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1 Introduction

Generalized geometry has been introduced by Hitchin [26] in the early 2000s as the study
of geometric structures on exact Courant algebroids. These objects are essentially the
the double of the tangent bundle, that is the direct sum of the tangent and cotangent
bundles, but there is more structure on them. These structures are related to a closed
3-form H on the underlying manifold M that is

dH = 0.

This motivated the relation to Type II string theory where the bosonic field called the NS-
flux is a closed 3-form. Generalized complex geometry was further explored by Gualtieri
in his DPhil thesis [22] where he characterized solutions to Type II string theory with
extended N = 2 supersymmetry as generalized Kähler manifolds. Later T-duality was
also rephrased as an isomorphism of exact Courant algebroids in [7] by Cavalcanti and
Gualtieri.

The success of generalized geometry in Type II string theory inspired mathematicians
to try to find relations to heterotic string theory as well. In this case the NS-flux is still
a 3-form but it is not necessarily closed anymore, instead it is subject to the condition
known as the Bianchi identity

dH − α(tr(R∇ ∧R∇)− tr(F ∧ F )) = 0

where R∇ is the curvature of a metric connection ∇, F is the curvature of a principal
connection and α is a constant parameter. In 2009 Chen, Stienon and Xu characterized
a large class of Courant algebroids [8] and recovered the equation of the NS-flux as the
defining property of some Courant algebroids. These Courant algebroids are the exten-
sions of the double of the tangent bundle by some other bundles. In his DPhil thesis
Rubio described the geometry of a Courant algebroid which is the double of the tangent
bundle extended by a trivial line bundle [35]. Later Baraglia and Hekmati described
extensions by a more general class of vector bundles which they called heterotic Courant
algebroids [2]. They also extended the notion of T-duality to these objects corresponding
to the duality of heterotic strings. Most recently, Garcia-Fernandez, Rubio and Tipler
reformulated the defining equations of N = 1 supersymmetric heterotic string theory
to the language of generalized geometry [18] and showed that T-duals to solutions with
torus symmetry naturally arise in this framework. In this thesis we explore these recent
advancements towards understanding heterotic string theory in terms of generalized ge-
ometry.
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The thesis is structured in the following way.

Sections 2 and 3 serve as an introduction to Courant algebroids over a manifold M ,
which are vector bundles together with an inner product, a bilinear bracket and a bundle
map to the tangent bundle of M . The bracket is thought of as an nonskew-symmetric
analogue to the Lie bracket of vector fields. We present three examples: exact Courat
algebroids which are, as vector bundles, the double of the tangent bundle TM ⊕ T ∗M ,
the double of a Lie algebroid L which is analogously L⊕L∗ and finally heterotic Courant
algebroids. These are related to principal G-bundles P over M and as vector bundles
are given by

H ∼= TM ⊕ gP ⊕ T ∗M

where gP is the adjoint vector bundle of P and H denotes the heterotic Courant alge-
broid. The Courant algebroid structure on these objects is caracterized by a pair (H,A)
of a 3-form H on M and a principal connection A on P subject to the equation

dH − c(F ∧ F ) = 0 (1.0.1)

where c is a non-degenerate symmetric bilinear pairing on the Lie algebra g of G and F
is the curvature of A. These objects are going to be the main focus point of this thesis.
The equation 1.0.1 is basically a reformulation of the Bianchi identity which suggests
strong connection to heterotic string theory.

In Section 4 we describe a reduction procedure of exact Courant algebroids over a prin-
cipal G-bundle P → M called reduction via extended actions. Essentially we describe
a non-trivial way to lift the infinitesimal action of the Lie algebra g from the tangent
bundle TP to the exact Courant algebroid on P . This was first introduced in [5] as a way
to produce exact Courant algebroids on the base M from an exact Courant algebroid on
the total space P . Later in [2] it was realized that the non exact Courant algebroids ob-
tained via this reduction procedure are precisely the heterotic Courant algebroids giving
the following theorem.

Theorem 1.0.1. [2] Every heteoric Courant algebroid on a smooth manifold M is given
by reduction of an exact Courant algebroid E ∼= TP ⊕ T ∗P over a principal G-bundle
σ : P →M .

The proof of this statement is the topic of Section 5. First we show that specific
types of extended actions are classified by the same equation 1.0.1 as heterotic Courant
algebroids. Then we construct an explicit isomorphism between the reduced space and
the corresponding Courant algebroid. Furthermore, we classify the solutions of equation
1.0.1 as degree three cohomology classes called string classes and with this we have the
following theorem.

Theorem 1.0.2. Given a principal bundle P →M with compact, connected semisimple
structure group G there is a one-to-one correspondence between real string classes on P
and isomorphism classes of heterotic Courant algebroids on M .
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In Section 6 and 7 we build the analogue of Riemannian geomerty on Courant al-
gebroids. First we define generalized metrics and classify them on exact and heterotic
Courant algebroids. We also investigate how these structures behave under the reduction
defined in Section 4. Then we define generalized connections, torsion-free generalized
connections and also connections that are compatible with a generalized metric. We
introduce divergence operators which measure the trace of a generalized connection and
used to restrict the class of connections compatible with a metric. We will see that
unfortunately there is no analogue of the Levi-Civita connection of a generalized met-
ric as there are many torsion-free metric compatible generalized connections even after
fixing the divergence. Nevertheless, we construct a natural connection, which we call
the canonical Levi-Civita connection, that can be used as a reference point in the affine
space of Levi-Civita connections. Furthermore, we show that there are still operators
that only depend on a metric and a divergence operator. These are Dirac operators
acting on spinor bundles corresponding to the generalized metric.

Section 8 is about T-duality. We first describe the original formulation by Bouwknegt,
Evslin, Mathai and Hannabuss [3, 4] which relates to each other two principal torus
bundles over a common base endowed with degree 3 cohomology classes. Then we present
the results of Cavalcanti and Gualtieri [7] who reformulated T-duality as an isomorphism
between invariant sections of exact Courant algebroids. In [2] this construction was
extended to heterotic Courant algebroids via the reduction procedure of Section 4. We
present this construction and prove the following theorem.

Theorem 1.0.3. Let (P, h) be a pair of a principal G × T k-bundle over M and a T-
dualisable string class, and let (P̃ , h̃) be a T-dual pair of a G× T̃ k-bundle over M and a
degree 3 cohomology class. Then the T-dual class h̃ is again a string class and there is
an isomorphism of the corresponding simply-reduced heterotic Courant algebroids on M

ϕ : H/T k ∼= H̃/T̃ k.

In Section 9 we finally apply the theory we built in the previous sections to heterotic
string theory. We introduce the Strominger System which is the system of partial differ-
ential equations describing N = 1 supersymmetric solutions of the theory. We present
the result of Garcia-Fernandez, Rubio and Tipler who in [18] proved the following re-
markable theorem.

Theorem 1.0.4. A solution of the Strominger System in 6 dimensions is equivalent to
a heterotic Courant algebroid H together with a generalized metric, an element e ∈ H
given by an exact 1-form and a nowhere vanishing right-handed spinor η satisfying the
Killing spinor equations

De
+η = 0,

/D
e
−η = 0.

The operators in this equations are the unique operators that we have constructed in
Section 7 on the spinor bundle corresponding to the generalized metric and a divergence
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operator. The divergence operator that is used here is defined by the element e ∈ H and
the canonical Levi-Civita connection of the metric.

This theorem enables us to view the Strominger System as a natural structure on a
heterotic Courant algebroid. With this formulation it is clear that Courant algebroid
isomorphisms should take solutions to solutions. As in Section 8 we reformulated T-
duality as a Courant algebroid isomorphim it becomes clear that T-duality exchanges
solutions. On the other hand there are slight problems with this construction for example
the heterotic Buscher rules have not yet been fully reproduced from generalized geometry.
We discuss these problems and the proposed solutions at the end.
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2 Linear algebra

In this chapter we take a look at vector spaces that will become the local models of the
vector bundles we consider later. See [22] and [35] for more details.

2.1 The double of a vector space

Let V be a real vector space of dimension n. Exact generalized geometry is concerned
with the study of bundles that are locally V ⊕ V ∗ the double of V .

The vector space V ⊕ V ∗ has a natural inner product

〈X + ξ, Y + η〉 =
1

2
(ιXη + ιY ξ) =

1

2
(η(X) + ξ(Y )) X,Y ∈ V, ξ, η ∈ V ∗

of signature (n, n). There is also a natural orientation as the highest exterior power can
be decomposed as

∧2m(V ⊕ V ∗) = ∧mV ⊗ ∧m(V ∗).

Then one can define the mapping

∧mV ⊗ ∧m(V ∗)→ R
(u1 ∧ ... ∧ un)⊗ (u1 ∧ ... ∧ un) 7→ det(ui(uj))

and the natural orientation is given by bases that map to R+.

Equipped with these structures the double of V has symmetry group SO(n, n). The
Lie algebra of this group is given by

so(n, n) = {T ∈ End(V ⊕ V ∗)| 〈Tx, y〉+ 〈x, Ty〉 = 0 ∀x, y ∈ V ⊕ V ∗}.

Any T ∈ End(V ⊕ V ∗) can be written in a block matrix form

T =

(
A B
C D

)

where A : V → V , B : V ∗ → V , C : V → V ∗ and D : V ∗ → V ∗. Imposing the condition
T ∈ so(n, n) yields the restrictions

A∗ = −D B +B∗ = 0 C + C∗ = 0.
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Therefore we see that

so(n, n) = End(V )⊕ ∧2V ⊕ ∧2V ∗

=
{(A β

B −A∗

)∣∣∣A ∈ End(V ), B ∈ ∧2V ∗, β ∈ ∧2V
}
.

By exponentiating we can find some orthogonal symmetries of V ⊕ V ∗ that will be
important later.

• The B-transform for some B ∈ ∧2V ∗

exp(B) = 1 +B +
1

2
B2 + ... = 1 +B =

(
1 0
B 1

)
.

• Its dual notion the β-transform for some β ∈ ∧2V

exp(β) = 1 + β =

(
1 β
0 1

)
.

• For some A ∈ End(V ) we have that

exp(A) =

(
exp(A) 0

0 exp(A∗)−1

)

which defines a map from GL(V )+ into the identity component of SO(V ⊕ V ∗).

2.2 The extended double

Now we turn to the vector space H = V ⊕ g ⊕ V ∗ where g ∼= Rm endowed with a non-
degenerate inner product c of any signature. Of course these contain V ⊕V ∗ when m = 0
but considering non-zero g will be relevant to heterotic generalized geometry. There is
a natural non-degenerate pairing on H given by

〈X + s+ ξ, Y + t+ η〉 =
1

2
(η(X) + ξ(Y )) + c(s, t)

For X,Y ∈ V , ξ, η ∈ V ∗ and s, t ∈ g. There is again a possibility to orient H if an
orientation on g is chosen by orienting V ⊕ V ∗ ⊂ H as before.

The Lie algebra of orthogonal transformations is then given by

so(H) = {T ∈ End(H)| 〈Th1, h2〉+ 〈h1, Th2〉 = 0 ∀h1, h2 ∈ H}.

One can write any element as

T =

A B C
D E F
G H I


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with A : V → V , B : g→ V , C : V ∗ → V , D : V → g and so on.

Since T |V⊕V ∗ ∈ so(n, n) just as in the exact case we find

I = −A∗, C ∈ ∧2V, g ∈ ∧2V ∗.

Then taking s, t ∈ G, X ∈ V , ξ ∈ V ∗ we have

• 〈Ts, t〉+ 〈s, T t〉 = 0 ⇒ E ∈ so(g),

• 〈Ts,X〉+ 〈s, TX〉 = 0 ⇒ Hs = −2c(D., s),

• 〈Ts, ξ〉+ 〈s, T ξ〉 = 0 ⇒ Bs = −c(F., s).
Therefore T is of the form

T =

A −2c(F., .) C
D E F
G −2c(D., .) −A∗


and we have the decomposition

so(H) = End(V )⊕ ∧2V ⊕ ∧2V ∗ ⊕ so(g)⊕ (V ∗ ⊗ g)⊕ (V ⊗ g).

By exponentiation we obtain a new type of transformation unique to this case which we
call A-transform for some A : V → g

exp(A) =

 1 0 0
A 1 0

−c(A.,A.) −2c(A., .) 1

 .

Together with the B-transform from the exact case we have the (B,A)-transform acting
via

(B,A) = exp(B +A) = eBeA =

 1 0 0
A 1 0

B − c(A.,A.) −2c(A., .) 1

 .

These form a subgroup of SO(V ⊕G⊕ V ∗) with composition given by

(B,A) ◦ (B′, A′) = (B +B′ − c(A ∧A′), A+A′).

2.3 Clifford algebras and spinors

So far we have considered vector spaces together with non-degenerate inner products of
various signatures. In this section we recall some classical fats on Clifford algebras, spin
groups and the spin representation of the Lie algebra of the spin group.

Let E be now any vector space with nondegenerate inner product 〈·, ·〉 of dimension
n. Using the inner product we can define the Clifford algebra C`(E) of E as

C`(E) = ⊗•E/(u2 − 〈u, u〉),
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i.e. the free tensor algebra of E factored by the relations uv + vu = 2〈u, v〉. The spin
group sits inside C`(E) as

Spin(E) = {v1 · ... · v2k| k ≥ 0, vi ∈ E : 〈vi, vi〉 = ±1},

and it is the double cover of SO(E) via the map

ρ : Spin(E)→ SO(E)

ρ(x)(v) = x · v · x−1

where x ∈ Spin(E), v ∈ E and ” · ” is the Clifford multiplication. Since ρ is a covering
map its differential is an isomorphism

dρ : spin(E)→ so(E)

dρx(v) = x · v − v · x.

This isomorphism allows us to lift elements of so(E) ∼= ∧2(E) (via the inner product) to
the Clifford algebra. Let e1, ..., en be a basis of E and ẽ1..., ẽn a dual basis in E in the
sense that

〈ei, ẽj〉 = δij .

Then an element ẽi ∧ ej acts on E by

ẽi ∧ ej : ei 7→ ej ,

and zero otherwise. This element lifts to C`(E) as

ẽi ∧ ej ∈ so(E) 7→ 1

2
ej ẽi ∈ C`(E). (2.3.1)

Indeed, using the Clifford relations

1

2
(ej ẽi).ek =

1

2
(ej ẽiek − ekej ẽi)

=
1

2
(−ejekẽi + ekδik + ejekẽi + ejδik)

= δikej .

The spin group has a unique representation S which is of dimension 2m if the dimen-
sion of E is n = 2m or n = 2m+ 1. By differentiation we obtain the spin representation
of so(E). This representation is irreducible when n is odd and decomposes into two
irreducible components S = S+⊕S− when n is even which we call positive and negative
chirality half-spin representations.

Example. Let E = V ⊕ V ∗ with the natural inner product as in Section 2.1. In this
case V ⊕ V ∗ acts naturally on the exterior algebra S = ∧•V ∗ of forms via

(X + ξ)ϕ = ιXϕ+ ξ ∧ ϕ
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for X + ξ ∈ V ⊕V ∗ and ϕ ∈ ∧•V ∗. This action is compatible with the Clifford multipli-
cation. i.e.

(X + ξ)2ϕ = ξ(X) · ϕ

so it makes S into a Clifford-module. Restricting to so(V ⊕ V ∗) we find the spin rep-
resentation which decomposes into half-spin representations characterised by the parity
of degree

S = ∧evenV ∗ ⊕ ∧oddV ∗.
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3 Courant algebroids

In the previous section we have considered the double of a vector space V and described
some of its properties. Now we would like to consider the of the tangent bundle of a
manifold. This leads to the notion of exact Courant algebroids which were first defined
in [32].

We have extended the construction of a double vector space further by adding an
orthogonal Rm with its own non-degenerate pairing. We will define the global version of
this construction as well which leads us to heterotic Courant algebroids introduced by
Baraglia and Hekmati in [2]. Structures in the case of m = 1 were further explored by
Rubio in his DPhil thesis [35] which also provided guidelines to the calculations.

Let M be a smooth real manifold of dimension n and TM its tangent bundle. To
motivate Courant algebroids let us consider the bundle TM ⊕ T ∗M on M . Similarly to
the linear case we have a non-degenerate inner product of split (n, n) signature

〈X + ξ, Y + η〉 = ξ(Y ) + η(X),

where now X,Y ∈ Γ(TM) are vector fields and ξ, η ∈ Ω1(M) are 1-forms.

We also have a natural projection π : TM⊕T ∗M → TM to the first coordinate which
is a smooth bundle-map and we call it the anchor.

In the case of the tangent bundle sections act on themselves via the Lie bracket of vec-
tor fields. It turns out that there is a generalization of this bracket on the double bundle
TM ⊕T ∗M which restricts to the Lie bracket on vector fields via the anchor map π. An
skew-symmetric bracket was first defined by Courant in [9], then a nonskew-symmetric
version by Dorfman [10]. The two brackets encode the same data and called either
Courant or Dorfman brackets. In this thesis we are always considering the nonskew-
symmetric form and refer to it as the Dorfman bracket but inconsistencies may occur.
In defining the bracket we are following the treatment in [30] where the not nonskew-
symmetric bracket is derived in the same manner as the Lie bracket of vector fields
utilising actions on the differential forms.

On a smooth manifold M vector fields act on the graded exterior algebra of differential
forms via the interior product

X.ϕ = ιXϕ X ∈ Γ(TM), ϕ ∈ Ω•(M).

The interior product is a degree -1 operator and we also have the exterior differential d
acting on Ω•(M) which is of degree +1. The Lie bracket of two vector fields X, Y then
defined as the unique section of TM satisfying

ι[X,Y ].ϕ = [LX , ιY ].ϕ = [[ιX , d], ιY ].ϕ ∀ϕ ∈ Ω•(M).
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The commutators are meant to be supercommutators of operators

[A,B] = A ◦B − (−1)|A|·|B|B ◦A,

where |A| denotes the degree of the operator A.

To generalize the bracket notice that TM ⊕ T ∗M also acts on forms via the Clifford
action

(X + ξ).ϕ = ιXϕ+ ξ ∧ ϕ,

which is the smooth version of the action we saw in Section 2.3. One can then define the
Dorfman bracket of two sections e1, e2 ∈ Γ(TM ⊕ T ∗M) as the unique section satisfying

[e1, e2].ϕ = [e1, [d, e2]].ϕ.

Here, although the action of TM ⊕T ∗M has mixed degree, both parts are of odd degree
therefore [d, e1] = d ◦ e1 + e1 ◦ d. Writing out the action one finds

[X + ξ, Y + η] = [X,Y ] + LXη − ιY dξ

where X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M).

The 4-tuple (T ⊕ T ∗, 〈·, ·〉, [·, ·], π) is the first example of a Courant algebroid. These
objects were axiomatized by Liu, Weinstein and Xu in [32] for the skew-symmetrized
version of the bracket. The following definition has been reformulated in terms of the
nonskew-symmetric Dorfman bracket.

Definition 3.0.1. A Courant algebroid E over a manifoldM is a 4-tuple (E, 〈·, ·〉, [·, ·], π),
where E →M is a vector bunlde, 〈·, ·〉 is a fibrewise non-degenerate symmetric bilinear
pairing, [·, ·] is a bilinear bracket on the smooth sections Γ(E) and π : E → TM is
a smooth bundle map called the anchor such that the following axioms hold for all
e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M):
C1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]]
C2) π([e1, e2]) = [π(e1), π(e2)]
C3) [e1, fe2] = π(e1)(f)e2 + f [e1, e2]
C4) π(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉
C5) [e1, e1] = D〈e1, e1〉
where the bracket in C3) on the right hand side is the Lie bracket of vector fields and
in C5) D = 1

2π
∗ ◦ d : C∞(M)→ Γ(E) (using 〈·, ·〉 to identify E and E∗).

We will sometimes denote a courant algebroid E simply by E when it does not cause
confusion. We say that a Courant algebroid E is transitive if the anchor π : E → TM is
surjective and that it is exact if it fits into the short exact sequence of vector bundles

0 T ∗M E TM 0.
1
2
π∗ π

Clearly TM ⊕ T ∗M is an exact Courant algebroid over M .

To understand these objects more one can try to describe the inner morphisms (sym-
metries) that preserve the structures.
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Definition 3.0.2. An automorphism of E covering the diffeomorphism ϕ : M → M is
a bundle automorphism F : E → E covering the diffeomorphism ϕ such that

1. ϕ∗〈F., F.〉 = 〈., .〉 i.e. F is orthogonal,

2. [F., F.] = F [., .] i.e. F is bracket preserving,

3. ϕ∗ ◦ π = π ◦ F i.e. F is compatible with the anchor.

The group of automorphisms of E is denoted by Aut(E).

Note that the first two confitions already imply compatibility with the anchor via
axiom C4).Clearly,

π(Fe1)〈Fe2, Fe3〉 = 〈[Fe1, F e2], F e3〉+ 〈Fe2, [Fe1, F e3]〉 (C4)

= 〈F [e1, e2], e3〉+ 〈Fe2, F [e1, e3]〉 (2.)

= (ϕ∗)−1(〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉) (1.)

= (ϕ∗)−1(π(e1)〈e2, e3〉) (C4)

= (ϕ∗πe1)(ϕ∗)−1〈e2, e3〉
= (ϕ∗πe1)(〈Fe2, Fe3〉). (1.)

The infinitesimal symmetries of a Courant algebroid are given by considering the
tangent space of Aut(E) at the identity yielding the following definition.

Definition 3.0.3. The Lie algebra of derivations of E is given by linear first order
diffenential operators DX acting on Γ(E) covering vector fields X ∈ Γ(TM) such that

1. X〈., .〉 = 〈DX ., .〉+ 〈., DX .〉,
2. DX [., .] = [DX ., .] + [., DX .].

We denote the derivations of E by Der(E), which is a Lie algebra by the usual commu-
tator of differential operators.

3.1 Exact Courant algebroids

Recall, that an exact Courant algebroid on a manifold M is a Courant algebroid E fitting
into the short exact sequence

0 T ∗M E TM 0.
1
2
π∗ π

and the most straightforward example was given by the direct sum TM ⊕T ∗M together
with the natural pairing and the Dorfman bracket

[X + ξ, Y + η] = [X,Y ] + LXη − ιY dξ

derived in the previous section.

16



Exact Courant algebroids are just a slight generalization of TM⊕T ∗M as an isotropic
splitting s : TM → E of the sequence

0 T ∗M E TM 0
1
2
π∗ π

renders E isomorphic to TM⊕T ∗M and the pairing becomes the natural pairing. When-
ever we talk about a splitting of E we mean an isotropic splitting s of the above sequence.
Splittings always exist as the inner product has split signature since the image of T ∗M
is isotropic.

Such a splitting s : TM → E not only defines an isomorphism E ∼= TM ⊕ T ∗M but
also a closed 3-form H ∈ Ω3(M) via

H(X,Y, Z) = 〈[s(X), s(Y )], s(Z)〉 ∀X,Y, Z ∈ Γ(TM).

Different isotropic splittings of E are globally related by 2-forms B ∈ Ω2(M) which
change H by an exact 3-form. Therefore the cohomology class of H is independent
of the splitting and it also characterises exact Courant algebroids. The class of H in
H3(M,R) is called the Ševera class of E [37].

In the split description of E ∼= TM ⊕ T ∗M the bracket is twisted by the 3-form H
and takes the form

[X + ξ, Y + η]H = [X,Y ] + LXη − ιY dξ + ιY ιXH.

From the split point of view the H-twisted Dorfman bracket can be derived the same
way as the untwisted bracket by swiching the exterior derivative to the H-twisted version
dH = d−H∧ [30].

The automorphism group of an exact Courant algebroid E is captured in the following
two propositions which follow the treatment of [22].

Proposition 3.1.1. Let F : E → E be a vector bundle isomorphism covering the identity
on M that is orthogonal with respect to the inner product and preserves the anchor, i.e.
∀e1, e2 ∈ Γ(E)

1. 〈e1, e2〉 = 〈Fe1, Fe2〉
2. π(e1) = π ◦ F (e1).

Then F is a B-transform for some B ∈ Ω2(M).

Proof. Consider a splitting E ∼= TM ⊕ T ∗M . Then F can be written in a block matrix
form

F =

(
A B
C D

)
.

In the splitting the anchor is just projection to the first component. Therefore consid-
ering e1 = X for some X ∈ Γ(TM) and e1 = ξ for ξ ∈ Γ(T ∗M) by (2.) above we find
that F is of the form

F =

(
1 0
C D

)
.
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Where 1 denotes id : TM → TM . Enforcing orthogonality first for e1 = X and e2 = Y
for all X,Y ∈ Γ(TM) yields C+C∗ = 0 i.e. C ∈ Ω2(M). Then taking e1 = e2 = X+ξ for
any X ∈ Γ(TM) and ξ ∈ Γ(T ∗M) we find that D = id : T ∗M → T ∗M . Consequently,
F = eC for C ∈ Ω2(M).

On the other hand, such a B-field transform does not necessarily preserve the Dorfman
bracket. If E ∼= TM ⊕ T ∗M is equipped with the H-twisted bracket we have

[eB(X + ξ), eB(Y + η)]H =[X + ξ + ιXB, Y + η + ιYB]H

=[X + ξ, Y + η]H + dιXιYB − ιY dιXB + ιXdιYB

=[X + ξ, Y + η]H + ιY ιXB + ι[X,Y ]B

=eB[X + ξ, Y + η]H+dB.

Therefore eB is an automorphism of the exact Courant algebroid E if and only if B is
closed. With this we are ready to describe Aut(E).

