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Introduction

F our-manifolds live in a strange world. Very much like three-manifolds, their dimension is high
enough so that the classical tools used to study curves and surfaces fall short. On the other hand,
in the smooth realm, their dimension is too low, and there is not “enough room” to apply advanced

techniques of techniques of differential topology to them. Historically, this meant that for the greater
part of the 20th century, there was little knowledge of four-manifolds, relative to their higher- and lower-
dimensional counterparts.

In the early 80’s, Freedman proved that a fundamental tool for studying manifolds of dimension five
and greater could still be applied for four-manifolds, but ignoring the smooth structure. With these
ideas, he proved a complete classification of simply-connected topological four-manifolds in terms of their
intersection form.

Intuitively, the intersection form is a bilinear form over the integers which describes the intersection
numbers of embedded surfaces of a four-manifold. Freedman [Fre82] proved that every nondegenerate,
symmetric bilinear form over the integers is the intersection form of exactly one or two simply-connected
topological manifolds. In the case where an intersection form corresponds to two manifolds, at least one
of them is non-smoothable. This tells us that in order to classify simply-connected four-manifolds up to
homeomorphism, it suffices to understand all nondegenerate symmetric bilinear forms; and fortunately
we have a partial classification of all of them, due to Serre. It also tells us that the is a huge amount of
topological four-manifolds which do not admit any smooth structure.

Does this classification hold up in the smooth realm?
The answer is an astounding no. By examining the moduli space of anti-self-dual SU(2) connections,

Donaldson [Don83] showed that all the definite intersection forms of smooth manifolds are diagonal. This
shows that in the realm of smooth manifolds, the power of the intersection form is severely limited. This
study of the anti-self-dual connections on manifolds is known as Donaldson theory, and throughout the
80s it was used as a powerful tool for studying smooth four-manifolds.

In the late 80’s, Witten [Wit88] showed that Donaldson theory could be understood from the point of
view of the high-energy limit of a (mysterious) supersymmetric quantum field theory. This proved useful
when in the early 90’s, Seiberg and Witten [SW94a; SW94b] found a way to obtain its low-energy limit.
For mathematicians, this returned a set of equations defined for spinors on manifolds, and the study of
their moduli space, known as Seiberg-Witten theory [Wit94], turned out to be another excellent tool for
the study of four-manifolds.

In this work, we present a proof of Donaldson’s theorem on the intersection form using the Seiberg-
Witten moduli space, which is attributed to Kronheimer and Elkies. Our intention is for this work to be
a reasonable introduction to both Seiberg-Witten theory and the algebraic topology of the intersection
form, aimed at masters’ students.

This work is organized as follows. In Chapter 1, we present most of the preliminary notions in algebraic
topology, gauge theory, differential geometry, and analysis that is needed to discuss the construction of the
Seiberg-Wittenmoduli space, and how it determines the intersection form. In Chapter 2, we introduce the
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iv Introduction

notion of Spin and Spinc structures, which are the fundamental objects of the Seiberg-Witten equations.
We try to be thorough and for the most part, we don’t limit ourselves to the case of dimension four. This
is to show that many of the properties of spinors on four-manifolds are general ideas that are not specific
to dimension four. In Chapter 3 we discuss the construction of the Seiberg-Witten moduli space, and
show that it is generically smooth, finite-dimensional, oriented, and compact. This is the most technically
demanding chapter, and it requires some results from the analysis of PDE and K-theory that we only state
or lightly sketch. Finally, in Chapter 4, we introduce the intersection form, study some of its properties.
We close the work with the proof of Donaldson’s theorem, using Seiberg-Witten theory.

Of course, due to time and space constraints, there is a lot that had to be left out. Seiberg-Witten
theory is broad and intersects with many areas of mathematics. Some great references for Seiberg-witten
theory are [Don96; EF97; Kla13; Mar99; Nic00; Nab05; Sal99; Moo96; Mor96]. Our main references
are [Nic00; Sal99; Mor96; Sco05].
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CHAPTER1
Preliminaries

I n this chapter we review the basic language of algebraic topology and differential geometry that is
needed to discuss Seiberg-Witten theory and the Donaldson theorem. In the differential realm, will
assume that the reader is familiar with basic notions and tools of smooth manifolds, de Rham coho-

mology, vector bundles and some Riemannian geometry. In algebraic topology, we will assume familiarity
with singular and cellular homology.

1.1 Gauge theory

Gauge theory is the heart of Seiberg-Witten theory1. The name gauge theory comes from physics, where
gauge fields are a particular class of fields that have many degrees of freedom. Mathematically, the study of
gauge fields is done in terms of principal bundles and other structures associated to them. In this section,
we will quickly review the basic notions of principal bundles, connections and curvature, and “matter fields”.
Great comprehensive references are [Nab11a], [Nab11b] and [KN96].

1.1.1 Principal bundles, connections and curvature
The basic objects of gauge theory are principal bundles.

Definition 1.1.1 (Principal𝐺-bundle).
Let𝑀 be a smooth manifold and 𝐺 be a Lie group. A principal𝐺-bundle over𝑀 is a smooth manifold
𝑃 and a smooth surjective map 𝜋 ∶ 𝑃 → 𝑀, along with a right action of 𝐺 on𝑀, satisfying:

1. The action of 𝐺 preserves the fibers: 𝜋(𝑝 ⋅ 𝑔) = 𝜋(𝑝) for all 𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺.

2. 𝑃 is a fiber bundle with typical fiber 𝐺, and the trivialization can be chosen 𝐺-equivariant: For
every 𝑥 ∈ 𝑀 there is a neighborhood𝑈 of 𝑥 and a diffeomorphismΨ ∶ 𝜋−1(𝑈) → 𝑈×𝐺 satisfying
pr1 ∘ Ψ = 𝜋 and

Ψ(𝑝 ⋅ 𝑔) = Ψ(𝑝) ⋅ 𝑔,

1And Donaldson theory too.

1



2 Preliminaries

where the action of 𝐺 on 𝑈 × 𝐺 is right multiplication on the second component.

We write this as 𝐺 ↪ 𝑃 𝜋→ 𝑀.

The main example that we will work with is the frame bundle of a vector bundle.

Example 1.1.2 (Frame bundles).
Let 𝐸 → 𝑀 be a 𝕂-vector bundle of rank 𝑘. For each 𝑥 ∈ 𝑀, let Fr𝑥(𝐸) be the set of frames of 𝐸𝑥,
i.e. the set of bases of 𝐸𝑥. The union of all such Fr𝑥(𝐸) gives us the frame bundle

Fr(𝐸) = ⨆
𝑥∈𝑀

Fr𝑥(𝐸).

There is a natural GL(𝑘, 𝕂) action on the fibers: if 𝑒 = {𝑒𝑖} is a frame of 𝐸𝑥, then for any 𝐴 ∈
GL(𝑘, 𝕂) there is another frame 𝑒′ = {𝑒′𝑖} given by

𝑒′𝑖 = ∑
𝑗
𝐴𝑗,𝑖𝑒𝑗

. This is a free action which is transitive on the fibers. A trivialization of 𝐸 determines both a smooth
structure on Fr(𝐸) and a trivialization of it as a principal GL(𝑘, 𝕂)-bundle.

If 𝐸 is a real Riemannian vector bundle, this process can be repeated to obtain the orthogonal
frame bundle O(𝐸), which is a principal O(𝑘)-bundle over 𝑀.

Similarly, if 𝐸 is a complex Hermitian bundle, we can obtain the unitary frame bundle U(𝐸),
which is a principal U(𝑘)-bundle over 𝑀.

An important fact of principal bundles is that local trivializations are uniquely determined by local sections,
and vice-versa. Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal bundle and {𝑈𝑖}𝑖∈𝐼 a trivializing cover with trivializations
Ψ𝑖 ∶ 𝜋−1𝑈𝑖 → 𝑈𝑖 × 𝐺. For each 𝑖, there is an associated local section 𝑠𝑖 ∶ 𝑈𝑖 → 𝜋−1(𝑈𝑖) given as 𝑠𝑖(𝑥) =
Ψ−1
𝑖 (𝑥, 𝑒), where 𝑒 ∈ 𝐺 is the identity. Conversely, every local section 𝑠 ∶ 𝑈 → 𝜋−1(𝑈) determines a

trivialization Ψ ∶ 𝜋−1(𝑈) → 𝑈 × 𝐺, precisely in such a way that Ψ(𝑠(𝑥)) = (𝑥, 𝑒) for all 𝑥 ∈ 𝑈. In the
physics literature, the sections 𝑠𝑖 are called local gauges.

Given the trivializing cover {𝑈𝑖}𝑖∈𝐼 with trivializationsΨ𝑖, there are smooth functions 𝑔𝑖𝑗 ∶ 𝑈𝑖∩𝑈𝑗 → 𝐺,
called transition functions or gauge transitions such that

(Ψ𝑗 ∘ Ψ−1
𝑖 )(𝑥, ℎ) = (𝑥, ℎ ⋅ 𝑔𝑗𝑖(𝑥))

for all (𝑥, ℎ) ∈ 𝑈𝑖 ∩ 𝑈𝑗 × 𝐺. These gauge transitions are related to the local gauges by

𝑠𝑗(𝑥) = 𝑠𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥).

Definition 1.1.3 (Connection on a principal bundle).
Let 𝐺 be a Lie group with Lie algebra 𝔤. A connection on a principal bundle 𝐺 ↪ 𝑃 𝜋→ 𝑀 is a Lie
algebra-valued 1-form 𝜔 ∈ Ω1(𝑃, 𝔤) satisfying the following:

1. 𝜔 is Ad𝑔-equivariant: for all 𝑔 ∈ 𝐺, let 𝑅𝑔 ∶ 𝑃 → 𝑃 be the action 𝑅𝑔(𝑝) = 𝑝 ⋅ 𝑔. Then

𝑅∗𝑔𝜔 = Ad𝑔−1 ∘𝜔.
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2. For all 𝑝 ∈ 𝑃, consider the infinitesimal action 𝑎𝑝 ∶ 𝔤 → 𝑇𝑝𝑃 given as 𝑎𝑝(𝜉) =
d
d𝑡
||𝑡=0 𝑝⋅exp(𝑡𝜉).

Then 𝜔 is a left inverse of this action:

𝜔𝑝(𝑎𝑝(𝜉)) = 𝜉

for all 𝜉 ∈ 𝔤 and 𝑝 ∈ 𝑃.

A connection 𝜔 ∈ Ω1(𝑃, 𝔤) determines a splitting of the tangent space 𝑇𝑝𝑃 at every point 𝑝, given by

𝑇𝑝𝑃 = ker𝑇𝑝𝜋⊕ ker𝜔𝑝.

The subspace ker𝜔𝑝 ⊂ 𝑇𝑝𝑃 is called the horizontal space determined by 𝜔. This decomposition is compat-
ible with the group action, in the sense that for all 𝑔 ∈ 𝐺, (𝑅𝑔)∗ ker𝜔𝑝 = ker𝜔𝑝⋅𝑔. Every vector 𝑋 ∈ 𝑇𝑝𝑃
can be written as 𝑋𝑉 + 𝑋𝐻 , and we say that 𝑋𝑉 ∈ ker𝑇𝑝𝜋 is the vertical component and 𝑋𝐻 ∈ ker𝜔𝑝 is
the horizontal component.

Given a trivializing cover {𝑈𝑖}𝑖∈𝐼 with local gauges 𝑠𝑖 ∶ 𝑈𝑗 → 𝑃, we call the pullbacks 𝒜𝑖 = 𝑠∗𝑖𝜔 ∈
Ω1(𝑈𝑖, 𝔤) the local gauge potentials associated to 𝜔.

Proposition 1.1.4 (Transformation of local gauge potentials).
Let 𝜔 be a connection on the principal bundle 𝐺 ↪ 𝑃 𝜋→ 𝑀, {𝑈𝑖}𝑖∈𝐼 a trivializing cover with local gauges
𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, and local gauge potentials 𝒜𝑖 = 𝑠∗𝑖𝑈𝑖. Then in the intersections 𝑈𝑖 ∩ 𝑈𝑗, the local potentials
are related by

𝒜𝑗 = Ad𝑔−1𝑖𝑗 ∘𝒜𝑖 + 𝑔∗𝑖𝑗Θ,

where 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺 are the transition functions and Θ ∈ Ω1(𝐺, 𝔤) is the Maurer-Cartan form,
given by the differential of left multiplication: Θ𝑔 = 𝑇𝑔𝐿−1𝑔 .

In particular, if 𝐺 is a matrix Lie group, then the transformation law becomes

𝒜𝑗 = 𝑔−1𝑖𝑗 𝒜𝑖𝑔𝑖𝑗 + 𝑔−1𝑖𝑗 d𝑔𝑖𝑗 .

Conversely, given a collection of 1-forms defined locally on𝑀 which satisfy these transformation law, there
is a unique way to “glue” them to obtain a connection on 𝑃:

Proposition 1.1.5 (Global connection from local potentials).
Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal bundle, and {𝑈𝑖}𝑖∈𝐼 a trivializing cover with local gauges 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃.
Suppose that there is a collection of 𝔤-valued 1-forms𝒜𝑖 ∈ Ω1(𝑈𝑖, 𝔤) satisfying the transformation law

𝒜𝑗 = Ad𝑔−1𝑖𝑗 ∘𝒜𝑖 + 𝑔∗𝑖𝑗Θ.

Then there exists a unique connection 𝜔 ∈ Ω1(𝑃, 𝔤) such that𝒜𝑖 = 𝑠∗𝑖𝜔.

With a connection𝜔 ∈ Ω1(𝑃, 𝔤), we have an associated exterior covariantderivative d𝜔 ∶ Ω𝑘(𝑃, 𝔤) →
Ω𝑘+1(𝑃, 𝔤) given as the horizontal part of the de Rham differential: for any 𝛼 ∈ Ω𝑘(𝑃, 𝔤), define

d𝜔𝛼(𝑋0, … , 𝑋𝑘) = d𝛼 (𝑋𝐻
0 , … , 𝑋𝐻

𝑘 ).
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Definition 1.1.6 (Curvature of a connection).
Let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection. The curvature of 𝜔 is the 2-formΩ ∈ Ω2(𝑃, 𝔤) given by

Ω ∶= d𝜔𝜔.

This definition is not very useful in practice, and we can find an alternative expression for Ω. For this we
will need to define the bracket2 of valued forms. For every 𝛼 ∈ Ω𝑘(𝑃, 𝔤) and 𝛽 ∈ Ω𝑙(𝑃, 𝔤), choosing a
basis {𝑒𝑎} of 𝔤 we can write 𝛼 = ∑𝑎 𝛼𝑎𝑒𝑎 and 𝛽 = ∑𝑏 𝛽𝑏𝑒𝑏, where 𝛼𝑎 ∈ Ω𝑘(𝑃) and 𝛽𝑏 ∈ Ω𝑙(𝑃). We
define [𝛼, 𝛽] ∈ Ω𝑘+𝑙(𝑃, 𝔤) as

[𝛼, 𝛽] = ∑
𝑎,𝑏

𝛼𝑎 ∧ 𝛽𝑏[𝑒𝑎, 𝑒𝑏].

It can be shown that this is a good definition, independent from the chosen basis of 𝔤. With this bracket
of valued forms we can show:

Proposition 1.1.7 (Cartan structure equation).
Let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection andΩ its curvature. Then

Ω = d𝜔 + 1
2[𝜔, 𝜔].

Given connection𝜔with curvatureΩ and a trivializing cover {𝑈𝑖}𝑖∈𝐼 with associated sections 𝑠𝑖 ∶ 𝑈𝑖 →
𝑃, we define the local field strengths ℱ𝑖 ∶= 𝑠∗𝑖Ω ∈ Ω2(𝑈𝑖, 𝔤). Their behavior in the overlaps is much simpler
than for the local potentials.

Proposition 1.1.8 (Transformation of local field strengths).
Let 𝜔 ∈ Ω1(𝑃, 𝔤) be a connection with curvature Ω and a trivializing cover {𝑈𝑖}𝑖∈𝐼 with associated
sections 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃. The local field strengths ℱ𝑖 ∶= 𝑠∗𝑖Ω ∈ Ω2(𝑈𝑖, 𝔤) are related in the overlaps 𝑈𝑖 ∩ 𝑈𝑗
by the transformation law

ℱ𝑗 = Ad𝑔−1𝑖𝑗 ∘ℱ𝑖,

where 𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → 𝐺 are the transition functions of the trivialization.

1.1.2 Associated bundles and matter fields

Let 𝐺 ↪ 𝑃 𝜋→ 𝑀 be a principal bundle, 𝑉 a vector space and 𝜌 ∶ 𝐺 → GL(𝑉) a representation. The
associated bundle to 𝑃 and the representation 𝜌 is the quotient

𝑃 ×𝜌 𝑉 = 𝑃 × 𝑉⧸𝐺,

where the action of 𝐺 on 𝑃 × 𝑉 is given by

(𝑝, 𝑣) ⋅ 𝑔 = (𝑝 ⋅ 𝑔, 𝜌(𝑔−1)(𝑣)).

The set 𝑃 ×𝜌 𝑉 can be endowed with a smooth structure such that the map 𝜋𝜌 ∶ 𝑃 ×𝜌 𝑉 → 𝑀 given as
𝜋𝜌[𝑝, 𝑣] = 𝜋(𝑝) is a surjective submersion. We denote elements of 𝑃 ×𝜌 𝑉 as [𝑝, 𝑣] with 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉 .

2Also called a twisted wedge product, which is probably a better name.
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Consider a cover {𝑈𝑖}𝑖∈𝐼 of 𝑀 which trivializes 𝑃, with local gauges 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃. These determine a
trivialization of 𝑃 ×𝜌 𝑉 as

𝑈𝑖 × 𝑉 → 𝜋−1𝜌 (𝑈𝑖)
(𝑥, 𝑣) ↦ [𝑠𝑖(𝑥), 𝑣].

This exhibits 𝑃 ×𝜌 𝑉 as a vector bundle over 𝑀.
Consider a section Ψ ∶ 𝑀 → 𝑃 ×𝜌 𝑉 . Then we can write Ψ(𝑥) = [𝑝, 𝜓(𝑝)], where 𝜓 ∶ 𝑃 → 𝑉 and

𝜋(𝑝) = 𝑥. For this to be well-defined and consistent, 𝜓 must be 𝜌-equivariant:

𝜓(𝑝 ⋅ 𝑔) = 𝜌(𝑔)−1𝜓(𝑝).

This determines 𝜓 uniquely, and conversely, Ψ is uniquely determined by 𝜓. In the physics literature, the
sections of 𝑃 ×𝜌 𝑉 are called matter fields.

Given a connection 𝜔 on 𝑃, we obtain a connection ∇𝜔 ∶ Γ(𝑃 ×𝜌 𝑉) ×𝔛(𝑀) → Γ(𝑃 ×𝜌 𝑉) as follows:
For a sectionΨ ∶ 𝑀 → 𝑃×𝜌𝑉 , which can be written asΨ(𝑝) = [𝑝, 𝜓(𝑝)], and a vector field 𝑋 ∈ 𝔛(𝑀),we
define

(∇𝜔
𝑋)Ψ(𝑥) = [𝑝, (d𝜓)𝑝( ̃𝑋) + 𝑇𝑒𝜌(𝜔𝑝( ̃𝑋))𝜓(𝑝)],

where ̃𝑋 ∈ 𝑇𝑝𝑃 is a lift of 𝑋 , i.e. 𝑇𝑝𝜋( ̃𝑋) = 𝑋 . We call ∇𝜔 the covariant derivative associated to 𝜔. If
{𝑈𝑖}𝑖∈𝐼 is a cover that trivializes 𝑃 with local gauges 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, we obtain local representations of Ψ in
terms of maps 𝜓𝑖 ∶ 𝑈𝑖 → 𝑉 , such that Ψ(𝑥) = [𝑠𝑖(𝑥), 𝜓𝑖(𝑥)]. Then the covariant derivative has the local
expression

(∇𝜔
𝑋)Ψ(𝑥) = [𝑠𝑖(𝑥), (d𝜓𝑖)𝑥(𝑋) + 𝑇𝑒𝜌(𝒜𝑖,𝑥(𝑋))𝜓𝑖(𝑥)].

Conversely, given a 𝕂-vector bundle 𝐸 → 𝑀 of rank 𝑘 and a connection ∇ on it, we can obtain a
connection 𝜔∇ on the frame bundle Fr(𝐸). Let 𝑒1, … , 𝑒𝑘 ∶ 𝑈 → 𝐸 be a local frame of 𝑀. For every fixed
𝑒𝑖, we can think of ∇𝑒𝑖 as a map ∇𝑒𝑖 ∶ 𝔛 → Γ(𝐸). We write

∇𝑒𝑖 = ∑
𝑗
Γ𝑗𝑖 𝑒𝑖,

where Γ𝑗𝑖 ∶ 𝔛(𝑀) → ℂ∞(𝑀,𝕂) are 𝐶∞-linear. We collect them together as matrices to obtain 𝔤𝔩(𝑘, 𝕂)-
valued 1-forms Γ ∈ Ω1(𝑈, 𝔤𝔩(𝑘, 𝕂)). It is straightforward to show that under a change of frame, the
forms Γ transform according to the rule of Proposition 1.1.5, and therefore glue to a global connection
𝜔∇ ∈ Ω1(Fr(𝐸), 𝔤𝔩(𝑘, 𝕂)).

1.1.3 The space of connections

Let 𝜔2, 𝜔2 ∈ Ω1(𝑃, 𝔤) be connections on a principal bundle 𝐺 ↪ 𝑃 𝜋→ 𝑀, and write Δ = 𝜔2 − 𝜔1. This
difference satisfies the following properties:

1. Δ is horizontal : If 𝑇𝑝𝜋(𝑋) = 0, then there is a 𝜉 ∈ 𝔤 satisfying 𝑎𝑝(𝜉) = 𝑋 . Therefore

Δ𝑝(𝑋) = 𝜔2,𝑝(𝑎𝑝(𝜉)) − 𝜔1,𝑝(𝑎𝑝(𝜉)) = 𝜉 − 𝜉 = 0.

2. Δ is Ad-equivariant:
𝑅∗𝑔Δ = Ad𝑔−1 ∘Δ.



6 Preliminaries

We say that Δ is an Ad-tensorial or basic3 form, and we denote the space of all such basic 1-forms by
Ω1

Ad(𝑃, 𝔤).
Conversely, given a connection 𝜔 and an Ad-tensorial 1-form Δ ∈ Ω1

Ad(𝑃, 𝔤), necessarily 𝜔+Δ is also
a connection. We conclude:

Proposition 1.1.9 (Connections form an affine space).
Let Conn(𝑃) ⊂ Ω1(𝑃, 𝔤) be the set of connections of the principal bundle 𝐺 ↪ 𝑃 → 𝑀. Then Conn(𝑃)
is an affine space modelled on the vector space of Ad-tensorial 1-formsΩ1

Ad(𝑃, 𝔤).

Let’s specialize to the case where𝐺 = U(1), so 𝔤 = 𝑖ℝ. Since U(1) is abelian, the adjoint representation
is the trivial one, and thus Ad-equivariance is the same as invariance under the action of U(1). Let 𝜔,𝜔′ ∈
Conn(𝑃) and let Δ = 𝜔′ −𝜔. Consider a trivializing cover {𝑈𝑖} of 𝑃 with local gauges 𝑠𝑖 ∶ 𝑈𝑖 → 𝑃, which
determines local potentials 𝒜𝑖 = 𝑠∗𝑖𝜔 and 𝒜′ = 𝑠∗𝑖𝜔′. Writing Δ𝑖 = 𝑠∗𝑖Δ ∈ Ω1(𝑈𝑖, 𝑖ℝ) for the difference
of the local gauge potentials, we find that in the overlaps,

Δ𝑗 = 𝒜′
𝑗 −𝒜𝑗 = 𝒜′

𝑖 + 𝑔−1𝑖𝑗 d𝑔𝑖𝑗 −𝒜′
𝑖 − 𝑔−1𝑖𝑗 d𝑔𝑖𝑗 = 𝒜′

𝑖 −𝒜𝑖 = Δ𝑖.

This tells us that the collection {Δ𝑖}𝑖∈𝐼 glues to a one-form on the base space 𝛿 ∈ Ω1(𝑀, 𝑖ℝ), which satisfies
𝜋∗𝛿 = Δ. Conversely, given a one-form 𝛿, the pullback Δ = 𝜋∗𝛿 is a U(1)-invariant 1-form. With
this, we conclude that Ω1

Ad(𝑃, 𝑖ℝ) ≅ Ω1(𝑀, 𝑖ℝ), and we often abuse the notation and do not distinguish
between either.

1.2 Algebraic topology

The main tools we will need from algebraic topology are Stiefel-Whitney classes, Chern classes, and of
course, the intersection form of four-manifolds. In this section we will quickly review the background that
is necessary for stating and proving Donaldson’s theorem on the intersection form. For this, we will have
to use cohomology with coefficients in an abelian group (specifically, ℤ2 and ℤ). The golden reference for
this is Hatcher’s Algebraic Topology4[Hat02]. We will also follow [Bre97].

1.2.1 Cohomology and cups
Let𝐺 be an abelian group5, and let (𝐶•, 𝜕) be a chain complex of free abelian groups. There is a canonically
defined cochain complex (relative to 𝐺) (𝐶•

𝐺 , 𝛿) given as

𝐶𝑘
𝐺 ∶= Hom(𝐶𝑘, 𝐺)

with coboundary operators
𝛿 ∶ 𝐶𝑘

𝐺 → 𝐶𝑘+1
𝐺 ,

given as 𝛿(𝜑) = 𝜕∗𝜑 = 𝜑 ∘ 𝜕. It is straightforward to show that (𝐶•
𝐺 , 𝛿) is a complex as well, and therefore

we can define the cohomology groups

𝐻𝑘(𝐶, 𝐺) ∶= ker(𝛿 ∶ 𝐶𝑘 → 𝐶𝑘+1)⧸im(𝛿 ∶ 𝐶𝑘−1 → 𝐶𝑘).
3This is a general definition. Let 𝑉 a vector space and 𝜌 ∶ 𝐺 → GL(𝑉) a representation. We say that a 𝑉-valued form

𝛼 ∈ Ω𝑘(𝑃,𝑉) is basic or 𝜌-tensorial if 𝛼 is horizontal : 𝛼𝑝(𝑋1, … ,𝑋𝑘) = 0 if 𝑇𝑝𝜋(𝑋𝑗) = 0 for one of the 𝑋𝑗 ; and if 𝛼 is
𝜌-equivariant: 𝑅∗𝑔𝛼 = 𝜌(𝑔−1) ∘ 𝛼.

4It’s grown on me, you know? I appreciate it now after years of disliking it.
5In practice we will only use 𝐺 = ℤ or ℤ2.
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How do we understand elements of𝐻𝑘(𝐶, 𝐺)? Wemight be temped to think that𝐻𝑘(𝐶, 𝐺) is precisely
Hom(𝐻𝑘(𝐶), 𝐺), but this is not exactly so. However, we can still interpret an element ̂𝜑 ∈ 𝐻𝑘(𝐶, 𝐺) as a
morphism 𝐻𝑘(𝐶) → 𝐺 as follows: Let 𝜑 ∈ ker 𝛿 ⊂ 𝐶𝑘 be a representative of ̂𝜑. This means that for all
𝛼 ∈ 𝐶𝑘+1,

(𝛿𝜑)(𝛼) = 𝜑(𝜕𝛼) = 0,
and thus 𝜑 vanishes on im 𝜕 ⊆ 𝐶𝑘. Therefore 𝜑, when restricted to ker 𝜕 ⊆ 𝐶𝑘, descends to a morphism
in the quotient

𝜑 ∶ 𝐻𝑘 → 𝐺.
The morphism 𝜑 is independent of the representative of ̂𝜑, precisely since we restrict to ker 𝜕 before de-
scending to the quotient. Specifically, let 𝜓 ∈ 𝐶𝑘−1. Then

𝜑|ker𝜕 = (𝜑 + 𝛿𝜓)|ker𝜕,

and so 𝜑 = 𝜑 + 𝛿𝜓. In conclusion, we have a well-defined morphism

𝒽 ∶ 𝐻𝑘(𝐶, 𝐺) → Hom(𝐻𝑘(𝐶), 𝐺)
̂𝜑 ↦ 𝒽(𝜑) = 𝜑.

If 𝒽 were an isomorphism, all would be great. As we will see, 𝒽 is surjective, but alas, it is generally not
injective6.

Asking about the surjectivity of 𝒽 is asking if every homomorphism 𝜓 ∶ 𝐻𝑘(𝐶) → 𝐺 is given as 𝜑 for
some 𝜑 ∶ 𝐶𝑘 → 𝐺 which satisfies that 𝛿𝜑 = 0. We almost have such a homomorphism. Given 𝜓, we can
find a homomorphism 𝜓0 ∶ ker 𝜕 → 𝐺, simply by pre-composing 𝜓 with the quotient ker 𝜕 → 𝐻𝑘(𝐶):

𝜓0(𝜎) = 𝜓(�̂�),

where �̂� ∈ 𝐻𝑘(𝐶) is the class of 𝜎. Naturally, 𝜓0 vanishes on im 𝜕. However, it is only defined in ker 𝜕.
Can we extend it to the entirety of 𝐶𝑘? The answer is yes since 𝐶𝑘 (and, consequently, ker 𝜕 and im 𝜕) is
free: The sequence

0 ker 𝜕 𝐶𝑘 im 𝜕 0𝜕

is a short exact sequence of free abelian groups, and therefore it splits7. This means that we can find a
retraction 𝑟 ∶ 𝐶𝑘 → ker 𝜕 such that 𝑟(𝜎) = 𝜎 for all 𝜎 ∈ ker 𝜕. Thus, we can extend 𝜓0 to 𝜑 ∶ 𝐶𝑘 → 𝐺 as

𝜑 = 𝜓0 ∘ 𝑟.

By construction, we have that 𝜑 = 𝜓, and so we have shown that 𝒽 is surjective. The following example
shows that 𝒽 is not an isomorphism.

Example 1.2.1 (Non-isomorphism of𝒽).
Consider the following complex of free abelian groups:

0 ℤ ℤ 0.𝑛

6Like my mom says, de eso tan bueno no dan tanto.
7Mini-proof: Suppose 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a short exact sequence of free abelian groups, with 𝑓 ∶ 𝐴 → 𝐵. Let ℬ ⊂ 𝐵

be a set of generators of 𝐵, and define 𝑟 ∶ 𝐵 → 𝐴 as follows: for all 𝛽 ∈ ℬ, define 𝑟(𝛽) = 𝑓−1(𝛽) if 𝛽 ∈ im(𝑓), and 𝑟(𝛽) = 0
otherwise. Extend 𝑟 by “linearity” to all of 𝐵. By injectivity of 𝑓, this map is well-defined, and it satisfies 𝑟 ∘ 𝑓 = id𝐴.
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Here, 𝑛 denotes multiplication by 𝑛. The homology of this complex is

𝐻0 = ℤ𝑛,
𝐻1 = 0.

When we take the dual with respect to ℤ, we obtain the cochain complex

0 ℤ ℤ 0.𝑛

This follows from the fact that a homomorphism 𝑓 ∶ ℤ → ℤ is uniquely determined by the value
𝑓(1). The cohomology of the cochain complex is

𝐻0 = 0,
𝐻1 = ℤ𝑛.

Since the only homomorphism ℤ𝑛 → ℤ is the trivial one, we indeed have that 𝐻0 ≅ Hom(𝐻0, ℤ).
However, certainly ℤ𝑚 = 𝐻1 ≇ Hom(𝐻1, ℤ) = 0. Therefore 𝒽 ∶ 𝐻𝑘(𝐶, 𝐺) → Hom(𝐻𝑘(𝐶), 𝐺) is,
in general, not an isomorphism.

Even though 𝒽 is not an isomorphism, we can still use it to define a way in which a cohomology class
can be evaluated on homology classes:

Definition 1.2.2 (Pairing of cohomology and homology).
We define a pairing of cohomology and homology ⟨•, •⟩ ∶ 𝐻𝑘(𝐶, 𝐺) ⊗ 𝐻𝑘(𝐶) → 𝐺 as

⟨𝜑, 𝜎⟩ = 𝒽(𝜑)(𝜎).

Now that we know that 𝒽 is not injective, it is but natural to ask oneself, “what is its kernel”? The
answer is given to us by the Universal Coefficients Theorem, but first we must define8 the (first) Ext group
associated to an abelian group.

Definition 1.2.3 (Ext(𝐻, 𝐺)).
Let 𝐻 be an abelian group. Take a set of generators {ℎ𝛼}𝛼∈Λ of 𝐻 and let 𝐹0 be the free abelian group on
{ℎ𝛼}𝛼∈Λ. We have a natural morphism 𝑓0 ∶ 𝐹0 → 𝐻, which sends each generator of 𝐹0 to its counterpart
in 𝐻. Let 𝐹1 = ker𝑓0, so that we have a short exact sequence

0 𝐹1 𝐹0 𝐻 0,𝜄 𝑓0

which we call a free resolution of𝐻. Let 𝐺 be an abelian group, and apply the functor Hom(−, 𝐺) to this
sequence to obtain a sequence

0 Hom(𝐹1, 𝐺) Hom(𝐹0, 𝐺) Hom(𝐻, 𝐺) 0𝜄∗ 𝑓∗0 ,

8This definition we present is specialized to the case of free abelian groups and differs a bit from the standard, more general
definition.
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which is not necessarily exact. The (first) Ext group is defined as the cohomology in degree 1 of this sequence:

Ext(𝐻, 𝐺) = coker 𝜄∗.

It can be shown that Ext(𝐻, 𝐺) is independent of the free resolution of 𝐻. Furthermore, it can be shown
that Ext(𝐻, 𝐺) satisfies the following properties [see Hat02, p. 195]:

• Ext(𝐻 ⊕ 𝐻′, 𝐺) ≅ Ext(𝐻, 𝐺) ⊕ Ext(𝐻′, 𝐺),

• Ext(𝐻, 𝐺) = 0 if 𝐻 is free,

• Ext(ℤ𝑛, 𝐺) ≅ 𝐺/𝑛𝐺.

With these results, we see that if 𝐻 is finitely generated, then by the fundamental theorem of finitely
generated abelian groups, we can write

𝐻 ≅ ℤ𝑘 ⊕ℤ𝑛1 ⊕⋯⊕ℤ𝑛𝑟
And therefore,

Ext(𝐻, ℤ) ≅ ℤ𝑛1 ⊕⋯⊕ℤ𝑛𝑟 ≅ Torsion(𝐻).

Now we can present the Universal Coefficients Theorem[Hat02, Theorem 3.2]:

Theorem 1.2.4 (Universal Coefficients for Cohomology).
Let𝐶• be a chain complex of free abelian groups and𝐺 an abelian group. Then there is a split exact sequence

0 Ext(𝐻𝑘−1(𝐶), 𝐺) 𝐻𝑛(𝐶, 𝐺) Hom(𝐻𝑛(𝐶), 𝐺) 0𝒽 .

In particular,
𝐻𝑛(𝐶, 𝐺) ≅ Hom(𝐻𝑛(𝐶), 𝐺) ⊕ Ext(𝐻𝑛−1(𝐶), 𝐺).

This theorem tells us that the cohomology groups are uniquely determined by the homology groups, albeit
in a non-trivial way.

All this algebraic theory is meaningful to us when we apply it to the (singular, simplicial, CW)9 ho-
mology groups over a topological space 𝑋 , of course.

Taking cohomology is a contravariant functor: given a continuousmap𝑓 ∶ 𝑋 → 𝑌 , we have an induced
chain map 𝑓∗ ∶ 𝐶•(𝑋) → 𝐶•(𝑋), and therefore an induced cochain map 𝑓∗ ∶ 𝐶•(𝑌, 𝐺) → 𝐶•(𝑋, 𝐺) given
by precomposition, 𝑓∗𝜑 = 𝜑 ∘ 𝑓∗. This induced map commutes with the coboundary operator, and so it
descends to an induced map in cohomology

𝑓∗ ∶ 𝐻•(𝑌, 𝐺) → 𝐻•(𝑋, 𝐺),

which we call the pullback by 𝑓. This assignment satisfies

(𝑔 ∘ 𝑓)∗ = 𝑓∗ ∘ 𝑔∗

for continuous maps 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍.
9Since our interest is in manifolds, that beautiful realm where all your topological dreams are true, the choice between these

three is essentially irrelevant.
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One of the biggest differences between homology and cohomology is that we have a (sort of ) natural
operation that turns the entire collection of cohomology groups of a space into a ring. This is the cup
product, defined as follows:

Let𝑋 be a topological space and𝐺 a ring (in practice, ℤ2, ℤ orℝ). For 𝜑 ∈ 𝐶𝑘(𝑋, 𝑅) and𝜓 ∈ 𝐶𝑙(𝑋, 𝑅),
define 𝜑 ⌣ 𝜓 ∈ 𝐶𝑘+𝑙(𝑋, 𝑅) as

(𝜑 ⌣ 𝜓)(𝜎) = 𝜑(𝜎|[𝑣0,…,𝑣𝑘])𝜓(𝜎|[𝑣𝑘+1,…,𝑣𝑘+1]), (1.1)

for every singular (𝑘 + 𝑙)-simplex 𝜎 ∶ Δ𝑘+𝑙 → 𝑋 . Here [𝑣0, … , 𝑣𝑗] denotes the convex hull of the points
𝑣0, … , 𝑣𝑗 with 𝑣0, … , 𝑣𝑘+𝑙 the canonical basis of ℝ𝑘+𝑙+1, and Δ𝑘+𝑙 = [𝑣0, … , 𝑣𝑘+𝑙]. It is a straightforward
exercise in tedious bookkeeping to show that

𝛿(𝜑 ⌣ 𝜓) = 𝛿𝜑 ⌣ 𝜓 + (−1)𝑘𝜑 ⌣ 𝛿𝜓.

In particular, 𝛿(𝜑 ⌣ 𝜓) = 0 if 𝛿𝜑 = 0 and 𝛿𝜓 = 0. Therefore the cup product descends to cohomology:

⌣∶ 𝐻𝑘(𝑋, 𝑅) × 𝐻𝑙(𝑋, 𝑅) → 𝐻𝑘+𝑙(𝑋, 𝑅).

In fact, the defining formula in equation Equation (1.1) defines relative cap products:

𝐻𝑘(𝑋; 𝑅) × 𝐻𝑙(𝑋, 𝐴; 𝑅) → 𝐻𝑘+𝑙(𝑋, 𝐴; 𝑅),
𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻𝑙(𝑋; 𝑅) → 𝐻𝑘+𝑙(𝑋, 𝐴; 𝑅),

𝐻𝑘(𝑋, 𝐴; 𝑅) × 𝐻𝑙(𝑋, 𝐴; 𝑅) → 𝐻𝑘+𝑙(𝑋, 𝐴; 𝑅).

This cup product behaves well with pullbacks: for a map 𝑓 ∶ 𝑋 → 𝑌 , the pullback satisfies

𝑓∗(𝜑 ⌣ 𝜓) = 𝑓∗𝜑 ⌣ 𝑓∗𝜓.

Furthermore, if 𝑅 is commutative, we can show that

𝜑 ⌣ 𝜓 = (−1)𝑘𝑙𝜓 ⌣ 𝜑.

If this is reminiscent of the wedge product in differential forms, it’s because it basically is the same
thing! Under the isomorphism of (smooth) singular cohomology with real coefficients with de Rham
cohomology, cup products pass over to wedge products10.

1.2.2 Orientations and caps
From here on we specialize to the case of topological manifolds. Here we will introduce an algebraic
notion of orientation, and with it the Poincaré duality. Again, the golden standard here is [Hat02, Section
3.3].

Remark. Throughout this section we will consider (co)homology with integer coefficients.

First, let’s tackle orientation. Let 𝑀 be a topological manifold of dimension 𝑛. For any point 𝑥 ∈ 𝑀,
there is a neighborhood 𝑈 ⊆ 𝑀 which is homeomorphic to ℝ𝑛. Consider the relative homology groups
with integer coefficients 𝐻𝑘(𝑀,𝑀 − {𝑥}). By excision (namely, excising 𝑀 −𝑈), we have

𝐻𝑘(𝑀,𝑀 − {𝑥}) ≅ 𝐻𝑘(𝑈,𝑈 − {𝑥}) ≅ 𝐻𝑘(ℝ𝑛, ℝ𝑛 − { ̃𝑥}),
10An indirect proof can be found in [BT95]. Specifically, [BT95, Theorem 14.28] exhibits a ring isomorphism to Čech cohomol-

ogy. Then in [BT95, p. 192] they explain that Čech cohomology is isomorphic to singular cohomology.
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where ̃𝑥 ∈ ℝ𝑛 is the image under the homeomorphism 𝑈 ≅ ℝ𝑛. The isomorphism 𝐻𝑘(𝑀,𝑀 − {𝑥}) ≅
𝐻𝑘(𝑈,𝑈 − {𝑥}) tells us that 𝐻𝑘(𝑀,𝑀 − {𝑥}) depends only on the local topology around 𝑥. We call these
the local homology groups at 𝑥.

