitian structure
(g, I+, I−, H), and proceed as follows. We first show that the bi-Hermitian data can be
lifted to the blow-up of M with respect to J1 to form a degenerate bi-Hermitian structure
(see Definition 4.1.3) on M̃ . Then, we set up a deformation process that allows one to
flow from such a degenerate structure towards a non-degenerate one. The end result then
defines the desired generalized Kähler structure. As in the Kähler case, this deformation
also needs the input of a potential f . This time however, it is not just ddcf which plays
a role, but also the Hamiltonian vector field Q(df), where Q is defined in (1.58). Once
we have a good control on the singular behavior of Q(df), which requires additional ge-
ometrical conditions on M , the flow works and we can blow up. As a special case we
recover the ordinary Kähler blow-up, for which Q = 0. Nevertheless, in this generalized
approach, both J1 and J2 are being deformed, in contrast to the ordinary Kähler setting.

The idea behind flowing a generalized Kähler manifold by potentials already appears
in [30], where it was used to describe new examples of generalized Kähler structures. It
was subsequently used in [16] to blow up a non-degenerate point on a four-dimensional
manifold, and the methods that we introduce here extend these ideas. The content of this
chapter appeared in [33].

4.1 Lifting the bi-Hermitian structure
Let Y ⊂ (M,J1,J2) be a generalized Poisson submanifold for J1. Associated to
(J1,J2) we have the pair of holomorphic Poisson structures (I±, σ±) defined in (1.59),
whose real parts coincide and are equal to Q. In this section we will show that (I±, σ±)
both lift to the generalized complex blow-up of Y with respect to J1. To that end, we first
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prove that σ± lift to the blow-up of Y with respect to I±, and then show that the three
different blow-ups all coincide.

From (1.56) it follows that Y is generalized Poisson for J1 if and only if I∗±N
∗Y =

N∗Y , and I∗+|N∗Y = I∗−|N∗Y . Consequently, Y is a holomorphic Poisson submanifold
for both (I±, σ±).

Lemma 4.1.1. N∗Y is degenerate for πJ1
if and only if it is degenerate for Q.

Proof. From Equations (1.58) and (1.57) we obtain

Q = πJ1 ◦ (I+ + I−)∗. (4.1)

The endomorphism A := (I+ + I−)∗ restricts to an automorphism of N∗Y , and we have

[α, β]Q = dy
(
Q(α̃, β̃)

)
= dy

(
πJ1

(Aα̃, β̃)
)

= [Aα, β]πJ1
(4.2)

for α, β ∈ N∗yY , where α̃, β̃ are smooth local extensions of α and β. In the last equality
we used that Aα̃ is a smooth local extension of Aα. Abstractly, if (g, [·, ·]) is a Lie
algebra and A : g → g a linear map such that [u, v]A := [Au, v] is again a Lie bracket1,
then degeneracy of [·, ·] implies that for [·, ·]A as well. To prove this, we need to show that
[x, y]A ∈ Cx + Cy for all x, y ∈ g, and it suffices to verify this for x, y that are linearly
independent. Since [·, ·] is degenerate, there are λ, µ ∈ C with [x, y]A = [Ax, y] =
λAx+µy. Since [·, ·]A is skew, we have [Ax, y] = [Ax, x+y], and so there are λ′, µ′ ∈ C
with [x, y]A = λ′Ax + µ′(x + y). Comparing both equations and using that x and y are
linearly independent, we see that either Ax ∈ Cx + Cy, hence also [Ax, y] ∈ Cx + Cy,
or [Ax, y] = λAx. Running the same argument with x and y interchanged, we see that
either [Ax, y] ∈ Cx + Cy, or [Ax, y] = µAy for some µ ∈ C. In conclusion, if [Ax, y]
does not lie in Cx + Cy, then Ax is proportional to Ay and so [Ax, y] = 0 by skew
symmetry of [·, ·]A, a contradiction. Hence, [x, y]A ∈ Cx + Cy for all x, y ∈ g, and so
[·, ·]A is degenerate.

From Proposition 3.1.6 it follows that if Y can be blown up for J1, then σ± lift to the
blow-ups of Y with respect to I±. Let us denote by M̃ the blow-up for J1 and by M̃±
the blow-ups for I±.

Lemma 4.1.2. The blow-ups M̃ , M̃+ and M̃− all coincide.

Proof. As explained in Chapter 2, the blow-up M̃ is constructed from a holomorphic ideal
IY,J1 that Y inherits from J1, while the blow-ups M̃± use the natural holomorphic ideals
IY,I± that Y inherits from being a complex submanifold in (M, I±). It thus suffices to
show that these three ideals coincide, which turns out to be true up to a conjugation, i.e.
IY,J1

= IY,I± . This is not a problem, for the blow-up of a conjugate ideal is given by the
same manifold but with conjugate divisor. Pick a local chart (R2n−2k, ωst)× (Ck, σ) for
J1 as provided by Theorem 1.3.16, in which Y necessarily looks likeW×Z, whereW ⊂

1In fact as the argument shows, the Jacobi identity plays no role here. Hence this is really a statement about
skew-symmetric brackets.
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R2n−2k is open and Z ⊂ Ck a complex Poisson submanifold. If (x, z) are coordinates on
this chart in which Y = {z1, . . . , zl = 0}, then the ideal IY,J1

is on this chart given by
〈z1, . . . , zl〉 (see the proof of Proposition 3.1.2). Let us verify that IY,J1

= IY,I+ , the case
of I− being similar. In general, if IY and I ′Y are holomorphic ideals for Y , then IY ⊂ I ′Y
implies that IY = I ′Y . This follows easily from property ii) of Definition 2.1.1. In
particular, we only need to show that, say, IY,J1

⊂ IY,I+ . Pick a holomorphic chart for I+
with coordinates ui so that Y is given by {u1, . . . , ul = 0}, so that IY,I+ = 〈u1, . . . , ul〉.
Using the same criterion from [35] that we used in proving Proposition 3.1.2, we can
verify IY,J1

⊂ IY,I+ merely by looking at Taylor series, i.e. we need to show that

∂mz̄i

∂ūi1 . . . ∂ūim

∣∣∣∣
Y

= 0 ∀m ≥ 0, ∀i, i1, . . . , im ∈ {1, . . . , l}. (4.3)

For this we use (1.62), which now explicitly becomes

(−1)
1
2k(k−1)eiωste−σ̄(dz̄1 . . . dz̄k) ∧ ρ̄2 = efe−

1
8σ+(du1 . . . dun), (4.4)

where ef is some rescaling. One can now prove (4.3) by induction on m, and by applying
appropriate Lie derivatives to (4.4). This part of the argument is very similar to the one
used in the proof of Proposition 3.1.2, and so we omit further details.

From Lemma 4.1.2 it follows that if Y ⊂ (M,J1,J2) is a compact generalized Poisson
submanifold for J1 with degenerate conormal bundle, then both complex structures I+
and I− lift to the blow-up for J1. We will continue to denote these by I±, and it should be
clear from the context on which manifold we are considering them. In particular, we can
look at the tuple (p∗g, I+, I−, p

∗H) on the blow-up. This tuple still satisfies the integra-
bility conditions, in the sense that I± are integrable, p∗H is closed and±dc±p∗ω± = p∗H .
However, p∗g is no longer non-degenerate and so we do not have a generalized Kähler
structure on the blow-up. Nevertheless, Lemma 4.2 tells us that Q can be lifted to M̃ ,
even though (1.58) no longer makes sense. Let us formalize the current situation.

Definition 4.1.3. A degenerate bi-Hermitian structure on M is a tuple (g, I+, I−, H),
where g is a symmetric bilinear form, I± are complex structures and H is a closed three-
form, such that

i) g is positive on M\E, where E ⊂ M is a closed and nowhere dense submanifold,
on which TM⊥ := {v ∈ TM | g(v, w) = 0 ∀w ∈ TM} has constant rank.

ii) I± are compatible with g, and satisfy the integrability condition ±dc±ω± = H .

iii) The bivector Q := − 1
2 [I+, I−]g−1, defined on M\E, extends smoothly over M .

We summarize the results of this section in the following proposition.

Proposition 4.1.4. Let (M,J1,J2) be a generalized Kähler manifold with bi-Hermitian
data given by (g, I±, H). Let Y ⊂ M be a compact generalized Poisson submanifold
for J1 with degenerate conormal bundle, and let p : M̃ → M denote the corresponding
blow-up. Then there are complex structures I± on M̃ for which p is holomorphic, and the
tuple (p∗g, I±, p

∗H) defines a degenerate bi-Hermitian structure on M̃ .
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4.2 A flow of bi-Hermitian structures
To deal with the degeneracy of the metric on the blow-up we introduce a deformation
procedure to flow a degenerate structure into a non-degenerate one. Let (g, I±, H) be
a degenerate bi-Hermitian structure with degeneracy set E. Since E is nowhere dense,
the relation Qg = − 1

2 [I+, I−] holds everywhere on M , and σ± := Q − iI±Q are holo-
morphic Poisson with respect to I±. To define the flow, we need the following extra
ingredient.

Definition 4.2.1. A potential for I+ (respectively I−) is a closed one-form α defined on
an open dense set, such that Xα := Q(α) and dc+α (respectively dc−α) extend smoothly
over M .

