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Abstract

In this thesis, we study a relation between symplectic structures and Lefschetz fibrations to shed
some light on 4-manifold theory. We introduce symplectic manifolds and state some results about
them. We then introduce Lefschetz fibrations, which are a generalization of fiber bundles, and
discuss them briefly to obtain an intuitive understanding. The main theorem of this thesis is a
result obtained by Gompf [4]. It provides a way to construct a symplectic structure on a general
Lefschetz fibration with homologeously nonzero fiber. We also discuss a generalization of this,
achieved by Gompf [6], that generalizes this result to arbitrary even dimensions.
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CHAPTER 1

Introduction

Symplectic geometry has been an important subject of research for the past decades. Two
important questions are how to determine whether a certain manifold admits a symplectic
structure, and whether symplectic structures occur often. We try to shed some light on both of
these questions, especially in the 4-dimensional case.

After investigating the basic properties in Chapter 2, we introduce a gluing construction in
Chapter 3. This is used to prove that any finitely presented group is the fundamental group of
some symplectic 4-manifold [4]. On the one hand, this theorem is very convenient, because it
provides a lot of examples of symplectic 4-manifolds. On the other hand, it shatters all hope of
classifying symplectic 4-manifolds, because of the negative solution of the word problem for groups.
However, although symplectic 4-manifolds can not be completely classified, it is nice to be able to
describe them in more combinatorical terms. To achieve this, we introduce generalizations of fiber
bundles: Lefschetz fibrations and Lefschetz pencils. In Chapter 4, we describe the behavior of these
objects, and in Chapter 5, we introduce a construction of a symplectic structure on any Lefschetz
fibration, which was first achieved by Gompf [4]. Since these fibrations can be described in a more
combinatorical way, this gives an alternative way to describe symplectic structures. In light of the
theorem of Donaldson [1], which states that any symplectic 4-manifold admits a Lefschetz pencil,
this method fits to describe all symplectic 4-manifolds.
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CHAPTER 2

Symplectic manifolds

1. Definition and basic properties

In this section, we define symplectic structures on manifolds and state some of their basic
properties. These structures will be the main object of study in this thesis.

Definition 2.1. A 2-form ω on a linear space V is called nondegenerate or symplectic if,
for any nonzero vector x ∈ Rn, we can find a vector y ∈ V such that ω(x, y) 6= 0.

The existence of a nondegenerate form implies that the dimension of V is even. This is because,
using a basis, forms can be represented by matrices. Being nondegenerate and anti-symmetric
imposes the conditions of invertibility and skew-symmetry, and this combination does not exist in
odd dimensions.
On the vector space R2n, we have the form x1∧y1 + ...+xn∧yn. This form is nondegenerate and is
called the standard symplectic form on R2n. On Cn, using the coordinates (x1+y1i, ..., xn+yni),
we can define the form in the same way.
Although nondegenerate forms differ from inner products, it makes sense to talk about orthogonal
complements, using the following definitions.

Definition 2.2. Let V be a linear space and let ω be a nondegenerate form on V . Now a
subspace U ⊂ V is called a symplectic subspace if ω|U is again a nondegenerate form.

Definition 2.3. Let V be a linear space with a nondegenerate form ω and let U ⊂ V be
a symplectic subspace. The (symplectic) orthogonal complement of U with respect to ω is
defined as U⊥ = {x ∈ V |∀y ∈ U, ω(x, y) = 0}. The symplectic orthogonal satisfies dimU+dimU⊥ =
dimV .

Using this, we can define different types of subspaces.

Definition 2.4. Let V be a linear space and let ω be a nondegenerate form on V .

• A subspace U ⊂ V is isotropic if U ⊂ U⊥. This is equivalent with saying ω|U = 0.
• A subspace U ⊂ V is coisotropic if U⊥ ⊂ U .
• A subspace that is both isotropic and coisotropic is Lagrangian.

Remark 2.5. Since the dimensions of U and U⊥ add up to the dimension of the whole space,
isotropic spaces of V have at most half its dimension, and coisotropic at least half. This means that
Lagrangian subspaces have exactly half the dimension of the whole space.