Now we consider the (beginning of the) long, exact sequence induced by the pair (ℝ𝑛, ℝ𝑛 − { ̃𝑥}):

0 𝐻𝑛(ℝ𝑛 − { ̃𝑥}) 𝐻𝑛(ℝ𝑛) 𝐻𝑛(ℝ𝑛, ℝ𝑛 − { ̃𝑥}) 𝐻𝑛−1(ℝ𝑛 − { ̃𝑥}) ⋯ ,

We have𝐻𝑘(ℝ𝑛) = 0 if 𝑘 ≠ 0, and sinceℝ𝑛−{ ̃𝑥} retracts to 𝑆𝑛−1, we have𝐻𝑘(ℝ𝑛−{ ̃𝑥}) ≅ 𝐻𝑘(𝑆𝑛−1) = ℤ
if 𝑘 = 0 or 𝑘 = 𝑛 − 1, and it is zero otherwise. Therefore this sequence reduces to

0 𝐻𝑛(ℝ𝑛, ℝ𝑛 − { ̃𝑥}) ℤ 0 ,

which implies that
𝐻𝑛(𝑀,𝑀 − {𝑥}) ≅ 𝐻𝑛(ℝ𝑛, ℝ𝑛 − { ̃𝑥}) ≅ ℤ.

This holds for all points 𝑥 ∈ 𝑀!
A local orientation at 𝑥 ∈ 𝑀 is a choice of a generator 𝜇𝑥 ∈ 𝐻𝑛(𝑀,𝑀−{𝑥}). Suppose that we have a

collection of local orientations {𝜇𝑥}𝑥∈𝑀 . Take 𝑥0 ∈ 𝑀 and consider an open neighborhood 𝑈 ⊆ 𝑀 which
is homeomorphic to ℝ𝑛. We can find a (closed) subset 𝐵 ⊂ 𝑈 containing 𝑥0 which is homeomorphic to a
closed ball in ℝ𝑛. By the same procedure we did above, we find that𝐻𝑛(𝑀,𝑀−𝐵) ≅ ℤ. For every 𝑥 ∈ 𝐵,
the inclusion (𝑀,𝑀 − 𝐵) ⊆ (𝑀,𝑀 − {𝑥}) induces a morphism

𝐻𝑛(𝑀,𝑀 − 𝐵) → 𝐻𝑛(𝑀,𝑀 − {𝑥}).

We say that the family of orientations {𝜇𝑥}𝑥∈𝑀 is locally consistent at 𝑥0 if for all 𝑥 ∈ 𝐵, every 𝜇𝑥 is the
image of a single chosen generator of 𝐻𝑛(𝑀,𝑀 − 𝐵) under this morphism.

Definition 1.2.5 (Orientation of a manifold).
An orientation of a manifold is a collection {𝜇𝑥}𝑥∈𝑀 of local orientations which is locally consistent at every
point 𝑥 ∈ 𝑀. If𝑀 admits an orientation, we say that it is orientable.

We have the following result on the orientability of a closed manifold:

Theorem 1.2.6 (Orientability of closed manifolds).
Let𝑀 is a closed, connected manifold of dimension 𝑛. If𝑀 is oriented, then for all 𝑥 ∈ 𝑀, the morphism
arising from the long exact sequence of the pair (𝑀,𝑀 − {𝑥}),

𝐻𝑛(𝑀) → 𝐻𝑛(𝑀,𝑀 − {𝑥})

is an isomorphism.

For a proof, see [Hat02, pp. 236-237]. A generator of𝐻𝑛(𝑀)whose image is a generator of𝐻𝑛(𝑀,𝑀−{𝑥})
for all 𝑥 ∈ 𝑀 is called a fundamental class of𝑀. We write it as [𝑀] ∈ 𝐻𝑛(𝑀). Conversely, the existence
of a fundamental class implies the existence of an orientation of 𝑀.

Let 𝑀 be a closed, connected, oriented 𝑛-dimensional manifold. Given 𝜑 ∈ 𝐶𝑘(𝑋, ℤ) and a singular
simplex 𝜎 ∶ Δ𝑙 → 𝑋 , define 𝜑 ⌢ 𝜎 ∶ 𝐶𝑙−𝑘(𝑋) as

𝜑 ⌢ 𝜎 = 𝜑(𝜎|[𝑣0,…,𝑣𝑙])𝜎|[𝑣𝑙 ,…,𝑣𝑘].
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Extending this to 𝐶𝑙(𝑋), we obtain a map • ⌢ • ∶ 𝐶𝑘(𝑋, ℤ) × 𝐶𝑙(𝑋) → 𝐶𝑙−𝑘(𝑋). Once again, it is a
straightforward exercise to show that ⌢ behaves well with the boundary operator:

𝜕(𝜑 ⌢ 𝜎) = (−1)𝑙+1(𝛿𝜑 ⌢ 𝜎 − 𝜑 ⌢ 𝜕𝜎).

Therefore, this operation descends to cohomology and homology, and we call it the cap product:

• ⌢ • ∶ 𝐻𝑘(𝑋, ℤ) × 𝐻𝑙(𝑋) → 𝐻𝑘−𝑙(𝑋).

The cap and cup products enjoy a duality of sorts: for all 𝜑 ∈ 𝐻𝑘−𝑙(𝑋, ℤ), 𝜓 ∈ 𝐻𝑙(𝑋, ℤ) and 𝜎 ∈ 𝐻𝑘(𝑋),
we have

⟨𝜑, 𝜓 ⌢ 𝜎⟩ = ⟨𝜓 ⌣ 𝜑, 𝜎⟩ .
Let [𝑀] be the (a) fundamental class of 𝑀. Then for every 𝜑 ∈ 𝐻𝑘(𝑀, ℤ), we have an element

𝜑 ⌢ [𝑀] ∈ 𝐻𝑛−𝑘(𝑀). The map 𝐻𝑘(𝑀, ℤ) → 𝐻𝑛−𝑘(𝑀) is an isomorphism:

Theorem 1.2.7 (Poincaré Duality).
Let𝑀 be a closed, connected, oriented 𝑛-dimensional manifold and [𝑀] a fundamental class. Then the map
𝐻𝑘(𝑀, ℤ) → 𝐻𝑛−𝑘(𝑀, ℤ) given by

𝜑 ↦ 𝜑 ⌢ [𝑀]
is an isomorphism.

The proof of this theorem is a little bit laborious. The curious reader can check [Hat02, pp. 245-249].
Suppose that 𝑀 is a compact manifold with boundary. We say that 𝑀 is orientable if 𝑀 − 𝜕𝑀 is

orientable. In this case, there exists a unique class [𝑀] ∈ 𝐻𝑛(𝑀, 𝜕𝑀) which restricts to the choice of
generator 𝜇𝑥 ∈ 𝐻𝑛(𝑀,𝑀 − {𝑥}) for all 𝑥 ∈ 𝑀 − 𝜕𝑀 [see Hat02, Lemma 3.27]. We call [𝑀] the
fundamental class of 𝑀. Similarly to manifolds without boundary, we have a version of Poincaré duality
for manifolds with boundary [Hat02, Theorem 3.43]:

Theorem 1.2.8 (Poincaré Duality for manifolds with boundary).
Let𝑀 be a compact manifold with boundary. Then the map 𝐻𝑘(𝑀, 𝜕𝑀) → 𝐻𝑛−𝑘(𝑀) given by

𝜑 ↦ 𝜑 ⌢ [𝑀]

is an isomorphism.

1.2.3 The intersection pairing
Let 𝑀 be a closed, connected 𝑛-dimensional topological manifold with an orientation over ℤ. We define
the intersection pairing 𝐻𝑘(𝑀, ℤ) × 𝐻𝑛−𝑘(𝑀, ℤ) → ℤ as

𝜑 • 𝜓 ∶= ⟨𝜑 ⌣ 𝜓, [𝑀]⟩

where⌣ is the cup product and [𝑀] is the fundamental class of𝑀, induced by its orientation. This pairing
vanishes on the torsion subgroups 𝑇𝑚 ⊆ 𝐻𝑚(𝑀, ℤ), and thus it descends to quotients 𝐻𝑘(𝑀, ℤ)/𝑇𝑘 and
𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘. Once we have quotiented the torsion out, the intersection pairing is non-degenerate.
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Proposition 1.2.9 (Intersection pairing is non-degenerate).
For each 𝜑 ∈ 𝐻𝑘(𝑀, ℤ)/𝑇𝑘 and 𝜓 ∈ 𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘, the maps

𝐻𝑘(𝑀, ℤ)/𝑇𝑘 → Hom(𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘, ℤ)
[𝜑] ↦ 𝜑 • (−)

and

𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘 → Hom(𝐻𝑘(𝑀, ℤ)/𝑇𝑘, ℤ)
[𝜓] ↦ (−) • 𝜓

are isomorphisms of abelian groups.

Proof.— Consider the a natural surjective map 𝒽 ∶ 𝐻𝑘(𝑀, ℤ) → Hom(𝐻𝑘(𝑀, ℤ), ℤ) given as

𝒽(𝜑)(𝜎) = ⟨𝜑, 𝜎⟩

Therefore, we can rewrite the intersection pairing as

𝜑 • 𝜓 = ⟨𝜑 ⌣ 𝜓, [𝑀]⟩ = ± ⟨𝜑, 𝜓 ⌢ [𝑀]⟩ = ± ⟨𝜑, 𝑃𝐷(𝜓)⟩ = ±(𝑃𝐷∗ ∘ 𝒽)(𝜑)(𝜓),

where 𝑃𝐷 ∶ 𝐻𝑛−𝑘(𝑀, ℤ) → 𝐻𝑘(𝑀, ℤ) is the Poincaré Duality map, 𝑃𝐷(𝜓) = 𝜓 ⌢ [𝑀]. Therefore, the
map 𝜑 ↦ 𝜑 • (−) is precisely ±(𝑃𝐷∗ ∘ 𝒽).

From the Universal Coefficients Theorem (1.2.4), we find that in general 𝒽 is not injective and its
kernel is precisely the torsion 𝑇𝑘 ⊆ 𝐻𝑘(𝑀, ℤ). Therefore if we quotient out 𝑇𝑘, there is an induced
isomorphism

�̂� ∶ 𝐻𝑘(𝑀, ℤ)/𝑇𝑘 → Hom(𝐻𝑘(𝑀, ℤ), ℤ).
Similarly, the Poincaré duality isomorphism descends to an isomorphism

̂𝑃𝐷 ∶ 𝐻𝑘(𝑀, ℤ)/𝑇𝑘 → 𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘,

and thus we find that

̂𝑃𝐷∗ ∘ �̂� ∶ 𝐻𝑘(𝑀, ℤ)/𝑇𝑘 → Hom(𝐻𝑛−𝑘(𝑀, ℤ)/𝑇𝑛−𝑘, ℤ)

is an isomorphism. Since 𝜑 ↦ 𝜑 • (−) is precisely ±𝑃𝐷∗ ∘ 𝒽, the result follows once we pass to the
quotient. ■

The name “intersection pairing” seems gratuitous at this point. What does it have to do with intersec-
tions? R. Thom [TM07, Corollary II.28] proved that for compact, orientable manifolds, if 𝛼 ∈ 𝐻𝑘(𝑀, ℤ)
with 𝑘 ≤ 8, then there is an embedded orientable submanifold 𝑖 ∶ 𝑉𝛼 ↪ 𝑀 such that 𝑖∗[𝑉𝛼] = 𝛼. We say
that 𝑉𝛼 represents the class 𝛼11. We will see this in Theorem 1.3.5 for homology in codegree 2.

With Thom’s result, assuming dim(𝑀) ≤ 8, the name of the intersection pairing is justified: via
Poincaré duality, the intersection pairing passes to a pairing in homology, 𝐻𝑘(𝑀, ℤ) × 𝐻𝑛−𝑘(𝑀, ℤ) → ℤ.
For any 𝛼 ∈ 𝐻𝑘(𝑀, ℤ) and 𝛽 ∈ 𝐻𝑛−𝑘(𝑀, ℤ), let 𝑉𝛼 and 𝑉𝛽 be embedded submanifolds which represent
them. Then 𝑃𝐷(𝛼) • 𝑃𝐷(𝛽) is precisely the oriented intersection number of 𝑉𝛼 and 𝑉𝛽. We will see this
explicitly for degree 2 (co)in 4-manifolds in Section 4.1.

11Lifting the restriction of dimension leaves us with a weaker result: any integral homology class has a multiple is representable
by a submanifold. The adventurous reader can check [TM07] for the general proof.
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1.3 Characteristic classes

Some of the most important tools in algebraic topology are characteristic classes, which are used to classify
vector bundles. In this work we will use the first Chern class, which is a classifying tool for complex line
bundles, and the first and second Stiefel-Whitney class, which are used to study real vector bundles.

At the outset, We will consider vector bundles over paracompact spaces12. The golden standard here
is [MS74], but we also take some things from [May99] and [Hat17].

1.3.1 Classifing spaces for line bundles and the first Chern class
First, let’s review some definitions. Recall that a topological space 𝐸 is a 𝕂-vector bundle of rank 𝑘 over a
paracompact space 𝑋 if there is a surjective map 𝜋 ∶ 𝐸 → 𝑋 which is locally trivial: for every point 𝑥 ∈ 𝑀
there is a neighborhood 𝑈 of 𝑥 and a homeomorphism Ψ ∶ 𝜋−1(𝑈) → 𝑈 × 𝕂𝑘, which is linear on the
fibers: Ψ|𝜋−1(𝑥) ∶ 𝜋−1(𝑥) → {𝑥} × 𝕂𝑘 is a linear isomorphism. We call 𝐸 the total space and 𝑋 the base
space. We compress all this and say that 𝜋 ∶ 𝐸 → 𝑋 is a vector bundle.

If 𝜋 ∶ 𝐸 → 𝑋 and 𝜋′ ∶ 𝐸′ → 𝑋 ′ are vector bundles, a morphism between them is a pair (𝑓𝐸 , 𝑓𝑋) of
continuous maps 𝑓𝐸 ∶ 𝐸 → 𝐸′ and 𝑓𝑋 ∶ 𝑋 → 𝑋 ′ for which the diagram

𝐸 𝐸′

𝑋 𝑋 ′

𝑓𝐸

𝜋 𝜋′
𝑓𝑋

commutes13, and for all 𝑥 ∈ 𝑋 , 𝑓𝐸 is fiberwise a linear map; i.e. 𝑓𝐸 |𝜋−1(𝑥) ∶ 𝜋−1(𝑥) → 𝜋′−1(𝑓𝑋(𝑥)) is
linear. Naturally, we say that (𝑓𝐸 , 𝑓𝑋) is an isomorphism if there exists an inverse morphism (𝑔′𝐸 , 𝑔′𝑋), in
which case we say that 𝐸 → 𝑋 and 𝐸′ → 𝑋 ′ are isomorphic. Note that this implies that the base spaces
are homeomorphic. Furthermore, (𝑓𝐸 , 𝑓𝑋) is an isomorphism if and only if 𝑓𝑋 is a homeomorphism and
𝑓𝐸 |𝜋−1(𝑥) is a linear isomorphism on each fiber.

Particularly, we are interested in equivalence classes of vector bundles over a same space. We say that
two vector bundles 𝐸 → 𝑋 and 𝐸′ → 𝑋 are equivalent if there is an isomorphism (𝑓𝐸 , id) between them
which lifts the identity. We denote the set of equivalence classes of 𝕂-vector bundles of rank 𝑘 over 𝑋 by

VB𝑘(𝑋, 𝕂)

and we drop the 𝕂 if there is no confusion on the field.
Now we introduce a construction that is essential for the discussion of characteristic classes. Let 𝜋 ∶

𝐸 → 𝑋 be a vector bundle and 𝑓 ∶ 𝑌 → 𝑋 a continuous map. We can construct a vector bundle 𝑓∗(𝐸)
over 𝑌 , called the pullback of 𝐸 by 𝑓, as the subspace of the product 𝑌 × 𝐸 given by

𝑓∗(𝐸) = {(𝑥, 𝑒) ∈ 𝑌 × 𝐸 | 𝑓(𝑥) = 𝜋(𝑒)} .

The projection 𝑓∗(𝐸) → 𝑌 is the projection on the first component. It is straightforward to check that
𝑓∗(𝐸) is indeed a vector bundle over 𝑌 which has the same rank as 𝐸. It turns out that this construction
is only dependent on the homotopy type of 𝑓[see May99, section 23.1]:

12A topological space 𝑋 is paracompact if any open cover has an open refinement which is locally finite. That is, every point has a
neighborhood which intersects only finitely many sets in the refinement of the cover.

13That is, 𝑓𝐸 maps fibers into fibers.
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Proposition 1.3.1 (Pullback bundle is homotopy-invariant).
Let 𝐸 → 𝑋 be a vector bundle and 𝑓0, 𝑓1 ∶ 𝑌 → 𝑋 homotopic maps. Then 𝑓∗0 𝐸 and 𝑓∗1 𝐸 are equivalent.

This tells us that the assignment 𝑋 ⇝ VB𝑘(𝑋, 𝕂) is a contravariant functor between the category of
homotopy classes of manifolds to the category of sets. The surprising fact is that this is a representable
functor! That is, there is a space 𝐵𝑂𝕂(𝐾) such that there is a natural bijection between VB𝑘(𝑋, 𝕂) and the
set of homotopy classes of maps from 𝑋 to 𝐵𝑂𝕂(𝑘), which we denote by [𝑋, 𝐵𝑂𝕂(𝑘)]. This is to say, there
is a natural isomorphism between the functors VB𝕂(−, 𝑘) and [−, 𝐵𝑂𝕂(𝑘)]. We call 𝐵𝑂𝕂(𝑘) a classifying
space for 𝕂-vector bundles of rank 𝑘.

The representability of the functor can be proved in purely categorical terms14. However we will give
an explicit construction of 𝐵𝑂𝕂(𝑛).

Assume𝕂 = ℝ orℂ. Let𝐺𝑘(𝕂𝑛) be theGrassmannian space of 𝑘-subspaces of𝕂𝑛, whose points are𝕂-
vector subspaces of dimension 𝑘 of 𝕂𝑛. These can be given a natural topology (a manifold structure, even)
inherited from 𝕂𝑛𝑘. For 𝑘 = 1, the Grassmannians are no more than the projective spaces 𝐺1(𝕂𝑛) =
𝕂ℙ𝑛−1. We construct a tautological or canonical bundle of rank 𝑘 over 𝐺𝑘(𝕂𝑛), denoted by 𝛾𝑛𝑘 , as a
subbundle of the product 𝐺𝑘(𝕂𝑛) × 𝕂𝑛 given by

𝛾𝑛𝑘 = {(𝑉, 𝑣) ∈ 𝐺𝑘(𝕂𝑛) × 𝕂𝑛 | 𝑣 ∈ 𝑉} .

The projection 𝛾𝑛𝑘 → 𝐺𝑘(𝕂𝑛) is the projection on the first component. The name “tautological” comes
from the fact that the fiber above a point 𝑉 ∈ 𝐺𝑘(𝕂𝑛) is precisely the subspace that 𝑉 represents.

The natural inclusion𝕂𝑛 ↪ 𝕂𝑛×{0} ⊂ 𝕂𝑛+1 induces inclusions𝐺𝑘(𝕂𝑛) ↪ 𝐺𝑘(𝕂𝑛+1) and 𝛾𝑛𝑘 ↪ 𝛾𝑛+1𝑘
for all 𝑛. Then we can take the union over all 𝑛 ∈ ℕ and consider the infinite Grassmannian𝐺𝑘(𝕂∞) and its
tautological bundle 𝛾∞𝑘 . This is precisely the space that represents the functor VB𝑘(−,𝕂) [May99, Section
23.2]:

Theorem 1.3.2 (Infinite Grassmanian represents functorVB𝑘(−,𝕂)).
Given a 𝕂-vector bundle of rank 𝑘 𝐸 → 𝑋 , there is a continuous 𝑓 ∶ 𝑋 → 𝐺𝑘(𝕂∞) which is unique up
to homotopy, such that

𝐸 ≅ 𝑓∗𝛾∞𝑘 .
Furthermore, the assignment of a homotopy class of a function 𝑓 ∶ 𝑋 → 𝐺𝑘(𝕂∞) to the equivalence class
of 𝑓∗𝛾∞𝑘 is a natural isomorphism between the functors [−, 𝐺𝑘(𝕂∞)] and VB𝑘(−,𝕂). This is to say that
𝐺𝑘(𝕂∞) is a classifying space for 𝕂-vector bundles of rank 𝑘.

Let 𝑅 be a ring15. A characteristic class of degree 𝑛 for 𝕂-vector bundles of rank 𝑘 is an assignment
𝒸𝑛 ∶ VB𝑘(𝑋, 𝕂) → 𝐻𝑛(𝑋, 𝑅) which is natural with respect to pullbacks:

𝑓∗(𝒸𝑛(𝐸)) = 𝒸𝑛(𝑓∗𝐸),

for vector bundles 𝐸 → 𝑋 and maps 𝑓 ∶ 𝑌 → 𝑋 . This naturality property implies that it suffices to define
characteristic classes on the classifying spaces. In the rest of this section we will focus only on the first
Chern class, which is defined for complex line bundles. Therefore we need to study the cohomology ring
of the classifying space 𝐺1(ℂ∞) = ℂℙ∞.

14As May[May99] puts it, “on general abstract nonsense grounds, using Brown’s representability theorem”.
15For our purposes either ℤ2, ℤ or ℝ.
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Proposition 1.3.3 (Cohomology ring ofℂℙ𝑛).
The cohomology ring of ℂℙ𝑛 is the polynomial ring

𝐻•(ℂℙ𝑛, ℤ) ≅ ℤ[𝜇]⧸⟨𝜇𝑛+1⟩,

where 𝜇 ∈ 𝐻2(ℂℙ𝑛, ℤ) is a generator, which can be chosen as the Poincaré dual to the fundamental class
[ℂℙ𝑛−1] ∈ 𝐻2𝑛−2(ℂℙ𝑛, ℤ).

Proof.— It is a standard result from algebraic topology16 that the homology of ℂℙ𝑛 is

𝐻𝑘(ℂℙ𝑛, ℤ) ≅ {
ℤ if 𝑘 ≤ 2𝑛 is even,
0 if 𝑘 > 2𝑛 or 𝑘 is odd

.

From the Universal Coefficients Theorem (1.2.4), we see that

𝐻𝑘(ℂℙ𝑛, ℤ) ≅ {
ℤ if 𝑘 ≤ 2𝑛 is even,
0 if 𝑘 > 2𝑛 or 𝑘 is odd

.

Furthermore, the standard inclusion of ℂℙ𝑛 ↪ ℂℙ𝑛+1 induces isomorphisms17

𝐻𝑘(ℂℙ𝑛, ℤ)
∼→ 𝐻𝑘(ℂℙ𝑛+1, ℤ),

𝐻𝑘(ℂℙ𝑛, ℤ) ∼→ 𝐻𝑘(ℂℙ𝑛+1, ℤ),

for all 𝑘 ≤ 2𝑛.
Let’s proceed by induction on 𝑛. For 𝑛 = 1 the statement is trivially true. Now assume it holds for

ℂℙ1, … , ℂℙ𝑛. Since 𝐻𝑘(ℂℙ𝑛, 𝑍) ≅ 𝐻𝑘(ℂℙ𝑛+1, 𝑍) for all 𝑘 ≤ 2𝑛, then have that if 𝜇 is a generator of
𝐻2(ℂℙ𝑛+1, 𝑍), then 𝜇𝑘 is a generator of𝐻𝑘(ℂℙ𝑛+1, 𝑍) for all 𝑘 ≤ 2𝑛. Let’s see that 𝜇𝑛+1 indeed generates
𝐻𝑛+1(ℂℙ𝑛+1, 𝑍).

Since 𝜇𝑛 generates𝐻𝑛(ℂℙ𝑛+1, 𝑍), then there is a morphism 𝜑 ∶ 𝐻𝑛(ℂℙ𝑛, ℤ) → ℤ such that 𝜑(𝜇𝑛) =
1. However, the intersection pairing is non-degenerate (Proposition 1.2.9), which implies that there is
a (unique) 2-form 𝛽 ∈ 𝐻2(ℂℙ𝑛+1, ℤ) such that 𝜑(𝛼) = 𝛼 ⋅ 𝛽 for all 𝛼 ∈ 𝐻𝑛(ℂℙ𝑛+1, ℤ). However, 𝜇
generates 𝐻2(ℂℙ𝑛+1, ℤ), so 𝛽 = 𝑚𝜇 for some 𝑚. Therefore,

1 = 𝜑(𝜇𝑛) = 𝜇𝑛 ⋅ 𝑚𝜇 = 𝑚⟨𝜇𝑛+1, [ℂℙ𝑛+1]⟩ .

This implies that 𝑚 = ±1 and ⟨𝜇𝑛+1, [ℂℙ𝑛+1]⟩ = ±1. Finally, since evaluation on the fundamental class
[ℂℙ𝑛+1] is a morphism 𝐻𝑛+1(ℂℙ𝑛+1, ℤ) → ℤ, necessarily 𝜇𝑛+1 has to be a generator.

Finally, we have that [ℂℙ𝑘] ∈ 𝐻𝑘(ℂℙ𝑛, ℤ) is a generator because the inclusion ℂℙ𝑘 ↪ ℂℙ𝑛 induces
isomorphisms in homology of degrees up to 2𝑘. Therefore, the Poincaré dual of [ℂℙ𝑛−1] ∈ 𝐻2𝑛−2(ℂℙ𝑛, ℤ)
is a generator of 𝐻2(ℂℙ𝑘, ℤ), which we can choose for 𝜇. ■

With this definition, we can define the first Chern class of a line bundle.

16Easily computed using cellular homology [see Hat02, p. 140].
17This can be seen by looking at the standard CW decomposition of ℂℙ𝑛.
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Definition 1.3.4 (First Chern class).
Let 𝐿 → 𝑀 be a complex line bundle. There exists a map 𝑓 ∶ 𝑀 → ℂℙ∞ such that 𝐿 ≅ 𝑓∗(𝐸). We define
the first Chern class of 𝐿, 𝑐1(𝐿) ∈ 𝐻2(𝑀, ℤ), as

𝑐1(𝐿) = 𝑓∗(𝜇),

where 𝜇 is the generator of 𝐻2(ℂℙ∞, ℤ) that we found in Proposition 1.3.3.

This definition of the Chern class, and the characterization of the cohomology ring of ℂℙ𝑛, lets us
prove the representability of homology classes of codegree 2 with submanifolds.

Theorem 1.3.5 (Thom representability).
Let𝑀 be a closed, connected, oriented manifold and 𝛼 ∈ 𝐻𝑛−2(𝑀, ℤ) a homology class. Then there exists
an embedded submanifold 𝑉𝛼 ⊂ 𝑀 such that [𝑉𝛼] = 𝛼.

Proof (Sketch).— Let �̂� ∈ 𝐻2(𝑀, ℤ) be the Poincaré dual of 𝛼. There exists a complex line bundle 𝐿 →
𝑀 such that �̂� = 𝑐1(𝐿). Since ℂℙ∞ is the classifying bundle for complex line bundles, there is a map
𝑓 ∶ 𝑀 → ℂℙ∞ such that 𝐿 ≅ 𝑓∗(𝛾∞1 ). By the cellular approximation theorem, we can choose 𝑓 to be
a cellular map, so that 𝑓(𝑀) ⊆ ℂℙ𝑛 for some large enough 𝑛. Furthermore, we can take 𝑓 to be smooth
and transverse to ℂℙ𝑛−1 ⊂ ℂℙ𝑛. This implies that 𝑉 = 𝑓−1(ℂℙ𝑛−1) is an embedded submanifold of 𝑀,
which is our candidate for the representing 𝛼.

Using the Thom isomorphism theorem, it can be shown that indeed [𝑉] = 𝛼 [see Bre97, Theorem
11.16]. ■

An additional characterization of the first Chern class comes from considering connections on a U(1)-
bundle. Let 𝐿 → 𝑀 be a complex line bundle. Given a Hermitian metric on it, we can construct the
unitary frame bundle U(1) ↪ U(𝐿) → 𝑀. Choose a connection 𝜔 ∈ Ω1(U(𝐿), 𝑖ℝ), whose curvature is
Ω = d𝜔 since U(1) is abelian. Given a cover {𝑈𝑖}𝑖∈𝐼 which trivializes 𝐿 (and therefore U(𝐿)), consider the
local field strengths ℱ𝑖 ∈ Ω2(𝑈𝑖, 𝑖ℝ). According to Proposition 1.1.8, on the overlaps 𝑈𝑖 ∩ 𝑈𝑗, the fields
strengths are related by

ℱ𝑖 = Ad𝑔−1𝑖𝑗 ℱ𝑗 = ℱ𝑗 .

This is because U(1) is abelian, so Ad𝑔 = id for all 𝑔 ∈ U(1). This tells us that the collection of 2-forms
{ℱ𝑖}𝑖∈𝐼 “glues” together into a unique 2-form ℱ ∈ Ω2(𝑀, 𝑖ℝ). Clearly, ℱ is closed, so it determines a de
Rham cohomology class [ℱ] ∈ 𝐻2

𝑑𝑅(𝑀) ⊗ 𝑖ℝ.
Even though we started with a choice of a connection, the class [ℱ] is independent of it: any other

connection 𝜔′ is of the form 𝜔′ = 𝜔 + 𝜋∗𝛿, where 𝛿 ∈ Ω1(𝑀, 𝑖ℝ). Therefore its curvature is Ω′ =
Ω + d(𝜋∗𝛿), and so the local field strength satisfies

ℱ′ = ℱ + d𝛿.

This implies that [ℱ′] = [ℱ] ∈ 𝐻2
𝑑𝑅(𝑀) ⊗ 𝑖ℝ. In fact, this class is also independent of the choice of

Hermitian metric, it is characteristic, and more specifically, it satisfies

𝑐1(𝐿) =
−1
2𝜋𝑖 [ℱ].

For proof of these statements, see [MS74, Appendix C, p. 305].
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1.3.2 Čech cohomology and the first Stiefel-Whitney class

The other characteristic classes we will use are the Stiefel-Whitney classes. These can be defined similarly
to the Chern classes; that is, in terms of the classifying space of real vector bundles. However, we will
present another face of the first Stiefel-Whitney class, in terms of Čech cocycles. Therefore, we will very
briefly describe Čech cohomology with coefficients in ℤ2. Later, when we discuss Spin structures, we will
see the second Stiefel-Whitney class show up as an obstruction to their existence over a manifold.

Let 𝑋 be a topological space and 𝒰 = {𝑈𝑖}𝑖∈𝐼 be an open cover of 𝑋 . Given a indices 𝑖0, … , 𝑖𝑘 ∈ 𝐼,
write 𝑈𝑖0⋯𝑖𝑘 = 𝑈𝑖0 ∩⋯ ∩ 𝑈𝑖𝑘 . For 𝑗 = 0, … , 𝑘, we have inclusions

𝜄𝑘𝑗 ∶ 𝑈𝑖0⋯𝑖𝑘 ↪ 𝑈𝑖0⋯ ̂𝑖𝑗⋯𝑖𝑘 ,

where ̂𝑖𝑗 means that the index is omitted. Let 𝐺 be an abelian group18. The set of Čech 𝑘-cochains,
denoted by ̌𝐶𝑘(𝒰, 𝐺), is defined as follows: For every tuple of indices (𝑖0, … , 𝑖𝑘), consider locally constant
function 𝑓𝑖0,…,𝑖𝑘 ∶ 𝑈𝑖0⋯𝑖𝑘 → 𝐺. This defines a map

𝒻 ∶ 𝐼𝑘+1 → LocConst(𝑈𝑖0⋯𝑖𝑘 , 𝐺),
(𝑖0, … , 𝑖𝑘) ↦ 𝒻(𝑖0, … , 𝑖𝑘) = 𝑓𝑖0,…,𝑖𝑘

The set of 𝑘-cochains is the set of all such maps, that is,

̌𝐶𝑘(𝒰, 𝐺) = ∏
(𝑖0,…,𝑖𝑘)∈𝐼𝑘+1

LocConst(𝑈𝑖0⋯𝑖𝑘 , 𝐺).

There is a codifferential 𝛿𝑘 ∶ ̌𝐶𝑘(𝒰, 𝐺) → ̌𝐶𝑘+1(𝒰, 𝐺) given by

(𝛿𝑘𝒻)(𝑖0, … , 𝑖𝑘+1) =
𝑘+1
∑
𝑗=0

(−1)𝑗 𝑓𝑖0,…, ̂𝑖𝑗 ,…,𝑖𝑘+1
|
|𝑈𝑖0⋯ ̂𝑖𝑗⋯𝑖𝑘+1

.

It is a straightforward bookkeeping exercise to show that this codifferential is indeed nilpotent, so that
( ̌𝐶•(𝒰, 𝐺), 𝛿) is a cochain complex. The Čech cohomology groups are the cohomology groups of the
Čech complex:

�̌�𝑘(𝒰, 𝐺) ∶= ker 𝛿𝑘⧸im 𝛿𝑘−1.

Of course, this complex, and therefore its cohomology, depend on the choice of cover of 𝑋 . We can fix
this if we restrict ourselves to covers𝒰 for which all intersections 𝑈𝑖0⋯𝑖𝑘 are either empty or contractible19.
We call these good covers, and it can be shown that if 𝑋 is a paracompact topological manifold, then Čech
cohomology groups are independent of the choice of good cover, and in fact they are isomorphic to the
singular cohomology groups with coefficients in 𝐺 = ℤ2, ℤ or ℝ[see GQ19, Theorem 10.5].

Now consider a vector bundle 𝐸 → 𝑋 of rank 𝑘, and let𝒰 be a good cover. Since each element𝑈𝑗 ∈ 𝒰
is contractible, then necessarily the cover trivializes the bundle. This trivialization has associated transition
functions

𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → GL(𝑘, ℝ)
18In practice, ℤ2, ℤ or ℝ.
19Another way to fix it is to see that a refinement 𝒰′ of the cover 𝒰 induces a morphism �̌�𝑘(𝒰,𝐺) → �̌�𝑘(𝒰′, 𝐺). We can

then define �̌�𝑘(𝑋,𝐺) as the colimit over all covers with respect to the partial order of refinements.
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satisfying the cocycle conditions:

𝑔𝑗𝑖(𝑥) = 𝑔𝑖𝑗(𝑥)−1

𝑔𝑖𝑗(𝑥)𝑔𝑗𝑘(𝑥)𝑔𝑘𝑖(𝑥) = id

for all 𝑥 in the appropriate domains. Two sets of cocycles {𝑔𝑖𝑗}, {𝑔′𝑖𝑗} over the trivialization 𝒰 determine
the same bundle if and only if there is a collection of maps 𝑓𝑖 ∶ 𝑈𝑖 → GL(𝑘, ℝ) such that

𝑔′𝑖𝑗(𝑥) = 𝑓−1𝑖 (𝑥)𝑔𝑖𝑗(𝑥)𝑓𝑗(𝑥).

In particular, for a line bundle, choosing a metric we can obtain transition functions 𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → ℤ2.
Then two sets of transition functions determine the same line bundle if and only if there is a collection of
maps {𝑓𝑖} such that

𝑔′𝑖𝑗 = 𝑔𝑖𝑗𝑓−1𝑖 𝑓𝑗 .

Note that the collections ℊ = {𝑔𝑖𝑗} and ℊ′ = {𝑔′𝑖𝑗} determine Čech 1-cocycles ℊ,ℊ′ ∈ ̌𝐶1(𝒰, ℤ2), whereas
the collection𝒻 = {𝑓𝑗} determines a Čech 0-cocycle𝒻 ∈ ̌𝐶0(𝒰, ℤ2). The equivalence condition is precisely

ℊ′ = ℊ ⋅ 𝛿𝒻,

written in multiplicative notation. This implies that, in cohomology,

[ℊ] = [ℊ′] ∈ �̌�1(𝒰, ℤ2).

Definition 1.3.6 (First Stiefel-Whitney class).
Let 𝐸 → 𝑀 be a real line bundle of rank 𝑘. Choosing a Riemannian metric on 𝐸 and a good cover 𝒰 on
𝑀, we can find transition functions ℊ = {𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → O(𝑘)} for the bundle. The first Stiefel-Whitney
class of the bundle is the Čech cohomology class 𝑤1(𝐸) ∈ �̌�1(𝒰, ℤ2) of the determinant of the cocycle:

det(𝑔𝑖𝑗) ∶ 𝑈𝑖𝑗 → ℤ2.

That is, 𝑤1(𝐸) = [det(ℊ)].

From this definition, we see that 𝐸 is orientable if and only if 𝑤1(𝐸) = 0.

1.4 hodge-theory.zip

Let 𝑀 be a closed, oriented, 𝑛-dimensional Riemannian manifold. The metric on 𝑀 induces a metric on
differential forms, which is defined in terms of wedge products of 1-forms as

⟨𝛼1 ∧⋯ ∧ 𝛼𝑘, 𝛽1 ∧⋯ ∧ 𝛽𝑘⟩ = det(⟨𝛼𝑖, 𝛽𝑗⟩),

where on the right-hand side we mean the determinant of the matrix whose 𝑖, 𝑗-th entry is ⟨𝛼1, 𝛽𝑗⟩. There
exists an isomorphism ⋆ ∶ Ω𝑘(𝑀) → Ω𝑛−𝑘(𝑀), called the Hodge star, such that for all 𝛼, 𝛽 ∈ Ω𝑘(𝑀),

𝛼 ∧ ⋆𝛽 = ⟨𝛼, 𝛽⟩ vol.
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The ⋆ operator satisfies
⋆ ⋆ 𝛼 = (−1)𝑘(𝑛−𝑘)𝛼,

for all 𝛼 ∈ Ω𝑘(𝑀).
If 𝑀 is compact, then we have an 𝐿2-inner product on forms:

⟨𝛼, 𝛽⟩𝐿2 ∶= ∫
𝑀
𝛼 ∧ ⋆𝛽 = ∫

𝑀
⟨𝛼, 𝛽⟩ vol.

Under this inner product, the adjoint of the de Rham differential is d∗ ∶ Ω𝑘(𝑀) → Ω𝑘−1(𝑀), given by

d∗𝛼 = (−1)𝑛(𝑘+1)+1 ⋆ d ⋆ 𝛼,

for all 𝛼 ∈ Ω𝑘(𝑀).
Consider the Hodge Laplacian Δ𝐻 = dd∗ + d∗d. We say that a form 𝜔 is harmonic if Δ𝐻(𝜔) = 0.

Denote by ℋ𝑘(𝑀) the set of harmonic 𝑘-forms. The key result of Hodge theory is that harmonics forms
represent de Rham cohomology.

Theorem 1.4.1 (Hodge).
For all 𝑘 ≥ 0, the space of harmonic 𝑘-formsℋ𝑘(𝑀) is finite-dimensional, and there is an orthogonal
decomposition

Ω𝑘(𝑀) = dΩ𝑘−1(𝑀) ⊕ d∗Ω𝑘+1(𝑀) ⊕ℋ𝑘(𝑀).
Furthermore, each de Rham cohomology class in 𝐻𝑘(𝑀) has a unique harmonic representative. That is,
𝐻𝑘(𝑀) ≅ ℋ𝑘(𝑀).

For a proof, see [War83, Chapter 6].

1.5 Elliptic regularity

In order to prove that the moduli space of the Seiberg-Witten equations is a smooth, compact manifold,
we need to use the implicit function theorem. For this we have to use the Sobolev completions of spaces of
sections of a bundle.