Proposition 3.1.2. The automorphism group Aut(E) of a Courant algebroid is a semidi-
rect product fitting into the following short exact sequence

1→ Ω2
cl(M)→ Aut(E)→ Diff[H](M)→ 1.

Where Diff[H](M) is the subgroup of diffeomorphisms of M preserving the Severa class

of E and Ω2
cl(M) is the space of closed 2-forms on M .

Proof. Let F be an automorphism of E covering the diffeomorphism ϕ. Consider a
splitting E ∼= TM ⊕T ∗M with the bracket twisted by H ∈ Ω3(M). There is a canonical
lift of ϕ to TM ⊕T ∗M via ϕ̃ = ϕ∗+(ϕ∗)−1 which is not an automorphism but preserves
the inner product, is compatible with the anchor and changes the bracket via

[ϕ̃(X + ξ), ϕ̃(Y + η)]H = [ϕ∗X,ϕ∗Y ] + Lϕ∗X(ϕ−1)∗η − ιϕ∗Y d(ϕ−1)∗ξ + ιϕ∗Y ιϕ∗XH

= ϕ∗[X,Y ] + (ϕ−1)∗LXη − (ϕ−1)∗ιY dξ + (ϕ−1)∗ιY ιXϕ
∗H

= ϕ[X + ξ, Y + η]ϕ∗H .

Then ϕ̃−1F is a fibre preserving orthogonal transformation of E that also preserves the
anchor. Therefore by Proposition 3.1.1 it must be a B-transform for some B ∈ Ω2(M)
changing the bracket via

[eBe1, e
Be2]H = eB[e1, e2]H+dB.

Finally as F = ϕ̃eB we must have dB = H − ϕ∗H, and hence

Aut(E) = {(ϕ,B) ∈ Diff[H](M)× Ω2(M)| dB = H − ϕ∗H}.

With this result one can describe Aut(E) in a splitting independent way as in the propo-
sition.
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The Lie algebra Der(E) of infinitesimal symmetries is obtained by differentiating one
parameter families of automorphisms around the identity. Since these are by definition
homotopic to the identity they always preserve the cohomology class [H]. Let {Ft} =
{etBϕ̃t} be such a family with X ∈ Γ(TM) the vector field associated to {ϕt} ⊂ Diff(M).
Consider a splitting of E with the Dorfman bracket twisted by H. Then

d

dt

∣∣∣
t=0

etBϕ̃t(Y + η) =
d

dt

∣∣∣
t=0

(ϕt)∗Y + (ϕ−t)
∗η + ι(ϕt)∗Y tB

=LX(Y + η) + ιYB.

Moreover, the constraint ϕ∗tH −H = t · dB becomes LXH = dB and we have

Der(E) = {(X,B) ∈ Γ(TM)× Ω2(M)| LXH = dB}.

Consequently we obtain the following splitting independent description of Der(E).

Proposition 3.1.3. The Lie algebra of derivations Der(E) is an abelian extension of
the Lie algebra Der(TM) fitting into the short exact sequence

0→ Ω2
cl(M)→ Der(E)→ Der(TM)→ 0

where Der(TM)[H] is the space of vector fields corresponding to 1-parameter groups of
diffeomorphisms preserving the cohomology class [H] ∈ H3(M,R).

Similarly to the case of vector fields Γ(E) acts on itself via the adjoint action as a
derivation. On the other hand, in this case the map Γ(E)→ Der(E) is neither injective
nor surjective. Instead its image is described by the following proposition.

Proposition 3.1.4. The adjoint action of Γ(E) via the Dorfman bracket fits into the
following exact sequence

0 Ω1
cl(M) Γ(E) Der(E) H2(M,R) 0.

1
2
π∗ ad χ

Proof. Recall that in a certain splitting

[X + ξ, Y + η]H = [X,Y ] + LXη − ιY dξ + ιY ιXH.

Clearly, ad(X + ξ) = 0 if and only if X = 0 and dξ = 0. In the previous proposition
we saw that Der(E) consists of ordered pairs (X,B) acting via the Lie derivative and
contraction satisfying dB = LXH. Therefore we may define

χ(X,B) = [ιXH −B] ∈ H2(M,R).

The map is well defined since H is closed therefore d(ιXH − B) = LXH − dB = 0 and
surjective since we may chose B ∈ Ω2(M) arbitrarily. The kernel of χ then consists of
(X,B) such that ιXH −B = dξ which act via

(X,B).(Y + η) = LX(Y + η) + ιYB

= [X,Y ] + LXη − ιY dξ + ιY ιXH

= [X + ξ, Y + η],

which proves the exactness of the sequence.
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3.2 The double of a Lie algebroid

Another important type of Courant algebroids generalize further the notion of an exact
Courant algebroid by replacing TM with a more general structure, a Lie algebroid.

Definition 3.2.1. A Lie algebroid over a smooth manifold M is a vector bundle L→M
together with a skew-symmetric bilinear bracket [·, ·] acting on the smooth sections of L
and a smooth bundle map π : L→ TM called the anchor so that for all e1, e2, e3 ∈ Γ(L)
and f ∈ C∞(M):
L1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]]
L2) π([e1, e2]) = [π(e1), π(e2)]
L3) [e1, fe2] = π(e1)(f)e2 + f [e1, e2]
A Lie algebroid is called regular if the anchor has constant rank and it is called transitive
if the anchor is surjective.

Definition 3.2.2. Let (L, [·, ·], π) be a Lie algebroid. Then the automorphism group
Aut(L) of L consists of vector bundle automorphisms F : L → L covering diffeomor-
phisms ϕ : M →M such that for all e1, e2 ∈ Γ(L)
i.) [Fe1, Fe2] = F [e1, e2]
ii.) π ◦ F = ϕ∗ ◦ π.

Example. The tangent bundle TM of a smooth manifold M is a Lie algebroid to-
gether with the Lie bracket and the identity map as the anchor. Its automorphism group
is Diff(M), where ϕ ∈ Diff(M) acts on the fibres via the pushforward ϕ∗.

In this thesis we assume every Lie algebroid to be transitive as we only work with
transitive Courant algebroids, although most of the results hold for more general classes
of Lie algebroids as well, e.g. for regular ones.

On a Lie algebroid (L, [·, ·], π) one can build differential calculus of tensors in parallel
to the one on the tangent and cotangent bundle of a smooth manifold. Here we follow
closely [34] but we omit the proofs. There is a natural notion of a Lie derivative LLX
with respect to a section X of L. On smooth functions f ∈ C∞(M) it is defined via the
anchor as

LLXf = ιπ(X)df ∈ C∞(M),

and on sections Y of L it is defined using the bracket

LLX(Y ) = [X,Y ].

These definitions then define the action of LLX on any mixed degree tensor T ∈ L⊗k ⊗
(L∗)⊗l via the Leibniz rule.

One can also consider Lie algebroid differential forms which are just smooth sections of
the graded exterior algebra of L∗ which we denote by Ω•(M,L). The Lie derivative then
defines a Lie algebroid exterior derivative dL : Ωk(M,L)→ Ωk+1(M,L) via the usual
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definition, i.e. if ω ∈ Ωk(M,L) and X0, ..., Xk ∈ Γ(L) then

dLω(X0, ..., Xk) =

k∑
i=0

(−1)iLLXi
ω(X0, ..., X̂i, ..., Xk)

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj ], X0, ..., X̂i, .., X̂j , .., Xk),

where the hat means that we omit that vector field.

The new differential dL and Lie derivative LL satisfy the usual Cartan formula when
acting on Lie algebroid differential forms

LLX = ιXdL + dLιX .

It can be shown that dL ◦ dL = 0, hence one can build the Lie algebroid cohomology
complex H•(L) which is the analogue of the de Rham cohomology of a manifold.

Clearly for any Lie algebroid the bundle L⊕L∗ carries a natural non-degenerate pairing
of split signature. It also carries a bracket derived using the Lie-algebroid differential dL
and the action of L ⊕ L∗ on Ω•(M,L) analogously to the exact case [30]. The bracket
takes the familiar form

[X + ξ, Y + η] = [X,Y ]L + LLXη − ιY dLξ.

Together with the anchor map π : L⊕L∗ → L→ TM induced by the anchor π of L the
vector bundle L⊕ L∗ becomes a Courant algebroid.

Similarly to the exact case, one can then define twisted versions of L ⊕ L∗ by the
Courant algebroid E that fits into the short exact sequence

0 L∗ E L 0.
1
2
ρ∗ ρ

We call such Courant algebroids double Lie algebroids. By an isotropic splitting of E we
mean an isotropic splitting of the above sequence.

By the same arguments as in the exact case such splittings give rise to closed Lie
algberoid 3-forms H ∈ Ω3(M,L) and the space of two forms Ω2(M,L) acts on the
splittings tranditively changing H to H + dB. Therefore, these Courant algebroids are
characterized by degree 3 cohomology classes h ∈ H3(L) which we also call the Ševera
class of E [37].

The automorphism group of such a Courant algebroid is not as easy to describe as in
the exact case. The Lie algebroid L in general has a large automorphism group which
could be hard to describe and relate to the diffeomorphisms of M . Moreover, the anchor
has kernel in L there could be fibre preserving automorphisms of E that are more than
just B-transforms for some dL-closed B ∈ Ω2(M,L).

Nevertheless, automorphisms of L still lift to orthogonal vector bundle automorphism
of E ∼= L ⊕ L∗ preserving the anchor. If ϕ ∈ Aut(L) then ϕ̃ = ϕ + (ϕ−1)∗ changes the
Dorfman bracket in the usual way

[ϕ̃ , ϕ̃ ]H = ϕ̃[ , ]ϕ∗H .
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The B-transforms generalize to this setting as well, so we have the following propositions
whose proofs are analogous to the exact case.

Proposition 3.2.1. The automorphism group of the Courant algebroid E corresponding
to a transitive Lie algebroid L contains a subgroup of Aut0(E) that fits into the short
exact sequence

0 Ω2
cl(M,L) Aut0(E) Aut(L) 0.

The group Aut0(E) contains the automorphisms that preserve the projection to L in the
short exact sequence 0→ L∗ → E → L→ 0.

Sections of E still act as derivations via the adjoint action, and the kernel of the map
still consists of the closed Lie-algebroid 1-forms. We find the following generalization of
the exact statement.

Proposition 3.2.2. The Lie subalgebra Der0(E) of Der(E) generated by infinitesimal
automorphisms in Aut0(E) fits into the exact sequence

0 Ω1
cl(M,L) Γ(E) Der0(E) H2(L) 0.

1
2
π∗ ad

3.3 Heterotic Courant algebroids

A third example of transitive Courant algebroids called heterotic Courant algebroids are
related to principal bundles and were defined by Baraglia and Hekmati in [2]. As all
of our examples before these are a special case of so called regular Courant algebroids
classified by Chen, Stienon and Xu [8].

Principal bundles and the Atiyah algebroid

First, let us recall some background knowledge on principal bundles and its Atiyah
algebroid. Most of these facts can be found in classic books on the topic, we refer
to Kobayashi and Nomizu [29] for basics of principal bundles and Mackenzie [33] for
statements regarding Lie algebroids.

In this thesis principal bundles have a right action. We assume that the principal
bundles have compact connected semisimple structure groups G and that there is a non-
degenerate G-invariant symmetric bilinear pairing c on g (e.g. the Killing-form). The
Lie bracket on the Lie algebra g is defined as as the Lie bracket of left invariant vector
fields on G for sign convention.

Let π : P → M be a principal G-bundle. The fundamental vector fields on P are
defined as

ψ : g → Γ(TP ) = V ect(TP )

ψ(x)|p =
d

dt

∣∣∣
t=0

p. exp(tx).
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The map ψ is called the infinitesimal action of g. With our sign convention ψ is a Lie
algebra homomorphism from g to the Lie algebra of vector fields V ect(TP ), i.e. we have

ψ([x, y]) = [ψ(x), ψ(y)] = Lψ(x)ψ(y).

The fundamental vector fields span the vertical subbundle of TP which consists of vec-
tors that are in the kernel of π∗.

Atiyah algebroids. The action of G on P lifts naturally to the tangent bundle TP → P
by differentiation. For X ∈ TP and g ∈ G

(g.X)|pg = (Rg)∗(X|p)

where Rg denotes the right action of g on P . A vector field is called invariant whenever

(Rg)∗X = X.

Definition 3.3.1. Let π : P →M be a principal G bundle. Then the Atiyah algebroid
corresponting to P is the vector bundle A = TP/G over M = P/G.

Proposition 3.3.1. [21] The Atiyah algebroid of P is a Lie algebroid over M with
surjective anchor induced by π∗ : TP → TM . Moreover A fits into the short exact
sequence of Lie algebroids

0 gP A TM 0
j π

where gP is the vector bundle associated to the adjoint representation of G.The sequence
is called the Atiyah sequence corresponding to the principal bundle P .

Proof. Firstly, sections of A = TP/G can be identified with G-invariant sections of TP .
The Lie bracket of G-invariant vector fields is again G-invariant hence it induces a well
defined skew-symmetric bracket satisfying the Jacobi identity on sections of A. The
bracket is also compatible with π∗, therefore (A, [·, ·], ρ) becomes a Lie algebroid with
the anchor induced by π∗.

Clearly the anchor is surjective, so it only remains to show that ker(ρ) ∼= gP . At a
point p ∈ P the subspace ker(π∗)|p is isomorphic to g via the map that sends x ∈ g to
the fundamental vector ψ(x)|p corresponding to x at the point p.

The fundamental vector fields are not G-invariant for the action of G on TP but as
we saw satisfy ψ([x, y]) = [ψ(x), ψ(y)] which if we integrate for y becomes

(Rg)∗ψ(x)|p = ψ(Ad(g−1)x)|g.p.

Therefore, using the isomorphism ker(π∗) ∼= g, taking the quotient by the action of G
accounts for the identification (p, x) ∼ (g.p, Ad(g−1)x) which is precisely the definiton
of gP .

The statement that the map A → TM is compatible with the bracket follows from
the fact that every invariant vector field X on P induces a vector field π∗X on M and
hence π∗[X,Y ] = [π∗X,π∗Y ].
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A differential form ω on P is called invariant if R∗gω = ω for all g ∈ G. The space

of invariant differential forms is denoted by Ω•(P )G. Sections of the Atiyah algebroid
are identified with G-invariant sections of TP and hence the Atiyah sequence induces a
filtration of Ω•(P )G

Ω•(M) = F0 ⊂ F1 ⊂ ... ⊂ Fm = Ω•(P )G (3.3.1)

where F i = Ann(∧i+1g) and m is the dimension of g.

Connections. A connection 1-form on the principal bundle P is an equivariant Lie-
algebra valued 1-form A ∈ Ω1(P, g) meaning that

R∗gA = Ad(g−1)A ∀g ∈ G,

where Ad is the adjoint action of G on the Lie algebra, such that

ιψ(x)A = x ∀x ∈ g.

By equivariance a connection 1-form descends to a right splitting of the Atiyah sequence.
In particular A(j(x)) = x holds for all x ∈ g as well.

A connection on P can also be thought of as a choice of G-invariant horizontal distri-
bution H of TP . More precisely for all g ∈ G and p ∈ P

(Rg)∗Hp = Hgp

and for all X ∈ Γ(TM) there is a unique G-invariant XH ∈ Γ(H) such that

ιXHA = 0 and π∗X
H = X.

This viewpoint gives the right splitting of the Atiyah sequence via X 7→ XH correspond-
ing to the left splitting given by A.

Given a connection A ∈ Ω1(P, g) the Atiyah sequence splits A ∼= gP ⊕ TM . Then we
can identify sections of A with G-invariant sections of TP which can be written as

TM ⊕ gP → TP

X + s 7→ XH + j(s) = XH + s

where XH is the horizontal lift and j is the map from the Atiyah sequence. We omit j
in the notation later, although one has to be careful with signs which we will point out
later.

A connection form A on P turns the filtration 3.3.1 of invariant differential forms into
a decomposition. At degree k it is given by

Ωk(P )G =

k⊕
i=0

Ωi(M,∧k−ig).
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Therefore, if A = Aiei in some basis {ei} of g, any invariant differential k-form ω can be
written as

ω = ω0 + ω1
iA

i +
1

2
ω2
ijA

ij + ...+
1

k!
ωki1..ikA

i1...ik

where Ai1...ik = Ai1 ∧ ...∧Aik , and ωji1..ij are basic forms of degree k− j, i.e. pullbacks of
forms on M via π. The numerical factors are just a case of convention, sometimes they
make calculations cleaner.

Curvature. The curvature 2-form of a connection A is given by

F = dA+
1

2
[A,A],

where [A,A] is a Lie algebra valued 2-form obtained by wedging the 1-form part of A
and taking the Lie-bracket of the components in g. The curvature is a basic form and it
measures the failure of the horizontal distribution to be involutive for the Lie bracket,
i.e. for X,Y ∈ Γ(TM)

F (X,Y ) = [X,Y ]H − [XH , Y H ].

Induced connection and bracket. For any transitive (or regular) Lie algebroid
(L, [·, ·], ρ) sections of the kernel of the anchor K = ker(ρ) carry a Γ(L)-module structure.
Given a ∈ Γ(L) and b ∈ Γ(K) we have

a.b = [a, b].

Clearly [a, b] ∈ Γ(K) as the bracket is compatible with the anchor.

The action of the Atiyah algebroid A on the kernel gP is related to G-connections on
gP and principal connections on P . If A is a principal connection on P , we may define
a G-connection on gP via

∇Xs = [XH , s]A,

for X ∈ TM and s ∈ gP and XH is the horizontal lift of X. It turns out that the
connection defined this way is precisely the connection on gP associated to A via the
usual construction.

Moreover, the bracket [·, ·] restricted to ker(π∗) ∼= gP is related to the Lie bracket of g.
We defined the Lie bracket of g via left invariant vector fields on G, so the infinitesimal
action ψ would become a Lie algebra homomorphism. On the other hand, the map
j : g → TP mapping to invariant vector fields is a Lie algebra homomorphism if one
defines the bracket of g via right invariant vector fields, so in our convention we have

j[x, y] = −[jx, jy].

We will try to keep track of this sign by omitting j but always writing out ψ.
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Consequently, in the splitting induced by the connection A, the bracket on the Atiyah
algebroid then becomes

[X + s, Y + t]A = [XH + s, Y H + t]P

= [XH , Y H ] + [XH , t]− [Y H , s]− [s, t]

= [X,Y ]H − F (X,Y ) +∇Xt−∇Y s− [s, t].

The invariant pairing c on g defines an invariant bilinear pairing on the fibres of gP as
well. This extra structure is captured in the following definition.

Definition 3.3.2. A quadratic Lie algebroid over a manifold M is a transitive (or regu-
lar) Lie algebroid (L, [·, ·], ρ) together with a non-degenerate symmetric bilinear pairing
〈·, ·〉 on the kernel of the anchor K = ker(ρ) which respects the module structure on K,
i.e. for all a ∈ Γ(L) and b, c ∈ Γ(K) we have

ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉.

It is clear now that the G-invariant pairing c on g makes A into a quadratic Lie
algebroid.

Heterotic Courant algebroids

With the above preparation, we are ready to define our third example of a Courant
algebroid which will become the main focus of this thesis. In the discussion we follow
[2] and [15]. Let (H, [·, ·], 〈·, ·〉, π) be a transitive Courant algebroid over the smooth
manifold M . As the anchor π : H → TM is surjective, dualising it we obtain an
injection π∗ : T ∗M → H. Then H/T ∗M becomes a Lie algebroid over TM with the
Dorfman bracket. The pairing induces a non-degenerate pairing on the kernel of the
induced anchor which turns H/T ∗M into a quadratic Lie algebroid.

Definition 3.3.3. [2] A transitive Courant algebroid (H, [·, ·], 〈·, ·〉, π) is called a heterotic
Courant algebroid if H/T ∗M is isomorphic as a quadratic Lie algebroid to the Atiyah
algebroid correspondig to a principal G-bundle P with a symmetric non-degenerate
pairing c on its Lie algebra g.

If H is a heterotic Courant algebroid, then let K be the kernel of the anchor π which
is a smooth subbundle of H as π is of constant rank. Given that H/T ∗M ∼= A for some
principal bundle P we have the following two short exact sequences of vector bundles

0 K H TM 0π

0 T ∗M K gP 0.π∗

A splitting of H is an isotropic right splitting λ : TM → H of the first sequence above.
A splitting λ then splits the second sequence as well via the restriction of the projection
σ : H → H/T ∗M ∼= A to the subspace λ(TM)⊥

σ|−1
λ⊥

: gP ∼= K ∩ λ(TM)⊥.
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Note that a splitting also induces a splitting of the Atiyah algebroid and therefore defines
a connection on the principal bundle P .

Isotropic right splittings of the first sequence always exist, therefore heterotic Courant
algebroids are of the form

Ψs : TM ⊕ gP ⊕ T ∗M ∼= H
X + s+ ξ 7→ λ(X) + σ|−1

λ⊥
s+ π∗ξ.

Then the anchor and pairing is given by

π(X + s+ ξ) = X

〈X + s+ ξ, Y + t+ η〉 =
1

2
(ξ(Y ) + η(X)) + c(s, t).

Different isotropic splitting induce different isomorphisms. Let λ′ be another isotropic
splitting, then clearly

λ′ − λ : TM → K ∼= T ∗M ⊕ gP

so let A : TM → gP and B : TM → T ∗M and write λ′ as

λ′(X) = λ(X) + σ|−1
λ⊥
A(X) + π∗B(X).

Since the image of λ′ is isotropic we find that for all X,Y ∈ TM

c(A(X), A(Y )) + ιXB(Y ) + ιYB(X) = 0.

Therefore B′ = B−c(A.,A.) is skew symmetric in X,Y and we can write λ′ for a suitable
A ∈ T ∗M ⊕ gP and B ∈ Ω2(M) as

λ′(X) = λ(X) + σ|−1
λ⊥
A(X) + π∗(ιXB − c(A(X), A.)).

From this description we see that the change of a splitting amounts to a global (B,A)-
transform of TM⊕gP ⊕T ∗M i.e. that isomorphic splittings are an affine space modelled
on the vector space

Ω2(M)⊕ Ω1(M, g).

It is clear that the Dorfman bracket restricted to A is the bracket of the Atiyah
algebroid. The remaining parts of it were characterized in [8] which we summarize in
the following proposition.

Proposition 3.3.2. [8] Given a heterotic Courant algebroid H on M and a splitting of
it H ∼= TM ⊕ gP ⊕ T ∗M determined by a principal connection A on P , there exist a
3-form H ∈ Ω3(M) such that the following hold.

1. The Dorfman bracket in the splitting is given by

[X + s+ ξ, Y + t+ η]H = [X,Y ]− F (X,Y ) +∇Xt−∇Y s− [s, t]

+ LXη − ιY dξ + ιY ιXH

+ 2c(t, ιXF )− 2c(s, ιY F ) + 2c(∇s, t).

where X,Y ∈ Γ(TM), s, t ∈ Γ(gP ), ξ, η ∈ Γ(T ∗M) and F is the curvature of A.
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2. The 3-form H satisfies
dH = c(F, F ) ∈ Ω4(M).

(Here we wedge the 2-form part of F and evaluate the Lie algebra part via c.)

Conversely, given a principal G-bundle P with a non-degenerate symmetric bilinear pair-
ing c on g and a pair (A,H) of a connection 1-form and a basic 3-form such that
dH = c(F, F ), there exist a heterotic Courant algebroid corresponding to the data, given
by the above construction.

Remark 3.3.1. Notice that the above proposition carries a topological obstruction to
what principal bundles admit heterotic Courant algebroids. The 4-form c(F, F ) is closed
and defines a real cohomology class called the first Pontryagin class of P

p1(P ) = [c(F, F )] ∈ H4(M,R)

corresponding to the bilinear pairing c on g. This class is topological, i.e. it does
not depend on the connection chosen but it does depend on c. Therefore, given a
smooth manifold M , there exist a heterotic Courant algebroid corresponding to a certain
principal bundle P on M with bilinear form c if and only if

p1(P ) = [c(F, F )] = [dH] = 0 ∈ H4(M,R)

the first Pontryagin class of P vanishes.

Different splittings of H induce different brackets. We know that splittings are related
by (B,A)-transforms and in any splitting the bracket is as in Theorem 3.3.2. We denote
this bracket by [ , ]H,∇ since it is classified by the pair (H,∇) where H ∈ Ω3(M) and ∇
is a G-connection on gP . This allow us to find how the bracket changes from splitting
to splitting.

Proposition 3.3.3. For B ∈ Ω2(M) and A ∈ Ω1(M, gP ) the (B,A)-transform changes
the (H,∇) heterotic Dorfman bracket as follows

e(B,A)[ , ]H,∇ = [e(B,A) , e(B,A) ]H′,∇′

where

H ′ = H + dB + 2c(A,F ) + c(A,∇A) +
1

3
c(A, [A,A])

∇′ = ∇+A.

Proof. The proof is a straightforward but cumbersome calculation which we will avoid
and come back to the proof later with a much more elegant solution. To begin, note
that since we know that the bracket is of the same form in a different splitting, we
can simplify the process a bit (e.g. by only considering sections X,Y ∈ TM under the
transformations). We know that for some H ′ and ∇′ we have

e(B,A)[X,Y ]H,∇ = [e(B,A)X, e(B,A)Y ]H′,∇′ ,

and we can continue from here later.
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Remark 3.3.2. In the two previous cases we have seen that the Dorfman bracket can
be derived from a spin representation of the Clifford algebra. It is natural to ask if this
construction generalizes to the heterotic setting as well. It has been shown in [1] that
whenever (H, 〈·, ·〉) admits a spin bundle S there exist a Dirac generating operator /d

with /d
2

= 0 that induces the Courant bracket via the action on a twisted spin bundle
S. The bracket is then obtained by the usual formula

[[e1, /d], e2].α = [e1, e2]H.α

for e1, e2 ∈ Γ(H) and α ∈ Γ(S)1. The existence of such a spinor bundle S depends on
the second Stiefel-Whitney class w2(H) of H. By the properties of characteristic classes
we have

w2(H) = w2(TM) + w2(gP ) + w2(T ∗M) = w2(gP )

so it depends on the class of gP whether the bracket is derived or not. Nevertheless,
locally spin bundles always exist so the bracket is always derived on trivial patches.