Remark 4.2.2. The terminology originates from the situation where α = −df for a
densely defined function f , which is usually referred to as the potential. Although this
is the situation in which we are interested, we state the results in this section for general
closed one-forms for ease of notation.

Let α be a potential for I+. Denote by ϕt the flow of Xα and define closed two-forms

G±t := ϕt∗(d
c
±α), F±t :=

∫ t

0

G±s ds.

We will have to be careful with G−t and F−t , since dc−α is not assumed to be smooth
everywhere. The aim of this section is to prove

Theorem 4.2.3. Let (g, I+, I−, H) be a degenerate bi-Hermitian structure with compact
degeneracy submanifold E. Let α be a potential for I+, such that dc+α has compact sup-
port and I∗−(−dc+α)1,1

I−
is positive on TM⊥. Then the tuple (gt, I+,t, I−,t, Ht), defined

by2

gt :=g − I∗−
(
F+
t

)1,1
I−
, I+,t := ϕt∗(I+), I−,t := I−,

Ht :=H + id
((
F+
t )2,0

I−
−
(
F+
t )0,2

I−

)
, (4.5)

forms a bi-Hermitian structure for sufficiently small t > 0.

Proof. It is clear that gt is symmetric, I±,t are integrable and that Ht is closed for all
t. By construction, gt is compatible with I−,t = I−. Let us show that gt is a metric
for sufficiently small t > 0. Choose a relatively compact open neighborhood V of E in
M with supp(dc+α) ⊂ V and pick a δ1 > 0 and a relatively compact open set W with
ϕt(V ) ⊂ W for all t ≤ δ1. By construction, F+

t = 0 on M\W for t ≤ δ1 and so gt = g
is non-degenerate there. Writing gt = g + ht, we have

lim
t→0+

ht
t

= ḣ0 = −I∗−(dc+α)1,1
I−
,

2Here and in the remainder of this section, an expression of the form αp,qI denotes the (p, q)-component of
a form α with respect to the complex structure I .
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which by assumption is positive on TM⊥. For small ε > 0, g+ εḣ0 is positive on TM |E
and therefore also on TM |U for U ⊂ W a small enough neighborhood of E. Hence the
same is true for g + εht/t, and therefore also for tg/ε + ht, provided t > 0 is close to
zero. If in addition t ≤ ε then tg/ε + ht ≤ g + ht = gt since g ≥ 0. In conclusion,
there exist a neighborhood U of E in W and a δ2 > 0 such that gt is positive on U for all
0 < t ≤ δ2. Since W\U is compact and g0 = g is non-degenerate on M\E, there is a
δ3 > 0 such that gt is positive on W\U for 0 ≤ t ≤ δ3. Consequently, gt is a metric for
0 < t ≤ min(δ1, δ2, δ3).

As already observed above, gt is compatible with I−,t for all t. Moreover, since any
closed two-form F on a complex manifold satisfies

dcF 1,1 = id(F 2,0 − F 0,2),

we obtain

−dc−,tω−,t = −dc−(ω− − (F+
t )1,1

I−
) = H + id

(
(F+
t )2,0

I−
− (F+

t )0,2
I−

)
= Ht.

Hence all that is left to verify is that I+,t is also compatible with gt and that dc+,tω+,t =
Ht. In contrast with I−,t this is not immediately obvious, the reason being that the flow
seems to treat I+ and I− on an unequal footing. However, we will now show that if we
pull back the entire flow (4.5) by ϕt, we obtain a similar flow but with the roles of I+ and
I− interchanged. We begin by giving an alternative formula for I+,t.

Lemma 4.2.4. ϕt∗(I±) = I± −QF±t .

Proof. Consider the generalized complex structure

J+ =

(
I+ Q
0 −I∗+

)
,

integrable with respect to the zero three-form (see Example 1.3.7). As α is closed, the
generalized vector field J+α = Xα− I∗+α is a symmetry of J+, which means that J+ is
preserved by its flow3

ψ+
t = e

F+
t
∗ ◦ ϕt∗.

Hence e−F
+
t

∗ ◦ J+ ◦ e
F+
t
∗ = ϕt∗(J+), and so in particular ϕt∗(I+) = I+ − QF+

t .
For I− we have to be careful since we do not know whether F−t is smooth. We can
apply the above argument at a given point in the open dense set where α is smooth, if
we keep the time parameter small enough. Differentiating at t = 0, we can at least
conclude that LXαI− = Qdc−α holds on the dense set where α is defined. Since Xα

is smooth, we learn that Qdc−α, and therefore also QG−t and QF−t , are smooth. The
equation ϕt∗(I−) = I− −QF−t then holds because it does so at t = 0, and because both
sides have equal time derivatives.

3Although J+α is only densely defined, its associated adjoint action on Γ(TM) depends only on Xα and
dc+α and is therefore defined everywhere. In particular, the flow is also defined everywhere.
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In the proof of the lemma below we denote by ∇ the Levi-Cevita connection and by ∇±
the metric connections whose torsions are given by ∓g−1H (see also Proposition 1.4.3).
They are defined on the open dense set M\E where g is non-degenerate.

Lemma 4.2.5.

LXαg =I∗−(dc+α)1,1
I−
− I∗+(dc−α)1,1

I+
(4.6)

ιXαH =
1

2

(
dc+(I∗−α) + dc−(I∗+α)

)
(4.7)

Proof. We will verify these expressions on the intersection of M\E with the open dense
set where α is defined. Since the left-hand sides of both equations are smooth, this shows
that the right-hand sides have smooth extensions to all of M .

As both sides of (4.6) are symmetric, it suffices to evaluate them on a pair (Y, Y ).
Using the well-known formula (Lg−1αg)(Y, Y ) = 2∇Y α(Y ) together with the definition
Xα = g−1( 1

2 [I+, I−]∗α), we obtain

(LXαg)(Y, Y ) =∇Y
(
[I+, I−]∗α

)
(Y )

=∇Y α
(
[I+, I−]Y

)
+ α

(
(∇Y [I+, I−])Y

)
.

Using the identities4 dc±β = [d, I∗±·]β and dβ = (∇β)skew for β ∈ Ω∗(M), together with
the fact that α is closed, the right-hand side of (4.6) evaluates to5

d(I∗+α)(Y, I−Y )− (+↔ −) =
(
∇Y α(I+I−Y ) + α((∇Y I+)I−Y )−∇I−Y α(I+Y )

− α((∇I−Y I+)Y )
)
− (+↔ −)

=∇Y α([I+, I−]Y ) + α
(
(∇Y [I+, I−])Y

)
+ α

((
I−(∇Y I+)Y − (∇I−Y I+)Y

)
− (+↔ −)

)
.

(4.8)

Using∇Y I± = ± 1
2 [g−1ιYH, I±], a tedious but straightforward calculation shows that

(I∓∇Y I± −∇I∓Y I±)Z = ∓1

2
g−1

(
I∗∓ιI±Z ιY + I∗±ιZ ιI∓Y

+ I∗∓I
∗
±ιZ ιY + ι

I±Z
ι
I∓Y

)
H. (4.9)

From this we see that the last term in (4.8) vanishes, proving (4.6).
For (4.7), we use dc± = [d, I∗±·] and dα = (∇α)skew to compute

(dc+(I∗−α))(Y,Z) =(d(I∗+I
∗
−α))(Y,Z)− (d(I∗−α))(I+Y, Z)− (d(I∗−α))(Y, I+Z)

=−∇I+Y α(I−Z) + α
(
I−(∇Y I+)Z − (∇I+Y I−)Z

)
− (Y ↔ Z).

4Here I∗±· acts on a form of degree (p, q) by i(p−q). In particular, for a one-form αwe have I∗± ·α = I∗±α,
while for a two-form β we have I∗± · β = I∗±β + βI±.

5Here we use the notation (+ ↔ −) to denote the same term that precedes it but with ± symbols inter-
changed.
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The same equation with ± interchanged also holds. Using again (4.9) and the fact that
∇α is symmetric, we get(
dc+(I∗−α) + dc−(I∗+α)

)
(Y,Z) =α

((
I−∇Y I+ −∇I−Y I+

)
Z + (+↔ −)

)
− (Y ↔ Z)

=α
(
g−1(I∗+I

∗
− − I∗−I∗+)ιZιYH

)
=2(ιXαH)(Y,Z),

proving (4.7).

From the proof of Lemma 4.2.4 we learned that Qdc−α is smooth, and therefore also
dc−αQ by taking adjoints. Since dc+α is smooth by assumption, (4.6) gives us in addition
smoothness of (dc−α)1,1

I+
. Consequently, using Lemma 4.2.4 we see that

I∗+F
−
t − F−t I+ =

∫ t

0

ϕs∗
(
(ϕ∗sI+)∗dc−α− dc−α(ϕ∗sI+)

)
ds

=

∫ t

0

ϕs∗
(
I∗+d

c
−α− F+

−sQd
c
−α− dc−αI+ + dc−αQF

+
−s
)
ds (4.10)

is smooth as well. Moreover, if we apply d to (4.7), we obtain

LXαH =− 1

2
d
(
I∗+ · d(I∗− · α) + I∗− · d(I∗+ · α)

)
=− 1

2
d(I∗+d

c
−α+ dc−αI+ + I∗−d

c
+α+ dc+αI−), (4.11)

which implies that d(I∗+d
c
−α + dc−αI+) is smooth. Similar to (4.10), it follows that

d(I∗+F
−
t + F−t I+) is smooth. We now have the right ingredients to make sense of the

following lemma.