1.5.1 Sobolev spaces

Let 𝑈 ⊂ ℝ𝑛 be an open set. We say that 𝑓 ∶ 𝑈 → ℝ is locally 𝑝-integrable if every point 𝑝 ∈ 𝑈 has a
neighborhood 𝑉 such that 𝑓|𝑉 ∈ 𝐿𝑝(𝑉). The set of all such functions is denoted by 𝐿𝑝loc(𝑈). For any given
multi-index 𝛼 = (𝛼1, … , 𝛼𝑛), we say that a function 𝑔 ∈ 𝐿𝑝loc(𝑈) is a weak 𝛼-th derivative of 𝑓 if for all
test functions 𝜑 ∈ 𝐶|𝛼|

0 (𝑈),

∫
𝑈
𝜑𝑔 = (−1)|𝛼|∫

𝑈
𝑓𝜕𝛼𝜑.

We write 𝑔 = 𝜕𝛼𝑓. It is a standard result that 𝑔 is determined uniquely almost everywhere.
For every integer 𝑘 ≥ 1 and real 1 ≤ 𝑝 ≤ ∞, define

𝑊 𝑘,𝑝 = {𝑓 ∈ 𝐿𝑝loc(𝑈) | 𝑓 has weak 𝛼-th derivatives in 𝐿𝑝loc(𝑈) for all |𝛼| ≤ 𝑘.}
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It is straightforward to show that 𝑊 𝑘,𝑝 is a vector space. Furthermore, defining the Sobolev norm

‖𝑓‖𝑘,𝑝 = ( ∑
|𝛼|≤𝑘

∫
𝑈
|𝜕𝛼𝑓|𝑝)

1
𝑝

,

we have that the space 𝑊 𝑘,𝑝 is a Banach space, which we call a Sobolev space.
For our purposes, we will need to consider the Sobolev completions of spaces of sections of a vector

bundle 𝐸 over a manifold 𝑀. In this case, we say that a section 𝑠 ∶ 𝑀 → 𝐸 is in 𝑊 𝑘,𝑝(𝑀, 𝐸) if it is
represented locally by functions in 𝑊 𝑘,𝑝.

The Sobolev spaces satisfy some very useful properties. The adventurous reader can check [Bré11,
Chapters 8 and 9], [GT01, Chapters 7 and 8], [DK97, Appendix II], or [see Sal99, Appendix C.1] for
more details.

Lemma 1.5.1 (Rellich’s lemma).
For all 𝑘 ≥ 1, the inclusion

𝑊 𝑘+1,𝑝 ↪𝑊 𝑘,𝑝

is compact. In particular, any bounded sequence in𝑊 𝑘+1,𝑝 has a subsequence that converges in𝑊 𝑘,𝑝.

Proposition 1.5.2 (Sobolev embedding).
Let𝑛 = dim(𝑀). Then for all finite-dimensional vector bundles𝐸 over𝑀, there is a continuous embedding

𝑊 𝑘,𝑝(𝑀, 𝐸) ↪ 𝐶𝑚(𝑀, 𝐸),

provided that
𝑚 ≤ 𝑘 − 𝑛

𝑝.

In particular, if 𝑠 ∈ 𝑊 𝑘,𝑝(𝑀, 𝐸) for all 𝑘 ≥ 𝑘0, then 𝑠 is smooth.

1.5.2 Elliptic operators
Let 𝐸, 𝐹 be real or complex vector bundles of ranks 𝑝 and 𝑞, respectively, over a manifold 𝑀. A partial
differential operator of order at most 𝑘 is a linear map 𝐿 ∶ Γ(𝐸) → Γ(𝐹) that locally, given a choice of
trivializations of 𝐸 and 𝐹 and coordinates on 𝑀, is given by

𝐿 = ∑
|𝛼|≤𝑘

𝐴𝛼 𝜕
|𝛼|

𝜕𝑥𝛼 ,

where 𝛼 is a multi-index, and each 𝐴𝛼 is a 𝑞 × 𝑝 matrix-valued function on the local chart.
For each 𝑚 ≤ 𝑘, let 𝐿𝑚 be the “homogeneous” component of order 𝑚 of 𝐿, that is

𝐿𝑚 = ∑
|𝛼|=𝑚

𝐴𝛼 𝜕
|𝛼|

𝜕𝑥𝛼 = ∑
𝛼1,…𝛼𝑚

𝐴𝛼1…𝛼𝑚 𝜕
𝜕𝑥𝛼1 ⋯

𝜕
𝜕𝑥𝛼𝑚 .

If we change coordinates to 𝑥′𝛽, but not the trivialization of the bundles, then we must have

𝐿𝑚 = ∑
𝛼1,…,𝛼𝑚

∑
𝛽1,…,𝛽𝑚

𝐴𝛼1…𝛼𝑚 𝜕𝑥
′𝛽1

𝜕𝑥𝛼1 ⋯
𝜕𝑥′𝛽𝑚
𝜕𝑥𝛼𝑚

𝜕
𝜕𝑥′𝛽1 ⋯

𝜕
𝜕𝑥′𝛽𝑚 = ∑

𝛽1,…,𝛽𝑚
𝐴′𝛽1…𝛽𝑚 𝜕

𝜕𝑥′𝛽1 ⋯
𝜕

𝜕𝑥′𝛽𝑚
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and therefore, the coefficients of 𝐿 transform as

𝐴′𝛽1…𝛽𝑚 = ∑
𝛼1,…,𝛼𝑚

𝐴𝛼1…𝛼𝑚 𝜕𝑥
′𝛽1

𝜕𝑥𝛼1 ⋯
𝜕𝑥′𝛽𝑚
𝜕𝑥𝛼𝑚 .

This tells us that the coefficients 𝐴𝛼 glue well to form 𝑝 × 𝑞-matrix-valued symmetric tensor field. Even
more, following a similar procedure, we can see that these matrices transform well under a change of
trivialization, so that 𝐿𝑚 has an associated section

�̃�𝑚(𝐿) ∈ Γ(𝑆𝑚𝑇𝑀 ⊗ End(𝐸, 𝐹)),

whose components are precisely the 𝐴𝛼 of above. We interpret it instead as a map

̃𝜎𝑚(𝐿) ∶ Γ(𝑆𝑚𝑇∗𝑀) → Γ(End(𝐸, 𝐹)).

We define the symbol of order𝑚 of 𝐿 as the map20

𝜎𝑚(𝐿) ∶ Ω1(𝑀) → Γ(End(𝐸, 𝐹))
𝜉 ↦ �̃�𝑚(𝐿)(𝜉, 𝜉, … , 𝜉).

If 𝐿 is a partial differential operator of order at most 𝑘, then we call 𝜎𝑘(𝐿) the principal symbol of 𝐿. We
denote it as 𝜎(𝐿) whenever there is no chance of confusion. In local coordinates, for 𝑥 ∈ 𝑀 and 𝜉 ∈ 𝑇∗

𝑥𝑀,
if we write 𝜉 = 𝜉𝜇 d𝑥𝜇, then the symbol 𝜎𝑚(𝐿) becomes21

𝜎𝑚(𝐿) = ∑
𝛼1,…,𝛼𝑚

𝐴𝛼1…𝛼𝑚𝜉𝛼1 …𝜉𝛼𝑚 . (1.2)

Sometimes, the coordinate expression of a partial differential operator is cumbersome, and it makes it
difficult to compute its symbol. Luckily, there is an alternative way to find the symbol in a coordinate-free
way. For the sake of simplicity (and since it’s our main interest), assume that 𝐿 is a partial differential
operator of order at most 2. Then we can write

𝐿 = 𝐿2 + 𝐿1 + 𝐿0 = ∑
𝛼1,𝛼2

𝐴𝛼1𝛼2 𝜕2
𝜕𝑥𝛼1𝜕𝑥𝛼2 +∑

𝛽
𝐵𝛽 𝜕

𝜕𝑥𝛽 + 𝐶,

where 𝐴𝛼1𝛼2 , 𝐵𝛽 and 𝐶 are 𝑞 × 𝑝-matrix-valued functions. For an arbitrary 𝑓 ∈ 𝐶∞(𝑀), define the map
[𝐿, 𝑓] ∶ Γ(𝐸) → Γ(𝐹) as

[𝐿, 𝑓](𝑠) = 𝐿(𝑓𝑠) + 𝑓𝐿(𝑠)
for all 𝑠 ∈ Γ(𝐸). A straightforward computation shows that

[[𝐿, 𝑓], 𝑓](𝑠) = 2 ∑
𝛼1,𝛼2

𝜕𝑓
𝜕𝑥𝛼1

𝜕𝑓
𝜕𝑥𝛼2 𝐴

𝛼1𝛼2(𝑠).

Note that this expression is precisely Equation (1.2) with a leading factor of 2 and with the components of
𝜉 replaced by 𝜕𝛼𝑗𝑓. Therefore, a way to compute 𝜎(𝐿) is by computing [[𝐿, 𝑓], 𝑓] for an arbitrary function,
substituting d𝑓 with an arbitrary form 𝜉, and dividing by 𝑘!.

20Note that 𝜎 and �̃� are equivalent by polarization.
21This follows by writing 𝜉 as d𝑓𝑥 for some function, and by interpreting the 𝜕𝛼𝑗 in 𝐿𝑚 as the dual basis to the basis d𝑥𝛼𝑗 .
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Example 1.5.3 (Symbol of the Lie derivative).
Let 𝑋 ∈ 𝔛(𝑀) be a vector field, and consider the Lie derivative ℒ𝑋 ∶ 𝔛(𝑀) → 𝔛(𝑀). In local
coordinates 𝑥𝜇, write 𝑋 = 𝑋𝜇𝜕𝜇. For any vector field 𝑌 = 𝑌𝜈𝜕𝜈, we have

ℒ𝑋(𝑌) = (𝑋𝜈𝜕𝜈𝑌𝜇 − 𝑌𝜈𝜕𝜈𝑋𝜇) 𝜕
𝜕𝑥𝜇 .

Here we identify the first- and zeroth-order terms

ℒ𝑋,0(𝑌) = −𝑌𝜈𝜕𝜈𝑋𝜇 𝜕
𝜕𝑥𝜇 ℒ𝑋,1(𝑌) = 𝑋𝜈𝜕𝜈𝑌𝜇 𝜕

𝜕𝑥𝜇 .

Here, even though the zeroth-order term has a partial derivative, it is not acting on the components
of 𝑌 . From this expression, we see at once that the principal symbol of ℒ𝑋 is

𝜎(ℒ𝑋)(𝜉) = 𝑋𝜈𝜉𝜈.

Equivalently, fix 𝑓 ∈ 𝐶∞(𝑀). Then

[ℒ𝑋 , 𝑓](𝑌) = ℒ𝑋(𝑓𝑌) − 𝑓ℒ𝑋𝑌 = ℒ𝑋(𝑓)𝑌 = d𝑓 (𝑋) ⋅ 𝑌,

and thus, with the rule “substitute d𝑓 with an arbitrary form 𝜉”, we see that

𝜎(ℒ𝑋)(𝜉) = 𝜉(𝑋) ⋅ .

The principal symbols of operators behave well under composition:

Proposition 1.5.4 (Symbol of composition).
Let 𝐿 ∶ Γ(𝐸) → Γ(𝐹) and 𝐷 ∶ Γ(𝐹) → Γ(𝐺) be partial differential operators of order at most 𝑘 and 𝑙,
respectively. Then

𝜎𝑙+𝑘(𝐷 ∘ 𝐿) = 𝜎𝑙(𝐷) ∘ 𝜎𝑘(𝐿).

We are interested in a very specific class of operators:

Definition 1.5.5 (Elliptic operator).
A partial differential operator 𝐿 is elliptic if its principal symbol is a fiberwise isomorphism for all nonzero
forms 𝜉. That is, if for all 𝑥 ∈ 𝑀 and all 𝜉 ∈ 𝑇∗𝑀, the map 𝜎(𝐿)(𝜉) ∶ 𝐸𝑥 → 𝐹𝑥 is an isomorphism.
Furthermore, if 𝑀 is a Riemannian manifold and 𝐿 ∶ Γ(𝐸) → Γ(𝐸), we say that 𝐿 is a generalized
Laplacian if its symbol is

𝜎(𝐿)(𝜉) = ±|𝜉|2id.

The importance of elliptic operators comes from the fact that the elements of their kernels enjoy a lot
of regularity. We will constantly make use of this fact to “recover” lost regularity of spinors when we take
derivatives of them, or use Rellich’s lemma to find convergent subsequences.

Theorem 1.5.6 (Elliptic regularity).
Let 𝑀 be a closed, oriented Riemannian manifold, 𝐸, 𝐹 Riemannian vector bundles, and 𝐿 ∶ Γ(𝐸) →
Γ(𝐹) an 𝑟-th order elliptic operator.
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1. For all 1 < 𝑝 < ∞ and 𝑘 ≥ 1, there are constants (depending on 𝑘, 𝑝) such that if 𝑢 ∈ 𝑊 1(𝐸) is
a weak 𝐿𝑝-solution of

𝐿𝑢 𝑤𝑘= 𝑣,
with 𝑣 ∈ 𝑊 𝑘,𝑝(𝐹), then

𝑢 ∈ 𝑊 𝑘+𝑟,𝑝(𝐸)
and

‖𝑢‖𝑘+𝑟,𝑝 ≤ 𝐶(‖𝑢‖𝑝 + ‖𝑣‖𝑘,𝑝).

2. If 𝐸, 𝐹 are Hermitian, and 𝑃 ∶ 𝐿2(𝐸) → 𝐿2(𝐸) is the orthogonal projection to ker(𝐿), then for all
1 < 𝑝 < ∞ and 𝑘 ≥ 1 there is a constant 𝐶 such that

‖𝑢 − 𝑃𝑢‖𝑟+𝑘,𝑝 ≤ 𝐶‖𝐿𝑢‖𝑘,𝑝

for all 𝑢 ∈ 𝑊 𝑟+𝑘,𝑝(𝐸).



CHAPTER2
Spin Geometry

T he Seiberg-Witten equations are, above all, equations about spinor fields on manifolds. These
spinors have their origin in physics, from the Dirac equation, which comes from relativistic quan-
tum mechanics. In a naïve relativistic generalization of quantum mechanics, the evolution of the

quantum wavefunction is given by the Klein-Gordon(-Schrödinger) equation (in “natural” units):

𝜕2𝜓
𝜕𝑡2 − ∇2𝜓 +𝑚2𝜓 = 0.

Where 𝜓 ∶ ℝ4 → ℂ is a scalar field, and 𝑚 ≥ 0 is the mass of the particle. On physical grounds, Paul
Dirac found this equation unsatisfactory, specifically because it was of second order in time1. He set out
to find a “square root” of the D’Alambertian operator 𝜕2𝑡 − ∇2 + 𝑚2 which was of first order in time as
well. He quickly discovered that such a square root cannot exist as an operator acting on scalar functions.
However, if he allowed for vector-valued wavefunctions, then by choosing matrices 𝛾0, … , 𝛾3 satisfying the
relations

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈, (2.1)

where 𝜂𝜇𝜈 is the Minkowski metric2, he proved that the operator

/𝜕𝜓 = 𝑖∑
𝜇
𝛾𝜇 𝜕𝜓
𝜕𝑥𝜇 −𝑚𝜓, (2.2)

does indeed square to the D’Alambertian.
In general, the 𝛾𝜇 form a (faithful) representation of a Clifford algebra on a vector space 𝑆. This

Clifford algebra is defined precisely as a real algebra with relations given by the anti-commutation relations
of Equation (2.1) 3. Therefore, the wavefunction 𝜓 can no longer be a complex function, but rather a

1This leads to a failure in a conservation law that ruins the standard interpretation that the square norm of the wave-function
|𝜓|2 represents a probability distribution in space.

2Defined as 𝜂00 = 1, 𝜂𝑖𝑖 = −1 for 𝑖 ≥ 1, and 𝜂𝜇𝜈 = 0 in all other cases.
3Clifford himself defined these algebras (which he called geometric algebras) as an alternative to the Grassmann algebras, gener-

ated by anti-commuting objects but whose squares are 1 or −1. Dirac’s rediscovery of them is a nice case of serendipity.

25
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𝑆-valued field on the space-time ℝ3 × ℝ. Such fields we call spinor4 fields. In order to generalize this
operator to manifolds, we need an additional structure on the manifold, called a Spin structure.

Not all 4-manifolds admit a Spin structure (for example, ℂℙ2 does not). However, if we twist the
structure locally with an additional complex line bundle, we obtain a Spinc-structure, and these always
exist for 4-manifolds. Physically speaking, the addition of a complex line bundle is coupling the evolution
of the relativistic particle to an electromagnetic field.

Overview of this chapter

This chapter can be roughly divided in two parts. The first is algebraic: We define Clifford algebras, review
some of their properties, and study their representations. Then we introduce the Spin groups, which are
subgroups of the Clifford algebras that can be seen as the universal covers of the orthogonal groups. The
second part is geometric: we promote all these algebraic structures to geometric structures on manifolds,
and define the Dirac operator. Finally, we add a U(1) term to everything and study the Spinc groups,
Spinc-structures, and the coupled Dirac operator. This U(1) term is physically interpreted as coupling
an electromagnetic field to the relativistic particle. Topologically, this extends and adds flexibility to the
notion of a spin structure.

2.1 Clifford algebras

This section follows [Fig17] and [LM89], with a dash of [Nab05]. Let 𝑉 be a finite-dimensional vector
space over5 𝕂 = ℝ or ℂ, and 𝑔 ∶ 𝑉 × 𝑉 → 𝕂 a symmetric bilinear form. We are mostly interested on
non-degenerate forms, which we call semi-Riemannian metrics, or Riemannian if they are positive definite.

We want to mimic the behaviour of the Dirac 𝛾 matrices, which satisfy

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈,

so we want to make a 𝕂-algebra that contains 𝑉 and satisfies

𝑥𝑦 + 𝑦𝑥 = −𝑔(𝑥, 𝑦)1.

Remark. Here is the first example of slightly different conventions between mathematicians and
physicists (which sometimes lead to not-so-slight annoyances). The physics convention is to define
the Clifford algebras such that 𝑥𝑦+𝑦𝑥 = 𝑔(𝑥, 𝑦)1. This follows the behavior of the Dirac 𝛾matrices
and the Minkowski metric. This does not change anything in the theory, only the names of things.

2.1.1 Definition and basic properties
We proceed as usual when we want to construct objects that satisfy certain relations: find a larger object
of the “same type” and take the quotient over a subset of elements that we need to be identified with zero.

Thus, if 𝑉 is a vector space with a symmetric, bilinear form 𝑔, we construct the Clifford algebra from
its tensor algebra 𝑇•𝑉 quotienting out the ideal 𝐼 generated by elements of the form 𝑣⊗𝑣+𝑔(𝑣, 𝑣).

4Pronounced “spinner”, like those fidget toys that were quite popular a few years ago.
5Most of the theory, up until the definition of the Spin group, works for any field.
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Definition 2.1.1 (Clifford algebra).
The Clifford algebra associated to a vector space (𝑉, 𝑔) with a symmetric, bilinear form is

Cl(𝑉, 𝑔) ∶= 𝑇•𝑉⧸𝐼,

where 𝐼 is the ideal generated by
{𝑣 ⊗ 𝑣 + 𝑔(𝑣, 𝑣) | 𝑣 ∈ 𝑉} .

Note that the ideal 𝐼 contains only only elements of even degree of 𝑇•𝑉 , and hence 𝑉 ∩ 𝐼 = {0}.
Therefore the map 𝑉 → Cl(𝑉, 𝑔) which maps 𝑣 to its class in Cl(𝑉, 𝑔) is injective, and so we simply think
of𝑉 as sitting in Cl(𝑉, 𝑔). Furthermore, since 𝐼 contains only even elements, the quotient Cl(𝑉, 𝑔) inherits
a ℤ2 grading (which we will view in more detail below).

Therefore, in Cl(𝑉, 𝑔), by definition we have for all 𝑣 ∈ 𝑉 , denoting the class of 𝑣 by the same symbol,

𝑣 ⋅ 𝑣 = −𝑔(𝑣, 𝑣)1.

More generally, for all 𝑣, 𝑢 ∈ 𝑉 ⊂ Cl(𝑉, 𝑔):

𝑢 ⋅ 𝑣 + 𝑣 ⋅ 𝑢 = −2𝑔(𝑢, 𝑣)1.

Suppose that we have a linear map 𝜑 ∶ 𝑉 → 𝐴 into a unital 𝕂-algebra 𝐴. When can we extend it to a
morphism of algebras from Cl(𝑉, 𝑔)? Certainly, any extension 𝜑 ∶ Cl(𝑉, 𝑔) → 𝐴 must satisfy

𝜑(𝑣)2 = 𝜑(𝑣)2 = 𝜑(𝑣2) = 𝜑(−𝑔(𝑣, 𝑣)1) = −𝑔(𝑣, 𝑣)1

for all 𝑣 ∈ 𝑉 . Conversely, since any map can be extended naturally to the tensor product, the condition
for it to descend to the quotient Cl(𝑉) is that it vanishes on the ideal 𝐼, which is precisely the condition
𝜑(𝑣)2 = −𝑔(𝑣, 𝑣)1. This property has its own name name:

Definition 2.1.2 (Clifford map).
Let 𝑉 be a 𝕂-vector space, 𝑔 a symmetric bilinear form on 𝑉 , and 𝐴 an associative, unital 𝕂-algebra. A
𝕂-linear map 𝜑 ∶ 𝑉 → 𝐴 is a Clifford map if for all 𝑣 ∈ 𝑉 :

𝜑(𝑣)2 = −𝑔(𝑣, 𝑣)1.

In the discussion above, we have almost shown that the Clifford algebra Cl(𝑉, 𝑔) satisfies the following
universal property:

Proposition 2.1.3 (Universal property of the Clifford algebra).
Let (𝑉, 𝑔) be a vector space with a quadratic form 𝑔. There is a unique (up to isomorphism) associative
unital 𝕂-algebra Cl(𝑉, 𝑔), along with a linear injective morphism 𝜄 ∶ 𝑉 → Cl(𝑉, 𝑔), such that for every
associative, unital 𝕂-algebra 𝐴, if 𝜑 ∶ 𝑉 → 𝐴 is a Clifford map then there exists a unique morphism of
algebras 𝜑 ∶ Cl(𝑉, 𝑔) → 𝐴 such that the diagram commutes:

Cl(𝑉, 𝑔) 𝐴

𝑉

𝜑

𝜑
.
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We haven’t shown uniqueness of Cl(𝑉, 𝑔), but it follows from the universal property itself.
This universal property also tells us that linear maps that are orthogonal with respect to the symmetric

form can be extended as morphisms of Clifford algebras.

Corollary 2.1.4 (Extension of orthogonal maps).
Let (𝑉, 𝑔) and (𝑊, ℎ) be 𝕂-vector spaces and 𝑔, ℎ symmetric bilinear forms on 𝑉 , 𝑊 respectively. If
𝜑 ∶ 𝑉 → 𝑊 is a 𝕂-linear map such that ℎ(𝜑(𝑢), 𝜑(𝑣)) = 𝑔(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 , then 𝜑 extends to a
unique morphism 𝜑 ∶ Cl(𝑉, 𝑔) → Cl(𝑊, ℎ).

Proof.— This proof is an exercise in using the universal property. First, we have that 𝜑 itself can be
considered as a map 𝜑 ∶ 𝑉 → Cl(𝑊, ℎ). It is a Clifford map, since for all 𝑣 ∈ 𝑉 ,

𝜑(𝑣)2 = −ℎ(𝜑(𝑣), 𝜑(𝑣))1 = −𝑔(𝑣, 𝑣)1.

The first equality comes from the basic relation of Cl(𝑊, ℎ). Therefore, by the universal property, there is
a unique morphism 𝜑 ∶ Cl(𝑉, 𝑔) → Cl(𝑊, ℎ) which restricts to 𝜑 on 𝑉 . ■

Universal properties and quotients of tensor algebras are not very pleasant to work with. Fortunately,
we can be much more explicit with our description of Cl(𝑉, 𝑔). If we choose a basis 𝑒1, … , 𝑒𝑛 of 𝑉 , then
the Clifford algebra Cl(𝑉, 𝑔) is the 𝕂-algebra generated by 𝑒1, … , 𝑒𝑛 subject to the relations

𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = −2𝑔(𝑒𝑖, 𝑒𝑗)1.

Notation. We will denote by ℝ𝑟,𝑠 the semi-Riemannian vector space ℝ𝑛=𝑟+𝑠 with the standard
semi-Riemannian metric with 𝑟 positive eigenvalues and 𝑠 negative eigenvalues. We denote
Cl(𝑟, 𝑠) = Cl(ℝ𝑟,𝑠); and Cl(𝑛) = Cl(ℝ𝑛) with the standard euclidean metric.

Let’s see a few examples:

Example 2.1.5 (Cl(1),Cl(2)).
For 𝑛 = 1, we have that Cl(1) is the real associative algebra generated by the elements 1, 𝑒 with the
relation 𝑒2 = −1. This is precisely ℂ, seen as an ℝ-algebra. Thus,

Cl(1) ≅ ℂ.

Note that the inclusion of ℝ into Cl(1) ≅ ℂ is not the obvious one: we have

ℝ ↪ 𝑖ℝ ⊆ Cl(1) ≅ ℂ
1 ↦ 𝑖.

Now let’s go to the case Cl(2). This is generated by elements 1, 𝑒1, 𝑒2 subject to the conditions
𝑒21 = 𝑒22 = −1, and 𝑒1𝑒𝑗 = −𝑒𝑗𝑒𝑖. A little bit of playing around with it lets us see that the iden-
tification 𝑒1 = i, 𝑒2 = j, 𝑒1𝑒2 = k induces an isomorphism between Cl(2) and the quaternions
ℍ:

Cl(2) ≅ ℍ.
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What is the dimension of the Clifford algebra Cl(𝑉, 𝑔)? If 𝑒1, … , 𝑒𝑛 is an orthonormal basis of 𝑉 , then the
elements

1,
𝑒1, … , 𝑒𝑛,

𝑒1𝑒2, … , 𝑒1𝑒𝑛, 𝑒2𝑒3, … , 𝑒𝑛−1𝑒𝑛
⋮

𝑒1 … 𝑒𝑛

are all linearly independent and they span Cl(𝑉), and so dimCl(𝑉) = 2dim𝑉 . We have proved, then:

Proposition 2.1.6 (Dimension of the Clifford algebra).
Let (𝑉, 𝑔) be a finite-dimensional vector space with a symmetric bilinear form. Then dimCl(𝑉, 𝑔) =
2dim𝑉 .

It is time to revisit the ℤ2 grading of the Clifford algebra. We have a natural decomposition of Cl(𝑉)
into even and odd components

Cl(𝑉) = Cl(𝑉)0 ⊕Cl(𝑉)1 (Only as vector spaces!)

where Cl(𝑉)0 is the set of even elements, and Cl(𝑉)1 is the set of odd ones. Note that Cl(𝑉)0 is a
subalgebra of Cl(𝑉), but Cl(𝑉)1 is not. This decomposition turns Cl(𝑉) into a ℤ2-graded algebra, since if
𝑎 ∈ Cl(𝑉)𝑖 and 𝑏 ∈ Cl(𝑉)𝑗, then 𝑎𝑏 ∈ Cl(𝑉)𝑖+𝑗 (the sum taken modulo 2).

Consider the orthogonal map 𝑣 ↦ −𝑣 on (𝑉, 𝑔). By Corollary 2.1.4, it induces an automorphism, the
parity map, which we denote by 𝑝 ∶ Cl(𝑉, 𝑔) → Cl(𝑉, 𝑔). Explicitly, for 𝑣1, … , 𝑣𝑘 ∈ 𝑉 , this map is

𝑝(𝑣1 …𝑣𝑘) = (−𝑣1) … (−𝑣𝑘) = (−1)𝑘𝑣1 …𝑣𝑘.

Therefore, for all 𝑎 ∈ Cl(𝑉), if we write 𝑎 = 𝑎0 + 𝑎1 with 𝑎0 ∈ Cl(𝑉)0 and 𝑎1 ∈ Cl(𝑉)1, then

𝑝(𝑎) = 𝑝(𝑎0 + 𝑎1) = 𝑎0 − 𝑎1.

Namely, Cl(𝑉)0 (resp. Cl(𝑉)1) is the eigenspace associated to the eigenvalue 1 (resp. −1) of 𝑝.

2.1.2 Complex(ified) Clifford algebras
There is a rich theory of real Clifford algebras (see e.g.[LM89]), but we will study their complexified
flavours, basically since in the global case we consider complex spinors. Given a real vector space 𝑉 , with a
symmetric bilinear form 𝑔, we define

Clℂ(𝑉, 𝑔) ∶= Cl(𝑉, 𝑔) ⊗ℝ ℂ.

Note that Clℂ(𝑉, 𝑔) is a ℂ-algebra with scalar multiplication

𝑧 ⋅ (𝑎 ⊗ 𝑤) = 𝑎 ⊗ 𝑧𝑤,

for all 𝑎 ∈ Cl(𝑉, 𝑔) and 𝑧, 𝑤 ∈ ℂ.
The complexified Clifford algebra is precisely the Clifford algebra of the complexified 𝑉ℂ = 𝑉 ⊗ ℂ.

This is a straightforward application of the universal property.
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Proposition 2.1.7 (Complexification and Cliffordization commute).
Let 𝑉 be a real vector space and 𝑔 a semi-Riemannian metric on 𝑉 . Then there is an isomorphism

Clℂ(𝑉, 𝑔) ≅ Cl(𝑉ℂ, 𝑔ℂ),

where 𝑔ℂ is the metric 𝑔, extended complex-bilinearly to 𝑉ℂ.

Remark. Note that the complex bilinear form 𝑔ℂ is not an inner product. Complex inner products
(or Hermitian metrics) are sesquilinear, not bilinear.

Furthermore, note that complexifying a bilinear form destroys any definiteness: Suppose that
𝑣 ∈ 𝑉 is such that 𝑔(𝑣, 𝑣) > 0. Then 𝑖𝑣 is ℂ-linearly dependent with 𝑣, but it satisfies

𝑔ℂ(𝑖𝑣, 𝑖𝑣) = −𝑔(𝑣, 𝑣) < 0.

This means that if 𝑒1, … , 𝑒𝑛 is a 𝑔-orthonormal basis of 𝑉 , we can multiply some of those elements
with 𝑖 to obtain a basis 𝜀1, … , 𝜀𝑛 with 𝑔ℂ(𝜀𝑗 , 𝜀𝑗) = 1 for all 𝑗. This way, we conclude that for all
𝑟, 𝑠 ≥ 0,

Clℂ(ℝ𝑟,𝑠) = Clℂ(ℝ𝑟+𝑠).

Remark. We will be interested in complex representations of Clifford algebras. Since these are in bi-
jection with representations of the complexified algebras (see the discussion below Definition 2.3.2),
from now on we will only consider Riemannian metrics.

Let Clℂ(𝑛) = Cl(𝑛)ℂ = Cl(ℂ𝑛). We consider Cl(ℂ𝑛) as taken with respect to the standard quadratic
form

𝑞st(𝑧) =
𝑛
∑
𝑖=1

𝑧2𝑖 .

These complexified Clifford algebras have a very simple classification[LM89, Theorem I.4.3]:

Theorem 2.1.8 (Classification of complex Clifford algebras).
For 𝑛 ≥ 0, we have

Clℂ(2𝑛) ≅ ℂ(2𝑛), and Clℂ(2𝑛 + 1) ≅ ℂ(2𝑛) ⊕ ℂ(2𝑛).

This classification will help us with the classification of their irreducible representations.

2.2 The Spin group

The next algebraic ingredients are the spin groups. In a pinch, one can define them as the universal covers of
the orthogonal groups. However, with this definition, their relation to the Clifford algebras are somewhat
obscure. In this section, we will see that the spin groups are the subgroups of the Clifford algebras which
are “most like” the orthogonal groups.
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2.2.1 Definition and examples
Let𝑉 be a Riemannian𝕂-vector space. We denote the inner product as ⟨𝑢, 𝑣⟩. For every invertible element
𝑎 ∈ Cl(𝑉)×, we have the adjoint action Ad𝑎 ∶ Cl(𝑉) → Cl(𝑉), given as

Ad𝑎(𝑏) = 𝑎𝑏𝑎−1,

for all 𝑏 ∈ Cl(𝑉). This action is an automorphism of Cl(𝑉), with inverse Ad−1𝑎 = Ad𝑎−1 .
Note that if 𝑣 ∈ 𝑉 is nonzero, then the Clifford condition

𝑣2 = 𝑣𝑣 = −‖𝑣‖21,

implies that 𝑣 is invertible as an element of Cl(𝑉), with inverse 𝑣−1 = −𝑣/‖𝑣‖2. Therefore we can consider
the adjoint action of nonzero vectors of 𝑉 . In particular, if 𝑣 ∈ 𝑉 is nonzero, then for any 𝑢 ∈ 𝑉 , we have

Ad𝑣(𝑢) = 𝑣𝑢𝑣−1 = − 1
‖𝑣‖2 𝑣𝑢𝑣 = − 1

‖𝑣‖2 𝑣(−𝑣𝑢 − 2 ⟨𝑢, 𝑣⟩) = − (𝑢 − 2 ⟨𝑢, 𝑣⟩ 𝑣
‖𝑣‖2 ) = −Refl𝑣(𝑢),

that is, Ad𝑣(𝑢) is (minus) the reflection of 𝑢 across the plane normal to 𝑣. This tells us that restricting Ad𝑣
to 𝑉 gives us an orthogonal map. In fact, for any element of multiplicative subgroup of Cl(𝑉) generated
by 𝑉 , which we denote by 𝑉×, the adjoint action is still an orthogonal map on 𝑉 , since

Ad𝑣1…𝑣𝑘(𝑢) = (Ad𝑣1 ∘ … ∘ Ad𝑣𝑘)(𝑢) = (−1)𝑘(Refl𝑣1 ∘ ⋯ ∘ Refl𝑣𝑘)(𝑢).

for all 𝑢 ∈ 𝑉 . Therefore, we have a group homomorphism, which we call the spinor map 𝓈, given as

𝓈 ∶ 𝑉× → O(𝑉, 𝑔)
𝑣 ↦ 𝓈(𝑣) = Ad𝑣 |𝑉

This morphism is surjective, since every orthogonal map can be decomposed as a set of reflections (this is
the Cartan-Dieudonné theorem [see Car81, section 10 for an elementary proof ]). Any rotation can be
decomposed as an even number of reflections, so if we write 𝑉×

0 = 𝑉× ∩ Cl(𝑉)0 for the subgroup of even
elements generated by nonzero vectors, we have a surjective homomorphism

𝓈 ∶ 𝑉×
0 → SO(𝑉).

In neither case 𝓈 is injective, since conjugation is invariant under scalar multiplication: if 𝑎′ = 𝜆𝑎 for
some nonzero 𝜆 ∈ 𝕂, then Ad𝑎 = Ad𝑎′ . However, for the even case, this is indeed precisely the kernel
[LM89, Proposition I.2.4]:

Lemma 2.2.1 (Kernel of 𝓈).
Let 𝑉, 𝑔 be as above. Then

ker 𝓈|𝑉×
0
= 𝕂×.

This tells us that the map 𝓈 does not identify a copy of SO(𝑛) inside Cl(𝑉)×. However, if we restrict 𝓈 to
the subgroup of even elements generated by unit vectors, we find an object that is very similar to SO(𝑛).
This is what we call the Spin group:
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Definition 2.2.2 (Spin(𝑉)).
Let 𝑉 be a Riemannian vector space. The spin group Spin(𝑉) is the even multiplicative subgroup gener-
ated by vectors of unit length in 𝑉 :

Spin(𝑉) ∶= {𝑣1 …𝑣2𝑘 ∈ Cl(𝑉) || ⟨𝑣𝑖, 𝑣𝑖⟩
2 = 1 for all 𝑘} .

We write Spin(𝑛) = Spin(ℝ𝑛) with the standard euclidean inner product.

Since Spin(𝑉) ⊆ 𝑉×
0 and 𝓈 is invariant under rescaling, we have that 𝓈 restricted to Spin(𝑉) is also

surjective. This is because a rotation can be decomposed as a series of reflections perpendicular to unit
vectors6. From all our work above with the map 𝓈, we obtain:

Theorem 2.2.3 (Short Exact Sequence of Spin).
Let 𝑉 be a real, finite-dimensional Riemannian vector space. The short sequence

1 {−1, 1} Spin(𝑉) SO(𝑉) 1𝓈

is exact. For 𝑉 = ℝ𝑛 with 𝑛 ≥ 2, the spinor map 𝓈 is a non-trivial two-sheeted covering. Furthermore,
if 𝑛 ≥ 3, then Spin(𝑛) is the universal cover of SO(𝑛).

Proof.— Suppose that 𝑥 ∈ Spin(𝑉) is in ker 𝓈. By Lemma 2.2.1, since Spin(𝑉) ⊂ 𝑉×
0 , then 𝑥 ∈ ℝ×.

However, 𝑥 is a product of elements of unit norm, so 𝑥 = ±1.
Finally, we have that 𝓈 ∶ Spin(𝑉) → SO(𝑉) is surjective by the Cartan-Dieudonné theorem (and the

fact that we can normalize vectors in ℝ). Therefore the sequence is exact.
Now let’s show that Spin(𝑛) is the universal cover of SO(𝑛). First, note that 𝓈 ∶ Spin(𝑛) → SO(𝑛)

is indeed a covering map. Since 𝜋1(SO(𝑛)) = ℤ/2ℤ for 𝑛 ≥ 3 [see Hal15, proposition 13.10], if we can
show that Spin(𝑛) is connected, we will be able to conclude that it is the universal cover7 of SO(𝑛).

We can construct a path connecting 1 to −1 in Spin(𝑛), assuming 𝑛 ≥ 2 as follows: let 𝑒1, 𝑒2 ∈ 𝑉 be
orthonormal. Consider the curve

𝑡 ↦ ±(cos(𝑡)𝑒1 + sin(𝑡)𝑒2)(sin(𝑡)𝑒2 − cos(𝑡)𝑒1).

Clearly this curve lies entirely in Spin(𝑛) and connects 1 to −1. ■

Remark. Many references define the Spin groups as the universal covers of the respective special
orthogonal groups. Such a definition avoids all the Clifford algebra stuff. However, we do need the
Clifford algebra stuff to define the Dirac operator that comes in the Seiberg-Witten equations.

6This is where we need more conditions on the field 𝕂. Since the Cartan-Dieudonné theorem states that rotations can be
decomposed into an even number of reflections along planes; just could choose a vector 𝑣 orthogonal to the plane and normalize it.
However, this assumes that the equation

⟨𝜆𝑣, 𝜆𝑣⟩ = 𝜆2 ⟨𝑣, 𝑣⟩ = ±1
can be solved for 𝜆, which is not the case for all fields 𝕂.

7This follows from the following fact: if𝜌 ∶ �̃� → 𝑋 is a covering, then for𝑥 ∈ 𝑋, the cardinality of the fiber𝜌−1(𝑥) is the index
of [𝜋1(𝑋, 𝑥) ∶ 𝜌∗𝜋1(�̃�, �̃�)][Rot93, Theorem 10.9]. In our case, since |𝓈−1(1)| = |𝜋1(SO(𝑛))|, then 𝓈∗𝜋1(Spin(𝑛), 1) = {1}.
However, 𝓈∗ ∶ 𝜋1(Spin(𝑛), 1) → 𝜋1(SO(𝑛), 1) is an injection [Rot93, Theorem 10.7], so necessarily 𝜋1(Spin(𝑛), 1) = {1}, i.e.
Spin(𝑛) is simply connected, and thus the universal cover of SO(𝑛).
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2.2.2 When 𝑛 = 4
We are building up towards the Seiberg-Witten equations, which are on 4-manifolds. Our main interest is
then in the 𝑛 = 4 case. While we can obtain a characterization of Cl(4) via [LM89, Theorem 4.3], namely
that Cl(4) ≅ ℍ(2), this is not good enough for our purposes and does not help us with the computations
that we want. The embedding of ℝ4 ↪ Cl(4) is needed in order to determine the Spin(4) group, and
following the proof of [LM89, Theorem 4.3] (which is constructive) gives us a very complicated embedding.
Fortunately, we can express Cl(4) explicitly.

This example follows [Nab05, pp. 32-37]. Denote by 𝕚, 𝕛, 𝕜 the complex units of ℍ. Let 𝑒0, 𝑒1, 𝑒2, 𝑒3
be the standard orthonormal basis of ℝ4, and consider the map ℝ4 → ℍ(2) given as

𝑒0 ↦ ( 0 1
−1 0) 𝑒1 ↦ (0 𝕚

𝕚 0)

𝑒2 ↦ (0 𝕛
𝕛 0) 𝑒3 ↦ (0 𝕜

𝕜 0) .