1The discussion in [1] is for general Courant algebroids and in the exact and double Lie algebroid case
arrives to the same construction presented before. In particular the Dirac generator operators are
dH and dLH .
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4 Reduction

In the previous section we have encountered three types of Courant agebroids. It might
seem somewhat arbitrary why we picked out these examples from all the possible struc-
tures allowed by the definition. Turns out that there is a connection between them via a
reduction procedure which was developed in [5] by Bursztyn, Cavalcanti and Gualtieri.

We start with an exact Courant algebroid E over the manifold P and suppose there
is a Lie group G acting on P via diffeomorphisms on the right. In this section we will
assume P to be a principal bundle with compact connected structure group G so the
reduced space P/G = M is a smooth manifold. We want to consider an action of G on
the total space of E via automorphisms of E and reduce it to a new non-exact Courant
algebroid on the base M .

Coming from the action of G we have the Lie-algebra homomorphism

ψ : g→ Γ(TP )

x 7→ ψ(x)|p =
d

dt

∣∣∣
t=0

p. exp(tx)

which defines the infinitesimal action of g on Γ(TP ) via the adjoint action (Lie bracket)
of vector fields.

Definition 4.0.1. A lifted action of G on E is a right action of G on E via automor-
phisms covering the action of G on P . A lifted infinitesimal action of g on E is a Lie
algebra homomorphism α : g→ Der(E) covering the infinitesimal action ψ of g on TP .

Given a lifted action of G on E by differentiation we obtain a lifted infinitesimal action
of g on E. Conversely if a lifted infinitesimal action is obtained via differentiating a lifted
action of G we say that the lifted infinitesimal action integrates to an action of G on E.

4.1 Simple reduction

First, we want to see whether under a group action the invariant sections of an exact
Courant algebroid could become a Courant algebroid itself.

Let σ : P → M be a principal G-bundle and (E, [·, ·], 〈·, ·〉, π) an exact Courant
algebroid on P so that G acts via diffeomorphisms preserving the Ševera class of E.
As G is compact by averaging we may chose a splitting E ∼= TP ⊕ T ∗P such that the
bracket is twisted by a G-invariant 3-form H ∈ Ω3(M)G.
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Then there is a natural extended action of G on TP ⊕ T ∗P via

ϕ(X + ξ) =

(
ϕ∗ 0
0 (ϕ−1)∗

)(
X
ξ

)
= ϕ∗X + (ϕ−1)∗ξ.

By Proposition 3.1.2 this action is an automorphism of the H-twisted Courant algebroid
if and only if ϕ∗H = H which is satisfied as we chose H to be G-invariant.

Consequently if P is a principal G-bundle with compact connected structure group,
the group action naturally lifts to an action on E via Courant automorphisms.

Now we can define a new Courant algebroid over the base M = P/G manifold of P .
Firstly, E/G is a vector bundle over M as the action is free and proper on P and acts
via automorphisms on E. The sections of E/G naturally identify with the G-invatiant
sections of E. These sections are closed under the Courant bracket and their inner
product is a G-invariant function on P . Hence [·, ·] and 〈·, ·〉 descend to well defined
operations on E/G→ P/G. Finally, to define the anchor for our new Courant algebroid
notice that the anchor π of E sends G-invariant sections of E to G-invariant sections of
TP which project to sections of T (P/G). Therefore we can use π as the anchor for E/G

πG : E/G→ TP/G→ T (P/G).

It is easy to check that (M,E/G, πG, [·, ·], 〈·, ·〉) satisfies the axioms of a Courant
algebroid over M . The reduced Courant algebroid is not exact, as the rank of E/G is too
large but still transitive. Moreover, considering the G-invariant splitting E ∼= TP ⊕T ∗P
it is clear that TP/G becomes a Lie algebroid over M and (TP/G)∗ ∼= T ∗P/G. Hence
E/G fits into the short exact sequence

0 (TP/G)∗ E/G TP/G 0.
1
2
π∗ π

Therefore, the resulting Courant algebroid is the double of the Lie algebroid TP/G. The
above process is what we call simple reduction.

Remark 4.1.1. The above construction easily generalizes to any Courant algebroid E
over a principal G-bundle P → M . Whenever the action of G lifts to E via Courant
algebroid automorphisms one can define a new Courant algebroid E/G over the base
M . We also call this the simple reduction of E.

4.2 Reduction via extended actions

There are other ways to reduce exact Courant algebroids over principal G-bundles. The
procedure was described in generality in [5] but for the purpose of this thesis we only
need to consider the simplest case which we will call reduction via extended actions.1

1In the reference [5] there is a more general definition of an extended action and the case that we
considered is called reduction via trivially extended actions.
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Extended actions

Let again (E, [·, ·], 〈·, ·〉, π) be an exact Courant algebroid on the principal G-bundle
σ : P → M . Suppose we have a lifted infinitesimal action α0 : g → Der(E) so that
the image lies in the image of the adjoint action (see Proposition 3.1.4). One then can
consider lifting α0 to a morphism α : g→ Γ(E) that still extends the infinitesimal action
ψ of g on TP .

To consider such an extension one has to describe the algebraic structure of Γ(E) which
is what we call a Courant algebra over the Lie algebra (Γ(TP ), [., .]). The structure is
formalized in [5] but in this thesis we only need the most trivial case so we omit the
precise definition. For our purposes it is enough to consider extensions which define
bracket preserving maps from g to Γ(E).

Definition 4.2.1. [5] Let G be a connected Lie group and P a principal G-bundle with
infinitesimal action ψ : g → Γ(TP ). An extended action of the Lie algebra g on E is a
linear map α : g→ Γ(E) such that

1. α([x, y]) = [α(x), α(y)],

2. the diagram

g g

Γ(E) Γ(TP )

id

α ψ

ρ

commutes,

3. and the action of g via α integrates to a G-action on the total space of E.

The conditions 1.) and 2.) are that α is a morphism of Courant algebras covering ψ.

Suppose now that we have an extended action α and consider a splitting of E ∼=
TP ⊕ T ∗P . By the definition α in this splitting decomposes as

α : g→ Γ(TP ⊕ T ∗P )

x 7→ ψ(x) + ξ(x)

where ψ is the infinitesimal action on TP .

Recall that the adjoint action of E is given by the Dorfman-bracket

ad(ψ(x) + ξ(x))(Y + η) = [ψ(x) + ξ(x), Y + η]H

= [ψ(x), Y ] + Lψ(x)η − ιY dξ(x) + ιY ιψ(x)H

=

(
Lψ(x) 0

ιψ(x)H − dξ(x) Lψ(x)

)(
Y
η

)
.

Clearly α integrates to an action of G if the action of g respects the splitting E ∼=
TP ⊕T ∗P . Moreover if α integrates to an action of G on E by averaging we can always
find a G-invariant splitting of E which is then also a g-invariant splitting.
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Therefore to find an extension α that integrates to an action of G we only have to
find solutions where

ιψ(x)H = dξ(x) ∀x ∈ g. (4.2.1)

We also require α to preserve the bracket, i.e.

α([x, y]) = [α(x), α(y)]H ∀x, y ∈ g.

Expanding the above formula we find that for ψ

ψ([x, y]) = [ψ(x), ψ(y)],

which is satisfied since ψ is a Lie-algebra homomorphism and for ξ

ξ([x, y]) = Lψ(x)ξ(y)− ιψ(y)dξ(x) + ιψ(y)ιψ(x)H.

Using condition 4.2.1 the above constraint reduces to

ξ([x, y]) = Lψ(x)ξ(y) ∀x, y ∈ g. (4.2.2)

Together the conditions 4.2.1 and 4.2.2 can be expressed using the Cartan complex of
equivariant cohomology associated to the principal bundle P [20]. In this complex the
degree-k forms are given by

Ωk
G(P ) =

⊕
2p+q=k

Ωq(P, Sp(g∗))

where Sp(g∗) is the space of degree-p symmetric products of g∗. The differential is

dGω = dω − eiιψ(ei)ω

where {ei}i is a basis for the Lie algebra g and {ei} is the dual basis of g∗. We also take
the symmetrization of the second term over the tensor components in g∗.

Remember that ξ is a linear map from g to the sections of T ∗P . Therefore one can
think of ξ as a section of T ∗P with values in the dual Lie algebra, i.e.

ξ ∈ Ω1(P, g∗).

Moreover ξ is G-equivariant, i.e.

ξ(Ad(g)x) = gξ(x)

because the equivariance condition is the integrated form of 4.2.2. To see what 4.2.1
means in this setting note that H is an equivariant 3-form

H ∈ Ω3(P )G
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therefore together Φ = H + ξ form an element of Ω3
G(P ). The condition 4.2.1 then

implies that dGΦ defines a symmetric bilinear form on g as

dGΦ = dG(H + ξ) = dH + dξ − eiιψ(ei)H − e
iιψ(ei)ξ

= −eiιψ(ei)ξ.

To have a better understanding of this formula write ξ in local coordinates as

ξ = ξ(ej)idx
i ⊗ ej

so we have

dGΦ = −ξ(e(j)iψ(ek))
iejek = −1

2

(
ξ(ej)iψ(ek)

i + ξ(ek)iψ(ek)i
)
ejek.

Therefore if x = xiei and y = yiei are elements of the Lie algebra g the bilinear form
dGΦ evaluates to

dGΦ(x, y) =− 1

2

(
ξ(ej)iψ(ek)

i + ξ(ek)iψ(ek)i
)
xjyk

=− 1

2

(
xjykιψ(ej)ξ(ek) + yjxkιψ(ej)ξ(ek)

)
=− 〈α(x), α(y)〉.

Here we used that we can write the α(x) using the basis {ei} as

α(x) = ψ(x) + ξ(x)

= xi(ψ(ei) + ξ(ei))

and 〈·, ·〉 is the natural inner product of sections of E.

Consequently suitable extensions of a Lie algebra action on E give rise to solutions of
the equation

dGΦ = −α∗〈 , 〉. (4.2.3)

In the following we will see that equivalence classes of solutions are in one-to one corre-
spondence with equivalent extended actions.

Reduction procedure

Now given an extended action we can reduce the exact Courant algebroid E from the
principal bundle P to a not necessarily exact one on the base of M . We follow the treat-
ment of [5] closely but the proofs were re-written to the specific case that we consider.

An extended action defines two natural distributions of E, the image of g under the
action K = α(g) and its orthogonal complement K⊥. Firstly, x ∈ g acts on K via the
Dorfman bracket and

x.α(y) = [α(x), α(y)] = α([x, y])
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therefore K is G-invariant. As derivations of E integrate to orthogonal transformations,
the G-action preserves the pairing 〈·, ·〉 hence K⊥ is also G-invariant. We want to
consider G-invariant sections of K or K⊥ and pass to their equivalence classes over
M = P/G. For this we need the reducible distribution to be a genuine subbundle. In
the general case there are obstructions to this but in our case we have the following
proposition.

Lemma 4.2.1. The distributions K, K⊥ and K ∩K⊥ have constant rank.

Proof. Since G acts freely on P ψ(g) has constant rank in TP as fibrewise g ∼= ψ(g)|p for
any p ∈ P . Therefore K = {ψ(x) + ξ(x)|x ∈ g} ⊂ TP ⊕ T ∗P has at least rank dim(g)
but also it cannot have any higher therefore K is of constant rank. Consequently K⊥ is
of constant rank as well.

Moreover we have seen that the quadratic form c on g is the pullback of the natural
inner product on E. Hence the inner product of sections that are in the image of α is
constant along P . As these sections generate K fibrewise K ∩K⊥ is isomorphic to the
nullspace Ann(g) of c and hence is of constant rank.

Lemma 4.2.2. The map π : K⊥ → TP is surjective.

Proof. By definition K⊥ = {Y + η| 〈Y + η, ψ(x) + ξ(x)〉 = 0 ∀x ∈ g}. If Y ∈ Γ(TP )
then Y ∈ π(K⊥) if and only if there exists η ∈ Γ(T ∗P ) so that

ξ(ei)(Y ) + η(ψ(ei)) = 0 ∀i = 1, ...m

where {ei} is a basis for g. This system of equations can be solved for any Y since ψ(ei)
are nowhere vanishing vector fields and dim(P ) > dim(g).

To reduce the Courant structure we need to check the integrability of K and K⊥.
The subbundle K is integrable with respect to the Dorfman bracket as α is an algebra
morphism. For the invariant sections e1, e2 ∈ Γ(K⊥)G we can use axiom C4) to find

〈α(x), [e1, e2]〉 = −〈[e1, α(x)], e2〉+ π(e1)〈α(x), e2〉.

The second term vanishes as e2 ∈ Γ(K⊥). For the first term by C5) we have

[e1, α(x)] = −[α(x), e1] +D〈α(x), e1〉 = −[α(x), e1] = −x.e1 = 0

because e1 ∈ Γ(K⊥) and G-invariant.

Therefore, the sections of K⊥ are closed under the inner product and the bracket.
Moreover, π : K⊥ → TP is surjective and π is G-equivariant so Γ(K⊥)G also surjects
to Γ(TP )G. Hence the only obstruction to cosidering K⊥/G as a Courant algebroid
over P/G is the possible degeneracy of the inner product. But by Lemma 4.2.1 K⊥ and
K ∩K⊥ are subbundles of E so we may consider

Ered =
K⊥

K ∩K⊥
/
G.
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Then Ered is a vector bundle on M = P/G which becomes a Courant algebroid with the
induced inner product and bracket. Moreover the induced anchor is clearly surjective
by Lemma 4.2.2 therefore Ered is a transitive Courant algebroid over M .

We will consider the cases when c is a non-degenerate symmetric pairing on g. Then
K ∩K⊥ = 0 and

Ered = K⊥/G.

Isomorphic reductions

Suppose now that α and α′ are extended actions inducing isomorphic reductions. This
happens precisely when they induce the same G-action on E ∼= TP ⊕ T ∗P and the
image bundles K = im(α) and K ′ = im(α′) are isomorphic, more precisely related by a
B-transform for some B ∈ Ω2(P ). In a g-invariant splitting for α given x ∈ g we have
α(x) = ψ(x) + ξ(x) acting via the H-twisted Dorfman bracket where H is G-invariant.

Via the B-transform the equivalent extended action is of the form α′(x) = ψ(x) +
ξ(x) + ιψ(x)B acting via the H − dB-twisted bracket. Here ξ ∈ Ω1(P, g∗)G. As α′(x) is
also an extended action integrating to the same G-action on E it must satisfy 4.2.1 and
4.2.2 which yield:

4.2.1 : dιψ(x)B = −ιψ(x)dB, 4.2.2 : Lψ(x)B = 0.

These conditions are equivalent and show that B must be a G-invariant 2-form. There-
fore H − dB is also induced by a G-invariant splitting.

The above considerations give the following equivalence relation of extended actions.

Definition 4.2.2. Two extended actions α and α′ are called equivalent if their images
are related by B-transforms as above.

We have seen in Section 4.2 that extended actions on a certain exact Courant algebroid
E on a principal G-bundle P give rise to solutions to the equation

dGΦ = c. (4.2.4)

Here Φ = H + ξ ∈ Ω3
G(P ) with H representinf the Ševera class of E and c a quadratic

form on g the Lie algebra corresponding to P . Given any solution Φ coming from an
extended action and an equivariant 2-form β ∈ Ω2

G(P ), Φ′ = Φ + dG(β) again solves
4.2.4. On the other hand, it is not immediately clear if it again defines an extended
action.

The following theorem describes the correspondence between extended actions and
solutions to 4.2.4.

Theorem 4.2.1. [5] Let G be a compact connected semi-simple Lie group and c a
quadratic form on its Lie algebra g. Let E be an exact Courant algebroid on a prin-
cipal G-bundle P . Then extended actions α : g→ Γ(E), such that c(x) = −〈α(x), α(x)〉,
up to equivalence are in one-to-one correspondence with the solutions to the equation

dGΦ = c
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up to dG-exact forms, where Φ = H + ξ is a G-equivariant 3-form and H represents the
Ševera class of E.

Proof. Let {ei} be a basis for the Lie algebra g and {ei} the dual basis for g∗. Pick a
connection one form A ∈ Ω1(P, g)G which is written as A = Aiei in the basis.

Suppose α′ is a trivially extended action equivalent to α, therefore their images are
related by a B-transform such that B is a G-invariant 2-form. Via the B-transform we
have

ξ′(x) = ξ(x) + ιψ(x)B, H ′ = H − dB
therefore Φ changes to Φ′ = Φ−dB+ιB = Φ−dG(B). Consequently equivalent extended
actions induce equivalent solutions of 4.2.4.

Now we will show that changing a solution Φ = H + ξ by an exact equivariant 2-form
produces equivalent actions. The space of equivariant 2-forms is Ω2(P )G ⊕ Ω0(P, g∗)G.

Suppose Φ′ − Φ = dG(f) for some f ∈ Ω0(P, g). Then we can write f = fie
i and use

the connection A to produce an invariant 1-form ω = fiA
i. Now as ιAi = ei we find

that f = −dG(ω) + dω. Therefore the change in the action is actually given by

Φ′ − Φ = dG(f) = dG(dω)

where dω ∈ Ω2
cl(P )G, therefore α′ = α− ι(dω) is an equivalent extended action with the

B-transform given by B = dω.

Suppose now that Φ′ − Φ = dG(B) for some B ∈ Ω2(P )G. Then we are already in
the setting of a B-transform with H ′ = H − dB and ξ′ = ξ + ιB giving the equivalent
extended action defining Φ′.

Generalization to the double of a Lie algebroid

The above construction may be generalized to Courant algebroids related to Lie alge-
broids [2]. Let (L, [·, ·], π) be a transitive Lie algebroid on the principal G-bundle P →M
and E ∼= L⊕L∗ be the Courant algebroid described in Section 3.2 fitting into the short
exact sequence

0 L∗ E L 0.
ρ

Assume that G is connected, semisimple, compact and that there is a symmetric
G-invariant bilinear pairing c on its Lie algbera g.

Let ψ0 : g→ Γ(TP ) be the infinitesimal action of G on TP . To extend the action to
α : g→ Γ(L⊕ L∗) we first have to assume that ψ0 lifts to an infinitesimal action ψ of g
on L that integrates to a G-action on L covering the action on P . With this assumption
we have the commuting diagram

g Γ(L)

Γ(TP )

ψ

ψ0
π
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where ψ(x) acts via the adjoint action of the Lie algebroid L.

Given the infinitesimal action ψ on L, the exterior algebra of forms Ω•(P,L) becomes
a G-differential algebra (defined in [20]) via the contraction operator ιψ(x) : Ωk(P,L)→
Ωk−1(P,L). This allows us to generalize the Cartan complex construction of equivariant
cohomology.

Let Ωp(L, Sqg∗)G be the space of G-equivariant p-forms with values in the q-th sym-
metric power of g∗. Equivariance for a given ω ∈ Ωp(L, Sqg∗)g is meant as

Lψ(x)ω(y) = ω([x, y]) ∀x ∈ g

where L = ι ◦ dL + dL ◦ ι, which is the integrated version of G-equivariance.

Then the Cartan complex is again given by

Ωk
G(L) =

⊕
p+2q=k

Ωp(L, Sqg∗)G

and the equivatiant differential is

dG = d− eiιψ(ei)

given a basis {ei} of g.

Now just as in the exact case we may look for extended actions which take the form
α = ψ + ξ : g → Γ(L ⊕ L∗) in a G-invariant splitting characterized by a 3-form H ∈
Ω3(L)G. Then ξ ∈ Ω1(L, g∗)G and H have to satisfy the straightforward generalizations
of 4.2.1 and 4.2.2.

Setting c(x) = −〈α(x), α(x)〉 we obtain c ∈ Ω0(L, S2g∗)G and extended actions corre-
spond to solutions of dGΦ = c with Φ = H + ξ.

The reduction procedure also generalizes to this case. The distributions K = im(α),
K⊥ and K ∩ K⊥ remain genuine subbundles of constant rank as ψ(x) covers the in-
finitesimal action of g on P . A slight difference is that not only π : K⊥ → TM but also
ρ : K⊥ → L is surjective. Integrability of K and K⊥ follows as before.

Consequently, we can also define the reduced Courant algebroid as

Ered =
K⊥

K ∩K⊥
/
G

which is just Ered = K⊥/G whenever c is non-degenerate.

Moreover, as we have been looking for extended actions that are of the form α = ψ+ξ
in a certain isotropic splitting equivalence of extended actions generalizes too. If α and
α′ have isomorphic images and they induce the same G-action on L⊕ L∗ they must be
related by a map preserving ρ : E → L, i.e. by a B-transform for some B ∈ Ω2(L)G (see
Proposition 3.2.1). Consequently we have the following generalization of Theorem 4.2.1.

Theorem 4.2.2. [2] Let P be a principal bundle with compact structure group G and L
a transitive Lie algebroid on P . Let E be the Courant algebroid on P with Ševera class
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h ∈ H3(L) and suppose that there is an infinitesimal action ψ : g→ Γ(L) that integrates
to a G-action on L covering the action on P. Given c ∈ Ω0(L, S2g∗)G there is a one to
one correspondence between

1. solutions to the equation

dGΦ = c (4.2.5)

up to dG-exact forms where Φ = H + ξ is an equivariant 3-form with [H] = h,

2. and extended actions α : g → Γ(E) up to equivalence such that there is a G-
invariant isotropic splitting E ∼= L ⊕ L∗ so that α is of the form ψ + ξ for some
ξ ∈ Ω1(P, g∗)G and c = −α∗〈 , 〉.

Proof. The proof is straightforward generalization of the proof of Theorem 4.2.1 except
for one detail. If two solutions Φ and Φ′ of 4.2.5 differ by a dG-exact equivariant function
f ∈ Ω0(L, g∗)G then let A be a connection one-form on P and consider its pullback via
the dual of the anchor to B = π∗(A) ∈ Ω1(L, g)G. Given a basis {ei} of g one can write
B = Biei = π∗(Ai)ei with ιψ(ei)B

j = δji . Then if f = fie
i then as in the exact case we

have
Φ′ − Φ = dG(dω)

for ω = fiB
i ∈ Ω1(L)G.

4.3 Commuting actions

We saw two different ways to reduce exact Courant algebroids over a principal bundle. In
this section we will explore what constraints are necessary for the two types of reductions
to be interchangeable following [2].

Let σ : P → X be a principal G-bundle and π0 : X →M a principal T -bundle where
G and T are compact connected Lie groups with Lie algebras g and t. Suppose the
action of T lifts to P and the lifted action commutes with the action of G so P becomes
a G× T principal bundle over M . Set P0 to be P/T a principal G-bundle over M with
projection σ0. Moreover P is a principal T -bundle over P0 with projection map π and
we have the following commuting diagram.

G G

T P P0

T X M

π

σ σ0

π0

Suppose now that we have an exact Courant algebroid E over P and that G×T preserves
the Ševera class of E. We then have an infinitesimal action

ψg ⊕ ψt : g⊕ t→ Γ(TP ).
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Since G × T is compact, by averaging, we can find a G × T -invariant representative
H ∈ Ω3(P ) of the Ševera class E so we can extend the action of G × T to E. Suppose
also that the action of G is coming from a trivially extended action αg : g → Γ(E)
corresponding to a nondegenerate bilinear form c on g.

We want to reduce E via the trivially extended action of G as in section 4.2 and then
via simple reduction as in section 4.1 for the T action. To be able to do that we must
require αg to map into T -invariant sections of E. The following theorem then holds.

Theorem 4.3.1. [2] Let E be an exact Courant algebroid over the principal G×T bundle
P with an extended G× T action satisfying all the conditions above. Then one can first
reduce E by T then by G or the other way around and the reduced transitive Courant
algebroid over M satisfies

Ered/T ∼= (E/T )red.

Here ( )red denotes reduction via the trivially extended action αg and /T denotes simple
reduction by the group T .

Proof. Firstly, it is clear that since αg maps into T -invariant sections of E, the image of
αg, K and its orthogonal complement K⊥ are both invariant under the action of T . As
the action of T and G commute the T -action on Ered = K⊥/G is well-defined and we
can identify sections of Ered/T with G× T -invariant sections of K⊥.

Secondly, we want to first reduce E by T . As αg maps into T -invariant sections of E
the reduced bundle E/T carries an induced extended action of g. The induced map

α′ : g→ Γ(E/T )

is an extended action on the Courant algebroid associated to the Lie algebroid TP/G
over X = P/G. Then the image of α′ is the bundle K/T which is still of constant
rank and its orthogonal complement is (K/T )⊥ ∼= K⊥/T . Consequently, sections of
(E/T )red can also be identified with G×T -invariant sections of K⊥ yielding the desired
isomorphism.
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5 Heterotic Courant algebroids by
reduction

In this section we will show that heterotic Courant algebroids are always obtained by
reduction of an exact Courant algebroid via an extended action from the corresponding
principal bundle. This construction is due Baraglia and Hekmati [2].

