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Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.
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Andries Salm 1. Clifford Algebras

1 Clifford Algebras

In the study of spin—% particles, physicists use gamma matrices. They are defined as

—1 0 0 —2
10 — _ — 0
’YO - Z 0 ’Yl — 0 Z
0 2 1 0
0 -1 —1 0
1 0 0 ¢
-1 0 0 —2

and they satisfy the commutation relation

2 if w=v=>0
Vot =+ =4-2 i p=vandpve{l 23} (1.2)
0 else

The algebra these matrices is one of the first examples of an object now called Clifford
algebra. In this chapter we give a rigorous definition of this algebra and we derive its
basic properties. Using this algebra we define a differential operator called the Dirac
operator. We also introduce the physics notation for dealing with Clifford algebras.

In the end, we prove the Weitzenbock formula. This equation relates the square of
a Dirac operator with the Laplacian and we show that the difference can be given in
terms of the curvature and the gamma matrices. For this we need an explicit expres-
sion for the adjoint of the Dirac operator and the connection. In the third paragraph
we perform these calculations and we show that the Dirac operator is self-adjoint.

The material covered in this section is standard. For more information see Roe [1998]

1.1 Definitions

Definition 1.1. Let V' be a vector space with a symmetric 2-form g. A Clifford
algebra for V' is an unital algebra A such that the following holds:

1. There exists a linear map ¢: V — A such that ¢(v)* = —g(v,v)1d for all
velV.
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2. A satisfies the universal property. That is, if there exists another map
¢’V — A’ that have the same property of ¢, then there exists an unique
algebra homomorphism A — A’ such that the following diagram commutes:

v_2.4

PN

A/

Given a vector space V and a bilinear symmetric map g we can construct a Clifford
algebra. Indeed, consider the tensor algebra

TW%%%V®V®W®V (1.3)

and take the quotient by the ideal that is generated by v ® v + g(v, v) Id. Denote this
quotient as C1(V') or CI(V, g). By construction it satisfies the first part of Definition
1.1. The universal property follows from the universal property of tensor algebras. It
states that for all linear maps ¢: V' — A there exists a unique algebra homomorphism
¢': T(V) — A such that

V——=T(V)
x y
A
commutes. Now assume that ¢(v)? = —g(v,v) Id for all v € V. This relation extends
on ¢ to
¢'(v@ v+ g(v,0)1d) = ¢'(v)* + g(v, v)¢'(Id) = 0 (1.4)

So ¢ factors over the ideal generated by v ® v + g(v,v)Id and so ¢ is a unique
algebra homomorphism between C1(V') and A. Hence,

Proposition 1.2. For any vector space V' with a bilinear symmetric map, there
exists a Clifford algebra and it is unique.

The requirement in Definition 1.1 that ¢(v)? = —g(v,v)-Id for all v € V is equivalent
to the requirement that ¢(u)op(v) + ¢(v)p(u) = —2¢g(u,v) - Id for all u,v € V.

7
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This can be easily seen if we consider ¢(u + v)?. By linearity this equals ¢(u)? +
d(u)d(v) + d(v)p(u) + ¢(v)? and so the anti-commutator between ¢(u) and ¢(v) is
d(u+v)? — ¢(u)? — ¢(v)?. However, by the commutation relation it follows that

P(u)o(v) + o(v)¢(u) = — (9(u + v, u+v) = g(u,u) — g(v,v)) - 1d (1.5)
=—2g(u,v) - 1d

Hence these two conditions are equivalent.

Example 1.3 (Gamma matrices). Consider the vector space V = R* and equip it
with the Minkowski metric 7. In the basis (t,z,y, z) the Minkowski metric is given
by, it = —1, Nyw = Nyy = 1. = 1 and 7, = 0 else. Hence, the gamma matrices
satisfy the relation v,v, +7,7, = —27,,. and so 73 = —7)uu - Idca. The unital matrix
subalgebra A generated by the gamma matrices is a Clifford algebra. Indeed, the map
CL(V,n) — A that is defined by ' - 27 - y* - 2l s 7/ 0yl 0oyl o4l forall 4, j, k,1,€ N
is an isomorphism between two algebras. It is a well-defined linear map and by the
definition of A it is surjective. It is a homomorphism, because both sides satisfy the
same commutation relations. We only need to show that it is injective. For this we
need to work out all matrix multiplications and this is left for the reader.

In field theory the gamma matrices act on spin—% fermions which are represented by
fields. Mathematically particle fields are sections of a certain vector bundle. So to
formalize spin—% fermions we need to let the Clifford action act on section

Definition 1.4. Let (M, g) be a (pseudo)-Riemannian manifold. The vector bundle
S — M is a bundle of Clifford modules if there exists a smooth bundle map
ClT'M, g)@CxS — S which makes each fiber S, a left-module over C1(T,M, g)®
C.

Example 1.5 (Spin—% particles). A spin—% particle is represented by a section over the
trivial bundle R* x C* — R*. Clearly, the gamma matrices forms a left-module on
C*. So R* ® C* is a bundle of Clifford modules.

For a bundle of Clifford modules S — M, we define v: T'(T'M) — I'(End(S)) as the
composition of the left-module action and the map ¢ from Definition 1.1. In local coor-
dinates e, € I'(T'M), this map is given by y(e,.)s = ¢(e,,) - s for all sections s € I'(.5).
If we use the shorthand v, = v(e,), we see that -, extends the gamma matrices from
Equation 1.1 to any bundle of Clifford modules. We call v: I'(T'M) — TI'(End(S))
the Clifford action.
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Given a bundle of Clifford modules S — M, a vector bundle £ — M and a section
Ael(TM ® S ® E) we formally define the Feynman slash A of A as follows: It
is the element A € I'(S ® E) that is given by the composition of the following maps:

DTM ® S ® B)—2= I(CUTM) ® S @ B) ——T(S ® E) (1.7)

A=Y A Qe Y A @y e A =, AV

The second map denotes the multiplication defined by the left-module. We used {e, }
as a local basis on T'M. We only need it for comparison with the definition physicists
use and we see that they indeed coincide.

In physics there is an operator called the Dirac operator. For the generalization of
this operator we need to consider the interplay between a connection and the Clifford
action. In the next definition we give explicit requirements:

Definition 1.6. A Clifford bundle is a bundle of Clifford modules S over a
(pseudo)-Riemannian manifold (M, g) equipped with a Hermitian metric and com-
patible connection such that

1. The Clifford action is skew adjoint. That is, for all p € M, v € T,M and
51,82 € Sp, we have

(v(v) - 81,82) + (51,7(v) 82) = 0 (1.8)

2. The connection on S is compatible with the Levi-Civita connection on M.
So for all u,v € T'(TM) and s € I'(S), we have

V() s =5(Vuv) s+ v(v) Vs (1.9)

Example 1.7 (Spin—% particles). Note that the gamma matrices from Equation 1.1
are skew adjoint under the Euclidean metric. Also the compatibility condition reduces
to the Leibniz rule for a flat connection. Hence, if we equip R* x C* — R* with
the Euclidean metric of C* and the flat connection, we get that R* x C* is a Clifford
bundle.



Andries Salm 1. Clifford Algebras

Definition 1.8. Let S — (M, g) be a Clifford bundle with compatible connection
V and the Clifford action ~y. Interpret g as the isomorphism g: T'(TM) — T'(T*M)
which is given by v — g(v,-). The differential operator D is a Dirac operator if
it is the composition of the following maps:

r($) % I(T*M ® S) L5 T(TM © S) 2 T(S) (1.10)

Following the steps above we can compute the Dirac operator in local coordinates.
Denote {e,} as a local basis of 7'M and s as a section of S. Let e'L be the dual of

e’ i.e. ei(e”) = 6, By orthonormality it follows that 3 euei = Id and

Vs:zvusébe'; (1.11)
o
Under g~ this maps to Zu Vs ® e, and so the Dirac operator is locally given by
YV s (1.12)

In the example of the spin—% particles we use the flat connection V,, = J,. Then the
Dirac operator is given by 9,7* which is the expression normally used in quantum field
theory.

1.2 Graded Clifford bundles

For spin-% Dirac fermions, we distinguish left-handed and right-handed particles. This
chirality is related to the 41 eigenvalues of the operator

Y5 1= —Y0V1Y2Y35 (1.13)

That is, if y59 = 1, then we call ¥ right handed and if v5¢ = —¢ we call ¢ left-
handed. We see that 75 defines a grading on R* x C*. In general we define the grading
as follows.

Definition 1.9. Let S be a Clifford bundle. We say that S is a graded Clifford
bundle if S can be decomposed into ST & S~ such that
1. The Clifford action v maps I'(TM @ S*) to T'(ST).

2. The metric and the connection of S respects the grading.

10
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In the example of R* x C* the operator s is fully determined by how it acts on left-
resp. right-handed particles. Its acts by +1 on right-handed fields and by —1 on
left-handed field. This can be generalized to any graded Clifford bundle.

Definition 1.10. Let S be a graded Clifford bundle. We define the grading
operator 5: I'(S) — I'(S) by

Vs|s+ =1d

1.14
Ys5ls- = —1d (1.14)

The grading operator anti-commutes with the Clifford action. Indeed if S+ ST & S~
is a graded Clifford bundle and s € T'(S¥). then for all v € T'(T'M) the section y(v)s
is an element of I'(S¥) and hence

Y5y(v)s = Fy(v)s = —y(v)Y5$ (1.15)

Even more, the Dirac operator anti-commutes with the grading operator. This can be
easily seen if we use local coordinates and write D =3~ 7,V

Gradings on Clifford bundles are not unique. However, there is a canonical method to
induce a grading.

Definition 1.11. Let S — (M, g) be a Clifford bundle on a 2n dimensional man-
ifold and let {e,} be a local positively oriented orthonormal basis of T M. The
element

w=1"y ... Yo, € I'(End(95)) (1.16)

is called the canonical grading operator.

Lemma 1.12 (Roe [1998], Remark 4.4). The canonical grading operator w from
Definition 1.11 does not depend on the choice of local orthonormal frame and hence
it is globally defined.

Proof. Let {e*} and {é"} be two orthonormal local frames of 7'M/ with identical
orientation. Denote «y, and 7, as the Clifford action on ¢, resp. €,. We expand é&"

11
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as Ake”. In local coordinates the canonical grading operator @ w.r.t. the basis {é"}
equals

n ~

O=0"31 - Aoy =AY AR Y (1.17)
We view A an an orthogonal matrix on {é*}. In the case that p; = ps it follows

ZA&“A“Q - (AAT)12 == Id12 == 0 (118)

p1

This shows that all p;'s in Equation 1.17 must be unique. If S5, is the set of all
permutations of 2n-elements, then & equals

~ n Ho(1 Ho(2n
o =i Z Ao({)) ,..Ao(én)) Vitoy - - Vitor(zm) (1.19)
Jes2n
=i" Y sgn(0) AL - ALY e (1.20)
Jes2n
=det(A) -w (1.21)

Because A € SO(2n) the determinant of A equals one and @ equals the canonical
grading operator w.r.t. the basis {e"}. O

In the next proposition we show that the canonical grading operator w indeed defines
a graded Clifford bundle and so we see w as the generalization of ~s.

Proposition 1.13 (Roe [1998], Page 142). Let S — (M, g) be a Clifford bundle on
a 2n dimensional manifold and let w be the canonical grading operator. Then w? =
Id and the 1 eigenspaces of w, S*, are subbundles of S, therefore decomposing
it as graded Clifford bundle S = ST @ S~.

Proof. The square of w can be easily calculated and is indeed equal to one. Therefore
we can split S into ST @ S~ where ST are the +1 eigenspaces of w. Also, the
commutation identity

wy+yw =0 (1.22)

can be easily calculated in a suitable basis. This proves the first part of Definition 1.9.

12



1.2. Graded Clifford bundles Andries Salm

To show that g respects the grading we assume that v, € T'(S™) and v_ € T'(S™).
By the skew-adjointness of the Clifford action and wvy = 4wv4 we van calculate

g(U+,U_).
g<U+, U*) :g(war, U*) = an(fyl s fyanJrv U*)
:(_i)ng(UJrv 7277' cee fylvf) = (i)ng(v+7 ’Yl o
:g(v+,wv_) = —g(U+,U_)

APl (1.23)

This shows ¢(S™,S7) = 0 and hence g respects the grading.

To show that the connection on S respects the grading we need to pick a suitable
coordinate system on M. Fix p € M and pick the local coordinate frame {52}
that follows from the exponential map exp,: T,M — M. This frame is called the
Riemannian normal coordinate system and it has the property that at p

0

Vo 0

where V denote the Levi-Civita connection and ;2; is a basis element in I'(T'M).

Let s € I'(S), v € I'(T'M) and use V also for the connection on S. Using the
compatibility property of the connection we get

Vo(ws) ="V (7' ... v*"s) (1.24)
=i"y(V,(0/02")) - 2. .. 4*"s + "y V(72 ... 4*"s) (1.25)

="'V, (72 ... y*"s) (1.26)

=...=wV,s (1.27)

This shows that V also respects the grading. O

Remark 1.14. Unless not stated otherwise we assume that a Clifford bundle is canon-
ically graded.

Remark 1.15. If ~ is the Clifford action and {e*} a basis of T M we simplify v(e")
into y,.. However, if we explicitly® write 75, then it does not mean 7(es), but it means
the grading operator. This might be confusing, but it is standard notation in physics.

Remark 1.16. In higher dimensions physicists mostly use the notation =, where n
is the dimension of the spacetime. However, when we consider higher dimensions in
physics, we will use the Veltman-'t Hooft regularization. There it is custom to use
instead of v,,,1. To prevent confusion we never use 7,1, but use vs.

YIn 4g...7% the operator 5 is not explicitly written we so we don't refer here to the grading
operator.

13
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1.3 The adjoint of a Dirac operator

In this paragraph we will compute the formal adjoint of a Dirac operator D. Since D
is the composition of the Clifford action v and the covariant derivative V. Therefore
we compute the adjoint of v and V separately. These will be calculated in the next
two lemmas. We conclude this paragraph by showing that D is self-adjoint.

Lemma 1.17. Let E — M be a vector bundle with Hermitian metric g and
compatible connection V on an oriented Riemannian manifold M. Letv € T'(T'M)
such that the Lie derivative along v of the Riemannian volume form Vol(M) on M
is zero. Then, for all s € T'(E) with compact support V*(v* ® s5) = —V,(s).

Proof. Let s,t € I'.(E) be two sections on E with compact support. We use (-, -) =
Jiy 9(--) Vol(M) as the inner product on I';(E). Using Cartans magic formula, £, =
de, + Lv d and Stokes theorem we have

/M L,(g(s,t) ANVol(M)) = /M(d Ly + L, d)(g(s,t) A Vol(M)) =0 (1.28)

We expand L, (g(s,t) A Vol(M)). It follows from L, Vol(M) = 0 that
L,(g(s,t) ANVol(M)) = L, g(s,t) A Vol(M) (1.29)
Because V is a compatible connection, we can write £,(s,t) in terms of V,.
L,(g(s,t) NVol(M)) = g(Vys,t) A Vol(M) + g(s, V,t) A Vol(M) (1.30)

This concludes
(Vys,t) = —(s, V) (1.31)

Finally, denote (-,-) as the inner product on I'.(T*M ® E) and let {e,} be an or-
thonormal frame on T'M. Using the identity Zu eue'; = Id, we calculate

(5, V*(0" @1)) =(Vs,0” @) (1.32)
—Z v(ey) e ® Veus, e, @) (1.33)

:Z Vs, t) (1.34)

Combining Equation 1.31 and 1.34 we conclude
(5, V*(0" @1)) = —(V,ys,1) (1.35)

14



1.3. The adjoint of a Dirac operator Andries Salm

Recall that for a vector bundle £ — M with a metric and compatible connection the
Laplacian is defined as
V*V:I['(F) — ['(E). (1.36)

Using Lemma 1.17 we can calculate the Laplacian in local coordinates.

Corollary 1.18. Let E — M be a vector bundle with Hermitian metric g and
compatible connection V on an oriented Riemannian manifold M. Let x € M and
let {a%} be the Riemannian normal coordinate frame centered at y. Then at the
origin of the chart the Laplacian V*V satisfies

VV==) V.V, (1.37)

I

where V,, =V o .

Oz

Proof. Let n be the dimension of the manifold M. By Cartans magic formula we can
easily check that C% Vol(M) = 0. Indeed, it equals

Lo Vol(M)=dio da'A...Ada"

oxH Pr

=(—D*d(da' A Ada* P Ad* T AL A d ™)
=0
Thus we can use Lemma 1.17 and by the identity Zu % d x* = Id we have for all
s el (F)
V'Vs =) V(da" ®V,s) = =Y V,V,s (1.38)
1 p

O

Lemma 1.19. Let S — (M, g) be a Clifford bundle and let y be the Clifford action.
In the local orthonormal basis {e"} of T'M the formal adjoint of v: T'(TM®S) — S
is given by

() == @() (1.39)

Proof. Let s,t € T'(S) and let v € T'(T'M). Denote (-, -) as the metricon T'(TM®S)
and (-, -) as the metric on S. We write down the definition of the formal adjoint and
use the skew symmetry of the Clifford action.

(v®s,7't) = g(v(v)s,t) = —g(s,7(v) 1) (1.40)

15
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We compare this to (v ® s, —e, ® (7" t)). Expand v as v = v,e”. Then,
(V& 5,—e" @ (3, 0)) = (06" @ 5,—¢* @ (3, 1)) = vy - gle*, ) - (5,7%,1)  (L41)
By orthonormality v, - g(e”, e) simplifies to v,, and hence
(0@ 5,~¢* @ (1)) = v, - {3, 78) = —(5,7(0) ) (1.42)
Comparing Equation 1.40 and 1.42 we conclude the result. O

Proposition 1.20 (Roe [1998],Proposition 3.11). Let S — M be a Clifford bundle
and let D be a Dirac operator. Then D is formally self-adjoint.

Proof. Recall that D is defined as the composition of the following maps

r($) % I(T*M ® S) L5 T(TM © 5) 2 T(S) (1.43)
So the formal adjoint of D is given by

IS) L T(IM®S) L T(IT"M® S) L T(S) (1.44)
Let x € M and consider the Riemannian normal coordinates centered at y. At x € M

we get for any s € I'(S) that

0
SH—@Q@fV“SH—;dx“@%sHVH%s (1.45)

At the origin of our chart, we have V,e# = 0. So by the compatibility condition we
get
D*s =V s =~V s = Ds (1.46)

Therefore, D is formally self-adjoint. O

1.4 The Weitzenbock formula

In this paragraph we compare the difference between the square of an Dirac operator
and the Laplacian. The result will be the so called Weitzenbock formula, which gives
the difference in terms of the Clifford action and the curvature. Before we do this, we
need to generalize the Feynman-slash operator for 2-forms.

16



1.4. The Weitzenbock formula Andries Salm

Definition 1.21. Let S — (M, g) be a Clifford bundle with the Clifford action ~y
and let K € Q*(M,End(S)) be a 2-form with values in End(S). Define the map
QP(M) 5> D(T*M @T*M) asa A t(a®B-F@a) € I(T*M ® T*M).
Interpret g as the isomorphism g: T'(T'M) — T(T*M) which is given by v
g(v,+). The Clifford contraction of K is the composition of the maps

T(S) % Q2(M, ) = T(T*M @ T*M © S) = T(TM @ TM ® S) 2 T(S).
(1.47)
The Clifford contraction of K is denoted as K.

In a local orthonormal frame {e#} on T'M, K can be written as K = > _, er A

e”” @ K(e,,e,). Therefore, the Clifford contraction of K equals It can be shown that
the Clifford contraction of K equals

K= Z Yy K (et e”) (1.48)

pu<v

We are now able to show the Weitzenbock formula.

Theorem 1.22 (Weitzenbock). Let S — M be a Clifford bundle with compatible
connection V. Let D be the Dirac operator and K be the curvature w.r.t. V.
Denote K as the Clifford contraction of the curvature. Then

D*=V*V +K (1.49)

Proof. Let x € M and let {8%} be the Riemannian normal coordinate frame centered
at y. Let {7#,+"} and [y*,~"] be the (anti)-commutator. That is,

{77} ="+ (1.50)
AT = =t Y (1.51)
Using Equation 1.12 we calculate the square of the Dirac operator.

D* =3 A"V,'V, =Y "1 (Vue )V + 49V,

" - (1.52)
=>_"VaV,
Nz

17
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This can be written in terms of the commutator and the anti-commutator.

Z{%,%}V Vo + [V WV Vo (1.53)
0 1
y g 0
——ZVV +Z“YVK<&W my) (1.55)
u<v
From Corollary 1.18 and Equation 1.48 we conclude that D? = V*V + K. O

Next, we will prove a refined version of the Weitzenbock formula, namely the Lich-
nerowicz formula. We show this by considering the commutation relations between the
the curvature K and the Clifford action. Then K will split into the scalar curvature
and a the Clifford contraction of a 2-form called the Riemann endomorphism.

Definition 1.23. Let S — (M, g) be a Clifford bundle, let ~y the Clifford action
and let R be the Riemann curvature tensor. The Riemann endomorphism R°
of S is the following composition of maps applied to the Riemann curvature tensor
R:

D(Q*(M) @ TM @ T*M) —2—=T(Q*(M) @ TM @ TM)

rorst T(Q2(M) ® End(S) ® End(S)) —°—~ T(Q2(M) ® End(S))

N 1/4

T(Q2(M) ® End(S))

Here o denotes the point-wise composition of endomorphisms and % denotes devi-
sion by four.

Given a local orthonormal frame {e"} we calculate the Riemann endomorphism by

18



1.4. The Weitzenbock formula Andries Salm

following the diagram:
_ v b g ! v v
R=3% (Rt e)@et @e,—=> (Rt e")@e @e (1.56)
/

Zuy<Reu7 el/> ® ’YM ® ’YV ZMU<R6H7 6U>7}L’YV

1/4

i Z,u,y <R6M7 ey>7uf}/l/

Hence, in a local orthonormal frame {e*} on T'M, the Riemann endomorphism is
given by
1
RS(X,Y) = Z%%(R(X, Y)et e’) VXY € T(TM) (1.57)

Lemma 1.24 (Roe [1998], Lemma 3.13 and 3.15). Let S — M be a Clifford
bundle, let K be the curvature on S and R be the Riemann curvature on M. Use
7 for the Clifford action and let R® be the Riemann endomorphism. Then for all
u,v,w e I'(TM)

K (u, v),y(w)] = [R¥(u, v),7(w)] (1.58)

where [-, -] is the commutator.

Proof. By the definition of the curvature, the left hand side of Equation 1.58 equals
(K (u,v),v(w)] = [VuVe = Vo Vi, y(w))] (1.59)
According to the Jacobi identity this is
[K (u,v),7(w)] = [VuVy = VoV = Vi, y(w)] (1.60)
=Vu [V, Y(w)] + [Vu, y(w)] V=

— Vo [V, v(w)] = [V, (w)] Vi = [V, 7(w)]
:[vua [Vva 7(w)]] - [Vva [vua 7(w)“ - [v[u,v}a ’Y(M)] (162)

From Definition 1.6 follows that the commutator [V, y(w)] = v(V,w) and hence

(1.61)

(K (u, ), vy(w)] =[Vi, Y(Vow)] = [V, 7(Vuw)] = 7(Viwow) (1.63)
=7(Vu.Vyw = V,V,w — Vi, w) (1.64)
=y(R(u,v)w) (1.65)
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This gives an explicit result for the left hand side. To calculate the right hand side of
Equation 1.58 we need a local orthonormal frame {e*} of T'M. Using the identity

[y (w)y (), v(w)] = 2g(u, w)y(v) = 2g(v, w)7(u) (1.66)
we get that the right hand side equals
1
[RS (uv U) ) 7(w)} :Z<R(uv v)e“, ey> ’ [%/yua 7(w)] (167)
1 1
=5 {Rw, v)w, €)y, — S (R(u, v)e", w)y, (1.68)
By the anti-symmetry property (R(u,v)e*, w) = —(R(u,v)w, e!) it follows that
(RS (u,0) 7(w)] = (R, v)w, ")y, = 7(R(u, v)w) (L69)
Comparing Equation 1.65 and 1.69 we conclude the result. O

Definition 1.25. Let S — (M, g) be a Clifford bundle over a Riemannian manifold
and let E — M be a vector bundle. A Clifford endomorphism is a section F' of
End¢(S) ® E such that for allv € TM, F o ~y(v) equals y(v) o F.

By Lemma 1.24 we conclude that K — R® € Q*(End(9)) is a Clifford endomorphism.
This difference will play an important role in the index theorem and so we give it a
name.

Definition 1.26. Let S — M be a Clifford bundle and let K be its curvature. The
twisting curvature [ is the Clifford endomorphism K — R*.

Using the twisting curvature and the Weitzenbock formula we can write
D? =V*V +F +R° (1.70)

However, this can be further reduced.

Proposition 1.27 (Lichnerowicz [1963]). Let S — (M, g) be a Clifford bundle.
Let D be the Dirac operator and F*° be the Clifford contraction of the twisting
curvature. Denote x as the scalar curvature. Then,

1
D? :V*V+FS+ZK (1.71)
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Proof. It is sufficient to show that R® = i/{. In a local orthonormal frame {e,} of
T M, the Clifford contraction of the Riemann endomorphism is given by

1 v (o
R® = 37 (Rews ev)ep, eq) (1.72)

It follows from the Bianchi identity that

1 vV_ o v (o
R® =— 5 (Blews ev)ep, €5) (77" +9717"77) (1.73)

Using the commutation relation of the Clifford action, we can reorder the gammas
back into y#yYy 7.

1 14 (oa 14 g v _ O 14 g
R = = S(Rlew ey, o) (Y7177 = /9" = 4679797 +28"9"y7) (1.74)

By the antisymmetry of 2-forms, this simplifies into

1
R = — S(Rlew ), €0) (294977 = 65777 (1.75)

3
= —2R" + Z<R(6’“ )€, €x)y’ Y’ (1.76)

Because (R(e,, €,)ep, e5) = (R(€,, €,)e,, €,), the Clifford contraction of the Riemann
endomorphism becomes

1

RY = (Rlee ey en)r"" (w.77)

g (e ), ea) (77 4% (1.78)

— = Rl e)en ) (1.79)

We conclude that R¥ = 1x. O
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2 Calculating anomalies using Feynman diagrams

In this chapter we introduce the notion of anomalies. For this we revisit Noethers
theorem and we investigate if there are obstructions when we generalize it to quantum
field theory. These obstructions are called anomalies:

Definition 2.1. We call classical conservation law that is not satisfied in quantum
field theory an anomaly.

In this chapter we use the perturbative approach to quantum field theory. That is,
we calculate the amplitude of Feynman diagrams that relate to classical conservation
currents. We work out examples where the classical currents are not conserved.

Most calculations are done by van Nieuwenhuizen [1989], but without much detail.

2.1 Reuvisit of Noethers theorem

Informally, Noethers theorem can be stated as follows:

If a classical system has a continuous symmetry, then there are corre-
sponding quantities whose values are conserved.

To elaborate this, we work out three examples. In each example we define a physical
system by an action and we assume that the system is invariant under a symmetry.
We then calculate what happens to the action when we apply this symmetry and we
find that there must exist conserved quatities.

The first example is a massless complex scalar field ¢ € T'(R* @ C). We describe the
physics by the action

S = / dx0,¢"(x)0"¢(x) (2.1)
R4
Assume that this system is invariant under the variation
¢~ =e¢ (2.2)
¢>k '_>¢* — efiagb
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where « is a smooth but infinitely small real valued function. This means that the
action must not change under this transformation. We calculate .S explicitly:

S = / d 29,0 " (2.4)
= / dzd, (e @g*) 0" () (2.5)
=5~ [ 420, (a(e) 9°0% + 0 (a())0, (6) 0+ Ola?)  (26)

- +/ dza(z) - (9, (6" "¢ — 9"¢" - 6)) + O(a?) (2.7)

Invariance implies that [, dz a(z) - (0, (¢* - O"¢ — O*¢* - ¢)) = 0. This is only
possible when

O (¢" - 0" — 09" - ) =0 (2.8)
This equation implies that j# := ¢* - O"¢ — 0" ¢* - ¢ is conserved. This result is pre-
dicted by Noethers theorem. It states that for all symmetries, there exists a current
J* such that 9,5* = 0.