It is straightforward to show that this is a Clifford map, which induces an isomorphism of real algebras
Cl(4) ≅ ℍ(2). This is called the Weyl or chiral representation of Cl(4). In this representation, ℝ4 is
embedded as

𝑣 ↦ ( 0 𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜
−𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜 0 ) .

For every 𝑣 ∈ ℝ4, let 𝑞(𝑣) = 𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜 ∈ ℍ. Then this embedding is simply

𝑣 ↦ ( 0 𝑞(𝑣)
−𝑞(𝑣) 0 ) .

In particular, products of pairs of vectors go to

𝑢𝑣 ↦ (−𝑞(𝑢)𝑞(𝑣)
0 −𝑞(𝑢)𝑞(𝑣)

) .

Thus the even and odd components are the diagonal and antidiagonal matrices:

Cl(4)0 = {(𝑞1 0
0 𝑞2

) ∶ 𝑞1, 𝑞2 ∈ ℍ } ,

Cl(4)1 = {( 0 𝑞1
𝑞2 0 ) ∶ 𝑞1, 𝑞2 ∈ ℍ } .

The spin group Spin(4) is the subgroup of Cl(4)0 which is generated by vectors of unit norm. If 𝑣 ∈ ℝ4 has
unit norm, then the corresponding quaternion 𝑞(𝑣) also has unit norm, and the product of such elements
is again a unit quaternion. Therefore, identifying the unit quaternions8 with SU(2), we have

Spin(4) ⊆ {(𝑞1 0
0 𝑞2

) ∶ 𝑞1, 𝑞2 ∈ ℍ and ‖𝑞1‖ = ‖𝑞2‖ = 1} ≅ SU(2) × SU(2).

8The identification is given by 1↦ (1 0
0 1), i↦ (𝑖 0

0 −𝑖), j↦ ( 0 1
−1 0), k↦ (0 𝑖

𝑖 0).
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In fact, this is an equality. This can be seen by explicitly computing the even products of the basis vectors
[see Nab05, equation 7.33] and seeing that any pair of unit quaternions can be obtained from an even
product of unit vectors9. Therefore

Spin(4) = {(𝑞1 0
0 𝑞2

) ∶ 𝑞1, 𝑞2 ∈ ℍ and ‖𝑞1‖ = ‖𝑞2‖ = 1} ≅ SU(2) × SU(2).

2.2.3 Lie algebra structures
For any finite-dimensional real or complex vector space𝑉 and symmetric bilinear form 𝑔 on𝑉 , the Clifford
algebra Cl(𝑉, 𝑔) has a natural smooth structure, arising from its vector space structure. The group of units
Cl(𝑉)× is an open subset of Cl(𝑉), so it is an open smooth submanifold of Cl(𝑉). Furthermore, the
multiplication map 𝑚 ∶ Cl(𝑉) × Cl(𝑉) → Cl(𝑉) is bilinear, which automatically grants it smoothness
in the finite-dimensional case10. The inversion map inv ∶ 𝑎 ↦ 𝑎−1 is also smooth, and its derivative is
𝑇𝑎inv(𝑏) = −𝑎−1𝑏𝑎−1 but proving that requires a bit more work [see Mur90, Theorem 1.2.3]. With these
two remarks we conclude that Cl(𝑉)× is a Lie group.

We can easily find what the Lie algebra of Cl(𝑉)× is. For all 𝑎 ∈ Cl(𝑉), there is a small enough 𝜖 > 0
such that for all 𝑡 ∈ (−𝜖, 𝜖), the curve 𝑡 ↦ 1+𝑡𝑎 lies entirely in Cl(𝑉)× [Mur90, Theorem 1.2.2]. Then the
curve 𝑡 ↦ 1+ 𝑡𝑎 is an integral curve of 𝑎, if we interpret 𝑎 as a tangent vector at the identity 1. Therefore,
the Lie bracket is11

[𝑎, 𝑏] = d
d𝑡
|||𝑡=0

(1 + 𝑡𝑎)𝑏(1 + 𝑡𝑎)−1 = 𝑎𝑏 − 𝑏𝑎.

We have shown, then:

Proposition 2.2.4 (Group of units is a Lie group).
Let 𝑉 be a real or complex finite-dimensional Riemannian vector space. Then the multiplicative group of
unitsCl(𝑉)× is a Lie group of dimension 2dim(𝑉), and its Lie algebra is 𝔠𝔩(𝑉) = (Cl(𝑉), [⋅, ⋅]), with the
commutator as the Lie bracket.

Consequently, Spin(𝑉) is a Lie group as well.

Let’s focus now on Spin(𝑛) and its Lie algebra. If 𝑛 ≥ 2 then Theorem 2.2.3 states that the spinor
map 𝓈 ∶ Spin(𝑛) → SO(𝑛) is a non-trivial double cover. This means that 𝓈 is a local diffeomorphism, and
so

dimSpin(𝑛) = dimSO(𝑛) = (𝑛)(𝑛 + 1)
2 .

Let 𝑒1, … , 𝑒𝑛 be an orthonormal basis of ℝ𝑛. Consider the curves ℝ → Spin(𝑛) given by

𝑡 ↦ (cos(𝑡)𝑒𝑖 + sin(𝑡)𝑒𝑗)(− cos(𝑡)𝑒𝑖 + sin(𝑡)𝑒𝑗) = cos(2𝑡) + sin(2𝑡)𝑒𝑖𝑒𝑗
for 𝑖 < 𝑗. These are all curves contained in Spin(𝑛), passing through 1 at 𝑡 = 0, with tangent vectors 2𝑒𝑖𝑒𝑗.
These tangent vectors are elements of the Lie algebra 𝔰𝔭𝔦𝔫(𝑛) = 𝑇1Spin(𝑛). They are linearly independent,
and there is in total (𝑛)(𝑛 + 1)/2 of them, so they generate 𝔰𝔭𝔦𝔫(𝑛).

Let’s collect this in a proposition:
9This straightforward but not fun.

10In general case, for any real or complex algebra 𝐴, smoothness of the multiplication map 𝐴 × 𝐴 → 𝐴 is guaranteed if 𝐴 is a
Banach algebra: That is, 𝐴 is a Banach space and the multiplication satisfies

‖𝑎𝑏‖ ≤ ‖𝑎‖‖𝑏‖
for all 𝑎, 𝑏 ∈ 𝐴.

11In fact, this is true of any Banach algebra.
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Proposition 2.2.5 (Lie algebra 𝔰𝔭𝔦𝔫(𝑛)).
For all 𝑛 ≥ 2 the Lie group Spin(𝑛) has dimension (𝑛)(𝑛 + 1)/2. If 𝑒1, … , 𝑒𝑛 is an orthonormal basis of
ℝ𝑛, then a basis of 𝔰𝔭𝔦𝔫(𝑟, 𝑠) is given by elements of the form

𝑒𝑖𝑒𝑗

with 𝑖 < 𝑗.

The spinor map 𝓈 ∶ Spin(𝑛) → SO(𝑛) is a Lie group homomorphism, and so its derivative 𝑇1𝓈 ∶
𝔰𝔭𝔦𝔫(𝑛) → 𝔰𝔬(𝑛) is a Lie algebra morphism. We can see what its explicit action is on the basis that we
found in the previous Proposition 2.2.5. We interpret 𝔰𝔬(𝑛) as a subset of End(ℝ𝑛). Let 𝑒1, … , 𝑒𝑛 be an
orthonormal basis of ℝ𝑛, which induces a basis of 𝔰𝔭𝔦𝔫(𝑛) with elements 𝑒𝑖𝑒𝑗 with 𝑖 < 𝑗. An integral
curve of such elements is given by 𝛾 ∶ ℝ → Spin(𝑛), with 𝛾(𝑡) = cos(𝑡) + sin(𝑡)𝑒𝑖𝑒𝑗. A straightforward
computation shows that 𝛾(𝑡)−1 = 𝛾(−𝑡) for all 𝑡 ∈ ℝ.

Then for all 𝑣 ∈ ℝ𝑛

𝑇1𝓈(𝑒𝑖𝑒𝑗)(𝑣) =
d
d𝑡
|||𝑡=0

𝓈(𝛾(𝑡))(𝑣) = d
d𝑡
|||𝑡=0

𝛾(𝑡)𝑣𝛾(−𝑡)

= 𝑒𝑖𝑒𝑗𝑣 − 𝑣𝑒𝑖𝑒𝑗
= 𝑒𝑖(−𝑣𝑒𝑗 − 2 ⟨𝑒𝑗 , 𝑣⟩) − (−𝑒𝑖𝑣 − 2 ⟨𝑒𝑖, 𝑣⟩)𝑒𝑗
= 2(⟨𝑒𝑖, 𝑣⟩ 𝑒𝑗 − ⟨𝑒𝑗 , 𝑣⟩ 𝑒𝑖)
= 2𝐸𝑖𝑗(𝑣).

Here, 𝐸𝑖𝑗 is represented by the anti-symmetric matrix with a 1 in the 𝑖, 𝑗 entry, −1 in the 𝑗, 𝑖 entry, and
zeros everywhere else. These matrices generate 𝔰𝔬(𝑛).

Notation. We denote the induced infinitesimal action of 𝔰𝔭𝔦𝔫(𝑛) as

𝔰 ∶= 𝑇1𝓈 ∶ 𝔰𝔭𝔦𝔫(𝑛) → 𝔰𝔬(𝑛).

2.3 Representations

Let’s go back for a moment to the Dirac equation ( Equation (2.2)). In it, we have a collection of objects
𝛾𝜇 which satisfy the anti-commutation relations of the Clifford algebra Cl(1, 3), which act on the vector
space where the wavefunction 𝜓 lives. That is, they form a representation of Cl(1, 3).

We will only focus on the complex representations of the Clifford algebras, and as we will see below,
this implies that the signature of the bilinear form on the vector space becomes irrelevant.

2.3.1 Classification and examples

Definition 2.3.1 (Representation of an (associative) algebra).
Let 𝐴 be a unital, associative algebra over a field 𝕂, and 𝕂 ⊇ 𝕂 an extension. A 𝕂-representation of 𝐴
is a 𝕂-algebra morphism 𝜌 ∶ 𝐴 → End𝕂(𝑉), where 𝑉 is a 𝕂-vector space.

A subspace𝑊 ⊆ 𝑉 is and invariant subspace of the representation 𝜌 if for all 𝑎 ∈ 𝐴,

𝜌(𝑎)(𝑊) ⊆ 𝑊.
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If 𝜌 admits a nontrivial invariant subspace, we say that it is reducible. Otherwise, we say it is irre-
ducible.

This is the general definition12 but we will only consider complex representations of the real Clifford algebras
and their complexifications. That is, for our purposes 𝕂 = ℝ or ℂ and 𝕂 = ℂ. Furthermore, we are
interested in the irreducible representations of the Clifford algebras.

Definition 2.3.2 (Equivalence of representations).
Let 𝜌 ∶ 𝐴 → End(𝑉) and 𝜌′ ∶ 𝐴 → End(𝑉 ′) be two representations of the associative unital algebra 𝐴.
We say that the two representations are equivalent if there exists an isomorphism 𝜑 ∶ 𝑉 → 𝑉 ′ such that
for all 𝑎 ∈ 𝐴:

𝜌′(𝑎) = 𝜑 ∘ 𝜌(𝑎) ∘ 𝜑−1.
We say that 𝜑 is an intertwining operator and that it intertwines 𝜌 and 𝜌′.

Note. From now on, all representations are complex, unless otherwise stated. You’ll thank me after
you read the next paragraph.

Note that since we are considering complex representations, it doesn’t really matter whether we are
representing a real algebra or its complexification. Namely, if 𝐴 is a unital, associative real algebra and
𝜌 ∶ 𝐴 → Endℂ(𝑉) is a representation, then we can extend 𝜌 to the complexification 𝐴ℂ simply by
requiring 𝜌 to be complex-linear:

𝜌(𝑎 + 𝑖𝑏) ∶= 𝜌(𝑎) + 𝑖𝜌(𝑏).
The right-hand side makes sense since Endℂ(𝑉) is a complex algebra. Conversely, if we have a representa-
tion of the complexification 𝐴ℂ, i.e. 𝜌 ∶ 𝐴ℂ → Endℂ(𝑉), then by restricting to the real form 𝐴 ⊆ 𝐴ℂ, we
obtain a representation of 𝐴. These two operations (extending to the complexification and restricting to
the real form) are inverses of one another. Therefore, the representations of a real algebra are in bijection
with representations of its complexification.

Furthermore, if 𝜌 ∶ 𝐴ℂ → Endℂ(𝑉) is irreducible, then the restriction 𝜌|𝐴 ∶ 𝐴 → Endℂ(𝑉) is
irreducible as well. We can see this as follows: suppose that 𝑊 ⊆ 𝑉 is an invariant subspace of 𝜌|𝐴. Then
𝜌(𝑎)(𝑊) ⊆ 𝑊 for all 𝑎 ∈ 𝐴. However, 𝑊 is a complex vector space so that

(𝜌(𝑎) + 𝑖𝜌(𝑏))(𝑊) ⊆ 𝑊

as well for all 𝑎, 𝑏 ∈ 𝐴. Therefore 𝑊 is an invariant subspace of 𝜌, which implies that it is either zero or
𝑉 .

All in all, this means that if we want to find the irreducible representations of an algebra 𝐴, it suf-
fices to find the irreducible representations of 𝐴ℂ. Fortunately for us, we have a neat classification of the
complexified Clifford algebras Clℂ(𝑛), as we found in Theorem 2.1.8:

Clℂ(2𝑛) ≅ ℂ(2𝑛)
12In a few references, there is little or no mention of representations of associative algebras, and instead everything is discussed

in terms of modules. This is because every representation 𝜌 ∶ 𝐴 → End(𝑉) turns 𝑉 into an𝐴-module, with “scalar” multiplication
defined by

𝑎𝑣 ∶= 𝜌(𝑎)(𝑣).
An invariant subspace 𝑊 ⊆ 𝑉 then corresponds to an 𝐴-submodule of 𝑉 . Therefore, an irreducible representation induces an
𝐴-module which has no non-trivial submodules. This is known as a simple module.
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Clℂ(2𝑛 + 1) ≅ ℂ(2𝑛) ⊕ ℂ(2𝑛).

These are all (sums) of matrix algebras, and their irreducible representations are determined by the wise
mages of algebra:

Theorem 2.3.3 (Irreducible representations of matrix algebras).
Let 𝕂 be a field, and let 𝐴 be a direct sum of matrix algebras over 𝕂:

𝐴 =
𝑟

⨁
𝑖=1

𝕂(𝑛𝑖).

Then the only irreducible 𝕂-representations of 𝐴 are projections onto the components 𝕂(𝑛𝑖):

𝜌𝑖 ∶ 𝐴 → 𝕂(𝑛𝑖) ≅ End𝕂(𝕂𝑛𝑖 ),

for 𝑖 = 1, … , 𝑟.

For a reasonably elementary proof, see [Eti+11, Theorem 2.6]. As a corollary of this, we have all the
irreducible representations of the complexified (and therefore of the real!) Clifford algebras:

Corollary 2.3.4 (Irreducible representations of Clifford algebras).
For all𝑛 ∈ ℕ, the Clifford algebraCl(2𝑛) has a unique irreducible representation, which is 2𝑛 dimensional.
In the odd case, Cl(2𝑛 + 1) has exactly two inequivalent, irreducible representations, both of dimensions
2𝑛.

2.3.2 The Spin representation
We want to restrict these representations to obtain representations of the Spin groups. In the case of
even dimension, there is only one irreducible representation to begin with. However, in the odd case
where there are two inequivalent representations, both restrict to equivalent representations of Spin. Since
Spin(𝑛) ⊆ Cl(𝑛)0, it suffices to see what happens to irreducible representations when we restrict to the
even subalgebras.

Lemma 2.3.5 (Restriction of irreducible representations).
Let 𝑛 ≥ 0 be even and let 𝜌 be the unique irreducible representation ofCl(𝑛). When restricted to the even
subalgebraCl(𝑛)0, the representation is reducible. It can be decomposed into two summands 𝜌 = 𝜌+⊕𝜌−.

If 𝑛 ≥ 1 is odd, then both irreducible representations of Cl(𝑛) become equivalent when restricted to
Cl(𝑛)0, and the resulting representation is still irreducible.

The proof of this result is a bit laborious (although not too difficult). It can be found in [LM89, section
I.5]. Even though we worked with Clℂ(𝑛), these results hold in general for complex representations of all
Cl(𝑟, 𝑠). This is because there is a bijection between representations of an algebra and representations of its
complexification (see the discussion before Theorem 2.3.3), and because complexifying destroys definite-
ness, so Clℂ(𝑟, 𝑠) = Clℂ(𝑟 + 𝑠) (see the remark after Proposition 2.1.7).

We define the (complex) spin representation as follows:
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Definition 2.3.6 (The Spin representation).
Let 𝑉 be a real, finite-dimensional vector space and 𝑔 a semi-Riemannian metric on 𝑉 . The (complex)
spin representation is the unique representation Δ ∶ Spin(𝑉) → End(𝑆) that is obtained by restricting
an irreducible representation of Cl(𝑉) to Spin(𝑉). If dim(𝑉) is even, then Δ is reducible, and can be
decomposed into two summands Δ = Δ+ ⊕Δ−. If dim(𝑉) is odd, Δ is irreducible. We call an element of
𝑆 a spinor.

Example 2.3.7 (The spin representation: 𝑛 = 4).
In Section 2.2.2, we saw that Cl(4) is isomorphic to ℍ(2), and the even subalgebra is

Cl(4)0 = {(𝑞1 0
0 𝑞2

) ∈ ℍ(2) ∶ 𝑞1, 𝑞2 ∈ ℍ } .

To complexify Cl(4), we see each of the four entries of a matrix inℍ(4) as a complex 2×2matrix via
the standard representation. All complex-linear combinations of these matrices generate the entire
matrix algebra ℂ(4), so that (as we expect from Theorem 2.1.8), Clℂ(4) ≅ ℂ(4). Therefore, the only
irreducible representation is the identity. When we restrict to Cl(4)0, the representation is simply
interpreting each element of ℍ as a 2 × 2 complex matrix:

(𝑞1 0
0 𝑞2

) ∈ ℍ(2) ↦ (𝑞1 0
0 𝑞2

) ∈ ℂ(4).

This representation is clearly reducible.
Particularly, the spin representation Δ ∶ Spin(4) → GL(4, ℂ) splits as Δ± ∶ Spin(4) → SU(2)

given by projections onto the first and second entries of the diagonal:

Δ+ (
𝑞1 0
0 𝑞2

) = 𝑞1

Δ− (
𝑞1 0
0 𝑞2

) = 𝑞2.

2.3.3 Clifford multiplication and infinitesimal actions
Let 𝑉 be a Riemannian vector space, and let 𝜌 ∶ Cl(𝑉) → End(𝑆) be a representation of the Clifford
algebra. The representation induces a structure of a Cl(𝑉)-module on 𝑆, with multiplication given by

𝑎 ⋅ 𝑣 ∶= 𝜌(𝑎)(𝑣)

for all 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑆. We call this multiplication Clifford multiplication.
If we restrict 𝜌 to the group of units Cl(𝑉)×, we obtain a group representation

𝜌 ∶ Cl(𝑉)× → GL(𝑆).

Thus, its differential is a representation the Lie algebra 𝔠𝔩(𝑉) on 𝑆. However, since 𝜌 is linear, then
𝑇1(𝜌) = 𝜌, so the induced representation is again Clifford multiplication. Note that we have identified the
Lie algebra 𝔠𝔩(𝑉) with Cl(𝑉), as in Section 2.2.3.

Similarly, restricting 𝜌 to Spin(𝑉) gives us a representation whose differential is a representation of
the Lie algebra 𝔰𝔭𝔦𝔫(𝑉). Once again, this is just Clifford multiplication. We can see this explicitly: Let
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𝑒1, … , 𝑒𝑛 be an orthonormal basis of 𝑉 . Then, as we saw in Proposition 2.2.5, the elements 𝑒𝑖𝑒𝑗 ∈ Cl(𝑛)
with 𝑖 < 𝑗 are a basis of 𝔰𝔭𝔦𝔫(𝑛), and the curve

𝛾(𝑡) = cos(𝑡) + sin(𝑡)𝑒𝑖𝑒𝑗
is an integral curve of 𝑒𝑖𝑒𝑗 ∈ 𝔰𝔭𝔦𝔫(𝑟, 𝑠). The action of the differential 𝑇1𝜌 is, then

𝑇1𝜌(𝑒𝑖𝑒𝑗)(𝑣) =
d
d𝑡
|||𝑡=0

𝜌(𝛾(𝑡)) = d
d𝑡
|||𝑡=0

cos(𝑡)𝑣 + sin(𝑡)𝜌(𝑒𝑖𝑒𝑗)(𝑣) = 𝜌(𝑒𝑖𝑒𝑗)(𝑣)

so indeed 𝑇1(𝜌|Spin(𝑛)) = 𝜌|𝔰𝔭𝔦𝔫(𝑛).

2.4 Spin structures

Think of what we have done so far as a local model that we want to push up to a global structure on a
manifold. The basic ingredient in this global recipe will be a SO(𝑛)-structure, which is to say that our
manifold should have a Riemannian metric and be orientable. Then we want to lift the SO(𝑛)-structure to
a Spin(𝑛) structure via a suitable globalization of the adjoint map Ad ∶ Spin(𝑛) → SO(𝑛). Once we have
the Spin(𝑛)-structure, then we can construct the spinor bundle, which is the associated vector bundle to
the spin representation.

This gives us half of the components of the Dirac equation: the spinor fields, which are sections of the
spinor bundle. The second half is the Dirac operator, which is a suitable “globalization” of the operator
𝑖𝛾𝜇𝜕𝜇 that we saw in the introduction.

2.4.1 From local to global
In the previous sections, we constructed the Clifford algebra and Spin group of a Riemannian vector space
𝑉 . The global analog of 𝑉 is an orientable vector bundle 𝐸 → 𝑀 of rank 𝑛 over a smooth manifold𝑀, with
a bundle metric on 𝐸. Since 𝐸 has a metric and is orientable, its frame bundle reduces to an orthonormal
frame bundle, which is a principal SO(𝑛) bundle and is denoted by SO(𝐸) (in the case where 𝐸 = 𝑇𝑀 is
the tangent bundle, we simply write SO(𝑀) ∶= SO(𝑇𝑀)).

Let’s begin with the Clifford algebra. The fibers 𝐸𝑥 of the bundle 𝐸 are Riemannian vector spaces, so
it makes sense to take the Clifford algebra Cl(𝐸𝑥) for each 𝑥 ∈ 𝑀. A choice of a frame 𝑒 = (𝑒1, … , 𝑒𝑛)
of 𝐸 in an open 𝑈 ⊆ 𝑀 is equivalent to choosing fiberwise isometries 𝑖𝑒(𝑥) ∶ 𝐸𝑥 → ℝ𝑛 for all 𝑥 ∈ 𝑈.
These isometries, by Corollary 2.1.4, extend to unique isomorphisms 𝑖𝑒(𝑥) ∶ Cl(𝐸𝑥) → Cl(𝑛), which in
turn can be interpreted as choices of bases of Cl(𝐸𝑥). If we change frames to some other 𝑒′ = (𝑒′1, … , 𝑒′𝑛),
in another open 𝑉 , then the frames are related by a transition function 𝑔 ∶ 𝑈 ∩ 𝑉 → SO(𝑛), such that
𝑖𝑒′(𝑥) = 𝑔(𝑥) ∘ 𝑖𝑒(𝑥) for all 𝑥 ∈ 𝑈 ∩𝑉 . Again, by Corollary 2.1.4, each 𝑔(𝑥) extends to an automorphism
𝒸𝓁𝑔(𝑥) ∶ Cl(𝑛) → Cl(𝑛), such that the following diagram commutes:

ℝ𝑛 Cl(𝑛)

𝐸𝑥

ℝ𝑛 Cl(𝑛)

𝑔(𝑥) 𝒸𝓁𝑔(𝑥)

𝑖𝑒′(𝑥)

𝑖𝑒(𝑥)

.

Therefore, a transition function 𝑔 ∶ 𝑈 ∩ 𝑉 → SO(𝑛) of the orthonormal frame bundle SO(𝐸) induces a
change of frames 𝒸𝓁𝑔 ∶ 𝑈 ∩𝑉 → Aut(Cl(𝑛)) of the collection of Clifford algebras in the fibers. This tells
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us that we can glue together those fibers with transition maps 𝒸𝓁𝑔, to obtain a vector bundle. In particular,
note that the map 𝒸𝓁 ∶ SO(𝑛) → Aut(Cl(𝑛)), sending 𝑔 ↦ 𝒸𝓁𝑔, is a representation of SO(𝑛) on Cl(𝑛).
This tells us that the resulting bundle is precisely the associated bundle to SO(𝐸) via the representation
𝒸𝓁.

Definition 2.4.1 (Clifford bundle).
Let 𝐸 → 𝑀 be an oriented Riemannian vector bundle of rank 𝑛 and SO(𝐸) its orthonormal frame bundle.
The Clifford bundle is the vector bundle

Cl(𝐸) = SO(𝐸) ×𝒸𝓁 Cl(𝑛)

associated to SO(𝐸) via the representation 𝒸𝓁 ∶ SO(𝑛) → Aut(Cl(𝑛)) which is obtained by extending
each element of SO(𝑛) to an automorphism of Cl(𝑛).

In the case where 𝐸 is the tangent bundle 𝑇𝑀, we write Cl(𝑀) ∶= Cl(𝑇𝑀).

Note that, by construction, the fibers of Cl(𝐸) satisfy

Cl(𝐸)𝑥 ≅ Cl(𝐸𝑥)

for all 𝑥 ∈ 𝑀. This means that there is a well-defined inclusion 𝐸 ↪ Cl(𝐸). However, in order to make
this inclusion explicit, we need the isomorphism Cl(𝐸)𝑥 ≅ Cl(𝐸𝑥), which requires a choice of frame for
𝐸𝑥. Of course, everything is independent of this frame, but it is necessary.

Spin structures are required for the existence of spinor fields, such as those that appear in the Dirac
equation. They are bundles which are fiberwise lifts of the SO(𝑛) structure that comes with the Riemannian
vector bundle 𝐸.

Definition 2.4.2 (Spin structure).
A spin structure on 𝐸 is a principal Spin(𝑛) bundle Spin(𝐸) → 𝑀, and a bundle morphism Σ ∶
Spin(𝐸) → SO(𝐸)which is fiberwise the spinormap𝓈 ∶ Spin(𝑛) → SO(𝑛). That is, for all𝑝 ∈ Spin(𝐸)
and 𝑔 ∈ Spin(𝑛),

Σ(𝑝 ⋅ 𝑔) = Σ(𝑝) ⋅ 𝓈(𝑔).

Let’s consider the question of the existence of Spin structures. Let 𝒰 = {𝑈𝑖}𝑖∈𝐼 be a cover of 𝑀 that
trivializes SO(𝐸), and let {𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → SO(𝑛)}𝑖,𝑗∈𝐼 be the transition cocycle. We want to lift the
cocyles 𝑔𝑖𝑗 to cocycles { ̃𝑔𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → Spin(𝑛)}, following the condition

𝓈 ∘ ̃𝑔𝑖𝑗 = 𝑔𝑖𝑗 .

On triple overlaps 𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘, the SO(𝐸) cocycles satisfy

1 = 𝑔𝑖𝑗𝑔𝑗𝑘𝑔𝑘𝑙 = 𝓈 ( ̃𝑔𝑖𝑗 ̃𝑔𝑗𝑘 ̃𝑔𝑘𝑙) .

This implies that
̃𝑔𝑖𝑗 ̃𝑔𝑗𝑘 ̃𝑔𝑘𝑙 = ±1,

which is a priori not enough to determine cocyles of a Spin-structure. If we write 𝑤𝑖𝑗𝑘 = ̃𝑔𝑖𝑗 ̃𝑔𝑗𝑘 ̃𝑔𝑘𝑗, the
collection 𝓌 = {𝑤𝑖𝑗𝑘} determines a Čech 2-cochain 𝓌 ∈ ̌𝐶2(𝒰, ℤ2). Using the fact that 𝑤𝑖𝑗𝑘 ∈ ℤ2, so
𝑤𝑖𝑗𝑘 = 𝑤−1

𝑖𝑗𝑘 = 𝜔𝑖𝑘𝑗 it is a direct (but a bit tedious) computation to show that

(𝛿𝓌)𝑖𝑗𝑘𝑙 = 𝑤𝑗𝑘𝑙𝑤𝑖𝑘𝑙𝑤𝑖𝑗𝑙𝑤𝑖𝑗𝑘 = 1.
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Assuming that 𝒰 is a good cover, 𝓌 defines a Čech cohomology class, which we call the second Stiefel-
Whitney class:

𝑤2(𝐸) ∶= [𝓌] ∈ �̌�2(𝑀, ℤ2).
This class is independent of the choice of lifts ̃𝑔𝑖𝑗 of 𝑔𝑖𝑗. Any two such lifts ̃𝑔𝑖𝑗 and ̃𝑔′𝑖𝑗 are related by

̃𝑔′𝑖𝑗 = 𝜂𝑖𝑗 ̃𝑔𝑖𝑗 ,

with 𝜂𝑖𝑗 ∈ ℤ2. The collection of these 𝜂𝑖𝑗 determines a cochain 𝜂 ∈ ̌𝐶1(𝒰, ℤ2), and the cocycles 𝑤′
𝑖𝑗𝑘 =

̃𝑔′𝑖𝑗 ̃𝑔′𝑗𝑘 ̃𝑔′𝑘𝑖 satisfy
𝑤′
𝑖𝑗𝑘 = 𝑤𝑖𝑗𝑘𝜂𝑖𝑗𝜂𝑗𝑘𝜂𝑘𝑖 = 𝓌𝑖𝑗𝑘(𝛿𝜂)𝑖𝑗𝑘.

Therefore 𝓌 and 𝓌′ differ by a closed Čech 2-cocycle, and thus they determine the same cohomology
class. From all these considerations, we find:

Proposition 2.4.3 (Conditions for existence of Spin structure).
Let 𝐸 → 𝑀 be an oriented, Riemannian vector bundle. Then 𝐸 admits a Spin structure if and only if
𝑤2(𝐸) = 0.

2.4.2 Spinor bundles
In the physics literature, as spinor field is often defined as an “object” 𝜓 (whatever that may be) which,
under a Lorentz transformation13 Λ of the underlying spacetime, transforms as

𝜓 ↦ 𝜓′ = 𝑆(Λ)−1(𝜓 ∘ Λ),

where 𝑆 is a representation of Spin(1, 3) (equivalently, of Spin(4)). In the general case, the Lorentz group
acts on the frame bundle, so we should think of 𝜓 as a map on the orthonormal frame bundle, which is
Lorentz-equivariant, thus a section of the bundle associated to the frame bundle via 𝑆.

Definition 2.4.4 (Spinor bundles and the spinor bundle).
Let 𝐸 → 𝑀 be an orientable Riemannian vector bundle with a spin structure Spin(𝐸), and 𝜌 ∶ Cl(𝑛) →
End(𝑆) a representation of the Clifford algebra. The spinor bundle 𝑆(𝐸, 𝜌) is the associated bundle

𝑆(𝐸, 𝜌) ∶= Spin(𝐸) ×𝜌 𝑆,

where we see 𝜌 as a representation of Spin(𝑛) on 𝑆. If we make no explicit reference to the representation
𝜌, we talk of the spinor bundle 𝑆(𝐸), which is associated to Spin(𝐸) via the spin representation Δ ∶
Spin(𝑛) → GL(𝑆):

𝑆(𝐸) ∶= 𝑆(𝐸, Δ) = Spin(𝐸) ×Δ 𝑆.
A section of a spinor bundle is called a spinor field.

Since we have a representation 𝜌 ∶ Cl(𝑛) → End(𝑆), we can see 𝑆 as a Cl(𝑛)-module. The mul-
tiplication of elements of Cl(𝑛) with elements of 𝑆 is called Clifford multiplication. This operation
𝑚 ∶ Cl(𝑛) ⊗ 𝑆 → 𝑆 exists at the level of linear algebra. Can we promote it to a global operation on
Cl(𝐸) ⊗ 𝑆(𝐸, 𝜌)? Let’s try to brute force it.

13The Lorentz group is the group SO(1, 3) of linear transformations that preserve the Minkowski metric, i.e. the standard
semi-Riemannian metric of signature (1,3).
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Consider an open 𝑈 ⊆ 𝑀 which trivializes SO(𝐸), with a canonical section 𝑠 ∶ 𝑈 → SO(𝐸)𝑈 , and
choose a lift ̃𝑠 ∶ 𝑈 → Spin(𝐸)𝑈 (which exists by definition of the existence of a spin structure), such that
Σ∘ ̃𝑠 = 𝑠. For each 𝑥 ∈ 𝑈, consider the elements in the fibers𝑝 = 𝑠(𝑥) ∈ SO(𝐸)𝑥 and ̃𝑝 = ̃𝑠(𝑠) ∈ Spin(𝐸)𝑥.
Fixing these elements induce isomorphisms

Cl(𝐸)𝑥
∼−→ Cl(𝑛) 𝑆(𝐸, 𝜌)𝑥

∼−→ 𝑆
[𝑝, 𝑎] ↦ 𝑎 [ ̃𝑝, 𝑣] ↦ 𝑣,

which trivialize the bundles Cl(𝐸) and 𝑆(𝐸, 𝜌) over 𝑈.
Now suppose that wewant to define, fiberwise, a Cliffordmultiplicationmap𝑚 ∶ Cl(𝐸)𝑥⊗𝑆(𝐸, 𝜌)𝑥 →

𝑆(𝐸, 𝜌)𝑥. Naïvely, we can fix the trivialization above and let

𝑚(𝑎 ⊗ 𝑣) ∶= 𝜌(𝑎)(𝑣).

This is equivalent to naïvely defining

[𝑝, 𝑎] ⋅ [ ̃𝑝, 𝑣] ∶= [ ̃𝑝, 𝜌(𝑎)(𝑣)].

Of course, this definition should be robust under changes of trivialization. If 𝑠′ ∶ 𝑈 → SO(𝐸)𝑈 is
another trivialization, then there is a transition map 𝑔 ∶ 𝑈 → 𝑆𝑂(𝑛) such that 𝑠′ = 𝑠 ⋅ 𝑔. This map can be
lifted to ̃𝑔 ∶ 𝑈 → Spin(𝑛), such that 𝓈( ̃𝑔) = 𝑔 and we obtain another trivialization ̃𝑠 ⋅ ̃𝑔 of Spin(𝐸)𝑈 . On
the fibers above 𝑥, we change the point 𝑝 to 𝑝 ⋅ 𝑔 ∈ SO(𝐸)𝑥 and ̃𝑝 to ̃𝑝 ⋅ ̃𝑔 ∈ Spin(𝐸)𝑥 so that the frames
in Cl(𝑛) and 𝑆 change as

𝑎 ↦ 𝒸𝓁𝑔(𝑎); 𝑣 ↦ 𝜌( ̃𝑔)(𝑣);

𝑎 ⊗ 𝑣 ↦ 𝒸𝓁𝑔(𝑎) ⊗ 𝜌( ̃𝑔)(𝑣)

for all 𝑎 ∈ Cl(𝑛) and 𝑣 ∈ 𝑆. However, the resulting product 𝜌(𝑎)(𝑣) is still in 𝑆, so it changes as

𝜌(𝑎)(𝑣) ↦ 𝜌( ̃𝑔)𝜌(𝑎)(𝑣) = 𝜌( ̃𝑔𝑎)(𝑣).

Therefore, if we want 𝑚 to be robust under changes of frames, it has to satisfy

𝑚(𝒸𝓁𝑔(𝑎) ⊗ 𝜌( ̃𝑔)(𝑣)) = 𝜌( ̃𝑔𝑎)(𝑣),

or equivalently,
[𝑝, 𝒸𝓁𝑔(𝑎)] ⋅ [ ̃𝑝, 𝜌( ̃𝑔)(𝑣)] = [ ̃𝑝, 𝜌( ̃𝑔𝑎)(𝑣)]

that is,
𝜌(𝒸𝓁𝑔(𝑎) ̃𝑔) = 𝜌( ̃𝑔𝑎)

for all 𝑎 ∈ Cl(𝑛). Now we recall that 𝒸𝓁𝑔 acts on homogeneous elements of Cl(𝑛) as

𝒸𝓁𝑔(𝑣1⋯𝑣𝑘) = 𝑔(𝑣1)⋯𝑔(𝑣𝑘).

This, combined with the fact that 𝑔 = 𝓈( ̃𝑔), implies that

𝒸𝓁𝓈(�̃�)(𝑎) = ̃𝑔𝑎 ̃𝑔−1 = 𝓈�̃�(𝑎)

for all 𝑎 ∈ Cl(𝑛) and ̃𝑔 ∈ Spin(𝑛). This is independent of the choice of preimage of 𝑔 under 𝓈 ∶ Spin(𝑛) →
SO(𝑛), since they differ by a sign, which disappears in conjugation. Therefore we have

𝒸𝓁𝑔(𝑎) ̃𝑔 = ̃𝑔𝑎 ̃𝑔−1 ̃𝑔 = ̃𝑔𝑎,
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which means that the fiberwise multiplication map 𝑚 ∶ Cl(𝐸)𝑥⊗𝑆(𝐸, 𝜌)𝑥 → 𝑆(𝐸, 𝜌)𝑥 is independent of
the choice of trivialization, so indeed it can be extended to a bundle map

𝑚 ∶ Cl(𝐸) ⊗ 𝑆(𝐸, 𝜌) → 𝑆(𝐸, 𝜌),

which we call Clifford multiplication. The above discussion shows the following proposition:

Proposition 2.4.5 (Clifford multiplication).
Let𝐸 be an oriented, Riemannian vector bundle, which admits a spin structure Spin(𝐸),Cl(𝐸) its Clifford
bundle, and 𝑆(𝐸, 𝜌) the spinor bundle associated to a representation 𝜌 ∶ Cl(𝑛) → End(𝑆). Then Clifford
multiplication𝑚 ∶ Cl(𝐸) ⊗ 𝑆(𝐸, 𝜌) → 𝑆(𝐸, 𝜌) makes 𝑆(𝐸, 𝜌) into a bundle of Cl(𝑛)-modules.

In particular, the sections of 𝑆(𝐸, 𝜌) are a module over the sections of Cl(𝐸).

2.5 The Dirac operator

We have spinors and a Clifford module structure on spinor fields. The only thing we need for the Dirac
equation is the Dirac operator, for which we need a way to take derivatives of spinor fields. That is, we
need a connection on the spinor bundles. Our fundamental structure is the orthonormal frame bundle, so
we will begin with a connection on it and work our way to defining a connection on the spinor bundles
with it.

2.5.1 Spin connections
Let 𝐸 be an oriented, Riemannian vector bundle over 𝑀 which admits a spin structure Spin(𝐸). Let
∇ be a metric connection on 𝐸, which induces an Ehresmann connection 𝜔∇ ∈ Ω1(SO(𝐸), 𝔰𝔬(𝑛)) on
SO(𝐸). If we pull back 𝜔∇ to Spin(𝐸) via the morphism Σ ∶ Spin(𝐸) → SO(𝐸), we obtain an 𝔰𝔬(𝑛)-
valued one-form Σ∗𝜔∇ ∈ Ω1(Spin(𝐸), 𝔰𝔬(𝑛)). Finally, composing this with the inverse of the Lie algebra
isomorphism 𝔰 ∶ 𝔰𝔭𝔦𝔫(𝑛) → 𝔰𝔬(𝑛), induced by the spinor map 𝓈 ∶ Spin(𝑛) → SO(𝑛), we obtain an
Ehresmann connection �̃� on Spin(𝐸):

�̃�∇ ∶= 𝔰−1 ∘ (Σ∗𝜔∇) ∈ Ω1(Spin(𝐸), 𝔰𝔭𝔦𝔫(𝑛)).

Explicitly, for a point ̃𝑝 ∈ Spin(𝐸) and a vector ̃𝑋 ∈ 𝑇 ̃𝑝Spin(𝐸),

�̃�∇̃𝑝 ( ̃𝑋) = (𝔰−1 ∘ 𝜔∇Σ( ̃𝑝))(𝑇 ̃𝑝Σ( ̃𝑋)).