We now generalize the linear definition to manifolds.

Definition 2.6. A smooth 2-form ω is called a symplectic form if it is pointwise nondegen-
erate and closed. The latter condition meaning that dω = 0, in which d is the de Rham differential.

Remark 2.7. In the linear case, the words nondegenerate and symplectic are synonyms. In the
smooth category they are not, since the term symplectic is usually reserved for closed forms.

A manifold M with a symplectic form ω ∈ Ω2(M) is called a symplectic manifold and is often
denoted together with its symplectic form: (M,ω). The existence of a symplectic form implies that
n is even.
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1. DEFINITION AND BASIC PROPERTIES 3

Of course, a submanifold N ⊂ M is called a symplectic, isotropic, coisotropic or Lagrangian
submanifold if its TxN is a symplectic, isotropic, coisotropic or Lagrangian subspace, respectively,
of TxM for any x ∈ N .

Definition 2.8. Let (M,ωM ) and (N,ωN ) be symplectic manifolds. A diffeomorphism f :
M → N is called a symplectomorphism if f∗ωN = ωM .

Symplectomorphisms are the isomorphisms in the category of symplectic manifolds.

When we restrict our attention to closed forms, we can locally write the symplectic form as the
standard form, using the following well-known theorem of Darboux.

Theorem 2.9 (Darboux). Let M be a 2m-dimensional manifold and let ω be a pointwise non-
degenerate form. Closedness of ω is equivalent to the following condition.
Around every x ∈ M , we can find a coordinate chart (U, φ) = (U, x1, ..., xm, y1, ..., ym) such that
ω = dx1 ∧ dy1 + ...+ dxm ∧ dym.

Corollary 2.10. Let ω be a closed 2-form on a 2m-dimensional manifold M . The wedge-
product ωm = ω ∧ ... ∧ ω (m times) is a volume form if and only if ω is symplectic.

Proof. If ω is symplectic, it can be written in standard coordinates. It follows immediately
that ωm is a volume form.
For the other direction, let ω be degenerate, so iXω = 0 for some X. Now if we fill in this X in ωm,
we get iX(ωm) = m(iXω)ωm−1 = 0, so this can not be a volume form. �

We now give some classes of examples, to motivate our definition.

Example 2.11. Every orientable 2-manifold admits a symplectic structure. In the 2-dimensional
case, being orientable is equivalent to admitting a volume form. A volume form µ on a 2-manifold
is a symplectic form. Closedness is direct, since the de Rham differential d sends µ to a 3-form and
there are no nonzero forms with degree higher than the manifolds dimension. It follows directly
from Corollary 2.10 (the case n = 1) that µ is symplectic.

Example 2.12. On the complex projective space CPn, which is even-dimensional as a real
manifold, there is a well-known, canonically defined symplectic structure, called the Fubini-Study
symplectic form. In complex coordinates [z0 : ... : zn], this is given by ω = i

2π∂∂ log
∑n

i=0 |zi|2. Note
that this form is well-defined on CPn. To see this, we can write the form in different coordinate
patches.
For z0 6= 0, take linear coordinates a1 = z1

z0
, ..., an = zn

z0
. The form becomes

i
2π∂∂ log 1 + |a1|2 + ...+ |an|2. Working on the coordinate patch with z1 6= 0, we can take
b1 = z0

z1
, b2 = z2

z1
, ..., bn = zn

z1
. We can write the coordinates bi in terms of the coordi-

nates ai: b1 = 1
a1
, b2 = a2

a1
, ..., bn = an

a1
. This gives ω = i

2π∂∂ log 1 + |b1|2 + ...+ |bn|2 =

i
2π∂∂ log 1 + | 1

a1
|2 + |a2a1 |

2 + ...+ |ana1 = i
2π∂∂

(
log 1

a1
+ log 1

a1
+ log 1 + a1 + ...+ an

)
. Since the

terms log 1
a1

and log 1
a1

both only depend on one of the terms a1, a1, both will vanish after ap-

plying both ∂ and ∂, so the first two terms drop. We are left with the same formula, in the different
coordinates, so we conclude that the descriptions agree on the overlap of the patches. Of course,
this can be done for any two coordinates, so the form is well-defined on CPn.
This symplectic form is often denoted ωFS or ωstd.