In this thesis we mainly look at the chiral symmetry. We study the fermions ¢ €
I'(R* ® C*) with mass m which are coupled to external vector field V#* € T'(TR*) and
axial-vector field A* € T(TR?). The external fields are not necessary Abelian. So let
g be a lie algebra and let {\,} be a set of generators of g. We write V* = V/\* €
['(TR* ® g) and A* = A¥\* € T(TR* ® g). The physics is described by the action

S= [ —v@+m+ip(y + Ay do (2.9)
R4
The Abelian chiral symmetry is given by
P et @) (2.10)
Y apetl®)s (2.11)

where « is an infinitely small real valued function. Under this symmetry the action
transforms into

S [ dz — G5 (4 m)y 4 g (Y 4 prs)e @y (2.12)

]R4
S =S —i—/ dx — Pyt - Oua(x) — map(eX@s — 1)) (2.13)
R4
S =S+ /11@4 dz a(z) (8, (Vv ) — 2im Pys1) + O(a?) (2.14)
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The invariance of the action implies that

O (V" v51) = 2im Pryst) (2.15)

If m = 0, we notice that j* = ¢y"v51 is conserved. This is Noethers theorem for
the Abelian chiral symmetry.

There is also the non-Abelian chiral symmetry. Again we consider the action given
in Equation 2.9 but now we assume that S' is invariant under

’lp Heia(m))‘a'ﬁ}w (216)
§ e 21

In the same manner we can calculate the variation of S. Note that )\, does not
commute with A and V. Thefore, the variation of S is not equal to Equation 2.14,
but is actually equal to

S+ / daz a(z) (8, (Vs ath) + Vv s (ZV: + Z'AZ%) Aoy AoJt0 — 2im Py Aat))
R4

(2.18)
By the invariance of the action we conclude

O (VY15 Aa0) = =0y 7s5 (ZV;’ + iAZ%) Ao, MoJt0 4 2im Pys At (2.19)
To simplify the notation, let S € {Id} U g. We define the chiral current as
7§ = P75 (2.20)

If S =1d, then j& is the current for the Abelian chiral symmetry. If S = \,, then j*
is the current for the non-Abelian chiral symmetry. In both cases, the chiral current
satisfies

O (V" 7580) = —ytys (iV,) + iAlys) [S, At + 2im py550 (2.21)

2.2 Chiral currents in triangle diagrams

In the previous section, we applied Noethers theorem to chiral currents. The result we
found was based on classical mechanics. Now we calculate the same chiral currents in
quantum field theory. In this chapter we use one-loop approximations to calculate the
amplitudes of scattering processes that are linearly dependent on the chiral current.
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p+aq,p, S

l+p l—q

p, v, b + +q,,u,a
I I

Figure 1: Example of an anomalous scattering process. On top a particle of an axial-
vector field couples to a massive fermion/anti-fermion which then decays into two
vector fields. The labels p,q and | are used to denote the momentum, i, v, p are used
to denote the momentum index and a and b are used to denote the gauge index. In
case of the Abelian anomaly we set S = 1d, else S is an element of the gauge group.

We compare these amplitudes with the classically expected results and we will notice
that they do not coincide.

Consider the AV'V diagram depicted in Figure 1. Using the following Feynman rules,
we can calculate the scattering amplitude M!E:

1. For each loop, add an integral f %.

2. For each vertex between 1, 1) and V#, add the term —~"),.

3. For each vertex between 1), 1) and A*, add the term —/y5),.

—iff+m
k24m?

4. For each internal ¢-propagator with momentum k add the term
5. Take the trace over the gauge group and the Clifford algebra.

6. The above terms appear in the same order in the trace as they appear in the loop.
However, if the current flows clockwise, then we add the terms counterclockwise
and vise versa.
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According to these rules, the scattering amplitude becomes

d*1 —i(l—f)+m  —if+m  —i(l+p)+m

= | ——tr |7” Ao A

abs /(27r)4 r{%v S(l—q)2+m2% 2+m? P+ p)? +m?
(2.22)

Comparing Equation 2.22 with Equation 2.20, we see that the term ~*~;S is related
to the chiral current. To mimic Equation 2.21, we want to calculate J,M!"”. Recall
however that Feynman diagrams apply a Fourier transformation on the fields. Hence,
we consider contraction (p + ¢), ML .

By power counting we see that M'? is proportional to % and so is linearly diver-
gent. To overcome this problem, we have to regularize the amplitude. That is, we
modify the theory such that the amplitude is finite. The physical situation is when

the alteration is negligible small. We work out two different regularization methods.

2.2.1 Dimensional regularization

One method is called dimensional regularization. The idea is to generalize equation
2.22 to n dimensions. Also the Clifford algebra is generalized. However, the grading

operator 75 is still

75 = =i’y

The result is that 75 anti-commutes with /°, 4!, 42 and 73, but commutes with the
other ,. Furthermore, we still assume that the external fields are four dimensional.
This method was introduced by 't Hooft and Veltman't Hooft and Veltman [1972]
and is also called 't Hooft-Veltman regularization.

For dimensional regularization we need to decompose [ into k + k, with k € R* and
k, € R"*. The regularized (p + ¢),M" ¥ becomes

o+ @) Mans _/ @ [75@ D Gt — g e e k) o
—i(f+§L +P)+m
(k+k. j-p)Q +m? tr5Aake]
(2.23)
A little calculation shows that we can write
Vs(d + ) =7s5(d + B) — s/ — Js + 27K, (2.24)
==Y/ — 4 —im) — (/+ P — im)ys — 2imys + 275§ - (2.25)
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The terms —v5(/—¢—im) — (J+p—im)~ys in equation 2.25 are related to 1/_}7“75(2'V£+
iAY5)[S, A]t) from equation 2.21. Indeed, the term —~5(/ — ¢ — im) simplifies the
trace in equation 2.23 into

—i(K+K)+m —i(k+Kk +P)+m
tr |5, i+ )2+ m? Vv e+ T + )2 + 12 tr [SAa ] - (2.26)

This can be interpreted as a one-loop diagram with two external fields where one
vertex is connected to an external (axial-) vector field with gauge index SA,. This is
up to the factor —¢ in one to one correspondence with

@5757“(2'1/: + i ARY5) SA. (2.27)

Even more, this part of the scattering amplitude vanish in dimensional regularization.
The numerator in equation 2.26 is equal to —4ie" " k,p, - tr [SA,Ap] . After a shift
k — k — p/2, the amplitude of this terms becomes

s _UVOT dnl ka
—47¢ pT/ (271_)” ((l — p/2)2 + mQ)((l +p/2)2 + m2)-

This term vanishes, because it is anti-symmetric in k.

(2.28)

The only part in equation 2.25 that is not related to the classical conservation law, is
the term 295/, . In the rest of this section we show that this term does not vanish by
explicitly calculating

ik K~ ) tm iR +m

etk —aqP+m? "tk )?+m2 "
—i(f KL+ P) +m
(k+ k1 +p)2 +m2

. dm
M(ﬁbS,an :2/ (271')” tr {%Jﬁ
(2.29)

tr [SAah] .

The denominator is symmetric in k£, . Therefore all odd orders of k£, in the numerator
vanish by antisymmetry. Also the quartic order of k&, disappear, because these terms
are proportional to

tr(yskt) = k|| - tr(ys) = 0. (2.30)

The 2" order terms of k2 are

Tr [vsh L KL vu(—if + m) v (—i(K + p) +m)]
+Tr [k L (—i(f — o) + m)yl L (—i(K + §) +m)] (2.31)
+Tr [ysf | (—i(f — ) +m)yu(—if +m) v k]
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This trace can be calculated using the commutation rules and the trace identities?. It
is equal to
4|k 1|77 gppy (2.32)

where €7 is the Levi-Civita symbol®. Combining equation 2.32 and 2.29 we get that
Mys o €quals

dm k2

8 nvpo o
P / @m)7 (k= q)? + k2 +m2) (k2 + k2 +m2)((k + p)? + k2 + m2)
(2.33)

This integral cannot vanish, because the integrand is positive. It can happen that it
is linearly dependent on the dimensions of k£, . Then it vanishes when n — 4. This is
not the case and we will spend the rest of this paragraph to show this.

First we simplify equation 2.33 by using the Feynman trick

1 1 1—x 1
——=2/d d
ABC /0 x/o y(xA+yB+(1—x—y)C)3

(2.34)

where we choose the following values for A, B and C"
A=(k+p?+ki+m*> B=(k—q?+k +m?> C=K"+k +m*> (2.35)
The denominator in equation 2.34 becomes

gA+yB+ (1—2—y)C =(k+ap—yq)* + kT + m* + 2p* + y¢* — (zp — yq)>.
(2.36)

If we shift k to & — xp + yq and define
a=m?+zp’ +yq* — (zp — yq)*, (2.37)

then the denominator equals (I* + a®)®. The anomalous term M} . simplifies into

16¢+° /1dx/1_$d / "L ki tr[S Ao\ (2.38)
QPpO' 0 0 y (271')” <l2—|—a2)3 a’\b .

*These are tr(ys) = 0, tr(V5Vpus - - Vuarsr) = 00 V(1577 1) = 0and tr(y57, 0 7p70) = 4ie?.
3ervro — +1 depending on the permutation of the indices. If two indices are equal, the Levi-Civita
symbol is vanishes.
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k2 . _
From symmetry arguments we can replace m with "74 .

2 7 Indeed, notice
that

e
R R
S A o TN (ERWPEIE (2:39)
n—4d"l k4. 4k
on (27 (12 +a?)3
4 Al P

on (27)n (12 +a?)3

(2.40)

(2.41)

Hence, the integrand from equation 2.38 equals

1 a?
l2 +a2)2 (l2 +a2)

n—4 2
n (12 +a?)

S tr[SAN] =2 - 1 ( ( 3) tr[SA N (2.42)

The integral [ % is called an Feynman integralBollini and Giambiagi [1972] and
its result is set to

(o — in) !

- n/2 2 2\ sn—a 243

i ) (243)
The term "774% will be a multiple of n —4 after integration. Therefore, this term
disappears in the limit n — 4. The other term, m induces a factor I'(2 — %)
which approximates —ﬁ in the limit n — 4. Therefore, there is a non-zero constant
c,independent of x and y, such that

a1 K
lim L —c (2.44)

nsa | 2mn (12 4 a2)3

o
The anomalous part M, ,, is equal to

1 1—x
Mc’fb”,an —16c€"7 q,p, - / dx/ dy tr[SA A\ (2.45)
0 0
=8¢ - 77 q,py - tr[SAaNp). (2.46)

In the Abelian case, this does not vanish. For the non-Abelian case, M(fb"an vanishes
if and only if tr[SA,, Ap)] = 0. We summarize this result in a theorem:

Theorem 2.2. The classical conservation laws for the chiral current does not hold
in quantum field theory. Therefore, the chiral symmetry is called anomalous.
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2.2.2 Regularization using Pauli-Villars method

Another regularization method is the Pauli-Villars method. The idea is to subtract the
same amplitude, but we replace the mass m of the Dirac fermion with some mass M
(van Nieuwenhuizen [1989]). This is depicted in figure 2. The physical limit is when
M tends to infinity, because in this limit the regulating particle vanishes.

A P

Figure 2: Pauli-Villars regularization. We subtract the same diagram from the original,
but we replace the mass m of the Dirac fermion with some mass M. The physical
limit is when M tends to infinity.

In the example of the AVV-diagram, we show that this method indeed regulates the
divergences. The denominator in equation 2.22 is of order 5. Thus the current
(p+q),M! L diverges if the nominator is of degree [* or larger. We compare the orders
of [ w.r.t. the orders of m and the number of gamma matrices. It is summarized in
table 1. From this table we conclude that the only the mass independent part of the
numerator need regularization. In this case the numerator of (p + ¢),M!¢ equals

tr[vs(F + 4) (I — D)V (T + P)] - tr(Shads) (2.47)

A simple calculation shows that

30



2.2. Chiral currents in triangle diagrams Andries Salm

Cl|m l Vanishes? Convergent?

3 |md ° Yes, by trace identities -

4 |m? 1°-1 No Yes, by power counting
5 |m' 1°-1%2] Yes, by trace identities -

6 | m® ['-[3| Only after regularization Only after regularization

Table 1: Order analysis of the numerator in equation 2.22. For a given number
of gamma matrices (Cl), we give the possible orders of the mass m and the loop
momenta l. We also state if the given Clifford order vanishes and if it is convergent.

(p + Q)ngLI;/Sp(m)‘m indep. num. — (p + q)PM(iLI;/Sp(m)‘M indep. num. =

:i/ % tr [+ D — D+ P)] - Tr[SAade]x
1
X(@—@Lmﬁxﬁfp%W+mP+m%
=2+ )P+ M) (1 + p)? + M)
X (3% (M? = 3m?) +1*- O(1™"))

(2.48)

By power counting, we see that the integral in equation 2.48 converge. Hence, the
Pauli-Villars method is a valid regularization method.

If one sets k; = 0 equation 2.25 is also valid for the Pauli-Villars regularization.
Using the same argument as in dimensional regularization, we conclude that the first
two terms in equation 2.25 vanishes in the integral. Therefore the physical current
is proportional to A}iinoo(—%m%—, + 2iM~s) and the chiral current is anomalous when

]Vl[im (2iM~y5) doesn’t vanish. The amplitude (2iM~s) is given by
—00
: d"l , —i(f =)+ M —if + M —i(J+p)+ M
2 M == — 4t 2 M )\a v
i) = [ et s L LS
(2.49)

From the trace identities* and the commutation rules we calculate the trace. Equation

“Theseare tr(vs) = 0, tr(Y5Vus - - - Yuon 1) = 0, Y(¥57u¥ntt) = 0 and tr(y57, 77570 ) = 4ieP7.
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2.49 equals

) d"™ SM?2ePopPodo . t1 [SA N\
<2ZM75>:/ 2 2\(12 2[ b]2 2\°
(2m)m (I —q)* + M?)(1* + M?)((I + p)* + M?)

We use the same Feynman tick and Feynman integral we used in dimensional regular-
ization. The integral over the denominator in equation 2.50 equals

4 1 _ _ ’i7T2 B 2\2—-3
/d by = [43) = ) (2.51)

and this is proportional to ﬁ So in the limit M — oo, the term (2iM~s) is
not zero, but is a multiple of €#*7¢q,p, - Tr[SA,Ap]. This matches the result found in
dimensional regularization.

(2.50)

2.3 Other triangle diagrams

Not only the AVV-diagram contains an anomaly. There is another one-loop diagram
that shows that the chiral current is anomalous. It is the AAA diagram and it uses the
same diagram shown in figure 1, but all external fields are axial-vector fields. We calcu-
late the anomalous part of the part of the scattering using dimensional regularization.
That is, we need to find

d"1 —t(f+ K, —4)+m —i(f+HK)+m
MNVAAA _2/ t L 5 L y 5
wS.an O Tl A e e L oy ER

—if K +p)+m
(k+ ki +p)*+m?

tr [SAas] -
(2.52)

The difference between equation 2.29 and 2.52 is that we have replaced v* and ~”
with v#~s resp. 7”7vs. This correspond with the replacement of the external vector
fields with axial-vector fields. Using the trace identities we calculate the trace of the
numerator and it equals

4ik3 €7 (2k,(p + Q)0 — @pPo) - Tr(SAap) (2.53)

Using the same Feynman trick as in equation 2.34 and 2.35, we conclude that Mggb‘ﬁA

equals

d"l k2 - (2(k — S
16¢HP / da / dy / xp(lt iqi;()p;ﬂ:) 4o )tr[SAaAb]
(2.54)
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(Note that in the Feynman trick we shifted k and therefore we have the term k—xp+yq
in equation 2.54.) This can be simplified if we use the antisymmetry of € and the fact
that the linear order of k disappears. Hence equation 2.54 can be written as

dnl kQ 1 1—x
16€"77 q,q, L tr[SA N [ d dy(2 —1) (2.55
st | o WAL da [ v =) (259

Comparing equation 2.55 with 2.38, we see that the anomalous amplitude for the
AVV- and the AAA-diagram differs by the constant

fol dz folfx dy2(z+y)—1)
fol dz folim dy

and by integration over x and y we conclude that this constant equals 1/3.

(2.56)

2.4 Anomalies in box- and pentagon-diagrams

Not only triangle diagrams, but also box and pentagon diagrams have anomalous
behavior. In this paragraph we calculate the box and pentagon anomaly using dimen-
sional regularization. The calculation is similar to the triangle diagram. However, we
first perform order analysis such that the equations doesn’'t become page filling. We
follow the following steps:

1. Get an expression for the scattering amplitude using Feynman rules and contract

it with the momenta of the A-field. This expression is proportional to the chiral
current.

2. Generalize v5(B+ ) = —vs(F — 4 —im) — (J+ p — im)7ys — 2im~ys + 25§ for
the box- and pentagon diagram so that we determine the anomalous part.

3. Apply the Feynman trick and make the denominator in the integrand symmetric.
4. Determine which orders of k| and k do vanish and which do not.
5. Calculate the non-vanishing terms.

Consider the box- and pentagon diagrams shown in figure 3. We use the shorthand
notation p; = p; + ...+ p; and py = 0. From the Feynman rules we deduce an
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pA37Aas ]547)‘75

[+ D4 l
> - ppa Puod - > = PLfhd
L+ s I+
7 \
| 4 |
7 \
| ’ \
pQ,V,b b3, p,C pQ’]j’b
(a) Box diagram (b) Pentagon diagram

Figure 3: Example of an anomalous scattering processes with four resp. five external
fields. In these examples we assume that the top external field is an axial-vector field
and the other external fields are vector fields.

expression for the scattering amplitude. These are

end :/ dir - [75%5(]4— im) YN+ D1+ im)yE Ny y
abes (27)m (12 +m?)((I + p1)? + m?2)
(I + ph + im)Y° A () + ps + 1m)
(L4 p2)? +m?)((L + p3)* + mz)]
oA :/ dr ™ [75%5(]4— im) YN+ D1+ im)yE Ny y
abedS (27)m (12 +m?)((I + p1)2 + m?2)
(I + ph + im) VP A (] + 05 + im)y Ng(J + Pa + im)
(L4 p2)* +m?)((L+ p3)? +m?) (1 + pa)* +m?) }

(2.57)

The vertex 57" is proportional to the chiral current. To show that these diagrams
are anomalous, we need to contract these expressions with ps » resp. ps . Then we
can compare the results with classical mechanics.

We continue with the second step. Recall that in dimensional regularization, ~y; anti-
commutes with 7y, ..., v3, but commutes with the other gamma matrices. If expand [
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2.4. Anomalies in box- and pentagon-diagrams Andries Salm

into k + k; with k € R* and k&, € R"™*, we get the identity

Vs = — s — im) — (F+ P — im)ys — 2imys + 295§ (2.58)

Vsph = — ys(f — im) — (F+ Pa — im)ys — 2imys + 295§,
The first three terms in equation 2.58 are in one-to-one correspondence with the
classical current conservation law. Therefore the box and pentagon diagrams are
anomalous if

rp.d :/ ar . {275%5U+ m)y A+ +im Ny
abesian (2m)" (2 +m?)((l + p1)* + m?)
(I + ph + im)V° A () + ps + 1m) }
((L+p2)? +m?)((L + p3)* + m?)
wpos dnr 295K ST+ im)y* Ao ( + Ph + im)y" Ny
Mateasian = / (2m)" o { (2 +m?)((l + p1)* + m?) )
(I + g + im)y? N (I + 15 + im)y" Aa(F + ph + im)}
(L4 p2)? +m?)((L+ P3)* +m?)((1 + pa)? +m?)

(2.59)

does not vanish.

In the next step we symmetrize the denominator by applying the Feynman trick. In
the general case, the Feynman trick is

ﬁz(m—l)!/{) dzl...dzm(&:z—i;?, (2.60)

Comparing equation 2.59 and 2.60 we choose A; = (k + p;)? + k% + m?. The
denominators in equation 2.59 can be written as

(Z Aizi> = (Z zi (K + k7 4+ m? 4 2k - p; +p§)> (2.61)

i

2 2
= <k + Zz@) +E A mP Yl — <Z zp)

(2

Let pu? = m? + 3., zip? — (X2, zipi)” and shift k to k — 3, zips. If we set B, =
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Andries Salm 2. Calculating anomalies using Feynman diagrams

Di — >_; %iDj, equation 2.59 simplifies to

AR _/ di" T 29K S+ Bo + im)y* Ao (f + By +im)y" N,
abcS,an r X
, (27‘(‘)” I (ZQ +M2)4
X (J+ By + im)y°N(I + Bz + im)]
o _/ di” T (29K S+ Bo + im)y* Ao (f + By +im)y" )\,
abedS,an r X
s (271')” I <l2 _|_lu2)5
X (I + By +im)y* A(f + Bs 4+ im)y" Xa(J + By + im)] .

Note that the denominator is symmetric in k and k. The numerator is symmetric if
the terms are a multiple of k2 (I>)™ for some m € N. For these terms we can use the
following symmetry argument.

A"l K2 -4 At P
[ 2t

2m)m (12 4 p2)d T on 2m)n (12 + p2)d
We expand the numerator of equation 2.62 in a polynomial in [. In table 2 and 3
we determine which orders will vanish. There we notice that all terms are a multiple
2\«
of -1 In dimensional regularization this integrates to ir™/2XE12) (;2)n/2 a5,

(2+p2) r(B)
By the following proposition, we show that for some values of (3 it vanishes.

(2.62)

Proposition 2.3. Let § € N and f a smooth map. The limit

n

lim 2 ~i7r%m/1dzl...dzm5 <1 —Zzz) flzi) - (u?)zte?
0 1

)1

n—4 n (6)

is zero if 5 > 2 and converges if 5 = 0.

We postpone the proof of this proposition to the end of this chapter. From table 2
and 3 we conclude that the only non-vanishing terms of equation 2.62 are

wod [ Al T[S\ A
Mach,an _/ (271')” (12 + M2)4
x (Tr 295 (Bo + im)y"' I ) + Tr 295§ Ay (B + im)y )] +
Tr [2ysf V"1 (B + im)yP]) + T 295§ "1y I (B3 + im)])

- [ S e ok o

M,uz/pa,5 _
abedS,an (271')” (l2 + MZ)B
(2.64)
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2.4. Anomalies in box- and pentagon-diagrams Andries Salm

Order(s) of [ | Vanishes?

0,2,4 Yes, Then the numerator of equation 2.62 is antisymmetric
inkork,.
1 Yes, the first order of equation 2.62 is proportional to
k> —4 12
L T (2.65)

(12_,_#2)4 o n (12_,_#2)4

n—4 1 _ 11
2 (v w ) e

By Proposition 2.3 this vanishes.

3 No

Table 2: Order analysis of equation 2.62 for the box diagram. We expand this equation
in | and we determine which orders vanishes.

Using the Clifford algebra, we work out the spin traces. We conclude that for the box
diagram this trace is a multiple of €#**"p;) -. For the pentagon diagram equation 2.64
is a multiple of e#*7.

We finish this paragraph with the proof of Proposition 2.3. We simplify our notation
with fol dz...dz,0(1—3,%) = [,dz. Observe that

lim —— 1 i3 DGtV / dzif(z) - (n*)2 " (2.71)
A

n—4 n

]
(H4 nL(8 ) hm —n/2)T (B —n/2)) (Tlliﬂ/Adzif(zi) . (,ﬁ)%—ﬂ)
(2.72)

The first part of equation 2.72 can be easily calculated and is equal to %(’T;) The
second term vanishes if § > 2. If § = 2, the second term does not vanish, but is

equal to
lim (2—n/2)f‘(2—n/2)zrlli_rﬁl"(?)—n/Z):l. (2.73)

n—4

We finally focus on the last term of equation 2.72. We need to show that this integral
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Order(s) of [ | Vanishes?

0,2,4 Yes, Then the numerator of equation 2.62 is antisymmetric
inkork,.
1 Yes, the first order of equation 2.62 is proportional to
k> —4 12
L T (2.67)

(12_,_#2)5 o n (12_,_#2)5

n—4 1 _ 11
o (v w ) e

By Proposition 2.3 this vanishes.

3 Yes, the third order of equation 2.62 is proportional to

2 n-4
(12_,_#2)5 o n <l2+u2)5

(2.69)

- n—4 1 242 N pt
T (Z+ 2P (242t " (12 + p2)
(2.70)

By Proposition 2.3 this vanishes.

5 No

Table 3: Order analysis of equation 2.62 for the pentagon diagram. We expand this
equation in | and we determine which orders vanishes.

converges. Recall that

2

Hence the map f - (u*)™/?7# does not have { behavior on A. This concludes that
f - (u¥)"/?77 is integrable for each value of n € R. This proves the proposition. [

2.5 Non-Abelean Anomalies in Feynman diagrams

Till now, we ignored the traces like Tr(SA, ... ;). These terms are determined by the
properties of the gauge group. It turns out that in some cases these terms vanishes.

38



2.5. Non-Abelean Anomalies in Feynman diagrams Andries Salm

We give two examples of this phenomena. In both cases we assume Bose symmetry.
Recall that this is the symmetry when one interchanges external lines.

Example 2.4. If S = 1, then the pentagon anomaly vanishes due to Bose symme-
try.
Indeed, The pentagon anomaly is proportional to
P . tI'(S)\a)\b)\c)\d) (275)

Bose symmetry requires that the above expression is symmetric under the permutation
of the pairs (a, ), (b,v), (¢,p) and (d,o). By adding all the permuted versions of
equation 2.75 we get an expression with 24 terms, which can be written as

P - tr (S{[Aa, Mo, [Aes Adl} + S{[Aas A, [Aas Ao} 4 S{[Aas Ad, [N, AJ})  (2.76)

We now assume that S = 1. Note that due to the cyclic property of the trace, the
anti-commutator in equation 2.76 simplifies to

2eMP7 g1 ([Aa, Ao)[Ae, Ad] + [Aay A [Aas Ab] + [Aas Ad][ Aoy Ad]) - (2.77)
and this can be written as
2eMP9 . tr ()\a([)\b, [)\C, )\d“ + [)\C, [)\d, )\b“ + [)\d, [)\b, )‘CH)) . (278)
From the Jacobi identity we conclude that the Abelian pentagon anomaly vanishes.
Example 2.5. If all triangle anomalies vanishes, then the box and pentagon anoma-
lies vanishes due to Bose symmetry.
Under Bose symmetry the triangle anomaly is proportional to
€' qppo - tr(SAa ) + €717 Py - tr(SApAG) (2.79)

which equals €*7q,p, - tr(S{As, A\p}). Hence all triangle anomalies vanishes if and
only if tr({As, \p}A:) = 0 for all generators of the lie algebra A, Ay, .. We call
tr({Aa, A} Ac) to be the d-symbol and we denote it as dg.. We show that the box
and pentagon anomalies can be written as linear combinations of d-symbols.
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Andries Salm 2. Calculating anomalies using Feynman diagrams

Assume that S = A.. We can write equation 2.76 in terms of d-symbols using the
structure constants® f:

e ( cgd f fdb fdfbc) efg (2.80)

Clearly this vanishes if the d-symbol vanishes. We repeat the calculation for the box
diagram. Under Bose symmetry, the anomaly is proportional to

PPy 7 T (AeAaApAc) + €Ty 7 - tr(AeAa ApAc)
+eVPHT Dei)r tr(AeApAcAg) + EV”pr( ) tr(AeApAgAc) (2.81)
T D6y I (AeAAGAL) + €MD) - - T (AeAABAG).