Lemma 4.2.6. Let (gt, I+,t, I−, Ht) be as in (4.5). Then

ϕ∗t gt = g +
1

2

(
I∗+F

−
−t − F−−tI+

)
, (4.12)

ϕ∗tHt = H +
1

2
d
(
I∗+F

−
−t + F−−tI+

)
. (4.13)

Proof. Both equations hold at t = 0, so it suffices to show that both sides have the same
time derivative. Since ϕ∗tF

±
t = −F±−t, we have ϕ∗t gt = ϕ∗t g+ 1

2 (I∗−,−tF
+
−t−F+

−tI−,−t),
where I−,−t = ϕ∗t (I−). Using Lemma 4.2.4 and (4.6), we obtain

d

dt
(ϕ∗t gt) =ϕ∗t (LXαg) +

1

2

(
G−−tQF

+
−t − I∗−,−tG+

−t − F+
−tQG

−
−t +G+

−tI−,−t
)

=ϕ∗t

(
LXαg +

1

2

(
− dc−αQF+

t − I∗−dc+α+ F+
t Qd

c
−α+ dc+αI−

))
=

1

2
ϕ∗t
(
− I∗+,tdc−α+ dc−αI+,t

)
=

1

2
(−I∗+G−−t +G−−tI+).



4.2 — A flow of bi-Hermitian structures 91

This equals the time derivative of the right-hand side of (4.12), thereby proving it.
For (4.13), using ϕ∗tHt = ϕ∗tH − 1

2d(I∗−,−tF
+
−t + F+

−tI−,−t) and (4.11), we have

d

dt
(ϕ∗tHt) =ϕ∗t (LXαH)− 1

2
d
(
G−−tQF

+
−t − I∗−,−tG+

−t + F+
−tQG

−
−t −G+

−tI−,−t
)

=ϕ∗t (LXαH) +
1

2
ϕ∗t d

(
dc−αQF

+
t + I∗−d

c
+α+ F+

t Qd
c
−α+ dc+αI−

)
=

1

2
ϕ∗t d

(
− I∗+,tdc−α− dc−αI+,t

)
=− 1

2
d(I∗+G

−
−t +G−−tI+),

which equals the time derivative of the right-hand side of (4.13), thereby proving it.

From Lemma 4.2.6, together with the arguments applied before to I−,t, it follows that
ϕ∗t I+,t = I+ is compatible with ϕ∗t gt, and that

ϕ∗t (d
c
+,tω+,t) =dc+((ϕ∗t gt)I+) = dc+(ω+ + (F−−t)

1,1
I+

) = H + id
(
(F−−t)

2,0
I+
− (F−−t)

0,2
I+

)
=ϕ∗tHt.

Pushing everything forward again by ϕt we obtain the desired compatibility of I+,t with
gt and Ht, finishing the proof of Theorem 4.2.3.

Remark 4.2.7. We stated the theorem for potentials for I+ but of course a similar result
is true for potentials for I−. In that case we need I∗+(−dc−α)1,1

I+
to be positive on TM⊥.

Remark 4.2.8 ([30]). Theorem 4.2.3 is stated for metrics which are almost everywhere
non-degenerate. It can however, also be applied to the following situation, where g is
identically zero. Suppose (M, I) is a compact complex manifold and σ a holomorphic
Poisson structure with real part Q. Setting g = 0, I± = I and H = 0, this is a degen-
erate bi-Hermitian structure in the sense of Definition 4.1.3, except for the fact that the
degeneracy set E = M is no longer nowhere dense. Still, Lemma 4.2.4 only used that Q
is the real part of holomorphic Poisson structures σ±, while Lemma 4.2.5 is trivially true
in this case (both sides of both equations are zero). Hence Theorem 4.2.3 still applies in
this case, and all we need is a potential α such that −dcα is positive on M . To that end,
suppose that D ⊂M is a divisor which is Poisson for σ and which in addition is positive,
i.e. the line bundle OX(D) is positive. Let s ∈ Γ(OX(D)) be a holomorphic section
which vanishes to first order along D, and choose a Hermitian metric h on OX(D) such
that iRh is positive on M , where Rh is the curvature of the unitary connection induced
by h. Then α := −d log |s| is a potential with the desired properties, for −dcα = iRh is
smooth and positive, while Q(α) is smooth because D is Poisson (c.f. the proof of The-
orem 4.3.2 i)). The deformation procedure then gives us a bi-Hermitian structure where
I+ and I− are no longer equal. In [30] this was applied to find examples of generalized
Kähler structures on Del Pezzo surfaces, which are complex surfaces whose anticanonical
bundle is positive.
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4.3 Flowing towards a non-degenerate structure
Let Y ⊂ (M,J1,J2) be a compact generalized Poisson submanifold for J1 with de-
generate normal bundle, and denote by p : M̃ → M the corresponding blow-up. By
Proposition 4.1.4, the tuple (p∗g, I±, p

∗H) defines a degenerate bi-Hermitian structure,
whose degeneracy set E is given by the exceptional divisor. Moreover, TM̃⊥ equals the
vertical tangent bundle of the fibration p : E ∼= P(NY )→ Y . In order to apply the defor-
mation procedure from Section 4.2, we need a suitable potential6 f . This will be based on
the following idea (see also [16]). Consider M and M̃ as complex manifolds with respect
to either I+ or I−, so that E is a divisor on M̃ , and consider the holomorphic line bundle
O
M̃

(−E). Recall that a Hermitian metric on a holomorphic line bundle induces a unitary
connection, whose curvature Rh is of type (1, 1).

Lemma 4.3.1. If U is any neighborhood of E in M̃ , there exists a metric h on O
M̃

(−E)

such that iRh is supported in U and restricts to a positive (1, 1)-form on TM̃⊥.

Proof. On E we have the tautological line bundle OE(−1) ⊂ p∗NY , whose fiber over a
point l ∈ E = P(NY ) is the corresponding line inNY . If we equipNY with a Hermitian
metric, then this induces one on OE(−1) and therefore also on OE(1) := OE(−1)∗.
Denote the latter by h′ and its curvature by Rh′ . If we set Ey := p−1(y) = P(NyY ) for
y ∈ Y , then iRh′ |Ey equals (a multiple of) the Fubini-Study form7 on P(NyY ). Now
O
M̃

(−E)|E ∼= N∗E, the conormal bundle of E in M̃ , which equals OE(1). We can
extend the metric h′ on OE(1) to a metric on O

M̃
(−E) as follows. Forgetting about

the holomorphic structure for a moment, pick a tubular neighborhood V ⊃ E in M̃
such that V ⊂ U . Denoting by p : V → E the corresponding retraction, we identify
O
M̃

(−E)|V ∼= p∗OE(1). EquipO
M̃

(−E)|V with the metric p∗h′ with curvature p∗Rh′ ,
which has the same restriction to all of the Ey’s as Rh′ does. On the complement of E,
the bundle O

M̃
(−E) is trivial so can be given a flat metric h′′. We let h be equal to h′′

on M̃\U , p∗h′ on a neighborhood of E in V , and a suitable interpolation in between.
Clearly, Rh is compactly supported in U , and iRh|Ey is positive for all y ∈ Y .

It is a well-known fact that if s is any meromorphic section of O
M̃

(−E) which is not
identically zero, then iRh = −ddc log |s|. So, f := − log |s| is a good candidate for a po-
tential. Unfortunately, we can not always guarantee smoothness of the Hamiltonian vector
field Q(df). The theorem below gives two situations where Q(df) can be controlled.

Theorem 4.3.2. Let (M,J1,J2) be a generalized Kähler manifold and Y a compact
generalized Poisson submanifold for J1 whose conormal bundle is degenerate. Then if
one of the following conditions holds, the blow-up M̃ with respect to J1 has a generalized
Kähler structure.

i) (N∗Y, [·, ·]πJ1
) is Abelian.

6We will consider potentials α = df and also refer to f as the potential, slightly abusing terminology from
Section 4.2.

7In fact this is one of the standard ways to define the Fubini-Study form on projective space.
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ii) Y ⊂ D, where D is a compact Poisson divisor in M with respect to (I+, σ+) or
(I−, σ−).

Moreover, in situation i) the generalized Kähler structure on the blow-up agrees with the
original structure on the complement of a neighborhood of the exceptional divisor. In
situation ii), the same is true if we make the additional assumption that OM (D)|Y is
trivial. In that case it is also not necessary to assume that D is compact.

Proof. i): Consider M as a complex manifold with respect to, say, I+. From (4.2) we
see that [·, ·]Q is Abelian on N∗Y and therefore E ⊂ M̃ is a Poisson submanifold for
the lift of Q. Consider the potential f = − log |s|, where s is a meromorphic section of
O
M̃

(−E) with a simple pole along E, and the norm is taken with respect to a metric as
in Lemma 4.3.1. We claim that Q(df) extends smoothly to the whole of M̃ . To see this,
let x ∈ E and let e be a local holomorphic section of O

M̃
(−E) with e(x) 6= 0. Then

s = 1
z e, where z is a local equation for E, hence

Q(df) =
1

4
σ+

(dz
z

)
+

1

4
σ+

(dz̄
z̄

)
−Q(d log |e|).