Remark 2.13. Let X be a compact, 2m-dimensional manifold and let ω be a symplectic form.
Let η be an arbitrary closed 2-form. For small enough t ∈ R, the form ω + tη is symplectic.

Proof. Since ω is symplectic, ωm is a volume form. At a certain point x ∈ X, take a basis
v1, ..., v2m of the tangent space. ωm(v1, ..., v2m) = s 6= 0.
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Consider (ω+ tη)m(v1, ..., v2n). This can be written as s+O(t), in which O(t) denotes a polynomial
in t. Since this is a polynomial expression, t can be shrank to make s dominate the term. This
means that for small enough t, (ω + tη)m is a volume form.
For each point x ∈ X, we can find a neighborhood in which (ω + tη)m is a volume form, since it
is a smooth section of

∧n T ∗X. This means that around any point, we can find a neighborhood
and a corresponding t, so we can use the compactness to find a finite subcover, take the smallest
t and conclude there is an overall t ∈ R for which (ω + tη)n is a volume form, hence ω + tη is
symplectic. �

A corollary of this is that if a form is nondegenerate at a certain point, it is nondegenerate in a
neighborhood of that point.

We end this section with a nice fact about the cohomology of symplectic manifolds. Consider a
2m-dimensional manifold M and a symplectic form ω. We have that ωm is a volume form (Corollary
2.10) and hence represents a nonzero cohomology class, we can conclude that any wedge-power of
ω represents a nonzero cohomology class. It now follows that for any even k, Hk

dR(M ;R) 6= {0}. In
words: M has nonzero cohomology in any even degree. For this reason, any sphere S2n, for n > 1,
can not support a symplectic structure.

2. Compatibility with complex structures

Some familiarity with complex structures is assumed, but we recall the definition here.

Definition 2.14. We first define the structure point-wise and then generalize to manifolds.

• Let V be a real vector space. A complex structure on V is a linear map J : V → V
with the property that J ◦ J = −Id.
• Let X be a manifold. A almost-complex structure on X is a smoothly varying collection

of complex structures on every tangent space.
• Let X be a manifold with an almost-complex structure J . The structure J is called

a complex structure on X if around any point x ∈ X, we can find a chart(
U, ∂

∂x1
, ..., ∂

∂xn
, ∂
∂y1

, ..., ∂
∂yn

)
such that J( ∂

∂xi
) = ∂

∂yi
, for all i ∈ {1, ..., n}. This property of

a complex structure is called integrability.

Complex manifolds are often defined in a more direct way, very similar to the definition of
real manifolds. Instead of taking charts to Rn, one takes charts to Cn. The transition functions
between different charts are not only supposed to be smooth, but even holomorphic. Note that this
definition also yields a complex structure in the above sense. If one has local complex coordinates,
this defines a linear map J on the tangent space by multiplication by the complex unit i. Using
the fact that the holomorphic transition functions of the maps yield complex linear transition
functions between the tangent spaces, this map is easily proven to be well-defined on the entire
manifold. The identity J2 = −Id is obvious, and the integrability condition is satisfied since we
are already working in local coordinates: these coordinates (z1, ..., zn) are complex, but we can just
use a transition (z1, ..., zn) 7→ (x1, ..., xn, y1, ..., yn) to Rn, so i acts on the coordinates as in the inte-
grability condition. (In fact, this condition is imposed on complex structures for exactly this reason.)

In the rest of this section, we describe ways to match symplectic structures to (almost-)complex
ones.

Definition 2.15. Let X be a manifold. A nondegenerate form ω on X is said to be compatible
with the (almost-)complex structure J if for all v, w ∈ TX, we have ω(Jv, Jw) = ω(v, w) and
ω(v, Jv) > 0.
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Example 2.16. Consider CPn. The Fubini-Study symplectic form ωstd is compatible with the
complex structure obtained by multiplication with i.