We write this in terms of (anti)-commutators

L D0 (D Do A+ D D A} + D D M) (282)

This is a linear combination of d-symbols, because it equals

1
§€Mypap(i),o (flfcdaed + fceadbed + fgbdced) (283)

So when the d-symbol vanishes, the box and pentagon anomaly also vanishes. Georgi
and Glashow calculated the d-symbol for many matrix groups and showed that in most
cases the d-symbol vanishes. For more information, see Georgi and Glashow [1972)].

®Recall: f¢, are uniquely defined by [As, \o] = f5 A
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3. Calculating anomalies using path integrals Andries Salm

3 Calculating anomalies using path integrals

In the previous chapter, we have seen that anomalies are classical conservation laws
that are broken when one considers its results in one-loop diagrams. In this chapter
we examine another point of view, namely we show that anomalies arise due to the
fact that the path integral measure is not invariant under the symmetry.

To show this, we first consider the simple case of massless Dirac fermions in the path
integral formalism. Using the method introduced by Fujikawa, we again show that the
chiral symmetry is anomalous. After this, we look at other examples and we relate
them to the results found when using perturbation theory.

Finally we analyze Fujikawas method from a more mathematical perspective. We show
that the anomaly only depends on the topology of the gauge bundle and is a specific
application of the Atiyah-Singer index theorem. In the next chapters we prove the
index theorem using Fujikawas method.

3.1 The Fujikawa method

In classical mechanics we investigated how the action D changed under symmetry
transformations of the fields ). From this we deduced conserved quantities we called
Noethers currents. In quantum field theory the dynamics of a field are not determined
by the action, but by the generating functional

Z = /D@ D exp (iS[¥)]) . (3.1)

Here sz/J is the path integral over all fields ¢). With Fujikawas method(Fujikawa
[1980], Fujikawa and Suzuki [2004]) we mimic Noethers theorem for generating func-
tionals. We get a result that differs from the classical theory and this difference is the
anomaly. As an example we consider a Dirac fermion 1) of mass m in quantum electro-
dynamics. Let A, be the electromagnetic gauge potential and let F),, = 0,4, -0, A,
be the field strength. The action for this fermion is given by

. . - 1 v
5= /R A i (G — 1A — miby — S Fu P (3.2)
As usual we work with a flat four dimensional spacetime, but instead of using the
Minkowski metric, we use the Euclidean metric. For this we need to replace the 7 with

—1 in equation 3.2 We use the following properties of path integrals:

41



Andries Salm 3. Calculating anomalies using path integrals

1. The path integral is different for fermionic than for bosonic particles. For
fermionic particles physicists use Berezin integration for which the Jacobian
is given by the inverse of regular Jacobian.

2. The Dirac field ¢ is actually a bispinor. That is, C* has 2 irreducible spin-
representations and thus describes 2 spin particles. Therefore we treat ¢) and ¥
as separate particles and so we integrate them seperately.

We assume that the Dirac fermion is invariant under the transformation
P e @5y (3.3)
v Hz/;ei“(w)% (3.4)

where o is an arbitrary but infinitely small real-valued map on R*. Under this symmetry
the action S changes into

S=5+ /8[e ) d*z a(z) [0,(Vy"51) + 2imyysy] (35)

If we denote the Jacobian of the path integral as J, then the generating functional
Z transforms into

Z= / Dy Dy JJy exp (—SM - /R Atz a(e) (0,07 0) + 2z'mm5¢}) .
(3.6)

Clearly, we get the classical chiral current conservation if and only if the Jacobians are
equal to one. To show that the chiral symmetry is anomalous we need to calculate
the Jacobians. For this we must assume that « is small enough such that it behaves
as a constant. Formally, the Jacobian is given by

Jy = det "exp(ia(z)ys) = exp(—i Tr(a(x)vs)) + O(c, ?) (3.7)

where Tr is the trace over spacetime and all spin indices. The expression is exactly
the sane for J; and therefore is the combined Jacobian

J = exp(—2i Tr(a(x)7s)) + O(c, o) (3.8)

To evaluate this explicitly, we consider an orthonormal basis of eigenvectors ¢, for
the operator D = +#(0,, — 1A,,). We denote the corresponding eigenvalues with \,,.
Formally the trace equals Tr(-) = >°, [ d* 2(¢, ()| - |¢n(2)) and so

J = exp [—%Z/d4x<¢n(x)|a(fc)%|¢n(fc)> +0(d, %) (3.9)
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3.1. The Fujikawa method Andries Salm

This is a formal calculation and may not converge. Indeed, there may be infinitely
many eigenspaces and each eigenspace may be infinite dimensional. It is also possible
that the eigenvectors are not normalizable. That is, they diverge when we integrate
over them. We tackle this problem by modifying the Jacobian slightly. For this observe
the following: Recall that the sum over an infinite sequence {c¢,} is defined as the
limit of the partial sums Zﬁ/[:o ¢y, Consider the step function §: R — {0,1} with
O(z) =1if x <1and 8(z) =0 if z > 1. The partial sum equals

M

> =t (57) = Lot (57) (3.10)

We modify the Jacobian by replacing the step function with another smooth map
f(z) that rapidly approaches zero when z is large and f(0) = 1. See figure 4. For a
well-chosen map f the Jacobian converges absolutely. An example is e”*. We study
this regulator more thoroughly in chapter 4. In this chapter we investigate the second
method and we assume that the combined Jacobian equals

7 = exp [—%yggz [z a@ion@hs £ (432 @) | + Ofaa?) (311)

Using functional calculus we rewrite equation 3.11 as

1 f(@)

0 1
Figure 4: The regulator f(x),used in the Fujikawa method, mimics the behavior of
the step function. It must value 1 at x = 0 and it must rapidly decrease at infinity.

log J = 2ilim 3~ [ d'z ale)(6u()ha f (¢ D) ou(o)) + Ola.®)  (312)

=—2ilimTr [ys 0 f (t- D?*)] + O(a, a*). (3.13)
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Next we perform a change of basis. Namely, we expand the Jacobian in terms of the
plane-waves ¢**. Because plane-waves form only a basis over R*, we still have to
take the trace over the spin indices. We denote the trace over the spin indices as tr.
In the plane-wave basis equation 3.13 becomes

4
logJ:—Qiliiré/%(k|tr [vsa- f(t- D*)] k) (3.14)
4
— ity [@aate) [ Eh ke e e @)

Note that the operator D is the Dirac operator with respect to the covariant derivative
V, = 0, —iA,. Theorem 1.22 states that D*> = —V/V, — £[v* 4"]F, and so

'k it :
_ c 1. 4 —ik-x _ 1% _ = 1 v ik-x
log J = 2212%/d xoz(x)/ (27T)4e tr {75]0( tVHV,, 4[7 Y ]FW)} e,

(3.16)

We simplify the equation 3.16 by pulling e’ to the left. For this we use the Leibniz
rule [V,,, e?] = ik, and hence

d*k
o 4 . m . 2
log J = —2i B]% d*z a(x) / 2 tr [75 f ( t(VH* +ik,)

1t

" VV]F“”)} '
(3.17)

We calculate the non vanishing part of this integral. First we rescale &, by t_l/ZkH
and the integrand of fd4x in equation 3.17 equals

/ ((;:;475—2 tr [75 f (—(tWW +iky)* — %h", VV]Fwﬂ (3.18)

We consider the Taylor series of f in t2 att=0. We only have to consider the first
four orders, because all higher orders are linear to ¢'/2 and vanishes when we perform
the limit ¢ — 0. In table 4 we analyze these orders and we see that only the t-constant
term doesn’t vanish. Hence, when ¢ tends to zero, then equation 3.18 equals

“» / %f () trbys 7,710, 0°)) By Fyo (3:19)
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3.1. The Fujikawa method Andries Salm

t Clifford order Vanishes?
t=2 tr(7s) Yes
t=3/2 tr(vs) Yes
t! tr(7s) Yes
tr(75747") Yes
t=1/2 tr(7s) Yes
tr(v57"7") Yes
t0 tr(s) Yes
tr(v57"7") Yes
tr (57" yPy7) No

Table 4: Order analysis of the Taylor approximation of equation 3.18 in t'/? at t = 0.
For a given order of t'/?, we give the possible traces over the spin indices. Using the
trace identities we conclude if a given order vanishes

From the trace identity (757 7" y*77) = 4€"*?? where € is the Levi-Civita symbol,
the regularized Jacobian becomes

' d*k
logJ:ie"”w / d*z a(z) / i F'(K)F o Fy (3.20)
:12—66“”p0/d4xa(x)FWFpg. (3.21)

In the last step we used the that f(0) = 1 and f(oco) = 0. We use equation 3.21 in
the transformed generating functional and so equation 3.6 equals

Z= /Dlﬁ DY exp (—S[w] — /%4 d* z a(z) {@(er“%w) + 2imapys) — ie“”p"FH,,Fpg}) .

16
(3.22)

Because Z is conserved under the chiral transformation we get the conservation law

. - P
0u(759) = —2impyst) + e B Foo (3.23)

This shows that the chiral current is anomalous.
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3.2 The covariant anomaly

Previously, we have only considered Fujikawas method for abelian anomalies. It is nat-
ural to ask whether this method also works for non-abelian gauge fields. Most steps
we can copy directly, but there are some subtleties we have to be aware of. For ref-
erence see Bertlmann [1996], which give a detailed overview of different non-Abelian
anomalies.

In the rest of this paragraph we consider the chiral symmetry for a fermion v with
mass m we studied in chapter 2.1. The action S[¢] is given by

St = [ =00+ )i+ (Y + Are)o da (324)

where V,, and A, are gauge fields. In the case of the chiral symmetry we assume that
the physical system is invariant under the transformation

e R e (3.25)

Here « is a small real valued function. When we consider the Abelian chiral symmetry
we assume that S equals the identity. Otherwise we assume that S is a generator of
the Lie algebra. We rewrite the action and the symmetry in terms of the operators
P = %(1 + v5). These operators project the fields into the +1 eigenspace of ~s.
Because they are projection operators they obey the properties

P2=P., P,P. =P P, =0, P.+P =1, and ~P.=+P.. (3.26)

We write ¢ for the projection of ¢ to the 1 eigenspace of ~;. In terms of these
new fields the action can be written as

Sly] = N U (@ +m =iV —iA)ypy + = (§+m—Y +iA)y dz (3.27)

If we denote A* =V + A and define D, = @ — i A~ the action splits into the action
of two non-interacting Dirac particles. That is, the action becomes

Sliby 1] = / —G4(Dy +m)y + —G (D +m)_ da. (3.28)
R4
Using Fujikawas method we calculate how the generating functional changes under

the chiral symmetry. The generating functional Z = f’DIE+’DIp+DIE,DQ/}, exp|—9]
transforms under equation 3.25 into

Z= / DYDY DY_Dy_ Jy Jy, Jy_Jy_ exp[—S] (3.29)
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where S equals

S=25+ /&e 4 d*z a(z) [0, (V" 95S0) + s iV +iANs) [S, Aeyp — 2im ¢y5.51) ]
(3.30)

The transformed action S was found using Noethers theorem and was calculated in
equation 2.21. We note that P75 = 75P+ and hence the chiral symmetry equals

Yy OBy gy e @5, (3.31)
By definition of the fermionic path integral the Jacobian equals
Jg. = Jy. = det " exp(ic S5) (3.32)

If we assume that « and ¢ are infinitely small, we get by the Baker—Campbell-Hausdorff
formula

Jg, = Jy, = exp Tr(—ia Sys) + O(?, ). (3.33)

Again, this might diverge and we need to regulate this. We regulate the same way as
we regulated the Jacobian in the previous paragraph. For this we need to pick a real
valued maps f,, f_: R — R that vanishes at infinity and f.(0) = 1. We regulate

Jy. and Jy, with Dy. The combined regularized Jacobian equals

J = lim exp Tr [2i a S5 - (f4(t+ D) + f-(t_ D?)] (3.34)

t+—0

Here Tr denotes the trace over the fields, spin-indices and the Lie algebra of the gauge
group. We split this trace into the trace try over the Lie algebra and the trace Tr over
the fields and spin indices. Equation 3.34 then equals

log J = tr, [S- <tlim0 Tr [—2ic - 75 f+(t4D7)] +tlim0 Tr [—2ic - s f(tDQ)])]
+— =
(3.35)

We already calculated tlimo Tr [—Qia Vs fi(tiDi)} in the previous paragraph. By
+—>

equation 3.21 we conclude

log J = %e“"pa/d4xa(x) trg [S- (FLFf +F,F)] (3.36)

puv* po pv* po
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where F;E, is the field strength with respect to Ai. Hence equation 3.29 equals

Z= /D¢+D¢+D¢—D@/)_ exp (=S4, ¥_]) x
X <— /3%4 d*z a(z) [0.(vy s0) — Yy (V) 4+ iANs) [S, Mt — Qimz/_;%@z)}) X

(¢ [t [s- (525 + Fara))
(3.37)

Because Z is conserved under the chiral transformation we get a conservation law.
However it does not coincide with the classical conservation equation. This shows
that the Abelian chiral current is anomalous. We call this anomaly the covariant
anomaly.

3.3 The Bardeen anomaly

In Fujikawas method, we have to regulate in order to get a well-defined Jacobian.
However, the result depends on the method of regularization. In this paragraph we
consider another regulator for the chiral current. Again the result is anomalous, but
this time it coincides with the one-loop calculations.

We consider the chiral symmetry given in equation 3.25:

)i @Y gy pe (3.25)

The generating functional Z transforms under this transformation and the Jacobian
of the path integral equals

Jy = Jg = det "' exp(iarys) = exp(—i Tr[a - 5)) (3.38)

We need to regulate the Jacobian in order to get a well-defined result. For the
covariant anomaly we used D as the regulator. We now try to regulate the Jacobian
with the differential operator @ — i}/ — i Avs. This operator is not Hermitian. Even
more, it doesn’t commute with its adjoint. Hence it is not suitable to use in functional
calculus. To solve this, we take the analytic continuation of A, and we transform A,
to 7A,. We regulate the Jacobian with the differential operator D = @ —i}/ + Avs. At
the end of our calculation we undo the transformation. Note that Tr[a s exp(—tD?)]
diverges in the limit ¢ — 0. This is due to the factor v in the differential operator
D. There are two approaches to solve this problem:
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3.3. The Bardeen anomaly Andries Salm

1. We can renormalize the theory such that the divergent terms are canceled.®

2. According to Hu et al. [1984], the t-divergent terms cancels if we choose a
different regulator for d¢» and d¢: They regulate the Jacobian for d¢ with
e~ P but they use et P* (with D, := 9, —iV,, — A,,) for d ).

We use the second method, but to prevent extra terms from the Baker-Campbell-
Hausdorff formula we regulate both d ¢ and d ¢ with (e~ D? 4 e7tD*) The regulated
Jacobian equals

J =limexp [—z’ Tr(ys o (e 7P + e D2))] (3.39)

t—0

where Tr is the trace over spinor fields and over all spin indices. We expand this
trace using the plane wave basis e’**. This yields an expression for the trace over
space-time, but we still need a trace over the spin-indices. If we denote the trace over
the spin indices as tr, we get

S 1s d4k —ik-x [ — —t D ik-x
log J = — zllgré/d‘lxa(x) -/Wtr (756 ko (gntD? | o=t D ik ) (3.40)
Using the Leibniz rule [D, e™**] = ife’*®, we pull ¢*® to the left
logJ =—ilim [ d*z a(z) - ﬂ tr (7 (e_t (D+if)* | ot (DHK)Q)) (3.41)
-0 (2m)t T\ '
and as before we rescale k, with t=1/2k,;:
d'k
(2m)t

— il 4 ) -2 —(t/2D+if)? —(tl/QDH%)Q))
log J i 2Ig% d* z a(z) / t~“tr (75 (e +e
(3.42)

We consider the Taylor series in t'/2 at t = 0. In this approximation the integrand of
equation 3.42 equals

e trys (262
- it73/2 ({D7 %} =+ {D7 k})

_tfl <D2 _'_DQ + % ({D,%})Q + % ({D’k})2) (343)

SV (DMD. K+ DD )]+

For the mathematicians: Renormalization is the process of modifying the action with ¢ dependent
terms such that the final result is finite.
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The order ¢~2 vanishes because it is proportional to tr(vs) = 0. We notice that
the orders t=3/2 and t~/? are odd in k. Hence these orders also vanishes when we
integrate over k. To calculate the ¢t~ order let Dy = @ + i}/ and notice that

D>+ D+ % ({D,J})* + % ({D. ¥})* =2D3 + 242 + ({Do, ¥})” + ([K, A])*
(3.44)

All notions of 5 disappears. We apply the trace identities by counting the Clifford
degree. The terms D2 and A? vanishes in the trace. The other terms in equation 3.44
are proportional to 7k, k,. However, the integral f d* ke‘k2kuk,, equals %27)#,, and
so the t~! order vanishes completely. We conclude that the Jacobian does not diverge
when ¢ — 0.

The calculation of the t-independent part of equation 3.42 is tedious and hence
we use computer algebra to solve this problem. We calculate the Jacobian using
FORM(Vermaseren [2000]) and the source code is given in appendix 11.1. The basic
structure of the calculation is as follows:

) x™

1. We expand the exponent in equation 3.42 using the series exp(z) = >~ =
We only consider the taylor series with five orders. All higher order terms van-
ishes because they are a multiple of /2.

2. We work out the trace using the gamma matrix identities
tr(ys) =0 tr(y57*77) =0 tr(ys 7y Py ) = 4eP? (3.45)

3. We integrate over k using the identities:

2

/ d'ke ™ = 2 / d'ke F k,k, = %mu

) (3.46)
_ 2 n
/d4k‘6 k kukukPkJ :Z(’r]uynpg + 77#/777”0' + T]LLO'T/VP)
4. We simplify the result and we recall that we transformed iA, to A,,.
After the calculation we conclude that the Jacobian equals
d'k 1 32
J =exp / a(x)e? tr | FuFoe + 5GuGre + —A AV A A —
1672 3 3 (3.47)

8
-3 (A A F, e + A E Ay + FM,,A,,AU)>}
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3.3. The Bardeen anomaly Andries Salm

where

F, =0V, —0,V, + [V.,,V,] + [A,, A)] (3.48)
Gu =0,A, — 0,A,+ [V, Al + [AL, V). (3.49)

This result coincide with the results in Bertimann [1996] and van Nieuwenhuizen [1989]
and was first found by Bardeen [1969]. Therefore, F),, and G, are called Bardeen
curvatures.

We compare the difference between the Bardeen anomaly and the covariant anomaly.
We notice that the Bardeen anomaly is not covariant under gauge transformation.
From this we immediately see that the Covariant anomaly and the Bardeen anomaly
must differ. There are two possible factors where the difference can come from:

1. We used different regulators for the different anomalies.
2. We changed A, to iA,, when we calculated the Bardeen anomaly.

When we set A, to zero, the Dirac operators D, D and D* become equal and hence
the regulators are equal. The act of making making A,, imaginary is irrelevant, when
A, = 0. Hence the results must be equal when A, = 0. This is indeed true, because
the Bardeen anomaly simplifies to

7 (0, = 0V + Vi, Vi) (0,Ve — 05V, + [V, Vi) - (3.50)

This is equal to the Covariant anomaly.

Earlier we calculated the chiral anomaly using Feynman diagrams. Recall that the
rules for Feynman diagrams comes from the perturbation theory of the path integral
formalism. In table 5 we compare our earlier calculated results with the results found
by Bardeen. For example, the term e*?? A, A, A,A, corresponds to an interaction
with four external A-fields. Up to first loop approximation, this is calculated in a
pentagon diagram’. In this diagram we denote

Fir=0,V, — 9,V (3.51)
G =0,4A, — 0,A, (3.52)

See that the factor % difference in the AVV and AAA diagram corresponds to the
factor 3 between F i and G'i? G We see that the one loop approximation fully

TAlthough a pentagon diagram has 5 external fields, one is contracted to calculate the anomaly.
Hence, it correspond to e***? A, A, A,As
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captures the anomaly. This is first found by Adler and Bardeen [1969] and is called
the Adler-Bardeen theorem:

Theorem 3.1 (Adler-Bardeen). The chiral anomaly can be fully determined in the
one loop approximation.

Bardeen anomaly Factor Feynman diagram Amplitude
F[LQ”F;Q" 1 AVV P,y
GZ{}G%‘ % AAA %e““ﬂaqppg
FlnV,V, + V,V, Flin 2 AVWV e py)
GlinV,Ag + Gl A Vo+

V,AGE + A V,Gln— 2 AAAV -
—Fﬁ@"ApAU — 4AMF£;”AU — AMAVF})Q”

V.V, V,V, 4 AVVVV ekvro
VAV, A = V,V,ApAs+

ANV, AV, — ALA NV V+ % AAAVV -

V. ALAV, —4A,V,V, A,

AAAA, —% AAAAA -

Table 5: The Bardeen anomaly has an one loop approximation using Feynman dia-
grams. In this table every term in the Bardeen anomaly is related to a triangle, box
or pentagon diagram. The prefactor of each term in the Bardeen anomaly are given
relative to F\\' FI"". Also, the results from chapter 2 are again stated.

3.4 The consistent anomaly

When we calculated the covariant anomaly, we simplified the calculation by considering
the 75 eigenbasis. We concluded that the action given in equation 3.28 describes two
non-interacting particles. We now ask what happens to the chiral anomaly if we only
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3.4. The consistent anomaly Andries Salm

consider massless right-handed particles 1, . That is, what is the chiral anomaly if we
consider the action

Stosl = [ ~0s@ = iAoy da? (3.53)

However, this does not define a well-defined quantum theory. Using ¢, = P,y =
%(1 +5) and D, = @ — i AT we rewrite this action as

SW= | —v(Dy)Pry da (3.54)

R4
The operator D, P, maps right-handed chirality spinors into left-handed chirality
spinors. Therefore, this operator has no eigenvalues and the generating functional,
which is the formal determinant of ¢D, P,, cannot be defined. Alvarez-Gaumé and
Ginsparg [1984] [1985] noticed that if we consider the action

Sl = [ —d(DyPy + PP ) da (3.55)

R4
we get a well-defined quantum theory. Also the gauge couples only to the positive chi-
rality spinors and the non-zero eigenmodes are all right-handed. Hence the gauge the-
ories coincide. We assume that 1 is invariant under the symmetry 1, — €™*(@)%5q)) .
Here we assume that « is an infinitely small Lie algebra valued smooth map. The
action transforms into

51, AY) =S[p, A1) + /

| ity (Dfa(@))y o+ O(a?) (3.56)

where D:[ = 0, — i[A},]. The generating functional Z[A] transforms into

Z[Af] = /wa-exp (—S[w,A;]) (3.57)

where J is the Jacobian of the path integral. We can use Fujikawas method to
calculate the Jacobian. However, this is a special case (Andrianov and Bonora [1984])
of Bardeens anomaly if we substitute

1 1
V., — QA: A, — QA: (3.58)
The Jacobian J equals [ d*ztr(a(x) - G[AT]) where G[A*] is

1 1 1
GlAY] = e (gA;Aj (0,43) — A3 (0,47) 43

3272
" (3.59)

1 2
F3OADATAT + 20,4D(0,40)).
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We simplify G[A"] into

1 1
GIAY] = 5770, <Aj(aij) + §AjA;A;) (3.60)

This result is called the consistent anomaly. It is called this way, because G[AT]
satisfies the Wess-Zumino consistency condition [1971].

We now derive this condition. By assumption the generating functional is invariant
under the chiral symmetry. So from Equations 3.56 and 3.57 it follows that

Z[Af + Dia(x)] =Z[A] + D} a(z)] (3.61)

_ / DIDY exp (—S[w,A;:] + / o(2)G[A"] d%) (3.62)

and we conclude

2ltiml (log Z[AT + tﬁ:a(x)] — log Z[A:]) :/a(:p)G[A+](x) d*z.  (3.63)

—0 t

In terms of the variational derivative we yield the anomalous Ward identity % log Z =
G|[AT]. The Ward identity can also be written in terms of differential forms®. For this
we view Z as a smooth real-valued map on the space of all fields A:j. Thatis, Z is
a 0-form on a infinite dimensional manifold. The left hand side of equation 3.63 can
be interpreted as the Lie derivative of log(Z) in the direction D:a. The right hand
side is the L? inner product on the space of Lie algebra valued smooth maps. Hence,
the anomalous Ward identity equals

Ly, log Z = (o, G[AT]) 2. (3.64)

Let G be the exterior derivative dlog(Z). It is the unique 1-form such that G(64,) =
Lsa, log(Z). By equation 3.64 we conclude G(D*a) = (a, G{A*]) 2. Using Cartans
magic formula we calculate the exterior derivative of G.

dG(DT o, D*B) =tpig0tpi,0dG (3.65)
:—LD+BOdOLE+aé+LD+ﬁO£E)+aG (3.66)
:dOLD+6OLD+aé—£ﬁ+6OLD+aé+LD+6O£l~)+aé (3.67)

8See the appendix for a short introduction.
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3.5. Mathematical interpretation of the Fujikawa method Andries Salm

We notice that ¢p. 4 © Lpi oG is a (—1)-form. These forms does not exists and

hence dOLD+6 o tp+,G is zero. We also recall that the commutator between a Lie
derivative and the interior product is the interior product of a Lie bracket. That is,
[Ly, ty] = t[x,y] and hence

dG(DT o, D™B) = = [Lpen: tpislG+ Lt 0 tpisG — Lpisotp,G (3.68)
:_L[ﬁ+a,l~)+ﬁ}é+£l~)+aOLD+6é_LD+6OLD+aé' (369)

By the definition of the exterior derivative d* = 0, and so equation 3.69 equals zero.
Using the Ward identity we simplify equation 3.69 into

‘Cf)+a<b+57 G[A+]>L2 - ‘CD+B<D+&7 G[A+]>L2 - <[b+0z, D+5]7 G[A+]>L2 =0
(3.70)

This is the Wess-Zumino consistency condition.

3.5 Mathematical interpretation of the Fujikawa method

At last we give a mathematical interpretation to the Fujikawa method. In section 3.1
we calculated the chiral anomaly for a Dirac particle in quantum electrodynamics. The
anomaly was due to the Jacobian of the path integral. By equation 3.21 the Jacobian
equals

(3.21)

i
log J = —e“”p(’/ dz a(z)FuF.
16 RA
For simplicity we assume that a(z) = 1. We rewrite J in terms of differential forms®.
Recall that F'*¥ are the components of the curvature tensor F'. For quantum electro-
dynamics F' is a complex valued 2-form. By definition the wedge product between F’

and itself equals (F' A F)%'% = 2emr? F, F,,. This shows that

log J = 3/ FAF (3.71)
8

By stokes theorem we conclude that the Jacobian is determined by the cohomology
class of F'A\ F. In section 7?7 we will show that this cohomology class only depends
on topology of the gauge bundle. At the same time, the regulated Jacobian equals

log J = —2ilim Tr [vs f (- D?)] (3.72)

9See the appendix for a basic introduction.
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In the orthonormal eigenbasis ¢,, of D where ), is the corresponding eigenvalue this
trace is given by

log J = —2ilim » (¢uls f (- D?) [n) (3.73)

= — 2 ggz Ft- N2 (bnlvs|00n) (3.74)

Recall that 75 anti-commutes with the Dirac operator D and hence v5¢,, is an eigenvec-
tor of D with eigenvalue —\,,. By the orthonormality of the eigenspaces we conclude
that (¢,|vs5|¢n) = 0 if A\, # 0. If n* denotes the number of independent left- resp.
right-handed zero modes of D then,

logJ =—2i > (bulrsldn) =20 Y (bulslen) (3.75)

left-handed right-handed
zero modes zero modes
left-handed right-handed
zero modes zero modes
= 2i(n* —n") (3.77)

This result is found by McKean and Singer [1967]. In mathematics the quantity
n™ — n~ is called the index of D. Using the Fujikawa method we see that the
index is determined by the topology of a vector bundle. This relation is first found by
Atiyah and Singer [1968] and is called the Atiyah-Singer index theorem.