Let P → M be a principal bundle with compact connected semi-simple structure
group G acting on the right. Let ψ : g → Γ(TP ) be the infinitesimal action of G. It is
assumed that g is endowed with a G-invariant nondegenerate symmetric bilinear form
c. We have seen in Theorem 4.2.1 that given an exact Courant algebroid E on P , up
to equivalence, extended actions α : g → Γ(E) are in one-to one correspondence with
solutions to

dGΦ = c

up to dG-exact forms. Here Φ = H + ξ with H ∈ Ω3(P )G representing the Ševera class
of E in a G-invariant splitting, ξ ∈ Ω1(P, g∗)G such that α = ψ + ξ in the splitting and
c = −α∗〈·, ·〉.

5.1 Extended actions and string classes

The following proposition classifies extended actions in yet another way.

Proposition 5.1.1. [2] Given a principal bundle σ : P → M as above, equivalence
classes of solutions Φ = H + ξ to the equation dGΦ = c are represented by pairs (H0, A)
where H0 ∈ Ω3(M) and A ∈ Ω1(P, g) is a connection one form, such that

H = σ∗(H0)− CS3(A)

ξ = −cA.

Here CS3(A) ∈ Ω3(P ) is the Chern-Simons 3-form corresponding to A given by

CS3(A) = c(F,A)− 1

3!
c(A, [A,A])

where F = dA + 1
2 [A,A] is the curvature of A. The Chern-Simons 3-form satisfies

dCS3(A) = c(F, F ).
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Proof. Let Φ = H + ξ be a solution to dGΦ = c. As c is nondegenerate there exists
A0 ∈ Ω1(P, g) such that ξ = −cA0. Since ξ and c are G-invariant, so is A0 as for any
g ∈ G using the right action Rg on P we have

R∗gξ(x) = ξ(Ad(g)x) = −c(A0, Ad(g)x) = −c(Ad(g−1)A0, x)

therefore R∗gA0 = Ad(g−1)A0.

Let now A1 ∈ Ω1(P, g) be a connection 1-form on P . If e1, ..., em is a basis for g
and e1, ..., em is the dual basis for g∗ we can decompose A1 as A1 = Ai1ei where Ai1 are
G-equivariant 1-forms on P such that ιψ(ei)A

j
1 = δji . Then A0 is

A0 = aijA
j
1ei +Biei (5.1.1)

where Bi ∈ Ω1(M) are basic forms (omitting pullback notation), i.e. ιψ(x)B
i = 0 for all

x ∈ g and i = 1, ..,m, and aij are G-invariant functions.

The constraint c(x, y) = −〈α(x), α(y)〉 together with α = ψ−cA0 yields that 2c(x, y) =
c(ιψ(x)A0, y) + c(ιψ(y)A0, x) which in the basis gives

cij =
1

2
(ari cjr + arjcir) = ar(icj)r.

Therefore ari cjr = ar(icj)r + ar[icj]r = cij + βij where βij = −βji. Substituting then

aki = δki + ckrβri into 5.1.1 gives

A0 = A1 +Biei + ckrβriA
i
1ek.

here A = A1 + Biei is also a connection 1-form on P , and we will show that ξ′ = −cA
with an equivalent H ′ gives an equivalent solution to dGΦ = c. Change Φ by the exact
equivariant 3-form dG(βijA

i
1A

j
1) to get an equivalent solution Φ′. Then if Φ′ = ξ′+H ′ we

find that H ′ = H+d(βijA
i
1A

j
1) which amounts of changing the splitting on E. Therefore

we find that any solution is equivalent to Φ = ξ + H with ξ = −cA for a connection
1-form A on P .

Given now a solution (H,A) such that Φ = H − cA we can write the equivariant
3-form H ∈ Ω(P ) using the connection A = Aiei as

H = H0 +H1
i A

i +
1

2
H2
ijA

ij +
1

3!
H3
ijkA

ijk,

where Ai1...ik = Ai1 ∧ ... ∧ Aik and H0, H
1
i , H

2
ij , H

3
ijk are basic forms (omitting pullback

notation). The equation dGΨ = c then becomes

dH − eiιψ(ei)H = −d(cA) = −cijdAiej .

This shows that H must satisfy separately dH = 0 and eiιψ(ei)H = cijdA
iej . Let f ijk be

the structure constants of the Lie algebra g, then we can express the curvature F = F iei
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as F i = dAi + 1
2f

i
jkA

jk which gives a formula for dAi. Using this, and the fact that F i

are basic from the second equation we find

H1
i = −cijF j H2

ij = 0 H3
ijk = −cirf rjk,

therefore H can be rewritten as

H = H0 − CS3(A).

Finally, dH = 0 is satisfied if and only H0 ∈ Ω3(M) is such that dH0 = c(F, F ) which
proves the proposition.

Remark 5.1.1. The above theorem gives the same topological constraint to the exis-
tence of an extended action on a principal G-bundle P as there is for the existence of a
heterotic Courant algebroid corresponding to P . We find again that the first Pontryagin
class p1(P ) = [c(F, F )] ∈ H4(M,R) of P must vanish for an extended action to exist.

We have seen before that the equivalent solutions Φ = H + ξ to dGΦ = c induce
the same cohomology class [H]. In the following proposition we will see that more is
true. The equivalence class of a solution only depends on the cohomology class of H.
A stronger version of the following theorem can be found in [2] but it has been relaxed
and the proof changed to avoid the usage of spectral sequences as long as we can.

Proposition 5.1.2. Any two solutions Φ = H + ξ and Φ′ = H ′ + ξ′ to dGΦ = c such
that

[H] = [H ′] ∈ H3(P,R)

are equivalent i.e. differ by a dG-exact equivariant 2-form.

Proof. By Proposition 5.1.1 there exist connection 1-forms A,A′ ∈ Ω1(P, g) such that
(after equivalence)

ξ = −cA, H = H0 − CS3(A), ξ′ = −cA′ and H ′ = H ′0 − CS3(A′).

Since A and A′ are connection 1-forms their difference is a basic Lie algebra valued
1-form a = A′ − A ∈ Ω1(P, g)bas ∼= Ω1(M, gP ). Then the curvature 2-form F of A is
related to the curvature 2-form F ′ of A′ as

F ′ = d(A+ a) +
1

2
[A+ a,A+ a]

= F + da+ [A, a] +
1

2
[a, a]

= F +∇a+
1

2
[a, a]

where ∇ is the covariant derivative on the adjoint vector bundle gP induced by A.
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The Chern-Simons 3-form changes as follows

CS3(A′) = c(F ′, A′)− 1

3!
c(A, [A,A])

= c(F,A) + c(∇a+
1

2
[a, a], A) + c(F, a) + c(∇a+

1

2
[a, a], a)

− 1

3!
c(A, [A,A])− 1

2
c(a, [A,A])− 1

2
c(a, [A,A])− 1

3!
c(a, [a, a])

= CS3(A) + c(F, a) + c(∇a, a) +
1

3
c(a, [a, a])

+ c(∇a,A)− c(a, 1

2
[A,A]).

The last two terms can be rewritten as

c(∇a,A)− c(a, 1

2
[A,A]) = c(da,A) + c([A, a], A)− c(a, 1

2
[A,A])

= d(c(a,A)) + c(a, dA) + c(a, [A,A])− c(a1

2
[A,A])

= c(a, F ) + d(c(a,A)).

Finally, we have found

CS3(A′) = CS3(A) + 2c(F, a) + c(∇a, a) +
1

3
c(a, [a, a]) + d(c(a,A)).

Substituting back to H and H ′ yields

H ′ −H = H ′0 −H0 − 2c(F, a)− c(∇a, a)− 1

3
c(a, [a, a])− d(c(a,A))

as [H] = [H ′] this difference is exact and equivariant. Moreover, since the first five terms
are basic we find (see Appendix 10.2) that there exist B ∈ Ω2(P )bas such that

H −H ′ = dB − d(c(a,A)).

Consequently, we have

Φ′ − Φ = H ′0 − CS3(A′)−H0 + CS3(A)− cA′ + cA

= dB − d(c(a,A))− cA− ca+ cA

= dG(B − c(a,A))

as ιc(a,A) = −ca, which proves the proposition.

To summarize our results we have found

A′ = A+ a

H ′0 = H0 + dB + 2c(F, a) + c(∇a, a) +
1

3
c(a, [a, a])

H ′ = H + d(B + c(a,A)).
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The above propositions show that the equivalence classes of extended actions are in
one-to one correspondence with classes h ∈ H3(P,R) that can be represented by a 3-form
H such that

H = H0 − CS3(A)

with H0 basic and A a connection 1-form on P . Moreover, if a class can be represented
as above for a specific principal connection A it can be represented for any connection.
Indeed, in Proposition 5.1.2 we have seen that if A′ = A + a an other connection, then
CS3(A) = CS3(A′)− (basic forms)− dc(a,A), therefore

H ′ = H − dc(A, a) = H0 + (basic forms)− CS3(A′) = H0′ − CS3(A′).

Turns out that this condition is topological. Given a connection 1-form A, its restric-
tion to any fibreG is also a connection on the principal bundleG over the one-point space.
Such principal bundles have a unique connection 1-form ω1 given by the Maurer-Cartan
1-form which is flat. Since we assumed G to be compact, connected and semisimple its
cohomology classes are H0(G,R) = R, H1(G,R) = H2(G,R) = 0 and H3(G,R) 6= 0
with one of the generators being the class of ω3, the Maurer-Cartan 3-form

ω3 =
1

3!
c(ω1, [ω1, ω1])

for a choice of non-degenerate pairing c on the Lie algebra (see Appendix 10.1).

Clearly, the 3-forms arising from extended actions restrict to ω3 on any fibre, and
this property only depends on the cohomology class not the specific form (see [2]). This
motivates the following definition.

Definition 5.1.1. A real string class on a principal G-bundle P is a degree 3 real
cohomology class h ∈ H3(P,R) that restricted to any fibre G agrees with the class of ω3

for some choice of c. The set of string classes is denoted by H3
str(P,R).

Remark 5.1.2. When the group G is simple the third cohomology group is one-
dimensional H3(G,R) = R generated by [ω3]. In this case if a class h ∈ H3(P,R)
restricts to the same number on each fibre one can scale c so h becomes a string class.
When G is semisimple its third cohomology is a direct sum of the third cohomologies of
its simple components H3(G,R) = Rd. In this case h ∈ H3(P,R) is a string class for a
properly scaled c whenever it restricts to the same vector with nonzero components to
each fibre.

The existence of such classes requires p1(P ) = 0 but the converse is also true, whenever
p1(P ) = 0 the set of string classes is non-empty. These classes on P are precisely the
classes that admit representatives of the form H0 − CS3(A) which proves the following
theorem.

Theorem 5.1.1. On a principal bundle P with compact, connected semisimple structure
group G there is a one-to-one correspondence between real string classes and equivalence
classes of extended actions.
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5.2 Reduction and heterotic Courant algebroids

In the previous section we have found a certain representation for extended actions which
is reminiscent of what we have seen in Section 3.3 for heterotic Courant algebroids. We
also have discovered the same topological condition for the existence of both. Moreover,
we found in Proposition 5.1.2 a kind of transformation law for extended actions that
looks like (B,A)-transforms of heterotic Courant algebroids. All of these similarities are
not accidental as we will see in this section.

Suppose that E is an exact Courant algebroid on the principal bundle P as above
with p1(P ) = 0 and an extended action α : g→ Γ(E). In Section 4.2 we considered the
Courant subbundle K⊥ = im(α)⊥ and defined the reduced Courant algebroid

Ered ∼= K⊥/G

whose sections are identified with G-invariant sections of K⊥. The following theorem
defines the structure of Ered through heterotic Courant algebroids.

Proposition 5.2.1. [2] Let σ : P → M be a principal bundle as above, E an ex-
act Courant algebroid on P and (H0, A) a pair giving an extended action on E as in
Proposition 5.1.1. Then if H = T ∗M⊕gP ⊕TM is the heterotic Courant algebroid asso-
ciated to (P,H0, A) as in Theorem 3.3.2, there is an isomorphism of Courant algebroids
f : H → Ered. It is given by

f : X + s+ ξ → XH + s+ c(A, s) + σ∗(ξ)

where XH is the unique horizontal lift of X defined by the principal connection A and s
is thought of as a G-invariant vertical vector field.

Proof. First, we will show that f is a well defined isomorphism of vector bundles. Sec-
tions of Ered are identified with G-invariant sections of the bundle K⊥. Given the
principal connection A, G-invariant sections of TP decompose as

Γ(TP )G ∼= Γ(g⊕ TM).

Splitting E so that the Courant bracket is twisted by H = H0 − CS3(A) the extended
action is α = ψ − cA, therefore K = {ψ(x) − c(A, x)| x ∈ g}. One can also write
K using the map j which identifies g with invariant sections of TP , then we have
K = {x − c(A, x)| x ∈ g}. It is clear then that f maps into K⊥ as for any x, s ∈ g
X ∈ TM and ξ ∈ T ∗M we have

2〈x− c(A, x) , XH + s+ c(A, s) + σ∗(ξ)〉 =

=c(A(x), s) + σ∗(ξ)(x)− c(A(XH), x)− c(A(s), x)

=c(x, s)− c(s, x) = 0.

Moreover f is injective and the rank of H is the same as the rank of Ered therefore f is
an isomorphism of vector bundles.
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It is clear then that X = πH = πEred
◦ f and that f preserves the fibrewise inner

product, which is given by

〈X + s+ ξ,X + s+ ξ〉 = ξ(X) + c(s, s)

on H. The only thing remains to show is that f preserves the Courant bracket which in
the heterotic case was given in Theorem 3.3.2. For Ered it is given by the usual exact
bracket, with the Lie bracket taken as the bracket of invariant vector fields on the Atiyah
algebroid. Omiting pullback notation, we have

[f(X + s+ ξ), f(Y + t+ η)]E =[XH + s+ c(A, s) + ξ, Y H + t+ c(A, t) + η]

=[XH + s, Y H + t] + LXH+s(c(A, t) + η)

− ιY H+td(c(A, s) + ξ)

+ ιY H+tιXH+s(H0 − CS3(A)).

The first term is the projection of [f(·), f(·)] to TP ∩ K⊥ which clearly matches the
projection of f [·, ·]. It remains to show that [f(·), f(·)] = f [·, ·] on T ∗P ∩K⊥. Using the
Cartan formula LX = [d, ιX ] we have the following terms

dιXH+s(c(A, t) + ξ) = dc(s, t) + dξ(X)

where dc(s, t) = c(∇s, t) + c(s,∇t) and

ιXH+s(H0 − CS3(A)) = ιY ιXH0 − c(F (X,Y ), A) + c(ιXF, t)− c(ιY F, s) + c(A, [s, t]).

For the last term let {ei} be a basis for g then we have

ιXH+sd(c(A, t) + ξ) =ιXH+s(c(dA, t) + dc(ei, t) ∧Ai) + ιXdξ

=ιXH+s(c(dA, t) + c(∇ei, t) ∧Ai

+ c(ei,∇t) ∧Ai) + ιXdξ

=c(ιXH (F − 1

2
[A,A]), t) + c(ιs(F −

1

2
[A,A]), t)

+ c(A,∇Xt)− c(s,∇t)
here we used that ιsdc(ei, t) = 0.

=c(ιXHF, t)− c([s,A], t) + c(A,∇Xt)− c(s,∇t)
=c(ιXHF, t)− c(A, [s, t]) + c(A,∇Xt)− c(s,∇t).

In the last line we used that −c([s,A], t) = +c(A, [s, t]) for the right handed bracket on
the Lie algebra g as we use the map j to identify g with invariant sections (cf. Section
3.3). Therefore, we get −c(A, [s, t]) in our conventions for the left handed bracket.
Putting everything together we find

[f(X + s+ ξ), f(Y + t+ η)]E =[X,Y ]H +∇XY −∇YX − [s, t]− F (X,Y )

+ c(∇Xt, A)− c(∇Y s,A)− c([s, t], A)

− c(F (X,Y ), A)− 2c(ιY F, s) + 2c(ιXF, t)

+ c(∇s, t) = LXη − ιY dξ + ιY ιXH,
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which equal to f([X + s+ ξ, Y + t+ η]H).

The above two statements together yield the following classification of heterotic Courant
algebroids.

Theorem 5.2.1. [2] Every heteoric Courant algebroid on a smooth manifold M is given
by reduction of an exact Courant algebroid E ∼= TP ⊕ T ∗P over a principal G-bundle
σ : P → M with a real string class Ševera class h ∈ H3

str(P,R) corresponding to a
non-degenerate bilinear pairing c on the Lie algebra. Furthermore, h is represented by
H = σ∗(H0) − CS3(A) for a 3-form H0 ∈ Ω3(M) and a principal connection A on P
and the extended action in the corresponding splitting is given by ξ ∈ Ω1(P, g∗)G of the
form ξ = −cA.

Clearly, equivalent actions give rise to isomorphic reductions, and hence to isomor-
phic heterotic Courant algebroids, that is they are related by (B,A)-transforms. Recall
Proposition 3.3.3 where we looked at how (B,A)-transforms change the Dorfman bracket.
Applying our findings in Proposition 5.1.2 which relates two extended actions we can
finally finish the proof without the cumbersome calculation as follows.

Proposition (Proposition 3.3.3). Let H be a split heterotic Courant algebroid on the
principal bundle P represented by the pair (H0,∇) with H0 ∈ Ω3(M) and ∇ a G-
connection on gP . For B ∈ Ω2(M) and A ∈ Ω1(M, gP ) the (B,A)-transform changes
the (H0,∇) heterotic Dorfman bracket as follows

e(B,A)[ , ]H0,∇ = [e(B,A) , e(B,A) ]H′0,∇′

where

H ′0 = H0 + dB + 2c(A,F ) + c(A,∇A) +
1

3
c(A, [A,A])

∇′ = ∇+A.

Proof. First, note that Ω1(M, gP ) ∼= Ω1(P, g)bas and that we have

e(B,A)[X,Y ]H0,∇ = [e(B,A)X, e(B,A)Y ]H′0,∇′ ,

for some (H ′0,∇′) representing an other splitting of H. By Theorem 5.2.1 we have the
following commutative diagram.

(E, h)

(H, H0,∇) (H, H ′0,∇′)

αα′

∼=
(B,A)

Here (E, h) is the exact Courant algebroid with Ševera class h that we reduce via the
extended actions α and α′ (we denote the reduction process also by α and α′). Now
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Proposition 5.1.2 relates α = H0−CS3(A)− cA to α′ = H ′0−CS3(A′)− cA′ and we find

H ′0 = H0 + dB + 2c(A,F ) + c(A,∇A) +
1

3
c(A, [A,A])

∇′ = ∇+A.

Note that the two representatives of h, H = H0 − CS3(A) and H ′ = H ′0 − CS3(A′) are
related by a B-transform on E

H ′ = H + d(B + c(A0, A)),

where A0 is the principal connection on P associated to ∇.
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6 Generalized metrics

Courant algebroids were proposed as a generalization of the tangent bundle of a man-
ifold, so naturally generalized geometry aims to define the analogues of the geometric
structures and operators on the tangent bundle as well. These have been found useful
in geometrizing solutions to partial differential equations that arose in string theory. In
the next chapter we introduce the generalization of Riemannian metrics on transitive
Courant algebroids and see how they behave under reduction. For the exact case the
the calculations and definitions can be found in [22] or [23] and for the heterotic case we
refer to [2], [15] and [35].

Let (E, 〈·, ·〉, [·, ·], π) be a Courant algebroid on a manifold M of dimension n.

Definition 6.0.1. A generalized metric on E is a smooth self-adjoint, orthogonal bundle
automorphism G : E → E which is positive definite in the sense that

〈Ge, e〉 > 0,

for all non-zero sections e ∈ Γ(E).

Orthogonality implies that GG∗ = Id, and together with the self-adjoint property we
find that

G2 = Id.

Therefore, a generalized metric also defines a decomposition of E into its +1 and −1
eigenspaces which we denote by

E− = ker(Id+ G) and E+ = ker(Id− G).

As G is positive definite the restriction of the inner product 〈·, ·〉 to E− is negative definite
and to E+ is positive definite. Denote the projections to the subbundles E± as

Π± =
1

2
(Id∓ G) : E → E±.

From this description it is clear that E+ and E− are orthogonal with respect to the inner
product.

Therefore, if the inner product on a Courant algebroid has signature (p, q) then a
generalized metric is equivalent to a decomposition of E into two orthogonal subbun-
dles E = E+ ⊕ E− of rank p and q respectively, such that the restriction of the inner
product to E+ (E−) is positive (negative) definite. Clearly, defining one of the bundles
determines the other one immediately because E+ = E⊥− . One can then recover the bun-
dle morphism G by defining it as the identity on E+ and minus the identity on E−. In
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the following we will mostly work with this equivalent description of a generalized metric.

When E is a transitive Courant algebroid, i.e. the anchor π : E → TM is surjective,
the cotangent bundle T ∗M injects into E via π∗ and its image is isotropic. Consequently,
if the signature of the inner product on E is (p, q) transitivity implies that p ≥ n and
q ≥ n where n = dim(M).

Lemma 6.0.1. Given a generalized metric on a transitive Courant algebroid, the anchor
restricted to the subbundles E− and E+

π± = π|E± : E± → TM

is surjective.

Proof. If no element e ∈ E− projects to some vector X ∈ TM then there exist ξ ∈ T ∗M
such that ξ(X) 6= 0 but ξ(Y ) = 0 for any Y ∈ TM outside of the linear span of X. Then
ξ as an element of E is orthogonal to E− and therefore an element of E+ of zero length
which contradicts the positive definite property of the inner product on E+. The same
argument shows that π+ is surjective as well.

Note that when the signature of the inner product is (n+m,n), restricting the anchor
to E− yields an isomorphism π− : E− → TM. Therefore its inverse

λ = (π−)−1 : TM → E− ⊂ E

is an injective bundle-map with negative definite image, which induces a Riemannian
metric g on M via

g(X,Y ) = −〈λ(X), λ(Y )〉 X,Y ∈ TM.

6.1 Exact case

For an exact Courant algebroid (E, 〈·, ·〉, [·, ·], π) on a manifold M of dimension n the
inner product has signature (n, n). Therefore a generalized metric is equivalent to defin-
ing a rank n negative definite subbundle E− ⊂ E and we have the decomposition
E = E+ ⊕ E− for E+ = E⊥− .

Generalized metrics can also be described from the point of view of the underlying
manifold utilising the bundle map λ = (π−)−1 : TM → E defined in the previous section.
We have the following proposition.

Proposition 6.1.1. A generalized metric E− on an exact Courant algebroid E over the
manifold M is equivalent to a Riemannian metric g on M and an isotropic splitting
E ∼= TM ⊕ T ∗M such that E− and E+ are of the form

E− = {X − gX | X ∈ TM}
E+ = {X + gX | X ∈ TM}.
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Proof. Let g be the induced Riemannian metric g(X,Y ) = −〈λ(X), λ(Y )〉 for X,Y ∈
TM . Then we can define an isotropic splitting λ′ : TM → E via

λ′(X) = λ(X) + g(X).

Indeed, the inner product on the image of λ′ vanishes as

〈λ(X) + g(X), λ(Y ) + g(Y )〉 = 〈λ(X), λ(Y )〉+
1

2
ιλ(X)g(Y ) +

1

2
ιλ(Y )g(X)

= −g(X,Y ) +
1

2
g(X,Y ) +

1

2
g(Y,X)

= 0.

Using λ′ we have an isomorphism E ∼= TM ⊕ T ∗M and the subbundle E− is given by

E− = im(λ) = im(λ′ − g)

from which we have the required form. Calculating the orthogonal complement of E−
in this splitting yields the form of E+.

Remark 6.1.1. By The proposition above a generalized metric on E is equivalent to
the pair (g,H) where g is the Riemannian metric on M and H is the representative of
the Ševera class of E defined by the splitting.

Two-forms act transitively on isotropic splittings of E via the B-transform. Therefore,
in an arbitrary splitting E ∼= TM ⊕ T ∗M the two subbundles defined by a generalized
metric have the following form:

E− = {X − g(X) +B(X) | X ∈ TM},
E+ = {X + g(X) +B(X) | X ∈ TM}.

Here g is the Riemannian metric defined by G metric and B is a two-form.

6.2 Heterotic case

Let P →M be a principal bundle with compact connected semi-simple structure group
G and c a non-degenerate invariant bilinear pairing on the Lie algebra g so that the
first Pontryagin class of P vanishes with respect to c. So far we have not specified the
signature of c but from here we require it to be positive definite.

Let (H, 〈·, ·〉, [·, ·], π) be a heterotic Courant algebroid over M associated to the prin-
cipal bundle P . Then we have the two short exact sequences

0 K H TM 0π (6.2.1)

0 T ∗M K gP 0.π∗ (6.2.2)
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In this case the inner product has signature (n+m,n) where m is the dimension of the
Lie algebra g. Therefore, a generalized metric is again equivalent to a negative definite
subbundle H− ⊂ H whose orthogonal complement we again denote by H+. We also
have the injective bundle morphims

λ = (π−)−1 : TM → H− ⊂ H

which is an isomorphism between TM and H− and has negative definite image.

Then we have the following generalization of Proposition 6.1.1.

Proposition 6.2.1. A generalized metric H− on the heterotic Courant algebroid H
is equivalent to a Riemannian metric g on M and an isotropic splitting such that the
generalized metric in the splitting is given by

H− ={X − gX | X ∈ T},
H+ ={X + s+ gX | X ∈ T, s ∈ gP }.

Proof. The proof is analogous to the exact case. Let g be again the induced Riemannian
metric g(X,Y ) = −〈λ(X), λ(Y )〉 for X,Y ∈ TM . Then we have the isotropic splitting
λ′ : TM → H defined as before

λ′(X) = λ(X) + g(X).