Since σ+(dz) is holomorphic and vanishes on E, it is divisible by z and we see that
Q(df) is indeed smooth. Now we already know that ddc+f is smooth and that ddc+f |TM̃⊥
is positive, but in order to apply Theorem 4.2.3 we need that (I∗−(ddc+f)1,1

I−
)|
TM̃⊥

is posi-
tive. However, the complex structure on Ey is induced from NyY under the isomorphism
Ey = P(NyY ). Since Y is generalized Poisson, both I+ and I− coincide on NY and
preserve it. So Ey is a complex submanifold of M̃ with respect to both I+ and I−, with
the same induced complex structure. In particular (I∗−(ddc+f)1,1

I−
)|Ey = ddc+f |Ey is posi-

tive. So Theorem 4.2.3 applies and we obtain a generalized Kähler structure by perturbing
the structure in a neighborhood of E, whose size is controlled by the choice of metric in
Lemma 4.3.1 (so in particular can be arbitrarily small).

ii): Let us assume that D is a Poisson divisor for (I+, σ+), the other case being
similar. Let D̃ denote the proper transform8 of D on the blow-up M̃ . In terms of divisors,
D̃ = p∗D − kE for some k ∈ Z>0 and so O

M̃
(D̃) = O

M̃
(−kE) ⊗ p∗OM (D). Equip

O
M̃

(−kE) = O
M̃

(−E)⊗k with the metric h⊗k, where h is a metric on O
M̃

(−E) as
in Lemma 4.3.1. If h′ is any metric on OM (D), the metric h⊗k ⊗ p∗h′ on O

M̃
(D̃)

satisfies iRh⊗k⊗p∗h′ = ikRh + ip∗Rh′ , which is positive on TM̃⊥ since p∗Rh′ vanishes
there. Let s be a holomorphic section of O

M̃
(D̃) with a simple zero along D̃, and define

f := − log |s|. Then ddcf = ikRh + ip∗Rh′ is smooth on M̃ and positive on TM̃⊥,
while the same argument as in i) shows that Q(df) is smooth, using the fact that D̃ is
Poisson. So again Theorem 4.2.3 applies, but this time the structure is perturbed along D̃
as well, so we can not contain the deformation to a neighborhood of E. If however we
know that OM (D)|Y is trivial, then we can choose h′ above to be flat around Y and so
ddc+f = ikRh around E. If s′ is a section of O

M̃
(kE) with a zero of order k along E,

8Recall that this is the closure of p−1(D)\E in M̃ .
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and O
M̃

(kE) is equipped with the metric dual to h⊗k, we can define f ′ := −ρ · log |s′|,
where ρ is a function which is 0 nearE and 1 outside of a neighborhood ofE. Then f+f ′

still has the property that Q(df) is smooth, but in addition satisfies ddc(f +f ′) = 0 on an
annulus around E. We then apply the deformation procedure only on a neighborhood of
E, keeping it fixed on an annulus around it, and then glue the result back to the original
structure.

Remark 4.3.3. i) Suppose that M is a Kähler manifold, seen as a generalized Kähler
manifold as in Example 1.4.2, and Y is a complex submanifold regarded as a generalized
Poisson submanifold forJ1. Then, since πJ1

= 0,N∗Y is Abelian and we are in situation
i) of the theorem. Equation (4.5) that defines the flow reduces in this equation to simply
adding ddcf to the symplectic form, and this is how one usually produces a Kähler metric
on the blow-up.

ii) Let us clarify why we need OM (D)|Y to be trivial if we want to contain the de-
formation to a neighborhood of E in situation ii) of the theorem. In the first part of the
proof we are flowing the structure by the two-form ikRh+ ip∗Rh′ , and in the second part
we want to cancel this on an annulus around E by ddcf ′, where f ′ is a smooth function.
In particular we need ikRh + ip∗Rh′ to be exact on the annulus, which is automatic for
ikRh since O

M̃
(kE)|

M̃\E is trivial. For p∗Rh′ to be exact, we need Rh′ to be exact9

around Y , which amounts to OM (D)|Y being trivial around Y .

Although condition ii) of the theorem is clear as it is stated, it is unclear whether it has
any applications. For that reason we state the following

Corollary 4.3.4. Let (M,J1,J2) be generalized Kähler with J1 generically of symplec-
tic type, and Y a compact generalized Poisson submanifold for J1 with degenerate conor-
mal bundle and which is contained in the type change locus10 of J1. Then the blow-up is
generalized Kähler.

Proof. Let X1 be the type change locus for J1. In a local chart of the form (1.46), X1 is
given by the vanishing of the holomorphic function σk/2 and as such is either empty or
a codimension 1 analytic subset of Cn. We assume X1 6= ∅, otherwise the statement is
vacuous. Let D′ ⊂ M denote the Poisson subvariety of points where Q does not assume
its maximal rank on M . By Lemma 1.3.44 and (1.57) we have

ker(Q) = ker(I∗+ − I∗−)⊕ ker(I∗+ + I∗−) = ker(πJ1
)⊕ ker(πJ2

).

Consequently, D′ = X1 ∪X2, where Xi is the set of points where πJi is not of maximal
rank (or equivalently, where Ji does not assume its minimal type). Let D be the union
of the codimension 1 components of D′. Then D is also a Poisson subvariety which
a priori could be empty, but we claim that X1 ⊂ D. Indeed, if x ∈ X1\D, then a
neighborhoodU of x inX1 is disjoint fromD. However, sinceU is given by the vanishing

9As Y has complex codimension 2 or bigger (otherwise the blow-up is trivial), the Gysin sequence shows
that the second degree cohomology of an annulus around Y agrees with that of Y itself.

10Since J1 is generically symplectic, for Y to be generalized Poisson it has to be either an open set in the
symplectic locus or fully contained in the type change locus. In the former case there is nothing to blow up.
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of a holomorphic function (for a complex structure which need not coincide with either
I±), an open dense set in U is a smooth submanifold of M of real dimension 2n− 2. But
U ⊂ D′ , and a real 2n − 2 dimensional submanifold of a complex manifold can not be
contained in a finite union of analytic subsets of complex codimension bigger than 1. So
indeed X1 ⊂ D, and Theorem 4.3.2 ii) applies.

A special case of this corollary is when Y is a point and M is four-dimensional. This
situation was considered in [16], where it was assumed that the type change locus was
smooth at the point in question.

Remark 4.3.5. In [21] Goto proved that every compact Kähler manifold with a holomor-
phic Poisson structure σ has a generalized Kähler structure, where J1 is given by the
Poisson deformation of the complex structure and J2 is a suitable deformation of the
symplectic structure. If Y is a complex Poisson submanifold for σ whose conormal bun-
dle is degenerate, then σ lifts to the complex blow-up of Y , which has a Kähler metric
of its own (see Remark 4.3.3 i)). Applying Goto’s theorem again, we see that the blow-
up is again generalized Kähler and the blow-down map is generalized holomorphic with
respect to J1.

The proof of Goto’s theorem relies on the use of Green’s operators for finding the
right deformation of J2, and as such is non-local. In fact, since the Kähler metric on the
blow-up differs from the original metric on a neighborhood of the exceptional divisor,
there is a-priori nothing we can say about the relation between J2 on the blow-up and on
the original manifold, even arbitrarily far away from the exceptional divisor. As such it
seems rather difficult to relate this to any blow-up procedure which is surgery-theoretic in
nature.

4.4 An example: compact Lie groups
One source of examples of generalized Kähler manifolds is provided by Lie theory.

Proposition 4.4.1 ([25]). Let G be an even-dimensional compact Lie group. Then G has
a generalized Kähler structure.

In order to find suitable submanifolds to blow up, we need to understand these generalized
Kähler structures in some detail. LetG be a Lie group. An element ξ ∈ g defines left- and
right-invariant vector fields ξLg := deLg(ξ) and ξRg := deRg(ξ), and we have [ξL, ηL] =

[ξ, η]L, [ξR, ηR] = −[ξ, η]R. These two trivializations of TG define connections ∇±,
characterized by∇+ξL = 0 = ∇−ξR for ξ ∈ g. Their torsion is given by

T+(ξL, ηL) = −[ξ, η]L, T−(ξR, ηR) = [ξ, η]R.

Suppose now that G is compact, and let 〈·, ·〉 be a metric on g which is invariant under the
adjoint action. In particular, its left- and right-invariant extensions over G coincide and
we denote this common extension by the same symbol 〈·, ·〉. The three-form on g defined
by H(ξ, η, ζ) := 〈[ξ, η], ζ〉 is also invariant under the adjoint action, and so extends to



96 Blow-ups of Generalized Kähler Manifolds

a bi-invariant three-form on G. From the Jacobi identity it follows that H is closed11

and we have 〈T±(X,Y ), Z〉 = ∓H(X,Y, Z), hence ∇± coincide with the connections
defined in Proposition 1.4.3.