The relation between almost-complex structures and nondegenerate 2-forms is made clear in the
next theorem.

Theorem 2.17. For any almost-complex structure J on a manifold X, there is a compatible
nondegenerate form.

Proof. Let g be a Riemannian metric on X. Take ω(u, v) = 1
2(g(Ju, v) + g(−u, Jv)). This

is a nondegenerate 2-form on X that is compatible with J . Bilinearity follows directly from the
(bi)linearity of g and J .
Anti-symmetry: ω(u, v) = 1

2(g(Ju, v) + g(−u, Jv)) = −1
2(g(Jv, u) + g(−v, Ju)) = −ω(u, v).

For nondegeneracy, let u ∈ TX be arbitrary. Take ω(u, Ju) = 1
2(g(Ju, Ju) + g(−u,−u)) > 0.

Compatibility is satisfied since we also have ω(Ju, Jv) = 1
2(g(−u, Jv) + g(−Ju,−v)) + 1

2(g(Ju, v) +
g(−u, Jv)) = ω(u, v). �

Definition 2.18. A manifold is called Kähler if it has both a complex structure and a sym-
plectic structure, such that these two structures are compatible.

Kähler manifolds also have a Riemannian structure, so we then have a compatible triple J , ω,
g, any of which can be expressed in terms of the other two. In order to do this, note that since ω
and g are nondegenerate, both of them induce a bundle isomorphism φ : TM → T ∗M by taking
φω(u) = iuω = ω(u, ·) and φg(u) = iug = g(u, ·). Using this, we can take the following.

g(u, v) = ω(u, Jv)

ω(u, v) = g(Ju, v)

J(u) = φ−1
g (φω(u))

If we have any two of these structures that are compatible to one another, the third one is
automatically defined in a unique way. This means that any complex submanifold N of a Kähler
M manifold is itself Kähler, since the restriction of the Riemannian metric to N yields a second
structure on N (we also have the complex structure), and we get back the restriction of the
symplectic form as a symplectic structure. So N is also a symplectic submanifold. This yields a lot
of examples: since the projective space CPn is Kähler using the Fubini-Study form, any projective
variety has a Kähler structure.

When we have almost-complex and nondegenerate structures defined on different manifolds,
they can also be compatible, relative to a map between the manifolds.

Definition 2.19. Let f : X → Y be a smooth map between manifolds. Let ω be a 2-form on
Y and J be an almost complex structure on X.

• J is called (ω, f)-tame (or that J tames ω) if df∗ω(v, Jv) = ω(df(v), df(Jv)) > 0 holds
for all v ∈ TX \ ker(df).
• J is called (ω, f)-compatible if it is tame and df∗ω is also J-invariant. This last condition

means that df∗ω(Jv, Jw) = df∗ω(v, w) for all v, w ∈ TY .
• If X = Y and f is the identity funtion, the complex structure will just be called ω-tame or
ω-compatible. Note that this definition of compatibility matches the one previously given.

Remark 2.20. • If a form ω tames some J , it is nondegenerate, since ω(v, Jv) > 0 holds
for any v. So a closed, taming 2-form is symplectic.
• Being ω-tame is an open condition. It is easy to see this, since, for fixed ω, ω(v, Jv) is a

continuous map from TX × J to R (with J the set of complex structures) and the set of
ω-tame complex structures is the inverse image of an open set.
• If J is (ω, f)-tame, then ker(df) pointwise is a complex subspace of TX
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3. Blow-ups

In this section, we introduce a way to deal with singularities. When two lines intersect
transversely in a point, we cannot distinguish them in that point, since they only differ in direction.
A way to deal with this is, intuitively speaking, by replacing the point by the set of all directions
through that point, obtaining a slightly different manifold. This is called blowing up the point.
Of course, two lines intersection in that point will not intersect in the new manifold, since their
direction in the point is different.