As we have seen in Section 3.3, an isotropic splitting define an isomorphism

Ψλ′ : T ⊕ gP ⊕ T ∗ → H
X + s+ ξ 7→ λ′(X) + σ|−1

λ′⊥
s+ ξ

where σ : H → H/T ∗ is the natural projection and its restriction σ|λ′⊥ to K∩ λ′(TM)⊥

induces an isomorphism to gP .

Notice, that λ′(TM) = {h + g(π(h)) | h ∈ H−} and hence λ′(TM)⊥ = {h −
g(π(h)) | h ∈ H+}. Consequently,

λ′(TM)⊥ ∩ K = H+ ∩ K

and the isomorphism Ψλ′ can be written as X + s+ ξ → λ′(X) + σ|−1
H+
s+ ξ.

Finally, the subspace H− is given by {λ(X) = λ′(X)−g(X) | X ∈ TM} and hence has
the desired form under the isomorphism Ψλ′ . The form ofH+ follows from orthogonality.

Remark 6.2.1. By the proposition above we see that a generalized metric on the het-
erotic Courant algebroid H is equivalent to a triple (g,∇, H) where g is a Riemannian
metric on M and (∇, H) are the G-connection on gP and H ∈ Ω3(M) associated to the
isotropic splitting λ′.
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In the heterotic case isotropic splittings differ by (B,A)-transforms, therefore the
defining bundles H− and H+ of a generalized metric have the following form in an
arbitrary splitting H+ TM ⊕ gP ⊕ T ∗M :

H− ={X +A(X)− g(X)− c(A(X), A.) +B(X) | X ∈ TM}
H+ ={X +A(X) + s+B(X)− c(A(X), A.)− 2c(s,A) + g(X) | X ∈ TM s ∈ gP }.

6.3 Generalized metrics and reduction

In this section we investigate how generalized metrics behave under reduction.

Simple reduction. Let E be a transitive Courant algebroid over a principal bundle
X → M with compact connected structure group T . Assuming that the group action
lifts to E via Courant automorphisms we defined a new Courant agebroid

E/T

over the base M which we called the simple reduction of E.

Sections of E/T correspond to T -invariant sections of E, therefore the inner product
on E/T has the same signature as on E. Hence a T -invariant generalized metric on E
defined via the splitting E = E+ ⊕ E− reduces to a decomposition

E/T = E+/T ⊕ E−/T,

as T -invariance of the generalzied metric is equivalent to the T -invariance of its defining
subbundlles. Clearly, the inner product restricted to the reduced bundles is still positive
and negetaive definite respectively.

On the other hand, if we have a generalized metric on E/T defined by the decompo-
sition E/T = (E/T )+ ⊕ (E/T )− over M , pulling back to X yields a decomposition of
E into the T -invariant preimages of (E/T )+ and (E/T )−. Moreover, the signature of
inner product on the pullback bundles agrees with the signature on the original bundle.
Consequently we have the following proposition.

Proposition 6.3.1. Generalized metrics on the simple reduction E/T of E are in one
to one correspondence with T -invariant generalized metrics on E.

Reduction via extended actions. We have seen that heterotic Courant algebroids
arise as reductions of exact Courant algebroids. In this case we first restrict to a sub-
bundle of the original Courant algebroid which we then simply reduce. In this section
we investigate which generalized metrics are compatible with this restriction and which
metrics can be extended back from a subbundle to the total space.

Let P → M be a principal bundle with compact, connected, semisimple structure
group G and c a non-degenerate, positive definite bilinear pairing on its Lie algebra g.
Suppose p1(P ) = 0, let h ∈ H3(P,R) be a string class and consider the exact Courant
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algebroid E on P corresponding to h. Let n be the dimension of the base manifold M
and m the dimension of the Lie group G.

Recall that in the reduction procedure we specify a splitting E ∼= TP ⊕ T ∗P and an
extended action α : g → Γ(TP ⊕ T ∗P ). We then consider the image of α which is a
genuine subbundle of E

im(α) = K ⊂ E.
Moreover, we have seen that the inner product restricted to the sections of K agrees with
−c and therefore it is negative definite. Consequently, the inner product has signature
(n+m,n) on K⊥.

The reduced Courant algebroid Ered ∼= H is defined as the simple reduction of K⊥,
i.e.

H ∼= Ered = K⊥/G.

Therefore, a generalized metric E = E− ⊕ E+ can be reduced to a generalized metric
on Ered if it is G-invariant and respects the decomposition E = K ⊕K⊥ or equivalently
G(K) ⊂ K. This in particular implies that K is a subbundle of E− and that K⊥ ∩ E−
is of rank n = dim(M). Then we can decompose K⊥ into positive and negative definite
parts as

(K⊥)+ = E+ and (K⊥)− = E− ∩K⊥.
as these subbundles are G-invariant they define a generalized metric on H = K⊥/G.

On the other hand a generalized metric onH = Ered can be defined as a decomposition

K⊥/G = H = H− ⊕H+

where H− is of rank n and H+ is of rank n+m. Such a decomposition pulls back to P
and we get a G-invariant decomposition of K⊥

K⊥ = Ĥ− ⊕ Ĥ+

into negative and positive definite subbundles (here the hat denotes pullback). Then
Ĥ+ is a rank n+ d = dim(P ) positive definite G-invariant subbundle of E and therefore
it determines a generalized metric. This generalized metric is then given by its defining
subbundles as

E− = K ⊕ Ĥ− and E+ = Ĥ+.

In conclusion we have the following proposition.

Proposition 6.3.2. Let H be a heterotic Courant algebroid coming from a reduction of
an exact Courant algebroid E over the principal bundle P . Then if the bilinear pairing c
on the Lie algbera g of the structure group G is positive definite, any generalized metric
on H uniquely lifts to a generalized metric on E.

Remark 6.3.1. In this section we always assumed that c is positive definite. For
indefinite c the picture is a bit more complicated. Generalized metrics on a heterotic
Courant algebroid still lift to the unreduced space but this lift is not unique anymore as
one still has to make a choice of splitting K into positive and negative definite orthogonal
subspaces.
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7 Generalized connections

We have seen in the previous section that metrics have an analogue on Courant alge-
broids which motivates the search for the analogue of connections and metric compatible
connections especially for a unique Levi-Civita connection. We will see that the frame-
work in this case is not so clean but there are still some interesting invariants related
to generalized metrics when they are paired together with certain differential operators.
These extra operators seem arbitrary from the mathematical point of view as they are
motivated by the existence of the dilaton field arising in string theory so we postpone
their justification to a later point.

Let (E, 〈·, ·〉, [·, ·], π) be a transitive Courant algebroid over a manifold M . Our dis-
cussion in this section is going to be general and we apply our findings to specific cases
later.

Generalized connections were introduced by Gualtieri in [24] for exact Courant alge-
broids and later adapted to the transitive setting in [15] by Garcia-Fernandez.

Definition 7.0.1. A generalized connection D on E is a first order differential operator

D : Γ(E)→ Γ(E∗ ⊗ E),

which satisfies the π-Leibniz rule

De1(fe2) = π(e1)(f)e2 + fDe1e3 ∀f ∈ C∞(M), e1, e2 ∈ Γ(E),

and compatible with the inner product

π(e1)〈(e2, e3) = 〈De1e2, e3〉+ 〈e2, De1e3〉 ∀e1, e2, e3 ∈ Γ(E).

That is, D is an orthogonal E-connection1. We denote the set of generalized connections
on E by D.

Remark 7.0.1. Note that D is non-empty, as given any standard orthogonal connection
∇ on the vector bundle (E, 〈·, ·〉) we can defined a generalized connection D via

De1e2 = ∇π(e1)e2,

for e1, e2 ∈ Γ(E).

1In this thesis we only consider generalized connections that are compatible with the inner product but
clearly one could define them without this restriction as well. This has been done in [1] where these
operators are called E-connections.
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As standard orthogonal connections form an affine space modelled on Γ(T ∗M⊗so(E)),
the space of generalized connections is an affine space modelled on the vector space

Γ(E∗ ⊗ so(E)).

Definition 7.0.2. The torsion TD ∈ Γ(∧3E∗) of a generalized connection D is defined
by

TD(e1, e2, e3) = 〈De1e2 −De2e1, e3〉+ 〈De3e1, e2〉.

Remark 7.0.2. The torsion formula above applies only to generalized metrics com-
patible with the inner product. A more general form was proposed in [1] using the
skew-symmetric Courant bracket [[e1, e2]] = 1

2([e1, e2]− [e2, e1]):

TD(e1, e2, e3) =
(1

2
〈De1e2 −De2e1, e3〉 −

1

3
〈[[e1, e2]], e3〉

)
+ c.p.,

where c.p denotes cyclic permutations. This is the straightforward generalization of the
standard definition of the torsion of a connection and it applies to non-orthogonal E-
connections as well. By a lengthy calculation one can show that the two formulas are
equivalent for orthogonal E-connections.

Via the inner product we have an isomorphism Γ(E∗ ⊗ so(E)) ∼= Γ(E ⊗ ∧2E) of the
vector space on which D is modelled. Fixing the torsion restricts D to a subset which
we denote by

D(T ) = {D ∈ D | TD = T ∈ Γ(∧3E∗) }.
It is an affine space modelled on

Σ = {σ ∈ Γ(E⊗3)| σabc = −σacb, σabc + c.p. = 0},

where c.p. denotes cyclic permutation. Indeed, the first condition is that σ is in Γ(E ⊗
∧2E) and the second is that it does not affect the torsion.

Similarly to fixing the torsion, fixing the trace of a generalized connection is a reason-
able step. In [17] this process was called Weyl gauge fixing as it has physical motivations
which we will see later. Here, we introduce divergence operators which provide the right
mathematical framework for this process.

Definition 7.0.3. [1] The divergence of an element e ∈ Γ(E) corresponding to a gener-
alized connection D is

divD(e) = tr De =

rE∑
i=1

〈Deie, ẽi〉 ∈ C∞(M),

where rE = rank(E), {ei} is a basis of E and {ẽi} is the dual basis (i.e. 〈ei, ẽj〉 = δij).

Clearly, divD defines a first order differential operator Γ(E) → C∞(M) which also
satisfies the π-Leibniz rule

divD(fe) = π(X)f + fdivD(e), (7.0.1)

since the trace is C∞(M)-linear. The above construction can be made independent of
the connection D as well.
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Definition 7.0.4. [1] A divergence operator on E is a first order differential operator
div : Γ(E)→ C∞(M) satisfying 7.0.1.

Taking the trace defines a map on the vector space Γ(E ⊗ ∧2E), on which the affine
space D is modelled

tr : Γ(E ⊗ ∧2E)→ Γ(E).

Restricted to Σ it admits a right inverse via the map

e 7→ σe

where
σe(e1, e2, e3) = 〈e1, e2〉〈e, e3〉 − 〈e, e2〉〈e1, e3〉.

Therefore the vector space Σ decomposes as

Σ = Σ0 ⊕ Γ(E)

Here Σ0 denotes the kernel of tr which is then explicitely given by

Σ0 =
{
σ ∈ Σ

∣∣∣ rE∑
i=1

σ(ei, ẽi, .) = 0
}
.

We can now define yet another subset of generalized connections with fixed torsion
and divergence operator

D(T, div) = {D ∈ D| TD = T and divD = div}.

As div fixes precisely the trace of a connection D(T, div) is clearly an affine space mod-
elled on Σ0.

7.1 Metric compatible generalized connections

Recall that a generalized metric on a transitive Courant algebroid E over a manifold M
of dimension is given by a decomposition

E = E− ⊕ E+

into positive and negative definite subbundles. Alternatively, a generalized metric is an
orthogonal bundle morphism G : E → E such that G2 = Id. We define compatible
connections analogously to the standard case of Riemannian geometry.

Definition 7.1.1. A generalized connection D : Γ(E) → Γ(E∗ ⊗ E) is said to be
compatible with the generalized metric E− if it respects the decomposition E = E−⊕E+,
i.e. whenever

D(Γ(E±)) ⊂ Γ(E∗ ⊗ E±).

We also call these connections metric connections and denote their space by D(E−).

58



A metric connection defines four first order differential operators via the splitting,
namely

D+
+ : Γ(V+)→ Γ(V ∗+ ⊕ V+) D+

− : Γ(V+)→ Γ(V ∗− ⊕ V+)

D−+ : Γ(V−)→ Γ(V ∗+ ⊕ V−) D−− : Γ(V−)→ Γ(V ∗− ⊕ V−).

These operators satisfy the π±-Leibniz rules where π± = π|E± . Metric compatible
connections also form an affine space, modelled on

Γ(E∗ ⊗ so(E−))⊕ Γ(E∗ ⊗ so(E+))

reflecting the fact that these connections respect the splitting induced by E−.

Initially it seems like specifying a metric connection amounts to specifying its four
different component, but it turns out that the mixed-type operators D+

− and D−+ are
fixed by the torsion. Moreover, whenever the torsion TD is of pure type, i.e.

TD ∈ Γ(∧3E∗−)⊕ Γ(∧3E∗+)

they are uniquely determined by the metric E−. We call the operators D+
+ and D−−

pure-type operators as well.

For e ∈ Γ(E) let us denote by e± its projections to E± which can be written as

e± =
1

2
(Id− G)e = Π±e.

Lemma 7.1.1. [17] For D ∈ D(E−) with torsion T ∈ Γ(∧3E∗) the following holds.

1. For D′ ∈ D(E−) if TD′ = T then the mixed type operators agree D′±∓ = D±∓.

2. If T is of pure type then for e1, e2 ∈ Γ(E) the mixed-type operators are given by

De−1
e+

2 = [e−1 , e
+
2 ]+ De+1

e−2 = [e+
1 , e

−
2 ]−.

Proof. For any e1, e2, e3 ∈ Γ(E) the mixed-type torsion is given by

TD(e−1 , e
+
2 , e

+
3 ) = 〈De−1

e+
2 − [e−1 , e

+
2 ]+, e+

3 〉,

since De1e
±
2 ⊂ E±. This formula fully determines D±∓ from the mixed-type part of TD

and yields (2.) when the mixed-type torsion vanishes.

From here we turn our attention to torsion-free metric compatible connections whose
space we denote by

D(0, E−) = D(E−) ∩ D(0).

It is clear from our previous discussion that D(0, E−) is an affine space modelled on

Σ+ ⊕ Σ−,

where Σ± = Γ(∧3E±) ∩ Σ. Moreover, the decomposition into trace and traceless part
carries over as well

Σ± = Σ±0 ⊕ Γ(E±).
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Remark 7.1.1. It is important to note that metric connections and even torsion free
metric connections always exist for any generalized metric E−. As the restriction of the
inner product 〈·, ·〉 to the subbundles E− and E+ is non-degenerate there exist standard
metric connections ∇− and ∇+ on them. Then for e1, e2 ∈ Γ(E) let

De±1
e±2 = ∇±

π±(e±1 )
e±2

and define the mixed-type operators as in Lemma 7.1.1. Then D is a metric connection
with pure-type torsion TD, therefore

D0 = D − 1

3
TD

is a torsion-free metric connection since TD can be regarded as an element in Γ(E∗ ⊗ so(E−))⊕
Γ(E∗ ⊗ so(E+)).

In the presence of a divergence operator div we will also consider torsion-fee metric
connections with specific trace which we denote by

D(E−, div) = D(0, E−) ∩ D(0, div).

Clearly, D(E−, div) is an affine space modelled on Σ+
0 ⊕ Σ−0 .

7.2 Dirac operators

We can see that our goal of finding a unique ”generalized Levi-Civita connection” is not
achievable in general. Nevertheless, there have been attempts to single out a canonical
natural connection ([18]) from the elements of D(E−, div) specifically for the case of
heterotic Courant algebroids but for now we are staying in the general setting. Remark-
ably, even though, there is a large family of ”Levi-Civita connections” corresponding to
a generalized metric there are still geometric invariants that only depend on D(E−, div).

First let us state some general facts about connections on bundles of Clifford algebras
and the corresponding spin bundles (see [1]). Let V be a vector bundle over M with a
non-degenerate inner product 〈·, ·〉 and suppose M admits a spin bundle S corresponding
to the bundle of Clifford algebras C`(V ). This holds whenever w2(V ) the second Stiefel-
Whitney class of V vanishes. An orthogonal V -connection ∇ on V generates a unique
V -connection ∇C` on C`(V ) via

∇C`e (uv) = (∇C`e u)v + u(∇C`e v) e ∈ Γ(V ), u, v ∈ C`(V ).

The affine space of V -connections on V is modelled on Γ(V ∗ ⊗ so(V )), therefore the
difference in two Clifford V -connection for any e ∈ Γ(V ) is

∇C`e − ∇̃C`e = Ae ∈ so(V ).
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Here Ae ∈ so(V ) is lifted to the Clifford algebra as it was described in Section 2.3.

The spin bundle S also admits V -connections ∇S and we call them compatible with
the Clifford connection ∇C` if

∇Se (u · α) = (∇C`e u) · α = u · (∇Se α)

holds for all e ∈ V , u ∈ C`(V ) and α ∈ S. Spin connections in general may differ
by an element in Γ(V ∗ ⊗ End(S)) ∼= Γ(V ∗ ⊗ C`(V )) but compatibility with a Clifford
connection requires the part in C`(V ) to be central. In conclusion, for any e ∈ Γ(V ) two
spin connections compatible with the same Clifford connection differ by a function

∇Se − ∇̃Se = f ∈ C∞(M).

To associate a spin connection to a Clifford connection ∇C` which is independent of
choices assume that the line bundle (detS∗)1/rS exist where rS = rankS and consider
the bundle

S = S ⊗ (detS∗)1/rS .

Any spin connection ∇S on S determines a connection on (detS∗)1/rS and therefore on
S by taking the product connection. This is now independent of the choice of ∇S as the
change of connection on (detS∗)1/rS amounts to −f ∈ C∞(M). Denote the resulting
V -connection on S by DS which now only depends on the choice of Clifford connection
∇C`.

Definition 7.2.1. The Dirac operator associated to a spin V -connection DS on S is a
first order differential operator

/D
S

: Γ(S)→ Γ(S)

which is defined as follows. For r = rankV let e1, .., er be a local orthogonal frame of
V . Then for α ∈ S

/Dα =
1

2

r∑
i=1

ei ·DSeiα,

where the multiplication denotes the Clifford action.

Note that when r is even the spin bundle S decomposes into the two irreducible
half-spin representations

S = SR ⊕ SL.

Let SR = SR ⊕ (detS∗)1/rS (and SL analogously), then the Diarc operator /D maps SR
to SL and SL to SR. The R − L notation seems somewhat arbitrary here, it reflects
that in physics elements of the half-spin representations are thought of as ”left and right
moving” particles.

Coming back to the case of metric compatible connections, let E− be a generalized
metric on the Courant algebroid E. Since the inner product of E restricts to non-
degenerate inner products on the bundles E− and E+ we can consider the bundle of
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Clifford algebras C`(E±). Suppose that E± both admit a spinor bundle S± and that

the line bundles (detS∗±)1/rS± exist. We have seen that a generalized connection D com-
patible with the metric E− induces E±-connections on E± via the pure-type operators
operators D±±. Moreover, the operators D±± are also compatible with the restricted inner
product, i.e. they define orthogonal E±-connections on the subbundles E±. Consider
now the associated spin connections on

S± = S± ⊗ (detS∗±)1/rS±

and the induced dirac operators

/D± : Γ(S±)→ Γ(S±).

Lemma 7.2.1. The operators /D± do not depend on the choice of generalized connection
D ∈ D(E−, div).

Proof. Two generalized connections D,D′ ∈ D(E−, div) differ by elements in Σ+
0 ⊕ Σ−0 .

Therefore, there exist a traceless element σ ∈ Σ−0 ⊂ Γ(E− ⊗ ∧2E−) such that

〈(D−−)e1e2 − (D′−− )e1e2, e3〉 = σ(e1, e2, e3),

and σ(e1, e2, e3)+c.p. = 0 for all e1, e2, e3 ∈ Γ(E−). The Clifford connection also changes

by σ which in turn changes the spin connection on (detS∗−)1/rS− by a factor (which we
can ignore now) and by σ on S acting via the formula defined in Section 2.3.

More precisely, if r = rankE− and e1, ..., er is an orthogonal basis of E− then σ acts
via the Clifford action as the element

σ =
∑
i,j,k

σkjiekejei ∈ C`(E)

with the property that σkji + c.p. = 0, therefore σ = 0 in C`(E), so we have that

/D
′
− = /D−.

The same calculation holds for /D+.

7.3 The canonical Levi-Civita connection

We have seen that torsion free metric compatible generalized connections are far from
unique. Nevertheless, in [18] a natural connection was constructed for transitive Courant
algebroids which can be regarded as a canonical Levi-Civita connection. The definition
extends the construction of Gualtieri-Bismut connection which was defined on exact
Courant algebroids (see [24]) to the transitive case.
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Let (E, 〈·, ·〉, [·, ·], π) be a transitive Courant algebroid and E− ⊂ E a generalized
metric, and G the corresponding bundle map. Define the subbundle C+ = E∗− ⊂ E+

and a bundle map C : E → E

C = π|−1
E−
◦ π ◦Π+ + π|−1

C+
◦ π ◦Π−

where Π± = 1
2(Id ± G) the projections to E±. Clearly, C sends E− to C+ and E+ to

E−.

Example. When E is exact a generalized metric induces a splitting in which E− =
{X − gX|X ∈ TM} and E+ = {X + gX|X ∈ TM} and the map C is

C(X ± gX) = X ∓ gX.

In the heterotic case the induced splitting is E− = {X − gX|X ∈ TM} and E+ =
{X + s+ gX|X ∈ TM, s ∈ gP } and C is

C(X − gX) = X + gX and C(X + s+ gX) = X − gX.

Definition 7.3.1. [18][24] The Gualtieri-Bismut connection DB on E is defined by

DB
e1e2 = [e−1 , e

+
2 ]+ + [e+

1 , e2−]− + [Ce+
1 , e

+
2 ]+ + [Ce−1 , e

−
2 ]−,

where e± = Π±e.

Remark 7.3.1. The Gualtieri-Bismut connection is well-defined. Bilinearity is clear as
the Dorfman bracket is bilinear, the Leibniz-rule follows from axiom C3 (see Definition
3.0.1), compatibility with the metric from C4 and finally for C∞(M)-linearity in the first
entry one can again use C3 and the fact that the Dorfman bracket is skew-symmetric
when evaluated on orthogonal elements.

When E is exact this connection restricts to the original definition of the Gualtieri-
Bismut connection from [24]. The name reflects the fact that when explicitly calculated
DB contains the Bismut connection on the tangent bundle which is defined for a Rie-
mannian metric g and a 3-form H as

∇− = ∇g − 1

3
g−1H.

Here ∇g is the Levi-Civita connection corresponding to g. An important feature of ∇−
that it has totally skew-symmetric torsion −H.

From Lemma 7.1.1 we readily see that the torsion of DB is of pure-type. Therefore,
we can construct a torsion-free connection out of it which is still compatible with the
metric.

Definition 7.3.2. [18] The canonical Levi-Civita connection of E− is defined by

DLC = DB − 1

3
TDB .
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The most important feature of this construction is naturality in the sense that DLC

is interchanged by generalized diffeomorphisms between Courant-algebroids. More pre-
cisely if f : E → E′ is an morphism of Courant algebroids then

DLC(E−) = f∗DLC(f(E−)).

Remark 7.3.2. Note that the canonical Levi-Civita connection is not divergence-free
in any sense. It is instead used as a reference point for the affine space of torsion-free
metric connections and the Weyl gauge fixing process of choosing a divergence is done
with respect to the Levi-Civita connection. This simplifies calculations as compared to
a singled out connection fixing the divergence simply amounts to choosing an element
e ∈ Γ(E).

Example. In the case of both exact and heterotic Courant algebroids the divergence
of the canonical Levi-Civita connection can be computed fairly easily using normal co-
ordinates {x1, .., xn} for the induced Riemannian metric g. We then find for an element
e ∈ E

divDLCe =
n∑
i=1

∂π(e)i

∂xi
,

which is the usual notion of divergence in multivariable calculus. This also supports our
choice of taking DLC to be our reference connection.
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8 T-duality

The notion of mathematical T-duality has been introduced by Bouwknegt, Evslin,
Mathai and Hannabuss [3, 4] as a relation between principal torus bundles. Later it has
been reinterpreted by Cavalcanti and Gualtieri [7] as an isomorphism of exact Courant
algebroids over the principal torus bundles. In this section we review these constructions
then we generalize it to the heterotic case following [2].

8.1 T-duality of torus bundles

Let M and M̃ be principal torus bundles of the same dimension over the common base
B. We write T k and T̃ k for the structure groups of M and M̃ respectively. Let H
and H̃ be invariant closed 3-forms over M and M̃ respectively. Consider the fibered
product C = M ×B M̃ with projections p and p̃ to M and M̃ . The space C, called the
correspondence space, is a principal T 2k bundle over B and we have the closed invariant
3-form p∗H − p̃∗H̃ on it.

We summarize the above data in the following commutative diagram.

(M ×B M̃, p∗H − p̃∗H̃)

(M,H) (M̃, H̃)

B

p p̃

π π̃

Definition 8.1.1. (Differential T-duality) The torus bundles together with the closed
invariant 3-forms (M,H) and (M̃, H̃) are said to be T-dual if there exist an invariant
2-form F on M ×B M̃ such that

dF = p∗H − p̃∗H̃

and such that F : tkM ⊗ tk
M̃
→ R is non-degenerate where tk is tangent to the fibre of

M ×B M̃ → M̃ and t̃k is tangent to the fibre of M ×B M̃ →M .