SinceG is compact it is automatically reductive, i.e. its Lie algebra splits as g = a⊕g′,
with a Abelian and g′ semi-simple. Let t be a maximal torus of g′ and g′C = tC⊕

∑
α∈R g′α

the associated root space decomposition. Since G is compact, the roots are contained in
it∗ ⊂ t∗C, hence they come in pairs ±α and we have g′α = g′−α. Consequently, dim(g′)
and dim(t) have the same parity, and since g is even dimensional it follows that a ⊕ t
is even dimensional. Now choose a decomposition R = R+ ∪ R− into positive and
negative roots, so that in particular −R+ = R−. We define a complex structure I on g by
the decomposition gC = g1,0 ⊕ g0,1, where

g1,0 = (a⊕ t)1,0 ⊕
∑
α∈R+

g′α

and (a ⊕ t)1,0 is defined by an arbitrary but fixed complex structure on a ⊕ t, compat-
ible with 〈·, ·〉 in the sense that the complex structure is an orthogonal transformation.
This is equivalent to (a ⊕ t)1,0 being isotropic for the complex linear extension of 〈·, ·〉.
By invariance of the metric, gα is orthogonal to gβ unless α = −β, hence I is com-
patible with 〈·, ·〉. Since the sum of two positive roots is again positive, it follows that
[g1,0, g1,0] ⊂ g1,0, so the complex structures I+ and I−, which are defined by the left-,
respectively, right-invariant extensions of I overG, are integrable. Since they are constant
in the two respective trivializations, we have ∇±I± = 0, so (G, 〈·, ·〉, I±, H) is general-
ized Kähler by Proposition 1.4.3.

Next we look for generalized Poisson submanifolds for J1. A natural candidate is given
by the complex locus of J1, i.e. the set of points where I+ = I− (see (1.4.3)). For g ∈ G
we have (I+)g = (Lg)∗I and (I−)g = (Rg)∗I , so that (I+)g = (I−)g if and only if
Ad(g)∗I = I . This condition defines a subgroup of G, whose Lie algebra is given by

{ξ ∈ g| [ad(ξ), I] = 0⇔ [ξ, g1,0] ⊂ g1,0}.

This algebra coincides with a⊕t, hence the connected component of the complex locus of
J1 that contains the identity equals the connected subgroup T whose Lie algebra is a⊕ t.
Thus T , or any complex submanifold Y ⊂ T for that matter, is a generalized Poisson
submanifold of (G,J1). To blow up Y in G with respect to J1, we need to understand
the induced Lie algebra structure on N∗Y . Since Y ⊂ T , we have an inclusion of Lie
algebras

N∗T |Y ⊂ N∗Y ⊂ T ∗G|Y . (4.14)

The action of T on G, either from the left or the right, is a symmetry of the whole gener-
alized Kähler structure that preserves T . In particular, the Lie brackets on T ∗yG and N∗yT

11In fact, since H is constant in both trivializations it is parallel with respect to both ∇±, and therefore also
for their affine combination∇ := 1

2
(∇+ +∇−), which is nothing but the Levi-Cevita connection for 〈·, ·〉.
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are independent of y ∈ Y and we can compute them at e ∈ G. From (1.57) we see that

(πJ1)g = −1

2
(Rg)∗

(
Ad(g)∗ω

−1 − ω−1
)

= −1

2
(Rg)∗

(
Ad(g) ◦ ω−1 ◦ Ad(g)∗ − ω−1

)
,

where ω(ξ, η) = 〈Iξ, η〉 is the associated Hermitian two-form on g. Consequently, since
for ζ ∈ g the flow of ζL is given by ϕt = Rexp(tζ), we have

(LζLπJ1)e =
d

dt

∣∣∣∣
t=0

(
R∗exp(tζ)(πJ1)

)
e

= −1

2

(
ad(ζ) ◦ ω−1 + ω−1 ◦ ad(ζ)∗

)
.

Let ξ, η ∈ g and denote by ξ̃, η̃ ∈ g∗ their images under the metric. We obtain

[ξ̃, η̃]πJ1
(ζ) = (LζLπJ1)e(ξ̃, η̃) =

1

2
〈[Iξ, η] + [ξ, Iη], ζ〉.

Hence, using the metric, the bracket [·, ·]πJ1
induces the following bracket on g:

[ξ, η]1 :=
1

2

(
[Iξ, η] + [ξ, Iη]

)
.

Write ξ = ξ′+
∑
α(ξα + ξα), where ξ′ ∈ a⊕ t and

∑
α(ξα + ξα) ∈

∑
α(gα⊕ gα)R, and

similarly for η. Here and below, the summation on α is over all positive roots. Then

[ξ, η]
1

=i
∑
α,β

(
[ξα, ηβ ]− [ξα, ηβ ]

)
+ i
∑
α

(
α1,0(ξ′)ηα + α0,1(ξ′)ηα − α1,0(η′)ξα − α0,1(η′)ξα

)
. (4.15)

Here we are regarding the roots α, β ∈ (aC⊕tC)∗ by extending them trivially over aC and
define their (1, 0)- and (0, 1)-components with respect to I|a⊕t. From (4.14) we see that
ifN∗yY is degenerate then so isN∗yT , and therefore the whole ofN∗T by T -equivariance.
So a necessary condition to blow up anything in T is that T itself can be blown up. This
can be investigated by restricting (4.15) to (TeT )⊥ =

∑
α(gα ⊕ gα)R ⊂ g. There, (4.15)

reduces to

[ξ, η]
1

= i
∑
α,β

(
[ξα, ηβ ]− [ξα, ηβ ]

)
.

Recall that a Lie algebra is degenerate if and only if the bracket of any two elements lies
in the plane spanned by them. In particular, as [gα, gβ ] = gα+β for root decompositions,
N∗e T

∼= (TeT )⊥ is degenerate if and only if the sum of any two positive roots is not a
root itself. The only root systems satisfying this are products of A1, corresponding to the
Lie group SU(2) ∼= S3. In conclusion, in order to blow up T in G with respect to J1, we
need G to be of the form G = (S1)n× (S3)m for n+m even, with T = (S1)n× (S1)m.
We then still have some residual freedom in choosing the complex submanifold Y ⊂ T .
Instead of determining precisely all Y for which (4.15) becomes degenerate, let us give a
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concrete example. If m is even, we can choose the complex structure I on g such that the
induced complex structure on (S1)n×(S1)m is a product of two complex structures. This
is because in this case both a and t are even-dimensional and we can choose the complex
structure on a ⊕ t to be a direct sum of complex structures. Then if Y is of the form
Y ′ × (S1)m, with Y ′ a complex submanifold of (S1)n, (4.15) vanishes on N∗Y because
all roots vanish on aC. Alternatively, if m is odd we can choose I so that the induced
complex structure on (S1)n−1× (S1× (S3)m) is a product. Then if Y = Y ′× (S1)1+m,
with Y ′ ⊂ (S1)n−1 a complex submanifold, (4.15) vanishes again on N∗Y . Note that
since in all these cases N∗Y is Abelian, Theorem 4.3.2 i) applies.

Theorem 4.4.2. Let G = (S1)n × (S3)m, where n + m is even and let T = (S1)n ×
(S1)m ⊂ G be a maximal torus. Equip G with a generalized Kähler structure as above
for which T is a generalized Poisson submanifold. Then in the following two cases

i) m is even and Y = Y ′ × (S1)m with Y ′ a complex submanifold of (S1)n,

ii) m is odd and Y = Y ′ × (S1)m+1 with Y ′ a complex submanifold of (S1)n−1,

Y can be blown up to a generalized Kähler manifold.

Remark 4.4.3. Note that this example provides in particular generalized Poisson subman-
ifolds of arbitrarily high codimension which can be blown-up. The topology of Y can still
be quite general because of the freedom we have in choosing the complex submanifold Y ′

of the torus. For instance, any complex curve can be embedded in a torus, via its Jacobian
embedding.
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Nederlandse samenvatting

De titel van deze scriptie luidt: “Opblazen in Gegeneraliseerde Complexe Meetkunde”.
In dit hoofdstuk zullen we een toelichting geven bij deze titel en in het kort samenvatten
wat er in deze scriptie bewezen wordt. De daadwerkelijke samenvatting van de resultaten
bevindt zich op de laatste pagina van dit hoofdstuk, al het voorgaande is bedoeld ter
inleiding voor diegene die niet thuis zijn in dit vakgebied.

Variëteiten

Laten we beginnen door te verduidelijken wat we bedoelen met “meetkunde”. Er zijn
verschillende vakgebieden in de wiskunde die zich met meetkunde bezighouden en deze
scriptie valt in het onderzoeksgebied “differentiaalmeetkunde”. Dit is de studie van ruim-
tes die wiskundigen variëteiten noemen. Aan de hand van illustraties zullen we proberen
hier een gevoel voor te geven. Het eerste voorbeeld van een variëteit is simpelweg een
punt, zie Figuur 1(a). De dimensie van deze ruimte is nul, omdat iemand die zich in
deze ruimte bevindt zich op geen enkele manier kan verplaatsen. Als volgend voorbeeld
beschouwen we een lijn, zie Figuur 1(b). Deze variëteit is één-dimensionaal, aangezien
iemand die zich op de lijn bevindt zich in één enkele richting kan verplaatsen. Ons laatste
voorbeeld in dimensie één is de cirkel, zie Figuur 1(c).