In the next chapters we prove this theorem for Dirac operators on compact spaces'®
by using Fujikawas method. In chapter 4 we define the operator exp(—tD?). We
will not define it using the eigenvalues of D, but as the unique operator that satisfies
(2 + D?)e™*P* = 0. In chapter 5 we show that the trace over y5¢~*P” is finite and

tD?

does not depend on the choice of basis. Hence, we show that e~ is a well-chosen

regulator for J.

iz and showed

—tD?

In the next step Fujikawa considered the trace in the plane wave basis e
that the index of D equals the integral over a trace. In chapter 4 we show that e
has a kernel. That is, we show that there exists an operator k; such that e~tP? is the
integral over this operator. Later in chapter 5 we show that the trace over ’}/56_tD2

10T hat is, we assume that the space-time is of finite size and we assume that it does not contain
any singularities.
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reduces to the integral [ tr(vs k).

In the last step Fujikawa calculated a Taylor series. In chapter 7 we formalize this
in the theory of graded and filtered algebras. We show that the number of gamma
matrices induce a grading. Also, Taylor series in k, forms a grading. However the
grading Fujikawa used is a combination of both and is due to Getzler [1983]. Till
now we explicitly calculated each term of the Taylor series. This is tedious and is
not useful when we consider the general case. Hence we investigate how the Getzler
grading behaves under the differential equation %+D2. This yields another differential
equation that we can explicitly solve.
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4 Smoothing operators and Heat kernels

In chapter 3 we saw how the Abelian anomaly was related to the index of a Dirac
operator. In the following chapters we analyze this method and work out the technical
details. In this chapter we question whether a Dirac operator can be exponentiated.
This is indeed possible and we also show that we can write it as a integral.

We follow the approach given by Berline et al. [2004]. We construct the exponential
by solving a differential equation. This is still a formal solution, because we need to
show that this formal solution converges. We prove this in two steps. First we modify
the formal solution into an approximate solution that does converge. Secondly we
increase the accuracy of the approximate solution. So the basic steps in this chapter
are

Formal solution = Approximate solution = Existence.

4.1 Definitions

t

We want to study e~ D* " From the Lichnerowicz formula, we know that

1
D? :V*V+FS+Z/@ (4.1)

where F¥ + %/{ is a section of End(S). In this chapter we don't need the Clifford
structure and hence we study generalized Laplacians:

Definition 4.1. Let (M, g) be a Riemannian manifold and let E be a vector bundle
over M with a positive definite inner product. A self-adjoint map H: T'(E) — T'(E)
is a generalized Laplacian if there exists a compatible connection V such that
H — V*V is a section of End(E).

We want to write e *P” as an integral. Although vector-valued integration is well-

defined, vector bundle valued integration is not. To solve this, we construct an operator
which maps all fibers into a single one. Then vector bundle integration reduces to
vector space integration which is well defined. Such an operator is called a kernel.
Informally, for two vector bundles E' and E? and 2,y € M a kernel is a "smooth”
linear map p(z, y) from E} to E2. To define smoothness we recall that Hom(E}, E?)
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is isomorphic to (E;)*®E§ Using the canonical projections pr; and pr, from M x M
to M we can write this as

pry B @ pry B o ~ (E?), ® (E,)* ~ Hom(E,, E2). (4.2)

To simplify notation we write the vector bundle pr} £ ® prj E* — M x M as
E'XE? — M x M. We see p is a section of F! X E%. Smoothness of a kernel
follows from the fact that sections are smooth.

Definition 4.2. Let (M,g) be a compact Riemannian manifold and let E' and
E? be vector bundles over M with positive definite inner products. A kernel is
a section p € T'(E' X E?) (which is a linear map p(x,y): E, — E2). A linear
operator P: I'(M, E;) — T'(M, E5) is a smoothing operator if there exists a
kernel p € T'(E' X E?) such that

(Ps)(z) = /  plry)sty) Vollg)

The are two methods to define ¢ *P*. One method is to consider the eigenvalues \;

of D? and construct an eigenbasis {v;} of D2. Then we define e=*P* by e~ tP%y; =
e~*iy;. For this method we need to estimate the eigenvalues of D? before we can
show that the exponent converges. Also, if we want to show that this is a smoothing
operator, then we need to prove this separately. We follow a more direct approach:
We consider all smoothing operators that satisfy %e‘mz = —D%P*. We then
show that there is a unique operator satisfying this equation which has therefore the
properties we would formally expect from e~t2°.

Definition 4.3. Let (M, g) be a compact Riemannian manifold, E be a vector bun-
dle over M with a positive definite inner product and H be a generalized Laplacian.
A heat kernel for H is a section k! of the vector bundle ERE — R, x M x M
which has the following properties:

1. The kernel k™ is at least once continuous differentiable in the first component

2. The kernel k™ s at least twice continuous differentiable in the second com-
ponent

3. The kernel k satisfies the heat equation:

0
(a + Hm) K (t,z,y)=0  Vo,ye M, tcR, (4.3)
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4. The kernel k! satisfies the boundary condition. That is, in the supremum
norm

fim | kK (t,2,y) s(y) Vol(g) = s(x) (4.4)

for all x € M and s € I'(E).
We denote k" (t,-,-) as kI (-, ).

4.2 Examples of heat kernels

In this paragraph we give some useful examples of heat kernels for Laplacians on the
real line. Although R is not compact we can define a heat kernel if we restrict the
boundary condition to only square integrable sections of R. Note that on the real line
p¢ reduces to a smooth map R x R x R, — R.

The simplest generalized Laplacian is the standard Laplacian H = —%. The heat
equation % — % = 0 suggests that the heat kernel is a Gaussian function. By trial

and error we can find that the map kX (z,y) = \/ﬁe*(x*y)z/‘“ satisfies

<% _ 86_;) kX (2,y) = 0. (4.5)

This suggests that k7 is a heat kernel. This is indeed true.

Lemma 4.4 (Berlineetal. [2004], Lemma 2.12). The map klf(x,y) =

. . . g
\/%me_(x_yy/‘“ is a heat kernel for the generalized Laplacian H = —% on R.

Proof. We are left to show that [, &/ (z,y)s(y) dy = s(z) for all s € L*(R). Recall
that compactly supported smooth maps are dense in L?*(R) and on this compact
support we can approximate these maps with polynomials. Hence it is sufficient to
that this is true if s(x) = 2*. Consider the map

1
A(s,t) = Ve /R e~/ tsy q g (4.6)
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This map converges, because if we substitute y with y = /4t + 2st + = we get

1 _ _
A(S, f}) :ﬁ /Re(:c(\/@y+2st+m))2/4t+s(\/ﬂy+2st+m) dy (4.7)
1 2, .2
- e—y +s“t+sx dg (48)
7).
= exp(s°t + sz) (4.9)

We calculate the Taylor series of A(s,t) in s. Comparing equation 4.6 and 4.9 we see

that
0 k 0 k
Z 8_ ( 1 6—(x—y)2/4t k ) Z o St + l‘ (410)
k' \V4rt Jr = k!

k=0

In the limit ¢ — 0 this simplifies to

f(:z: y)2/4t, k _ k
> Fay) =35 (a.11)
Rt «/—47T £ |

This proves [,k (z,y)s(y) dy = s(z) for all s € L*(R). O

Another example is the quantum mechanical harmonic oscillator in one dimension .
Up to constants the Schrodinger equation for this system is

— — — +w*=0 (4.12)

where w € R is the angular frequency. Notice that this is the heat equation for the

generalized Laplacian
92

The heat kernel is found by Mehler [1866] and in the next lemma we give the formula.

Lemma 4.5 (Mehler [1866]) Let H be the generalized Laplacian on R that is
given by H = a P+ w?x?. Then the heat kernel w.r.t. H exists and equals

—w(z? + y?) coth(2wt) + 2w cosech (2wt)zy

w
SR [y p— —
@) = e &P { 2
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Proof. To solve the heat equation, we use the ansatz:

Ef (2,y) = exp <@(:€2 +y%) + b(t)wy + c(t)) (4.14)

The heat equation we need to solve is then

0 :%xQ + Bry + %yQ + 4 — (az + By)? — a + wia? (4.15)
=2 <% — o+ w2> + 92 (% - 62) + xy (6 - 2&5) + (¥ — «) (4.16)

This equation must be valid for any =,y € R. Hence, we have the following system
of differential equations

@ = a’(t) —w? = B*(t) B(t) = 2a(t) 5(t) A(t) = alt) (4.17)

The differential equation for o can be written as fR 5 1w2 da=2t+¢ Where cg €R
is an integration constant. Using change of variables this simplifies to fR Q(t —dt =
2t + ¢;. The primitive is a cotangent hyperbolic!! and o equals

a(t) = — wcoth (2wt + ¢1) (4.18)

By integration and differentiation we find expressions for 8 and v and hence we have

a(t) = — wcoth (2wt + ¢1) (4.19)
B(t) =+ w cosech (2wt + ¢1) (4.20)
y(t) = — %log (sinh (2wt 4 ¢1) * ¢2) (4.21)

Here ¢; and ¢y are integration constants and we find them by using the boundary
condition. Already we notice that k!’ is a bounded map and so it is a well defined
operator on L*(R).

When we apply the smoothing operator on 1 and 22, we conclude that ¢; must vanish.
We approximate the resulting kernel using a taylor series in ¢ and we get that

1 2 2w
H — —(z—y)*/4t -
k7 (x,y) \/me ( s + O(t)) (4.22)

Using Lemma 4.4, we conclude that &/ satisfies the boundary condition if ¢, = o O

11 Recall that coth = % and cosech = Siih
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In our last example we generalize Mehlers kernel for R™. This extension will be
important in the proof of Atiyahs index theorem.

Lemma 4.6 (Roe [1998], Proposition 12.25). Let R € M,x,(R) be a skew-
symmetric matrix and let F' € R. Let H be the generalized Laplacian on R" given

2
by H = — ZZ (8%1- + i E]. Rija:j) + I'. Then the heat kernel k{{ w.r.t. H is
given by

1 tR/2 1 /tR tR
H - - 2 e ——{ Zcoth [ = —{F
ki (. 0) (4mt)n/2 det (sinh(tR/Q)) P { 4t< 5 ot ( 2 )““C> t ]

Proof. Assume that the heat kernel k7 can be written as

k' (2, y) = wi(z, y)e (4.23)

The heat equation (£ + H,)K{ (z,y) = 0 simplifies to

2
0 0o 1 ;
o el U K
i ! j

and this gives us a differential equation for w;. Next we consider the eigenvalue
decomposition of R. Extend R to Rc: C* — C™ and let {z;} be the eigenbasis of
Rc. The eigenvalues A\; w.r.t. z; must be imaginary, because R is skew symmetric. So
there exists 6; € R such that \; = ;. We split z; in its real and complex components
z; = x; +1y;. We decompose the eigenvalue equation Rcz; = \;z; into its real and
complex components. It follows that

Because Z; is an eigenvector of R¢ and z; and y; forms a linear combination of z;
and Z;, we get that the set {z;,y;} forms a basis of R”. Even more, this basis can be
chosen orthonormal. This follows from the relations

(x;, Rr;) = — (Rxy, xy) = 0:(y;, ;) =0 (4.26)
(i, Ry;) = — (R, yi) = O3]z || = 6;|yi||” (4.27)

In the orthonormal basis {x;,y;}, equation 4.24 becomes

Ow, o 1.\’ o 1, \°
o Z (8—:132 + Zezyz) Wy — Z (&yi - Zeﬂz‘) wy =0 (4.28)

7
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We also assume that w; = [ [, u; - v;, where u; is a smooth map in z; and t and v; is
a map in y; and t. From this ansatz the heat equation reduces a differential equation
for all 7 < n:

(4.29)

We further postulate that the left hand side and right hand side of equation 4.29 are
independent differential equations and are both equal to zero. From the left hand side
we notice that u,; and v; are the heat kernels for the harmonic oscillator. That is

1 1t6; /2 1. .

wi(x;,0,t) = i smh(zt(? ) exp [—gzﬁix? coth(zt@i/Q)] (4.30)
1 1t6; /2 1. .

vi(z4,0,t) = i smh(zt/H ) exp {—gzﬁiyf coth(zt@i/Q)] (4.31)

Notice that the product u; - v; is rotation invariant. Therefore is (372‘3%. — yl-%> U,

v; = 0. Thus the right hand side of equation 4.29 also vanishes. We finally have a
solution of the heat equation which is given by

it/2 1
K (2,0) =eF : —~if(x? + y?) coth(itf/2 4.32
(z,0) =e H Art sinh(it0/2) exp[ g’ (27 + ;) coth(ith/ )} (432)

This equals the heat kernel proposed in the lemma. At last we need to check the
boundary condition. Note that

tR/2 tR rR

SRLVAS— I — coth — = Id +O(? 4,
smb(tRjz) ~ 4FOW) - Srcoth +Ol), (433)
Hence in the limit t — 0, [o. k[’ (2,0)s(x) = s(0) for all s € L*(R™). O

4.3 Uniqueness of the heat kernel

Proposition 4.7 (Berline et al. [2004], Proposition 2.17). Let (M, g) be a compact
Riemannian manifold and let E& be a vector bundle on M with a positive definite
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inner product. Let H be a generalized Laplacian and suppose that H admits a heat
kernel k! € T(E' X E). Then k; is unique and is self adjoint in te sense that

kM (2, 9)" =k (y, ) (4.34)

for all x,y € M andt € R,.

Proof. Let k' € T(E X E) be another heat kernel of H and let K and K/ be the
corresponding smoothing operators. Pick two sections u,v € I'(E) and denote (-, -)
as the inner product on E. Consider the smooth map

f(0) = (KHu, K jv) 0<6<t (4.35)
From the heat equation it follows that
o . .
8—£ =(—HKu, K o) + (Kf'u, HK[ o). (4.36)

This equals zero for all 0 < # < t, because H is self-adjoint and hence f is constant.
Taking the limits 6 — 0 and § — ¢ we conclude that
(K{Tu,0) = (u, K{Tv) (4.37)

If we multiply u and v with bump functions, then for all z,y € M and ¢ € R, we get
(kY (z,y) = k' (y, z). If we choose k! = k!, we conclude that k! is self adjoint.
In the general case we get for all z,y € M and t € R

k() = (K1) (y,2) = K (2,9) (4.38)
Therefore the heat kernel is unique. O
With a slight modification of this proof we show that smoothing operators of heat

kernels form a semi group. Thatis, K2, = KX o K/'. This property will be useful

later, when we show that the trace of e~tP? is well-defined.

Lemma 4.8 (Berline et al. [2004], Proposition 2.17(3)). Let (M, g) be a compact
Riemannian manifold, let E be a vector bundle on M with a positive definite
inner product and let H be a generalized Laplacian. If H admits a heat kernel
kE € T(EX E), then the corresponding smoothing operator K} satisfies

K&, =KMo K[ (4.39)

for all s,t € R,..
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Proof. Let u,v € I'(F) be two sections on E. Consider the differentiable map
£(0) = (KL u, K yv) —t<f<s (4.40)

From the heat equation it follows that

af

00
Again, this equals zero for all —t < 6 < s, because H is self-adjoint. Hence, f is
constant. Comparing f at different values of # we conclude

<_HKGI{HU7K£0U> + <KGI{HU7HK£9U> (4.41)

(K, KJ'v) = (K u,0) (4.42)

and so Ko K = K1

H O

4.4 The formal solution of the heat kernel

In section 4.2 we found that ﬁe*mg/‘“ was the heat kernel for the Laplacian on

R. For an n dimensional Riemannian manifold this kernel can be generalized into
W exp(—r?/4t) where r is the geodesic distance. In order to construct the heat
kernel k7 we consider the map s; which is defined by s; = (4mt)"/2 exp(r?/4t) - kH.
This map measures the difference between the 'Euclidian’ heat kernel and the heat
kernel we are interested in. We show that if s; is a formal power series ). t'®;, then
s¢ has a unique solution.

In this section we work with the following setup: Let (M, g) be an n dimensional
Riemannian manifold and let y € M. Consider a neighborhood U,, such that the map
expy_1: U, — T,M is a chart of M. Let ' — U, be a vector bundle with a positive
definite inner product and let H be a generalized Laplacian on E. The "Euclidian”
heat kernel we denote by

1
(4rt)

q(z,y) = T exp(—d(z,y)?/4t) Vz e U, (4.43)

where d(z,y) is the geodesic distance between x and y.

Definition 4.9. A formal power series kIl € I'(E X E) of the form

k() = qi(a,y) Y t'®i(z,y) (4.44)

=0
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is a formal solution of the heat equation if

(;+H)kf:0 (4.45)

If we let kil = ¢, - s; be a candidate for the heat kernel, then s; must satisfy a
differential equation. In the next lemmas we make this explicit.

Lemma 4.10 (Roe [1998], Lemma 7.12 and 7.13). Lets, € I'(E — U X R, )Q E;
be a time-dependent section on E and let ¢;(-,y): U xR, — R be the map defined
in equation 4.43. Then

H(Qt . St) — thSt = (AmQt)St — QVVtht (446)

Proof. By definition of the generalized Laplacian, the only non-commuting part of
H is the Laplacian. In a Riemannian normal coordinate system {z,} it is given by
— Zu V. V,. In this coordinate system the commutator between H and ¢ is given

by
(H, qllsi == > [V Vst (4.47)
w

Using the properties of the commutator this can be written as

(H, ¢]s: = Z VulVis @else + [V, ¢tV s (4.48)

= Z ;m ;u Qt]]st + 2[V;u Qt]vust (449)
m

According to the Leibniz rule, the commutator between a connection and a smooth
function is the Lie derivative and hence

[Ha Qt]st = - Z(‘Cuﬁu%)st + 2(£u€’t>vu5t (4-50)

m

Recall that _Zu(ﬁuﬁu%) is the Laplacian of ¢;. We only need to show that
Zu Cuqt% is the gradient of ¢;. Indeed, the gradient is the dual of the exterior

derivative. The dual of Zu Lu%a% equals Zu L,.q; dx*. This is the exterior deriva-
tive of ¢; in local coordinates. O
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We need to calculate the Laplacian and the gradient of ¢; in a suitable coordinate
system. Namely, take the Riemannian normal coordinate frame and pick the polar
coordinates {r, ¢y,...,¢,—1} on T, M. In this coordinate frame the map ¢; reduces

to
1

%= (4mt)n/?
For this calculation we also need the Hodge dual'?, because the Laplacian can be

written as — x d x d. The next lemma calculates * dr and after this we calculate Ag,
and Vg,.

exp(—r? /4t) (4.51)

Lemma 4.11. Let {r, ¢1,...¢,—1} be the polar coordinates on T, M and use the
exponential map as a coordinate frame around y. Then,

*dT:Tn_l\/§d¢1A...Ad¢n_1 (452)

where g is the determinant of the metric.

Proof. First we show that xdr is a multiple of d¢; A ...d ¢,,_1. For simplicity we
write dpy A ...d ¢,_1 = d€2. Indeed, dr can be expanded into

sdr=¢dQ+ ) GdrAdé A déig Adga A dén (4.53)

where ¢,, ¢; € R are the components of the vector field. We calculate d ¢ A xdr in
this local basis and using the Hodge dual. Comparing them gives

dop Axdr = (=1)"edr AdQ = (d ¢y, dr) Vol(g). (4.54)

By Gauss lemma it follows that (d ¢y, dr) = 0 in a local neighborhood around the
origin and so ¢, = 0 for all k. This shows that xdr = ¢, d (.

We explicitly calculate ¢, by computing dr Ax dr. Because H% Hg = 1 it follows that

dr Axdr=c¢drAdQ = (dr,dr) Vol(g) = Vol(g). (4.55)

For polar coordinates the volume form is given by r”fl\/ﬁd rAd ). Hence we conclude
that xdr =r""1,/gd Q. O

12Recall that the Hodge dual # is the unique operator which is defined by the property a A 3 =
(ar, B) Vol(g) for all o, 8 € Q*(M).
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Lemma 4.12. In the coordinates defined in Lemma 4.11 the gradient of ¢, is
r 0
= —q—— 4.56
Var %ot o ( )
and the Laplacian of q; is
2 n r dg
Ag; = ———t —+ ——= 4.57
@ =G < 42 2t 4gt 87’) ( )
where g is the determinant of the metric.
Proof. The gradient is the dual of the exterior derivative and so
G b r 0
=(d b:(__d>:_ — . 4.58
Vo =(da) ot " “or or (4.58)

For the Laplacian we need to calculate — x d * d ¢;. From Lemma 4.11, we know that

*dqt:—%r*dr:—qtg—t\/&dgbl/\.../\dgbn_l. (4.59)

The Laplacian can now be easily calculated

Agr = — *q; (— ————— ) " gdr Adgr AL Ad b,y (4.60)

and this proves the result. O

Theorem 4.13 (Roe [1998], Theorem 7.15). For any generalized Laplacian H,
there exists a unique formal solution of the heat equation of the form

1

_ —d(x,y)? /4t id
kt<x7 y) - (47Tf})n/2e Y Zot (I)Z(ZC,Z/) (461)

such that ®y(y,y) is the identity map on E,,.
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Proof. Denote s, = ), t'®;. The kernel k¥ = q;s; must satisfy the heat equation.
By Lemmas 4.10 - 4.12 the heat equation applied on k7 equals

0 0
(a + H) k! :a(% ©5¢) + @ ke + (Aq)se — 2Vyg,s: =0 (4.62)
gy 9,  n  r dg _1
—_ —_— H — —= - - A 2_vr r
ot St+%<8t+ 12 T Tagior Sy Yroler) o
(4.63)
The t-derivative of ¢; can be easily calculated and it equals
0 n o’
= 4 4.64
ottt Qt< 2t+4t2) (4.64)
and so the heat equation simplifies to
0 0 r Jdg 1
— 4+ H|Kl =g (=+H+—=-2—-2-V,9/0r | 5t =0 4.65
<8t+ ) t Qt<at+ Tigar Wa)‘st (4.65)

This induces a differential equation for s,. By expanding s; into ) . ®; we get a
differential equation for each factor of t. We get the system of equations

r 0
(@6_.79“ + Vr@/@r) (I)O =0 (466)

0
(i + %a—g + vra/ar) O, ——H®, , Vi>0 (4.67)

g or
This can be simplified into

Vasor (g7 ®0) =0 (4.68)
Vosor (r'g"4®;) = — g HO, ., Vi>0, (4.69)

Equation 4.68 and 4.69 are first order differential equations. Both are uniquely deter-
mined by its initial value at the origin. We set the integration constant for ®, such
that ®(y,y) is the identity map on E,. Note that r'g'/4®; will be of order 7 if and
only if the integration constant is set to zero. So the requirement that ®; is smooth
determines ®; uniquely. O

4.5 The existence of the heat kernel

We have seen that for any generalized Laplacian has a unique formal solution of the
heat equation. However we do not know if this formal solution is globally defined
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and we do not know if the power series converges. In this section we construct the
heat kernel by considering globally defined approximations to the formal solution.
These approximations are not necessary smooth, but we require them to be [ times
continuous differentiable for some [ € N. In this paragraph we denote the space of
I-times differentiable sections on a vector bundle E — M as T''(E). We often use the
norm

Islli(2) = sup sup [[(L.)"s]. (4.70)

k<l v€Te M

The first approximation to k7 = ¢, Y, t'®; we consider is the partial sum multiplied
by a bump function. The next proposition states some properties this approximation
has.

In this section we work with the following setup: Let £ — (M, g) be a vector bundle
with a positive definite inner product over an n dimensional compact Riemannian
manifold, let H be a generalized Laplacian and let k = > ¢'®; be the formal
solution of the heat equation. Let y € M and consider a neighborhood U, such that
the map exp,': U, — T,M is a chart of M.

Proposition 4.14 (Berline et al. [2004], Theorem 2.20). For a small enough ¢ > 0
pick a smooth map 1): R — R such that

. 2
Ylx) = {(1) :? xx<>€eé4 (4.71)

Then k"™ (z,y) = We*d@’y)y“-wdz(‘x, y)) SNt (x, y) is a smooth fam-
ily of sections of EXY 2 — M x M for which the following holds:

1. The smoothing operators KtH N which has k:f{ N as their kernel, form a uni-

form bounded family of operators on T'(E) for all0 <t <T for all T.

2. Foralll € N and s € T'(E) the norm | K["Ns — 5|, tends to zero when t
tends to zero.

3. Foralll € N, there exists a constant C € R such that the kernel satisfies the
estimate

H <% + H) kf’N(x,y)H <ot (4.72)
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Proof. Pick € > 0 such that the ball of radius € centered at y lies inside U,. For this €
the map ktH’N can be globally extended on M x M by zero. Hence ktH’N is a smooth
family of sections of £ X E. The corresponding smoothing operator equals

N

(Ks) (1) = s / e e, y) 3 60 y)s(y) Vollg) (473)

n/2
(4mt)™/ —

The integrand is almost everywhere zero, except in the neighborhood of x € M. For
this neighborhood we pick the local coordinates y = exp, y and we have

N

(15) @) = o /M WY P Ps(en, o) Ay (474

=0

for some compactly supported ¥; € I'(E' X E). It follows from applying the vector
space transformation y = ¢'/2v that

N
(Kvas) (x) = (47) "2 /R IS i (o, £1/20) s (exp, (1/%0)) d" 0. (4.75)
" i=0

This is bounded for all ¢t. Because [0, 7] is compact for all ' > 0, we conclude that
K} is uniformly bounded on [0, 7. This proves the first part.

In the limit ¢ — 0 equation 4.75 equals

(K5"s) (@) =(am) /2 / e I/, (1, 0)s (exp, (0)) " v (4.76)

n

=(4m) "2 /n e 1P/ 4y (d(x, 2)%) oz, 2)s(x) d" v. (4.77)

Clearly, the distance between = and itself is zero and hence ¢(d(z,x)?) = 1. Recall
that Wy(z, x) is the identity operator on E,. So equation 4.77 simplifies to

n

(KYs) (2) =s(@) - (4m) "2 / eI/ gy, (4.78)

By comparing this result to the Euclidean heat kernel we conclude that lir% KtH’Ns =S.
—

This shows the second part.
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Finally we estimate H (2 +H) ktHN(:c,y)H For simplicity we write ¥ = (2 + H) kN ().
From lemmas Lemmas 4.10 - 4.12, we know that

0 r o g
) =0 (G B T ) e Y ) (40)

0 r dg
2 P
=g (d(z,y)*) (at +H o+ vra/ar T mr)Zt

(4.80)
r 8
+ q; (AQ/J(T‘Q) — 2Vv¢(r2) — 1/} ) Ztl
The kernels ®; will cancel most terms. However, we are left with
i (2, y) =qub(d(z, y)* )W HOy (2,y)+
G (A@/)(TQ) — 2V t 7 ) Zt
The first terms is of order tY="/2. \We show that this is true for
r 8
o (8067 ~ 25un + 12 ) Zt@ (4.82)

This vanishes if d(x,y) < €, because 1) is constant in this area. If this term is zero,
then it is of order tY~"/2. So we only need to show that equation 4.82 is of the right
degree when d(z,y) > €.