More precisely, given a basis of periodic elements {∂θi} and {∂θ̃j} of the fibres of M

and M̃ respectively we have

(F (∂θi , ∂θ̃j )) ∈ GL(k,R).
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The condition above is topological in the sense that if (M,H) and (M̃, H̃) are T-
dual then so are any invariant representatives of the classes [H] ∈ H3(M,R) and [H̃] ∈
H3(M̃,R). Indeed, if B ∈ Ω2(M) and B̃ ∈ Ω2(M̃) are invariant 2-forms then

p∗(H + dB)− p̃∗(H̃ + dB̃) = d(F + p∗B − p̃∗B̃)

and F + p∗B − p̃∗B̃ restricted to tk ⊗ t̃k agrees with F , therefore still non-degenerate.
Consequently, we may redefine T-duality in the following way.

Definition 8.1.2. (Topological T-duality) The T k torus bundles together with the
degree 3 real cohomology classes (M,h) and (M̃, h̃) are said to be T-dual if

p∗h = p̃∗h̃ ∈ H3(M ×B M̃,R),

and for any invariant representatives H ∈ Ω3(M) and H ′ ∈ Ω3(M̃) such that p∗H −
p̃∗H̃ = dF for F ∈ Ω2(M ×B M̃) the restriction of F to tk ⊗ t̃k is non-degenerate.

Remark 8.1.1. The above notions of T-duality are less restrictive than what is used
in physics literature. One usually asks for H and H̃ to represent integral cohomology
classes and F to be unimodular in the sense that

F (∂θi , ∂θ̃j ) ∈ GL(k,Z)

where {∂θi} and {∂θ̃j} are bases of invariant period 1 elements of the fibres of M and M̃

respectively. This restricted version is used to interpret T k and T̃ k as dual tori.

In case of integral cohomology classes the T-duality condition can be further restricted
to p∗h = p̃∗h̃ as integral cohomology classes in H3(M ×B M̃,Z). The existence and
uniqueness of T-duals in this case was explored further in [3] and [4] with similar, al-
though more nuanced results as presented below.

Suppose now we have a T-dual pair of T k torus bundles (M,h) and (M̃, h̃) in the
sense of Definition 8.1.2. Let θ ∈ Ω1(M, tk) and θ̃ ∈ Ω1(M̃, t̃k) be principal connections
on M and M̃ respectively. Pulling them back to the correspondence space they form a
principal T 2k connection. Chose a basis t1, ..., tk for tk and t̃1, ..., t̃k for t̃k. Then we can
write θ = θiti and θ̃ = θ̃it̃i. We denote the dual bases by t1, ..., tk and t̃1, ..., t̃k.

Let H and H̃ be invariant representatives of h and h̃ such that, omitting pullback
notation, H−H ′ = dF for some invariant 2-form F on the correspondence space. Using
the connections θ and θ̃ we can write in the usual notation

H = H0 +H1
i θ
i +H2

ijθ
ij +H3

ijkθ
ijk,

H̃ = H̃0 + H̃1
i θ̃
i + H̃2

ij θ̃
ij + H̃3

ijkθ̃
ijk,

F = F0 + F 1
i θ

i + F̃ 1
i θ̃

i + F 2
ijθ

ij + F̃ 2
ij θ̃

ij + F 3
ijθ

iθ̃j ,

where H0, H1
i , ..., H̃

0, H̃1
i , ..., F

0, F 1
i , F̃

1
i ... are all basic forms, i.e. pullbacks from B.
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Differentiating F , omitting the wedge in the products, we obtain

dF = dF0 + dF 1
i θ

i − F 1
i dθ

i + dF̃ 1
i θ̃

i − F̃ 1
i dθ̃

i

+ dF 2
ijθ

ij + 2F 2
ij(dθ

i)θj + dF̃ 2
ij θ̃

ij + 2F̃ 2
ij(dθ̃

i)θ̃j

+ dF 3
ijθ

iθ̃j + F 3
ij(dθ

i)θ̃j − F 3
ijθ

i(dθ̃j).

Note that dθ and dθ̃ are the curvature 2-forms of θ and θ̃ and hence basic.

The T-duality condition dF = H − H̃ then amounts to

H3
ijk = H̃3

ijk = 0, H2
ij = dF 2

ij , H̃2
ij = −dF̃ 2

ij , dF 3
ij = 0,

H1
i = dF 1

i + 2F 2
jidθ

j − F 3
ijdθ̃

j , H̃1
i = −dF̃ 1

i − 2F̃ 2
jidθ̃

j − F 3
jidθ

j

H0 − H̃0 = dF 0 − F 1
i dθ

i − F̃ 1
i dθ̃

i.

Notice now that changing the representatives H → H − d(F 2
ijθ

ij + F 1
i θ

i − F0) and

H̃ → H̃ − d(F̃ 2
ij θ̃

ij + F̃ 1
i θ̃

i) changes F to only F 3
ijθ

iθ̃j and we reach the following forms

H = H0 − F 3
ijdθ̃

iθj , H̃ = H0 − F 3
ij θ̃

idθj ,

where now the basic parts of H and H̃ agree and

H − H̃ = d(F 3
ijθ

i ∧ θ̃j).

In conclusion we have the following theorem.

Theorem 8.1.1. Let (M,h) and (M, h̃) be T-dual torus bundles. Then for any pair of
principal connections θ and θ̃ there exist a 3-form H0 ∈ Ω3(B) on the common base such
that h and h̃ are represented by

H = π∗H0 − Fijθi ∧ dθ̃j and H̃ = π̃∗H0 − Fijdθi ∧ θ̃j

respectively, and
F = Fijθ

i ∧ θ̃j .

Whenever F is unimodular on tk ⊗ t̃k we may regard it as the natural pairing between tk

and tk∗, in general we obtain an isomorphism F : tk∗ → t̃k.

As an abuse of notation we regard F as a pairing on tk ⊗ t̃k we will write F (A,B) for
A a form with values in tk and B a form with values in t̃k. More precisely, given a basis
in which A = Aiti and B = Bit̃i we have

F (A,B) = FijA
i ∧Bj .

In this notation the two-form F of Theorem 8.1.1 is written as F (θ, θ̃).
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The above theorem shows that not every degree 3 cohomology class has T-duals.
Recall the filtration of invariant forms on a principal bundle

Ω•(B) = F0 ⊂ F1 ⊂ ... ⊂ Fk = Ω•(M)

with F i = Ann(∧i+1tk). By the previous theorem if h ∈ H3(M,R) has a T-dual, then
it has an invariant repesentative that is in F1. Turns out this is the only obstruction to
having a T-dual whenever we have a class representing an integral cohomology class.

Definition 8.1.3. Let M → B be a principal torus bundle and h ∈ H3(M,R). We
call h a T-dualisable class if it represents an integral cohomology class and it has a
representative H that lies in F1.

Theorem 8.1.2. Given a principal T k-bundle M → B and a T-dualisable class h ∈
H3(M,R), there exist a principal torus bundle M̃ and a T-dualisable class h̃ such that
(M,h) and (M̃, h̃) are T-dual.

Proof. Let θ ∈ Ω1(M, tk) be a connection on M . Then as h is T-dualisable it has a
representative H ∈ F1 and there are forms c̃ ∈ Ω2(B, tk∗) and H0 ∈ Ω3(B) such that

H = 〈c̃, θ〉+H0

where 〈·, ·〉 represents the natural pairing between tk and its dual Lie algebra tk∗.

As H is closed so is c̃ since

dH = 〈dc̃, θ〉+ 〈c̃, dθ〉+ dH0 = 0

and dθ = dθ + 1
2 [θ, θ] = Fθ is basic. Moreover, as H represents an integral cohomology

class, so does c̃ in H2(B, t∗k).

Therefore, we can interpret c̃ as the real image of the Chern class of a principal torus
bundle M̃ over B with structure group T̃ k the torus dual to T k. Let θ̃ be a connection
on M̃ such that dθ̃ = c̃ and define the dual 3-form as

H̃ = 〈c, θ̃〉+H0

where dθ = c ∈ Ω2(B, tk) represents the Chern class of M and H0 is the basic part of H.

Then, in the correspondence space we have

p∗H − p̃∗H̃ = 〈c̃, θ〉 − 〈c, θ̃〉 = d〈θ, θ̃〉.

Clearly with this choiceH and H̃ are T-dual in the sense of Definition 8.1.3 and F = 〈θ, θ̃〉
is unimodular.

Moreover, H̃ is closed as

dH̃ = 〈dθ, dθ̃〉+ dH0 = dH = 0

and represents an integral cohomology class as well.
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Remark 8.1.2. The above theorem has some implications in terms of the Chern classes
in real cohomology. Let (M,h) and (M̃, h̃) be T-dual torus bundles and H and H̃
representatives such that H = H0 + F (θ, c̃) and H̃ = H0 + F (c, θ̃) with c = dθ and
c̃ = dθ̃. Then the last calculation above yields

F (c, c̃) + dH0 = 0.

Theorem 8.1.2 establishes the existence of a T-dual for all torus bundles with T-
dualisable classes h. However, in the construction of a T-dual we made several choices
which suggests that T-duals are not unique.

Firstly, we have already chosen a representative H of the T-dualisable class h ∈
H3(M,R). This choice determines the real image of the Chern class of the T-dual torus
bundle in H2(B, tk∗). In the following we show that different choices lead to different
classes.

Suppose we have an other representative H ′ = H0′ + 〈c̃′, θ〉. Then

H −H ′ = dC

for some invariant 2-form C ∈ Ω2(M). After choosing a basis for tk and tk∗ we can
decompose C as

C = C0 + C1
i θ
i + C2

ijθ
ij .

Substituting into H −H ′ = dC yields

〈c̃− c̃′, θ〉 = d(C1
i )θj + d(C2

ijθ
ij)

with C2
ij constant functions. The first term is exact in Ω2(B, tk∗) so only the second

term can change the cohomology class of c i.e.

[c̃− c̃′] ∈ dΩ0(B,∧2tk∗).

Therefore, the cohomology class [c] is not well defined on B, only on M .

Secondly, even after choosing a representative H the T-dual of a pair (M,H) is not
unique, as we interpret c̃ as the image of an integral cohomology class under H2(B,Z)→
H2(B,R). Therefore the torsion part of [c̃] can be chosen arbitrarily.

Thirdly, in our basis the dual Chern class is c̃ = c̃iti. Given any integers m1, ...,mk ∈ Z
the Torus bundle with real Chern class c̃′ =

∑
imic̃

iti is also T-dual to (M,h) only F is
no longer unimodular.

The following examples demonstrate some of the ambiguities described above.

Example 1. The most basic instance of T-duality is the case of circle bundles. For
a circle bundle M → B every cohomology class h ∈ H3(M,R) representing an integral
class is T-dualisable, as the fibre is one dimensional. Therefore any pair (M,h) has
a T-dual. Indeed, after picking a basis t1 ∼= R, H ∈ F1 a representative of h and
θ ∈ Ω1(M,R) a principal connection we may write H = c̃ ∧ θ + H0. Then, the T-dual
3-form is

H̃ = c ∧ dθ̃ +H0
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with c = dθ. In this case [c̃] ∈ H2(B,R) is uniquely defined by h as ∧2t1∗ = 0.

Example 2. A concrete example of a circle bundle is the Hopf fibration which exhibits
the 3-sphere S3 as a circle bundle over S2. The mapping of this fibration is as follows

π : S3 ⊂ C2 → S2 ∼= CP1

(z1, z2) 7→ [z1 : z2]

and the S1 fibres are clearly given by eit(z1, z2).

Another way to implement the Hopf map is

(η, ξ1, ξ2) 7→ (2η, ξ1 + ξ2)

where we use polar coordinates (ψ,ϕ) for S2 and (η, ξ1, ξ2) 7→ (eiξ1 sin η, eiξ2 cos η) to
parametrise S3. In this coordinate system η ∈ [0, π/2), ξ1, ξ2 ∈ [0, 2π) and the round
metric is given by

ds2 = dη2 + sin2ηdξ2 + cos2ηdξ2.

Along the Hopf map the volume form dψ ∧ dϕ of S2 pulls back to 2dη ∧ (dξ1 + dξ2) on
S3.

The fibres are given by π−1(ψ,ϕ) = (ψ/2, ϕ − t, t) where t runs from 0 to 2π, hence
the vertical distribution V at a point is given by

V |(η,ξ1,ξ2) = span{−∂ξ1 + ∂ξ2}.

We can use the metric ds2 to dualise the vector field −∂ξ1 + ∂ξ2 to find a connection
1-form for the fibration which becomes

θ = −sin2(η)dξ1 + cos2(η)dξ2.

The curvature of this connection is then a volume form for the 2-sphere

σ = dθ = sin(2η)(dξ1 + dξ2) ∧ dη.

Consider now the Hopf fibration S3 together with the zero cohomology class h = 0 ∈
H3(S3,R). Then (S3, h) is T-dual to the trivial bundle S2 × S1 together with the class
represented by σ ∧ θ̃ where θ̃ is the flat connection on S2 × S1.

Considering now a different cohomology class represented by σ∧θ, the pair (S3, [σ∧θ])
is self-T-dual.

Example 3. Let M → B be a 2-torus bundle with real Chern class ([c1], [c2]) ∈
H2(B,R2) after choosing a basis for t2∗ ∼= R2. Let θ = θit

i be a connection on M
such that (dθ1, dθ2) = (c1, c2). In this example we construct two topologically different
T-duals for M with the T-dualisable class 0 = h ∈ H3(M,R).
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First, take the representative H = 0. Then as in the previous example B×S1×S1 is
a T-dual with 3-form

H̃ = c1 ∧ θ̃1 + c2 ∧ θ̃2,

where θ̃iti is a flat connection for B × S1 × S1.

Another T-dual can be constructed by taking the representative

H = d(θ1 ∧ θ2) = c1 ∧ θ2 − c2 ∧ θ1.

Then let M̃ → B be the torus bundle with the structure group dual to the torus of M
and real Chern class (−[c2], [c1]). Let θ̃ = θ̃iti be a connection on M̃ with dθ̃ = −c2 and
dθ̃ = c1. Then M̃ is T-dual to M with 3-form

H̃ = d(θ̃2 ∧ θ̃1).

Indeed, using dθ1 = −dθ̃2 and dθ2 = dθ̃1 we have

H − H̃ = dθ1 ∧ θ2 − dθ2 ∧ θ1 + dθ̃1 ∧ θ̃2 − dθ̃2 ∧ θ̃1 = d(θ̃2 ∧ θ2 + θ̃1 ∧ θ1).

Clearly, the two T-duals B×S1×S1 and M̃ are topologically distinct whenever [c1] 6= 0
or [c2] 6= 0.

Closed 3-forms on a manifold can be used to twist the exterior derivative d to dH =
d + H as we have seen in the case of exact Courant algebroids. Then, the T-duality
relation between two principal torus bundles induces an isomorphism between the twisted
differential complexes.

Theorem 8.1.3. Let (M,H) and (M̃, H̃) be T-dual principal torus bundles with struc-

ture groups T k and T̃ k. If p∗H − p̃∗H̃ = dF then the map

τ : ϕ 7→
∫
Tk

eF ∧ p∗ϕ (8.1.1)

is an isomorphism of the twisted differential complexes of invariant forms (Ω•(M)T
k
, dH)

and
(Ω•(M̃)T̃

k
, dH̃).

Proof. Showing that τ is an isomorphism of vector spaces is a straightforward calculation
of the inverse. The main idea is that if F is of the form Fijθ

iθ̃j for some principal
connections θ and θ̃ on M and M̃ , reversing the process is an almost inverse. More
precisely, ∫

T̃k

e−F ∧
∫
T̃k

eF ∧ ϕ = det(F ) · ϕ

i.e., it accounts to multiplying by the determinant of F . As F is non-degenerate the
inverse exists. From this calculation it is easy to generalize to any F by decomposing it
to basic parts and parts acting on on ∧2tk, ∧2t̃k and tk ⊗ t̃k.
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It remains to show that τ interchanges dH and dH̃ . Indeed,

τ(dHϕ) =

∫
Tk

eF ∧ dϕ+ eF ∧H ∧ ϕ

=

∫
Tk

d(eF ∧ ϕ)− dF ∧ eF ∧ ϕ+H ∧ eF ∧ ϕ

=

∫
Tk

d(eF ∧ ϕ) + H̃ ∧ ϕ

= dH̃τ(ϕ),

where we used that dF = H − H̃.

8.2 T-duality as a map of exact Courant algebroids

Let (M,h) and (M̃, h̃) be a T-dual pair and let E and Ẽ be the exact Courant algebroids
on M and M̃ corresponding to h and h̃ respectively. Given representatives H and H̃ of
h and h̃ we have splittings E ∼= TM ⊕ T ∗M and Ẽ ∼= TM̃ ⊕ T ∗M̃ with the H and H̃
twisted brackets. Since the 3-forms are invariant we can consider the invariant sections
as reduced Courant algebroids over the common base B, as we have seen in Section 4.1.
The Courant reduced brackets are derived from the twisted differential and the Clifford
action on invariant differential forms.

We have seen in Theorem 8.1.3 that the twisted differential complexes are isomorphic
via the T-duality map τ . In [7] it has been shown that there is an isomorphism between
the reduced Courant algebroids as well which we will outline here.

The T-duality map τ can be thought of as the composition of a pullback, a B-transform
and a pushforward. To find the isomorphism of Courant algebroids it is sufficient to find
an isomoprhism of vector bundles

ϕ : (TM ⊕ T ∗M)/T k → (TM̃ ⊕ T ∗M̃)/T̃ k

such that it induces an isomorphism of Clifford modules, i.e.

τ(v.ρ) = ϕ(v).τ(ρ) (8.2.2)

for all v ∈ Γ(TM ⊕ T ∗M)T
k
, and ρ ∈ Ω•(M)T

k
.

Indeed, such a map is then immediately an isomorphism of Courant algebroids. It is
orthogonal as

〈v, v〉τ(ρ) = τ(〈v, v〉ρ) = τ(v.v.ρ) = ϕ(v).ϕ(v).τ(ρ) = 〈ϕ(v), ϕ(v)〉τ(ρ)

and it preserves the Courant bracket as

ϕ([v, w]H).τ(ρ) = τ([[v, dH ], w].ρ)

= [[ϕ(v), dH̃ ], ϕ(w)].τ(ρ)

= [ϕ(v), ϕ(w)]H̃ .τ(ρ).
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It remains to find such a map ϕ. We want to generalize the idea of τ and define ϕ as
the composition of a pullback to the correspondence space, a B-transform using F and
a pushforward to the T-dual space.

There are some problems with this construction. Firstly, given an invariant section
X + ξ of TM ⊕ T ∗M the pullback of X is not well defined, it depends on a choice of lift
X̂ to the tangent space of M ×B M̃ . Secondly, given a lift X̂ + p∗ξ we can perform the
B-transform

X̂ + p∗ξ 7→ X̂ + p∗ξ − ιX̂F,

but to be able to push p∗ξ − ιX̂F forward to M̃ it has to be basic.

Fortunately, the ambiguity in the lift of X allows us to solve the problem of the
pushforward. As F is invertible there exist precisely one lift X̂ of X such that

p∗ξ(Y )− F (X̂, Y ) = 0 ∀Y ∈ tk. (8.2.3)

Therefore, we may define ϕ as

ϕ(X + ξ) = p̃∗ ◦ e−F ◦ p∗(X + ξ) = p̃∗(X̂ + p∗ξ − ιX̂F ) (8.2.4)

where X̂ satisfies 8.2.3.

Proposition 8.2.1. The map ϕ defined above is an isomorphism of the reduced vector
bundles and satisfy 8.2.2.

Proof. Clearly, ϕ is an isomorphism as its inverse is p∗ ◦ e−F ◦ p̃∗. Then for X + ξ ∈
Γ(TM ⊕ T ∗M)T

k
and ρ ∈ Ω•(M)T

k
we have (omitting pullback notation)

τ((X + ξ).ρ) =

∫
Tk

eF ∧ ιXρ+ eF ∧ ξ ∧ ρ

and

ϕ(X + ξ).τ(ρ) =

∫
Tk

eF ∧ ιX̂ρ+ ιX̂e
F ∧ ρ− ιX̂F ∧ e

F ∧ ρ+ ξ ∧ eF ∧ ρ.

The first two terms agree as ρ is basic for the T̃ k action so contraction with X̂ only
depends on X. The last two terms agree as well as eF has even degree components.
Finally the middle two terms in the second expression cancel since eF = 1+F+ 1

2F∧F+...
and

ιX̂e
F = ιX̂F ∧ e

F .

The isomorphism ϕ can be illustrated using connections to split the tangent bundles.
Let (M,h) and (M̃, h̃) be a T-dual pair with corresponding exact Courant algebroids E
and Ẽ.

Given a T k-connection θ on M the space of T k-invariant vector fields decomposes as

TM/T k ∼= tk ⊕ TB.
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Therefore, if E ∼= TM⊕T ∗M with the bracket twisted by H = H0 +F (c̃, θ) representing
h, we find

E/T k ∼= TB ⊕ tk ⊕ tk∗ ⊕ T ∗B.

Similarly, Ẽ ∼= TM̃ ⊕ T ∗M̃ with H̃ = H0 + F (c, θ̃) representing h̃ and we have

Ẽ/T̃ k ∼= TB ⊕ t̃k ⊕ t̃k∗ ⊕ T ∗B.

The invariant 2-form F ∈ tk∗ ⊗ t̃k∗ exhibiting the T-duality condition can be interpret
as an isomorphism F : t̃k → tk∗. In this setting the following proposition holds.

Proposition 8.2.2. Given the data above, the T-duality map ϕ on the invariant sections
is given by

ϕ : (X, s, t∗, ξ0) 7→ (X,−F−1(t∗),−F ∗(s), ξ0)

where X ∈ TM , s ∈ tk, t∗ ∈ tk∗ and ξ0 ∈ T ∗M .

Proof. Let θ and θ̃ be connection 1-forms on M and M̃ as above, such that F = F (θ∧ θ̃).
Then any X + s+ t∗ + ξ0 ∈ (TM ⊕ T ∗M)/T k can be written as an invariant section of
TM ⊕ T ∗M

X + s+ t∗ + ξ0 7→ XH + s+ t∗ + ξ0

where XH is a horizontal lift of X, ξ0 is thought of as a basic form, s ∈ tk and t∗ ∈ tk∗

is meant as t∗i θ
i in a certain basis. After pullback and B-transform by −F we have

X + s+ t∗ + ξ0 7→ X̂ + t∗ + ξ0 − F (ιX̂θ, θ̃) + F (θ, ιX̂ θ̃),

from which we get ιX̂ θ̃ = −F−1(t∗), i.e. X̂ = XH +s−F−1(t∗). Therefore the T-duality
map is

ϕ(X + s+ t∗ + ξ0) =

= p∗(X
H + s− F (t∗) + t∗ + ξ0 − F (s, θ̃)− t∗)

= XH − F−1(t∗)− F (s, θ̃) + ξ0

= XH − F−1(t∗)− F ∗(s) + ξ0.

When we take F = 〈θ, θ̃〉 as in the construction of Theorem 8.1.2 the isomorphism
above is simply

ϕ : (X, s, t∗, ξ0) 7→ (X,−t∗,−s, ξ0).

Remark 8.2.1. Although the construction of the map ϕ is making use of certain split-
tings of E but it is actually a splitting-independent statement. Taking a different split-
ting of E changes the representative of the Ševera class by an exact form H 7→ H + dB.
Sections of E change via the B-transform

X + ξ 7→ X + ξ − ιXB.
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The T-duality map ϕ then acts as

X + ξ − ιXB 7→ p̃∗(X̂ + ξ − ιXB − ιX̂F )

where ιXB + ιX̂F = ιX̂(F + B) since B is a pullback from M . This also means that
the lift of X in this case is the same as before. Changing F to F +B is also exactly the
change that the T-duality condition H−H̃ = dF requires, which shows the independence
of ϕ.

8.3 Heterotic T-duality

In this section we will show that the isomorphism induced by the T-duality relation on
exact Courant algebroids descends to the heterotic case via reduction. We follow the
treatment of [2] but work in real coefficients for the T-duality relation. This simplifies
the construction and we can understand the construction without spectral sequences but
we lose uniqueness statements that arise when one uses integer coefficients. Moreover,
in our case there is no obstruction to T-duality under reasonable assumptions.

Our framework is the following. Suppose that P → M is a principal G × T k-bundle
where G is compact, connected, semisimple and T k is the k-dimensional torus. Then let
X = P/G and P0 = P/T k be the principal T k and G bundles induced by factoring out
with the other group. Then we have the following commutative diagram.

P P0

X M

π

σ σ0

π0

(8.3.5)

We are interested in T-dualizing heterotic Courant algebroids on X. For this let h ∈
H3(P,R) be a real string class on P corresponding to a heterotic Courant algebroid H.
To interpret T-duality as an isomorphism of heterotic Courant algebroids, we make use
of the exact case and T-dualize the exact Courant algebroid E corresponding to h on P .

Firstly, to be able to construct a T-dual for the class h with respect to the T k-bundle
π : P → P0 it has to be a T-dualisable class i.e. satisfy the conditions of Theorem 8.1.2.
Secondly, even if we have constructed a T-dual pair (P̃ , h̃) of a T̃ k-bundle and a degree
3 cohomology class, it is not clear whether the G-action on P0 lifts to an action on P̃
commuting with the T̃ k-action. Such a lift can be obtained whenever P̃ is the pullback
of a T̃ k-bundle π̃0 : X̃ → M via σ0. It turns out that this is always the case, which we
will explain in detail in the next section.

For now let us assume that h has the right properties and such a T-dual P̃ exists.
Then we have the following commutative diagram.