(a) (b) (c)Figuur 1

Een precieze manier om de dimensie te definiëren is met behulp van coördinaten. Als we
de lijn voorzien van een assenstelsel, dan kunnen we de positie van een punt op de lijn
vastleggen met één enkel getal, als in Figuur 2(a). Evenzo, als we een vast punt op de
cirkel kiezen, dan zijn alle andere punten aan te duiden met de hoek die ze maken ten op-
zichte van het vaste punt, zie Figuur 2(b). We hebben dus één enkel getal nodig om punten
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op de cirkel te beschrijven en dus is de cirkel één-dimensionaal. Het enige verschil met
de lijn is dat een gegeven punt met meerdere hoeken te beschrijven valt. Bijvoorbeeld, de
hoeken −360◦, 0◦, 360◦, 720◦ en alle andere veelvouden van 360◦ beschrijven allemaal
hetzelfde punt.

45◦

0 1 2 3-1-2

Figuur 2 (a) (b)

Nu, hoe zou iemand die in een één-dimensionale variëteit leeft kunnen weten of hij of zij
zich op een cirkel of op een lijn bevindt? Als diegene maar een klein beetje zou mogen
bewegen is er geen enkele manier om daar achter te komen. Pas als na een bepaalde tijd
lopen (zonder om te keren) het punt van vertrek wordt bereikt is het duidelijk dat het om
een cirkel gaat. Dit is de essentie van een één-dimensionale variëteit: het is een ruimte
die er lokaal uitziet als een lijn. Anders gezegd: vanuit elk punt in de ruimte zien we een
lijn, tenminste als we niet te ver kijken.

De lijn en de cirkel zijn de enige één-dimensionale variëteiten, maar in dimensie
twee wordt de situatie iets interessanter. Als eerste voorbeeld beschouwen we het twee-
dimensionale vlak, zie Figuur 3(a). We hebben hier al een assenstelsel op aangebracht,
wat duidelijk maakt dat het vlak inderdaad twee-dimensionaal is; voor elk punt in het
vlak hebben we twee getallen nodig om te beschrijven waar het zich bevindt. Net als met
de lijn in één dimensie, kunnen we het twee-dimensionale vlak gebruiken voor de defi-
nitie van een twee-dimensionale variëteit: een ruimte die er lokaal uitziet als het twee-
dimensionale vlak. Laten we kijken naar wat voorbeelden. Neem bijvoorbeeld een bol als
in Figuur 3(b), waarbij het gaat om het oppervlak van de bol en dus niet om de inhoud.

20 1

2

1

-1

-1

-2

-2

Figuur 3 (a) (b)

Het feit dat een bol er lokaal uitziet als een vlak beseffen we ons maar al te goed, aan-
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gezien het oppervlak van de aarde een twee-dimensionale bol vormt en we voor lange
tijd dachten dat de aarde plat was. Een ander voorbeeld wordt gegeven door de twee-
dimensionale torus, zie Figuur 4(a). We benadrukken weer dat het gaat om het getekende
oppervlak, niet om de inhoud. Als we de torus interpreteren als een bol met één gat erin,
dan krijgen we automatisch een hele familie van voorbeelden door het maken van meer-
dere gaten. Het resultaat wordt een oppervlak van geslacht g genoemd, waarbij g het
aantal gaten is. Zie Figuur 4(b),(c) voor de gevallen g = 2 en g = 3.

Figuur 4 (a) (b) (c)

Er zijn nog meer voorbeelden van twee-dimensionale variëteiten maar laten we doorgaan
naar hogere dimensies. Om te begrijpen wat een n-dimensionale variëteit is, waarbij n
een zeker natuurlijk getal is (dus n = 0, 1, 2, 3, 4 of groter), herhalen we dezelfde stappen
die we in één en twee dimensies namen. We bouwen eerst het n-dimensionale analogon
van de lijn en het vlak. Deze ruimte wordt ook wel n-dimensionale Euclidische ruimte
genoemd, en een korte notatie hiervoor is Rn. Per definitie is dit de ruimte bestaande uit
alle mogelijke collecties van n getallen, die men kan opvatten als de n coördinaten van
een punt. Het geval n = 0 is hierbij een beetje speciaal, we definiëren R0 simpelweg als
een punt (als in Figuur 1(a)). Voor n = 1 bestaat R1 dus uit punten die beschreven worden
door één getal en is dus voor te stellen als een lijn (Figuur 1(b)). Evenzo bestaat R2 uit
punten die worden gegeven door twee getallen en dus is R2 te identificeren met het vlak
(Figuur 3(a)). Het laatste geval waar we ons een voorstelling van kunnen maken is n = 3.
Punten in R3 worden beschreven door drie getallen en we kunnen R3 dus identificeren
met de ruimte die we om ons heen lijken te zien12. De ruimtes Rn voor n = 4, 5, 6 en
hoger kunnen we niet voor ons zien, maar wiskundig gezien is dit geen probleem. Een
punt in R4 is simpelweg een collectie van vier getallen, zoals bijvoorbeeld (1, 5, 1

2 , 0) of
(0, π, 0, 3), en we hebben geen illustraties nodig om met zulke punten te kunnen werken.
In feite is in de wiskunde een plaatje nooit voldoende om te gelden als een formeel be-
wijs. Zelfs als we iets over het vlak willen bewijzen moeten we het doen met de abstracte
beschrijving als zijnde R2. Illustraties zijn er alleen voor de intuïtie en om bepaalde ab-
stracte of technische argumenten te verhelderen. Met behulp van Rn kunnen we nu de
definitie geven van een n-dimensionale variëteit: een ruimte die er lokaal uitziet als Rn.
We hebben hierboven dus al voorbeelden gezien voor n = 0, 1, 2. Zoals gezegd is het
vanaf n = 3 lastig, zo niet onmogelijk, om directe illustraties te geven, maar wiskundigen
hebben abstracte technieken ontwikkelt die het toelaten om zulke ruimtes te behandelen

12Aangezien we niet weten hoe het heelal er in zijn geheel uitziet, kan het best zijn dat de ruimte om ons heen
niet zoals R3 is, maar, net zoals de cirkel, de eigenschap heeft dat als we maar genoeg in een bepaalde richting
lopen we weer terugkeren op het punt van vertrek.
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op dezelfde manier als bijvoorbeeld het één- en twee-dimensionale geval. Dit wil niet
zeggen dat alle dimensies even moeilijk zijn, integendeel. Al in de eerder genoemde
voorbeelden is het duidelijk dat we in hogere dimensies meer voorbeelden tegenkomen
dan in lagere.

Voor iemand die de definitie van een variëteit hier voor het eerst ziet zal het waarschijn-
lijk niet direct duidelijk zijn wat het nut ervan is. Waarom zou men variëteiten überhaupt
willen bestuderen? Het antwoord is simpelweg dat variëteiten op heel veel verschillende
plekken tevoorschijn komen, met name in de natuurkunde. Dit geldt voor zowel complexe
theoriën zoals de algemene relativiteitstheorie, als ook voor bijvoorbeeld de klassieke me-
chanica. Denk bijvoorbeeld aan een slinger zoals in een klok aan de muur, wiens ruimte
van mogelijke posities gelijk is aan een cirkel. Een groot gedeelte van de klassieke me-
chanica bestaat uit het bestuderen van dynamische systemen op variëteiten, zoals hoe de
slinger zich gedraagt op de cirkel naarmate de tijd verstrijkt.

Meetkundige structuren

In de vorige sectie zagen we de definitie van een variëteit. Ondanks dat dit op zichzelf
een interessant concept is, vereisen veel toepassingen de aanwezigheid van iets extra’s op
de ruimte zelf. Zoiets extra’s noemen we een meetkundige structuur. Ons doel in deze
sectie is het introduceren van een voorbeeld hiervan, namelijk gegeneraliseerde complexe
structuren. Dit is een tamelijk abstract concept, dus we zullen dit in meerdere stappen
uitleggen.

Metrieken
We beginnen met het beschrijven van een meetkundige structuur die het eenvoudigst is
om te begrijpen en de basis vormt voor de daaropvolgende voorbeelden. Dit voorbeeld is
dat van een metriek. Een metriek op een variëteit is een voorschrift dat ons in staat stelt
om hoeken en afstanden op de variëteit te meten. Preciezer gezegd, een metriek vertelt
ons wat de hoek is tussen twee lijnen die elkaar snijden, en wat de lengte is van een pad
tussen twee gegeven punten. We benadrukken hierbij dat een metriek niet zomaar cadeau
komt met een gegeven variëteit; het hebben van een metriek is extra informatie. Neem
bijvoorbeeld een lijn als in Figuur 1(b). Aangezien in dimensie één er geen concept van
hoek bestaat, is het geven van een metriek op de lijn hetzelfde als aangeven wat de af-
stand is tussen twee gegeven punten. Dit kan op een vrij willekeurige manier, het enige
waaraan voldaan moet zijn is de eigenschap dat als we twee lijnstukken van lengtes a
en b aan elkaar plakken, de totale lengte gelijk is aan de som a + b. Bijvoorbeeld, we
zouden in Figuur 2(a) het lijnstuk tussen de punten 0 en 1 lengte 1 kunnen geven, maar
ook elk ander positief getal naar keuze, en de lengte tussen punten 0 en 1 hoeft niet persé
hetzelfde te zijn als dat tussen de punten 1 en 2. In dimensie twee en hoger geeft een
metriek niet alleen lengtes maar ook hoeken, zoals we bijvoorbeeld ondervinden op het
oppervlak van onze aardbol13. Als we de aarde twee keer zo groot zouden maken dan

13De metriek op het aardoppervlak is vastgelegd doordat de aarde zich in het drie-dimensionale heelal bevindt.
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zouden we daar, in de afwezigheid van een metriek, helemaal niks van merken. Een me-
triek stelt ons echter in staat om te meten hoe “gekromd” een variëteit is, en dus ook hoe
groot de straal van een bol zoals de aarde is. Tenslotte merken we op dat we met een me-
triek niet alleen lengtes van paden in een variëteit kunnen meten, maar ook oppervlaktes
van twee-dimensionale objecten en volumes van drie-dimensionale objecten. We kunnen
zelfs “volumes” definiëren van objecten die een hogere dimensie hebben dan drie, voor-
opgesteld dat die dimensie kleiner of gelijk is aan dat van de variëteit zelf waarin ze leven.
Het is gebruikelijk om al deze concepten aan te duiden met volume, zelfs in dimensies
één en twee waar de terminologie lengte en oppervlakte gebruikelijker is.