Consider the manifold τ = {(`, p) ∈ CPn−1 × Cn|p ∈ `}. Let π2 : τ → Cn denote projection
onto the second coordinate. For any nonzero x ∈ Cn, π−1

2 (x) is a one-point space, while for
x = 0, the inverse image consists of an entire copy of CPn−1. We conclude that the map
π2 : τ \ π−1

2 (0) → Cn \ {0} is a biholomorphic function, in other words, a holomorphic bijection
with a holomorphic inverse.
Now assume we have two (complex) lines L1, L2 in Cn intersecting at the origin. Their preimages
π−1

2 (L1) and π−1
2 (L2) are clearly not manifolds, since they consist of a line and a copy of CPn−1.

However, when we take out the origin and consider the closure of what is left, L̃i = π−1
2 (Li \ {0}),

we do get a manifold. Note that L̃1 and L̃2 do not intersect, since the directions of the lines
in the origin are taken into account here. This is the blow-up of the complex space. Now
if we have a complex manifold X, we can blow up at a point p by taking a neighborhood U
of p that is biholomorphic to an open subset V of Cn by a map that sends p to 0. When
we remove U and replace it by π−1

2 (V ) ⊂ τ , we get a new complex manifold, which is the
blow-up of X at p. Denote this blow-up by X ′. We can define a map π : X ′ → X, in the
obvious way, that is a biholomorphism anywhere except at π−1(p). The inverse image π−1(p)
is diffeomorphic to CPn−1 and is called the exceptional divisor or (exceptional sphere if
n = 2). The blow-up of a manifold X is obtained by taking out a point and gluing back a copy

of CPn−1. In fact, it is diffeomorphic to X#CPn, in which the bar denotes changing the orientation.

Blow-ups can not only be defined in the complex category, but also in the symplectic category
[2]. To do this, we will denote the standard ball of radius δ in Cn by B(δ). Let L(δ) denote
the inverse image of this ball under the second projection: L(δ) = π−1

2 (B(δ). On this, we have a
symplectic form ρ(λ) = π∗2ω0 + λ2π1ωstd, with ω0 and ωstd the standard forms on Cn and CPn−1

respectively. Let L0 denote the zero-section of (L, ρ(λ))

Lemma 2.21. For any λ and any δ > 0, the set (L(δ) \ L0, ρ(λ)) is symplectomorphic to the

spherical shell (B(
√
λ2 + δ2) \B(λ), ω0) in Cn.

Proof. Consider the form ω(λ) on Cn given by

ω(λ) =
i

2
(∂∂(|z|2 + λ2 log |z|2))

This form is pulled back by π2 to ρ(λ) on L \ L0.

The map F : Cn \ {0} → Cn \B(λ) given by F (z) =
√
|z|2 + λ2 z

|z| satisfies F ∗ω(λ). �

Using this, we can define the symplectic blow-up of a manifold (M,ω) of weight λ as follows. Take
a symplectic embedding ψ : B(λ) → M and extend it to a symplectic embedding ψ0 : B(λ + ε) →
M . Replace the image ψ0(B(

√
λ2 + δ2) by the standard neighborhood L(δ), for some δ such that√

λ2 + δ2 − λ < ε. The blow-up of M can be defined as

M̃ =
(
M \ ψ0(int B(

√
λ2 + δ2))

)
∪ L(δ)
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The new form equals ω on M \ φ0(int B(λ+ δ)) and equals ρ(λ) on L(δ). The symplectomorphism
class of the resulting manifold does not depend on the choice of δ, ψ or ψ0.

We conclude that we can blow a symplectic manifold up into another one. For Kähler manifolds,
this can be done in such a way that on the resulting manifold, the symplectic and complex structure
are again compatible, so Kähler manifolds can also be blown up.