P P0 P̃

X M X̃

π

σ σ0

π̃

σ̃

π0 π̃0

(8.3.6)

75



Considering the correspondence space P ×P0 P̃ with projections p and p̃ to P and P̃
respectively, the T-duality condition is p∗h = p̃∗h̃. We will use this property to show
that h̃ is again a string class for the G-bundle P̃ → X̃.

Now let H and H̃ be heterotic Courant algebroids over X and X̃ corresponding to the
T-dual string classes h and h̃. We consider the exact Courant algebroids E and Ẽ on
P and P̃ corresponding to the same classes. By the exact case of T-duality we have an
isomorphism ϕ : E/T k → Ẽ/T̃ k. We show that in a certain splitting ϕ exchanges the
extended actions on E/T k and Ẽk/T̃ k. Then by our considerations in Section 4.3 after
reducing via the extended actions we have the chain of isomorphisms

H/T k ∼= (E/T k)red ∼= (Ẽ/T̃ k)red ∼= H̃/T̃ k.

T-dualizable string classes

Let σ : P → M a principal G × T k bundle fitting into the commutative diagram 8.3.5.
Let h ∈ H3(P,R) be a class representing an integral cohomology class, so that h is
T-dualisable with respect to the torus bundle P → P0 and a string class with respect to
the G-bundle P → X. For this we assume that the bilinear form c on the Lie algebra
g is normalized so that the Maurer-Cartan 3-form ω represents an integral cohomology
class of G.

Let θ be a principal connection for the torus bundle X →M and pull it back to a G-
invariant connection on P → P0. As h is T-dualisable we may chose a G× T k-invariant
representative H of h that decomposes as

H = H0 + 〈c̃, θ〉.

with H ∈ Ω3(P0,R) and c̃ ∈ Ω2(P0, t
k∗). The 2-form c̃ is closed and as H represents an

integral cohomology class so does c̃. We construct P̃ → P0 as a torus bundle with real
Chern class represented by c̃.

If we consider the Serre spectral sequence for the G-bundle σ0 : P0 → M with coeffi-
cients in H1(T k,R) = tk∗ (see Appendix 10.3 and [2]), because G is semi-simple (so it
has trivial first and second de-Rham cohomology) we find that

H2(P0, t
k∗) = H2(M, tk∗).

We see that the class [c̃] can always represents a torus bundle which is a pullback from
M via σ0, but one has to be careful to chose the torsion part of [c̃] to be a pullback from
M as well.

We will now show that h̃ is a string class as well. By construction for any connection
θ̃ on P̃ , h̃ has a G× T̃ k-invariant representative H̃ such that

H̃ = H0 + 〈c, θ̃〉.

Here [c] ∈ H2(M, tk) = H2(P0, t
k) represents the Chern class of X → M as well as

of P → P0, more precisel c = dθ. As P is a pullback of a torus bundle from M we
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may chose the connection θ̃ in the above description to be a pullback connection from
X̃ → M . Therefore, the restriction of H̃ to any fibre agrees with the restriction of H0.
Moreover, the restriction of H0 to any fibre is closed as

dH̃ = dH = 0 ⇒ dH0 + 〈dθ̃, dθ〉 = 0,

i.e. dH0 is basic. This also means that in terms of cohomology

[dH0] = −〈[c̃], [c]〉 ∈ H4(M,R).

Similarly by the construction of H its restriction to any G-fibre agrees with H0. As h
was a string class this restriction must agree with the Cartan 3-form ω3 which becomes
the restriction of h̃ as well. Therefore, h̃ is a string class as well.

The following theorem summarizes our results.

Theorem 8.3.1. Let P →M be a principal G×T k-bundle fitting into the commutative
diagram 8.3.5. Let h ∈ H3

str(P,R) be a string class representing an integral cohomology
class. Then there exist a T-dual (P̃ , h̃) to the torus bundle P → P0 completing the
diagram 8.3.6 if and only if h has a representative H such that

H = H0 + 〈c̃, θ〉

where H0 is a basic 3-form for the torus bundle, θ is a principal connection on it and
[c̃] ∈ H2(M, tk∗). We call such an h a T-dualisable string class and whenever the above
condition holds the T-dual h̃ is also a T-dualisable string class.

Reduction and T-duality

In this section we will show that the T-duality map defined in Section 8.2 interchanges the
extended actions on T-dual exact Courant algebroids and hence induces an isomorphism
of heterotic Courant algebroids.

By theorem 8.3.1 given a principal G×T k-bundle fitting into the commutative diagram
8.3.5 and a T-dualisable string class h ∈ H3(P,R) there is a T-dual pair (P̃ , h̃) completing
the following diagram.

P P0 P̃

X M X̃

π

σ σ0

π̃

σ̃

π0 π̃0

Let H and H̃ be the heterotic Courant algebroids on X and X̃ corresponding to the
real string classes h ∈ H3(P,R) and h̃ ∈ H3(P̃ ,R). Let E and Ẽ be the exact Courant
algebroids on P and P̃ corresponding to the same classes.

Let ψ and ψ̃ be the infinitesimal actions of G on P and P̃ respectively, and ψ0 the
infinitesimal action on P0. As the G-action on both P and P̃ covers the action on P0 we
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have the following commutative diagram.

Γ(P ) Γ(P0) Γ(P̃ )

g

π π̃

ψ
ψ0

ψ̃

As the T-duality map ϕ is independent of splitting it is sufficient to show the desired
property in a certain splitting corresponding to specific extended actions. We will chose
to work with pullback connections which will make our statement trivial.

Let θ ∈ Ω1(X, tk) and θ̃ ∈ Ω1(X̃, t̃k) be torus connections on X and X̃ and pull them
back to torus connections on P and P̃ . Let A ∈ Ω1(P0, g) be a G-connection which we
pull back to both P and P̃ .

We first want to implement T-duality for the exact Courant algebroids E and Ẽ so
consider the fibered product P ×P0 P̃ and the resulting commutative diagram.

P ×P0 P̃

(P,E) (P̃ , Ẽ)

P0

(X,H) M (X̃, H̃)

p p̃

σ

π π̃

σ̃

σ0

π0 π̃0

Notice that the action of G on the correspondence space P ×P0 P̃ pulls back from P0 via
π ◦ p = π̃ ◦ p̃ therefore it is a G× T k × T̃ k-bundle.

Using the pullback G-connection A and averaging we can find a G × T k-invariant
representative H of h and H̃ of h̃ which are of the form

H = H0 − CS3(A) and H̃ = H̃0 − CS3(A)

with H0 ∈ Ω3(X) and H̃0 ∈ Ω3(X̃) basic forms for the G-action. As A is a pullback
connection the Chern Simons 3-forms above are basic with respect to the torus actions.

Then we can decompose H0 and H̃0 using the pullback torus connections θ and θ̃. As
h and h̃ are T-dual we can find F ∈ Ω2(P ×P0 P̃ ) such that

H − H̃ = H0 − H̃0 = dF

with F non-degenerate on tk ⊗ t̃k. As H and H̃ are G × T k × T̃ k-invariant so is F .
Writing every form in the decomposition using the torus connections and repeating the
calculation in Section 8.1 we may find new representatives that are of the form

H = H0 + 〈c̃, θ〉 − CS3(A) and H̃ = H0 + 〈θ̃, c〉 − CS3(A),
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where H0 ∈ Ω3(M), c = dθ, c̃ = dθ̃ and F = 〈θ, θ̃〉.
The extended actions corresponding to these representatives of h and h̃ are given by

ξ = −cA and ξ′ = −cA, therefore the corresponding G-equivariant 3-forms are

Φ = H + ξ = H0 + 〈c̃, θ〉 − CS3(A)− cA,

Φ̃ = H̃ + ξ̃ = H0 + 〈c, θ̃〉 − CS3(A)− cA.

Note that in particular these forms are now G×T k (or G×T̃ k)-invariant as well. Clearly,
on the correspondence space we have Φ̃ = Φ + dF = Φ + dGF as ιF = 0 since the torus
connections are basic for the G-action.

Consider the splittings of E and Ẽ corresponding to the representatives H and H̃.
Then using the connection 1-forms we have the decompositions

E/T k ∼= TP0 ⊕ tk ⊕ tk∗ ⊕ T ∗P0,

Ẽ/T̃ k ∼= TP0 ⊕ t̃k ⊕ t̃k∗ ⊕ T ∗P0

(8.3.7)

In this decomposition the infinitesimal action of G descends to E/T as

ψ : g 7→ Γ(TP )T
k

= Γ(TP0 ⊕ tk)

x 7→ (ψ0(x), ιψ(x)θ) = (ψ0(x), 0)

since the torus connection θ is basic for the G-action. Similarly, ˜ψ(x) = (ψ0(x), 0) in the
splitting induced by θ̃.

Finally, as the G and torus actions commute the extended actions on E and Ẽ define
extended actions on the reduced Courant algebroids E/T k and Ẽ/T̃ k. In the decompo-
sition 8.3.7 they re given by

α(x) = ψ(x) + ξ(x) = (ψ0(x), 0, 0,−c(A, x)),

α̃(x) = ψ̃(x) + ξ̃(x) = (ψ0(x), 0, 0,−c(A, x)).

In Section 8.2 we have seen that T-duality map is given by

ϕ : (X, s, t∗, ξ)→ (X,−t∗,−s, ξ)

in the above setting. It is clear that it interchanges the infinitesimal actions, i.e. ϕ ◦
α = α̃. Therefore ϕ descends to an isomorphism ϕ : (E/T k)red → (Ẽ/T̃ k)red and by
H/T k ∼= (E/T k)red and H̃/T̃ k ∼= (Ẽ/T̃ k) we conclude the main theorem.

Theorem 8.3.2. Let (P, h) be a pair of a principal G-bundle over a torus bundle X →M
together with a T-dualisable string class, and a T-dual pair (P̃ , h̃) completing the diagram
8.3.6. Then the T-dual class h̃ is again a string class and there is an isomorphism of
the corresponding simply-reduced heterotic Courant algebroids on M

ϕ : H/T k ∼= H̃/T̃ k
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Example. In general heterotic T-duality requires some understanding of the cohomol-
ogy of principal bundles. The simplest example is the case of a trivial G-bundle P over
a simply connected torus-bundle X → M . Then for σ : X ×G→ X by the Künneth
theorem (see [25]) the third cohomology group decomposes as

H3(P ) = H3(X)⊕H3(G).

Therefore h is a string class if and only if it is of the form h = σ∗h0 + [ω3], therefore
its T-dualisability depends solely on h0. In this case heterotic T-duality reduces to the
T-duality of the classes h0 ∈ H3(X).

Compatible 4-tuples of connections. In [2] the T-duality isomorphism was described for
a general class of connections on P and P̃ . We now derive the same result from the ”other way
around” which also motivates their construction without the use of spectral sequences. Suppose
we are in the setting of heterotic T-duality as above and let A be any T k-invariant G-connection
on P and Ã any T̃ k-invariant G-connection on P . To implement T-duality we want to represent
the T-dualisable string classes h and h̃ so that the T-duality map is clear and also there is an
extended action corresponding to the splitting. More precisely we want to consider 4-tuples of
connections (A, Ã, θ, θ̃) so we have representatives

H = H0 − CS3(A) = K0 + 〈dθ̃, θ〉,
H̃ = H̃0 − CS3(Ã) = K0 + 〈θ̃, dθ〉,

where H0, H̃0 are basic for the G-actions and K0 is basic for the torus action. We call such
4-tuples of connections compatible.

For pullback connections θ0, θ̃0 and A0 the condition is satisfied, we had h = [H]

H = H0 + 〈dθ̃0, θ0〉 − CS3(A0).

Taking a different representative H ′ = H0′ +CS3(A) changes the form H basically via a (B,A)-
transform as we have seen in Proposition 5.1.2. Therefore if A = A0 +a for some a ∈ Ω1(P, g)bas
we have

H ′ = H + d(c(a,A0)) = H0′ − CS3(A),

where H0 is basic for the G-action. The form H is also represented as a T-dualisable class
H = K0 + 〈dθ̃, θ〉 for a 3-form K0 that is basic for the torus action. We want to bring H ′ to this
form as well. It can be achieved by choosing a basis t1, .., tk for tk and writing θ0 = θi0ti, and the
dual connection using the dual basis θ̃0 = θ̃0it

i. Then a = a0 + a1i θ
i where now a0 and a1i are

g-valued forms on M . Then changing the connection θ̃ = θ̃it
i on P̃ from a pullback connection

to
θ̃0i 7→ θ̃i = θ̃0i + c(a1i , A),

and H̃ to H̃ ′ = H̃ + dc(a0, A0) the right forms for H ′ and H̃ ′ using the new connections

A = A0 + a1i θ
i
0 + a0

Ã = A0 + a0

θ = θ0

θ̃ = θ̃0 + c(a1i , A0)ti
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One can similarly change the remaining connections as well, which amount to the same changes
as above. Finally, any compatible 4-tuple can be obtained via these changes and we get the
general formula

A = A0 + a1i θ
i
0 + a0

Ã = A0 + ã1iθ̃0i + a0

θ = θ0 + c(ã1i, A0)ti

θ̃ = θ̃0 + c(a1i , A0)ti.

This is equivalent to ([2] 4.6). From this formula it is easy to see that using the induced repre-
sentatives for the T-dual classes H and H̃ we have on the corresponding space

H̃ −H = d(θ ∧ θ̃)

moreover the extended actions Φ = H − cA and Φ̃ = H̃ − cÃ satisfy

Φ̃− Φ = dG(θ ∧ θ̃).

In this setting the extended actions are

α(x) = (ψ0(x), c(a1i , x)ti,−c(ã1i, x)ti,−cx)

α̃(x) = (ψ0(x), c(ã1i, x)ti,−c(a1i , x)ti,−cx)

and these are again exchanged by the T-duality map.

The upshot of this calculation is that we can chose the representatives of our class h somewhat
freely and the T-duality morphism still can be constructed in a way that is useful for calculations.
This can come handy when one wants to transfer solutions to the Strominger System where the
connection 1-form A plays a crucial role.
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9 The Strominger System

The Strominger System of partial differential equations arises in physics when the 10
dimensional N = 1 supersymmetric theory of heterotic strings is compactified to 6
dimensions [27, 38]. It was first considered in the mathematical literature by Li and Yau
[31] as a generalization of the Calabi conjecture to non-Kähler complex manifolds of
arbitrary dimension. Since then it has been widely studied, and for complex dimensions
one and two the existence and uniqueness problem has been fully understood. In three
complex dimensions however, which is the most relevant to physics, the question of
existence and uniqueness is still unanswered.

In the recent years the system was connected to heterotic generalized geometry [2,
15, 18] which also provided a useful tool to understanding the moduli space of solutions
which has been the main interest of research regarding the system lately but here we do
not discuss these results.

In this section we first give a short introduction to the Strominger System then we
present its reformulation in terms of generalized connections following the work of Garcia-
Fernandez, Rubio and Tripler [18, 17]. Later we discuss the latest developments towards
understanding how the system behaves under T-duality of Courant algebroids [17, 19].

The Strominger System is formulated on a complex compact manifold X of dimen-
sion n with underlying smooth real manifold (X, J) where J is the complex structure.
Moreover, X is taken to be a complex Calabi-Yau manifold in the following sense.

Definition 9.0.1. A complex Calabi-Yau manifold1 (X,Ω) is a complex compact man-
ifold X together with a nowhere vanishing holomorphic section Ω of the canonical line
bundle K = ∧n(T (1,0)X)∗ of X.

In particular this definition does not require X to be Kähler. Given a Riemannian met-
ric g on the complex Calabi-Yau manifold (X,Ω) compatible with the complex structure
J one defines the Kähler form as

ω = g(., J.).

Using the Kähler form the norm of Ω, denoted by ||Ω||ω, is given by

||Ω||2ω
ωn

n!
= (−1)n(n−1)/2inΩ ∧ Ω.

With this data we can formulate the Strominger System.

1Normally a Calabi-Yau manifold is a compact complex manifold X with SU(3) holonomy. This in
particular implies that the first Chern class of X vanishes and via Yau’s Theorem that the manifold
is Kähler and admits a Ricci-flat metric. This particular naming of complex manifolds with trivial
canonical line bundle (and hence zero first Chern class) is inspired by the name ”symplectic Calabi-
Yau” which was used in [12] to denote symplectic manifolds with vanishing first Chern class.
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Definition 9.0.2. The Strominger System is

1. a complex Calabi-Yau manifold (X,Ω) with a hermitian metric g on (TX, J),

2. a complex vector bundle with a hermitian metric (E, h)

3. and unitary connections ∇ on (TM, J, g) and A on (E, h)

subject to the conditions

FA ∧ ωn−1 = 0, F 0,2
A = 0,

R∇ ∧ ωn−1 = 0, R0,2
∇ = 0,

d(||Ω||ωωn−1) = 0,

ddcω − α(trR∇ ∧R∇ − trFA ∧ FA) = 0.

(9.0.1)

The first two equations require A and ∇ to be so called Hermite-Yang Mills con-
nections which also imposes topological constraints on the vector bundles E and TX.
The third equation says that the metric g is conformally balanced, that is conformally
equivalent to a balanced metric. It is the case for example when g is a Kähler Ricci-flat
(i.e. Calabi-Yau) but these are considered as the trivial examples. The last equation is
known as the Bianchi identity which couples together the connections and the metric
and α denotes the constant parameter of string theory. This equation was studied from
topological and geometrical point of view but it stays mysterious analytically.

Example. A trivial solution of this system would be a complex torus as the quotient
of the complex plane Cn, with the holomorphic volume form

Ω = dz1 ∧ ... ∧ dzn.

Taking the Eucledian flat metric g which has closed Kähler form

ω =
n∑
i=1

dzi ∧ dzi,

and any complex vector bundle with a hermitian metric (E, h) that admits a flat con-
nection A we arrive to a solution of 9.0.1.

This example also follows through when the manifold X is Calabi-Yau with a Kähler
Ricci-flat metric g. Then the second and third equations are satisfied and again any flat
complex vector bundle with a hermitian metric will satisfy the first and last equations
with a flat unitary connection.

These are the first and simplest examples one can produce. Finding non-Kähler ex-
amples is not an easy task and it is currently a research question, recent examples can
be found in e.g. [19, 13]. We refer to [16] for a thorough review on the known results
regarding the Strominger System.

Strominger System and generalized geometry. It is the Bianchi identity that
motivates strongly the connection to heterotic generalized geometry. From here we
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assume that (X,Ω) is a complex Calabi-Yau manifold with a hermitian metric g and
unitary connection ∇, together with a hermitian vector bundle (E, h) and a unitary
connection A as in the definition of the Strominger System. We will show that the
Bianchi identity can be used to define a heterotic Courant algebroid. To make this
clearer let Ph be the principal bundle of unitary frames of (E, h) on X and Pg the
principal bundle of unitary frames of (TX, g, J). Then consider the fibered product

P = Pg × Ph

which is now a SU(n)×SU(r) principal bundle with semisimple Lie algebra g = su(r)⊕
su(3). The Killing form on these Lie algebras is given by the trace, therefore

c = α(tr−su(n)− trsu(r))

is a positive definite non-degenerate inner product on g.

Then take the product connection ∇0 = ∇×A on P with ∇ and A connections on Pg
and Ph respectively, associated to the linear connections on (TM, J, g) and (E, h). With
this the Bianchi identity lifts to a condition on the bundle of frames and becomes

ddcω − c(F0 ∧ F0) = 0

where F0 is the curvature of A0. This is precisely the condition we have found for a
heterotic Courant algebroid to exist on M with real string class

h = [dcω − CS3(A0)] ∈ H3(P,R).

Moreover, together with the metric g on M the triple (g, dcω,A) describes a generalized
metric on the Courant algebroid associated to the string class h.

However, a heterotic Courant algebroid H together with a generalized metric H−
does not fully describe a solution of the Strominger System. For example, there is no
Calabi-Yau structure initially, the metric and SU(n)-connection only defines a complex
structure on M .

9.1 Killing spinor equations

The full characterization of the Strominger System in terms of heterotic generaized
geometry was solved in [18] by Garcia-Fernandez, Rubio and Tripler for six real di-
mensions. They used a different characterisation of the Strominger System in terms of
non-vanishing spinors on X which was based on earlier work of Strominger and Hull.

For this setup let X be a smooth compact six dimensional real spin manifold with a
Riemannian metric g. Consider the Clifford algebra bundle generated by the cotangent
bundle C`(T ∗X) and an associated spin bundle S. Consider the twisted spin bundle
S = S ⊗ (detS∗)1/rS where Clifford connections induce unique spin connections. As X
is even dimensional the spin bundle splits into half-spin representations

S = SL ⊕ SR,
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as we have seen in Section 7.2. The space of differential forms ∧•T ∗X sits naturally
inside C`(T ∗X) therefore the forms act on spinors.

Let PK be a principal bundle on X with structure group K = SU(r). Let φ ∈ C∞(X)
be a smooth function on X, H ∈ Ω3(X) a 3-form, ∇ a metric connection on X, A a
principal connection on PK and η ∈ SR a nowhere vanishing right-moving spinor. Recall,
that given a three-form H on X the Bismut connection is given by

∇− = ∇g − 1

3
g−1H

where ∇g is the Levi-Civita connection. For the data (g, φ,H,∇, A, η) we have the
following theorem.

Theorem 9.1.1. A solution (g, φ,H,∇, A, η) of the system

∇−η = 0,

(H + 2dφ) · η = 0,

FA · η = 0,

R∇ · η = 0,

dH − α(trR∇ ∧R∇ − trFA ∧ FA) = 0,

(9.1.2)

is equivalent to a Calabi-Yau structure Ω on X, with hermitian metric g and connection
A on PK solving the Strominger System 9.0.1 with

H = dcω, dφ = −1

2
d log ||Ω||ω.

Moreover, any solution of 9.1.2 is a solution to the equations of motion of heterotic
supergravity (to first order expansion).

Here to obtain a genuine solution to 9.0.1 one has to take an associated complex
hermitian vector bundle (E, h) to the principal bundle PK and the associated unitary
connection.

This theorem was first proved partially by Strominger and Hull [27][38] who did not
consider the equation R∇ · η = 0 for the metric connection. In this case the resulting
solutions are not necessarily solutions to the equations of motion and the metric con-
nection is not required to be Hermite-Yang Mills. Later Fernández, Ivanov, Ugarte and
Villacampa proved [28][11] that the addition of the equation R∇ · η = 0 is necessary and
sufficient to find solutions that also solve the equations of motion and fully satisfy 9.0.1.

Generalized Killing spinors. In [18] the system 9.1.2 was reformulated in terms
of generalized spinors, metrics and connections on a heterotic Courant algebroid. We
present their construction here but omit some calculations.

Let P → M be a pricipal bundle with compact semisimple structure group G and
a positive-definite non-degenerate inner product c on its Lie algebra g. Let H be a
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heterotic Courant algebroid corresponding to a string class h ∈ H3
str(P,R) and H− ⊂ H

a generalized metric. By 6.2.1 the metric induces a splitting characterized by a basic
three-form H ∈ Ω3(M) and a connection A. Then we have H ∼= TM ⊕ gP ⊕ T ∗M and

H− = {X − gX| X ∈ TM}
H+ = {X + s+ gX| X ∈ TM, s ∈ gP }

for a Riemannian metric g on M. Let Π± be the projections from H to H±.

The generalized metric induces an isometry via the anchor

π|H− : (H−,−〈·, ·〉)→ (TM, g)

therefore the second Stiefel-Whitney class of H− and TM agrees. As we took M to be
a spin manifold, we find that there exist a spin bundle S corresponding to the Clifford
algebra bundle C`(H−). Here we have to take the fibres at a point x to be C`(H−|∗x) as
the Clifford bundle on M is also constructed out of the cotangent bundle.

We take the twisted spinor bundle S again and since the dimension of M is even the
it again splits into half-spin representations

S = SR ⊕ SL.

Consider now the canonical Levi-Civita connection DLC on H corresponding to H− as
defined in 7.3.2. Recall from Section 7.1 that torsion-free metric compatible generalized
connections form an affine space over

Σ+ ⊕ Σ− = Σ+
0 ⊕ Σ−0 ⊕ Γ(H−)⊕ Γ(H+)

where Σ±0 denotes the traceless changes and Γ(H±) describe the ”Weyl gauge transfor-
mations” which we can use to fix the divergence. Therefore, given an element e ∈ H we
can define χe ∈ Γ(H∗ ⊕ so(H)) as before

χee1e2 = 〈e1, e2〉e− 〈e, e2〉e1,

then
(χe)±e1e2 = Π±χ

e
e±1
e±2

defines the change corresponding to e± ∈ Γ(H±). Now we can use (χe)± we may define
another torsion-free generalized metric

De = DLC − 1

3(rkH− − 1)
(χe)− − 1

3(rkH+ − 1)
(χe)− (9.1.3)

whose divergence differs from the divergence of DLC by the element e. We will also
denote De by De(H−) when we want to stress the dependence on the metric.

Recall, that a generalized connection defines four first order differential operators on
H corresponding to the decomposition H = H− ⊕H+. Here we consider two of them.
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Firstly, the negative pure-type operator

De−
− : Γ(H−)→ Γ(H∗− ⊗H−)

defines an orthogonal H−-connection on H− and therefore induces a canonical Dirac-
operator /D

e−
− on the spin bundle S which maps the half-spin representations into each

other. Denote its restriction to the right-moving sector by

/D
e
− : Γ(SR)→ Γ(SL). (9.1.4)

Secondly, the mixed-type operator

De+
− : Γ(H−)→ Γ(H∗+ ⊗H−)

also generates a unique first order differential operator on the twisted spin bundle whose
restriction to SR we denote by

De
+ : Γ(SR)→ Γ(H∗+ ⊗ SR). (9.1.5)

Notice, that by Lemmas 7.1.1 and 7.2.1 the two operators 9.1.4 and 9.1.5 are indepen-
dent from the torsion-free metric connection chosen as long as we fix the divergence. We
use these to define the spinorial equations that can be related to the Strominger System.