Finally, with the connection �̃�∇, we can define a connection on any associated vector bundle of Spin(𝐸).
In particular, for any representation 𝜌 ∶ Cl(𝑛) → End(𝑆), we have the associated spinor bundle 𝑆(𝐸, 𝜌)
and thus a connection ∇̃ on it, which we call the spin connection. Schematically:

�̃�∇ on Spin(𝐸) 𝜔∇ on SO(𝐸)

∇̃ on 𝑆(𝐸, 𝜌) ∇ on 𝐸

𝔰−1∘Σ∗

.

Let’s see how ∇̃ acts on a section of 𝑆(𝐸, 𝜌). Note that 𝜌 ∶ Spin(𝑛) → GL(𝑆) induces a representation
𝜌∗ ∶ 𝔰𝔭𝔦𝔫(𝑛) → 𝔤𝔩(𝑆).
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Notation. To avoid cluttering of notation, we write the infinitesimal representation 𝜌∗ as an action
of 𝔰𝔭𝔦𝔫(𝑛) on 𝑆:

𝑎 ⋅ 𝑣 ∶= 𝜌∗(𝑎)(𝑣),
for all 𝑎 ∈ 𝔰𝔭𝔦𝔫(𝑛) and 𝑣 ∈ 𝑆.

Let Ψ ∈ Γ(𝑆(𝑒, 𝜌)) be a section. There is a unique function ̃𝜓 ∶ 𝑃 → 𝑉 such that for all 𝑥 ∈ 𝑀,
Ψ(𝑥) = [𝑝, 𝜓(𝑝)],

where 𝑝 ∈ Spin(𝐸)𝑥 is in the fiber above 𝑝. For this to be independent of the choice of representative, ̃𝜓
must be Spin(𝑛)-equivariant, that is

𝜓(𝑝 ⋅ ̃𝑔) = 𝜌( ̃𝑔)−1𝜓(𝑝)
for all ̃𝑔 ∈ Spin(𝑛). By definition, the connection ∇̃ acts on Ψ as

∇̃𝑋Ψ(𝑥) = [𝑝, d�̃�𝜓𝑝( ̃𝑋)] = [𝑝, (d ̃𝜓)𝑝( ̃𝑋) + �̃�∇𝑝 ( ̃𝑋) ⋅ ̃𝜓(𝑝)]
for all vectors 𝑋 ∈ 𝑇𝑥𝑀, where ̃𝑋 ∈ 𝑇𝑝Spin(𝐸) is a vector which projects to 𝑋 , i.e. 𝑇𝑝𝜋Spin( ̃𝑋) = 𝑋 .

Let’s go local now. Let 𝑒 = (𝑒1, … , 𝑒𝑛) ∶ 𝑈 → SO(𝐸) be a local orthonormal frame of 𝐸, which we
interpret as a section of SO(𝐸). This frame has associated connection coefficients 𝜔𝑗,𝑖 ∈ Ω1(𝑈) such that

∇𝑒𝑖 = ∑
𝑗
𝜔𝑗,𝑖𝑒𝑗 .

These connection coefficients glue together to form the Ehresmann connection 𝜔 ∈ Ω1(SO(𝐸), 𝔰𝔬(𝑛)),
precisely in a way such that the pullback 𝑒∗𝜔 ∈ Ω1(𝑈, 𝔰𝔬(𝑛)) is a matrix with entries 𝜔𝑗,𝑖. If we write it
in terms of the elementary matrices 𝐸𝑖,𝑗 which form a basis of 𝔰𝔬(𝑛), we have

𝑒∗𝜔 = ∑
𝑖<𝑗

𝜔𝑗,𝑖𝐸𝑖,𝑗 .

Let ̃𝑒 ∶ 𝑈 → Spin(𝐸) be a lift of 𝑒, such that Σ ∘ ̃𝑒 = 𝑒. The section ̃𝑒 induces a trivialization of the
spinor bundle by “fixing a gauge” everywhere above𝑈. More specifically, for all 𝑥 in𝑈, there is a preferred
element ̃𝑝 = ̃𝑒(𝑥) ∈ Spin(𝐸)𝑥 in the fiber above 𝑥, so we can write Ψ(𝑥) as

Ψ(𝑥) = [ ̃𝑒(𝑥), ̃𝜓( ̃𝑒(𝑥))] ∶= [ ̃𝑒(𝑥), 𝜓(𝑥)],
where we have written 𝜓 = ̃𝜓 ∘ ̃𝑒 ∶ 𝑈 → 𝑆.

Now we plug this into the expression of ∇̃Ψ. For a tangent vector 𝑋 ∈ 𝑇𝑥𝑀, a lift to 𝑇𝑝Spin(𝐸) is
simply ̃𝑋 = ̃𝑒∗𝑋 . Therefore, if 𝜖 = (𝜖1, … , 𝜖𝑛) is the standard orthonormal basis of ℝ𝑛, we have

∇̃𝑋Ψ(𝑥) = [ ̃𝑒(𝑥), d ̃𝜓 ̃𝑒(𝑥)(𝑒∗𝑋) + �̃�∇̃𝑒(𝑥)( ̃𝑒∗𝑋) ⋅ 𝜓(𝑥)]
= [ ̃𝑒(𝑥), ̃𝑒∗d ̃𝜓𝑥(𝑋) + 𝔰−1(Σ∗𝜔 ̃𝑒(𝑥)( ̃𝑒∗𝑋)) ⋅ 𝜓(𝑥)]
= [ ̃𝑒(𝑥), d𝜓𝑥(𝑋) + 𝔰−1(𝑒∗𝜔𝑥(𝑋)) ⋅ 𝜓(𝑥)]
= [ ̃𝑒(𝑥), d𝜓𝑥(𝑋) +∑

𝑖<𝑗
(𝜔𝑗,𝑖)𝑥(𝑋)𝔰−1(𝐸𝑖,𝑗) ⋅ 𝜓(𝑥)]

= [ ̃𝑒(𝑥), d𝜓𝑥(𝑋) +∑
𝑖<𝑗
(𝜔𝑗,𝑖)𝑥(𝑋)𝔰−1(𝐸𝑖,𝑗) ⋅ 𝜓(𝑥)]

= [ ̃𝑒(𝑥), d𝜓𝑥(𝑋) +
1
2 ∑𝑖<𝑗

(𝜔𝑗,𝑖)𝑥(𝑋)𝜖𝑖𝜖𝑗 ⋅ 𝜓(𝑥)].

In the last line, the dot is the infinitesimal action of 𝔰𝔭𝔦𝔫(𝑛) on 𝑆 which is induced by the representation
𝜌. However, as we saw in Section 2.3.3, this representation is just Clifford multiplication.
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2.5.2 The Dirac operator
Now we specialize on the case where the vector bundle 𝐸 is the tangent bundle 𝑇𝑀. We therefore assume
that𝑀 is an oriented Riemannian manifold. Furthermore, suppose that𝑀 admits a spin structure Spin(𝑀)
that lifts the orthonormal frame bundle SO(𝑀).

Fix a representation 𝜌 ∶ Cl(𝑛) → End(𝑆) of the Clifford algebra, and let 𝑆(𝑀, 𝜌) its associated spinor
bundle. If ∇ is the Levi-Civita connection, we have an induced spin connection ∇̃ on 𝑆(𝑀, 𝜌).

We define the Dirac operator in analogy to Equation (2.2):

Definition 2.5.1 (Dirac operator).
The Dirac operator /𝜕 ∶ Γ(𝑆(𝑀, 𝜌)) → Γ(𝑆(𝑀, 𝜌)) is defined locally, for an orthonormal frame 𝑒 =
(𝑒1, … , 𝑒𝑚) ∶ 𝑈 → SO(𝑀), as

/𝜕Ψ = ∑
𝑖
𝑒𝑖 ⋅ ∇̃𝑒𝑗Ψ,

where we interpret 𝑒𝑖 as a section of Cl(𝑀) via the natural embedding 𝑇𝑀 ↪ Cl(𝑀), and the dot is
Clifford multiplication.

We need to check that this definition is independent of the choice of frame. Let 𝑒′ ∶ 𝑈′ → SO(𝑀)
be a frame of SO(𝑀) which is related to 𝑒 via a transition map Λ ∶ 𝑈 ∩ 𝑈′ → SO(𝑛):

𝑒𝑖 = ∑
𝑗
𝑒′𝑗Λ𝑗,𝑖.

Then

∑
𝑖
𝑒𝑖 ⋅ ∇̃𝑒𝑗Ψ = ∑

𝑖
∑
𝑗,𝑘

Λ𝑗,𝑖Λ𝑘,𝑖𝑒′𝑗 ⋅ ∇̃𝑒′𝑘 .

However, since Λ ∈ SO(𝑛) we have that

∑
𝑖
Λ𝑗,𝑖Λ𝑘,𝑖 = (ΛΛ𝑇)𝑗,𝑘 = 𝛿𝑗𝑘,

where 𝛿𝑗𝑘 is the Krönecker symbol. Therefore, as desired14:

∑
𝑖
𝑒𝑖 ⋅ ∇̃𝑒𝑖Ψ = ∑

𝑖
𝑒′𝑖 ⋅ ∇̃𝑒′𝑖Ψ.

2.6 The world of Spinc

As we saw above, the condition for the existence of Spin-structures over a vector bundle is rather strict. In
this section, we will introduce the Spinc groups and Spinc structures. Roughly speaking, a Spinc structure
looks locally like a Spin structure with an additional U(1) structure. This additional structure gives it more
flexibility, to the point that all 4-manifolds admit Spinc-structures. In physical terms, a Spinc-structure is
necessary for the existence of spinor fields that are coupled to electromagnetic fields.

14In Einstein notation, for a semi-Riemannian manifold, we might write the Dirac operator as

/𝜕Ψ = 𝑔𝜈𝜇𝑒𝜈∇̃𝜇Ψ = 𝑒𝜇∇̃𝜇Ψ,

with 𝑒𝜇 = 𝑔𝜇𝜈𝑒𝜈 and 𝑔𝜇,𝜈 = ⟨𝑒𝜇, 𝑒𝜈⟩ are the metric coefficients. It is then automatic that the equation is independent of the
chosen frame, since the expression has no free indices, only dummy indices.
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2.6.1 The Spinc group
Let 𝑉 be a real vector space with a symmetric bilinear form.

Definition 2.6.1 (Spinc group).
The group Spinc(𝑉) is the subgroup of Clℂ(𝑉)× given by

Spinc(𝑉) ∶= {𝑧Λ ∈ Clℂ(𝑉)× ∶ 𝑧 ∈ U(1) and Λ ∈ Spin(𝑉)} .

If 𝑉 = ℝ𝑛 with the standard inner product, we write

Spinc(𝑛) = Spinc(ℝ𝑛).

Note that themap Spin(𝑉)×𝑈(1) → Spinc(𝑉) given as (𝑧, Λ) ↦ 𝑧Λ is surjective, with kernel {(1, 1), (−1, −1)}.
Therefore

Spinc(𝑉) ≅ Spin(𝑉) × 𝑈(1)/ℤ2 .
One of the key properties of the Spin group is that it is a double cover of the corresponding special orthogo-
nal group. Indeed, we have something similar for Spinc(𝑉). Define the determinantmap 𝛿 ∶ Spinc(𝑉) →
U(1) as

𝛿(𝑧Λ) = 𝑧2.
This map is well defined, since it is invariant under the change (𝑧, Λ) ↦ (−𝑧,−Λ).

Furthermore, the adjoint action Ad ∶ Cl(𝑉) → Cl(𝑉) extends trivially to Clℂ(𝑉), simply by noting
that for all nonzero 𝑧 ∈ ℂ and 𝑎, 𝑏 ∈ Cl(𝑉),

Ad𝑧𝑎(𝑏) = (𝑧𝑎)𝑏(𝑧𝑎)−1 = 𝑎𝑏𝑎−1 = Ad𝑎(𝑏).

Therefore, the spinor map 𝓈 ∶ Spin(𝑉) → SO(𝑉) also extends to a map 𝓈c ∶ Spinc(𝑉) → SO(𝑉), simply
by setting

𝓈c(𝑧Λ) = 𝓈(Λ).
We call this the complex spinor map. Very often we will abuse the notation and simply write 𝓈 for 𝓈c.

With these two maps, we obtain a short exact sequence similar to that of Spin (see Theorem 2.2.3).

Proposition 2.6.2 (Short exact sequence of Spinc).
Let 𝑉 be a real Riemannian vector space. Then the map Spinc(𝑉) → SO(𝑉) ×U(1) given by

𝜉 ↦ (𝓈(𝜉), 𝛿(𝜉))

for all 𝜉 ∈ Spinc(𝑉), makes the following short sequence exact:

1 ℤ2 Spinc(𝑉) SO(𝑉) ×U(1) 1 .

Finally, note that any (complex) representation 𝜌 of Spin(𝑉) can be extended to Spinc(𝑉) by setting

𝜌(𝑧Λ) = 𝑧𝜌(Λ).
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Remark. The name “determinant” for the map 𝛿 ∶ Spinc(𝑉) → U(1) comes from the fact that for
𝑛 = 4, if Δ± are the irreducible components of the Spin representation, then

𝛿 = det ∘Δ±.

2.6.2 Going global: Spinc-structures and spinors
Now we take the previous section as a local model that we are going to promote to a global structure over
a manifold, in the same way as in Sections 2.4 and 2.5. The first few definitions are essentially the same
as those in Section 2.4.

Let 𝐸 → 𝑀 be an oriented, Riemannian vector bundle of rank 𝑛 with orthonormal frame bundle
SO(𝐸).

Definition 2.6.3 (Complex Clifford bundle).
The representation 𝒸𝓁 ∶ SO(𝑛) → Aut(Cl(𝑛)) can also be viewed as a representation 𝒸𝓁 ∶ SO(𝑛) →
Aut(Clℂ(𝑛)). Thus, we define complex Clifford bundle Clℂ(𝐸) as the associated bundle

Clℂ(𝐸) = SO(𝐸) ×𝒸𝓁 Clℂ(𝑛).

Definition 2.6.4 (Spinc-structure).
A Spinc-structure over 𝐸 is a principal Spinc(𝑛)-bundle denoted by Spinc(𝐸), along with a bundle mor-
phism Σ ∶ Spinc(𝐸) → SO(𝐸) which is fiberwise the spinor map; that is, for all 𝑝 ∈ Spinc(𝐸) and
𝜉 ∈ Spinc(𝑛),

Σ(𝑝 ⋅ 𝜉) = Σ(𝑝) ⋅ 𝓈(𝜉).
Whenever there is chance of confusion with the spinor morphism of a Spin-structure, we will denote this
complex spinor morphism as Σc.

Since the determinant map 𝛿 ∶ Spinc(𝑛) → U(1) is, in particular, a representation, then we have a line
bundle associated to Spinc(𝐸), which we call the determinant bundle 𝐿(𝐸). Specifically, it is given by

𝐿(𝐸) ∶= Spinc(𝐸) ×𝛿 U(1).

In the same fashion as in Section 2.4.2, given a representation 𝜌 ∶ Clℂ(𝑛) → End(𝑆), we obtain a
representation of Spinc(𝑛), with which we can construct the spinor bundle 𝑆𝑐(𝐸, 𝜌). Specifically,

𝑆(𝐸, 𝜌) = Spinc(𝑛) ×𝜌 𝑆.

Once again, if we do not explicitly write the representation, we assume that we are using the extension to
Spinc of the Spin representation Δ ∶ Spinc(𝑛) → End(𝑆):

𝑆(𝐸) ∶= 𝑆(𝐸, Δ).

Similarly to the Spin case, the action ofClℂ(𝑛) on 𝑆 can be extended to a globalCliffordmultiplication
morphism

𝑚 ∶ Clℂ(𝐸) ⊗ 𝑆(𝐸, 𝜌) → 𝑆(𝐸, 𝜌).
This morphism turns the sections of 𝑆(𝐸, 𝜌) into a bundle over the sections of Clℂ(𝐸).
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Example 2.6.5 (Spinc-structure from a Spin-structure).
Let 𝐸 → 𝑀 be an oriented vector bundle with a Riemannian metric, and suppose that 𝐸 admits a
Spin-structure Spin(𝐸), with spinor map Σ ∶ Spin(𝐸) → SO(𝐸). Locally, the fibers of this Spin-
structure are copies of Spin(𝑛). Therefore, if we want to “complete them” to a Spinc-structure, we
should “complete” the fibers with an additional U(1) group, and then take the fiberwise quotient by
ℤ2. We can achieve this (effectively) by constructing the Spinc-bundle from the transition functions
of Spin(𝐸) and the additional U(1)-bundle.

Let {𝑈𝑖}𝑖∈𝐼 be a trivializing cover of SO(𝐸), with transition functions Λ𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → SO(𝑛)
that lift to the transition functions Λ̃𝑖,𝑗 ∶ 𝑈𝑖 ∩𝑈𝑗 → Spin(𝑛). Then, by definition, for all 𝑖, 𝑗 ∈ 𝐼 we
have

Σ ∘ Λ̃𝑖𝑗 = Λ𝑖𝑗 .
Let 𝐿 be a complex line bundle over 𝑀 and let U(𝐿) be its associated U(1) frame bundle. Suppose
that the cover {𝑈𝑖}𝑖∈𝐼 is fine enough so that it also trivializes U(𝐿), with transition functions 𝛼𝑖𝑗 ∶
𝑈𝑖 ∩ 𝑈𝑗 → U(1). Then we can construct a Spinc-bundle over 𝑀 from the cocycles

𝛽𝑖𝑗 ∶= 𝛼𝑖𝑗Λ̃𝑖𝑗 ∶ 𝑈𝑖 ∩ 𝑈𝑗 → Spinc(𝑛).

We denote this bundle by Spinc(𝐸). We can see that this is indeed a Spinc-structure over SO(𝐸),
since the cocycles satisfy

𝓈 ∘ 𝛽𝑖𝑗 = 𝓈 ∘ Λ̃𝑖𝑗 = Λ𝑖𝑗 ,
and thus there exists an associated bundle morphism Σc ∶ Spinc(𝐸) → SO(𝐸) such that for all
𝑝 ∈ Spinc(𝐸) and 𝜉 ∈ Spinc(𝑛),

Σc(𝑝 ⋅ 𝜉) = Σc(𝑝) ⋅ 𝓈(𝜉).

Finally, let U(𝐸) be the determinant line bundle of the Spinc-structure. Then the cocycles of
U(𝐸) are

𝛿 ∘ 𝛽𝑖𝑗 = 𝛿 ∘ (𝛼𝑖𝑗Λ̃𝑖𝑗) = 𝛼2𝑖𝑗 ,

and therefore U(𝐸)2 = 𝐿. Thus, 𝐿 is the square root of the determinant line bundle of the Spinc-
structure.

In general, the process of Example 2.6.5 cannot be done in reverse. That is, given a Spinc-structure over
a vector bundle, we cannot always decompose it into a Spin-structure and a line bundle. This is because
the conditions for the existence of a Spinc-structure areweaker than those for the Spin case. However, this
decomposition can always be done locally. Morally, we can think of a Spinc structure as

Spinc(𝐸) !∼ Spin(𝐸) ⊗U(𝐸)
1
2 ,

where neither Spin(𝐸) nor U(𝐸)
1
2 can be guaranteed to exist globally15.

Now we turn to the question of existence of Spinc-structures.

Proposition 2.6.6 (Condition for existence of Spinc-structures.).
Let 𝐸 → 𝑀 be an oriented Riemannian vector bundle over 𝑀. Then 𝐸 admits a Spinc-structure if and

15Some references call these virtual bundles.
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only if there is a class 𝑤 ∈ 𝐻2(𝑀, ℤ) such that

𝑤2(𝐸) = 𝑤 mod 2.

Every such integral lift 𝑤 determines a Spinc-structure Spinc(𝐸) satisfying

𝑐1(𝐿(𝐸)) = 𝑤.

A proof of this is outlined in [Sco05, p. 423], and with more detail in [Kla13, Lemma 3.2.4].

2.6.3 The complex spin connection and the coupled Dirac operator
Wewant to repeat the same process of Section 2.5.1: given ametric connection∇ on a vector bundle𝐸 with
Spinc-structure Spinc(𝐸), can we obtain a connection ∇̃ on the complex spinor bundle 𝑆(𝐸, 𝜌) associated
to some representation 𝜌 ∶ Clℂ(𝑛) → End(𝑆)?

In the Spin case, we can do this easily because we have the bundle morphism Σ ∶ Spin(𝐸) → SO(𝐸).
Fiberwise, this morphism is the spinor map 𝓈 ∶ Spin(𝑛) → SO(𝑛), whose differential induces a Lie
algebra isomorphism 𝔰 between 𝔰𝔭𝔦𝔫(𝑛) and 𝔰𝔬(𝑛). To obtain a connection on Spin(𝐸), we pull back a
connection on SO(𝐸) with Σ, and then compose it with 𝔰−1 so that it is a 𝔰𝔭𝔦𝔫(𝑛)-valued form.

In the complex case, the spinor map 𝓈 ∶ Spinc(𝑛) → SO(𝑛) is not a finite cover, so its differential 𝔰c

is not an isomorphism between 𝔰𝔭𝔦𝔫c(𝑛) and 𝔰𝔬(𝑛). In fact, the entirety of 𝔲(1) is contained in is kernel!
If we pull back a connection on SO(𝐸) with Σc, we will be missing the 𝔲(1) part that is needed to define
a connection on Spinc(𝐸).

How do we get the 𝔲(1) part? We have a hint: the map (𝓈, 𝛿) ∶ Spinc(𝑛) → SO(𝑛) × U(1) is a
double cover, and it induces an isomorphism �̃� ∶ 𝔰𝔭𝔦𝔫c(𝑛) → 𝔰𝔬(𝑛) × 𝔲(1). Therefore, if we can find a
SO(𝑛) ×U(1)-bundle 𝑃 and a bundle morphism 𝒮 ∶ Spinc(𝐸) → 𝑃 which is fiberwise the map (𝓈, 𝛿), we
can pull back a connection on 𝑃, compose it with �̃�−1, and obtain a connection on Spinc(𝐸). Of course, 𝑃
cannot be just any SO(𝑛)×U(1)-bundle. Its SO(𝑛) component has to be SO(𝐸), and since the morphism
𝒮 ∶ Spinc(𝐸) → 𝑃 is (𝓈, 𝛿) fiberwise, then the U(1) component has to be the determinant bundle U(𝐸).
Therefore, we are looking for the fiber product16

𝑃 = SO(𝐸) ×𝑀 U(𝐸).

We have a connection 𝜔 on SO(𝐸), but in order to get a connection on the fiber product, we need an
additional connection 𝑖𝐴 on U(𝐸). Since we don’t have any a priori connection, we will have to introduce
it by hand as an independent object.

With both𝜔 and 𝑖𝐴, we can define a connection𝜔𝑃 on the fiber product 𝑃 = SO(𝐸)×𝑀U(𝐸) by pulling
them back with the projections prSO ∶ SO(𝐸) ×𝑀 U(𝐸) → SO(𝐸) and prU ∶ SO(𝐸) ×𝑀 U(𝐸) → U(𝐸):

𝜔𝑃 ∶= pr∗SO𝜔 + pr∗U(𝑖𝐴).

16The fiber product between two fiber bundles 𝐹 𝜋→𝑀 and 𝐹′ 𝜋
′
→𝑀 is defined as the fibers above the diagonal Δ𝑀 ⊆ 𝑀 ×𝑀

in the bundle 𝐹 × 𝐹′ →𝑀 ×𝑀. Specifically:

𝐹 ×𝑀 𝐹′ ∶= (𝜋 × 𝜋′)−1(Δ𝑀),

with projection 𝜋 ∶ 𝐹 ×𝑀 𝐹′ →𝑀 given by the composition of 𝜋 × 𝜋′ with a projection from the diagonal Δ𝑀 onto 𝑀.
The fiber product is precisely the pullback bundle of 𝐹′ by 𝜋 (or vice versa):

𝐹 ×𝑀 𝐹′ ∶= 𝜋∗𝐹′ = {(𝑓,𝑓′) ∈ 𝐹 × 𝐹′ ∶ 𝜋(𝑓) = 𝜋′(𝑓′)} .
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Then, we pull 𝜔𝑃 back with the morphism 𝒮 ∶ Spinc(𝐸) → 𝑃 and compose it with �̃�−1 ∶ 𝔰𝔬(𝑛) × 𝔲(1) →
𝔰𝔭𝔦𝔫c(𝑛) to obtain a connection �̃�𝐴 on Spinc(𝐸). Explicitly,

�̃�𝐴 ∶= �̃�−1 ∘ 𝒮∗𝜔𝑃 .

Note that we’ve made explicit the dependence on the U(1)-connection.

Figure 2.1: The Spinc connection

With �̃�𝐴, we can define a connection ∇̃𝐴, called the complex or coupled spin connection17 on the
spinor bundles 𝑆(𝐸, 𝜌) associated to a representation 𝜌 of Clℂ(𝑛). How does it act on spinor fields?

Let Ψ ∶ 𝑀 → 𝑆(𝐸, 𝜌) be a spinor field, 𝑒 = (𝑒1, … , 𝑒𝑛) ∶ 𝑈 → SO(𝐸) a local orthonormal frame, and
𝑠 ∶ 𝑈 → U(𝐸) a section. The map (𝑒, 𝑠) ∶ 𝑈 → SO(𝐸) ×𝑀 U(𝐸) given by

𝑥 ↦ (𝑒(𝑥), 𝑠(𝑥))

is clearly a section of SO(𝐸) ×𝑀 U(𝐸), so we can find a section ̃𝑒 ∶ 𝑈 → Spinc(𝐸) such that

𝒮 ∘ ̃𝑒 = (𝑒, 𝑠).

Since 𝒮 is a double cover, there are two such options.
In the local gauge defined by ̃𝑒, the spinor field Ψ becomes

Ψ(𝑥) = [ ̃𝑒(𝑥), 𝜓(𝑥)],

with 𝜓 ∶ 𝑈 → 𝑆. Following the same procedure as in the end of Section 2.5.1, we can show that action
of the coupled spin connection is

∇𝐴Ψ = [ ̃𝑒, d𝜓 + (12 𝑖𝐴 +
1
4 ∑𝑖,𝑗

𝜔𝑗,𝑖𝜀𝑖𝜀𝑗) ⋅ 𝜓], (2.3)

where 𝜔𝑗,𝑖 are the matrix entries of the local gauge potential 𝑒∗𝜔, 𝜀1, … , 𝜀𝑛 is the standard orthonormal
frame of ℝ𝑛, and the dot (⋅) is Clifford multiplication. The factor of 1

2
comes from the isomorphism

�̃� ∶ 𝔰𝔭𝔦𝔫c(𝑛) → 𝔰𝔬(𝑛) × 𝔲(1).
With the coupled spin connection, we can define the coupled Dirac operator, in the same was as in

Definition 2.5.1. We consider an orientable, Riemannian manifold 𝑀 that admits a Spinc structure (that
17In physics references, this is called the (minimally coupled) covariant derivative.
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is, on its tangent bundle) Spinc(𝑀). If 𝜌 ∶ Clℂ(𝑛) → End(𝑆) is a representation, then we have the spinor
bundle 𝑆(𝑀, 𝜌).

Let ∇ be the Levi-Civita connection, and 𝑖𝐴 a connection on the determinant bundle U(𝑀). These
induce the coupled spin connection ∇̃𝐴 acting on spinor fields Ψ ∈ Γ(𝑆(𝑀, 𝜌)).

Definition 2.6.7 (Coupled Dirac operator).
Let 𝑒 = (𝑒1, … , 𝑒𝑛) be a local orthonormal frame of 𝑇𝑀 defined in some open set 𝑈 ⊂ 𝑀. The coupled
Dirac operator /𝜕𝐴 ∶ Γ(𝑆(𝑀, 𝜌)) → Γ(𝑆(𝑀, 𝜌)) is defined as

/𝜕𝐴Ψ = ∑
𝑖,𝑗
𝑔𝑖,𝑗𝑒𝑖 ⋅ ∇𝐴 𝑒𝑗Ψ,

where 𝑔𝑖,𝑗 are the metric coefficients. Here we interpret 𝑒𝑖 as a section ofClℂ(𝑀) via the natural embedding
𝑇𝑀 ↪ Clℂ(𝑀), so that the dot is Clifford multiplication.

In the same way as in Section 2.5.2, we can show that this definition is independent of the choice of frame
of 𝑇𝑀.

Let’s review some properties of the Dirac operator.

Proposition 2.6.8 (Dirac operator is elliptic).
The Dirac operator is an elliptic partial differential operator of order 1.

Proof.— From its local expression, it is clear that /𝜕𝐴 is a partial differential operator of degree 1. To find
its symbol, we fix an orthonormal frame {𝑒𝑖} and a function 𝑓 ∈ 𝐶∞(𝑀), and compute:

[ /𝜕𝐴, 𝑓](Ψ) = /𝜕𝐴(𝑓Ψ) − 𝑓/𝜕𝐴Ψ = [𝑠,∑
𝑖

d𝑓 (𝑒𝑖)𝑒𝑖 ⋅ 𝜓].

Note that ∑𝑖 d𝑓 (𝑒𝑖)𝑒𝑖 is precisely the dual vector of d𝑓 under the isomorphism 𝑇∗𝑀 ≅ 𝑇𝑀 induced by
the metric. Using the rule “replace d𝑓 with an arbitrary form 𝜉”, we find that

𝜎(/𝜕𝐴)(𝜉)(Ψ) = 𝜉♯ ⋅ Ψ,

where (⋅)♯ ∶ 𝑇∗𝑀 → 𝑇𝑀 is the isomorphism induced by the metric, and the dot represents Clifford
multiplication.

Furthermore, since Clifford multiplication by a non-zero vector is an automorphism, we conclude that
/𝜕𝐴 is elliptic. Note that this also applies to /𝜕𝐴 restricted to the space of positive or negative spinors. ■

Proposition 2.6.9 (Dirac operator is formally self-adjoint).
Let 𝑀 be a compact, oriented, Riemannian manifold that admits a Spinc-structure. Let 𝐴 be a U(1)-
connection on the determinant bundle. Then there is an induced Hermitian metric on the spinor bundle
𝑆(𝑀), and under it the Dirac operator is formally self-adjoint:

∫
𝑀
⟨ /𝜕𝐴𝜓, 𝜑⟩ vol = ∫

𝑀
⟨𝜓, /𝜕𝐴𝜑⟩ vol,

for all spinor fields 𝜓, 𝜑 ∈ Γ(𝑆(𝑀)).
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Proof.— We work locally around a point 𝑥 ∈ 𝑀. We can choose a moving orthonormal frame {𝑒𝑖} such
that ∇𝑒𝑖𝑒𝑖 = 0. Then

⟨/𝜕𝐴𝜓, 𝜑⟩ = ∑
𝑖
⟨𝑒𝑖 ⋅ ∇𝐴,𝑒𝑖𝜓, 𝜑⟩

= −∑
𝑖
⟨∇𝐴,𝑒𝑖𝜓, 𝑒𝑖 ⋅ 𝜑⟩

= −∑
𝑖
⟨∇𝐴,𝑒𝑖𝜓, 𝑒𝑖 ⋅ 𝜑⟩

= −∑
𝑖
(𝑒𝑖 ⟨𝜓, 𝑒𝑖 ⋅ 𝜑⟩ − ⟨𝜓,∇𝐴,𝑒𝑖 (𝑒𝑖 ⋅ 𝜑)⟩)

= −∑
𝑖
(𝑒𝑖 ⟨𝜓, 𝑒𝑖 ⋅ 𝜑⟩ − ⟨𝜓, 𝑒𝑖 ⋅ ∇𝐴,𝑒𝑖𝜑⟩)

= −∑
𝑖
𝑒𝑖 ⟨𝜓, 𝑒𝑖 ⋅ 𝜑⟩ + ⟨𝜓, /𝜕𝐴𝜑⟩ .

Here we used the fact that ∇𝐴 is a unitary connection, and that it satisfies a Leibniz rule ∇𝐴(𝑋 ⋅ 𝜓) =
∇(𝑋) ⋅ 𝜓 + 𝑋 ⋅ ∇𝐴𝜓. This tells us that

⟨/𝜕𝐴𝜓, 𝜑⟩ − ⟨𝜓, /𝜕𝐴𝜑⟩ = −∑
𝑖
𝑒𝑖 ⟨𝜓, 𝑒𝑖 ⋅ 𝜑⟩ .

If we define a one-form 𝛽 by as 𝛽(𝑒𝑖) = ⟨𝜓, 𝑒𝑖 ⋅ 𝜑⟩, we have that the right-hand side is precisely d∗𝛽, and
so integrating over 𝑀, we obtain the result. ■

The Dirac operator is related to the Bochner Laplacian of the spin connection via the Weitzenböck for-
mula:

Theorem 2.6.10 (Weitzenböck formula).
The Dirac operator satisfies

/𝜕𝐴 /𝜕𝐴𝜓 = ∇∗
𝐴∇𝐴𝜓 +

𝑠
4𝜓 −∑

𝑖<𝑗
𝑖𝐹𝐴(𝑒𝑖, 𝑒𝑗)(𝑒𝑖𝑒𝑗 ⋅ 𝜓),

where 𝑠 is the scalar curvature of the metric.

This result can be proved by choosing a local moving frame and expanding everything in its local form [see
Moo96, p. 56].

2.7 Final ingredient: The squaring map

The final ingredient in our spin soup is a map that relates spinor fields with self-dual two forms on a
manifold. This at once tells us that we have to work with four-dimensional manifolds. It also tells us that
we need to be careful with the signature of the semi-Riemannian metric, since it will affect the Hodge star
operator.

Remark. From now on, we will work exclusively with Riemannian metrics, and set 𝑛 = 4.
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2.7.1 The linear squaring map
It is a good time to review and collect all the algebraic results that we have about Cl(4) and Spin(4). Recall
that in ?? we showed that the Clifford algebra Cl(4) is precisely the set of 2 × 2 matrices with entries in
the quaternions ℍ. Explicitly, the embedding ℝ4 ↪ Cl(4) = ℍ(2) is given by

𝑣 ↦ ( 0 𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜
−𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜 0 ) = ( 0 𝑞(𝑣)

−𝑞(𝑣) 0 ) ,

where 𝑞(𝑣) = 𝑣0 + 𝑣1𝕚 + 𝑣2𝕛 + 𝑣3𝕜.
Furthermore, in Example 2.3.7 we found that the only irreducible representation 𝜌 ∶ Cl(4) → End(ℂ4)

is given by

(𝑞1 𝑞2
𝑞3 𝑞4

) ↦ (𝑄1 𝑄2
𝑄3 𝑄4

) ∈ ℂ(4),

where if 𝑞𝑗 = 𝑎𝑗 +𝑏𝑗𝕚 + 𝑐𝑗𝕛 +𝑑𝑗𝕜 ∈ ℍ, then 𝑄𝑗 ∈ ℂ(2) is the image of 𝑞𝑗 under the standard representation
of ℍ in ℂ(2):

𝑄𝑗 ∶= ( 𝑎𝑗 + 𝑖𝑏𝑗 𝑐𝑗 + 𝑖𝑑𝑗
−𝑐𝑗 + 𝑖𝑑𝑗 𝑎𝑗 − 𝑖𝑏𝑗

) .

In particular, the image of vectors 𝑣 ∈ ℝ4 under 𝜌 is

𝜌(𝑣) = ( 0 𝑄(𝑣)
−𝑄(𝑣)∗ 0 ) ,

where
𝑄(𝑣) = ( 𝑣0 + 𝑖𝑣1 𝑣2 + 𝑖𝑣3

−𝑣2 + 𝑖𝑣3 𝑣0 − 𝑖𝑣1
) .

Note that 𝜌(𝑣) is anti-Hermitian for all 𝑣 ∈ ℝ4. Therefore, if 𝑣 is a unit vector, since −𝑣𝑣 = 1 in Cl(4), it
follows that

𝜌(𝑣)∗𝜌(𝑣) = −𝜌(𝑣)𝜌(𝑣) = 𝜌(−𝑣𝑣) = 𝜌(1) = 𝐼4,
and so 𝜌(𝑣) is unitary18.

In particular, the spin representation Δ = 𝜌|Spin(4) ∶ Spin(4) → SU(4) is

(𝑞1 0
0 𝑞2

) ↦ (𝑄1 0
0 𝑄2

) ∈ SU(4),

where 𝑞1 and 𝑞2 are unit quaternions, which implies that 𝑄1, 𝑄2 ∈ SU(2). Clearly, the spin representation
is reducible, with irreducible components Δ± ∶ Spin(4) → SU(2) being the composition of Δ with the
projection on the first and second components.

Let 𝜀0, … , 𝜀3 be the standard orthonormal basis ofℝ4, and 𝜀∗0, … , 𝜀∗3 be its dual basis. ThemapΩ2(ℝ4) →
Cl0(4) given by

𝜀∗𝑖 ∧ 𝜀∗𝑗 ↦ 𝜀𝑖𝜀𝑗
is a well-defined linear map, so we can define a representation 𝜇 ∶ Ω2(ℝ4) → End(ℂ4) using the spin
representation:

𝜇(𝜂)(𝜓) = 1
2 ∑𝑖,𝑗

𝜂𝑖,𝑗𝜇(𝜀∗𝑖 ∧ 𝜀∗𝑗 )(𝜓) ∶=
1
2 ∑𝑖,𝑗

𝜂𝑖,𝑗Δ(𝜀𝑖𝜀𝑗)𝜓.

18In fact, given a representation 𝜌 ∶ Clℂ(𝑛) → End(𝑆), there exists an inner product on 𝑆 such that 𝜌(𝑣) is unitary for all unit
vectors 𝑣 [see LM89, Theorem 5.17]. In the case of 𝑛 = 4 and the spin representation, this is the standard inner product.
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Since Δ is unitary, then 𝜇 is anti-Hermitian:

⟨𝜇(𝜀∗𝑖 ∧ 𝜀∗𝑗 )(𝜓), 𝜙⟩ = ⟨Δ(𝜀𝑖𝜀𝑗)(𝜓), 𝜙⟩
= ⟨𝜓, Δ(𝜀𝑖𝜀𝑗)−1(𝜙)⟩
= ⟨𝜓, Δ(𝜀𝑗𝜀𝑖)(𝜙)⟩
= − ⟨𝜓, Δ(𝜀𝑖𝜀𝑗)(𝜙)⟩
= − ⟨𝜓, 𝜇(𝜀∗𝑖 ∧ 𝜀∗𝑗 )(𝜙)⟩ .

Since 𝜇 acts on even forms, then it preserves the splitting of the spinor space 𝑆 = 𝑆+ ⊕ 𝑆−. This can be
seen directly by writing 𝜇(𝜂) as a matrix:

𝜇(𝜂) = 𝜌 ((𝜂01 + 𝜂23)𝕚 + (𝜂02 + 𝜂31)𝕛 + (𝜂03 + 𝜂12)𝕜 0
0 (𝜂23 − 𝜂01)𝕚 + (𝜂31 − 𝜂02)𝕛 + (𝜂12 − 𝜂03)𝕜

)

∶= (𝜇+(𝜂) 0
0 𝜇−(𝜂)

) ,

Where

𝜇+(𝜂) = ( (𝜂01 + 𝜂23)𝑖 (𝜂02 + 𝜂31) + (𝜂03 + 𝜂12)𝑖
−(𝜂02 + 𝜂31) + (𝜂03 + 𝜂12)𝑖 −(𝜂01 + 𝜂23)𝑖

) ;

𝜇−(𝜂) = ( (𝜂23 − 𝜂01)𝑖 (𝜂31 − 𝜂02) + (𝜂12 − 𝜂03)𝑖
−(𝜂31 − 𝜂02) + (𝜂12 − 𝜂03)𝑖 −(𝜂23 − 𝜂01)𝑖

) .

Note that the 𝜇+(𝜂) (resp. 𝜇−(𝜂)) is determined only by the self-dual (resp. anti-self-dual) components
of 𝜂. Therefore, if 𝜂 is self-dual, we have that 𝜂01 = 𝜂23, 𝜂02 = 𝜂31 and 𝜂03 = 𝜂12, so that

𝜇+(𝜂) = 2 ( 𝜂01𝑖 𝜂02 + 𝜂03𝑖
−𝜂02 + 𝜂03𝑖 −𝜂01𝑖

) .

Futhermore, if we let the coefficients of 𝜂 to be complex (i.e. if we consider Ω2
+(ℝ4, ℂ)), then 𝜇+ is an

isomorphism onto the space End0(𝑆±) of traceless endomorphisms19.

Proposition 2.7.1 (Traceless endomorphisms are isomorphic to complex self-dual 2-forms).