Symplectische structuren
Het volgende voorbeeld is wat abstracter dan het voorgaande, maar brengt ons dicht bij
gegeneraliseerde complexe structuren. We zagen hierboven dat een metriek ons in staat
stelt om, behalve het meten van hoeken, ook volumes toe te kennen aan objecten van al-
lerlei dimensies in de variëteit. Neem nu een variëteit die een zekere even dimensie heeft
(2, 4, 6, etcetera). Een symplectische structuur is, per definitie, een voorschrift dat een
getal toekent aan alle even-dimensionale objecten in de variëteit. Dus, in bijvoorbeeld
een 6-dimensionale variëteit kent een symplectische structuur een getal toe aan objecten
van dimensie 2, 4 en 6. We zouden dit getal kunnen opvatten als een soort van “volume”,
alhoewel dit getal best negatief kan zijn en aan de volgende opmerkelijke eigenschap
voldoet. We weten dat het normale volume van een object verandert als we het object
aanpassen; als we een ballon nemen en die opblazen zodat de diameter twee keer zo groot
wordt, dan wordt de oppervlakte van de ballon vier keer zo groot. Echter, voor het “vo-
lume” wat gegeven is door een symplectische structuur eisen we juist dat als we een object
zoals een ballon opblazen (of leeg laten lopen), het volume gelijk blijft. Dit vreemde as-
pect is moeilijk te illustreren, omdat het zich niet uit in ruimtes van dimensie twee, maar
alleen in dimensies vier en hoger. De reden hiervoor kunnen we begrijpen door te kijken
naar een twee-dimensionaal vlak. Een symplectische structuur op het vlak is simpelweg
een voorschrift wat een getal toekent aan regio’s in het vlak, zoals bijvoorbeeld een schijf
dat omschreven wordt door de binnenkant van een cirkel. Voor dit soort regio’s is het
wel het geval dat het volume verandert als we de regio aanpassen. Het verschil met een
schijf en een boloppervlak zoals de ballon is dat eerstgenoemde een rand heeft. Immers,
iemand die op een schijf rondloopt zal uiteindelijk de rand tegenkomen en niet verder
kunnen lopen. Op de bol daarentegen is dit niet het geval, diegene kan voor altijd rond
blijven lopen zonder ooit ergens een obstructie tegen te komen. De precieze conditie die
we dan op een symplectische structuur opleggen is dat het volume van een object zonder
rand niet veranderd, als we dat object op een geleidelijke manier aanpassen (zoals het
opblazen of leeg laten lopen van de ballon). In dimensie twee is dit niet te zien, omdat
het enige twee-dimensionale object zonder rand gelijk is aan de hele ruimte zelf, en deze
kunnen we niet geleidelijk groter of kleiner maken.

Complexe structuren
We hebben hierboven gezien dat een metriek ons zowel hoeken als volumes geeft, en dat
een symplectische structuur ons alleen volumes geeft (al zij het een vreemd soort volume,
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die bovendien alleen even-dimensionale objecten kan meten). Ons voorlaatste voorbeeld
van een meetkundige structuur is iets dat zich alleen focust op het aspect van hoeken.
We bekijken eerst een voorbeeld. Gegeven een metriek op het vlak, dus een notie van
afstanden en hoeken, dan kunnen we tegen iemand die in het vlak staat en in een bepaalde
richting kijkt, de opdracht geven om zichzelf over 90 graden te draaien met de klok mee14.
Een belangrijk aspect van draaien over 90 graden is dat als we dit twee keer achter elkaar
doen, we eindigen in de richting die tegenovergesteld is aan de oorspronkelijke richting,
zie Figuur 5.

Figuur 5

90◦

90◦

Dit leidt ons tot de algemene definitie van een complexe structuur: het is een voorschrift
die aan elk punt en elke richting in de variëteit een nieuwe richting toekent, zodat als
we dit twee keer achter elkaar doen, we eindigen in de richting die tegenovergesteld is
aan de oorspronkelijke. We zouden over deze nieuwe richting kunnen nadenken als een
abstracte “rotatie over 90 graden met de klok mee”, zij het echter dat er niet noodzake-
lijkerwijs een concept van hoeken aanwezig is op de variëteit. Het is duidelijk dat het
onmogelijk is om zoiets te doen in een ruimte van dimensie één, en het blijkt zelfs dat de
ruimte even-dimensionaal moet zijn om mogelijkerwijs een complexe structuur te kun-
nen dragen. Net als met symplectische structuren is de hierboven gegeven definitie niet
volledig; er is nog een technische conditie die we helaas niet eenvoudig kunnen illustre-
ren, zoals met het opblazen van een ballon, en die pas optreedt in dimensies vier en hoger.

Gegeneraliseerde complexe structuren
Eindelijk zijn we aangekomen bij de definitie van een gegeneraliseerde complexe struc-
tuur. Dit is een meetkundige structuur die, in de meest simpele bewoording, een hybride
combinatie is van een symplectische structuur en een complexe structuur. Wat dit precies
betekent is lastig om hier te omschrijven, maar intuïtief gezien betekent het dat voor elk

14Er is hier een subtiliteit waar we verder geen aandacht aan zullen schenken, en dat is hoe zo iemand zou
kunnen weten wat de richting van de klok is. Het precieze antwoord is dat we eerst zelf een draairichting moeten
kiezen die we “met de klok mee” noemen, dit is dus weer een extra meetkundige structuur die we op de variëteit
aanbrengen! Er zijn variëteiten waar op geen enkele consistente manier een klokrichting kan worden gekozen,
het beroemdste voorbeeld hiervan is de zogenaamde Möbiusband.
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punt in de variëteit er richtingen zijn die uitgerust zijn met een symplectische structuur
(dus in die richting kunnen we “volumes” meten), en andere richtingen die uitgerust zijn
met een complexe structuur (in die richting kunnen we dus “over 90◦ draaien”). De hoe-
veelheid richtingen die symplectisch of complex zijn moeten allebei even zijn en bij elkaar
optellen tot de dimensie van de variëteit. Bovendien mag deze verdeling van punt tot punt
variëren, maar alleen in stappen van 4. Dus, als we bijvoorbeeld een twee-dimensionale
variëteit beschouwen, dan moet in elk punt ofwel alle richtingen symplectisch zijn of alle-
maal complex. Immers, we kunnen het getal 2 maar op twee manier schrijven als de som
van twee even getallen, namelijk 2 = 0 + 2 en 2 = 2 + 0. Aangezien we niet van de een
naar de ander kunnen gaan in stappen van vier, is een gegeneraliseerde complexe structuur
op een twee-dimensionale variëteit niets anders dan ofwel een symplectische structuur of
een complexe structuur. Beschouw nu een variëteit van dimensie vier. Aangezien we 4
kunnen schrijven als 4 = 4 + 0 = 0 + 4 = 2 + 2 zijn er nu drie mogelijke combinaties;
ofwel alle 4 de richtingen zijn symplectisch, of alle 4 zijn complex, of 2 zijn symplectisch
en 2 zijn complex. Dit keer kan de verdeling wel veranderen van punt tot punt, want we
kunnen bijvoorbeeld van een punt met 4 symplectische richtingen 4 richtingen omzetten
naar 4 complexe richtingen. In dit geval is de variëteit dus op te splitsen in twee gebie-
den, de één uitgerust met een symplectische- en de andere met een complexe structuur. In
hogere dimensies wordt het aantal mogelijke verdelingen steeds groter. Tenslotte merken
we op dat, net als bij symplectische en complexe structuren, er een technische conditie is
waaraan een gegeneraliseerde complexe structuur aan moet voldoen; we zeggen dat een
gegeneraliseerde complexe structuur integreerbaar moet zijn. We zullen hier niet verder
op ingaan.

Men is vooral geïnteresseerd in gegeneraliseerde complexe meetkunde vanwege de rol
die het speelt in de snaartheorie. Een van de fundamentele aspecten van deze natuurkun-
dige theorie is dat de ruimtetijd die we om ons heen zien een hogere dimensie heeft dan 4.
De extra dimensies die we niet kunnen zien zijn, in zekere zin, opgerold en worden alleen
zichtbaar op extreem kleine schaal. Voor een bepaald onderdeel van de snaartheorie, ge-
naamd supersymmetrie, zijn extra meetkundige structuren nodig op die extra dimensies,
en dit is waar gegeneraliseerde complexe structuren tevoorschijn komen.