Definition 9.1.1. Given a generalized metric H− and an element e ∈ H the Killing
spinor equations for a nowhere vanishing right-moving spinor η ∈ SR(H−) are given by

De
+η = 0

/D
e
−η = 0,

(9.1.6)

where the operators could also be defined via any generalized connectionD ∈ D(H−, divDe).

Definition 9.1.2. We say that the pair (H−, e) is a solution to the Killing spinor equa-
tions if H− ⊂ H is a generalized metric, e is a section of H and there exist a spinor
bundle S = SR⊕SL and nowhere vanishing right handed spinor η ∈ Γ(SR) that satisfies
9.1.6 for the generalized connection De.

The cotangent bundle T ∗M embeds intoH∗ so after using the inner product to identify
H∗ with H we can regard 1-forms as sections of H. With this the following theorem
holds.

Theorem 9.1.2. [18] Let φ ∈ C∞(M) be a smooth function. Then the Killing spinor
equations 9.1.6 for e = dφ are equivalent to the system

∇−η = 0

F · η = 0

(H + 2dφ) · η = 0

dH − c(F ∧ F ) = 0

(9.1.7)

where F is the curvature of the connection A determined by the splitting H = H− ⊕H+

and ∇− is the Bismut connection corresponding to the Riemannian metric defined by
H−.
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Sketch proof. The most important observation is that via the isomorphism

π|H− : H− → TM

we also get an isomorphism of Clifford bundles C`(H−) ∼= C`(T ∗M) therefore they act on
the same twisted spinor bundle. From here the proof is just computing the Levi-Civita
connection and the added divergence terms in this specific setting and transfering the
equations from one space to the other.

Clearly, plugging in our ansatz P = Pg × PK and considering product connections
yields the system 9.1.2 which in turn defines a solution of the Strominger System 9.0.1.
Although the proof of the theorem is straightforward once one has the right connection
to work with, the existence of this connection is truly remarkable. Moreover, we have
never lost naturality in the construction, that is if f : H → H′ is a Courant isomorphism
we have

De(H−) = f∗Dfe(f(H−)).

9.2 T-duality and and the Strominger System

Recall Theorem 8.3.2 that described heterotic T-duality as an isomorphism of simply
reduced heterotic Courant algebroids over a common base. More presicely, let H be a
heterotic Courant algebroid over a principal torus bundle X → M such that the torus
action lifts to H via Courant automorphisms. Let (X̃, H̃) be a T-dual T̃ k-torus bundle
of (X,H) as in Theorem 8.3.1 that is we have the following diagram:

T T̃

(X,H) (X̃, H̃)

M

π0 π̃0

Then the T-duality map ϕ is an isomorphism

ϕ : H/T ∼= H̃/T̃

of the simply reduced Courant algebroids over the common base M .

In the previous section we have reformulated the Strominger System in terms of natural
geometric objects that are interchanged by isomorphisms. Although, T-duality is not a
genuine isomorphims of the Courant algebroids H and H̃ only of their simple reduction,
one can still construct T-dual pairs to the system under reasonable assumptions. In the
discussion we follow the treatment of [17].
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To see how the system and T-duality relate to each other we should consider first
how the structures that characterise the Killing spinor equations behave under simple
reduction.

One of the main ingredients of the Killing spinor equations 9.1.6 is a generalized metric
on the heterotic Courant algebroid H on X which we can define by choosing a rank n
negative definite subbundle of H, where n = dimX. If H− is T -invariant we can reduce
it to a generalized metric on H/T as we have seen in Proposition 6.3.1. Moreover, we
still have the decomposition

H/T = H−/T ⊕H+/T.

As the T-duality map is an isomorphism of Courant algebroids it respects the orthogo-
nality of the subbundles H−/T and H+/T so we get a decomposition

H̃/T̃ = ϕ(H+/T )⊕ ϕ(H−/T ).

As the inner product on H̃/T̃ has the same signature this decomposition defines a gen-
eralized metric which then lifts to a T̃ generalized metric on H̃ (see Proposition 6.3.1
again). We will denote the generalized metric on X̃ obtained as above by ϕ(H−).

The other building block of the equations 9.1.6 is a generalized connection. A T -
invariant generalized connection D on H is one that sends invariant sections to invariant
sections, that is

D|Γ(H)T : Γ(H)T → Γ(H∗ ⊗H)T .

For invariant generalized connections we have the following lemma.

Lemma 9.2.1. [17] There is a natural identification between T -invariant generalized
connections DTH on H and generalized connections DH/T on H/T . In particular DTH is
non-empty.

Proof. The sections of Γ(H/T ) naturally identify with invariant sections Γ(H)T of H.
Via this identification both DTH and DH/T are affine spaces modelled on

Γ(H∗ ⊕ so(H))T .

Note that DH/T is non-empty as we can construct an element as in Remark 7.0.1.
Therefore, it is sufficient to show that every connection in DH/T induces a T -invariant

connection on H, which also proves that DTH is non-empty.

Let now D be an orthogonal H/T -connection on H/T , which defines an orthogonal
connection on the T -invariant sections of H. Locally T -invariant sections span H which
we can use to extend D to a differential operator on all of the sections of H. This
initially only satisfies the πH/T -Leibniz rule for functions on M but we can enforce the
πE-Leibnicz rule for functions on X as part of the definition. From the existence of local
T -invariant frames orthogonality follows as well.
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For our purposes we have to consider metric-compatible generalized connection. These
were classified as connections respecting the decomposition that defines the generalized
metric. From this point of view the following proposition is clear.

Proposition 9.2.1. A T -invariant generalized connection D0 on H compatible with the
generalized metric H− defines a generalized connection D on H/T compatible with the
generalized metric H−/T .

Although we defined the Killing spinor equations via a a specific metric connection,
it really only depends on the generalized metric and the divergence operator associated
to the connection.

A T -invariant divergence operator div on H is one that maps invariant sections to
invariant function, that is

div|Γ(HT ) : Γ(H)T ∼= Γ(H/T )→ C∞(X)T ∼= C∞(M).

Clearly, it defines a divergence operator on H/T . The converse is also true via the same
construction as in Lemma 9.2.1 so we have the following statement.

Lemma 9.2.2. There is a one-to-one correspondence between T -invariant divergence
operators on H and divergence operators on H/T .

Recall that we characterised soluions to the Killing spinor equation as pairs (H−, e)
where H− is a generalized metric and e ∈ H denotes the gauge-fixing, that is

divDe − divDLC = e.

By an invariant solution we mean a solution (H−, e) such that H− is an invariant metric
and e is an invariant section of H. Note that the canonical Levi-Civita connection of a
T -invariant metric is invariant and therefore so is De. With our previous considerations
we have the following theorem.

Theorem 9.2.1. [17] Let H and H̃ be T-dual Courant algebroids over the common base
M and suppose we have an invariant solution (H−, e) of the Killing spinor equations on
H. Then (ϕ(H−), ϕ(e)) is also an invariant solution of the Killing spinor equation on
H̃. Here we regard ϕ(e) as a T̃ invariant section of H̃.

Proof. If (H−, e) is an invariant solution of the Killing spinor equation the we can take
the twisted spinor bundle S = SR ⊕ SL to be equivariant and the a nowhere vanishing
spinor η ∈ Γ(SR)T invariant. As the Levi-Civita connection of an invariant metric is
invariant so is the connection De(H−) and the operators De

+ and /D
e
−. Therefore there is

an induced connection De(H−)T on H/T and operators (De
+)T and ( /D

e
−)T on Γ(SR/T ).

Clearly the operators still satisfy 9.1.6 on the reduced bundles for the reduced spinor
ηT ∈ Γ(SR/T ).
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As under the T-duality isomorphism H/T is mapped to H̃/T̃ one can regard Γ(S+/T )
as a spinor bundle for H̃/T̃ as well. The connection De(H−) is natural hence the induced
connection De(H−)T as well, which is mapped to

ϕ(De(H−)T ) = Dϕ(e)(ϕ(H−))T̃ .

Then the corresponding operators acting on the common spinor bundle S+/T map to

each other as well. Clearly then the operators (D
ϕ(e)
+ )T̃ and ( /D

ϕ(e)
− )T̃ satisfy 9.1.6 for

the same spinor ηT ∈ Γ(SR/T ).

Pulling back the spinor bundle S/T = S+/T ⊕S−/T , the spinor ηT and the operators
via the T̃ -action to the T-dual space X̃ we get a spinor bundle for ϕ(H−) and a solution
for the Killing-spinor equation characterized by the pair (ϕ(H−), ϕ(e)).

This theorem is completely natural, the only reason it takes so many words to prove is
that there are a lot of different structures and operators involved and we need to justify
that they change into each other under the T-duality map.

With this we can try to prove some T-duality result for the Strominger System but
there we are faced with a problem. Recall that from Theorem 9.1.2 that the Strominger
System is equivalent to the killing spinor equation when the divergence is taken to be
an exact 1-form.

So let e = dφ for some T -invariant function φ ∈ C∞(X)T , that is φ is a pullback
function from the base M and therefore dφ is also a pullback 1-from from M to X.
Suppose that there is an invariant solution (H−, dφ) to the Killing spinor equations
on X. Then the T-dual solution on X̃, it is of the form (ϕ(H−), ϕ(dφ)). Recall from
Section 8. that the T-duality isomorphism roughly exchanges the vectors tangent to the
torus-fibres with their dual in the cotangent space. Therefore the T-dual of a basic form
dφ, which has no components in the fibres is again just the pullback of dφ to the dual
bundle X̃. Consequently when we transfer solutions of the Strominger System naively
as in 9.2.1 we find that

ϕ : (H−, dφ)→ (ϕ(H−), dφ).

On the other hand, in physics literature the rules of T-duality are fully described and
known as the Buscher-rules [6, 36] which includes the transformation of the dilaton field
φ called the dilaton shift. It is given by

φ̃ = φ− log
(det gT

det g̃T̃

)
,

where gT and g̃T̃ are the T-dual Riemannian metrics restricted to the dual torus fibres.
That is, the dilaton shift measures the change in the volume of the fibres.

In our calculations we have found no dilaton shift but there is an explanation to it.
Recall that in Theorem 9.1.2 one chooses a spin bundle S on which both the generalized
Killing spinor equations and the spinorial Strominger System is formulated. This spin
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bundle S is derived solely from the geometry of the underlying manifold with a specific
construction (see the proof of Theorem 9.1.1 in [27, 38]). Then, when one transports
the Killing spinor equations under T-duality in Theorem 9.2.1 one uses the same spinor
bundle S to formulate the T-dual generalized Killing spinor equations on X̃. On the
other hand however, the spinorial form of the Strominger System is formulated on a
different spin bundle S̃ which is derived from the spin manifold X̃. Therefore to find the
proper solution to the Strominger System one has to specify a morphism of spin bundles

τ : S → S̃,

that respects the Clifford action. Spin bundles corresponding to the same bundle of
Clifford algebras are actually related by tensoring one of them with a line bundle, i.e.
there exist a line bundle L on X̃ such that

S̃ = S ⊗ L.

From this we can see that the isomorphism is only going to affect the action by a scaling
factor. This is precisely the missing dilaton shift.

Recall also that in Theorem 8.2.2 we saw the map

τ : (Ω•(X), dH)→ (Ω•(X̃), dH̃)

which was an isomorphism of the twisted differential complexes. This map is precisely
what one needs to describe the dilaton shift whenever the differential forms can act as a
spinor bundle for the generalized metric. This is the case for exact Courant algebroids,
therefore the case of the dilaton shift is clear there. Unfortunately so far there has
not been a description like that for the heterotic case which leaves the question of the
dilatons shift somewhat unexplained.

In [17] Garcia-Fernandez proposed the following explanation. If there is a solution of
the Strominger System (H−, dφ) on the heterotic Courant algebroid H then one can try
to first pull it back to the exact Courant algebroid E which it has been reduced from.
In Proposition 6.3.2 we saw that H− lifts uniquely to a generalized metric in E and dφ
also pulls back. This pulled back system (HE−, dφ) actually satisfies the analogue of the
Killing spinor equations on the exact courant algebroid E (taking the exact canonical
Levi-Civita as a reference connection). Then one can T-dualize as in Theorem 9.2.1 but
incorporating the isomorphism of the spinor bundles τ . Then he found that the T-dual
solution is consistent with the dilaton shift. From here he pushes forward the T-dual
metric to the T-dual heterotic Courant algebroid H̃ together with the T-dual dilaton
(which is still basic on the common base). He argues that this process is the same as
T-dualizing the heterotic Killing spinor equations as in Theorem 9.2.1 plus twisting the
spinor bundle. This point of view is promising but it does not explain how generalized
connections can be reduced or lifted therefore the proof seems incomplete.

Nonetheless, when the metrics have constant volume on the fibres the Buscher rules
result in dφ̃ = dφ and one can freely use the construction in Theorem 9.2.1. This has
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been used in [19] recently to construct T-dual examples of solutions on non-Kählerian
torus bundles over K3 surfaces.

There has been another approach to this problem. In [2] it has been shown that the
equations of motion of heterotic string theory are exchanged by T-duality. Solutions are
characterized by a generalized metric and a function again but in this case one has to
plug in the dilaton shift by hand as it is not part of the geometric formulation. Moreover,
this approach does not take supersymmetry into account.

In conclusion, generalized geometry seems like a good tool to mathematically ap-
proach heterotic String theory and the Strominger System but there are still unexplored
problems that would be interesting to look into.

THE END!
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10 Appendix

In this section we include some facts and calculations about the de Rham cohomology
of certain Lie groups and principal bundles which we used in Section 8 and Section 5.

10.1 Cohomology of compact Lie groups

Firstly, we define the cohomology of a Lie algebra g and the state two important theorems
about the de Rham cohomology of compact connected Lie groups. Both of these can
be used to get an insight into the cohomology groups especially at lower degrees. These
facts are classical, we refer to [14] for the proofs.

Definition 10.1.1. If g is a real Lie algebra, its Lie algebra cohomology ring is defined
as the cohomology of the following complex. The degree k elements are

Ck = ∧kg∗,

where g∗ is the dual of the Lie algebra g, and the differential is

δ : Ck → Ck+1

δα(ξ0, ..., ξk) =
∑
i<j

α([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk)

with ξ0, ..ξk ∈ g. We denote the complex by (∧•g∗, δ).

Theorem 10.1.1. Let G be a compact connected Lie group and g its Lie algebra. Then
the de Rham cohomology of G is isomorphic to the Lie algebra cohomology of g

H•(G,R) ∼= H•(∧•g∗, δ).

Rough sketch of proof. By averaging any cohomology class of G can be represented by
left invariant elements. Then one can show that the cohomology can be calculated using
only left invariant differential forms evaluated on left invariant vector fields. Finally, the
exterior differential reduces to δ on these forms.

Theorem 10.1.2. Let G be a compact connected Lie group and g its Lie algebra. Then
the de Rham cohomology ring of G is an exterior algebra on odd generators given by

H•(G,R) =
(
∧• g∗

)G
=

m⊕
k=0

{
α ∈ ∧kg∗

∣∣∣ k∑
i=1

α(ξ1, ..., [ξ, ξi], ..., ξk = 0 ∀ξ, ξ1, ..., ξk ∈ g
}
.
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Rough sketch of proof. One can show that the calculation of the cohomology ring can
be done restricting to bi-invariant forms as well. These are represented by the above
exterior algebra and they are automatically closed which finishes the proof.

Example 1. The cohomology ring of a k-dimensional torus Tk is just the exterior
algebra of the dual tk∗ of its Lie algebra tk.

H•(Tk,R) = ∧•tk∗

It is clear from both of the theorems above as [t, t] = 0, therefore every element in ∧•tk∗
is closed and none are exact.

Recall, that a Lie algebra g is called simple, if it is not abelian and its only ideals are
0 and g. We call g semisimple if it is a direct sum of simples. A Lie group is called
simple (semisimple) if its corresponding Lie algebra is simple (semisimple).

Example 2. (The cohomology of compact connected semisimple Lie groups)
Let G be a compact, connected semisimple Lie group with Lie algebra g. Then the first
3 cohomology groups of G are

H0(G,R) = R, H1(G,R) = H2(G,R) = 0, H3(G,R) 6= 0.

The zeroth cohomology group is clear as G is connected. Suppose now that α ∈ (g∗)G

as in Theorem 10.1.2, therefore

α([ξ1, ξ2]) = 0 ∀ξ1, ξ2 ∈ g

but as G is semisimple [g, g] = g therefore α = 0.
If β ∈ (∧2g∗)G then

β([ξ1, ξ2], ξ3) + β(ξ2, [ξ1, ξ3]) = 0 ∀ξ1, ξ2, ξ3 ∈ g.

and as β is closed

−β([ξ1, ξ2], ξ3) + β([ξ1, ξ3], ξ2)− β([ξ2, ξ3], ξ2) = 0 ∀ξ1, ξ2, ξ3 ∈ g.

Together these yield
β([ξ2, ξ3], ξ2) = 0 ∀ξ1, ξ2, ξ3 ∈ g

i.e. β = 0 again.
Finally, for degree 3 we can consider a non-degenerate invariant bilinear form c on g (eg.
the Killing form), then

γ(ξ1, ξ2, ξ3) = c([ξ1, ξ2], ξ3) ∈ (∧3g∗)G

and as c is non-degenerate γ is not zero.
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10.2 Exact basic forms

Let P →M be a principal bundle with compact connected semi-simple structure group
G. In general, an invariant exact form dβ on P may be basic without the form β being
basic. An example of this is the Chern-Simons 3-form whose exterior differential is basic
but CS3(A) restricts to a non-trivial cohomology class on the fibres, hence not basic.
We will show that this is not the case for 1 and 2-forms, exact elements of Ωk(P,R)bas
for k = 1, 2 are the exterior derivatives of basic forms. This calculation is essentially the
same as the computation for the cohomology of Lie groups but it is still useful to point
out as it is a unique feature of our setting that we use often (via Proposition 5.1.2).

Proposition 10.2.1. Let B ∈ Ω2(P ) and C ∈ Ω1(P ) be invariant forms. If their
exterior differential dB and dC are basic forms then so are B and C.

Proof. Let A = Aiei be a principal connection on P written in a basis e1, ..., em of g, the
semisimple Lie algebra corresponding to G. Let f ijk be the structure constants of g.

Firstly, write C = C0 + C1
i A

i using the connection with C0 and C1
i basic. Then the

exterior differential is

dC = dC0 + dC1
i ∧Ai + C1

i F
i − C1

i f
i
jkA

jk,

where we used that F = dA = 1
2 [A,A] and Aij = 1

2A
i ∧Aj . Clearly, dC is basic if

dCi = 0 ∀i and C1
i f

i
jk = 0 ∀j, k.

Contracting the second condition with any elements in x, y ∈ g we find that C1
i [x, y]i = 0.

As x, y are arbitrary and g is semisimple it is equivalent to C1
i x

i = 0 for all x ∈ g, i.e.
C1 is essentially an element in g∗ that annihilates all of g hence it must vanish which
proves the claim.

Similarly, write B = B0 + B1
iA

i + B2
ijA

ij (omitting wedge product). The exterior
derivative is then

dB = dB0 + dB1
iA

i −B1
i F

i +B1
i f

i
jkA

jk + dB2
ijA

ij + 2B2
ijdF

iAj − 2B2
ijf

i
klA

jkl,

which is basic whenever

dB1
i = B2

jiF
i, B1

i f
i
jk = dB2

jk, B2
ijf

i
kl = 0

for all i, j, k. The third condition is again for a set j the same as in the case of the one
form C which yield B2

ij = 0 for all i, j. This turns the second condition into the previous

form again, and we find that B1
i = 0 as well for all i.

96



10.3 On the second cohomology

We want to calculate the the second cohomology group of a principal bundle G · · ·P →
M with coefficients in H1(Tk,R) = tk∗ ∼= Rk. The structure group is again compact,
connected, semisimple. In case of real coefficients, by the universal coefficient theorem

H1(G, tk∗) = H2(G, tk∗) = 0.

Therefore, the second page of the Serre spectral sequence is as follows.

0 0 0 0
0 0 0 0

H0(G, tk∗) = tk∗ tk∗ H1(M, tk∗) H2(M, tk∗)

H0(M,R) H1(M,R) H2(M,R)

In this case all the relevant differentials are already zero and we find that the second
cohomology group is just the second cohomology of the base

H2(P, tk∗) = H2(M, tk∗).
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Popular summary

String theory has been in the focus of theoretical physics research since the 1960s but
the precise mathematical formulation of these theories is still not complete. In the early
2000s Nigel Hitchin proposed a new geometric approach called generalized geometry. It
formulated Type II string theory on geometric objects called exact Courant algebroids
which are a specific type of the wider class of Courant algebroids. Since 2010 generalized
geometry has been extended to a different class of Courant algebroids which have found
applications to heterotic string theory. In this thesis we explore these new advancements.

We first define Courant agebroids and present three examples including exact Courant
algebroids. We then describe a reduction procedure which relates our three examples to
each other. This relation brings the first important result. It turns out that a type of
Courant algebroids, which were suggestively named heterotic Courant algebroids, can
be completely classified as objects that arise via reduction of exact Courant algebroids.

In the coming chapters we investigate the geometry of Courant algebroids. Remark-
ably, it is possible to describe an analogue of differential calculus on Courant algebroids
although it is not as clean as in the standard case. Nevertheless, it provides an useful
tool in geometrizing the partial differential equations arising in string theory.

After that we turn our attention to T-duality which is one of the most important
dualities in string theory. It relates different Type II theories to each other and heterotic
theories to each other. First we explain how this duality is formalized mathematically on
torus bundles. Then we present its reformulation into the setting of generalized geometry
for exact Courant algebroids which has been applied to Type II string theory. Finally,
we describe how T-duality has been extended to the heterotic case as an isomorphism
of heterotic Courant algebroids.

We conclude with describing the Strominger System, the defining equations of het-
erotic string theory. We prove that the system naturally arises as a pair of equations
on a heterotic Courant algebroid which is one of the main advancements of research in
this area. Not only does this new formulation provide a cleaner framework for the study
of the Strominger System but in this setting T-duality is also fairly simple to describe.
We present T-duality in this new setup and discuss some unanswered questions that are
still under research.

98



Bibliography

[1] A. Alekseev and P. Xu. Derived brackets and courant algebroids. Unpublished, avail-
able at http://www.math.psu.edu/ping/anton-final.pdf (2001)

[2] D. Baraglia, P. Hekmati. Transitive Courant Algebroids, String Structures and T-
duality. Adv. Theor. Math. Phys. Vol 19 No. 3, 613-672 (2015) arXiv:1308.5159v2
[math.DG]

[3] P. Bouwknegt, J. Evslin, V. Mathai. T -duality: topology change from H-flux. Comm.
Math. Phys., 249(2):383–415, (2004) arXiv:hep-th/0306062.

[4] P. Bouwknegt, K. Hannabuss, V. Mathai. T-duality for principal torus bundles. J.
High Energy Phys., 3:018, 10 pp. (electronic) (2004) arXiv:hep-th/0312284.

[5] H. Bursztyn, G. R. Cavalcanti, M. Gualtieri. Reduction of Courant alge-
broids and generalized complex structures. Adv. Math., 211 (2), 726-765. (2007)
arXiv:math/0509640v3 [math.DG]

[6] T. Buscher. A symmetry of the string background field equations. Phys. Lett. B 194
59. (1987) (doi:10.1016/0370-2693(87)90769-6)

[7] G. R. Cavalcanti, M. Gualtieri. Generalized complex geometry and T-duality. A
Celebration of the Mathematical Legacy of Raoul Bott (CRM Proceedings & Lec-
ture Notes), American Mathematical Society, pp. 341-366. ISBN: 0821847775 (2010)
arXiv:1106.1747v1 [math.DG]

[8] Z. Chen, M. Stienon, P. Xu. On Regular Courant Algebroids. Journal of Symplectic
Geometry 11, no. 1, 1-24. (2013) arXiv:0909.0319 [math.DG]

[9] T. Courant. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661. (1990)

[10] I.Ya. Dorfman. Dirac structures of integrable evolution equations. Phys. Lett. A 125,
240–246. (1987)

[11] M. Fernández, S. Ivanov, L. Ugarte, R. Villacampa. Non-Kähler heterotic-string
compactifications with non-zero fluxes and constant dilaton. Commun. Math. Phys.
288 677–697. (2009) arXiv:0804.1648v4 [math.DG]

[12] J. Fine, D Panov. Symplectic Calabi-Yau manifolds, minimal surfaces and the hy-
perbolic geometry of the conifold. Journal of Differential Geometry, 82 , no. 1, 155–205.
(2009) arXiv:0802.3648v2 [math.SG]

[13] A. Fino, G. Grantcharov, L. Vezzoni. Solutions to the Hull-Strominger system with
torus symmetry. (2019) arXiv:1901.10322v2 [math.DG]

[14] C.-K. Fok. Cohomology and K-theory of compact Lie groups. Unpublished, available
at http://pi.math.cornell.edu/ ckfok/Cohomology Lie groups.pdf (2010)

99



[15] M. Garcia-Fernandez. Torsion-free generalized connections and Heterotic Supergrav-
ity. (2013) arXiv:1304.4294 [math.DG]

[16] M. Garcia-Fernandez. Lectures on the Strominger System. Travaux mathématiques,
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