The morphism 𝜇+ ∶ Ω2
+(ℝ4, ℂ) → End0(𝑆+) is an isomorphism between the space of complex-valued

self-dual 2-forms and the traceless endomorphisms.

Proof.— We can find an explicit inverse. Let 𝐴 ∈ End0(𝑆+). In its matrix form, we can write 𝐴 as

𝐴 = (𝑧1 𝑧2
𝑧3 −𝑧1

) .

Comparing this expression with the matrix form of 𝜔(𝜂) for a self-dual, complex-valued 𝜂 ∈ Ω2
+(ℝ4, ℂ),

we have that 𝜇+(𝜂) = 𝐴 if and only if

𝜂01 = − 𝑖
2𝑧1

19Similarly, 𝜇− is an isomorphism between the space of anti-self-dual 2-forms and traceless endomorphisms, but we won’t use
it.
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𝜂02 = −14(𝑧2 − 𝑧3)

𝜂03 = − 𝑖
4(𝑧2 + 𝑧3).

It is straightforward to check that the map

𝜇−1+ (𝐴) = 𝑖
2𝑧1(𝜀

∗
0 ∧ 𝜀∗1 + 𝜀∗2 ∧ 𝜀∗3) −

1
4(𝑧2 − 𝑧3)(𝜀∗0 ∧ 𝜀∗2 + 𝜀∗3 ∧ 𝜀∗1) −

𝑖
4(𝑧2 + 𝑧3)(𝜀∗0 ∧ 𝜀∗3 + 𝜀∗1 ∧ 𝜀∗2)

is indeed the inverse of 𝜇+. ■

Now we are ready to construct the squaring map. Let 𝜓 ∈ 𝑆+ be a spinor. We can construct an
endomorphism 𝜓⊗ 𝜓∗ ∈ End(𝑆+), and make it traceless:

(𝜓 ⊗ 𝜓∗)0 ∶= 𝜓⊗ 𝜓∗ − 1
2 Tr(𝜓 ⊗ 𝜓∗)𝐼.

In matrix form, if 𝜓 = (𝜓1𝜓2)𝑇 , then 𝜓∗ = (𝜓1𝜓2) and

(𝜓 ⊗ 𝜓∗)0 = (
1
2
(|𝜓1|2 − |𝜓2|2) 𝜓1𝜓2

𝜓1𝜓2
1
2
(|𝜓2|2 − |𝜓1|2)

) .

Definition 2.7.2 ((Linear) Squaring map).
We define the squaring map 𝜎+ ∶ 𝑆+ → Ω2

+(ℝ4, ℂ) as

𝜎+(𝜓) ∶= 𝜇−1+ ((𝜓 ⊗ 𝜓∗)0)

for all 𝜓 ∈ 𝑆+ ≅ ℂ2. We can write 𝜎+ explicitly using Proposition 2.7.1:

𝜎+(𝜓) = − 𝑖
4((|𝜓1|

2 − |𝜓2|2)(𝜀∗0 ∧ 𝜀∗1 + 𝜀∗2 ∧ 𝜀∗3)

− 2ℑ(𝜓1𝜓2)(𝜀∗0 ∧ 𝜀∗2 + 𝜀∗3 ∧ 𝜀∗1)
+ 2ℜ(𝜓1𝜓2)(𝜀∗0 ∧ 𝜀∗3 + 𝜀∗1 ∧ 𝜀∗2)).

We can rewrite this more compactly (and also in a basis-independent way). Writing 𝜀𝑖𝜀𝑗 ⋅𝜓 ∶= Δ+(𝜀𝑖𝜀𝑗)(𝜓),
we have

⟨𝜓, 𝜀0𝜀1 ⋅ 𝜓⟩ = ⟨𝜓, 𝜀2𝜀3 ⋅ 𝜓⟩ = (𝜓1 𝜓2) (
𝑖 0
0 −𝑖) (

𝜓1
𝜓2
) = 𝑖(|𝜓1|2 − |𝜓2|2)

⟨𝜓, 𝜀0𝜀2 ⋅ 𝜓⟩ = ⟨𝜓, 𝜀3𝜀1 ⋅ 𝜓⟩ = (𝜓1 𝜓2) (
0 1
−1 0) (

𝜓1
𝜓2
) = −2𝑖ℑ(𝜓1𝜓2)

⟨𝜓, 𝜀0𝜀3 ⋅ 𝜓⟩ = ⟨𝜓, 𝜀1𝜀2 ⋅ 𝜓⟩ = (𝜓1 𝜓2) (
0 𝑖
𝑖 0) (

𝜓1
𝜓2
) = 2𝑖ℜ(𝜓1𝜓2).

Therefore, we can write
𝜎+(𝜓) = −14 ∑𝑖<𝑗

⟨𝜓, 𝜀𝑖𝜀𝑗 ⋅ 𝜓⟩ 𝜀∗𝑖 ∧ 𝜀∗𝑗 .
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2.7.2 The global squaring map
Let 𝑀 be a Riemannian 4-manifold which admits a Spin or Spinc structure. The spin representation Δ
splits, so the spinor bundle 𝑆(𝑀) = 𝑆(𝑀,Δ) splits into the sum of the positive (or right-handed) spinors
𝑆+(𝑀) and the negative (or left-handed) spinors 𝑆−(𝑀):

𝑆(𝑀) = 𝑆+(𝑀) ⊕ 𝑆−(𝑀).

Analogously with the linear case, the bundles 𝑆(𝑀), 𝑆+(𝑀) and 𝑆−(𝑀) have Hermitian metrics such that
Clifford multiplication by an unit-length vector field is unitary.

Finally, we promote 𝜎+ to a definition on the positive spinor bundle.

Definition 2.7.3 (Squaring map).
Let 𝑀 be an orientable Riemannian 4-manifold that admits a Spin or Spinc structure. Let 𝑆(𝑀) =
𝑆+(𝑀) ⊕ 𝑆−(𝑀) be the spinor bundles associated to the (complex) spin representation Δ. We define the
squaring or quadratic map 𝜎+ ∶ Γ(𝑆+(𝑀)) → Ω2

+(𝑀,ℂ) locally, in terms of an orthonormal frame
𝑒1, … , 𝑒𝑛 as

𝜎+(𝜓) ∶= −14 ∑𝑖<𝑗
⟨𝜓, 𝑒𝑖𝑒𝑗 ⋅ 𝜓⟩ 𝑒∗𝑖 ∧ 𝑒∗𝑗 .

Note that 𝜎+(𝜓) is a purely imaginary self-dual 2-form.

It is a straightforward exercise to show that 𝜎+ is well-defined.



CHAPTER3
The Seiberg-Witten Equations and

Moduli Space

W e are finally ready to define the Seiberg-Witten equations and their moduli space. Let 𝑀 be an
oriented Riemannian 4-manifold which admits a Spinc-structure. The Seiberg-Witten equations

are the equations on positive spinor fields 𝜓 ∈ Γ(𝑆+(𝑀)) and U(1) connections 𝑖𝐴, given by

/𝜕𝐴𝜓 = 0 (3.1a)
𝐹+𝐴 = 𝜎+(𝜓), (3.1b)

where 𝐹+𝐴 is the self-dual part of the curvature of 𝐴, and 𝜎+ is the squaring map of Section 2.7.2. We call
a solution of Equation (3.1) a Seiberg-Witten monopole, or just a monopole.

We will see that these equations are equivariant under the natural action of a specific group 𝒢 on
the space of spinors and connections on U(𝑀). Therefore, the solutions (𝜓, 𝐴) of the Seiberg-Witten
equations will be invariant under the action of the gauge group, and thus, we can consider the Seiberg-
Witten moduli space

ℳ = {(𝜓, 𝐴) ∈ Γ(𝑆+(𝑀)) ×Conn(U(𝑀)) | Equations 3.1 hold }⧸𝒢,

where Conn(U(𝑀)) denotes the space of U(1)-connections on U(𝑀). The moduli spaceℳ depends both
on the Riemannian metric on 𝑀 and the Spinc-structure on it.

In most cases, it turns out that ℳ is a surprisingly good object: it is a compact, orientable smooth
manifold of finite dimension. Briefly speaking, this regularity comes from two ideas. The first one is that
the coupled Dirac operator is elliptic, and therefore its kernel is reasonably well-behaved. The second one
is that the symmetry group 𝒢 is “large” enough to cut down the dimension of the moduli space, while also
having a good enough topology so that the quotient is a manifold too.

We will then define the Seiberg-Witten invariant of the Spinc-structure as the integral of a specific
form over ℳ. Indeed, this will be an invariant, independent of the Riemannian metric. Furthermore, in
most cases, ℳ will be zero-dimensional, so the invariant will reduce to counting the points of ℳ with
signs depending on the orientation.

57
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Overview of this chapter

The first thing that’s in order is proving that the moduli spaceℳ is a smooth manifold. For this, we will use
the implicit function theorem, in its infinite-dimensional flavour. First, we need to set some nomenclature:
define the Seiberg-Witten configuration space Conf(𝑀) as

Conf(𝑀) = Γ(𝑆+(𝑀)) ×Conn(U(𝑀)),

and the target space
𝒴 = Γ(𝑆−(𝑀)) × Ω2

+(𝑀, 𝑖ℝ).
This way, the solutions of the Seiberg-Witten equations are written as the zero set of the Seiberg-Witten
map 𝒮𝒲 ∶ Conf(𝑀) → 𝒴, given as

𝒮𝒲(𝜓, 𝐴) = (/𝜕𝐴𝜓, 𝐹+𝐴 − 𝜎+(𝜓)).

Ideally, we would show that (0, 0) is a regular value of 𝒮𝒲, so that by the implicit function theorem, its
zero set is a smooth submanifold of Conf(𝑀). Then, if the quotient by 𝒢 is well-behaved, we obtain the
moduli space as a smooth manifold too.

However, there’s a catch: first we need to endow Conf(𝑀) and 𝒴 with structures of smooth Banach
manifolds. Of course, they are the direct product of spaces of sections, so they already are vector spaces.
However, upon endowing themwith an 𝐿𝑝-norm, smoothness of sections inevitablymeans that the normed
spaces are incomplete. Therefore, we must work with appropriate completions, which in our case will be
Sobolev completions of these spaces of sections. We write Conf𝑘,𝑝(𝑀), 𝒴𝑘,𝑝, 𝒢𝑘,𝑝(𝑀) for the Sobolev
versions of the smooth spaces, with 𝑘 weak derivatives in 𝐿𝑝.

The first important step is showing that even though we’ve considered a larger configuration space
(and thus a larger zero set of 𝒮𝒲), the moduli space remains the same. That is, any solution with “low”
regularity is gauge-equivalent to a smooth one. This is a result that follows from the fact that the Dirac
operator is elliptic, and thus the solutions to the Dirac equation enjoy a lot of regularity.

Once we have this, we can try to apply the implicit function theorem. However, we will quickly note
that in many cases, (0, 0) will not be a regular value of the Seiberg-Witten map. We can fix this by
applying a perturbation. For any fixed closed self-dual 2-form 𝜂, define the perturbed Seiberg-Witten
map 𝒮𝒲𝜂 ∶ Conf(𝑀) → 𝒴, as

𝒮𝒲𝜂(𝜓, 𝐴) = (/𝜕𝐴𝜓, 𝐹+𝐴 − 𝜂 − 𝜎+(𝜓)).

With the aid of Smale’s infinite dimensional version of Sard’s theorem, we can show that for a generic
perturbation 𝜂, the value (0, 0) will be a regular and thus the zero-set will be a submanifold of Conf(𝑀),
albeit infinite-dimensional.

Now we take the quotient, and calculate the dimension. At every point (𝜓, 𝐴) in the configuration
space, we have an infinitesimal action of the “Lie algebra” of the gauge group 𝒢, which we denote by
𝔤(𝜓,𝐴) ∶ 𝑇1𝒢 → 𝑇(𝜓,𝐴)Conf(𝑀). If (𝜓, 𝐴) is furthermore a solution of the perturbed Seiberg-Witten
equations, we have a complex, called the Seiberg-Witten complex

0 𝑇1𝒢 𝑇(𝜓,𝐴)Conf(𝑀) 𝑇(0,0)𝒴 0.𝔤 𝑇(𝜓,𝐴)𝒮𝒲𝜂

The homology of this complex tells us about how good a point (𝐴, 𝜓) is. Specifically, we have

𝐻0
SW = 0 if and only if the action of 𝒢 is free at (𝜓, 𝐴),
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𝐻2
SW = 0 if and only if (𝜓, 𝐴) is a regular point,

and furthermore,
𝐻1

SW = ker𝑇(𝜓,𝐴)𝒮𝒲𝜂⧸im 𝔤 ≅ 𝑇[𝐴,𝜓]ℳ.

The Fredholm property of the Dirac operator also extends to the entirety of the Seiberg-Witten map, so
the kernel ker𝑇(𝜓,𝐴)𝒮𝒲𝜂 is finite dimensional. Therefore, we can compute

dim𝑇[𝜓,𝐴]ℳ = dim(ker𝑇(𝜓,𝐴)𝒮𝒲𝜂) − dim(im 𝔤).

From the Atiyah-Singer index theorem, we can calculate these dimensions in terms of the indices of the
elliptic operators /𝜕𝐴 and d + d∗, and thus obtain

dimℳ = dim𝑇[𝜓,𝐴]ℳ = 1
4(𝑐

2 − 2𝜒(𝑀) − 3 sign(𝑀)),

where 𝑐2 = ∫𝑀 𝑐1(𝐿(𝑀)) ∧ 𝑐1(𝐿(𝑀)) with 𝐿(𝑀) determinant line bundle of the Spinc-structure, 𝜒(𝑀) is
the Euler characteristic of 𝑀, and sign(𝑀) = 𝑏+2 − 𝑏−2 is the signature of 𝑀.

Now that we now that ℳ is a smooth, finite-dimensional manifold, we can define an invariant on it.
It turns out that ℳ is compact, and this follows mainly from an a priori bound on 𝜓 and 𝐹+𝐴 given by
the scalar curvature of 𝑀 and a Weitzenböch formula with the Dirac Laplacian. We can prove that ℳ
is sequentially compact by starting with these a priori bounds, and the Sobolev embedding theorems to
obtain convergent subsequences of smaller regularity. The elliptic regularity of the solutions to the Dirac
equation help “restore” the lost regularity.

Finally, ℳ is orientable, and an orientation can be inherited from orientations of the cohomology
groups 𝐻1(𝑀,ℝ) and 𝐻2

+(𝑀,ℝ). Therefore, we can happily integrate forms over ℳ, and the Seiberg-
Witten invariant will be defined as the integral of a naturally-chosen form.

3.1 The gauge group and its action

Let𝑀 be a smooth manifold that admits a Spinc-structure Spinc(𝑀). The gauge group or group of gauge
transformations of Spinc(𝑀), denoted 𝒢, is the group of automorphisms1 of Spinc(𝑀) which lift the
identity of the orthonormal frame bundle SO(𝑀). That is, Φ ∈ 𝒢 if the following diagram commutes:

Spinc(𝑀) Spinc(𝑀)

SO(𝑀) SO(𝑀)

Φ

Σ Σ
id

.

Here, Σ ∶ Spinc(𝑀) → SO(𝑀) is the bundle morphism which is fiberwise the spinor map 𝓈 ∶ Spinc(𝑛) →
SO(𝑛).

The gauge group seems very unwieldy, but in our case it has a nice presentation.

1An automorphism of a principal 𝐺-bundle 𝐺 ↪ 𝑃 → 𝑀 is a diffeomorphism Φ ∶ 𝑃 → 𝑃 such that 𝜋 ∘ Φ = Φ and for all
𝑝 ∈ 𝑃 and 𝑔 ∈ 𝐺, Φ(𝑝 ⋅ 𝑔) = Φ(𝑝) ⋅ 𝑔.
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Proposition 3.1.1 (Characterization of gauge group).
The gauge group 𝒢 is in bijection with the set of smooth maps 𝛾 ∶ 𝑀 → 𝑆1:

𝒢 ≅ 𝐶∞(𝑀, 𝑆1).

Proof.— Let 𝛾 ∶ 𝑀 → 𝑆1 be a smooth map. We interpret 𝑆1 ⊂ Spinc(𝑛), so that 𝛾 can be seen as a map
𝛾 ∶ 𝑀 → Spinc(𝑛). Then we define

Φ𝛾 ∶ Spinc(𝑀) → Spinc(𝑀)
𝑝 ↦ 𝑝 ⋅ 𝛾(𝜋(𝑝))

for all 𝑝 ∈ Spinc(𝑀), where 𝜋 ∶ Spinc(𝑀) → 𝑀. Clearly, Φ𝛾 is a smooth bundle map, being the
composition of smooth maps and mapping fibers into fibers. For all 𝑝 ∈ Spinc(𝑀):

Σ(Φ𝛾(𝑝)) = Σ(𝑝 ⋅ 𝛾(𝜋(𝑝))) = Σ(𝑝) ⋅ 𝓈(𝛾(𝜋(𝑝))) = Σ(𝑝),

since 𝛾(𝜋(𝑝)) ∈ U(1), and so 𝓈(𝛾(𝜋(𝑝))) = 1.
Now let Φ ∈ 𝒢. We want to see that there is a unique 𝛾 ∶ 𝑀 → 𝑆1 such that Φ = Φ𝛾. Locally, Φ

must act as
Φ(𝑥, 𝜉) = (𝑥, 𝜑(𝑥, 𝜉)),

such that for each 𝑥, the map 𝜑(𝑥, −) is an automorphism of Spinc(𝑛). Since Φ is a gauge transformation,
then

Σ(Φ(𝑥, 𝜉)) = (𝑥, 𝓈(𝜑(𝑥, 𝜉))) = (𝑥, 𝓈(𝜉)) = Σ(𝑥, 𝜉)
and thus 𝓈(𝜑(𝑥, 𝜉)) = 𝓈(𝜉), which implies that 𝜑(𝑥, 𝜉) = 𝑒𝑖𝜃(𝑥,𝜉)𝜉, for some function 𝜃. Therefore, Φ is
of the form

Φ(𝑝) = 𝑝 ⋅ ̃𝛾(𝑝),
where ̃𝛾 ∶ Spinc(𝑀) → U(1) is a smooth function. Let’s see that ̃𝛾 is actually constant along the fibers of
Spinc(𝑀), so that it determines a function 𝛾 ∶ 𝑀 → U(1). Let 𝑝, 𝑝′ ∈ Spinc(𝑀) be points on the same
fiber, so 𝜋(𝑝) = 𝜋(𝑝′). Then there exists a unique 𝜉 ∈ Spinc(𝑛) such that 𝑝′ = 𝑝 ⋅ 𝜉, and thus

Φ(𝑝′) = Φ(𝑝 ⋅ 𝜉) = Φ(𝑝) ⋅ 𝜉 = 𝑝 ⋅ ( ̃𝛾(𝑝)𝜉).

On the other hand,
Φ(𝑝′) = 𝑝′ ⋅ ( ̃𝛾(𝑝′)) = 𝑝′ ⋅ (𝜉 ̃𝛾(𝑝′)).

Since ̃𝛾(𝑝) and ̃𝛾(𝑝′) are in U(1), then they commute with 𝜉 and thus

̃𝛾(𝑝) = ̃𝛾(𝑝′).

From this, indeed we see that Φ𝛾 = Φ. ■

Now let’s see that 𝒢 acts on the space of spinors and U(1)-connections, and that the Seiberg-Witten
equations are equivariant under this action.

The action of𝒢 on spinor fields is given as follows. Let 𝛾 ∈ 𝒢, seen as a smooth map 𝛾 ∶ 𝑀 → 𝑆1 ⊆ ℂ.
For any left, right, or total spinor field Ψ, we define

(Ψ ⋅ 𝛾)(𝑥) = 𝛾(𝑥)−1Φ(𝑥).
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The action of 𝒢 on connections on the determinant bundle are a bit more subtle. Given a map
𝛾 ∶ 𝑀 → U(1), we have an induced automorphism of the U(1)-bundle Φ𝛾 ∶ U(𝐿) → U(𝐿), given as

Φ𝛾(𝑝) = 𝑝 ⋅ 𝛿(𝛾(𝜋(𝑝))).

Given a U(1)-connection 𝜔 ∈ Ω1(U(𝑀), 𝑖ℝ), we define

𝜔 ⋅ 𝛾 = Φ∗
𝛾𝜔.

How does this action look like locally? Let 𝑠 ∶ 𝑈 → U(𝑀) be a local trivializing section, and write
𝑖𝐴 = 𝑠∗𝜔. Then

𝑠∗(𝜔 ⋅ 𝛾) = (Φ𝛾 ∘ 𝑠)∗𝜔.
However,

(Φ𝛾 ∘ 𝑠)(𝑥) = 𝑠(𝑥) ⋅ 𝛿(𝛾(𝑥)) = 𝑠(𝑥) ⋅ 𝛾(𝑥)2

which is another section 𝑠′ related to 𝑠 by a transition function 𝑔 = 𝛾2. Therefore, writing 𝑖𝐴′ = 𝑠∗(𝜔 ⋅ 𝛾),

𝑖𝐴′ = 𝑖𝐴 + 𝑔−1 d𝑔 = 𝑖𝐴 + 2𝛾−1 d𝛾 .

Since the action of 𝛾 looks like a change of local gauge, then the curvature is unchanged:

𝐹𝐴 = 𝐹𝐴′ .

With this we prove:

Proposition 3.1.2 (Invariance of solutions of SW equations).
If Ψ ∈ Γ(𝑆+(𝑀)) and 𝐴 ∈ Conn(U(𝑀)) form a solution to the Seiberg-Witten equations, i.e.,

/𝜕𝐴𝜓 = 0
𝐹+𝐴 = 𝜎+(𝜓),

then for all 𝛾 ∈ 𝒢, the gauge-transformed monopole (𝜓 ⋅ 𝛾, 𝐴 ⋅ 𝛾) is also a solution.

Proof.— We need to see how the Dirac operator /𝜕𝐴 and the squaring map 𝜎+(𝜓) change under a gauge
transformation.

Recall that locally, the action of 𝒢 on 𝐴 is

𝑖𝐴′ = 𝑖𝐴 ⋅ 𝛾 = 𝑖𝐴 + 2𝛾−1 d𝛾 .

Therefore, in a local frame 𝑠 = (𝑒1, … , 𝑒𝑛) of SO(𝑀) that lifts to a frame 𝑠 of Spinc(𝑀), if Ψ is represented
locally as Ψ = [𝑠, 𝜓], then the spin connection acts as

∇𝐴′Ψ′ = [𝑠, d(𝛾−1𝜓) + ( 𝑖2𝐴
′ + 1

4 ∑𝑗,𝑘
𝜔𝑘,𝑗𝑒𝑗𝑒𝑘) ⋅ (𝛾−1𝜓)]

= [𝑠, −𝛾−2 d𝛾𝜓 + 𝛾−1 d𝜓 + ( 𝑖2𝐴 + 𝛾−1 d𝛾 + 1
4 ∑𝑗,𝑘

𝜔𝑘,𝑗𝑒𝑗𝑒𝑘) ⋅ (𝛾−1𝜓)]

= 𝛾−1[𝑠, d𝜓 + ( 𝑖2𝐴 +
1
4 ∑𝑗,𝑘

𝜔𝑘,𝑗𝑒𝑗𝑒𝑘) ⋅ 𝜓]
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= 𝛾−1∇𝐴Ψ.

This implies that /𝜕𝐴′Ψ′ = 𝛾−1 /𝜕𝐴Ψ.
Finally, let’s see how the squaring map changes. Again, locally,

𝜎+(𝜓′) = −14 ∑𝑖<𝑗
⟨𝛾−1𝜓, 𝑒𝑖𝑒𝑗 ⋅ 𝛾−1𝜓⟩ 𝑒∗𝑖 ∧ 𝑒∗𝑗

= −14 ∑𝑖<𝑗
⟨𝜓, 𝑒𝑖𝑒𝑗𝜓⟩ 𝑒∗𝑖 ∧ 𝑒∗𝑗

= 𝜎+(𝜓).

In summary, under a gauge transformation 𝛾, the Seiberg-Witten equations transform as

/𝜕𝐴Ψ
𝐹+𝐴 − 𝜎+(Ψ)

𝛾−1 /𝜕𝐴Ψ
𝐹+𝐴 − 𝜎+(Ψ)

⋅𝛾 ,

and thus, (Ψ′, 𝐴′) is a solution of the Seiberg-Witten equations if and only if (Ψ, 𝐴) is. ■

The fact that the action of 𝛾 ∈ 𝒢 on a spinor Ψ is 𝛾−1Ψ means that the stabilizer of any configuration
(Ψ, 𝐴) is trivial if and only if Ψ ≡ 0. In that case, from the local expression of the action on connections,
we have that 𝛾 ∈ Stab(0, 𝐴) if and only if d𝛾 = 0. We have proved:

Proposition 3.1.3.
The stabilizer of an element (Ψ, 𝐴) under the action of 𝒢 is trivial if and only if Ψ is not uniquely zero. If
Ψ ≡ 0, then

Stab(0, 𝐴) = 𝑆1.

We say that a configuration (Ψ, 𝐴) with Ψ ≡ 0 is a reducible configuration. If Ψ ≠ 0, then we say that it
is irreducible. As we saw above, reducible configurations are an obstruction to obtaining a nice manifold
structure the moduli space.

3.2 Topology of the Moduli Space

This section follows [Nic07, Section 2.2.1] with a bit of cosmetic changes. The proper setup of the Seiberg-
Witten equations and their moduli space is, then, in the Sobolev completions. Fix, once and for all, a
smooth reference connection 𝐴0 ∈ Conn(U(𝑀)). We define the configuration space as

Conf2,2 = 𝑊 2,2(𝑆+(𝑀)) ×Conn2,2(U(𝑀)),

where
Conn2,2(U(𝑀)) = {𝐴0 + 𝜋∗𝛼 | 𝛼 ∈ 𝑊 2,2(𝑖𝑇∗𝑀)}

is the space of connections2 in 𝑊 2,2. The target space is

𝒴1,2 = 𝑊 1,2(𝑆−(𝑀)) × 𝑊 1,2(𝑖Λ2+𝑇∗𝑀),
2Recall that the space of U(1) connections is an affine space modelled on Ω1(𝑀).
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so that Seiberg-Witten map 𝒮𝒲 is
𝒮𝒲 ∶ Conf2,2 → 𝒴1,2.

The regularity decreases since 𝒮𝒲 is a first-order differential operator. Note both Conf2,2 and 𝒴1,2 are
Hilbert spaces, so if 𝒮𝒲 is smooth, we can use the implicit function theorem. We will often drop the
superscripts and write Conf, 𝒴, etc., but we remark that we are always using these Sobolev completions.

Just as we want it the Seiberg-Witten map is a smooth map between Hilbert manifolds [Proposition
2.1.7 Nic00] Similarly, we enlarge the gauge group 𝒢 so that it becomes a Hilbert-Lie group [Nic00,
Proposition 2.1.8]. Write

𝒢3,2 = 𝑊 3,2(𝑀, 𝑆1).

Proposition 3.2.1 (𝒢3,2 is a Hilbert-Lie group).
𝒢3,2 is a Hilbert-Lie group, and its “Lie algebra” is

𝑇1𝒢3,2 = 𝑊 3,2(𝑀, 𝑖ℝ).

Furthermore, the action of 𝒢3,2 on Conf3,2 is smooth.

The next thing that’s in order is proving that, even though we have enlarged the configuration space
and the gauge group, the moduli space has not changed. This is a prime example of the usefulness of elliptic
regularity.

Proposition 3.2.2 (Moduli space is the same).
Let 𝜂 ∈ 𝑊 1,2(Λ2𝑇∗𝑀) be a perturbation and (Ψ, 𝐴) ∈ Conf3,2 be a solution to

𝒮𝒲𝜂(Ψ, 𝐴) = 0.

Then there exists a gauge transformation 𝛾 ∈ 𝒢3,2(𝑀) such that (Ψ ⋅ 𝛾, 𝐴 ⋅ 𝛾) is smooth. Consequently,
there is a bijection between the moduli space of𝑊 2,2 solutions

ℳ2,2(𝜂) = {(Ψ, 𝐴) ∈ Conf2,2 | 𝒮𝒲𝜂(Ψ, 𝐴) = 0} /𝒢3,2(𝑀)

and the moduli spaceℳ(𝜂) of smooth solutions.

Proof (Sketch).— This proof is an excellent example of the use of elliptic regularity. Let (Ψ, 𝐴) ∈ Conf2,2

be a solution, with 𝐴 = 𝐴0 + 𝑖𝛼. By Hodge decomposition, we can write

𝛼 = [𝛼] + d𝑓 + d∗𝛽,

where [𝛼] is the harmonic part, 𝑓 ∈ 𝑊 3,2(𝑀) and 𝛽 ∈ 𝑊 3,2(Λ2𝑇∗𝑀). Consider the gauge transformation

𝛾 = 𝑒−
𝑖
2𝑓. Then

(Ψ, 𝐴) ⋅ 𝛾 = (𝑒−
𝑖
2𝑓Ψ,𝐴0 + 𝑖[𝛼] + 𝑖d∗𝛽).

Writing 𝑎 = [𝛼] + d∗𝛽, we have that d∗𝑎 = 0.
Since (Ψ, 𝐴) are a solution to the Seiberg-Witten equations, then so is (Ψ, 𝐴) ⋅ 𝛾. That is,

/𝜕𝐴0
Ψ − 1

2(𝑖𝑎) ⋅ Ψ = 0
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𝐹+𝐴0 + 𝑖d+𝑎 + 𝜂 = 𝜎+(Ψ).

We see then that Ψ is a solution to a homogeneous Dirac equation with respect to a smooth connection.
Here is where the elliptic regularity comes into play. Since 𝑎, 𝜓 ∈ 𝑊 2,2, then by the Sobolev embeddings
we have that 𝑎, 𝜓 ∈ 𝐿𝑝 for all 1 < 𝑝 < ∞. Therefore, the multiplication 𝑖𝑎 ⋅ Ψ is in 𝐿𝑝 as well for all
1 < 𝑝 < ∞, and therefore /𝜕𝐴0

Ψ too. By elliptic regularity of the Dirac operator, since Ψ ∈ 𝑊 2,2 and
Ψ ∈ 𝐿𝑝 for all 𝑝 > 1 is the solution of an elliptic equation, then Ψ ∈ 𝑊 1,𝑝 for all 𝑝 < ∞.

From the second equation since d∗𝑎 = 0, we have that (𝑑+ + 𝑑∗)𝑎 + 𝜂 ∈ 𝑊 1,𝑝 for all 𝑝 < ∞. By
Sobolev embedding, we find that 𝜂 ∈ 𝑊 1,𝑝 for all 𝑝 < ∞, and thus (𝑑+ + 𝑑∗)𝑎 as well. From elliptic
regularity of (𝑑+ + 𝑑∗), we obtain that 𝑎 ∈ 𝑊 2,4, and so 𝑖𝑎 ⋅ 𝜓 ∈ 𝑊 1,𝑝 for all 𝑝 < ∞. We repeat this
process to obtain that Ψ ∈ 𝑊 2,𝑝, and so we obtain that Ψ and 𝑎 are smooth. ■

Let ℬ2,2 be the quotient space
ℬ2,2 = Conf2,2/𝒢3,2(𝑀),

We can show that it is Hausdorff with the quotient topology [Mor96, Section 4.5]. Furthermore, we can
show that the action of the gauge group admits local slices; that is, for every point (Ψ, 𝐴) ∈ Conf, there is
a neighborhood 𝑈 of (Ψ, 𝐴) and an embedded submanifold 𝑆 ⊆ 𝑈 which “parameterizes” the orbits of 𝒢
close to (Ψ, 𝐴)[Mor96, Section 4.5][Nic00, Section 2.2.2]. Intuitively, this shows that the quotient space
ℬ looks like 𝑆 locally. For irreducible solutions, these local structures stitch together well to form a global
smooth structure.

Theorem 3.2.3 (Manifold structure of quotient space of irreducible configurations).
Letℬ∗ ⊆ ℬ be the open subset of gauge classes of irreducible configurations. Thenℬ∗ is aHilbert manifold.

Now we want to show that ℳ is also a smooth, finite-dimensional manifold. The strategy is showing
that the zero set of 𝒮𝒲𝜂 is a smooth submanifold of Conf. If the action of 𝒢 behaves well enough,ℳ will
be a smooth manifold and we can compute its dimension with the strategy outlined at the beginning of
this chapter.

3.2.1 Dimension ofℳ
Fix a perturbation 𝜂 ∈ 𝑊 1,2(Λ2𝑇∗𝑀), and denote the zero set of 𝒮𝒲𝜂 as

𝒵2,2
𝜂 = {(Ψ, 𝐴) ∈ Conf2,2 | 𝒮𝒲𝜂(Ψ, 𝐴) = 0} .

Then, if𝔊(Ψ,𝐴) ∶ 𝒢 → Conf is the action𝔊(Ψ,𝐴)(𝛾) = (Ψ⋅𝛾, 𝐴⋅𝛾), necessarily we have that for all (Ψ, 𝐴) ∈
𝒵2,2
𝜂 , the composition 𝒮𝒲𝜂∘𝔊(Ψ,𝐴) is exactly zero. Taking differentials, and denoting by 𝔤(Ψ,𝐴) = 𝑇1𝔊(Ψ,𝐴),

we have the Seiberg-Witten complex

0 𝑇1𝒢(𝑀) 𝑇(𝜓,𝐴)Conf(𝑀) 𝑇(0,0)𝒴 0.
𝔤(Ψ,𝐴) 𝑇(Ψ,𝐴)𝒮𝒲𝜂

The homology of this complex is

ℋ0 = ker 𝔤(Ψ,𝐴)
ℋ1 = ker𝑇(Ψ,𝐴)𝒮𝒲𝜂/ im 𝔤(Ψ,𝐴) ≅ 𝑇[Ψ,𝐴]ℳ(𝜂)
ℋ2 = coker𝑇(Ψ,𝐴)𝒮𝒲𝜂.
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We have that ℋ0 is trivial if and only if the action of 𝒢 is free on (Ψ, 𝐴), and therefore it its trivial if and
only if (Ψ, 𝐴) is irreducible.

On the other side of the complex,ℋ2 is trivial if and only if (Ψ, 𝐴) is a regular point of 𝒮𝒲𝜂. Therefore,
if 0 is a regular value of 𝒮𝒲𝜂, then by the implicit function theorem, the set of irreducible solutions will
form a smooth submanifold of Conf. Since the action of 𝒢 is free on irreducible solutions, the quotient
𝒵/𝒢 will be a smooth submanifold of ℬ∗.

Therefore, we have two obstructions to having a good structure of the moduli space: First, the re-
ducibility of some solutions, and second, the failure of 0 to be a regular value of 𝒮𝒲𝜂. We will see below
that under some conditions on 𝑀, we can choose a generic perturbation 𝜂 such that there are no reducible
solutions and such that 0 is a regular value of 𝒮𝒲𝜂, and therefore the moduli space ℳ(𝜂) is smooth.

But for the rest of this section, let’s assume that all is good. Let’s assume that there exists a perturbation
𝜂 for which all solutions are irreducible and 0 is a regular value. Thereforeℋ0 = 0 andℋ2 = 0. Our main
result is that ℳ(𝜂) is, surprisingly, finite-dimensional. Then we need to find explicit expressions for all
the elements of the Seiberg-Witten complex. From Proposition 3.2.1, we know that 𝑇1𝒢 ≅ 𝑊 3,2(𝑀, 𝑖ℝ).
We know that Conf is the product of a Hilbert space with an affine space modeled on𝑊 2,2(𝑇∗𝑀), and so
its tangent space at any configuration (Ψ, 𝐴) is

𝑇(Ψ,𝐴)Conf ≅ 𝑊 2,2(𝑆+(𝑀)) ⊕𝑊 2,2(𝑇∗𝑀).

The target space 𝒴 is the product of two Hilbert spaces, so

𝑇(0,0)𝒴 ≅ 𝒴 = 𝑊 1,2(𝑆−(𝑀)) ⊕𝑊 1,2(𝑖Λ2+𝑇∗𝑀).

Let’s find the differential of the Seiberg-Witten map. First, we vary the spinor. Consider, for some 𝑡 > 0,
a slight perturbation from a spinor Ψ. We have

/𝜕𝐴(Ψ + 𝑡𝜑) = /𝜕𝐴(Ψ) + 𝑡 /𝜕𝐴𝜑.

On the other hand, we have the endomorphism

(Ψ + 𝑡𝜑)∗ ⊗ (Ψ + 𝑡𝜑) = Ψ∗ ⊗Ψ+ 𝑡(𝜑∗ ⊗Ψ+ Ψ⊗ 𝜑∗) + 𝒪(𝑡2),

and thus,
𝜎+(Ψ + 𝑡𝜑) = 𝜎+(Ψ) + 𝑡𝜇−1+ ((𝜑∗ ⊗Ψ+ Ψ⊗ 𝜑∗)0) + 𝒪(𝑡2).

Putting these results together, we obtain

d
d𝑡
|||𝑡=0

𝒮𝒲𝜂(Ψ + 𝑡Φ, 𝐴) = 𝑇(Ψ,𝐴)𝒮𝒲𝜂(Φ, 0) = (/𝜕𝐴Φ, 𝜇−1+ ((𝜑∗ ⊗Ψ+ Ψ⊗ 𝜑∗)0)).

Let’s see what happens whenwe vary the connection. For a one-form 𝑖𝛼 ∈ Ω1(𝑀,ℝ), write𝐴′ = 𝐴+𝑖𝑡𝜋∗𝛼.
Then

𝐹𝐴′ = 𝐹𝐴 + 𝑖𝑡d𝛼.
The Dirac operator changes as as

/𝜕𝐴′Ψ = ∑
𝑖
𝑒𝑖 ⋅ ∇𝐴,𝑒𝑖 ⋅ Ψ = ∑

𝑖
𝑒𝑖 ⋅ (∇𝐴,𝑒𝑖Ψ + 𝑖

2𝛼(𝑒𝑖)Ψ) ∶= /𝜕𝐴Ψ + 1
2𝑖𝛼 ⋅ Ψ.

Putting these two results together, we have
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Lemma 3.2.4 (Differential of Seiberg-Witten map).
The differential of the Seiberg-Witten map 𝒮𝒲𝜂 is

𝑇(Ψ,𝐴)𝒮𝒲𝜂(𝜑, 𝑖𝛼) = (/𝜕𝐴𝜑 +
1
2𝑖𝛼 ⋅ Ψ, 𝜇

−1
+ ((𝜑∗ ⊗Ψ+ Ψ⊗ 𝜑∗)0) + d+(𝑖𝛼)).

In a little bit more legible matrix form:

𝑇(Ψ,𝐴)𝒮𝒲𝜂 (
𝜑
𝑖𝛼) = ( /𝜕𝐴

1
2
• ⋅Ψ

𝜇−1+ ((•∗ ⊗Ψ+ Ψ⊗ •∗)0) d+
) (𝜑𝑖𝛼) .

Finally, let’s see what the differential of the action of 𝒢 on Conf is. Let 𝛾𝑡 = 𝑒𝑖𝑡𝑓 ∈ 𝒢. Then, for a
configuration (Ψ, 𝐴), we have

𝑇1𝔊(𝑖𝑓) =
d
d𝑡
|||𝑡=0

(Ψ ⋅ 𝛾𝑡, 𝐴 ⋅ 𝛾𝑡)

= d
d𝑡
|||𝑡=0

(𝑒−𝑖𝑡𝑓Ψ,𝐴 + 2𝑒−𝑖𝑡𝑓 d𝑒𝑖𝑡𝑓)

= (−𝑖𝑓Ψ, 2𝑖 d𝑓)

We have proved:

Lemma 3.2.5 (Infinitesimal action of gauge group).
For every configuration (Ψ, 𝐴), the infinitesimal action 𝔤(Ψ,𝐴) = 𝑇1𝔊(Ψ,𝐴) of the gauge group is given by

𝔤(Ψ,𝐴)(𝑖𝑓) = (−𝑖𝑓Ψ, 2𝑖 d𝑓).

The strategy to computing the dimension of the tangent space is to “fold” the Seiberg-Witten complex
in half and present the quotient ker𝑇(Ψ,𝐴)𝒮𝒲𝜂/ im(𝔤(Ψ,𝐴)) as the kernel of a surjective Fredholm3 map
whose index is known. For it, we will use the 𝐿2-adjoint of the infinitesimal action.