4. E(1)

In this section we introduce the construction of a certain 4-manifold as a singular fibration.
In the next section, there will be more on fibrations and a generalization of this structure, the
Lefschetz fibration, will be introduced and discussed in detail. First of all, we take a look at a
particular 4-manifold.
Consider CP2. Take two generic homogeneous polynomials, p0 and p1, of degree 3. Their zero-sets
intersect transversely in 9 points I(p0, p1) = {P1, ..., P9}. Away from these points, we can define a
fibration to CP1 as follows.
For any point Q away from the set {Pi}, define a map π by Q 7→ [p0(Q) : p1(Q)]. Since p0

and p1 are homogeneous, this is a map from CP2 \ {P1, ..., P9} to CP1. We can not extend π to
the points Pi, because choosing Q to be one of the intersection points would send it to [0 : 0].
However, when we blow up the points, we can extend the map. Since we picked the cubics to
be generic, their zero-sets intersect transversely in the points Pi. This means that, for a certain
Pi, z 7→ (p0(z), p1(z)) is a local chart around Pi. Using this chart, the manifold τ looks like
{([p0(z) : p1(z)], (p0(z), p1(z))) ∈ CP1 × C2}. When we use this to blow up, it determines π in the
copy of CP1. Any point in this closure can be approached by a curve {(p0(λz), p1(λz)) ∈ C2|λ ∈ R}
by letting λ go to zero. The map π is defined anywhere except when λ = 0, and it is constant where
it is defined, so it can be extended in its closure, hence to the blow-up.

This gives a map π from the nine point blow-up CP2#9CP2 to CP1. The space CP2#9CP2 is called
E(1).
The map π behaves much like a fiber bundle. The regular fibers are generic cubic curves, hence
diffeomorphic to the torus T 2. However, torus bundles over the sphere have Euler characteristic

0, while the connected sum CP2#9CP2 has Euler characteristic 12. We conclude that there are
also fibers that are not diffeomorphic to the torus. These will be called singular fibers. Since CP2

is simply connected, E(1) is as well. Moreover, when we take out (a regular neighborhood of) a
regular fiber, which is diffeomorphic to the torus, the resulting space is still simply connected, since
the only possible nontrivial loop arising from this would be one around the fiber taken out, but this
curve can be contracted over a section CP1 (any exceptional sphere forms a section), which is still
simply connected when a point is taken out.
The manifold E(1) can be given a symplectic structure. There is a Kähler structure on CP2 and
the blow-ups can be performed in a way that preserves this Kähler structure. This means that
we can get a 2-form that is not only symplectic, but also has generic (toral) fibers as symplectic
submanifolds, since they are complex submanifolds of a Kähler manifold.



CHAPTER 3

The symplectic normal sum

1. Construction and proof

Two symplectic 2n-manifolds can be connected by the construction of symplectic sum. This
is a version of a connected sum, which preserves the symplectic structures, to give a symplectic
structure to the connected sum of the manifolds. This construction is specified in the following
theorem.

Theorem 3.1 (Gompf [5]). Let M1 and M2 be 2n-dimensional manifolds which both have the
same symplectic codimension 2 manifold V embedded as a symplectic submanifold. Assume that the
normal bundles NM1V and NM2V have opposite Euler numbers. For any choice of an orientation-
reversing isomorphism between these bundles, there is a canonical (up to isotopy) symplectic struc-
ture on the connected sum M1#VM2.

Proof. We begin the proof with a lemma, which is a special case of Weinstein’s neighborhood
theorem..

Lemma 3.2. Let (M,ωM ) and (V, ωV ) be symplectic manifolds and let N ⊂ V be a compact,
codimension 2, symplectic submanifold. Let f : V → M be an orientation preserving embedding,
such that f |N is symplectic. There exists a compact supported isotopy relative to N from f to an

embedding f̃ that is symplectic in a neighborhood of N .