Opblazen

Er rest ons nog één laatste term in de titel van deze scriptie die we moeten toelichten,
namelijk het concept van een variëteit opblazen. Dit is een operatie die bepaalde wijzi-
gingen aanbrengt op een gegeven variëteit en aldus een nieuwe variëteit produceert. We
zullen dit proces uitleggen aan de hand van enkele illustraties. Beschouw een punt in het
vlak, en verwijder een kleine schijf die zich om dat punt heen bevindt als in Figuur 6(a).
Het resultaat, dat wil zeggen het vlak minus de inhoud van de schijf, is een variëteit met
rand. Zoals al eerder gezegd betekent dit dat iemand die zich in de ruimte buiten de schijf
bevindt en besluit om in de richting van de schijf te lopen, zoals van punt A naar punt
B in Figuur 6(a), op een gegeven moment niet meer verder kan. Diegene loopt bij het
punt B als het ware tegen een muur aan. De rand is in dit geval gelijk aan een cirkel en
we kunnen nu een nieuwe variëteit zonder rand maken door tegengestelde punten op die
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cirkel met elkaar te identificeren. Ze beschrijven dan per definitie hetzelfde punt in de
nieuwe ruimte. Concreet gezien betekent dit het volgende. Beschouw weer dezelfde per-
soon die van buitenaf naar de schijf toe loopt, zie Figuur 6(b). Ook nu komt diegene aan
bij punt B, wat eerst deel van de rand was, maar nu in de nieuwe ruimte kan diegene wel
doorlopen, hij of zij komt er aan de andere kant van de schijf weer uit en eindigt bij punt
C. In het bijzonder is er nu geen rand meer, want er is geen enkele obstructie om door te
lopen. We benadrukken hier dat het gebied binnen in de schijf geen deel uitmaakt van de
nieuwe ruimte. In zekere zin wordt de persoon die van A naar C loopt op het tussenstuk
“geteleporteerd” van het ene punt op de cirkel naar het andere punt.

Figuur 6 (a) (b)

A

B

A

B

B

C

Deze nieuw verkregen ruimte noemen we het resultaat van het opblazen van het vlak in
het punt. Het is een nieuwe ruimte die, behalve rond het opgeblazen punt, identiek is aan
de oude ruimte. We kunnen hetzelfde ook doen in drie dimensies. Beschouw een punt in
drie dimensies en verwijder de inhoud van een bol die zich om het punt heen bevindt, zie
Figuur 7(a). Het resultaat is een ruimte met rand, waarbij dit keer de rand gelijk is aan
de twee-dimensionale bol. Door tegengestelde punten met elkaar te identificeren krijgen
we weer een ruimte zonder rand. In Figuur 7(a) is iemand weergeven die van punt A naar
punt C loopt.

Behalve punten kunnen we ook andere deelvariëteiten15 opblazen. Beschouw bijvoor-
beeld een lijn in drie dimensies, zoals in Figuur 7(b) is aangegeven met de stippellijn. We
verwijderen nu de inhoud van een cilinder die zich om de lijn heen bevindt en verkrijgen
zo een ruimte met rand gegeven door de cilinder. Als we weer tegengestelde punten op
de cilinder met elkaar identificeren krijgen we een nieuwe ruimte zonder rand. Deze is
dus verkregen uit de oude ruimte door het opblazen van een lijn in de drie-dimensionale
ruimte.

Bovenstaande beschrijft hoe men een variëteit kan opblazen. Strict genomen is dit
echter niet datgene wat in deze scriptie onderzocht wordt. Het proces hierboven wordt
ook wel opblazen over de reële getallen genoemd en in deze scriptie beschouwen we
in plaats daarvan het opblazen over de complexe getallen. Ondanks dat beide operaties

15Een deelvariëteit is een deelverzameling van een variëteit die zelf ook weer een variëteit is.
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daadwerkelijk verschillend zijn, geeft het bovenstaande vrij nauwkeurig het idee weer.

Figuur 7 (a) (b)
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Resultaten in dit proefschrift

We hebben hierboven gezien wat een gegeneraliseerde complexe structuur is en wat het
inhoudt om een variëteit op te blazen. De hoofdvraag van dit proefschrift luidt als volgt:

Stel we hebben een variëteit M uitgerust met een gegeneraliseerde complexe structuur,
en stel dat N een deelvariëteit is van M . Kunnen we dan de variëteit die verkregen wordt
door het opblazen van N in M opnieuw uitrusten met een gegeneraliseerde complexe
structuur?

In het algemeen is de vraag of een gegeven variëteit een gegeneraliseerde complexe struc-
tuur toelaat lastig om te beantwoorden. Er zijn een aantal eigenschappen bekend waaraan
moet zijn voldaan, zoals bijvoorbeeld dat de dimensie van de variëteit even moet zijn,
maar indien een variëteit aan deze bekende lijst van eigenschappen voldoet is het onbe-
kend16 of er daadwerkelijk een gegeneraliseerde complexe structuur op bestaat. Om een
beter beeld te krijgen van welke variëteiten we kunnen uitrusten met een gegeneraliseerde
complexe structuur is het dus belangrijk om veel expliciete voorbeelden te construeren en
het proces van opblazen zou, indien het antwoord op bovenstaande vraag ja is, hier een
belangrijke bijdrage aan kunnen leveren.

In Hoofdstuk 3 van dit proefschrift geven we een antwoord op de bovenstaande vraag
in twee speciale gevallen. Zoals eerder beschreven bestaat een gegeneraliseerde com-
plexe structuur, in elk punt op de variëteit M , uit een mix van symplectische en complexe

16Strikt genomen geldt dit alleen voor dimensies groter dan twee, want in twee dimensies is dit wel volledig
bekend.
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richtingen. We bekijken dan alleen deelvariëteiten N in M waarvoor geldt dat de nor-
male richtingen ofwel geheel symplectisch ofwel geheel complex zijn. Hier verstaan we
onder een normale richting een richting die niet in de richting van de deelvariëteit wijst.
Bijvoorbeeld, als M gegeven is door het vlak en N is gegeven door de x-as, dan is de
y-as een normale richting. In Stelling 3.1.7 bewijzen we dat als alle normale richtingen
complex zijn en als aan een bepaalde technische conditie voldaan is, dat het antwoord op
de bovenstaande vraag ja is. Dus, als we dit soort deelvariëteiten opblazen dan kan het
resultaat weer uitgerust worden met een gegeneraliseerde complexe structuur. Bovendien
is de structuur die we op de opgeblazen ruimte aanbrengen in zekere zin uniek.

Vervolgens bewijzen we in Stelling 3.2.13 dat dit ook het geval is voor deelvariëteiten
waarvan alle normale richtingen symplectisch zijn. In dit geval is er geen technische con-
ditie waaraan voldaan moet zijn, maar de structuur zelf die we op de opgeblazen ruimte
aanbrengen is niet uniek, er zijn wat keuzes mee gemoeid. Nog een verschil met het com-
plexe geval is dat in dit geval de deelvariëteit N ook compact17 moet zijn.

In Hoofdstuk 4 van dit proefschrift behandelen we dezelfde vraag als hierboven voor
zogeheten gegeneraliseerde Kähler structuren. Een gegeneraliseerde Kähler structuur op
een variëteit bestaat uit twee gegeneraliseerde complexe structuren die compatibel met
elkaar zijn. Bijvoorbeeld, op een twee-dimensionaal oppervlak zoals in Figuren 3 en 4
kunnen we eerst een metriek construeren (dus een notie van hoeken, afstanden en volu-
mes), en met behulp daarvan kunnen we zowel volumes meten van twee-dimensionale
regio’s, alsmede aangeven wat 90◦ draaien met de klok mee betekent. Dus, we hebben
zowel een symplectische structuur als ook een complexe structuur, en ze zijn met elkaar
compatibel omdat ze allebei bepaald worden door dezelfde metriek.

Stel nu dat we een gegeneraliseerde Kähler structuur hebben op de variëteit M , met
J1 enJ2 de twee bijbehorende gegeneraliseerde complexe structuren. LaatN een deelva-
riëteit zijn waarvan de normale richtingen allemaal complex zijn voorJ1, en symplectisch
voor J2. Wegens bovenstaande behaalde resultaten weten we dan dat M opgeblazen kan
worden in N en dat we het resultaat kunnen uitrusten met nieuwe gegeneraliseerde com-
plexe structuren (er is nog wel die technische conditie voor J1 waar ook aan voldaan moet
zijn), die we weer met J1 en J2 noteren. We kunnen ons dan afvragen of die twee nieuwe
structuren met elkaar compatibel zijn en zo een nieuwe gegeneraliseerde Kähler structuur
vormen. Dit is niet automatisch en het blijkt lastiger dan op het eerste gezicht lijkt om
dit te bewerkstelligen. In Stelling 4.3.2 geven we enkele meetkundige voorwaarden waar
de deelvariëteit N aan moet voldoen, die garanderen dat de opgeblazen ruimte inderdaad
weer een gegeneraliseerde Kähler structuur heeft. Met behulp daarvan construeren we
in Sectie 4.4 enkele nieuwe voorbeelden van variëteiten met een gegeneraliseerde Kähler
structuur.

17Compactheid is, in zekere zin, een synoniem voor begrensdheid. Zo is bijvoorbeeld de cirkel (Figuur 1(c))
compact, maar de (oneindige) lijn (Figuur 1(b)) niet.
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