Lemma 3.2.6 (Adjoint of infinitesimal action).
Given a configuration (Ψ, 𝐴) ∈ Conf, the 𝐿2-adjoint of the infinitesimal action is the map 𝔤∗(Ψ,𝐴) ∶
𝑇(Ψ,𝐴)Conf → 𝑇1𝒢 given by

𝔤∗(Ψ,𝐴)(𝜑, 𝑖𝛼) = −𝑖ℑ ⟨Ψ, 𝜑⟩ + 2d∗(𝑖𝛼).

Proof.— We will drop the subindex (Ψ, 𝐴). Note that 𝑇1𝒢 ≅ 𝑊 3,2(𝑀, 𝑖ℝ) is a real vector space, and so
we must take the adjoint with respect to the real part of the inner product on 𝑇(Ψ,𝐴)Conf = 𝑊 2,2(𝑆+) ⊕
𝑊 2,2(𝑖𝑇∗𝑀):

⟨𝔤(𝑖𝑓), (𝜑, 𝑖𝛼)⟩ = ∫
𝑀
ℜ⟨−𝑖𝑓Ψ, 𝜑⟩ + ⟨2𝑖 d𝑓 , 𝑖𝛼⟩ vol

= ∫
𝑀
𝑓ℑ ⟨Ψ, 𝜑⟩ + ⟨2𝑖𝑓, d∗(𝑖𝛼)⟩ vol

3Recall that a bounded operator between Banach spaces is Fredholm if its kernel and algebraic cokernel are finite dimensional
[see Con07, Section XI.2]. Its index is the difference between the dimension of its kernel and the dimension of its cokernel.
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= ∫
𝑀
𝑖𝑓(−𝑖ℑ ⟨Ψ, 𝜑⟩ + 2d∗(𝑖𝛼)))vol

Comparing with

⟨𝑖𝑓, 𝔤(𝜑, 𝑖𝛼)⟩ = ∫
𝑀
𝑖𝑓𝔤∗(𝜑, 𝑖𝛼)vol,

we obtain the result. ■

Now we proceed with “folding” the Seiberg-Witten complex. Define a map 𝒟(Ψ,𝐴) ∶ 𝑇(Ψ,𝐴)Conf →
𝑇(0,0)𝒴 ⊕ 𝑇1𝒢 as

𝒟(Ψ,𝐴)(𝜑, 𝑖𝛼) = (𝑇(Ψ,𝐴)𝒮𝒲𝜂, 𝔤∗(Ψ,𝐴))(𝜑, 𝑖𝛼)

= (/𝜕𝐴𝜑 +
𝑖
2𝛼 ⋅ Ψ, d

+(𝑖𝛼) − 1
2𝜇

+(Ψ∗ ⊗ 𝜑), 2d∗(𝑖𝛼) − 𝑖ℑ ⟨Ψ, 𝜑⟩).

Then we have that

ker𝒟(Ψ,𝐴) = ker𝑇(Ψ,𝐴)𝒮𝒲𝜂 ∩ ker 𝔤∗(Ψ,𝐴) = ker𝑇(Ψ,𝐴)𝒮𝒲𝜂 ∩ (im 𝔤(Ψ,𝐴))⟂ ≅ ker𝑇(Ψ,𝐴)𝒮𝒲𝜂⧸im 𝔤(Ψ,𝐴).

This is the operator we are looking for. Let’s see that it is Fredholm and find its index.

Proposition 3.2.7 (Fredholm index of𝒟(Ψ,𝐴)).
The map𝒟(Ψ,𝐴) is Fredholm, and its real index is

ind(𝒟(Ψ,𝐴)) = dimℝ ker𝒟(Ψ,𝐴) − dimℝ coker𝒟(Ψ,𝐴) =
1
4(𝑐

2 − 2𝜒(𝑀) − 3 sign(𝑀)),

where 𝑐2 = ∫𝑀 𝑐1(𝐿(𝑀)) ∧ 𝑐1(𝐿(𝑀)).

Proof.— Let 𝐴0 be the smooth reference connection, so that 𝐴 = 𝐴0 + 𝜋∗(𝑖𝑎). Then

𝒟(0,𝐴0)(𝜑, 𝑖𝛼) = (/𝜕𝐴0𝜑, d+(𝑖𝛼), 2d∗(𝑖𝛼)),

and so 𝒟(0,𝐴0) = /𝜕𝐴0 ⊕ (d+, 2d∗) is the sum of elliptic operators, and thus it is Fredholm. Furthermore,
we have that

𝒟(Ψ,𝐴) = 𝒟(0,𝐴0) + 𝐾,
where

𝐾(𝜑, 𝑖𝛼) = (12 𝑖𝑎 ⋅ 𝜑 −
1
2 𝑖𝛼 ⋅ Ψ,−

1
2𝜇

−1
+ (Ψ∗ ⊗ 𝜑 + 𝜑∗ ⊗Ψ)0, −𝑖ℑ ⟨Ψ, 𝜑⟩)

is a 𝐶∞(𝑀)-linear operator (i.e. a zeroth-order differential operator), which is compact. Thus, 𝒟(Ψ,𝐴) is
also Fredholm and it has the same index as 𝒟(0,𝐴0).

Let’s compute the index of 𝒟(0,𝐴0) then. Write 𝔡 ∶ 𝑊 2,2(𝑖𝑇∗𝑀) → 𝑊 1,2(𝑖Λ2+𝑇∗𝑀) ⊕𝑊 3,2(𝑀, 𝑖ℝ)
as 𝔡(𝑖𝛼) = (d+(𝑖𝛼), 2d∗(𝑖𝛼)). Suppose that 𝛼 ∈ ker(𝔡), i.e., d+𝛼 = 0 and d∗𝛼 = 0. Since d∗d+ = 1

2
d∗d,

then d∗d𝛼 = 0, and thus
⟨d𝛼, d𝛼⟩ = ⟨𝛼, d∗d𝛼⟩ = 0,

which implies that d𝛼 = 0. Conversely, if d𝛼 = 0 then d+𝛼 = 0, and so ker d+ = ker d. With this we
conclude that

ker 𝔡 = ker d ∩ ker d∗ ≅ 𝐻1(𝑀,ℝ)
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is precisely the space of harmonic 1-forms.
Now let’s find coker 𝔡 ≅ ker 𝔡∗. We have that

𝔡∗(𝛽, 𝑖𝑓) = d∗𝛽 + 𝑖 d𝑓 .

These two terms are orthogonal, since ⟨d∗𝛽, d𝑓⟩ = ⟨𝛽, d2𝑓⟩ = 0. Therefore (𝛽, 𝑖𝑓) ∈ ker 𝔡∗ if and only if
𝛽 ∈ ker d∗ and 𝑓 ∈ ker d𝑓. Thus

ker 𝔡∗ = 𝐻0(𝑀,ℝ) ⊕ ker(d∗).

However, since on 2-forms, d∗ = − ⋆ d⋆, if 𝛽 is self-dual then d∗𝛽 = − ⋆ d𝛽, and thus d∗𝛽 = 0 if and
only if d𝛽 = 0. Thus, on self-dual forms,

ker d∗ = ker d = ker d∗ ∩ ker d ≅ 𝐻2
+(𝑀,ℝ).

With this we see that
ker 𝔡∗ ≅ 𝐻0(𝑀,ℝ) ⊕ 𝐻2

+(𝑀,ℝ).
Therefore, since we’ve assumed that 𝑀 is connected, dim𝐻0(𝑀,ℝ) = 1 and so

ind 𝔡 = 𝑏1 − 𝑏0 − 𝑏2+ = 𝑏1 − 1 − 𝑏2+.

Finally, from the Atiyah-Singer index theorem[Mor96, p. 47], we can deduce that for any connection
𝐴,

indℝ /𝜕𝐴 = 1
4 (∫𝑀

𝑐1(𝐿) ∧ 𝑐1(𝐿) − sign(𝑀)) ∶= 1
4(𝑐

2 − sign(𝑀)),

where 𝐿 is the determinant bundle of the Spinc-structure and we’ve written 𝑐2 = ∫𝑀 𝑐1(𝐿) ∧ 𝑐1(𝐿). This,
together with the index of 𝔡, tells us that

indℝ(𝒟(Ψ,𝐴)) = indℝ(𝒟(0,𝐴0)) =
1
4(𝑐

2 − 2𝜒(𝑀) − 3 sign(𝑀)). ■

Now we have all the tools to find the dimension of the moduli space, assuming that there are no
reducible points and that 0 is a regular value of 𝒮𝒲𝜂.

Theorem 3.2.8 (Dimension of the moduli space).
Let 𝜂 ∈ 𝑊 1,2(𝑖Λ2+𝑇∗𝑀) be a perturbation such that the Seiberg-Witten map 𝒮𝒲𝜂 has no reducible
solutions and 0 is a regular value. Then the moduli spaceℳ(𝜂) is a smooth manifold of dimension

dimℳ(𝜂) = 1
4(𝑐

2 − 2𝜒(𝑀) − 3 sign(𝑀)),

where 𝑐2 = ∫𝑀 𝑐1(𝐿) ∧ 𝑐1(𝐿) is the integral of the squared Chern class of the determinant line bundle 𝐿 of
the Spinc-structure.

Note that this depends only on𝑀 and the Spinc-structure (which possibly depends on the metric on𝑀).

Proof.— Aswe have shown in Proposition 3.2.7, for all configurations (Ψ, 𝐴), themap𝒟(Ψ,𝐴) = (/𝜕𝐴, 𝔤∗(Ψ,𝐴))
is Fredholm with index 1

4
(𝑐2 − 2𝜒(𝑀) − 3 sign(𝑀)). Furthermore, we have that

ker𝒟(Ψ,𝐴) ≅ 𝑇[Ψ,𝐴]ℳ(𝜂).
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Since all solutions (Ψ, 𝐴) are irreducible, then the infitesimal action 𝔤(Ψ,𝐴) is injective, and thus its adjoint
𝔤∗(Ψ,𝐴) is surjective. Furthermore, since 0 is a regular value of 𝒮𝒲𝜂, then its differential 𝑇(Ψ,𝐴)𝒮𝒲𝜂 is
surjective. Therefore 𝒟(Ψ,𝐴) is surjective and so coker𝒟(Ψ,𝐴) = 0. With this, we have

dim𝑇[Ψ,𝐴]ℳ(𝜂) = dim ker𝒟(Ψ,𝐴) = ind𝒟(Ψ,𝐴) =
1
4(𝑐

2 − 2𝜒(𝑀) − 3 sign(𝑀)). ■

3.2.2 Generic smoothness
Now the question remains: How likely are we to find a perturbation 𝜂 such that there are no reducible
solutions and all points are smooth? Spoiler: very.

First, let’s see what conditions are necessary to be able to find a perturbation for which all solutions
are irreducible. Suppose that 𝜂 ∈ 𝑊 1,2(𝑖Λ2+𝑇∗𝑀) is a perturbation that admits a reducible solution (0, 𝐴).
Then

𝐹+𝐴 + 𝜂 = 0
For any differential form 𝜔, we write [𝜔] for its harmonic part in its Hodge decomposition. Then neces-
sarily,

[𝐹+𝐴 ] = −[𝜂].
Since 𝐹𝐴 is a representative of (−2𝜋𝑖 times)the Chern class of the determinant bundle 𝐿(𝑀), we have

2𝜋𝑖[𝑐1(𝐿)] = [𝜂].

The converse statement is also true.

Proposition 3.2.9 (Perturbations that admit reducible solutions).
A perturbation 𝜂 admits reducible solutions if and only if its harmonic part satisfies

2𝜋𝑖[𝑐1(𝐿)] = [𝜂].

Proof.— We’ve already proved above that if 𝜂 admits reducible solutions, then 2𝜋𝑖𝑐1(𝐿)ℎ = 𝜂ℎ. Con-
versely, assume that 2𝜋𝑖𝑐1(𝐿)ℎ = 𝜂ℎ. Given any connection 𝐴, we have that4 [𝐹𝐴] = −2𝜋𝑖[𝑐1(𝐿)], and
so

[𝐹+𝐴 ] = −[𝜂].
If we can extend this equality of harmonic parts to an equality of self-dual parts, we’re done. Write 𝜂 =
[𝜂] + d𝛼. For any given connection 𝐴, we have that 𝐹𝐴 = [𝐹𝐴] + d𝛽 for some 𝛽. If we let 𝐴 be such that
𝐹𝐴 = [𝐹𝐴] − d𝛼, then necessarily

𝐹+𝐴 = −𝜂,
and thus (0, 𝐴) is a reducible solution. ■

Corollary 3.2.10 (Condition for perturbations without reducible solutions).
If 𝑏2+ = 0, then there all closed perturbations have reducible solutions. If 𝑏2+ > 0, then there exist closed
perturbations which do not have reducible solutions.

4this is from Hodge theory and the isomorphism of cohomology with harmonic forms. Two forms have the same harmonic
part if and only if they are in the same cohomology class.
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Alright, so the question of the existence of reducible solutions is settled. What about smoothness?
The main tool in our arsenal is Sard’s theorem, or rather, Smale’s infinite-dimensional version of it[Nic00,
Section 1.5.2]:

Theorem 3.2.11 (Sard-Smale theorem (with parameters)).
Let𝑋,Λ, 𝑌 be Banach manifolds and 𝐹 ∶ 𝑋×Λ → 𝑌 a smooth map. For each 𝜆 ∈ Λ, write 𝐹𝜆 ∶ 𝑋 → 𝑌
as 𝐹𝜆(𝑥) = 𝐹(𝑥, 𝜆). If 𝑦0 ∈ 𝑌 is a regular value of 𝐹, then the set of parameters 𝜆 ∈ Λ for which 𝑦0 is a
regular value of 𝐹𝜆 is dense in Λ.

This is to say, for “generic” 𝜆, the map 𝐹𝜆 has 𝑦0 as a regular value and thus 𝐹−1𝜆 (𝑦0) is a smooth
submanifold of 𝑋 .

The part of the theorem that says that 𝐹−1𝜆 (𝑦0) is a smooth submanifold can be copied almost verbatim
from the implicit function theorem for finite-dimensional manifolds.

In lieu of this theorem, we should consider the map

𝑆𝑊 ∶ Conf2,2 ×𝑊 1,2(𝑖Λ2+𝑇∗𝑀) → 𝒴1,2

(Ψ, 𝐴, 𝜂) ↦ 𝒮𝒲𝜂(Ψ, 𝐴).

If 0 is a regular value of 𝑆𝑊 , then we’re done. Let’s see that this is the case.
Note that 𝑆𝑊 is linear in the perturbation. Therefore, we can easily find its differential in terms of the

differential of 𝒮𝒲𝜂:

𝑇(Ψ,𝐴,𝜂)𝑆𝑊(𝜑, 𝑖𝛼, 𝜉) = (/𝜕𝐴𝜑 +
1
2𝑖𝛼 ⋅ Ψ, 𝜇

−1
+ ((𝜑∗ ⊗Ψ+ Ψ∗ ⊗ 𝜑)0) + d+(𝑖𝛼) + 𝜉).

From this, we see that the differential is surjective on the second factor, because of that clean 𝜉 term. Let’s
see that it is surjective in the first one: define 𝐺 ∶ 𝑊 2,2(𝑆+(𝑀)) ⊕𝑊 2,2(𝑇∗𝑀) → 𝑊 1,2(𝑆−(𝑀)) as

𝐺(𝜑, 𝑖𝛼) = /𝜕𝐴𝜑 +
1
2𝑖𝛼 ⋅ Ψ.

If we prove that 𝐺 is surjective as well, then we are done. We argue by contradiction: assume that 𝜓 ∈
𝑊 1,2(𝑆−(𝑀)) is in the orthogonal complement of the image of 𝐺. Then in particular, for all 𝜑, we have

⟨/𝜕𝐴𝜑, 𝜓⟩ = ⟨𝜑, /𝜕𝐴𝜓⟩ = 0.

This is to say that 𝜓 satisfies the Dirac equation /𝜕𝐴𝜓
𝑤𝑘= 0 in the weak sense. By elliptic regularity, it

satisfies it in the strong sense as well, so /𝜕𝐴𝜓 = 0. Choose a point 𝑥0 ∈ 𝑀 and a neighborhood 𝑈 of
𝑥0 such that neither Ψ nor 𝜓 have zeros in 𝑈. Make 𝑈 small enough so that there is a coordinate chart
defined on 𝑈 and so that the spinor bundles 𝑆±(𝑀) are trivialized.

Note that, given the expression of the spin representation, we have that the composition

ℝ4 ⊗ℂ ↪ Clℂ(4) → Homℂ(𝑆+, 𝑆−)

is a linear injective map, and by dimension counting, it is an isomorphism (since dimℂ 𝑆± = 2.) This
implies that given two spinors 𝜓+ ∈ 𝑆+ and 𝜓− ∈ 𝑆−, we can find an element 𝑎 ∈ ℝ4 ⊗ℂ such that

𝑖𝑎 ⋅ 𝜓+ = 𝜓−.

Locally, in terms of the trivialization, this means that for all 𝑥 ∈ 𝑈, we can find a tangent vector 𝑎𝑥 ∈ 𝑇𝑥𝑈
such that

𝑖𝑎𝑥 ⋅ Ψ(𝑥) = 𝜓(𝑥).
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Then the assignment 𝑥 ↦ 𝑎𝑥 is a vector field 𝑎 on 𝑈. If we multiply it with a bump, we can construct a
global vector field vanishing outside of 𝑈 such that

𝑖𝑎𝑥 ⋅ Ψ(𝑥) = 𝜓(𝑥).

Let 𝑎♭ be the 1-form dual to 𝑎 under the isomorphism induced by the metric. Then 𝑎♭ is a one-form
supported in 𝑈 and

∫
𝑀
⟨𝑖𝑎♭ ⋅ Ψ, 𝜑⟩ vol = ∫

𝑈
⟨𝑖𝑎♭ ⋅ Ψ, 𝜑⟩ vol = ∫

𝑈
|𝜑|2vol = 0.

This implies that 𝜑 = 0 on𝑈, and thus, by unique continuation of Dirac spinors [see Sal99, Theorem E.8],
we conclude that 𝜑 = 0. With this we conclude that 𝑇(Ψ,𝐴,𝜂)𝑆𝑊 is indeed surjective. By the Sard-Smale
theorem, we conclude the following:

Theorem 3.2.12 (Generic smoothness).
For a generic perturbation 𝜂 ∈ 𝑊 1,2(𝑖Λ2+𝑇∗𝑀), the moduli space of irreducible solutions ℳ∗(𝜂) is a
smooth manifold. If 𝑏2+ > 0, then we can furthermore choose 𝜂 such thatℳ(𝜂) = ℳ∗(𝜂).

3.2.3 Orientation
Recall that we described the tangent space to the moduli space at a point [Ψ, 𝐴] in terms of the map
𝒟Ψ,𝐴 ∶ 𝑇(Ψ,𝐴)Conf → 𝑇(0,0)𝒴 ⊕ 𝑇1𝒢, given by

𝒟Ψ,𝐴(𝜑, 𝑖𝛼) = (/𝜕𝐴𝜑 +
𝑖
2𝛼 ⋅ Ψ, d

+(𝑖𝛼) − 1
2𝜇

+(Ψ∗ ⊗ 𝜑),−2d∗(𝑖𝛼) − 𝑖ℑ ⟨Ψ, 𝜑⟩).

Specifically, we proved that
ker𝒟(Ψ,𝐴) ≅ 𝑇[Ψ,𝐴]ℳ(𝜂).

The collection of all operators 𝒟(Ψ,𝐴) is a smooth family of Fredholm operators, parameterized by the
configuration space Conf. Then there is an associated line bundle over Conf, called the determinant of the
family 𝒟, whose fiber over (Ψ, 𝐴) is

det(𝒟)(Ψ,𝐴) = Λtop(ker𝒟(Ψ,𝐴)) ⊗ Λtop(coker𝒟(Ψ,𝐴))∗,

see [Nic07, Section 1.5.1] and [Section 5.2.1 DK97]. Assuming that we’ve chosen a perturbation so that
all solution to the perturbed equations are smooth, then the restriction of the bundle det(𝒟) to the set of
solutions is

det(𝒟)(Ψ,𝐴) = Λtop(ker𝒟(Ψ,𝐴)) = det(𝑇[Ψ,𝐴]ℳ(𝜂)) assuming (Ψ, 𝐴) is a solution.

Clearly, we see that the resulting bundle det(𝒟)|𝒵 is constant along the orbits of the action of the gauge
group, so it descends to precisely the determinant bundle of ℳ(𝜂). This is to say that it suffices to find an
orientation of the determinant bundle det(𝒟) to find an orientation of ℳ(𝜂).

To find such and orientation, we note that if there are two homotopic families of Fredholm operators
parameterized by a smooth manifold have isomorphic determinant bundles Therefore, consider the curve
𝑡 ↦ 𝒟𝑡

(Ψ,𝐴), given as

𝒟𝑡
(Ψ,𝐴)(𝜑, 𝑖𝛼) = (/𝜕𝐴𝜑 + 𝑡 𝑖2𝛼 ⋅ Ψ, d

+(𝑖𝛼) + 𝑡𝜇−1+ (Ψ∗ ⊗ 𝜑 + 𝜑∗ ⊗Ψ)0, −2d∗(𝑖𝛼) − 𝑡𝑖ℑ ⟨Ψ, 𝜑⟩).
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Then 𝒟1
(Ψ,𝐴) = 𝒟(Ψ,𝐴), and

𝒟0
(Ψ,𝐴)(𝜑, 𝑖𝛼) = (/𝜕𝐴𝜑, d+(𝑖𝛼), −2d∗(𝑖𝛼)) = 𝒟(0,𝐴)(𝜑, 𝑖𝛼).

This is precisely the simplified map that we used in Proposition 3.2.7. For it, we proved that

ker𝒟(0,𝐴) = ker /𝜕𝐴 ⊕𝐻1(𝑀,ℝ)
coker𝒟(0,𝐴) = coker /𝜕𝐴 ⊕𝐻1(𝑀,ℝ) ⊕ 𝐻2

+(𝑀,ℝ).

Since ker /𝜕𝐴 and coker /𝜕𝐴 are complex vector spaces, they have canonical orientations. Similarly, since 𝑀
is connected, then 𝐻0(𝑀,ℝ) ≅ ℝ has a natural orientation. Therefore, it suffices to choose an orientation
of 𝐻1(𝑀,ℝ) and 𝐻2

+(𝑀,ℝ) to find an orientation of det(𝒟(0,𝐴)) = det(𝒟0
(Ψ,𝐴)). Note that such an

orientation is made globally. If the action of 𝒢 is orientation-preserving, then this orientation descends to
an orientation of ℳ(𝜂).

Then fix 𝛾 ∈ 𝒢, and consider the action Conf → Conf, (Ψ, 𝐴) ↦ (Ψ⋅𝛾, 𝐴⋅𝛾). Recall thatΨ⋅𝛾 = 𝛾−1Ψ
and 𝐴 ⋅ 𝛾 = Φ∗

𝛾𝐴, where Φ𝛾 ∶ Spinc(𝑀) → Spinc(𝑀) is the bundle morphism Φ𝛾(𝑝) = 𝑝 ⋅ 𝛿(𝜋(𝑝)). This
action is ℂ-linear on spinors. Furthermore since the space of connections is an affine space modelled on
Ω1(𝑀, 𝑖ℝ) and Φ𝛾 is a bundle morphism that lifts the identity, then for any 𝑖𝛼 ∈ Ω1(𝑀, 𝑖ℝ) we have that
Φ∗
𝛾(𝐴 + 𝜋∗(𝑖𝛼)) = Φ∗

𝛾 + 𝜋∗(𝑖𝛼). This is to say that the differential of the action (Ψ, 𝐴) ↦ (Ψ ⋅ 𝛾, 𝐴 ⋅ 𝛾) is

(𝜑, 𝑖𝛼) ↦ (𝛾−1𝜑, 𝑖𝛼).

The induced isomorphisms ker𝒟(Ψ,𝐴) → ker𝒟(Ψ⋅𝛾,𝐴⋅𝛾) and coker𝒟(Ψ,𝐴) → coker𝒟(Ψ⋅𝛾,𝐴⋅𝛾) are orientation-
preserving, so indeed the orientation of the determinant bundle descends to the quotient.

We have proved, then:

Proposition 3.2.13 (Orientation of the moduli space).
The moduli space ℳ(𝜂) is orientable, and an orientation is obtained by the choice of an orientation on
𝐻1(𝑀,ℝ) ⊕ 𝐻2

+(𝑀,ℝ).

3.2.4 Compactness
Arguably, the most remarkable feature of the Seiberg-Witten moduli space is that it is compact. This is the
greatest contrast with Donaldson theory, where the moduli space of self-dual forms is not compact, and
finding an appropriate compactification requires a lot of work.

Our main idea is showing thatℳ(𝜂) is sequentially compact. Sinceℳ(𝜂) is a submanifold of a Hilbert
manifold, then sequential compactness implies compactness. There is a key a priori estimate on the norm
of a solution that is given by the Weitzenböck formula.

Proposition 3.2.14 (Curvature bound on Dirac spinors).
Let (Ψ, 𝐴) ∈ Conf and 𝜂 ∈ 𝑊 1,2(𝑖Λ2+𝑇∗𝑀) be a perturbation. Then for all 𝑥 ∈ 𝑀:

|Ψ(𝑥)|2 ≤ 1
2 max(0, sup(−𝑠) + 4‖𝜂‖∞).

Proof.— Without loss of generality, assume that the solution is smooth. Since /𝜕𝐴Ψ = 0, then naturally
/𝜕𝐴 /𝜕𝐴Ψ = 0, and by the Weitzenböck formula, we have

∇∗
𝐴∇𝐴𝜓 +

𝑠
4Ψ + 1

2|Ψ|
2Ψ − 𝜇+(𝜂)(Ψ) = 0.
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Here we used the fact that 𝜇+(𝐹+𝐴 ) = (Ψ ⊗ Ψ∗)0 − 𝜇+(𝜂). Taking the pointwise inner product with Ψ,
we obtain

⟨∇∗
𝐴∇𝐴𝜓,Ψ⟩ +

𝑠
4 |Ψ|

2 + 1
2|Ψ|

4 − ⟨𝜇+(𝜂)(Ψ), Ψ⟩ = 0.

Since the connection is compatible with the metric on the spinor fields, we have

∑
𝑖
𝐿𝑒𝑖𝐿𝑒𝑖 ⟨Ψ(𝑥), Ψ(𝑥)⟩ = ∑

𝑖
⟨∇𝐴,𝑒𝑖∇𝐴,𝑒𝑖Ψ(𝑥), Ψ(𝑥)⟩ + 2∑

𝑖
⟨∇𝐴,𝑒𝑖Ψ(𝑥), ∇𝐴,𝑒𝑖Ψ(𝑥)⟩

+∑
𝑖
⟨Ψ(𝑥), ∇𝐴,𝑒𝑖∇𝐴,𝑒𝑖Ψ(𝑥)⟩ ,

which implies that
Δ(|Ψ|2) + 2∑

𝑖
|∇𝐴,𝑒𝑖Ψ|2 = 2ℜ∑

𝑖
⟨∇𝐴,𝑒𝑖∇𝐴,𝑒𝑖Ψ,Ψ⟩ .

Now we use the fact that ∇∗
𝐴 = − ⋆ ∇𝐴⋆ on 1-forms5 to see that

∇∗
𝐴∇𝐴Ψ = − ⋆ ∇𝐴 ⋆ (∑

𝑖
∇𝐴,𝑒𝑖Ψ d𝑒𝑖)

= − ⋆∑
𝑖
∇𝐴,𝑒𝑖∇𝐴,𝑒𝑖Ψvol

= −∑
𝑖
∇𝐴,𝑒𝑖∇𝐴,𝑒𝑖Ψ.

Therefore
Δ(|Ψ|2) + 2∑

𝑖
|∇𝐴,𝑒𝑖Ψ|2 = 2ℜ ⟨∇∗

𝐴∇𝐴Ψ,Ψ⟩ .

From the Weitzenböck formula, we see that if /𝜕𝐴Ψ = 0, then ⟨∇∗
𝐴∇𝐴Ψ,Ψ⟩ is real, and thus necessarily

⟨𝜇+(𝜂)(Ψ), Ψ⟩ is real as well. Then

Δ(|Ψ|2) ≤ 2 ⟨∇∗
𝐴∇𝐴Ψ,Ψ⟩

= − 𝑠2 |Ψ|
2 − |Ψ|4 + 2 ⟨𝜇+(𝜂)(Ψ), Ψ⟩

≤ − 𝑠2 |Ψ|
2 − |Ψ|4 + 4‖𝜂‖∞|Ψ|2.

If 𝑥 is a point where |Ψ(𝑥)|2 achieves its maximum, then Δ(|Ψ(𝑥)|2) = 0 and so, assuming that Ψ is not
identically zero,

|Ψ|2 ≤ − 𝑠2 + 2‖𝜂‖∞|Ψ|2.

This proves the proposition. ■

As an immediate consequence, we have that for 𝜂 = 0 (or small enough), if 𝑀 has a metric with positive
scalar curvature, then the only possible solutions of the Seiberg-Witten equations have Ψ ≡ 0.

The next step is refining the gauge-fixing that we used in the proof of the regularity of solutions.

5This can be checked directly, or proved by using an explicit expression of d∗.
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Lemma 3.2.15 (Gauge-fixing lemma).
Let𝐴0 ∈ Conn(𝑈(𝐿)) be a smooth reference connection. There is a constant𝐶, which depends only possibly
on the metric, such that for 𝐴 = 𝐴0 + 𝑖𝑎 ∈ Conn𝑘,2(U(𝐿)), there is a gauge transformation 𝛾 ∈ 𝒢𝑘+1,2
such that 𝐴 ⋅ 𝑔𝑎𝑚𝑚𝑎 = 𝐴0 + 𝑖𝑎′ satisfies

d∗𝑎′ = 0
‖[𝑎′]‖2 ≤ 𝐶,

where [𝑎′] is the harmonic part of 𝑎′.

Theorem 3.2.16 (Moduli space is compact).
Let (Ψ𝑛, 𝐴𝑛) ∈ 𝐶𝑜𝑛𝑓2,2 be a sequence of solutions of the perturbed Seiberg-Witten equations, with per-
turbation 𝜂 ∈ 𝑊 4,2(𝑖Λ2+𝑇∗𝑀). Then there is a sequence of gauge transformations 𝛾𝑛 ∈ 𝒢3,2 such that
(Ψ𝑛 ⋅ 𝛾𝑛, 𝐴𝑛 ⋅ 𝛾𝑛) has a convergent subsequence.

Proof (Sketch).— The proof is quite laborious (and that of the previous lemma), so we will only sketch it.
It can be found in all its splendor in [Nic00], [Sal99], and [Mor96].

The key idea is to use the a priori bounds to “start” the convergence. Since we have a priori bounds
on Ψ, from the monopole equation we find a bound on 𝐴. By Sobolev embedding, this implies that
there are convergent subsequences but with lower regularity. We then “restore” the regularity using gauge
transformations and elliptic regularity.

Without loss of generality, from the previous lemmawe can assume that𝐴𝑛 = 𝐴0+𝑖𝑎𝑛, with d∗𝑎𝑛 = 0.
Then the curvature bound, together with the monopole equation 𝐹+𝐴𝑛 + 𝜂 = 𝜎+(Ψ𝑛), gives us a bound

‖(d+ + d∗)𝑎𝑛‖∞ ≤ 𝐶.

But (d+ + d∗) is an elliptic operator, and therefore, we have a bound on ‖𝑎𝑛 − [𝑎𝑛]‖1,𝑝 for all 𝑝 < ∞.
However, since ‖[𝑎′𝑛]‖2 is bounded, we obtain that ‖𝑎𝑛‖1,𝑝 is bounded for all 𝑝 < ∞. Then by Sobolev
multiplication, we can find a sup-bound on ‖𝑖𝑎𝑛 ⋅ Ψ𝑛‖∞. And now, since

/𝜕𝐴𝑛
Ψ = /𝜕𝐴0Ψ + 1

2𝑖𝑎𝑛 ⋅ Ψ𝑛 = 0

we can use the elliptic regularity of /𝜕𝐴0
to obtain that ‖Ψ𝑛‖1,𝑝 is bounded for all 𝑝 < ∞. Since we had

already an 𝑊 1,𝑝 bound on 𝑎𝑛, we have that ‖𝑖𝑎𝑛 ⋅ Ψ𝑛‖1,𝑝 is bounded too. Therefore, again by elliptic
regularity of /𝜕𝐴0

, we have that ‖𝑃𝑠𝑖𝑛‖2,𝑝 is bounded for all 𝑝 < ∞. Here we found a better bound with
boosted regularity of Ψ𝑛. Repeating this same argument again, we also find that ‖𝑎𝑛‖2,𝑝 is bounded for all
𝑝 < ∞. Then by the Sobolev embedding theorem, there is a subsequence that converges in weakly 𝑊 1,𝑝.
If we repeat this process, we can find that there is a subsequence that converges strongly in 𝑊 2,𝑝. ■

3.3 The Seiberg-Witten invariant

Even though we will not use it in the proof of Donalson’s theorem, we will briefly discuss the Seiberg-
Witten invariants, since no discussion of Seiberg-Witten is complete with at least a mention of them. See
[Nic00, Section 2.3] and [Section 7.4 Sal99].

We have proved that if 𝑏2+ > 0, then for a generic perturbation 𝜂, the moduli space is a smooth, compact,
oriented, finite-dimensional manifold. In this section we define and invariant depending only on the smooth
structure and the Spinc-structure on it. We distinguish the case where dimℳ(𝜂) = 0 and dimℳ(𝜂) > 0.
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If dimℳ(𝜂) = 0, then ℳ is a finite set of points. We will see that these points have a canoni-
cal orientation that might differ from the orientation which comes from a choice of an orientation of
𝐻1(𝑀,ℝ) ⊕ 𝐻2

+(𝑀,ℝ) (Proposition 3.2.13). The invariant is defined as a signed sum over these points.
First, let’s see that there is a canonical orientation. Recall that we wrote the tangent space 𝑇[Ψ,𝐴]ℳ(𝜂)

as the kernel of the map 𝒟(Ψ,𝐴). This family of Fredholm map induces a line bundle det(𝒟), which on
each fiber is

det(𝒟(Ψ,𝐴)) = Λtop(ker𝒟(Ψ,𝐴)) ⊗ Λtop(coker𝒟(Ψ,𝐴))∗.
Since ℳ(𝜂) is zero-dimensional, and assuming that we’ve chosen 𝜂 to be a perturbation for which all
solutions are smooth, then

ker𝒟(Ψ,𝐴) ≅ 0 ≅ coker𝒟(Ψ,𝐴),
and thus,

det(𝒟(Ψ,𝐴)) = Λtop(0) ⊗ Λtop(0)∗ ≅ ℝ,
where the isomorphism is canonical6,7. This canonical fiberwise isomorphism induces an orientation of
ℳ(𝜂), and this one we compare with the one obtained from the orientation chosen from 𝐻1(𝑀,ℝ) ⊕
𝐻2
+(𝑀,ℝ).

Definition 3.3.1 (Zero-dimensional invariant).
Let𝑀 be a smooth, oriented, Riemannian 4-manifold with a Spinc-structure, for which the moduli space
ℳ(𝜂) is zero-dimensional. Choose an orientation of 𝐻1(𝑀,ℝ) ⊕ 𝐻2

+(𝑀,ℝ).
We define the Seiberg-Witten invariant, which depends possibly on the Spinc-structure, as

SW = ∑
[Ψ,𝐴]∈ℳ(𝜂)

±1,

where the sign is+1 if the canonical orientation at [Ψ, 𝐴] agrees with the one induced from the orientation
of the cohomology groups, and −1 if it doesn’t.

When the dimension is positive, the definition of the invariant is a bit more subtle. Consider the space
of irreducible configurations

Confirr = {(Ψ, 𝐴) ∈ Conf | Ψ ≠ 0} .
Fix a point 𝑥0 ∈ 𝑀, and consider based gauge group 𝒢0 as

𝒢0 = {𝛾 ∈ 𝒢 | 𝛾(𝑥0) = 1} .

Clearly there is a bijection 𝒢 ≅ 𝒢0 × 𝑆1. The action of 𝒢0 is always free: for 𝛾 ∈ 𝒢0, if 𝐴 ⋅ 𝛾 = 𝐴, this
implies that d𝛾 = 0, and therefore since 𝛾(𝑥0) = 1, then 𝛾 ≡ 1.

Let ℬ0 = Conf/𝒢0. Then there is a natural 𝑆1-action on ℬ0, and the orbits of this action coincide
precisely with the points of ℬ = Conf/𝒢. Thus, we have an 𝑆1-bundle

ℬ0 → ℬ.

6For any finite-dimensional (real) vector space𝑉 , there is an isomorphismΛtop𝑉 ⊗Λtop𝑉∗ → ℝ given on homogeneous terms
as

𝑣1 ∧⋯ ∧ 𝑣𝑛 ⊗𝑢∗1 ∧⋯ ∧ 𝑢∗𝑛 → det([𝑢∗𝑗 (𝑣𝑖)]).

7Note that if 𝑉 is zero-dimensional, we define Λtop(𝑉) = ℝ. This is for consistency with Λtop(𝑉 ⊕𝑊) = Λtop𝑉 ⊗Λtop𝑊 .
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Definition 3.3.2 (Seiberg-Witten invariant).
Let 𝜇 be a representative of the Chern class of the 𝑆1-bundle ℬ0 → ℬ. If 𝑑 = dimℳ(𝜂) is even, we
define

SW = ∫
ℳ(𝜂)

𝜇
𝑑
2 .

If 𝑑 is odd, we define SW = 0.

The idea for proving invariance of the Seiberg-Witten invariant, very briefly, goes as follows:
Assume that 𝑏+2 > 1, and let 𝑔1, 𝑔2, 𝜂1, 𝜂2 be Riemannian metrics and parameters such that ℳ𝑔𝑖 (𝜂𝑖)

are smooth. Consider a smooth path of metrics 𝑔𝑡 connecting 𝑔0 and 𝑔1, and for each 𝑡 choose equivalent
Spinc-structures. When 𝑏+2 > 1, the space of good parameters is (path)-connected, and therefore we can
consider a smooth path of good parameters 𝜂𝑡 connecting 𝜂0 and 𝜂1. The collection of moduli spaces
ℳ(𝜂𝑡) can be organized as a manifold ℳ̃, exhibiting a cobordism between ℳ(𝜂0) and ℳ(𝜂1), in such
a way that the form 𝜇 chosen above can be extended. Then from Stokes theorem, since 𝜇 is closed, this
implies that its integrals over ℳ(𝜂0) and ℳ(𝜂1) are equal.

If 𝑏+2 = 1, then the space of good parameters is disconnected: the obstruction is 2𝜋𝑖[𝑐1(𝐿)] = [𝜂], and
since 𝑏+2 = 1, the space of good perturbations has two components. If the perturbations 𝜂0 and 𝜂1 are on
same component, then we can repeat the procedure above, and thus the invariants are the same. However,
if the perturbations are on different components, then there is a wall crossing formula:

SW(𝜂1) − SW(𝜂0) = (−1)
𝑑
2 ,

where 𝑑 = dimℳ(𝜂1) = dimℳ(𝜂2).



CHAPTER4
The Intersection Form and Donaldson’s

Theorem

R oughly speaking, the intersection form of a four-manifold is a bilinear, symmetric, nondegener-
ate integral form that codifies information of the intersection numbers of its embedded surfaces.
This simple algebraic object is an excellent classifying tool for topological four-manifolds: every

such form is the intersection form of exactly one or two of them. Therefore, a study of the algebraic
characteristics of these forms gives us a wealth of information about the topology of four-manifolds.

However, once we go to smooth realm, the situation changes. In this chapter, we will prove Donaldson’s
theorem, which imposes severe restrictions on the intersection forms of smooth four-manifolds; namely,
the only positive- or negative-definite intersection forms that are allowed are diagonal. The proof we
present is attributed to Kronheimer and Elkies, and it is based on looking closely at the restrictions that
the intersection form imposes on the Seiberg-Witten moduli space.

Overview of this chapter

The main idea to have in mind is Thom’s representability theorem for homology in degree 2, which we
briefly discussed in Theorem 1.3.5. It tells us that classes of degree 2 are precisely the fundamental classes
of embedded surfaces. This allows us to freely move back and forth between algebraic and geometric
concepts. With this, we will define the intersection form, its main properties and state some results which
exhibit it as a powerful classification tool for four-manifolds. We will look at the algebraic aspects of
non-degenerate, symmetric bilinear integral forms (which we call unimodular forms), and show a partial
classification of them.