Proof. N ⊂ V and f(N) ⊂ M are symplectic submanifolds, so their normal bundles can be
specified using orthogonal complements with respect to their forms ωV and ωM . We can use an
isotopy of f to get the fibers of these bundles to correspond under f∗, since all tubular neighborhoods
of diffeomorphic submanifolds are diffeomorphic.
Define η = f∗ωM −ωV and ωt = ωV + tη = tf∗ωM +(1− t)ωv, with t ∈ [0, 1]. Let j : N → V denote
the inclusion. Then j∗η = 0, because f |N is symplectic by assumption, so all ωt will agree on the
tangent space of N . The normal spaces (induced by symplectic orthogonality) to N in V under the
forms ωV and f∗ωM agree by construction and these two forms are area forms on these spaces. So,
the forms ωt are all convex combinations of compatibly oriented area forms, hence nonzero, hence
nondegenerate on the tangent bundle TV |N . Since nondegeneracy is an open condition, we can find
a neighborhood U ⊂ V of N on which all forms ωt are nondegenerate. Since they are combinations
of closed forms, they are symplectic on U .
We now define an operator, using integration. For this, we assume U is identified with an open
normal disk bundle of N . If this is not the case, U can be shrank to a tubular neighborhood, since
all neighborhoods contain tubular neighborhoods. For s ∈ [0, 1], let ms : U → U be multiplication
(in the disk) with s. Let Xs = d

dsms to be the corresponding vector field. We now define the

integral operator I : Ωp(U) → Ωp−1(U) on p-forms by I(ρ) =
∫ 1

0 m
∗
s(X

c
sρ)ds, where the c denotes

contraction. For contraction, consider the following standard differentiation formula.

(1)
d

ds
(m∗sρ) = m∗s(X

c
sρ) + d(m∗s(X

c
sρ))

Using this, we obtain an important property of the operator I, namely that if dρ = 0 and j∗ρ = 0,

then dI(ρ) =
∫ 1

0 dm
∗
s(X

c
sρ)ds =

∫ 1
0

d
ds(m

∗
sρ)ds = m∗1ρ−m∗0ρ = ρ.

8
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Now define the isotopy from f to f̃ in the following way. Let φ = I(η) ∈ Ω1(U). Note that dφ = 0

on U , since dη = 0 and j∗η = 0. Define the vector field Yt on U by Y
c
t ωt = −φ. The vector field

Yt is uniquely determined since all forms ωt are nondegenerate on U . Since φ vanishes TU |N , so
does Yt. Integrate Yt for t ∈ [0, 1] to obtain a flow gt on a neighborhood of N . This flow gt is
compactly supported and g0 is the identity on V . We now show that g∗t ωt does not depend on t.
Differentiation yields:

d

dt
(g∗t ωt)

=dg∗t (Y
c
t ωt) + g∗t (

d

dt
ωt) Using (1) again

=− g∗t dφ+ g∗t η Since φ = −Y ct ωt and
d

dt
ωt = η

=0 Since dφ = η on U

So g∗1ω1 = g0 ∗ ω0 = ω0. In other words, g∗1f
∗ωM = ωV near N . This gives the required embedding

f̃ = f ◦ g1, which is symplectic near N and isotopic (relative to N) to f . �

We now construct models for tubular neighborhoods of the embedded submanifolds in M . Let
ji : N → M be a symplectic submanifold of a symplectic manifold (M,ωM ) and let e = e(νi) be
the Euler number of its normal bundle. Let π : E → N be vector bundle bundle with Euler class
e, on which we have a fiberwise SO(2)-structure, and let E0 ⊂ E be the disk bundle with disks of
radius 1√

π
. We now obtain a sphere bundle by gluing the disk fibers of E to the disk fibers of E,

the bundle with opposite orientation. For the gluing, we use the fiberwise map given by

x 7→

√
1

π||x||2 − 1
x

This map turns the punctured open disk inside out and preserves the standard area form, up to its
sign, which gets reversed. The map is therefore symplectic. We define i0, i∞ : N → S to be the
zero-sections of E and E, respectively, with images N0 and N∞. The SO(2)-action now induces and
action r on S.

Lemma 3.3. There exists a closed, SO(2)-invariant 2-form η on S with i∗0η = 0 and η restricting
to a symplectic form of area 1 on any fiber.
For such η, there is a t1 > 0 such that ωt1 = π∗ωN + tη is an SO(2)-invariant symplectic form on
S.