If d(x,y) > €, then |[t=N*2q,(2)||o is bounded by |[t~N*2q,(¢)|lo. This follows from
the fact that ¢; is a decreasing map. For t > 1 the norm |[t="*%¢,(z)||o is bounded
by one. Because t~V*3¢ () is continuous in ¢ and [0, 1] is compact follows that
t’NJr%qt(e) has an upper bound. So 7" is bounded in the supremum norm by tN-z

To consider higher order derivatives of ™ (x, %) in z, we note that we can only lower
the degree of ¢ by differentiating over ¢;. Because %qt = O(t~'/?), we conclude that

n+l

7N, < Ot~ O

New kernels can be constructed using old kernels. Indeed let p,q € I'(E X E) be
two kernels. The composition [ _, p(z,2)q(z,y) Vol(g) is a map from E, to E,.
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Therefore it is a section on FX E. For smooth families of kernels p;, ¢, € '(EX E —
M x M x R+) we consider the composition

(x,y,t) — /Otd:s/ Mpt,s(:c,z)qs(z,y) Vol(g) (4.83)

This is also a section of '(EX E — M x M x R+). As our second approximation
attempt we consider compositions of ktH’N and (% —|—Hx) kf{’N To simplify our

notation we inductively define

rPN g y) = <8 + H, ) o (4.84)
N () / ds/ b0 (@, 2)r N (2, y) Vol(g) (4.85)
zEM
kN0 () kHN (4.86)
fe A (g ds k;HN rHNm (5 ) Vol (g 4.87
t

H.N, H.N,
In the following lemma we give an estimation of k£, "™ and "™

Lemma 4.15 (Berline et al. [2004], Lemma 2.21 and 2.22(1)). Let k™" be the
family of kernels defined in Proposition 4.14. Then for all [,m € N and N > ”TH
the kernel THNm+1(x,y), which is defined in equation 4.84 and 4.85, is |-times
continuous differentiable with respect to x and y and satisfies the estimate

tm

||,r,tH,N7m+1|| < oty (m+1)(N "‘H)VOI(M)m_

- (4.88)

for some C' € R. The kernel kf{Nm which is defined in equation 4.86 and 4.87,
is also [-times continuous differentiable with respect to x and y and satisfies the
estimate

~ n tm
RN < GO Vol (4.89)

for some C € R.

Proof. From Theorem 4.14 follows that 'r’f{’N’l is bounded by ¢. Hence we extend

Nt (and its derivatives) continuously to ¢t = 0 and so "™ has a well defined
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[-norm. This is equivalent to the fact that it is [-times continuously differentiable.

We show the first estimate using induction. From Definition 4.84 and Theorem 4.14
it follows that
N0 < o= (4.90)

This coincides with equation 4.88 for m = 0. Now assume that equation 4.88 holds
for some m € N. Then r;"™™ ! is estimated by

HNm+1 H / ds/
zeM

From the induction hypothesis it follows that

HNl

HNm
Tt s {L‘Z

x,z)”l (4.91)

I

m—1
N () H / ds/ C(t—s)N - Cm st )VOI(M)m_1 >
m — 1!
(4.92)
and this simplifies to

H.N +1 1 t N n+l N n+l Sm_l
pHN.m (:c,y)H <C™HLVOL(M)™ / ds(t — )V gnv=24) (4.93)

! 0 m — 1!

t Smfl

<AL mAD (N =10 ol (M) / ds : (4.94)

Integrating fo 1, ylelds a factor £ g " and this proves that equation 4.88 is satisfied
form + 1. By |nduct|on we conclude that it is satisfied for all m € N.

From Theorem 4.14 it follows that the smoothing operators w.r.t. kY are uniform
bounded on 0 < ¢ < T for all T'. Hence for all s € [0,t] and x,y € M

\ | R 2 ) Vol
zeEM

for some C' € R. Notice that the left hand side is a norm estimate of &/"""™. From
this and equation 4.88 we conclude the result. O

< Ol (2, y)|l (4.95)

l

+1
H,N,m HN MY "3 m
The kernels 7, and k;"""™ are bounded by (CVol( Zn, =)™ Hence we can use

them for constructm%; convergent power series, because we can bound these series by
exp(C Vol(M)tN="2"). To find WhICh serles is the heat kernel, we need to investigate
how the heat equation behaves for k:
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Lemma 4.16 (Berline et al. [2004], Lemma 2.22(2)). For all I,m € N and N >
ntl the kernel kN (22, 4)), which is defined in equation 4.86 and 4.87, satisfies

8 m m m
(a +Hm) R LN |, (4.96)

kDN (2, 2)rENm (2 ) Vol(g). The in-

S

Proof. Consider the map b(t, s, z,y) = [ _,,

tegral f(f b(t,s,z,y)ds equals the map EEN™  The map b(t,s,z,y) is continuous
in s € [0,], because the smoothing operator K;" is uniform bounded. So the heat
equation applied on kf’N’m equals

a HNm __ a !
(& + Hx) k; = (815 + Hx) /0 b(t,s,z,y)ds (4.97)
Lro
=b(t,t,z,y) — b(t,0,z,y) +/ (& + Hx) b(t,s, x,y)ds
0
(4.98)

From Theorem 4.14 it follows that b(t, 0, z,y) = [, k" (z, 2)rg"™""™ (2, y) Vol(g) =
0. Also, b(t,t,z,y) = [,_\ kPN (2, 2)r PN (2, ) Vol(g) = ri"M™ (2, y). Equation
4.98 therefore becomes

t
<ﬁ N Hx) RN N / (ﬁ N Hm) bt,s,z,y)ds.  (4.99)
ot o \at

We calculate the heat equation acted on b(t, s, z,y). By definition it equals:

O m vt sy = (2 +H, / EEN (o, 2N () Vol(g) (4.100)
ot ot s

The heat equation acts only on terms which depend on ¢ and z and so

(3 N Hx) b, s, 2, ) — / ((9 N Hm) Y z>) PN ) Vol(g)
o0 o\

(4.101)
:/ r N ) 2)r BN (2 ) Vol(g). (4.102)
zeM
By equation 4.85 it follows that
0
<@ + Hw) kN = ) P () (4.103)
and we finish the proof. O
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Assume that the heat kernel is of the form >~ ~_ cmkHNm We now search for which
values of ¢,, € R the heat equation is satisfied. From the previous lemma it follows
that

a - m m m
(8t +H) mzocmkfw’ :;C’”(Tf P (4.104)
=> "M e+ ena) (4.105)
The alternating sum of k"™ will satisfy the heat equation. We show that it is

indeed the heat kernel.

Theorem 4.17 (Berline et al. [2004], Theorem 2.23). Let (M, g) be a compact
Riemannian manifold of dimension n and let E — M be a vector bundle with a
positive definite inner product. Let H be a generalized Laplacian and let k; be the
formal solution to the heat kernel. Then the following is true:

1. Forany N € N and | € N such that N > %l“ the series

H,N yrg N
py 7 (z,y) Z k; (z,y) (4.106)
m=0
converges in the || - ||;1-norm over M x M and it is continuous differentiable

in t. It satisfies the heat equation.

2. The kernel kf N e ['(EX E) approximates p, in the sense that

N_ kN = ot oy (4.107)

H@tm a I

for allm € N and N > %l“ when t approaches zero.

3. The kernel pf = pf "1 js a heat kernel for the operator H.

Proof. In the above discussion we showed that p; converges because it can be esti-
mated using the exponential series. Therefore the kernel p; converges in the [+1-norm.
From Lemma 4.16 it follows that

0
atkHNm — pHNmtL | HNm gy HNm (4.108)
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and we estimate

a M
Hapt :A}iinoo Z(_l)m(,r,tH,N,erl +T{J,N,m _ mel{{,N,m) (4109)
l —0 !
— 1 M HNM+1
= Jim i( H oD, (4.110)

This converges for all ¢ and so p; is continuous differentiable in the ¢ component. It
also satisfies the heat equation. This prove the first part.

To show the second part, recall that ¢;"""° = k"™, From Lemma 4.15 we estimate

o0

E JJN

=1

e — V[l = — O(tN (4.111)

!
The second part of the theorem follows after m-times differentiation.

Before we show that p/ is a heat kernel, we prove that p/"" is a C'-heat kernel if
N > %l“ We only need to show the boundary condition

lim N (z,y)s(y) = s(x) for all s € TY(E). (4.112)

t—0 yeM

From the second part of this theorem we know that 1%” fyeMpr’N(:L’,y)s(y) —
s(x)||; = 1151_{% I fyeM kPN (2,9)s(y) — s(2)]|. By Theorem 4.14 is equals zero. Hence,
piPNis a C'-heat kernel w.r.t. H.

Finally notice that T'(E) C T°(E). Hence, p/"" and p/""*! are both C°-heat kernels.

By unicity of the heat kernel it follows that they are equal. Hence, pH "*1is the smooth
heat kernel w.r.t. H. 0
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5 Traces and the Index of a Dirac operator

In chapter 3 we saw how the Fujikawa method relates the chiral anomaly to the index
of a Dirac operator. Although we calculated the trace over ’}/56_tD2 we did not check
whether it converges. We also never checked if the trace was independent of basis.
Now we rigorously introduce a class of operators for which the trace is well defined
and show that the heat kernel is in this class.

Because the trace is the sum of the eigenvalues, we retrieve some properties of the
eigenvalues of the heat kernel. Using the heat equation we get that a generalized
Laplacian has countably many eigenvalues. Using this spectrum analysis we can prove
McKean-Singer formula. It relates the index of a Dirac operator with the trace of the
heat kernel.

Next we investigate how the trace interacts with the Clifford action. We prove the
trace identities which we used in chapter 2 and we generalize them to higher dimen-
sions.

At last we study the topological properties of traces. We study the trace over dif-
ferential forms and we show that they characterize vector bundles. We introduce the
characteristic classes needed for the Atiyah-Singer index theorem.

The theory of traceclass operators is standard. For more information see Murphy
[1990].

5.1 Traceclass operators

Definition 5.1. A linear operator A on a Hilbert space H is called Hilbert-
Schmidt if Y, || Ae;||* is finite for all orthonormal basis {e;}.

Hilbert-Schmidt operators are bounded operators. Indeed let H be a Hilbert space, A
a Hilbert-Schmidt operator and let v € H. In an orthonormal basis {¢'} of H we can
write v as Y. v;e’. Let vy,q, be the largest component of v. That is, vy, = max; |v;].
We can estimate

AU i ,UZ maa} i
HHUH! Z !|\v|]2 A€l < ” 2 Z [Ae’||? < Z | Ae’||? (5.1)
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and so the operator norm is bounded by

||AU||2 i i
|A|lZ, = sup e < SESZ 1Aef* =) " [l Ae'|>. (5.2)

vEH |

By definition ", || Ae’||? is finite and hence A is bounded.

Linear combinations of Hilbert-Schmidt operators are also Hilbert-Schmidt. To see
this let A and B be Hilbert-Schmidt operators on a Hilbert space H, let A € C and
let {e'} be an orthonormal basis of 4. For all N € N we estimate

N N N
DA+ AB)E < Y IIACE + AR Y (1B (5.3)
i=0 i=0 i=0

and in the limit N — oo we conclude that SV |[(A + AB)e’||? is finite.

The product between a Bounded operator B and a Hilbert-Schmidt operator A is also
Hilbert-Schmidt. This follows from the estimate

> IBAEE < |IBIIS, - > 1€ (5.4)

This shows that the space of Hilbert-Schmidt operators is an ideal in the space of
Bounded operators.

Lemma 5.2. Let H be a Hilbert space. Then for all orthonormal frames {e'} of H
the map A — /). ||A€?||? is a norm on the space of Hilbert-Schmidt operators.

Proof. Let A be a Hilbert-Schmidt operator. Clearly, > ||A¢’[|> > 0 and so this
norm is positive. It is also definite. In the case that Y. || Ae’||* = 0, then by Equation
5.2 the operator norm of A is zero. Hence the norm is positive definite.

This map is also absolutely scalable: For all N € N and A € C the finite sum
SV, X Ael||? equals (A2 3N || Aef||?. Absolutely scalability follows if we take the
limit N — oo.

Finally we show that it satisfies the triangle inequality. Let A and B be Hilbert-Schmidt
operators. Then for all N € N these operators satisfy

N N N 00 00
S A+ BE <Y A+ ) IBe P < D llA(”P + > B> (5.5)
1=0 =0 =0 =0 =0
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The triangle inequality follows if we take N — oc. O

Lemma 5.3. If A is a Hilbert-Schmidt operator on a Hilbert space H then the
following is true:

1. The adjoint A* is a Hilbert-Schmidt operator.

2. The norm ZZ | A*e?||? equals ZZ | Aet||>.

3. The norm /), || Ae?||? does not depend on the choice of orthonormal basis
{e'}

Proof. Let {¢'} and {é'} be two orthonormal bases of H. By Parsevals identity it
follows that for all N € N

N N o co N oo
S Al =33 (A @2 =SS e A < S AF ) (5.6)
=0 1=0 j=0 j=0 i=0 j=0

Because > 2 [|A¢’||* is finite, we conclude that A* is Hilbert-Schmidt. Using a
similar method we can show that Y 7 [|Ae’||* < D72, [|[A*é'||%. Hence A has the
same norm as A* and

\/Z [Aes]|* = \/Z | A&]|? = Z | Ae; 2 (5.7)

So the norm is independent of the choice of basis. O

Definition 5.4. Let H be a Hilbert space and let {¢'} be an orthonormal basis of
‘H. The Hilbert-Schmidt norm is the norm on the space of all Hilbert-Schmidt
operators on H defined by

IAl7s =) A€ (5.8)

Given a norm, we can ask whether it is induced from an inner product. Recall that
any Hermitian inner product (-, -) on Hilbert space H satisfies the polarization identity

3
1
(u,v) = 5 > iFlu+iolP VuveH (5.9)
k=0
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Hence we investigate if the pairing (4, B) + 130 i*||A + i*B|%g is an inner
product on the space of Hilbert-Schmidt operators.

Lemma 5.5. Let H be a Hilbert space. The function that maps two Hilbert-
Schmidt operators A and B to

3

1

T > F|A+i* Bl (5.10)
k=0

is an inner product on the space of Hilbert-Schmidt operators. Given an orthonormal
basis {e'} this inner product is given by

(A,B) =) (Ae', Be') (5.11)

Proof. This pairing is clearly positive definite, because the norm is positive definite.
We only need to check for linearity and conjugate-symmetry. Let {¢’} be an orthonor-
mal basis of H. Then the pairing of A and B equals

3
) i|lA¢ + i Bel | (5.12)
k=0

J

e~ =

Applying the polarization identity on H Equation 5.12 simplifies to

3
1 . . ) )
T > ) i||A¢ + i Bel|fs = Y (A€, Be') (5.13)
Jj k=0 J

This concludes Equation 5.11. From this Equation we directly conclude that the
pairing is linear and skew-symmetric. O

Definition 5.6. Let H be a Hilbert space, {¢'} be an orthonormal basis of H
and let A and B be two Hilbert-Schmidt operators. The Hilbert-Schmidt inner
product is the inner product that maps A and B to

Z(Aei, Be') (5.14)

i

and is denoted by (-, ) us.
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For a finite dimensional Hilbert space #, all linear operators are Hilbert Schmidt. Note
that for any linear operator A, B on H,

(A,B)us = Y (Ae;,Be;) = > (B*Ae;, e;) = Tr(B*A) (5.15)

3 K3

Equation 5.15 suggests that we can define a trace for products of Hilbert Schmidt
operators.

Definition 5.7. A linear operator T' on a Hilbert space H is traceclass if it is the
product of two Hilbert-Schmidt operators.

Let T" be a traceclass operator. Hence, there exists two Hilbert-Schmidt operators
A and B such that 7" = AB. Now suppose that there is another decomposition
of T. That is, there exists also some Hilbert-Schmidt operators A and B such that
T = AB = AB. In both cases we have

(B, A"y s =Y (Be', A%e') =Y (ABe' A*e’) =Y (T¢', ")
- L (5.16)
(B, A)ps =) (Be', A%e') = (ABe', A*e’) = Y (T¢', ")

and we conclude that (B, A*) g5 does not depend on the decomposition of T". Using
Equation 5.15 we extend the definition of the trace to traceclass operators.

Definition 5.8. Let T' be a traceclass operator and let A and B Hilbert-Schmidt
operators such that T'= AB. The trace of T is the Hilbert-Schmidt inner product
TY(T) = (B, A%)us

In the previous chapter we studied generalized Laplacians. We showed that for each
generalized Laplacian H there exists a smoothinh operator e~ that satisfies the heat
equation. We now show that e~* is traceclass. Observe that it is enough to show
that e~ is Hilbert-Schmidt, because of the semi-group property. Indeed, if we show
that e *# is Hilbert-Schmidt for all t € R, then e~27 . ¢=2 is traceclass. By the
semi-group property e~ 38 - e~ 3 simplifies to e 'H .
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Proposition 5.9. Let F is a vector bundle with a positive definite inner product
over a compact Riemannian manifold (M, g) and let H be a generalized Laplacian.
Let kI be the heat kernel and let e~ be the corresponding smoothing operator
of kIT. Then e *H, which we view as a operator on the space of sections of E with
L? norm, is traceclass.

Proof. First we observe that it is enough to prove that e~ is Hilbert-Schmidt for all

t € R+, since in this case e 'H = ¢~2H . ¢=5H by the semi-group property. Pick an

orthonormal basis {e’} on the space of sections of E. The Hilbert-Schmidt norm of
H equals

le= i = D lle™ el 12 = Z(e’”{ Letel) (5.17)
1=0

In Lemma 4.7 we showed that ¢~*P” is self-adjoint. Using this and the fact that e~
is a smoothing operator we conclude that the Hilbert-Schmidt norm of e~ equals

le= s =D (e e e) (5.18)
i=0

:Z/EM (ku (-, 2)e' (), €') (5.19)

Let {f;} be an orthonormal frame of the fiber E,. Using the identity e'(r) =
S (€' (@), )17 we see

dimE oo

2= 3 Z/ (k- 2) 2, €1) - i), ) (5.20)

7=0 =0

Because {¢'} is a basis of I'(E) we conclude that > "> (ko (-, ) f7, €'}, - €' equals
kot (-, z) and hence

dim F
le™ | 7s = Z / (kae(, ) f7, f7) = / r(ko(2, 7)) (5.21)
(5.22)
Because the manifold is compact, we conclude that e~ is Hilbert-Schmidt. O
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Proposition 5.10 (Berline et al. [2004], Proposition 2.32). Let E is a vector bun-
dle with a positive definite inner product over a compact Riemannian manifold
(M,g), let H be a generalized Laplacian, let k' be its heat kernel and let e~
be the corresponding smoothing operator. Let B be a bounded operator on I'(E).
The operator Be~' s trace-class and its trace is given by

Tr (Be ™) = /meM tr(Bki(x, x)) (5.23)

Proof. Because Hilbert-Schmidt operators is an ideal in the space of bounded opera-
. . . . t t
tors it follows that Be %2 is Hilbert-Schmidt. Hence the product Be 2% . ¢ 2 =

Be 1 s traceclass.

To show the explicit expression of the trace, let {¢'} be an orthonormal basis of the
space of all sections on E. Equip I'(E) with the L? norm. In this orthonormal basis
the trace equals

Tr(Be ) :Z<Be_tHei, e 2 (5.24)
=0

2

From the definition of a smoothing operator follows that
Tr(Be ™) => " / (Bky(-, 2)e'(x), €') 12 (5.25)
i—0 YTEM

Let f7 be an orthonormal basis of E,. Using the identity ¢’(x) = Z?EE“'(ei(x), i f
we see

dim E,; oo

TEN = Y [ @ ) B of e (526)

j=1 =0""

=D Z/ ((Bki(-, )7, €) 2 - €' (), 1) (5.27)

Because {e'} is a basis of I'(E)) we conclude that Y oo (k(-,z)f7,€"),. - € equals
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ki(-,z) and hence

dim F

T(Be ) = ) / (Bl ) (5.28)

_ / _tr(Bl(z.x) (5.29)
]

The grading operator 75 is a bounded operator. On a Clifford bundle with Dirac
operator D we have the generalized Laplacian D?. We conclude that ’}/56_tD2 is
traceclass and so Tr(’y5e_tD2) is well-defined. In the next section we will study the
eigenvalues of the Dirac operator so that we can express Tr(%,e*“ﬁ) in terms of these

eigenvalues.

5.2 Spectral theory of generalized Laplacians

In functional analysis there is a generalized notion of eigenvalues and it is called the
spectrum. The spectrum of an operator A is the collection A € C such that A — \1d
is not invertible. There is a class of operators for which the spectrum behaves well,
namely the class of compact!® operators. We recall the following theorems from
functional analysis. For more information see Murphy [1990].

Theorem 5.11. On a Hilbert space, the space of finite rank operators lies dense
in the space of compact operators.

Using this theorem we can create compact operator by considering the limit of a
converging sequence of finite rank operators. The next two theorems, we describe the
spectrum of compact operators

Theorem 5.12. If A is a compact operator on a Banach space BB, then the spectrum
of A is at most countable, each non-zero element of the spectrum is an eigenvalue
and all eigenvalues are isolated.

13Do not confuse it with the notion of compact spaces!
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Not all elements in the spectrum are eigenvalues, but all eigenvalues are part of the
spectrum. The previous theorem states that for compact operators, the spectrum and
the set of eigenvalues coincide (except for zero). Isolated means that eigenvalues does
not lie infinitely close to each other.

Theorem 5.13. If A is a compact self-adjoint operator on a Hilbert space H, then
‘H can be decomposed in a countable family of finite eigenspaces.

We show that Hilbert-Schmidt operators are compact. Especially we get that smooth-
ing operators of heat kernels are compact. Using the eigenspace decomposition of we
then calculate the spectrum of a generalized Laplacian.

Lemma 5.14. Hilbert-Schmidt operators are compact.

Proof. Let K: H — H be a Hilbert-Schmidt operator on a Hilbert space H. Let
{e} be an orthonormal basis of H. Denote K as the projection of K to the span
of {e!,...,eN}. Thatis KN = 3" K (¢')e? where b denotes the dual. We estimate
the difference of K and K* in the operator norm:

[e.e] [e.e]

1K — ENlop < Y 1K)l < Y 1K

i=N-+1 i=N-+1

This is arbitrary small when N tends to infinity, because K is Hilbert-Schmidt. Hence,
K is a limit of finite rank operators and thus compact. O

Smoothing operators e~ of heat kernels are compact operators. Hence, for each

t € R, we have a eigenvalue decomposition of I';2(E) with respect to e . If we
defined e " using functional calculus, we get that )\ is an eigenvalue of H if and
only if e is an eigenvalue of e~*¥. We replicate this result using the heat equation.
First we relate the different eigenvalue decompositions of et That is, we show that
there only one eigenvalue decomposition for e~ * and the rest is related using the
exponential map.

Lemma 5.15. Let E be a vector bundle with a positive definite inner product over
a compact Riemannian manifold (M, g) and let H be a generalized Laplacian. Let
kE be the heat kernel and let e=*H be the corresponding smoothing operator. The
operator e~" has only positive eigenvalues and its kernel is empty.
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t tH

Proof. Let \ be an eigenvalue of e~ and let H, be the eigenspace of e~ * corre-
sponding to the eigenvalue \. Because e * is self-adjoint, we have that \ is real.
Let z € H). From the semi-group property of the heat kernel follows that

eftH(eft/2 HZ) _ efgtH _ eft/2 H,—tH , _ )\(eft/2 Hz). (530)

This shows e /2H(1,) is a subset of H,. From the spectral theory of compact
operators it follows that

Hy =P Hou, (5.31)

—t/2H tH

where H, ,, is the eigenspace of e with eigenvalue p; and the eigenspace of e~
with eigenvalue A. Also p; is real valued, because e*t/szA is self-adjoint. So for all
z € Hy, pu we get

—tH e’t/QH)zz = 1z (5.32)

H are non-negative.

Az=e"z=(

We conclude that the eigenvalues of ¢

If e~ has a non-empty kernel, then we can construct a sequence {t;} converging to
zero such that e %z = 0 for all t;. Hence the limit of e *# = tends to zero when
t tends to zero. This is in conflict with the boundary condition of the heat kernel.
Therefore, the kernel is empty. O

Theorem 5.16. Let E be a vector bundle with a positive definite inner product
over a compact Riemannian manifold (M, g) and let H be a generalized Laplacian.
Let kP be the heat kernel and let e=*H be the corresponding smoothing operator.
The space I'12(F) can be decomposed in an countable family of finite eigenspaces
‘H such that

e_tH|H/\ = )\t -1d

Proof. Let \ be an eigenvalue of e~ and let 1, be the eigenspace of e corre-
sponding to the eigenvalue \. Fix n,m € N. The operators e ¥ and e~ = ! commute
and so e’%H(H,\) C H,. From the spectral theory of compact operators it follows

that
Hy = EBH/\IM (5.33)

. . _n
where H, ,,, is also the eigenspace of e~ m !

comparing eigenvalues we get

with eigenvalue p;. Let z € H, ,,. By

prz = (emmiymy = ey = (e7H)ny = A1y (5.34)
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Because 1; and \ are strictly larger then zero, we conclude that y; = \/™ and is
proves the theorem for all t € Q.. Finally recall that e=* is continuous in ¢ and thus
the theorem holds for all £ > 0. O

Finally, we study the eigenvalues of H. We use the heat equation to show that there
is a one to one correspondence between the spectrum of e *# and H. The proof
is straight forward, but we need that H and e * commute. This is proven in the
following lemma.

Lemma 5.17. Let E be a vector bundle with a positive definite inner product over
a compact Riemannian manifold (M, g) and let H be a generalized Laplacian. Let
kE be the heat kernel and let e=*H be the corresponding smoothing operator. The
operators H and e~* commute for all t > 0.

tH

Proof. Because H and e are self-adjoint, we get

He ' — e = He ' — (He ) (5.35)

Using the heat equation, we rewrite this into

He M e tHpg — _%em + (%e”{) B _% (e = (™)) (5.36)

tH tH

Because e~ is self-adjoint we conclude that H and e™*" commute. O

Theorem 5.18. Let E be a vector bundle with a positive definite inner product
over a compact Riemannian manifold (M, g) and let H be a generalized Laplacian.
Let kP be the heat kernel and let e=*H be the corresponding smoothing operator.
A section s € I'12(F) is an eigenvector of H with eigenvalue \ if and only if it
is an eigenvector of e~ with eigenvalue e=*. Therefore, H has countably many

eigenvalues which are isolated.

Proof. Let ¢=* be an eigenvalue of e #. Let s € I';2(E) such that e fs = e 5.
From the heat equation and Theorem 5.16 it follows that
0= 2—i—H e s = 2—l—H e Ms=(=A+H)e s (5.37)
ot ot '

After the limit ¢ — 0, one concludes that Hs = \s. Because I';2(E) can be fully
decomposed by the eigenvalues of e, we know that H has no other eigenvalues. [
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5.3 The McKean-Singer formula

When we considered the Abelian anomaly using the Fujikawa method we showed that
the anomaly was proportional to Tr(%e_“j?) where 75 is the grading operator and
D is the Dirac operator. We already found that this is a well-defined quantity for
Clifford bundles on compact Riemannian manifolds. We now study this trace using
the eigenvalue decomposition we found in the previous section.

Theorem 5.19 (McKean and Singer [1967]). Let S be a Clifford bundle over a
compact Riemannian manifold (M, g) and let D be the Dirac operator. Let k' be
the heat kernel of D* and let e=*P* be the corresponding smoothing operator. Let
~5 be the grading operator and let D, be the restriction of D to the +1 eigenspace
of v5. Then,

Tr(vse*?*) = dimker D — dimker D_ (5.38)

This result is called the McKean-Singer formula

Proof. By Theorem 5.18 we can decompose I'(.S) into the eigenspaces

=P A, (5.39)

where H), is the \;R eigenspace of D. Denote {s;\} as an orthonormal basis of H,.