The main course of the meal is Donaldson’s theorem. Briefly speaking, its proof is goes as follows: first,
we show that there is a close relation between the Spinc-structures on a manifold and characteristic vectors
of the intersection form. Afterwards, we see that the Seiberg-Witten moduli space of a manifold with
positive- or negative-definite intersection form must be empty or be zero-dimensional. Finally, we see
that intersection forms that are not diagonal allow for characteristic vectors whose corresponding Spinc-
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structures have moduli spaces with positive dimension. This implies that if a smooth four-manifold has a
definite intersection form, it is necessarily diagonal.

4.1 The intersection form of 4-manifolds

Let 𝑀 be a closed, connected, oriented 4-manifold. The intersection pairing is a map on cohomology
classes of degree 2. By Poincaré duality, the intersection pairing can also be seen as a pairing between
homology classes of degree 2. We call this the intersection form.

Definition 4.1.1 (Intersection form).
Let 𝑀 be a closed, connected, oriented 4-manifold. The intersection form is the bilinear, symmetric map
𝑞𝑀 ∶ 𝐻2(𝑀, ℤ) × 𝐻2(𝑀, ℤ) → ℤ given as

𝑞𝑀(𝜎, 𝜂) ∶= 𝑃𝐷(𝜎) • 𝑃𝐷(𝜂).

Explicitly,
𝑞𝑀(𝜎, 𝜂) = ⟨𝑃𝐷(𝜎), 𝛽⟩ = ⟨𝑃𝐷(𝛽), 𝜎⟩ .

Indeed, 𝑞𝑀 is symmetric since the cup product is symmetric between even-degree classes. We had shown
that the intersection pairing is non-degenerate (outside of torsion), and this implies at once that 𝑞𝑀 is
non-degenerate. This means that once we choose generators of 𝐻2(𝑀, ℤ), 𝑞𝑀 can be represented by an
integer-valued matrix which is invertible over the integers. This property is called unimodularity1.

Proposition 4.1.2 (“Intersection form” is not a gratuitous name).
Let 𝑀 be a closed, connected, oriented 4-manifold with intersection form 𝑞𝑀 . Let 𝛼, 𝛽 ∈ 𝐻2(𝑀, ℤ) be
homology classes represented by surfaces 𝑆𝛼, 𝑆𝛽 ⊂ 𝑀, respectively. Then

𝑞𝑀(𝛼, 𝛽) = 𝑆𝛼 ⋅ 𝑆𝛽,

where the ⋅ on the right-hand side is the oriented intersection number of the surfaces.

Proof.— The idea of the proof is as follows. If 𝛼, 𝛽 are not torsion, then their Poincaré duals can be
represented as de Rham cohomology classes in �̂�, ̂𝛽 ∈ 𝐻2(𝑀,ℝ). Furthermore, since 𝛼, 𝛽 are represented
by 𝑆𝛼 and 𝑆𝛽, then we can choose �̂� and ̂𝛽 vanishing everywhere except for a neighborhood of 𝑆𝛼 and 𝑆𝛽,
respectively.

We may assume that 𝑆𝛼 and 𝑆𝛽 intersect transversely. Since they have complementary dimensions,
they intersect at a finite set of points. For each point 𝑝 ∈ 𝑆𝛼 ∩ 𝑆𝛽, consider a neighborhood 𝑈 and
coordinates (𝑥1, 𝑥2, 𝑦1, 𝑦2) such that locally, 𝑆𝛼 is given by 𝑦1 = 𝑦2 = 0 and 𝑆𝛽 is given by 𝑥1 = 𝑥2 = 0.
Then we can write

�̂� = 𝑓(𝑥1, 𝑥2) d𝑦1 ∧ d𝑦2 ,
with 𝑓 a function with compact support such that ∫𝑓 = 1. Since under the de Rham isomorphism, cup
products pass to wedge products, we have

𝑞𝑀(𝛼, 𝛽) = ⟨�̂� ⌣ ̂𝛽, [𝑀]⟩ = ∫
𝑀
�̂� ∧ ̂𝛽 = ∫

𝑆𝛽
�̂� = ±1,

1Equivalently, its determinant is ±1.
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and the sign depends on whether d𝑦1 ∧ d𝑦2 coincides with the orientation of 𝑆𝛽 or not.
Repeating for all points in the intersection, we obtain

𝛼 • 𝛽 = ∑
𝑝∈𝑆𝛼∪𝑆𝛽

±1,

where the sign is chosen depending on whether the orientation of 𝑇𝑝𝑆𝛼 ⊕𝑇𝑝𝑆𝛽 is the same as 𝑇𝑝𝑀. This
is precisely the intersection number.

Now suppose 𝛼 is torsion, i.e., for some 𝑘, 𝑘𝛼 = 0. Therefore 𝑘𝛼 is represented by a surface 𝑆𝑘𝛼
bounding a 3-submanifold, which implies that 𝑆𝑘𝛼 ⋅ 𝑆𝛽 = 0. ■

Example 4.1.3 (Intersection form of 𝑆2 × 𝑆2).
We have that 𝐻2(𝑆2 × 𝑆2, ℤ) ≅ ℤ ⊕ ℤ. Take two points 𝑝, 𝑞 ∈ 𝑆2, so that 𝛼 = [𝑆2 × {𝑞}] and
𝛽 = [{𝑝} × 𝑆2] are generators. Then

𝑞𝑆2×𝑆2(𝛼, 𝛽) = (𝑆2 × {𝑞}) ⋅ ({𝑞} × 𝑆2) = 1,

whereas
𝑞𝑆2×𝑆2(𝛼, 𝛼) = (𝑆2 × {𝑞}) ⋅ (𝑆2 × {𝑞′}) = 0.

Here we perturbed 𝑆2 × {𝑞} a little so that there is no self-intersection. Therefore, with this basis,

𝑞𝑆2×𝑆2 = (0 1
1 0) .

Example 4.1.4 (Intersection form ofℂℙ2).
We have that 𝐻2(ℂℙ2, ℤ) ≅ ℤ, with generator [ℂℙ1]. Let 𝜇 be the Poincaré dual of [ℂℙ1]. Then

⟨𝜇 ⌣ 𝜇, [ℂℙ2]⟩ = ⟨𝜇, 𝜇 ⌢ [ℂℙ2]⟩ = ⟨𝜇, [ℂℙ1]⟩ = 1

if the orientation of ℂℙ2 is the canonical one inherited from its complex structure. Then

𝑞ℂℙ2 = (1) .

Note that changing the orientation of𝑀 means changing the sign of the fundamental class [𝑀]. From the
definition of the intersection pairing, we see that changing the orientation of 𝑀 corresponds to changing
the sign of 𝑞𝑀 .

Proposition 4.1.5 (Intersection form of connected sum).
Let𝑀,𝑀′ be closed, connected, oriented four-manifolds. Then

𝑞𝑀#𝑀′ = 𝑞𝑀 ⊕ 𝑞𝑀′

Proof.— Recall that the connected sum 𝑀#𝑀′ is obtained as follows: Take small open 4-balls 𝐵4 ⊂ 𝑀
and 𝐵4 ⊂ 𝑀′, and consider the manifolds 𝑀∘ = 𝑀 − 𝐵4 and 𝑀′

∘ = 𝑀′ − 𝐵4. Both of them have 𝑆3 for
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boundaries. Consider the cylinder 𝑆3 × [0, 1], and embeddings

𝑀∘ 𝑀′
∘

𝑆3 × [0, 1]
𝜉 𝜉′

which map 𝜉(𝑆3 × {1}) = 𝜕𝑀∘, 𝜉(𝑆3 × {0}) = 𝜕𝑀′
∘, and whose images are precisely collar neighborhoods

of the boundaries. The connected sum 𝑀#𝑀′ is obtained by identifying the collar neighborhoods via the
images of the embeddings 𝜉, 𝜉′. The choice of this embedding guarantees that the resulting manifold is
smooth, and has an orientation compatible with the orientations of 𝑀 and 𝑀′.

The connected sum 𝑀#𝑀′ only alters 4-cells, so the homology in degree two in unaltered. As far as
the 1, 2, and 3-cells are concerned, 𝑀#𝑀′ is a disjoint union of 𝑀 and 𝑀′. More explicitly, let 𝑀𝑐 and
𝑀′

𝑐 be the images of𝑀∘ ⊔𝑆3[0, 1) and 𝑆3 × (0, 1] ⊔𝑀′
∘ in the quotient𝑀#𝑀′. Intuitively,𝑀𝑐 and𝑀′

𝑐 are
just 𝑀∘ and 𝑀′

∘ plus a little cylinder that extends into the “other side”. Then 𝑀𝑐 ∩ 𝑀′
𝑐 ≅ 𝑆3 × (0, 1), and

from the Mayer-Vietoris sequence (in reduced homology) we obtain

𝐻𝑘(𝑀𝑐) ⊕ 𝐻𝑘(𝑀𝑐) ≅ 𝐻𝑘(𝑀#𝑀′)

for 𝑘 = 2 and 𝑘 = 3. However, we have that 𝑀𝑐 is just 𝑀 minus a disk; i.e. 𝑀𝑐 ≅ 𝑀 − 𝐷4, so again,
considering a Mayer-Vietoris sequence with a slightly larger disk𝐷 ⊂ 𝑀 such that𝑀−𝐷4∩𝐷 ≅ 𝑆3×(0, 1),
we find that

𝐻𝑘(𝑀𝑐) ≅ 𝐻𝑘(𝑀)
for 𝑘 = 2 and 𝑘 = 3. In particular, this tells us that 𝐻2(𝑀#𝑀′) ≅ 𝐻2(𝑀) ⊕ 𝐻2(𝑀′), and so the result
follows. ■

4.1.1 Unimodular symmetric forms
In order to make use of the intersection form, we need to study its algebraic properties. W e saw that it
is an integral, nondegenerate, symmetric bilinear form defined on a finitely-generated free abelian group.
We call all such forms unimodular symmetric forms. In this section, we will state some basic results about
them. The standard reference is [MH73].

Definition 4.1.6 (Invariants of unimodular symmetric forms).
Let 𝑍 be a finitely-generated free abelian group, and let 𝑞 ∶ 𝑍 × 𝑍 → ℤ be a unimodular form. To it we
can assign three invariants:

• Rank: Since 𝑞 is unimodular, it has full rank. We write it rank(𝑞) = rank(𝑍).

• Type or parity: We say that 𝑞 is even if for all 𝑥 ∈ 𝑍, 𝑞(𝑥, 𝑥) is even. Otherwise, we say that 𝑞 is
odd. This means that that 𝑞 is odd if 𝑞(𝑥, 𝑥) is odd for at least one element 𝑥 ∈ 𝑍.

• Signature: Since 𝑞 is represented by a symmetric matrix, it can be diagonalized over the rationals.
The signature of 𝑞, denoted sign(𝑞), is

sign(𝑞) = # { positive eigenvalues } − # { negative eigenvalues } .

If we choose generators of 𝑍, by Sylvester’s Law of Inertia, this is indeed an invariant of 𝑞.
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In relation to the signature, we can say that 𝑞 is positive-definite (resp. negative-definite) if for all
𝑥 ∈ 𝑍, 𝑞(𝑥, 𝑥) ≥ 0 (resp. ≤ 0). Equivalently, 𝑞 is positive (resp. negative) definite if sign(𝑞) = rank(𝑞)
(resp. sign(𝑞) = − rank(𝑞)). If 𝑞 is neither positive-definite nor negative-definite, we say that it is
indefinite.

Notation. In [MH73], unimodular symmetric forms on 𝑍 are called inner products on 𝑍. In their
notation, a forms of type I are odd and forms of type II are even.

Given two symmetric bilinear forms, 𝑞, 𝑞′ ∶ 𝑍×𝑍 → ℤ, we say that they are equivalent or isomorphic
if there is an automorphism 𝜑 ∶ 𝑍 → 𝑍 such that

𝑞′(𝑥, 𝑦) = 𝑞(𝜑(𝑥), 𝜑(𝑦))

for all 𝑥, 𝑦 ∈ 𝑍.
We can easily classify all indefinite odd forms in terms of their rank and signature.

Proposition 4.1.7 (Classification of indefinite odd forms).
Let 𝑞 be a symmetric unimodular form over 𝑍. Then there is a set of generators of 𝑍 for which 𝑞 is a
diagonal matrix (and therefore with only ±1 on the diagonal). Consequently, indefinite odd forms are
uniquely determined by their rank and signature.

Proof.— This proof follows [MH73, Theorem 4.3]. We proceed by induction on the rank of 𝑍. If
rank(𝑍) = 1, the result follows immediately. Assume rank(𝑍) = 𝑛 > 0, and take an element 𝑥1 ≠ 0 ∈ 𝑍
such that 𝑞(𝑥1, 𝑥1) = 0. Such elements always exist [MH73, Lemma II.4.1]. Furthermore, assume that
𝑥1 is a generator of an cyclic component of 𝑍, and complete this to a basis 𝑥1, … , 𝑥𝑛. By non-degeneracy
of 𝑞, there exist unique elements 𝑦1, … , 𝑦𝑛 such that 𝑞(𝑥𝑖, 𝑦𝑖) = 1, which generate 𝑍 as well. Now, by
hypothesis, 𝑞 is odd so there is a vector 𝑣 ∈ 𝑍 such that 𝑞(𝑣, 𝑣) is odd. Writing 𝑣 in terms of 𝑦1, … , 𝑦𝑛, we
see that necessarily there is a 𝑦𝑗 for which 𝑞(𝑦𝑗 , 𝑦𝑗) is odd as well.

Define a subgroup𝑍0 = ⟨𝑥1, 𝑦⟩ ⊂ 𝑍 as follows: if 𝑞(𝑦1, 𝑦1) is odd, let 𝑦 = 𝑦1. Otherwise, let 𝑦 = 𝑦1+𝑦𝑘.
Note that 𝑞(𝑦, 𝑦) is odd. When restricted to 𝑍0, 𝑞 has the form

(0 1
1 2𝑚 + 1) .

We can find a set of generators of 𝑍0 which diagonalizes 𝑞|𝑍0 as follows: Write 𝑥′ = 𝑦 − 𝑚𝑥1 and
𝑦′ = 𝑦 − (𝑚 + 1)𝑥1. Then

𝑞(𝑥′, 𝑥′) = 𝑞(𝑦, 𝑦) − 2𝑚𝑞(𝑦, 𝑥1) + 𝑚2𝑞(𝑥1, 𝑥1) = 2𝑚 + 1 − 2𝑚 = 1,
𝑞(𝑦′, 𝑦′) = 𝑞(𝑦, 𝑦) − 2(𝑚 + 1)𝑞(𝑦, 𝑥1) + (𝑚 + 1)2𝑞(𝑥1, 𝑥1) = 2𝑚 + 1 − 2(𝑚 + 1) = −1,
𝑞(𝑥′, 𝑦′) = 𝑞(𝑦, 𝑦) − (2𝑚 + 1)𝑞(𝑦, 𝑥1) + 𝑚(𝑚 + 1)𝑞(𝑥1, 𝑥1) = 0.

Therefore in the basis 𝑥′, 𝑦′, the form 𝑞|𝑍0 is (1) ⊕ (−1). Now we split 𝑍 as 𝑍0 ⊕ 𝑍⟂0 , where 𝑍⟂0 is the
𝑞-orthogonal complement of 𝑍0. Then we have that

𝑞 ≃ (1) ⊕ (−1) ⊕ 𝑞|𝑍⟂
0
.

If 𝑞|⟂𝑍0 is indefinite, by induction we are done. If not, then either (1)⊕𝑞|𝑍⟂
0

or (−1)⊕𝑞|𝑍⟂
0

are indefinite,
so we can proceed by induction and obtain the result. ■
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There is an equivalent result for the even case, but its proof requires some lattice theory [see MH73, The-
orem II.5.3]. With this, we conclude:

Theorem 4.1.8 (Indefinite forms are determined by rank, signature and type).
Let 𝑞, 𝑞′ be indefinite unimodular, symmetric forms. Then 𝑞 and 𝑞′ are equivalent if and only if they have
the same rank, signature, and type.

The notion of a characteristic vector is crucial in our proof of Donaldson’s theorem. We will see that
characteristic vectors of the intersection form of a manifold are precisely lifts of the second Stiefel-Whitney
class of a manifold.

Definition 4.1.9 (characteristic vector).
Let 𝑞 be a unimodular, symmetric form over 𝑍. A vector 𝑤 ∈ 𝑍 is characteristic if for all 𝑥 ∈ 𝑍,

𝑞(𝑤, 𝑥) = 𝑞(𝑥, 𝑥) mod 2.

Lemma 4.1.10 (Existence of characteristic vectors).
Every unimodular, symmetric form admits a characteristic vector.

Proof.— Consider the ℤ2-vector space 𝑋 = 𝑍⧸2𝑍. For every 𝑥 ∈ 𝑍, denote by 𝑥 ∈ 𝑋 its class in the
quotient. The form 𝑞 descends to a bilinear form 𝑞 ∶ 𝑋 × 𝑋 → ℤ2 defined as

𝑞(𝑥, 𝑦) ∶= 𝑞(𝑥, 𝑦) mod 2,

where 𝑥, 𝑦 are representatives of 𝑥, 𝑦. This form is non-degenerate: suppose that there is 𝑥 such that
𝑞(𝑥, 𝑦) = 0 for all 𝑦 ∈ 𝑋 . This is to say that 𝑞(𝑥, 𝑦) is even for all 𝑦 ∈ 𝑍. Choose generators 𝑒1, … , 𝑒𝑛 of
𝑍, such that 𝑥 = 𝑘1𝑒1 + 𝑘𝑛𝑒𝑛. If 𝑥 is not of the form 2𝑥′ for some 𝑥′ ∈ 𝑍, then necessarily there is some
𝑘𝑗 which is odd, which implies that for all 𝑦 ∈ 𝑍, 𝑞(𝑒𝑗 , 𝑦) is even. However, this violates non-degeneracy
of 𝑞, and therefore 𝑥 must be of the form 2𝑥′, i.e., 𝑥 = 0.

Consider the map 𝑠 ∶ 𝑋 → 𝑍2 given by 𝑠(𝑥) = 𝑞(𝑥, 𝑥). A priori, the maps looks quadratic. However,
it is linear:

𝑠(𝑥 + 𝑦) = 𝑞(𝑥 + 𝑦, 𝑥 + 𝑦) = 𝑞(𝑥, 𝑥) + 2𝑞(𝑥, 𝑦) + 𝑞(𝑦, 𝑦) mod 2
= 𝑞(𝑥, 𝑥) + 𝑞(𝑦, 𝑦) mod 2
= 𝑠(𝑥) + 𝑠(𝑦).

By non-degeneracy of 𝑞, there exists a unique class 𝑤 ∈ 𝑋 such that

𝑠(𝑥) = 𝑞(𝑤, 𝑥)

for all 𝑥 ∈ 𝑋 . Choosing a representative 𝑤 ∈ 𝑍 of 𝑤 gives us a characteristic vector. ■

Lemma 4.1.11 (Signature in terms of characteristic vector).
Let 𝑞 be a unimodular symmetric form over 𝑍 and 𝑤 a characteristic vector. Then

sign(𝑞) = 𝑞(𝑤,𝑤) mod 8.
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Proof.— First, suppose that 𝑞 is odd and indefinite. Then there is a 𝑞-orthonormal basis 𝑥1, … , 𝑥𝑝, 𝑦1, … , 𝑦𝑝
of 𝑍 which exhibit 𝑞 as a direct sum 𝑞 ≃ ⊕𝑝(1)⊕𝑞 (−1). Here, where 𝑝+𝑞 = rank(𝑞) and sign(𝑞) = 𝑝−𝑞.
Then

𝑤 = 𝑥1 +⋯+ 𝑥𝑝 + 𝑦1 +⋯+ 𝑦𝑞
is a characteristic vector and clearly 𝑞(𝑤,𝑤) = 𝑝− 𝑞 = sign(𝑞). Note that if 𝑤′ is any other characteristic
vector, then as we saw in the proof of Lemma 4.1.10, 𝑤′ = 𝑤 + 2𝑥 for some 𝑥 ∈ 𝑍, and thus

𝑞(𝑤′, 𝑤′) = 𝑞(𝑤,𝑤) + 4𝑞(𝑤, 𝑥) + 4𝑞(𝑥, 𝑥) = 𝑞(𝑤,𝑤) + 8𝑞(𝑥, 𝑥) + 8𝑎.

Here we used the fact that 𝑞(𝑤, 𝑥) = 𝑞(𝑥, 𝑥)+2𝑎 for some 𝑎 ∈ ℤ. Then indeed, if 𝑞 is odd and indefinite,
for all characteristic vectors we have the result.

Suppose that 𝑞 is arbitrary, and consider the form 𝑞′ = 𝑞 ⊕ (1) ⊕ (−1) on 𝑍 ⊕ ℤ2, which is odd and
indefinite. If 𝑤 is a characteristic vector of 𝑞, and 𝑥, 𝑦 are generators of ℤ2, we have that 𝑤′ = 𝑤 + 𝑥 + 𝑦
is a characteristic vector of 𝑞 ⊕ (1) ⊕ (−1) and by the previous result for odd indefinite forms,

sign(𝑞) = sign(𝑞′) = 𝑞′(𝑤′ + 𝑥 + 𝑦,𝑤′ + 𝑥 + 𝑦) mod 8
= 𝑞(𝑤′, 𝑤′) mod 8. ■

With this result we can explicitly exhibit all the indefinite forms, if we study two examples:

Example 4.1.12 (Hyperbolic form).
Consider the form 𝐻 on ℤ2 given by

𝐻 = (0 1
1 0) .

It is straightforward to show that 𝐻 is even, indefinite with sign(𝐻) = 0. As we saw in Exam-
ple 4.1.3, 𝐻 is the intersection form of 𝑆2 × 𝑆2.

Example 4.1.13 (𝐸8).
Define the form 𝐸8 on ℤ8 as

𝐸8 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2
1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This form is unimodular, positive-definite and even. Therefore rank(𝐸8) = sign(𝐸8) = 8. This can
be proved by row-reducing the matrix to see that its reduced form (over the rationals) is diagonal,
with all positive entries, and that its determinant is 1 [see Sco05, p. 126].

Surprisingly, the form 𝐸8 is the intersection form of a four-manifold, which we also call 𝐸8. The
construction of this manifold requires some techniques that fall out of the scope of this work [see
Sco05, pg. 86].
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Theorem 4.1.14 (All indefinite forms).
Let 𝑞 be an indefinite unimodular symmetric form.

1. If 𝑞 is odd, then 𝑞 is of the form
⊕𝑟(1) ⊕𝑠 (−1),

with 𝑟 + 𝑠 = rank(𝑞) and 𝑟 − 𝑠 = sign(𝑞).

2. If 𝑞 is even, then 𝑞 is of the form
±⊕𝑟 𝐸8 ⊕𝑠 𝐻,

where rank(𝑞) = 8𝑟 + 2𝑠 and sign(𝑞) = ±8𝑟.

Proof.— We already know this result for odd forms. If 𝑞 is even, then 0 is a characteristic vector, and
therefore sign(𝑞) = 0 mod 8. If we write sign(𝑞) = 𝑎 − 𝑏, then necessarily rank(𝑞) = 𝑎 + 𝑏 is even as
well. We can see that all combinations of the form ± ⊕𝑟 𝐸8 ⊕𝑠 𝐻 exhaust all such ranks and signatures,
and since indefinite forms are uniquely determined in this way, the result follows. ■

4.1.2 The topology of four-manifolds
In this section, we will see the immense power of the intersection form as a classification tool for topological
four-manifolds. Unfortunately, the proof of most of these results fall out of the scope of this work.

The first result says that the intersection forms classify four-manifolds up to homotopy equivalence:

Theorem 4.1.15 (Whitehead).
Let 𝑀 and 𝑀′ be closed, oriented, simply connected topological four-manifolds. Then 𝑀 and 𝑀′ are
homotopy-equivalent if and only if their intersection forms are isomorphic.

A proof can be found in [MH73, Section V.1].
The question of which unimodular symmetric forms show up as intersection forms was answered by

Freedman: all of them, and in an almost unique way:

Theorem 4.1.16 (Freedman).
Let 𝑞 be a unimodular, symmetric form.

1. If 𝑞 is even, there is exactly one closed, oriented, simply-connected topological four-manifold whose
intersection form is 𝑞.

2. If 𝑞 is odd, there are exactly two closed, oriented, simply-connected topological four-manifolds whose
intersection forms are 𝑞, at least one of which does not admit any smooth structures.

A proof of this theorem can be found in [FQ90, Chapter 10]. As an immediate consequence of this, we
have that if two closed, oriented, simply-connected smooth four-manifolds have isomorphic intersection
forms, then they must be homeomorphic.

4.2 Finale: Donaldson’s theorem

We’re finally here. The final stretch. Let𝑀 be a smooth, oriented, closed 4-manifold with negative-definite
intersection form 𝑞𝑀 . Wewill first show that, given a choice of a Spinc-structure on𝑀, the Seiberg-Witten
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moduli space is either empty or zero-dimensional (i.e., the expected dimension is non-positive). Then, we
will show that if the intersection form is not diagonal, then there is a Spinc-structure on 𝑀 for which the
moduli space has a strictly positive dimension. Therefore, 𝑞𝑀 is necessarily diagonal.

The first step is an application Wu’s formula which exhibits the second Stiefel-Whitney class of a mani-
fold as the mod-2 reduction of (the Poincaré dual of ) a characteristic vector of its intersection form.

Proposition 4.2.1 (𝑤2(𝑀) is mod-2 reduction of characteristic vector).
Let𝑀 be a closed, connected, oriented four-manifold with intersection form 𝑞𝑀 . Then for any characteristic
vector 𝑤 ∈ 𝐻2(𝑀, ℤ),

𝑤2(𝑀) = 𝑃𝐷(𝑤) mod 2.
Consequently, for all 𝛼 ∈ 𝐻2(𝑀, ℤ),

⟨𝑤2(𝑀), 𝛼⟩ = 𝑞𝑀(𝛼, 𝛼) mod 2.

The proof of this theorem comes from studying the definition of the Stiefel-Whitney classes in terms of
the Steenrod operations and the Thom class of the tautological bundle of ℝℙ∞, see [May99, section 23.6]
and [MS74, p. 130].

Corollary 4.2.2 (Closed four-manifolds admit Spinc-structures).
Every closed, connected, oriented four-manifold admits Spinc-structures.

Proof.— This follows immediately from the previous proposition: The intersection form of a manifold
always admits characteristic vectors, and these are integral lifts of the second Stiefel-Whitney class. This
is precisely the condition for the existence of Spinc-structures that we saw in Proposition 2.6.6. ■

Lemma 4.2.3.
Let𝑀 be a smooth, closed, oriented 4-manifoldwith negative-definite intersection form𝑞𝑀 . If𝐻1(𝑀,ℝ) =
0, then for all characteristic vectors 𝑢 of 𝑞𝑀 ,

1
4(𝑞𝑀(𝑢, 𝑢) + 𝑏2(𝑀)) ≤ 0.

Proof.— Since the intersection form is negative definite, then 𝑏+2 = 0, so that 𝑏2 = 𝑏−2 and sign(𝑀) =
−𝑏−2 . Let 𝑤 ∈ 𝐻2(𝑀, ℤ) be the Poincaré dual of a characteristic vector of 𝑞𝑀 . By Wu’s formula, 𝑤 is
an integral lift of 𝑤2(𝑀), and so we can consider a Spinc-structure over 𝑀 whose determinant bundle 𝐿
satisfies 𝑐1(𝐿) = 𝑤. Therefore, the expected dimension of the Seiberg-Witten moduli space ℳ is

𝑑 = dimℳ = 1
4(𝑤 • 𝑤 − 3 sign(𝑀) − 2𝜒(𝑀)) = 1

4(𝑤 • 𝑤 + 𝑏2) − 1.

Since 𝑤 is (dual to) a characteristic vector, then 𝑤•𝑤 = sign(𝑀) = −𝑏2 mod 8, and thus 𝑤•𝑤+𝑏2 = 0
mod 8. This means that dimℳ is odd.

Now, assuming that 𝐻1(𝑀,ℝ) = 0, there is a unique gauge class of reducible solutions to the Seiberg-
Witten equations. To see this, take any closed perturbation 𝜂, and consider the smooth reference connec-
tion 𝐴0. Any other connection is of the form 𝐴 = 𝐴0 − 𝑖𝛼 + 𝑖𝛽, where 𝛽 is a closed form. Note that
𝐹𝐴 = 𝐹𝐴0 − 𝑖 d𝛼 , and it trivially satisfies

𝐹+𝐴 + 𝜂 = 0,
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since 𝐹+𝐴 + 𝜂 is a harmonic self-dual form and 𝑏2+ = 0. Furthermore, since 𝑏1 = 0, then 𝛽 = d𝑓 for some
𝑓 ∈ 𝐶∞(𝑀), and thus

𝐴 = 𝐴0 − 𝑖𝛼 + 𝑖 d𝑓 ,

which is precisely the gauge transformation by 𝛾 = 𝑒𝑖𝑓 of the connection 𝐴 = 𝐴0 − 𝑖𝛼. Therefore indeed
all reducible solutions are on the same gauge class.

Consider the space of solutions modulo the based gauge group ℳ0(𝜂) = 𝒵𝜂/𝒢0. The tangent space at
1 of the based gauge group is simply

𝑇1𝒢0 = {𝑖𝑓 ∈ ℂ∞(𝑀, 𝑖ℝ) | 𝑓(𝑥0) = 0} .

And the infinitesimal action, which we denote with the same symbol 𝔤(0,𝐴), is given by

𝔤(0,𝐴)(𝑖𝑓) = (0, −2𝑖 d𝑓).

We still have a “based” Seiberg-Witten complex

𝑇1𝒢0 𝑇(0,𝐴)Conf 𝑇(0,0)𝒴
𝔤(0,𝐴) 𝑇(0,𝐴)𝒮𝒲𝜂 ,

and here the differential of the Seiberg-Witten map reduces to

𝑇(0,𝐴)𝒮𝒲𝜂 = /𝜕𝐴 ⊕ d+.

Therefore the tangent space of the based moduli space ℳ0(𝜂) at the reducible point [0, 𝐴] is

𝑇[0,𝐴]ℳ0(𝜂) ≅ ker𝑇(0,𝐴)𝒮𝒲𝜂⧸im 𝔤(0,𝐴) = ker /𝜕𝐴 ⊕𝐻1(𝑀,ℝ) = ker /𝜕𝐴.

This is because we’ve assumed that 𝐻1(𝑀,ℝ) = 0.
Recall that we still have a free action of U(1) on the based moduli space. Since this action is free, the

induced linear action of U(1) on the tangent space 𝑇[0,𝐴]ℳ is also free (except at the origin). Furthermore,
since /𝜕𝐴 is elliptic and ℂ-linear, then ker /𝜕𝐴 is a finite-dimensional complex vector space, whose (real)
dimension is necessarily dimℳ(𝜂) + 1. Therefore, if we quotient out by the U(1) action, we get that
𝑇[0,𝐴]ℳ0(𝜂)⧸U(1) is a cone over

𝑆
𝑑+1
2
⧸U(1) ≅ ℂℙ

𝑑−1
2

Of course, all these considerations on the tangent space at [0, 𝐴] extend to a small neighborhood 𝑈 of it.
That is to say that the (unbased) moduli space ℳ(𝜂) is a smooth manifold except the single reducible

class [0, 𝐴], and there is a neighborhood𝑈 of it which is isomorphic to a cone overℂℙ
𝑑−1
2 . Its complement

ℳ(𝜂) − 𝑈 is, then a smooth compact manifold with boundary ℂℙ
𝑑−1
2 .

If 𝑑 = 1, then ℳ(𝜂) − 𝑈 is a compact, one-dimensional manifold whose boundary is a single point,
which is impossible. Suppose now that 𝑑 > 1. Then the restriction of the U(1)-bundle ℳ0(𝜂) → ℳ(𝜂)
to the boundary 𝜕(ℳ(𝜂) − 𝑈) ≅ ℂℙ

𝑑−1
2 as a U(1) bundle. The fiber above a point [Ψ, 𝐴′] is the orbit of

the U(1) action on ℳ0(𝜂), that is, it is precisely the circle that it comes from in the quotient. This is to

say that the restriction ℳ0(𝜂)|𝜕(ℳ(𝜂)−𝑈) is precisely the universal bundle over ℂℙ
𝑑−1
2 .
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Let 𝜇 be the first Chern class of this bundle. Then, by definition, 𝜇 is the Poincaré dual to the funda-
mental class of [ℂℙ1]ℂℙ(𝑑−1)/2 , and since the cohomology ring of ℂℙ(𝑑−1)/2 is generated by this fundamen-
tal class, we have

⟨𝜇(𝑑−1)/2, [ℂℙ(𝑑−1)/2]⟩ = ∫
𝜕(ℳ(𝜂)−𝑈)

𝜇(𝑑−1)/2 = ±1.

On the other hand, since the bundle ℳ0 → ℳ is defined everywhere else, then 𝜇 extends to ℳ(𝜂) − 𝑈,
and by the Stokes theorem,

∫
𝜕(ℳ(𝜂)−𝑈)

𝜇(𝑑−1)/2 = ∫
ℳ(𝜂)−𝑈

d𝜇(𝑑−1)/2 = 0.

We have then arrived at a contradiction in both cases when 𝑑 = 1 and 𝑑 > 0. This implies that 𝑑 ≤ 0, and
the result follows. ■

The following result, which is purely algebraic, tells us that unimodular symmetric forms that are not
diagonal have “short” characteristic vectors. Combining this with the previous lemma, we will obtain
Donaldson’s theorem, at least in the case where 𝐻1(𝑀,ℝ) = 0.

Lemma 4.2.4 (Elkies).
Let 𝑞 ∶ 𝑍 × 𝑍 → ℤ be a symmetric, unimodular bilinear form. If 𝑞 is not⊕(−1) nor⊕(+1), then there
exists a characteristic vector 𝑤 ∈ 𝑍 such that

|𝑞(𝑤,𝑤)| < rank(𝑞).

We call 𝑤 a short characteristic vector.

The proof of this lemma requires the theory of theta series and modular forms, and can be found in [Elk95].

Lemma 4.2.5 (Killing cohomology with surgery).
Let𝑀 be a smooth, closed, oriented 4-manifold. Then we can perform surgery on𝑀 and obtain a manifold
𝑀′ with 𝐻1(𝑀′, ℝ) = 0, but with 𝑞𝑀′ = 𝑞𝑀 .

Proof.— In this proof we will take all groups with integral coefficients. Consider a non-trivial element
𝑐 ∈ 𝐻1(𝑀) which is not torsion. It can be represented by an embedded 𝑆1 ↪ 𝑀. Since it’s nontrivial,
then 𝑆1 (nor any multiple of it) bounds a surface in 𝑀.

Let’s do the intuition first. We take a tubular neighborhood of 𝑆1, which is of the form 𝑆1 ×𝐷3. If we
remove this neighborhood we obtain a manifold with boundary 𝜕𝑆1 × 𝐷3 = 𝑆1 × 𝑆2. Each circle 𝑆1 × {𝑝}
in the boundary is “equivalent” in homology to the initial circle. We want to make all these circles in the
boundary trivial, so we want to make them bound a surface, and thus we replace each 𝑆1 × {𝑝} by a disc
𝐷2×𝑝 with matching boundary. The resulting manifold is the same as attaching the handle 𝐷2×𝑆2 along
𝑆1 × 𝑆2, and since each of the circles 𝑆1 × {𝑝} is now the boundary of the corresponding disk, then their
homology class is zero.

How do we know that this procedure doesn’t alter 𝐻2(𝑀)? Nontrivial homology classes in 𝐻2(𝑀) can
be thought of as closed surfaces that do not bound any 3-submanifolds. When we attach the “filling” disk
𝐷2 to each circle 𝑆1 × {𝑝} on the boundary, we are not “closing off ” any surface that might introduce new
homology. This is because such “half sphere” that we’re capping off with 𝐷2 would have the circle 𝑆1 × {𝑝}
as its boundary.

So that’s the intution.
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Let 𝑇 ⊂ 𝑀 be a tubular neighborhood of 𝑆1, which is diffeomorphic to 𝑆1 ×𝐷3. From the long, exact
sequence in (reduced) homology for the pair (𝑇,𝑀), we have

… 𝐻2(𝑀, 𝑇) 𝐻1(𝑇) 𝐻1(𝑀) 𝐻1(𝑀, 𝑇) 0.

However, the map 𝐻1(𝑇) → 𝐻1(𝑀) induced by inclusion is injective, since 𝑆1 is nontrivial in 𝐻1(𝑀).
Then by exactness of the sequence, the map 𝐻2(𝑀, 𝑇) → 𝐻1(𝑇) is zero. We are left with the short exact
sequence

0 𝐻1(𝑇) 𝐻1(𝑀) 𝐻1(𝑀, 𝑇) 0,
which implies that 𝐻1(𝑀, 𝑇) ≅ 𝐻1(𝑀)/𝐻1(𝑇).

Let 𝑀′ be the manifold obtained as follows: after removing the tubular neighborhood 𝑇 from 𝑀, we
obtain a manifold with boundary 𝜕(𝑀 − 𝑇) ≅ 𝑆1 × 𝑆2. The manifold 𝑀′ is the result of attaching a
2-handle 𝑆2 × 𝐷2 along this boundary:

𝑀′ = (𝑀 − 𝑇) ∪𝜕(𝑀−𝑇) (𝑆2 × 𝐷2).

Denote the handle 𝑆2 ×𝐷2 as 𝑇 ′ ⊂ 𝑀′. Repeating the same process as above, we have that 𝐻1(𝑀′, 𝑇 ′) ≅
𝐻1(𝑀′)/𝐻1(𝑇 ′). However, 𝐻1(𝑇 ′) = 0, so 𝐻1(𝑀′, 𝑇 ′) ≅ 𝐻1(𝑀′). On the other hand, since 𝑀 − 𝑇 =
𝑀′ − 𝑇 ′, then by excision, 𝐻1(𝑀, 𝑇) ≅ 𝐻1(𝑀′, 𝑇 ′). Putting all these together we find

𝐻1(𝑀′) ≅ 𝐻1(𝑀)⧸𝐻1(𝑇) =
𝐻1(𝑀)⧸⟨𝑐⟩.

Repeating this process for all generators of the free part of 𝐻1(𝑀), we successfully kill 𝐻1(𝑀).
An argument using the Mayer-Vietoris sequence of 𝑇 and𝑀−𝑇 shows that𝐻2(𝑀) remains invariant.

This surgery can be performed away from surfaces representing generators of 𝐻2(𝑀), and therefore the
intersection form is preserved [see Kat95, Section 6]. ■

We are finally ready to prove Donaldson’s theorem.

Theorem 4.2.6 (Donaldson).
Let𝑀 be a smooth, closed, oriented 4-manifold, with definite intersection form 𝑞𝑀 . Then 𝑞𝑀 is diagonal.

Proof.— Without loss of generality, suppose that 𝑞𝑀 is negative-definite (if not, consider 𝑀 with the
opposite orientation). Suppose that 𝐻1(𝑀,ℝ) = 0. If 𝑞𝑀 is not diagonal, the by Elkies’s lemma, there is
a short characteristic vector 𝑤 for which

|𝑞𝑀(𝑤,𝑤)| = −𝑞𝑀(𝑤,𝑤) < rank(𝑞𝑀) = 𝑏2,

and so
𝑞𝑀(𝑤,𝑤) + 𝑏2 > 0.

However, this contradicts Lemma 4.2.3. Therefore 𝑞𝑀 must be diagonal.
If𝐻1(𝑀,ℝ) is not trivial, then from Lemma 4.2.5, we can perform surgery on𝑀 to obtain a manifold

𝑀′ with 𝐻1(𝑀′, ℝ) = 0 but 𝑞𝑀′ = 𝑞𝑀 . After applying the results above to 𝑀′, we obtain the result. ■

At once, Donaldson’s theorem exhibits a wealth of non-smoothable four-manifolds. Given any definite
unimodular form which is not diagonal, by Freedman’s theorem there exists a topological manifold that
represents it, but it cannot have any smooth structure. For example the manifold 𝐸8 is non-smoothable.

We also immediately obtain the result that any smooth manifold with definite intersection form is
homeomorphic to a connected sum of several copies of ℂℙ2 or ℂℙ

2
.
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