2
tD” equals

75(3*@2 ZZ 85" 5 (ftD2 ' Z ”‘22 S5 s s (5.40)

However, (3;"',75s?i> will vanish if \; # 0. Indeed, the grading operator and the Dirac
operator anti-commute and so for all 7 and j and so

The trace of y5e™

ny5sj‘i =— 75Ds?i = —)\i’y55?i (5.41)

This shows that 7553»\1' is an element of H_,,. From the orthonormality of the

eigenspaces it follows that (s;‘i,75sj‘i> = 0 if \; # 0. Therefore, the trace simpli-
fies to

Tr(yse %) = (59,7559 (5.42)

J
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The grading operator decomposes the kernel of D into two eigenspaces ker D, &
ker D_. Let {s;t} be an orthonormal basis of ker D.. We conclude that the trace of
vse~tP* equals
Tr(yse %) = Z(SJ-r s7) — (sj,5;) = dimker Dy — dimker D_. (5.43)
J
O

Notice that the adjoint of D, is D_. Therefore, we can write the McKean-Singer
formula as Tr(ee *P*) = dim ker D —dim coker D,.. This quantity is called the index
of the operator D,. When considering Dirac operators some writers(Roe [1998],
Berline et al. [2004]) call this the index of D. Although they look similar, those
definitions does not coincide. Indeed, recall that D is a formally self-adjoint operator.
Hence the kernel equals the cokernel and dim ker D — dim coker D is zero. In this
thesis we only calculate the index of Dirac operators and hence define the index as
follows:

Definition 5.20. Let S be a graded Clifford bundle over a compact Riemannian
manifold (M, g). Let D be the Dirac operator and let e P be the smoothing
operator for which the kernel is the heat kernel ktD2. The index of D, which we
denote by Ind(D), is defined as

Ind(D) = dimker Dy — dim ker D_ (5.44)

where D is the restriction of D on the +1 eigenspace of the grading operator.

One of the main results of the Atiyah-Singer index theorem is that the index of a
Dirac operator is topologically determined. That is, it does not depend on the choice
of metric or connection, but only depends on the topology of the vector bundle. A
similar result can be deduced from the McKean-Singer formula.

Corollary 5.21 (Roe [1998], Proposition 11.13). Let D, be a continuous family
of graded Dirac operators. That is, Let g;, be a continuous family of Riemannian
metrics on a compact manifold M, ~, be a continuous family of Clifford actions
on a Clifford bundle E — M and let V; be a continuous family of compatible
connections on E. D, is the resulting Dirac operator. Then the index of D; is
independent of t.
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Proof. The map (s,t) — Tr(757te*3Dt2) is a continuous map. By the McKean-Singer
formula this map equals (s, t) — Index(D;). Notice that the index is an integer. The
only continuous maps from R to Z are the constant maps and hence Index(D;) is
constant. U

In theory the index of a Dirac operator D can be calculated using the formal solution of
the heat equation. Indeed, we know that the index of D equals [ _, tr[ysk:(z, )] Vol(g)
where k; is the heat kernel. We approximate this using the formal solution of the heat
equation ky(x,y) = W@‘d(“f’yw‘“ > t'®;(x,y). The index is independent of ¢
and hence

e 15 ®ny2(x, )] if nis even

0 if n is odd. (5.45)

a7
Index(D) = {(4”)n/2 o

Although this calculation is straight forward, it is not easy to calculate ®,,/, by hand.
To solve this equation we need to study the behavior of the heat kernel and the Clifford
action with the trace. In the next section we study the interaction between the Clifford
action and the trace.

5.4 The trace and the Clifford action

When we considered chiral anomalies using perturbation theory, we often used the
"trace identities’

Tr(ys) = Tr(y57") = Tr(57"7") = Tr(y57%7"7*) = 0 (5.46)
for indices u, v and p and
Tr(ys7y"yP7) = 4ie?? (5.47)

where €% is £1 depending on the permutation of {y, v, p,o}. One can find these
results by calculating the trace over the gamma matrices. However these identities
can also be deduced from the Clifford algebra. We show this in the following lemma.

Lemma 5.22 (Roe [1998], Lemma 11.5). Let V' be a 2n dimensional vector space
with a positive definite inner product g. Let C1(V') be the Clifford algebra and let
S be a left C1(V')-module. Let ~5 be a grading operator, let F' € Endcv)(S) and
let v: V. — End(S) be the Clifford action. For any orthonormal basis {s;} of V
there is

Tr(ysF) =
Tr(vs7(s0) ... y(se) F) =

(5.48)
Vk < 2n (5.49)

0
0

92



5.4. The trace and the Clifford action Andries Salm

If 5 is the canonical grading operator then,

Tr(v5v(s0) - - - Y(s20) F) =(—4)" Tr(F) (5.50)

Proof. Let v € V with norm 1. By the anti-commutation property of the Clifford
algebra it follows that v(v)? = — Idg and hence Tr(15F) = — Tr(v57(v)y(v)F). The
Clifford action anti-commutes with the grading operator and so

Tr(ysF) = = Tr(ys7(0)y(0) F) = + Tr(v(v) vy () F) = + Tr(%’Y(U)F’Y(U()) )
5.51

Because F' commutes with the Clifford action it follows that Tr(vy;F') = 0. This trick
can be repeated for Tr(y57(sg) ... 7(s2x)F) for all k < n. That is, we add the term

—(S2k+1)7Y(s2k+1) and we cyclically permute. Hence, Tr(v57v(so) - .- v(s2%)F) = 0
for all k < n.

To show that Tr(v5v(so) - - . Y(S2k+1)F) = 0 for all 2k+1 € N we just pull 5 through
the other side of the trace. That is, we use that =5 anti-commutes with the Clifford
action and commutes with F'. Hence,

Tr(v57(s0) - - - Y(s2r41) F) =(=1)* T Tr(v(s0) - . . Y(S2k1) F5) (5.52)

2k+1 _

By the cyclic property of the trace and (—1) —1 we conclude

Tr(v57(s0) - - - ¥(s2i41) F)) = 0. (5.53)

Finally we assume that ~y5 is the canonical grading operator and we calculate Tr(~s -
v(s0) ... v(s2,)F). Recall that 5 = i"y(sq) .. .7(S2,) and hence

Tr(v57(50) - - - Y(520) F) = (=") Te(75F) (5.54)
From 72 = 1 follows the result. O

With this lemma we characterize the trace for all elements in C1(V) ® Endcivy(95).
Clearly these are endomorphisms on S. The next question is whether all endomor-
phisms on S can be decomposed into CI(V') ® Endcyv)(S). That is, is every linear
map the product of Clifford actions and a Clifford endomorphism? The following
proposition shows that this is indeed true.
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Proposition 5.23. Let V' be a 2n-dimensional vector space with a positive definite
inner product and let S be a left C1(V')-module. Assume that the Clifford action
is normal with respect to the norm on S. Then the map which injects Cl(V) ®
End(S) into Endc(S) using the Clifford action is an isomorphism.

Proof. Because elements of the Clifford algebra are invertible we have that C1(V) ®
Endg(S) — Endc(S) is injective. We only need to show that is map is surjective.
Let F' € Endc(S) be a linear map on S and let v € V' be a vector of length one. We
first show that F' can be decomposed into two terms that (anti)-commute with (v).
Indeed, Let PE be bounded linear operators on S defined by P* = WZTM These
operators have the properties:

PE.Pf=PF PF.PF=0
Pf+P; =1ds  PS~(v)=(v) Py = +iPf

v

(5.55)

Hence P* are the orthogonal eigenspace projectors of y(v). From these properties it
follows that

PEfFPT v(v) =+i PFFPF = +~(v) PFFPT (5.56)
PFFPF y(v) =+i PFFPf = —(v) PTFPFE. (5.57)

and thus we decompose F' into

F=(P}+ P )F(PS+P)) (5.58)
=(PfFP} + Py FP; )+ (P FP, + P, FP)) (5.59)

We denote F'F for the operator that is defined by F¥ = PYFP*F + P, FP¥. By
equations 5.56 and 5.57 it follows that F.© commutes and F, anti-commutes with
v(v). Hence, F = F* 4+ F~ is the sum of (anti)-commuting terms w.r.t v(v).

Assume w.l.0.g. that F' (anti)-commutes with ~(v). That is, suppose that F'y(v) =
ey(v)F for some € € {0,1}. Let w € V be of length one and normal to v. By the
anti-commutation property of the Clifford algebra it follows that P=~y(v) = (v)PF.
However, F'F is defined such that FXvy(v) = ey(v)FE. By induction we conclude
that /' can be decomposed into the sum of terms that (anti)-commute with a whole
orthonormal basis {e*} of V.
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Now pick an orthonormal basis {e;} of V' and assume w.l.o.g. that F' commutes with
e1,...,e, and anti-commutes with ey, ...es,. Let Ft F~ ¢ End(S) be opera-
tors defined as F+ = ~;...v,F and F~ = Vi+1 - - - Yon &' By the anti-commutation
property of the Clifford algebra it follows that

Y ET = (=) ey, F = (1) Ry, Vi <k
WE = (D) e F = (D) ETy, Yk
WF ™ = (1) g e F = (D) EE Ty, Yp <k

)
%ﬁi = (_1)2nik717k+1 . -72n7uF = (_1)2nikF77u V/J >k

This calculation shows that if k£ is even, then F~ is a Clifford endomorphism and if
k is odd, then F* is a Clifford bundle endomorphism. So in both cases, F' has a
representative in C1(V) ® Endeivy(S). So CI(V) ® Endeivy(S) is isomorphic to
EIld(C S. ]

In the next chapter we decompose the heat kernel k; into C1(V') ® Endcyv)(S) and
we will calculate the index of a Dirac operator.
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6 Characteristic classes

In this chapter we consider the following question: "How can we distinguish two
different vector bundles?” The answer to this question is studied in the theory of
characteristic classes. We introduce this theory by following the Chern-Weil method.

6.1 Invariant polynomials
Definition 6.1. Let M, {C), be the algebra of n xn complex matrices. An invariant
polynomial on M,,(C) is a polynomial function

P: M,(C)—C (6.1)
such that for all XY € M, (A)

P(XY) = P(YX) (6.2)

Clearly the trace is an invariant polynomial over C. Another example of an invariant
polynomial is the determinant. Recall that the determinant and the trace are inde-
pendent on the choice of basis. We show that it is also true for invariant polynomials.

Lemma 6.2. Let V' be an n-dimensional vector space and let P be an polynomial.
Then P is an invariant polynomial if and only if it descends to a map from End (V)
to C.

Proof. Assume that P is invariant and let £ be an endomorphism on V. Any choice
of basis for V' induces an isomorphism between End(V') and M,,(C). Hence in a basis
{e'} the endomorphism E has a matrix representation M. If we consider another basis
{é'} of V there is a matrix S € GL,(C) that represents the basis transformation from
{e'} to {€'}. In this new basis F is given by SMS~!. Because P is invariant we have

P(SMS™') = P(MS™'S) = P(M) (6.3)
Therefore, P is independent of basis representation and P descends to a map from

End(V) to C.
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6.1. Invariant polynomials Andries Salm

Now assume that P is a polynomial which descends to a map from End(V) to C.
Let X,Y € M, (C) and pick a basis {v'} of V. Then X and Y represents endomor-
phisms on V. Assume that Y is invertible and let M = XY. Viewing Y as a basis
transformation we have

P(XY)=P(M)=P(YMY ™) =PYX) (6.4)

Because GL,,(C) is dense in M,,(C) and polynomials are continuous we conclude that
P(XY) = P(YX) for all X,Y € M,(C). O

Formally an invariant polynomial P over a vector space V' is an element of Sym®(End¢ V')*.
For all M € End¢(V') we consider the linear map ¢y, : (Endc V)* — C which is de-
fined as ¢y (v) = v(M). Using th iversal property of the symmetric algebra ¢y,
extends to a unique algebra homomorphism ¢y, : Sym®(End¢ V)* — C, By construc-
tion ¢/ (P) equals the polynomial P evaluated at M.

Example 6.3. Consider the vector space C? and let M be a complex 2 x 2 matrix.
The components of M we denote as M;;. Let p;;: My(C) — C be the projection onto
the (4,7)™ component. In this case the map t5;: Mo(C)* — C equals tpr(pij) = M;;
for all < and j. We now consider the determinant which is formally the element
Poo ® P11 — Po1 @ p1o in Sym® My (C)*. Calculating ¢y (det) we get

tar(det) =ear(poo ® P11 — Po1 @ Pio) (6.5)
=01 (Poo) * tar(p11) — tar(por) - tar(P1o) (6.6)
=Moo M1 — Mo1 Mg (6.7)

Hence ¢)s(det) equals the determinant of M.

Let A be a commutative algebra, V' be a vector space and consider matrices-over V/
with values in A. So let M € End¢(V) ® A and define the map ¢y : (Endc V)* — A
by tpr(v) = v(M). Using the universal property of the symmetric algebra we extend
ty to @ map from Sym®(Endc V)* to A. Informally we interpret ¢y (P) as the
polynomial P evaluated over M, but we replaced the multiplication over C with the
multiplication over A. Hence we write ¢,(P) as P(M)ﬁr

Example 6.4. Again consider C? and let A be a commutative algebra. We denote
the matrix multiplication with . Let M be a matrix on R? with values in A. We
want to interpret the determinant of M as

det(M) = MOO * M11 — M01 * M10 (68)
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Andries Salm 6. Characteristic classes

With the above construction this is indeed possible. Indeed, the map ¢y, is given by
L (pij) = M;; € Afor all 4, 5. We conclude that

tar(det) =ear(poo ® P11 — Po1 @ Pio) (6.9)
:bM(poo) * bM(pn) - bM(p(n) * bM(plo) (6-10)
:MOO * M11 — M01 X M10 (611)

Hence we define the determinant of an element M € My(A) as ¢ps(det).

Let £ — M be a k-dimensional complex vector bundle over an n dimensional man-
ifold. We consider the vector bundle End(E) ® (®,A%*T*M) which we denote—=s
End(E)®AT*M. In a local trivialization, sections of End(E) ® A°’T*M are rji
from M to R¥** @ A®’R"™. The algebra A®’R"™ is commutative and hence we can use
the construction described before. Because invariant polynomials are independent on
the choice of basis, they behave well on overlapping charts. Hence, it follows that in-
variant polynomials induce smooth maps from I'(End¢ (E)®QA“T* M) to T'(A“VT*M).

b

Let V be a connection on a vector bundle £ and let P be an invariant polynomial.
The curvature K w.r.t V is a section of End(S) ® A*T*M. We show that P(K) is a
useful measure to distinguish vector bundles. For this we need the curvature expressed
in a local basis. These calculations are straight forward and are done in section 9.3.
Here we just state the results.

Definition 6.5. Let E — M be a k dimensional vector bundle with a positive
definite inner product and let {s'} be a local orthonormal frame of E. Let V
be a compatible connection on E. The connection 1-form w is an element of
(M (E) @ A T*M) defined by the components

wi; = 5"V’ (6.12)

Lemma 6.6. Let E — M be a vector bundle and let {s'} be a local frame of
E. Let V be a connection on E and let w be the connection 1-form. Equip
I'(End(F)) @ Q°*(M) with the multiplication induced by the matrix multiplication
on End(FE) and the wedge product om Q*(M). The curvature K is a matrix on E
with values in Q*(M) and is components are given by

K=dw—w’ (6.13)
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6.1. Invariant polynomials Andries Salm

Lemma 6.7 (Second Bianchi identity). Let E — M be a vector bundle and let
{s'} be a local frame of E. Let V be a connection on E and let w be the connection
I-form. Equip T'(End(E)) ® Q*(M) with the multiplication induced by the matrix
multiplication on End(E) and the wedge product om 2*(M). Then the exterior
derivative of K equals

dK =wK — Kw (6.14)

Example 6.8. For the Riemann curvature R on a Riemannian manifold M the second
Bianchi identity equals d R = 0. Indeed, for all x € M we can pick the Riemannian

normal coordinate system centered at x. It has the property that V% = 0 for all
aiu' Hence, the connection 1-form at z is zero and so d R = 0 at 2. Because we can

pick x € M randomly we get that d R = 0 everywhere.

In general the exterior derivative of a curvature K is not zero. However, P(K) is
closed if P is an invariant polynomial. We show this in the next lemmas, but for this
we need to define the directional derivative of an invariant polynomial.

Definition 6.9. Let A be an algebra, let M, (A) be the matrix algebra of complex
n X n matrices with values in A and let P: M, (A) — A be an invariant polynomial.
The directional derivative P’ of P is a map from M, (A) to M,(A)* ® A that is
given by

P(M)(N) = lim % (P(M + tN) — P(M)] (6.15)

t—0

for all M, N € M, (A).

Lemma 6.10 (Milnor and Stasheff [1974], Page 297). Let E — M be a vector
bundle and let {s'} be a local frame of E. Let K be a section of End(E)®QA“T* M
and let P: T'(End(E)QAT*M) — I'(A®VT* M) be an invariant polynomial. Then
the exterior derivative of P(K') equals

dP(K) = P'(K)(d K) (6.16)

where P' is the directional derivative of P.

99


cavalcanti-work
Comment on Text
this should come before the statement dR =0 as that only makes sense after you have chosen a trivialization.

cavalcanti-work
Comment on Text
This part is not true.

cavalcanti-work
Comment on Text
this does not make sense


Andries Salm 6. Characteristic classes

Proof. We show this by induction. Assume that P is constant. Then P(K) is con-
stant and so d P(K) vanishes. At the same time P’(K) is zero and so d P(K) =
P(K)(dK).

Now assume that for some invariant polynomial @ that dQ(K) = Q'(K)(d K). Let
v € I'(End*(F)) be a locally constant section. That is, dv(K) = v( a
consider the polynomial P = v - ). The exterior derivative of P(K) is d P(K) =
dv(K)ANQ(K) +v(K)ANdQ(K). By assumption this equals

dP(K) = v(d K) A Q(K) + v(K) A Q' (K)(d K) (6.17)

Now we calculate P'(K)(d K). From the definition of the directional derivative it
follows that

P(K)(dK) :113-01% WK +t-dK)AQ(K +t-dK) — o(K) AQ(K)]  (6.18)

Recall that v is a linear map and so P'(K)(d K) simplifies into

P'(K)(dK) =v(K) A (1%% QK +t-dK) —Q(K)]) +

+limo(d K) AQ(K +td K)
t—0

(6.19)

We conclude that P/(K)(dK) = v(K) AN Q"(K)(dK) + v(dK) A Q(K) and so
d P(K) = P(K)(d K). By induction we conclude the statement. O

Theorem 6.11 (Milnor and Stasheff [1974], Page 296). Let E — M be a vector
bundle, let V be a connection on E and let K be its curvature. For every invariant
polynomial P, the differential form P(K) is closed.

Proof. Let w be the connection 1-form. Because P is an invariant polynomial we have
P(14+tw)K) = P(K(1+ tw)) (6.20)

Taking the derivative of ¢ and set ¢ = 0 we conclude
P'(K)(wK) = P'(K)(Kw) (6.21)

By linearity of P/(K) we have P'(K)(wK — Kw) = 0 and by the second Bianchi
identity it follows that P'(K)(d k) vanishes. Using the previous lemma we conclude
that P(K) is closed. O
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Theorem 6.12 (Milnor and Stasheff [1974], Page 298). Let E — M be a vector
bundle and let NV be a connection on E. Let K be its curvature and let P be an
invariant polynomial. Then the cohomology class of P(K) does not depend on the
choice of V.

Proof. Let m: M x R — M be defined as 7(z,t) = x and let for all t € R, ¢;: M —
M x R be defined as t;(z) = (z,t). Let 7*F and (;7*E be the pull-back bundles.
Because 7 o ¢ is the identity map we have that the pull-back bundle (;7*E — M is
equal to £ — M. Now consider the following diagram

E = yn*FE m™E E (6.22)

| |

M—= MxR—ZsM

Let V° and V! be two connections on E — M. Using the pull-back!* we get two
connections 7*V? an 7*V! on 7*E. Also the linear combination

V' =tr*V!' + (1 — )7V’ (6.23)

is a connection on 7*E. We pull-back V' on ¢;7*E and we calculate (pm*V'. Let
s € I'(E) and note that s = ¢;7*s for all t € R. Hence for all u € T'(T*M) we have

(159 )us = (1Y)t ) = 15(Vi ") (6.24)

Note that for .5(V},,(,)7"s) we only consider the fibers of (7" E)(.0) and s0 ¢5(V},,(,)7"5)
equals ¢f;((7*V?)q,,(u)7*s). By the definition of the pull-back connection 7*V° (,5V'),s
simplifies to

(Lav/)uS = LSW*ngost(u)S = VO (625)
Using a similar argument we can show that (;V’' = V1.
Let K° K' and K’ be the curvature with respect to the curvatures V°, V! and V'.

Note that ¢; is a homotopy between ¢ and ¢;. Hence the induced maps ¢, ¢ : H®(M x
R) — H*(M) are equal. Therefore, we have

[P(K")] = [P(K")] = (j[P(K)] = [P(K")] € H*(M) (6.26)

So the cohomology class of P(K') does not depend on the choice of connection. [

14Recall that for a vector bundle E — M and a smooth map between manifolds ¢: N — M the
pull-back connection is the unique connection on ¢*E such that (¢*V)x(¢*s) = ¢*(Vag(x)s) for
all X € T*N and s € T'(¢*E)
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Given two vector bundles E° — M and EY — M of same dimension we can distinguish
them using an invariant polynomial P. Indeed, we can pick two connections V° on
E° and V! on E! and this induces two curvature tensors K° and K'. By Theorem
6.11 we know that P(K°) and P(K') represents two cohomology classes in H*(M)
and by theorem 6.12 we know that these cohomology classes does not depend on the
choice of V° and V'. Hence, if P(K°) and p(K") represent different cohomology
classes, we know that they poses different topologies. We call the cohomology classes
of P(K°) and P(K"') characteristic classes.

6.2 Examples of characteristic classes

We now revisit some examples of characteristic classes. Let £ — M be a complex
vector bundle and let P be an invariant polynomial. If f—is—a-holemorphig map on
C then f has a power series. So the composition P o f is an formal power series.
Because A4T*M is nilpotent the power series of P o f only contains finitely many
non-zero terms and so it is an invariant polynomial.

Example 6.13. Let £ — M be a complex vector bundle, let K be a curvature

tensor on I and let f be a-helomerphic-map-on-C. The Chern f-genus of E is

the complex cohomology class of Hx(i where II;, is the invariant polynomial

I (X) = det {f (ﬂ)] (6.27)

271

Example 6.14. Let £ — M be a complex vector bundle. The total Chern
class ¢(E) € H®(M) is the Chern f-genus with respect to the holomorphic map
f(z) =14z

The i*" Chern class is the projection of the total Chern class into H?(M) ® C.

Example 6.15. Let £ — M be a complex vector bundle and let K be a curvature
tensor on E. The Chern character Ch(F) € H®(M) ® C is the cohomology
class of P(K ) where P is the invariant polynomial

P(X) =tr [exp (2—X)} (6.28)

)
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6.3. Characteristic classes of Clifford bundles Andries Salm

For the Atiyah-Singer index theorem we mainly focus on the Chern Character and the

Chern f-genus of TM where f(z) = ,/%. The latter is a cohomology class
in H*(M) and not in H*(M) ® C. Indeed, if R is the curvature tensor on T'M,
then R is a skew-symmetric matrix. Hence, it has eigenvalues of the form 4\ where
A € Q*(M). Hence, the Chern f-genus is

Aj/2 —A;/2 Aj/2
L (TMeC) = 1:[ \/sinh ﬁ\j/Z ‘ \/sinh —ﬁ\j/Z a 1;[ m (6:29)

This shows that II; (7'M ®@ C) is indeed a repr@tative of H*(M). Also it does not
depend on the choice of branch of the square root. This is not a special property of
TM and so we define:

Example 6.16. Let £ — M be a real vector bundle. The A-genus A(E) is the

z/2
sinhz/2"

Chern f-genus of £ ® C where f is the holomorphic map z —

6.3 Characteristic classes of Clifford bundles

When we consider a Clifford bundle S — (M, g) the curvature K is not the only
section of End(S) ® A®” T*M we study. Namely, for a Clifford bundle we also have
the twisting curvature F'° and the Riemann endomorphism R°. We study if invariant
polynomials over F'° and R also define characteristic classes.

Lemma 6.17. Let A be an algebra and let V,W be two vector spaces. Let P
be an element of Sym®(V & W)*. Let P be the projection of P onto Sym*® W™,
Them for allw e W ® A, v € V ® A the polynomials P and P satisfies

P(w) = P(v+w) (6.30)

Proof. Assume w.l.o.g. that P has a unique representation as >, H;:(](fij + gij)
where f;; € V* and g;; € W* for all ¢ and j. Then p is the sum ), Hé-:o gij. Let
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veV®Aand we W ® A. Because f;;j(w) =0 and g;;(v) = 0 there is

ZH (fij(w) + gij(w Zng (6.31)

i 7=0 v j=0
P+ = 3 [Tt + s = T s(w) (6.32)
i 3=0 i j=0
This concludes that P(w) = P(v 4 w). O

Theorem 6.18. Let S — (M, g) be a Clifford bundle, let R® be the Riemann
endomorphism and let F'° be the twisting curvature. For all invariant polynomials
P, the differential forms P(R®) and P(F®) are closed.

Proof. Let K € T'(End(S)® A?T*M) be the curvature on S. Recall that End¢(S) is
isomorphic to C1(T'M)®Endc;(S) where CI(T'M) is the Clifford action and End¢(S)
is the bundle of Clifford endomorphisms. Because C1(7'M) is unital we can decompose
End(S) into V & W where W = {C - Id} ® End¢(S) and V is the rest. Let P be
the projection of P onto 1. By the previous lemma we know that P(F) = P(F+

RS) = P(K). Notice that P is also an invariant polynomial. Hence, d P(K) =

d P(F®) = 0. Using the same argument we can show that d P(R®) = 0. O

For Clifford bundles we can also use F° and R® to calculate characteristic classes.
For the Atiyah-Singer theorem we only use the following:

Definition 6.19. The relative Chern character Ch"(S) € H*(M) ® C of a
Clifford bundle S — M on an n dimensional manifold is the cohomology class of
P(F%) where P is the invariant polynomial

P(X) = (=2)"*tr {exp (;—X)} (6.33)

™
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7 Symbol Calculus

In chapter 3 we saw how the Fujikawa method relates the chiral anomaly to the
index of a Dirac operator. In one of the steps we considered a Taylor approximation
and we showed that only a single order contributed. We formalize this approach by
introducing graded and filtered algebras. We show that the Taylor approximation used
by Fujikawa is related to the Getzler filtration. Secondly we investigate how the heat
equation changes the Getzler filtration. The result is related to the heat equation for
Mehlers kernel and this proves the Atiyah-Singer index theorem.

7.1 Definitions

Definition 7.1. A graded algebra is an algebra G with a direct sum decomposition
G = DiezG; such that G; - G; C G,y for alli,j € Z. An element g € G is of
degree'k if g € G,

Example 7.2 (Trivial grading). We can turn any algebra G into a graded algebra.
For this let Gy = G and G; = {0} if i # 0. Clearly G has the decomposition &;G;.
Because G is an algebra Gy - Gy C Gy. Also {0} -G = G - {0} = {0} and hence
G;-G; C Giqj. We call this the trivial grading.

Example 7.3 (Taylor series). Let V' be a vector space let G = C[V] be the space
of formal power series of maps on V. Homogeneous polynomials span this space and
it even induces a direct sum decomposition. Indeed, we say that a formal series is of
degree!®> —k and only if it is a homogeneous polynomial of degree k. Under change
of coordinates a homogeneous polynomials stays homogeneous and the degree stays
the same. Hence the homogeneous polynomials induce a direct sum decomposition,
(. Also the multiplication between a degree 7 and j homogeneous polynomial induces
a degree ¢ + j homogeneous polynomial. Hence the property G; - G; C G4 ; is also
satisfied.

Example 7.4 (Exterior algebra). Let V be a vector space and let G, = A*V be
the k-times wedge product of elements in V. The exterior algebra is the direct sum
G = ®renA"V. The wedge product between an i- and j-form is a (i+j)-form. Hence
G; AN G; C Gy and the exterior algebra is a graded algebra.

15Although the minus sign is not necessarily, it will be useful in later calculations.
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Andries Salm 7. Symbol Calculus

Let V' be a vector space with inner product g and let Cl;(V, g) be the linear span of k
products of pairwise orthonormal Clifford actions. The space CI(V, g) has the direct
sum decomposition @ Cl(V, g) but is not a graded algebra. Indeed, for all v € V
the Clifford action v(v) is an element of Cl;(V, g). However v(v)? is an element of
Clo(V, g) instead of Cly(V, g), because v(v)? = —g(v,v) - Id. To assign degrees for
elements in the Clifford algebra we use filtered algebras:

Definition 7.5. A filtered algebra is an algebra A with a family of subspaces A;,
t € Z such that A; C Ay and A; - A; C A;y;. An element a € A is of degree
keZifae A, buta & Ay_1.

Example 7.6. (Clifford algebra) Consider the Clifford algebra A = CI(V,g) and let
A, = ®;<;CL(V, g). Clearly A is the union of all A; and for all i and j the product
of an element in A; and in A; is an element of A, ;. Hence the Clifford algebra is a
filtered algebra.

Example 7.7. (Differential operators) Recall that for a manifold A a differential
operator is a smooth operator on C*°(M) such that in a local coordinate frame {z*}
the differential operator is given by

g 0 0
Z Chirespi oxrHr Q2 U Ok (71)

Here ¢, . ., is a smooth maps on M. If we use multi-index notation we say that a
differential must locally be of the form Y, c;52;. Let |I| be the degree of the multi
index I and let A; be the vector space generated by the differential operators that are
locally of the form > ;. 01%. Notice that A is independent of choice of basis and
A; - A; C Ay forall i 4 j. Hence Ay induce a filtration on the space of differential
operators. We denote differential operators as D(M).

Lemma 7.8. Let G = ®;G), be a graded algebra and let A, = ®,<G;. If there
exists an M € 7 such that Gj, = {0} for all k > M, then | J, Ay is a filtration of
G

Proof. Clearly G is the union of all A; and by definition Ay C Ay, for all k. Because
G is graded we conclude that A; - A; C A;;;. Hence A; is a filtration of G. O

From the previous lemma we conclude that alour examples of graded algebras are
also filtered algebras. Not every filtered algebra is a graded algebra. However for every
filtered algebra we can construct a graded algebra by considering quotient spaces.

106


cavalcanti-work
Cross-Out

cavalcanti-work
Inserted Text
all


7.1. Definitions Andries Salm

Definition 7.9. Let A be a filtered algebra. The associated graded algebra is
the graded algebra G(A) that is defined by

G(A) = ®rAL/Ax1 (7.2)

Given a filtered algebra A = [J, A; consider the associated graded algebra G(A).
Notice that the quotient map 7my: Ay — Ayx/Aj_1 describes the relation between the
filtration of A and the grading of G(A). Also notice that for all a € A; and ¢’ € A;

mi(a) - 7,() = mipy(a- ). (7.3)

This is an example of a symbol map.

Definition 7.10. Let A = Ukel Ay be a filtered algebra and let G = @Gy, be a
graded algebra. A symbol map is a family of linear maps oy.: A;, — Gy, such that

1. forall k € I and a € Ay_1 the map oy, satisfies oy(a) = 0.

2 foralli,jel,acA; andd € A; the symbol map satisfies 0;(a) - 0j(a’) =
oirjla-a’).
If G is the associated graded algebra of A, then the associated symbol map is

the family of projection maps my: Ay — Ag/Ay_1, which is a symbol map between
A and G(A).

Example 7.11. Consider the trivially filtered algebra A. Thatis, A; = Aifi > 0
and A; = {0} else. The associated graded algebra G(A) is isomorphic to the trivially
graded algebra of A. Hence, the associated symbol map equals o, = Idy if £k =0
and o, = 0 else.

Example 7.12. (Clifford algebra) Let V' be a vector space with symmetric 2-form
g. Consider the associated graded algebra of CI(V, g). By the definition of a Clifford
algebra the projection map m; satisfies

T (vy) 1 (ve) + 71 (ve) -1 (V1) = Mo (V1 Ve +v9-v1) = —g(v1,02) - mo(Id) =0 (7.4)

for all v1,v € V. This shows that the associated graded algebra of CI(V,g) is
isomorphic to the exterior algebra A*V*. Equation 7.4 also shows that the associated
symbol map interchanges the Clifford multiplication with the wedge product. That is,
for all vy ...vx €V, the map m(vy - ... - ;) equals v} A ... A ).
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Example 7.13 (Endomorphisms of algebras). Given an filtered algebra A = J; A;
we can create a filtered subalgebra on End(A). Indeed, End,, (A) be the subspace of
End(A) such that for all k& € Z the map f|4, maps into A;,. Because Ay, is a sub-
space of Agy,+1 we conclude that End,,(A) € End,,,(A). Using the composition
of maps we notice that End,, (A) o End,,,(A) C End,, ., (A). Hence, |J, End,,(A)
is a filtered algebra and a subalgebra of End(A). This property can also been shown
for graded algebras G. That is, the subalgebra &, End,, (G) of End(G) is also a
graded algebra.

We construct a symbol map between | J,, End,, (A) and &,, End,,, (G(A)). Fixn € Z
and let f € End,, (A). Forany k € Z and a € A;_; we have f(a) € Agin_1. This
shows that 7,4 o f(a) = 0. We conclude that 7, o f factors over A;/A;_1 and
we can define o,,(f): G(A) — G(A) as the unique map such that for all k € Z the
following diagram commutes

Ak Ak-l—n

o
on(f

A /A1 — )A:k+n/f4k+n_1

We see that o, is a family of linear maps from End,,, (A) to End,, (G(A)). It is also
a symbol map. We already showed that ¢, (End,, ,(A)) =0 for all n € Z. To show
the homomorphism property let n,m € Z, f € End,, (A) and let g € End,,, (A). For
all k € Z we get the commuting diagram

/
Ak AkJrn AkJrner

lﬂ'k lﬂ—k-kn lﬂk-kn-km

on(f) om(9)
Ak/Akfl - AkJrn/AkJrnfl —>gAk+n+m/Ak+n+mfl

\_/’

Tntm(gof)

By uniqueness we conclude that o,,.,(g9 0 f) = 0,,(g9) 0 0,,(f) and so o is a symbol
map.

Example 7.14 (Taylor series). Consider formal power series CJR]-overR. Note that
for all a;, B; € C the differential operator > 7" o (%)Z maps the formal power series
D e Bt to 3T ST i B - L2977 Hence, the space D,(R) is a subalgebra
of End,, (C[R]) for all n € Z. However the filtrations of D, (R) and End,,, (C [R])
differs. To see this note that the operator p — - p is a differential operator of degree
zero, but this operator is an element of End,_, (C [R]).
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7.2. Getzler filtration Andries Salm

7.2 Getzler filtration

In paragraph 3.1 we calculated the trace over ’y5e’tD2 by considering a Taylor approx-
imation in t'/? for equation 3.18.

Ak t21 129, 1 ik — L 41 E, 3.18
[ Gt e e d (—0, i = IR )| @8)
Notice that we have a factor ¢'/2 for every k, and for every 7#. Now we rephrase
this in terms of filtrations. The element k, is the Fourier transform for a degree
one differential operator. Also, v* is a degree one Clifford action. By applying a
Taylor approximation we combine the filtration of the Clifford action with the filtration
induced by differential operators. In general we always can combine multiple filtrations
using the tensor algebra.

Lemma 7.15. Let B = |J, B; and C' = |JC; be filtered algebras and let A be
the tensor algebra of B and C. Then A is a filtered algebra spanned by A, =

Zf:() B; @ Cy—;.

Proof. Let b € B, ¢ € C and consider b ® ¢ € A. Because B and C are filtrations
there exists an i, j € Z such that b € B; and ¢ € C}. Hence, b® c € B; ® C;. The
space B; ® C} is a subspace of Zzi{] B, ®C; = Zzi{] B; ® Cli4j)—i which equals
A;yj. Hence, A is the union of the family of spaces Ay.

Now let k € Z and consider Aj. By definition it equals Zf:o B; ® Cy_;. The space
Ay is a subspace of A1, because

k k k1
A = Z B, ®Cy_; C Z B; ® Clgq1)—i € Z B; @ Clrq1)—i = Apta (7.5)
=0 =0 =0

Finally let 4,7,k,l € Z and let b; € B;, ¢; € C}, by € By and ¢ € C;. Then
b; ®c; € Ay and by ® ¢; € Apy1. The tensor product between b; ® c¢; and b, ® ¢
equals (b; - bj) ® (¢x - ¢). Because B and C' are filtrations (b; - b;) @ (cx - ¢) is
an element of B;y; ® Cjy;. This proves that b; ® ¢; - by ® ¢ € A4k, and so
Airj - Ajrk € Aiyjrrr- We conclude that A is a filtered algebra. O

We want to create a filtration on the space of smoothing operators. For this let (), g)
be an even dimensional compact Riemannian manifold and let y € M. Consider a
neighborhood U, C M such that exp;lz U, = T,M is a chart of M. Let S = U,
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Andries Salm 7. Symbol Calculus

be a Clifford bundle and let p € I'(S X S) be a kernel. We fix the second component
of p at y and so we only consider p(-,y) € I'(S ® S;). Using parallel transport
and the exponential map we trivialize S into T,M x S,. Then locally p(-,y) is a
smooth map from T, M to S, ® S;. Notice that S, ® S is isomorphic to End(S),).
By Lemma 5.23 the space S, ® S; is isomorphic to CI(T,,M) ® Endc(S,) where
Endc(Sy) is the space of Clifford endomorphisms on S,,. We conclude that p(-,y) is
locally a map from T, M to Cl(T,M) ® Endc(S,). Thatis, p(-,y) is an element of
C>(T,M) ® Cl(T,M) ® End¢(S,). Notice that this space is the tensor product of
filtered algebras. Using Lemma 7.15 we can create a filtration on I'(S ® Sj).

Definition 7.16. The tensor filtration induced from the Taylor filtration on
C>(T, M), the Clifford filtration on C1(T,,M) and the trivial filtration on End¢(S,)
is the Getzler filtration for kernels on S. For operators on I'(S ® S;;) we define
the Getzler filtration for operators on I'(S) and the Getzler symbol as the
filtration and symbol described in Example 7.13.

In the rest of this section we refer to the trivialization 7, M/ x End¢(S,) of S as the
trivialization induced by parallel transport. Without further introducing we also use
{si} for an orthonormal frame of T, M and {5} as the local frame of S induced from
{sk} by parallel transport. Note that {3} is also orthonormal, because the connection
on S is metric compatible.

Our goal is to calculate the Getzler symbol of the operator D?. For this we need to
calculate the symbol of the Clifford action and the covariant derivative. We show this
in the next lemmas.

Lemma 7.17. Let v, € T,M and consider the vector field v € T'(T'M) in-
duced by parallel transport. The Clifford action ~y(v) along v is locally given by
Idr, v @7(vy) ® Idg, € C*(T,M) ® CI(T,M) ® Endg(S,).

The Clifford action v(v) has Getzler degree one and the Getzler symbol o1(7v(v))
equals v’

quals v, .

Proof. Let x € M and consider a radial path p: [0,1] — T},M from y to x. The local
trivialization induced by parallel transport of v(v) is given as

> (5,7(0)5))e @ s; - 8, € C(T,M) ® Ende(S,) (7.6)

i3
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7.2. Getzler filtration Andries Salm

The metric on S is compatible with the covariant derivative V and so

o . 5 5 - 5 -
5@» Y(©)35)pt) =(Vp)Si, Y(0)35)pe) + (315 Vipy Y (v)35) pit) (7.7)

Because s; is a vector field induced by parallel transport, we have the identity V;;)s; =
0 for all t. So equation 7.7 simplifies to

0

5z (5 7 (0)3)0) =56, Vi 1(0)35)000 (7.8)
=81, Y(Vpyv) 35)pe) + (56, Y(0) Vi) 5) pio) (7.9)
=(31, 7 (Vi)v) 35)p(t) (7.10)

Also the vector field v is induced from parallel transport and so (5;,7(v)3;)pe) is
constant. We calculate this constant by evaluating at y and we conclude that v(v)
locally equals

Z<Si’ Y(vy)s;) - Idy, ® s; - 35- € C*(T,M) ® Endc(S,) (7.11)
1,J

This simplifies to Idr,y ® v(vy) € C(T,M) ® Endc(S,) and we conclude the
result. O

Lemma 7.18. Any endomorphism F' € T'(Endc(S)) is a Clifford endomorphism if
and only if there exists some «; € C*°(T, M) and f* € Endc(S,) such that in the
trivialization induced by parallel transport F' equals

Y a;@ldeft € C*(T,M) @ CI(T,M) ® Endc(S,) (7.12)

The Clifford bundle endomorphism F' have Getzler degree zero and the Getzler
symbol oo(F) equals F(y).

Proof. Let f € Endci(S,) and let « € C®(T,M). Let F be a section of End¢(.5)
such that F' is locally given by a ® Id®f € C*(T,M) ® Cl(T,M) ® Endc(Sy).
Using the orthonormality of {s;} we see that I equals

F=> a-(s fs;)8-5 (7.13)
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Let v € T'(T'M) be the parallel transport of v, € T, M. By the identity >, 5,5, = Id
we conclude

Fry(v) = a-(si, f5;)(3;,7(0)3)3 - 8, (7.14)

ijk

By Lemma 7.17 we know that (5;, y(v)3) is constant and hence equal to (s;, y(vy)sy).
This simplifies Fy(v) into

FPy(v) =) a-(si, fy(v,)se)s; - 5 (7.15)

ijk

By definition f must commute with y(v,) and so F' commutes with v(v). Hence F
is a Clifford bundle endomorphism.

At last consider the subbundle of End(S) spanned by the Clifford action and all
Clifford endomorphisms that are locally of the form Y. c; @ Id®f* € C™(T,M) ®
Cl(T,M)®Endc(S,). By dimension counting we conclude it spans the whole bundle
and so all Clifford bundle endomorphisms are of the form >~ o, ® Id® f* € C*(U,) ®
Cl(TyM) ® EHdCl(Sy). |:|

Lemma 7.19 (Roe [1998], Proposition 12.22). Let {z*} be an orthonormal coor-
dinate frame of T, M and extend this to an orthonormal coordinate frame on T'M
using parallel transport. Let R be the Riemann curvature tensor. Then for all i
the covariant derivative V,, is a differential operator of Getzler degree one and the
Getzler symbol of V,, equals

o 1 0 o\

Proof. Let p be a section of S ® S; and assume without loss of generality that
pP=2i;Pij i 3?- where p;; € C*(U,). In the trivialization induced by the parallel
transport p equals Ez’jpij 8- s?. We show that in this trivialization V,p equals
01(V,.) p plus lower order terms. From the Leibniz rule it follows that

~ (’9p2 - ~ N 5
Viup = Z V. (pi8i 85) = 8:15; 5; s? + Z<Sk’ V,.8:) - Dij Sk - S? (7.17)
i ij ijk
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Locally we can write V,p as (8 - +w)p where w is a Imear endomorphism on S, with
the elements wy; = (5, V,.5;) € C°(T,M). Clearly -2 5.7 1S a degree one operator and
so we only need to show that w has Getzler degree one. For this we use a trick. Let K
be the curvature tensor w.r. t the connection V of S and let R be the radial vector
field Thatis, R=>_ 2" amy. Note that the Lie bracket between W and R equals
So the matrix element wy; equals = <sk,V[%7R] 5;). We write this in terms of

8:1:”'
the curvature.

0
wri = (Sk, Vyu8i) = <§k> (—K (@77%) +VuVr — VRVM) §Z> (7.18)

By the definition of the parallel transport it follows that Vz5s; = 0. Using that V is
a metric connection equation 7.18 simplifies into

8 8 . 0 8 . .
<8k, v“8i> = — <8k, K <@, R) 8i> — LR <Sk, VHSZ'> (719)

Moving Lz to the left hand side, we get (1+Lz)w = —K (32, R). The Weitzenbock
formula states that K = R® + F'¥ where F* is a Clifford endomorphism and R® =
%Zyp Yo (R(+, ) 5%, 725). So the matrix w satisfies

dz¥ ' xP

9, 9,
— _pS{_ =2 _ S| =
o o (2 7) 5 (L)
1 0 g 9\ 0 s s O
_Zz%%<ax“’R<8x”’8ﬂ) 8:10"> vk (8:10“’R) (7.20)

vpo

Now we write w in local coordinates. Let I, .J be multi-indices over {x#} with degree
1] and |J] and write w as >, ;2! ® ¢/ @ w;y € C(T,M) ® C(T,M) ® Endi(S,).
The left hand side of equation 7.20 equals

(1+£R)w—z<1+2x )SL’ ®c’ @wry
_Z<1+Z )SL’ ® ¢’ Q wry

:Z 141N z' @’ @uwry (7.21)
17

We compare this to the right hand side of equation 7.20. Because F'* is a Clifford

endomorphism, we conclude that F* (a T R) is a Getzler degree zero operator. Also,
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R® ( 9 R) has Getzler degree one and so

Oxh?

Y+ @ @wy
rJ

1
= Z VYo <8;2“’ R (8?6”’ aip) 8ig> x7 + lower order terms

vpo

(7.22)

We conclude for the top order that X = 27, C” = 7,7, and wr; = (32, R (3%, 35 ) 52 )-
Hence w has Getzler degree one and is given by

1 ) o 9\ o\ .
2y = T Z%% <8x“’R (8:5”’ 83:P) 8x”> x7 + lower order terms  (7.23)

vpo

The Getzler symbol of w equals

1 0 o 0 0
—_=— o v P
o1(w) 3 g <8x”’R<8x”’8xP) 8x"> 27 -dz” ANdw (7.24)

vpo
1 0 0 -
_Z;<@’R("') 8:1:°*> x (7.25)

and we finish the proof. O

Corollary 7.20 (Roe [1998], Example 12.16). The Dirac operator D has Getzler
degree two and the Getzler symbol of D equals

0 1 0 g 0 0
D) = dgt e = o d M p o
o9(D) EM oy dz —1—8 E <8x“’R(8x’/’8xp) 8x”>x dz* ANdax” ANdz

uvpo

(7.26)
where {x#} is the Riemannian normal coordinate frame.

Proof. Recall that in the Riemannian normal coordinate frame D = _ v,V and
use Lemmas 7.17 and 7.19. O

Proposition 7.21 (Roe [1998], Proposition 12.17). Let S — (M, g) be a Clif-
ford bundle over a compact even dimensional Riemannian manifold and let D
be the Dirac operator. Let R be the Riemann curvature and F*° be the twist-
ing curvature. Let {x"} be the Riemannian normal coordinate frame and denote
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R, = < 2 R(- )2 > € Q*(M). The operator D* has Getzler degree two and

Oxy’ 0xy

its symbol equals

2
0 1

m

Proof. Proposition 1.27 states that D? = V*V + F* + 1k where F* is the Clifford
contraction of the twisting curvature and « is the scalar curvature. In Riemannian
normal coordinates we write this identity as

1 o 0 1
D2 = — Z VMVM + 5 Z’Y}L’YVFS (@7 axl’) + ZI{ (728)
n v

Recall that the twisting curvature is a Clifford endomorphism. Hence by Lemmas 7.17,
7.18 and 7.19 we conclude that D? has Getzler degree 2 and the symbol is given by

02(D?) == " 02(V2) + % > o <%%Fs <%, %)) + 0y Gm) (7.29)

2

The scalar curvature and F'® (i 0

gl axy) are Clifford endomorphisms and hence it has
at most degree zero. So we simplify equation 7.29 into

1 s 0 0
D) == S oW + 3 Sl (F (% a—)) (7.30)
1 g 0
_ 2 - s _ - 7 v
= Zﬂ:m(vu) +2;F <6xu,axy)dx“/\dx (7.31)
=Y (V)P F (7.32)
o
Using Lemma 7.19 we conclude the result. O

7.3 The symbol of the heat kernel

In chapter 4 we showed that each Dirac operator on a compact Riemannian manifold
has a heat kernel k;. Using the heat equation we calculate the Getzler symbol of the
heat kernel.
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Proposition 7.22 (Roe [1998], Proposition 12.24). Let S — (M, g) be a Clifford
bundle over an n dimensional compact Riemannian manifold and let D be the Dirac
operator. Assume that n is even. Let k; be the heat kernel w.r.t. the generalized
Laplacian D? and denote the formal power series of k; as We"ﬁﬂt Yoot
Then for all © the kernel ®; has at most Getzler degree 2i and the symbol of ®;
satisfies

0
r gy 00(%0) =0 (7.33)
<T§ + Z) O'Qi(q)i) = - UQ(DQ)O'QZ‘_Q(@Z‘_l) Vie N (734)

Proof. Let y € M. In Theorem 4.13 we showed that k; has a formal solution to the
heat equation by proving that ®; is the unique solution of the differential equations

r Og B
<@5 * VR) ol y) =0 (4.66)
. r dg e |
<z + 19 O + VR) Q;(-,y) =—D"®;_1(-,y) Vi > 0 (4.67)

Here r is the distance from y, R = r 0/0r is the radial vector field originating in y
and g is the determinant of the metric. Suppose that ®;(-,y) has Getzler degree k;
for some k; € N. The symbol of ®; equals

r 0
Ok ((@a_i + VR) (I)O(7y)) =0 (735)
99 9 ) Bity) ) = (=D () ViSO (7.36)
Ok, ? 4g Or R i\»Y) | =0k i—1\H Y ? .
o 9g

Multiplication by ¢ is a degree zero operator and ig or has degree -1. Also V3 is a

degree zero operator. Indeed, let {z*} be the Riemannian orthonormal coordinate
and notice that V¢ = Zu a# - V. The symbol of Vx equals

0 1
0'0(VR> = ZI‘”@ + Z Z RHV.CCHSCV. (737)
L v

9

Using the anti-symmetry in R we simplify 0(V) into z#-2 and this equals T

Ozt
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Therefore the symbol of & equals
0

7’5 (Ukoq)()('v y)) =0 (738)
0
(7’5 + 'l) O'kiq)l'(', y) = — 0-2(D2)0-k¢72(q)i71) Vi >0 (739)
Inductively we conclude that ®; has Getzler degree 2i. O

Comparing equations 4.66 and 4.67 with 7.38 and 7.39 suggest we need to investigate
the differential equation % +09(D?) = 0. Even more, this is a heat equation. Indeed,
it is sufficient to show that oo(D?) is a generalized Laplacian. For this consider the
trivial bundle T, M x A*T,M ® Endc(S,) — T,M. Equip A*T, M with the induced
metric from T, M and equip End¢(S,) with the Hilbert-Schmidt metric. The operator
% + 13, R,,a” is a covariant derivative for all z#. Denote this connection as
V. This connection is metric compatible, because R, is skew-symmetric. Hence
the operator o(D?), which equals V*V + F°, is a generalized Laplacian. Next we
explicitly calculate the heat kernel.

Proposition 7.23 (Roe [1998], Proposition 12.24). Let S — (M, g) be a Clif-
ford bundle over an n dimensional compact Riemannian manifold. Let D be the
Dirac operator and let k;, = Wexp(—’rg/llt) >, t'®; be the formal solution
of the heat equation with respect to the generalized Laplacian D*. Let y € M
and consider the trivial vector bundle T,M x A*T,M ® Endq(S,) — T,M. Let
W, = W exp(—r?/4t) >, 'O, be the formal solution of the heat equation with
respect to the generalized Laplacian o5(D?). Then for all x € T,M and i € N the
components ©; satisfy

Oi(z,y) = 02:(P;) (7.40)

Proof. In Theorem 4.13 we showed that ©; is the solution of the differential equation

r dg
(@5 + VR) @0(-,y) 0 (466)
. r dg 2 :
(z + 19 0r + VR) Pi(-y) == D°®ia(y)  Vi>0 (4.67)

Comparing this to Equations 7.38 and 7.39 we conclude that o9;®; satisfies the same
set of differential equations. The only possible difference is in the initial conditions.
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This is not the case. For i = 0, the initial condition is that ®y(y, y) equals the identity
map. The symbol map doesn't alter the identity map and so ®q(+,y) = 0o(Pg). For
1 > 0 the initial condition is determined by the requirement that ®; is differentiable
at the origin. Because o9;(®;) is differentiable by construction, we conclude the
result. O

If we replace T,M x A*T,M ® Endc(S,) — T,M with the vector bundle R x
T,M — T,M we already have a heat kernel w.r.t. o2(D?), namely Mehlers kernel.
Consider the Taylor series of this kernel in R and F. If replace R € M, «,(R) with
the Riemann curvature and F' with the twisting curvature we created a kernel on
A*T,M ® Endc). Note that the algebra generated by the Riemann curvature and
the Twisting curvature is a nilpotent commutative algebra. Hence the Taylor series
converges on A*T, M ® Endc ans satisfies the heat equation. So Mehlers kernels is
also the heat kernel w.r.t. o2(D?) and by uniqueness we conclude

Proposition 7.24 (Roe [1998], Proposition 12.26). Let S — (M, g) be a Clifford

bundle over an even dimension compact Riemannian manifold. Let D be the Dirac
operator and let k; = Wexp(—ﬂ/élt) >, t'®; be the formal solution of the
heat equation w.r.t. D?. Lety € M, U, C M be a neighborhood of y such that
expy_l: Uy, — T,M is a chart of M, let x € U, and let r be the distance between

x and y. Then for all i the symbol o4;(®;) satisfies

det ? (%) P {_4%‘ <% coth (§) - x> - tF} (7.41)
= exp(—r?/4t) Y tioy(D;)

i

7.4 Atiyah-Singer Index theorem

At last we consider the interaction between the symbol map and the trace and we
prove the Atiyah-Singer index theorem. From the trace identities we know that only
top Clifford degree part are non-vanishing in the trace. In the next definition and
lemma we translate this in terms of Getzler symbols.

Definition 7.25. Let S — (M, g) be a Clifford bundle on a compact even dimen-
sional Riemannian manifold and let y € M, The constant part of the Getzler
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7.4. Atiyah-Singer Index theorem Andries Salm

symbol o} is the projection of the Getzler symbol oy to C5°(T,M) @ A*T,M &
Ende(S,) where C3°(T, M) denotes the constant part of the Taylor grading.

Lemma 7.26. Let S — (M, g) be a Clifford bundle on a compact even, dimen-
sional Riemannian manifold, let y € M and let p be a section of S ® S,. Let 75 be
the canonical grading operator. If S is canonically graded, then

tr(75 p(y)) - Vol(g) =(—i)""* tr (o} (p)) (7.42)

Proof. In this proof we use the letters I and J for multi-indices and we denote their
degrees with |I] resp. |J|. Locally p is represented by an element >, 2’ @ ¢/ ® pr;
in C>*(T,M) ® Cl(T,M) ® Endc1(S,). The trace of v5 p(y) equals

tr(ys p(y)) = le tr(vys ¢ - pry) (7.43)

Note that if || # 0, then 2/ = 0 because we evaluate x at zero. Hence the trace of
p(y) is

tr(ys p(y) = Y -tr(vs ¢ - pos) (7.44)

By lemma 5.22 it follows that tr(vs ! -p1s) = 0 if |.J| # n. The only non-vanishing
multi-index of Jis (1,2,...,n). The same lemma states that tr(75c(17---")-p17(1 _____ ) =
(=)"2tr(ps,(1,..n)) and we conclude

tr(ys p(y)) = (=i)""* tr(po,a....) (7.45)
The trace over the constant part of the Getzler symbol equals

tr(o2(p)) = Z tr(z! ® da’ @ pry) (7.46)

1,J

|1|=0

[I]4+]J|=n

=tr(po,(1,2,...n)) dat Adz? AL Ad2" (7.47)
and so tr(ysp(y)) = (—1)"/* tr(op (p)) O

We finally have all the ingredients to prove the Atiyah-Singer index theorem.
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Theorem 7.27 (Atiyah and Singer [1968]). Let S — (M, g) be a Clifford bundle
on a compact n-dimensional Riemannian manifold M. Let D be the Dirac operator.
If S is canonically graded, then the index of D is the integral over the n-form part
of A(TM) A ch™(S). That is,

Index(D) = / A(TM) A ch™(S) (7.48)

Proof. By Theorem 4.17 each Dirac operator has a unique heat kernel k7 € T'(SX.S)
such that the corresponding smoothing operator e~ *P* satisfies (% + D2)e_“72 =0.
From Proposition 5.10 we know that the composition between the canonical grading
operator 5 and the operator e~ tP? is traceclass and its trace equals

Te(ose ) = [ (s by ) Vol ) (7.49)

The Mckean-Singer formula states that the trace of 756*”)2

and we conclude

equals the index of D

IndeX(D):/Mtr(%kt(x,x))\/ol(M) (7.50)

Now Theorem 4.13 states that k; has a formal solution W@’ﬂ/‘“ >, t'®;. Because
Index(D) is independent of the choice of ¢, all {-dependent terms in W@‘T2/4t ot

will vanish and so

W Jyens t1(15@nyo(w, 2)) Vol(M)  if n is even

0 if n is odd (7.51)

Index(D) = {

By definition A(T'M) A thel(S) is an element of H*“(M) ® C. Hence if n is odd,
then the n-form part of A(TM) A ch™(S) is zero and we conclude

Index(D) = / A(TM) A ch™(S) (7.52)

Now assume that n is even. By Lemma 7.26 the index of D equals

Index(D) = W/Mtr(ag(@n/g)) (7.53)
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7.4. Atiyah-Singer Index theorem Andries Salm

According to Proposition 7.24 the constant part of the Getzler symbol o0 (®,,/2) equals
the n-form part of

det /2 <$) exp(—F) (7.54)

Up to the constant 2%/2 x (24)™/? this equals the n-form part of A(TM) A ch™(S)
and we conclude

Index(D) — / AN (s) (7.55)

M

for all n € N. O
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8 Summary and Outlook

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vi-
tae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie
non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales
cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede
lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc.
Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu
est, nonummy in, fermentum faucibus, egestas vel, odio.
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9 Glossary: Differential geometry for physicists

There is a joke that " differential geometry is the study of properties that are invariant
under change of notation” (Lee [2013]). This is especially true when we compare the
notation in Riemannian geometry and gauge theory. If one is familiar with general
relativity and field theory, then one has already seen many of the constructions used
by mathematicians. So in this chapter we will translate the language used by mathe-
maticians into the language used by physicists. In this chapter we assume that M is
a manifold, which is a space-time which the existence of a metric is not required. We
also denote = as a point on M.

If one is already familiar with differential geometry, one can safely skip this chapter.

0.1 Sections and fields

9.2 Constructing vector bundles

Type | Field Element of Remark
Real vector field ol F(TM)
¢  T'(T*M) Also used: Q'(M)
Complex vector field o T(TMeCO)
¢, T(I"M ®C) Also used: Q(M,C)
Real gauge Field Al T(TM®g) Here g is a Lie algebra.
Tensor field ™™  T(TM®TM)
", T(TM ®T*M) Also used: I'(End(T'M))
T, T(T*M®T*M)
Antisymmetric tensor field | F*  T'(T'M NTM) Also used: T'(A*T M)
F. T(ANT*M) Also used: Q%(M).
€upe  T(AT*M) Also used: Q*(M)

Table 6: Examples of different fields and the common used notation.

9.3 Derivatives and curvature

In calculus we defined the derivative of a function f(x) at @ € R as the limit
limxﬁaw. For functions there is a canonical way to extend this definition
to manifolds. That is, we take the flow ¢; in a given direction v € T, M and we follow
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it for a given time ¢t. This gives us a point © = ¢;(a) € M. The derivative % is

defined as PI% M However, on curved manifolds there is no canonical method
ﬁ

to extend the directional derivative for fields. This is because there is no canonical
way to compare different fibers. See figure 5. In this paragraph we study different
generalizations of derivatives on fields and we study which extra structure they require.

i i
1 1
i i
1 1
1 i
1 1
1 i
1 1
1 1
1 1
1 1
1 1
v 1

Figure 5: In this picture we see a manifold(blue line) and different vectors(red) in
a vector bundle. We cannot compare the vectors, because they are in a different
fibre(dotted line). So there is no canonical method to generalize the derivative for
sections on curved manifolds, because there is no canonical method to compare dif-
ferent fibers.

For vector fields on the tangent bundle there is a canonical derivative and it is called
the Lie derivative. For the tangent bundle we use the flow ¢, to identify different
fibers. Under this identification the Lie derivative of a field ¢ € T'(T'M) in the direc-
tionv € I'(TM) ata € M is Iltl_r)% w Usually we write this as £, (7).

Note that v and ¢ are the same type of field. To show this equal footing, one also
writes L,1 as [v,1]. This bracket is called the Lie bracket. It also behaves like
a bracket, because one can show that [v,¢] = —[¢),v]. Another usefull identity is
Lugw = L,Lyw — L,L,w. In general the flow identifies different fibers of the
cotangent bundle. It also works for tensor bundles of T'M. So for all these cases we
can define an derivative and for all these cases we call it the Lie derivative.

Another method to define the derivative on fields uses the Leibniz rule. Recall that
for multi-variable calculus, the Leibniz rule reads

0 0 og
Sirp= gy (01)
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9.3. Derivatives and curvature Andries Salm

forall f e R" - R, § € R — R™ and v € R". A covariant derivative is a
linear map V: I'(TM) x I'(E) — T'(F) on a vector bundle F — M that satisfies the
Leibniz rule

0
Valf ) =Vt 5oy (02)
It must also be linear in the following way:
Vi (thy +1h2) = Vi (1) 4+ Vo (¢2) (9.3)
vv1+f($)v2w = vmw + f(l’) ’ szw (94)

In gauge theory the covariant derivative is defined such that it acts covariant under
gauge transformations. However, it also satisfies the properties listed above. There-
fore, the covariant derivative in gauge theory is an example of a general covariant
derivative. Another example is the Levi-Civita connection. It is the unique covariant
derivative on 7'M such that it is compatible!® with the metric and torsion free!’.
A non-example is the Lie-derivative on vector fields. Indeed, for any smooth map
f € C>*(M) and vector fields u,v € T'(M), we have

Lo =—Ly(f u) (9.5)
=—0uf -u—f-Lyu (9.6)
=—0,f -u+f-Lyw (9.7)

This does not satisfy condition 9.4. Another word for the covariant derivative is a
connection. Both words are frequently used in this thesis.

For a given connection V: I'(E) — I'(E ® T*M) we define the curvature tensor
Kel(T"M @ T*M ® End(FE)) as
K(ua U) = Vuvv - Vvvu - V[u,v] (98)

In local coordinates the term V[, ,) vanishes and is usually omitted in physics literature.

However due to this term, the curvature tensor doesn't acts like a differential operator

but acts like a tensor. Indeed, using the Leibniz rule we have for all smooth maps
f € C®(M) and sections ¢ € I'(E)

K(ua U)f ' 1/1 :vuvuf . 1/1 - Vuvuf : _V[u,u]f : 1/1 (99)

:+f'Vquﬂ/1—f'VuVu¢—f'V[W] 1/}

+ L,wcz/f ' w - ‘Cuﬁuf : 1/} - ‘C[u,u]f : 1/}
=f - K(u,v)Y (9.11)

¥That is L,9(v,w) = g(Vyv,w) + g(v, V,w) for all u,v,w € T(TM)
Y That is Vv — Vyu = [u,v] for all u,v € T(T'M).

(9.10)
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At last we introduce the exterior derivative. This derivative makes use of the fact that
antisymmetric tensor fields forms a Grassmann algebra where fields on T*M are the
Grassmann numbers. In mathematics this algebra is more commonly known as the
exterior algebra on forms and it is defined as follows: Let ¢ be am antisymmetric
(0, k)-tensor field and let ¢ be am antisymmetric (0, m)-tensor field. The wedge
product ¢ A 7 is an antisymmetric (0, k + m)-tensor field. Up to an constant it is
the graded sum of all permutation of the indices. For example if ¢ is a (0, 2)-tensor
field and ¢ is a (0, 1)-tensor field, then

(@A) wp X Bty + Gupthy + Gputh—

—%M/fp - ¢pu¢u - ¢Mp,¢)u
By direct calculation we can check that ¢ A v is antisymmetric in its indices and that
d AN = (=1)%p A ¢. So the wedge product defines a Grassmann algebra on the

antisymmetric tensor fields. Usually the space of antisymmetric (0, k)-tensors is de-
noted by I'(A¥T* M) or Q¥(M). Antisymmetric (0, k)-tensors are also called k-forms.

(9.12)

Notice that Q°(M) is just the space of smooth functions and Q(M) is the space of
vector fields. The exterior derivative for a function f € Q°(M) is the unique dual
vector field d f: I(TM) — C*(M) such that d f(v) = %L (Compare this to the
definition of the variational derivative). Hence, d is a map from C*>°(M) = Q°(M)
to T(T*M) = QY(M). We extend d to a map from QF(M) to Q¥F1(M) using the
following rules:

o dod: Q¥(M) — QF2(M) =0 Vk e N
e dlaApB)=(da)AB—(=1DFa A (dp) Va € QF(M), B € Q™(M)

The exterior derivative is related to the Lie derivative by the use of the interior
product. Thisisa map ¢: ['(TM) x QF(M) — QF~ (M) which reduces a form with
one degree. For a (0, k)-tensor field 7" it is defined as

(LMT)VPO'... =T

nvpo...

(9.13)
Cartan has showed that the Lie derivative can be expressed as
L,=1,d+de, (9.14)

This result is called Cartans magic formula. Another usefull identities of the interior
product are

Luly = — Lyly (9.15)
(@A B) =(t,@) A B+ (=1)Fa A (1,3) Va € QF(M) (9.16)
L] =Luly — Ly (9.17)

126



9.3. Derivatives and curvature Andries Salm

To show the interaction between these three derivatives we calculate the curvature in
local coordinates. We denote {e,} for a basis on T'M and {s;} for a basis a vector
bundle E — M. Let V be the connection on E and let K be the curvature tensor.
Using the basis we create a matrix of one-forms

wij = (5i|Va|s;) (9.18)

This matrix is called the connection 1-form. The curvature tensor is a matrix of
two forms. For u,v € I'(T'M), the components of this matrix are given by

(55| K (u,v)[s5) = (5i|VuVy = VoV = Viug]55) (9.19)
To use the Leibniz rule we introduce the identity 1 = )", |si) (s

(sal K (u,0)[55) =(8: Vaulls1) (s Vulss)) = (il Vollsk) (s Val85)) = (il Vil s5)
(9.20)

= (il Vaul(wrj(v) - [sk)) = (il Vo (wrj(u) - [sk)) = wig([u, 0]) - (9.21)
For each component w;;(v) is a smooth function and hence we apply the Leibniz rule:
(i K (u, 0)|85) =Lu(Wrjw)) (Sil5k) + win(w)wi (v)
— Ly(Wrjwy) (sil k) — wir(v)wiz(u) — wij([u, v])
=Lu(Wijw)) = Lo(wijw) — wij([u, v])
+ wik(W)wr; (v) — wik (V)w; (u)

(9.22)

(9.23)

In physics this equation is usually written as K, = 0w, — O,w, + [w,, wyu]. So we
view w as a gauge potential and K as the field strength. To reformulate this result
in terms of forms we write w;;(u) as t,w;;. Note that the wedge product between
functions coincide with the normal product.

(sil K (u,v)]s5) =Lu(towis) — Lo(tawij) = LuuWij (9.24)
+ (tuwir) A (Lowig) — (Lowir) A (Luwiy)

Using equation 9.17 we get that £, (tywi;) — tuuwij = toLuwsj. From Cartans magic
formula follows that

(si| K (u,v)|55) =ty (ty d+diy)wij — (bp d+diy) (Luwis)

9.25
+ (tawir) A (Lowis) — (Lowir) A (Luwis) ( )

Forms of degree -1 doesn't exists. Therefore ¢,¢,w;; = 0 and
(si| K (u,v)|s5) =tpty dwij + (Luwir) A (Lowr;) — (Lowir) A (Luwij) (9.26)
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We use equation 9.16 twice to get

(8i| K (u,v)]85) =ty dwij + ty((tuwin) A wij — wik A (Luwij)) (9.27)
=lyly(dwij + wik A wy;) (9.28)

Viewing K as a matrix of 2-forms, we conclude that
K=dwu+wAw (9.29)

Using equation 9.29 we can derive the Bianchi identity. Indeed, denote K;; =
(si| K (-, -)|s;) € Q*(M). From equation 9.28 follows that

Kij = dwij — Wik N Wi (930)
We take the exterior derivative of K;;. Recall that d?> =0 and so
dKij = d2 wij — d(w,k A\ wkj) = — d(wlk A\ wkj) (931)

By definition d(wi; A wy;) = (dwix) Awyj —wi A (dwy;). Using equation 9.30 again
we conclude

d K;j =wip N (Kij + wig A wij) — (K + wyg A wig) A wgj (9.32)
=wix N (Kij — Kig A wy; (9:33)
Viewing K as a matrix, we conclude

dK=wAK-KAw (9.34)

This is the second Bianchi identity.

9.4 Topology of vector bundles

As mathematicians we often ask the question: "How can we tell two spaces apart?”.
One of the main theorems in differential geometry is that the exterior derivative can
be used to discriminate different manifolds. First we recall this result and then we
explain how this is relevant for physics.

Before we know the difference between manifold we need to know when they are the
same. There is a saying that for a mathematician a donut and a coffee mug are
equal. How weird as this sounds but if the mug was not baked then the mag can be
continuously molded into a donut. That is, it can be molded without tearing, creating
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PeO06

Figure 6: How to transform a coffee mug into a donut (Commons [2007])

or closing holes. This is shown in figure 6. We say that if two spaces are equivalent
up to continuous deformation they are homotopy equivalent.

Look at figure 7. We added a subscript to the exterior derivative to keep track of the
vector spaces it acts on. So dj_; is a map from QF"1(M) into QF(M). It doesn't
necessary mean that the whole space %(M) is reached. We call the subspace in
QOF(M) that is is reached the image of d;_; and is denoted by Imdj_;. In figure 7
the images are depicted as red squares. The blue square represent the kernel of d,.
It is the subspace in 2%(M) that is mapped to zero by dj and we denote it by ker d.
Because djdi_1 = 0, the image always lies inside of the kernel. That is, the red square
lies inside the blue square. The part of the blue that is not covered by the red square
is called the k-th cohomology class. We denote this by H%,(M). The collection of
all Hy,(M) is called the de Rham cohomology. Formally H%,(M) is a subspace
of ker d; that is orthogonal to Imdy_;.

Qk—l(M) Qk—i—l(M)

Figure 7: In this image the red squares represents the image of the exterior derivative.
The blue squares represent the kernel of d. Because d*> = 0, the image always lies
inside the kernel.

One of the main theorem in differential geometry is that cohomology is invariant under
continuous deformations. That means that if two spaces are homotopy equivalent,
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then they must have the same cohomology classes. So if the cohomology classes
differ, then the manifolds must differ.

Also vector bundles can be characterized using differential operators. For this we
don't use the exterior derivative but the curvature tensor. The idea is that from
the curvature tensor we create elements in H3,(M) called characteristic classes.
These classes don't depend on the choice of connection and so it only depends on the
shape of the vector bundle. This plays an important role in the study of anomalies.
Indeed, anomalies are given in terms of characteristic classes. For example, the abelian

anomaly is proportional to
P Tr(Fu Fpy) (9.35)

This is proportional to the Second Chern class. So the shape of the vector bundle
breaks the classical conservation laws. More details on characteristic classes can be
found in chapter 6
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10 Field theory in terms of differential geometry
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11 Appendix: Source codes

In this chapter we add the source codes we used to do the nasty calculations. We
performed the calculations using FORM from Vermaseren [2000].

11.1 Calculation of Bardeen Anomaly

*H#—;

*
* Define global variables

*
Indices m1, ..., mil0;
Indices x1, ..., x10;

Functions gb, g;
CFunction ep(a);

Symbol 1ij;
Symbol z1,..., z10;

.global

* Give an explicit expression for D"2. The results are hardcoded
— later.

Symbol M;
Functions D1, D2, d;
Functions Pp, Pm;

Functions V,A, dA, dV;
CFunctions k;

* D
Local exprl = 1/M"2 * (g(ml) * D1(ml) * g(m2) * D1(m2));
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* Dbar
Local expr2 = 1/M"2 * (g(ml) * D2(ml1) * g(m2) * D2(m2));

* Give definition of D and D Bar
Id D1(x17?) = d(x1) - i * V(x1) + A(xl) * gb;
Id D2(x17) = d(x1) - i * V(x1) - A(x1l) * g5;

* Reorder Clifford Multiplication
repeat;

Id d(x17) * g(x27) = g(x2) * d(x1);
Id V(x17) * g(x27) = g(x2) * V(x1);
Id A(x17) * g(x27) = g(x2) * A(x1);

Id g(x17) * gb = - gb * g(x1);
Id A(x1?) * g5 = g5 * A(x1);
Id V(x17?) * g5 = gb * V(x1);
Id d(x1?) * g5 = gb * d(x1);

Id gb *x gb = 1;
endrepeat;

x Pull e”{ikx} through expression
Id d(x1?) = d(x1) + i * k(x1) * M;
Id i72 = -1;

* Write clifford multiplication using commutator and anticommutator
Id g(x17)*xg(x27) = d_(x1,x2) + 1/2 * (gx)*g(x2) - g(x2)*g(x1));
Id g(x17)*xg(x27)*d (x27)*d (x17) = g(x1)*g(x2)*d(x1)*d(x2);

* Take derivatives
repeat;

Id d(x17?) * A(x27)
Id d(x1?) * V(x27)
endrepeat;

dA(x1,x2) + A(x2) * d(xl1);
dv(xl,x2) + V(x2) * d(xl1);

* Print answer
Sum ml, ..., ml0;
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Bracket M,g, gb;
Print;

.store
Symbols s,t M;

*

* Calculate the Bardeen Anomaly
%

Functions Xa, Xb, Ya, Yb;

Set spacelnd0dd: ml,m3,mb5,m7,m9;
Set spacelndEven: m2,m4,m6,m8,ml0;

Functions Xal, ..., Xa4;

Functions Yal, ..., Ya4;

Functions Xbl, ..., Xb4;

Functions Yb1l, ..., Yb4;

Set gFields: Xal, ..., Xa4,Xbl, ..., Xb4, Yal, ..., Yad4, Ybl, ...,
— Yb4;

Functions gField;

Functions V, A, d;
Functions dA, dV;

Functions F,G;
CFunctions k;

*

* Expand Exp (Xa/M"2 + Ya/M) + Exp (Xb/M"2 + Yb/M)
*

Global expr = t/2 * gb * M"4 *x (1+

#do a = 1, 5
+ 1
#do b = 1, ‘a’
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* (Xa(spaceInd0dd[‘b’], spaceIndEven[‘b’])/M"2 + Ya(spaceInd0dd[‘b
< ’], spaceIndEven[‘b’])/M)

#enddo

/ fac_(‘a’)

#enddo

) +

t/2 *x gb *x M"4 x (1+

#do a =1, 5

+ 1

#do b

* (Xb(spaceInd0dd[‘b’], spaceIndEven[‘b’])/M"2 + Yb(spaceInd0dd[‘b
< ’], spaceIndEven[‘b’])/M)

#enddo

/ fac_(‘a’)

#enddo

)

Il
[y
-
-
)
-

* Consider only constant order in M
Id M~{-1} = 0;

* Write X = X1 + gb * X2 + g(mu) g(nu) X3(mu,nu) + gb g(mu)g(nu) X4
< (mu,nu). Same for Y

Id Xa(x1?, x27) = Xal(x1,x2) + gb * Xa2(x1,x2) + g(xl1) * g(x2)
— Xa3(x1,x2) + gb * g(x1) * g(x2) * Xad(xl, x2);

Id Ya(x1?, x27) = Yal(x1l,x2) + gb * Ya2(x1,x2) + g(x1l) * g(x2)
— Ya3(x1,x2) + gb * g(x1l) * g(x2) * Yad(xl, x2);

*

*

Id Xb(x17?, x27) = Xb1(x1,x2) + gb * Xb2(x1,x2) + g(x1l) * g(x2)
— Xb3(x1,x2) + gb * g(xl) * g(x2) * Xb4(xl, x2);

Id Yb(x1?, x27) = Yb1(x1,x2) + gb * Yb2(x1,x2) + g(xl) * g(x2)
— Yb3(x1,x2) + gb * g(x1l) * g(x2) * Yb4(xl, x2);

*

*

* Order gamma matrices

repeat;

Id gField?gFields * gb = gb * gField;

Id gField?gFields(x17) * gb = gb * gField(x1);

Id gField?gFields(x1?, x27) * gb = gb * gField(xl, x2);

*
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Id g(x1?) * gb = - g5 * g(x1);
Id gb * gb = 1;

Id gField?gFields * g(x17?) = g(xl) * gField;

Id gField?gFields(x1?) * g(x27) = g(x2) * gField(x1);

Id gField?gFields(x17, x27) * g(x37) = g(x3) * gField(x1, x2);
endrepeat;

* Fill in earlier results for Y

Id Yal(x17?7,x27) = 2*xd(x1)*k(x1)*i + 2%V (x1)*k(x1l);
Id Ya2(x1?7,x27) = 0;

Id Ya3(x1?7,x27) = 0;

Id Yad (x17,x27) = - A(x1)*k(x2)*i + A(x2)*k(x1)*1i;

Id Ybl(x17,x27) = 2*xd(x1)*k(x1)*i + 2%V (x1)*k(x1l);
Id Yb2(x17,x2?7) = 0;

Id Yb3(x17,x2?7) = 0;

Id Yb4(x17,x27) = A(x1)*k(x2)*1 - A(x2)*xk(x1)*i;

Id i72 = -1;

* Perform K integration

Id k(x1?) * k(x27) * k(x37) * k(x47?) = (d_(x1,x2)* d_(x3,x4) + d_(
— x1,x3)*% d_(x2,x4) + d_(x1,x4)* d_(x2,x3))/4;

Id k(x1?) * k(x27?) * k(x3?) = 0;

Id k(x1?) * k(x2?) = d_(x1,x2)/2;

Id k(x1?) = 0;

* Group gamma functions and remove odd gamma fields

Id gb * g(x17) * g(x27) * g(x37) * g(x47) * g(x57) * g(x67) * g(x7
— 7) * g(x87) = gb(x1,x2,x3,x4,x5,x6,x7,x8);;

Id g(x17) * g(x27) * g(x37) * g(x47) * g(xb?) * g(x67) * g(x77) * g
— (x87) = g(x1,x2,x3,x4,x5,x6,x7,x8);

Id gb * g(x17) * g(x27) * g(x37) * g(x47) * g(xb7) * g(x67) * g(x7

— 7) = 0;
Id g(x17) * g(x27) * g(x37) * g(x47?) * g(xb?) * g(x67) * g(x77) =
— 0;

136




11.1. Calculation of Bardeen Anomaly Andries Salm

Id gb * g(x17) * g(x27) * g(x37) * g(x47) * g(x567) * g(x67) = gb(xl
— ,x2,x3,x4,x5,x6) ;;

Id g(x17) * g(x27) * g(x37) * g(x47) * g(x67) * g(x67) = g(x1,x2,x3
— ,x4,x5,x6);

Id gb * g(x17) * g(x27) * g(x37) * g(x47) * g(xb7) = 0;

Id g(x17) * g(x27) * g(x37) * g(x4?) * g(x67) = 0;

Id gb * g(x1?7) * g(x27) * g(x37) * g(x47) = gb(x1,x2,x3,x4);

Id g(x17) * g(x27) * g(x37) * g(x47) = g(x1,x2,x3,x4);

Id gb * g(x17) * g(x27?) * g(x37) = 0;

Id g(x17) * g(x27?7) * g(x37) = 0;

Id gb * g(x17?) * g(x2?) = 0;

Id g(x1?) * g(x27) = g(x1,x2);

Id gb * g(x1?) = 0;

Id g(x17) = 0;

Id gb = 0;

* Now simplify gamma expressions

repeat;

Id g(7pll, x17,x17, 7pl2) = 4 * g(7pll, 7pl2);

Id gb(7pll, x17,x17, ?pl2) = 4 * gb(7pll, 7pl2);

1d g(?pll, x17,7pl2,x27,x17, ?pl3) = - g(?pll, x1,7pl2,x1,x2, ?7pl3)
<+ 2 % g(7pll, x2,7pl2,?pl3);

Id gb6(7pll, x17,7pl2,x27,x17, 7pl3) = - gb(7pll, x1,7pl2,x1,x2, 7
— pl3) + 2 * gb(7pll, x2,7pl2,7pl3);

endrepeat;

repeat;

Id gb(x17,x27) = 0;

Id gb(x17,x27,x37,x47) = 4 * ep(x1,x2,x3,x4)/t;
endrepeat;

* Fill in earlier results for X

Id Xal1l(x17,x2?7) = d(x1)*d(x1) - 2*xV(x1)*d(x1)*i - V(x1)*V(x1l) - A(
— x1)*A(x1) - dV(xl,x1)*1i;

Id Xa2(x17?7,x27) = - V(x1)*A(x1)*i + A(x1)*V(x1)*i + dA(x1,x1);

Id Xa3(x17?7,x27) = - 1/2xV(x1)*V(x2) + 1/2%V(x2)*V(x1l) - 1/2%A(x1)*A
— (x2) + 1/2%A(x2)*A(x1) - 1/2%dV(x1,x2)*i + 1/2*dV(x2,x1)*i;
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Id Xad (x17,x27) = - 1/2%V(x1)*A(x2)*1 + 1/2*%V(x2)*A(x1)*i - A(x1)x*d
— (x2) + 1/2%A(x1)*V(x2)*1i + A(x2)*d(x1) - 1/2%xA(x2)*V(x1)*i +
— 1/2*xdA(x1,x2) - 1/2*xdA(x2,x1);

Id Xb1(x17,x27) = d(x1)*d(x1) - 2*xV(x1)*d(x1)*i - V(x1)*V(x1l) - A(
— x1)*A(x1) - dV(xl,x1)*i;

Id Xb2(x17,x27) = V(x1)*A(x1)*i - A(x1)*V(x1)*i - dA(x1,x1);

Id Xb3(x17,x27) = - 1/2%V(x1)*V(x2) + 1/2x%V(x2)*V(x1l) - 1/2%xA(x1)*A
— (x2) + 1/2%A(x2)*A(x1) - 1/2*%dV(x1,x2)*1 + 1/2*%dV(x2,x1)*1i ;

Id Xbd(x17,x27) = 1/2+%V(x1)*A(x2)*1 - 1/2+%V(x2)*A(x1)*1i + A(x1)*d(
— x2) - 1/2%A(x1)*V(x2)*1i - A(x2)*d(x1)+ 1/2*A(x2)*V(x1)*i -
— 1/2%dA(x1,x2) + 1/2%xdA(x2,x1);

* Take derivatives

repeat;

Id d(x1?) * A(x27) dA(x1,x2) + A(x2) * d(x1);
Id d(x1?) * V(x27) dv(x1l,x2) + V(x2) * d(x1);
Id d(x1?) * dA(x27, x37) = dA(x2,x3) * d(x1);
Id d(x1?) * dV(x27, x37?) = dV(x2,x3) * d(x1);
endrepeat;

Id d(x1?) = 0;

* Rewrite in terms of Bardeen Curvatures

Id dA(x17,x27) = 1/2 * (G(x1,x2) + i * V(x1)*A(x2) - i *A(x2) * V(
— x1) + ixAD*V(x2) - 1 *V(x2) * A(x1));

Id dv(x1?,x27?) = 1/2 * (F(x1,x2) + i *V(x1)*V(x2) - 1 * V(x2) * V(
— x1) - 1% A(x1)*A(x2) + i *A(x2) * A(x1));

Id 172 = -1;

* Return result

Sum ml,...,ml0;
Bracket ep, g, g5;
Print;

.store;

.end
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