Proof. We begin by obtaining a closed 2-form η′ on S, that restricts to the standard form ωS2

on each fiber: pick a representative of the Poincaré dual of [N0] ∈ H2(S;R). Notice that
∫
F β = 1

for each fiber F . Choose local trivializations φi : π−1(Ui)→ Ui×S2 for S, with a partition of unity
{ρi} subordinate to the cover {Ui} of N . Now φ∗iπ

∗
S2ωS2 − β is the difference of two forms in the

same cohomology class, since the integrals over any fiber coincide. Thus, there must be some 1-form
αi such that it is equal to dαi. Take η′ = β + d

∑
i(ρi ◦ π) · αi. This is the desired closed form on

S. Now consider η′′ = η − π∗i∗0η′. This is also closed and restricts to ωS2 on each fiber. Moreover,
it satisfies i∗0η

′′ = 0.
We now define

η =
1

2π

∫
SO(2)

r(θ)∗η′′dθ

by averaging the form η′′ over the previously defined SO(2)-action r. This is the form we are
looking for, since this integral is obviously SO(2)-invariant and it keeps the properties of closedness
and i∗0η = 0. It is now an observation by Thurston that for any such η, the form π∗ωN + tη is
symplectic for small enough t. This comes down to the observation that π∗ωN is nondegenerate
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along a horizontal subspace H, and tη is nondegenerate along a vertical one V . This would be
enough if π∗ωN |V and tη|H would both vanish. The former does, and the latter can be shrank (by
shrinking t) to make π∗ω dominate on H. Since nondegeneracy is an open property (Remark 2.13),
this is enough. Since N is compact, we can pick an overall t. This proves the lemma. �

We are now ready to prove the theorem, so let us return to the situation described in it. Let
j1(N) ⊂ M1, j2(N) ⊂ M2 be symplectic embeddings of N and let ψ : ν1 → ν2 be an orientation
reversing isomorphism between their normal bundles. We construct E, S, η and ωt1 over N as in
the lemmas. The bundles E and ν1 are isomorphic, so we have an orientation preserving embedding
f : E0 → M (since E0 is a subbundle of E) with f ◦ i0 = j1. This embedding is symplectic when

restricted to N , so now we can shrink t1 even more to obtain a symplectic embedding f̂ : (E0, ωt1)→
(M,ωM ), with f̂◦0 = j1, which is isotopic (relative to N) to f .
The next thing to do is to identify (a neighborhood of) N∞ to (a neighborhood of) j2(N). By

construction, we have S \N0 = E0, so the normal bundles ν0 and ν∞ of N0 and N∞ are identified
by an orientation reversing map h. Consider ψ′′ = ψ ◦ f∗ ◦ h : ν∞ → ν2. This map preserves
orientation, since ψ (by assumption) and h reverse it and f∗ does not.
Now we have a smooth embedding g : S \N0 →M1 with g ◦ i∞ = j2 and g∗ = ψ′′ on ν∞. We want
to use f−1 ◦ g to obtain smoothness on the connected sum. The problem is that g is not necessarily
symplectic. To fix this, let µ : S → S be a map that rescales the fibers of E0 in such a way that a
neighborhood of N∞ stays intact and a neighborhood of N0 gets collapsed to N0. This can be done
in a smooth way. We now compose g−1 with µ and conclude that g−1 extends to a map λ from a
neighborhood of g(S \N0) into S, which sends the points in the complement of g(S \N0) into N0.
Let ζ = λ∗η. This is a closed 2-form, vanishing outside g(S \ N0), so it can be extended over
M2 by just taking the zero 2-form everywhere else. We have j∗2ζ = i∗∞η. We now replace ωM2 by
ω̃M2 = ωM2 + tζ. The form ω̃M2 is symplectic on both M2 and j2(N) for small enough t, because
of the openness of the nondegeneracy condition. Also, g|∞ : N∞ → M is a symplectic embedding
(sending the form ωt to ˜ωM2). From Lemma 3.2, we get an isotopy (relative to N∞) from g to
g̃ : s \N0 →M , with g̃ a map that is symplectic on a neighborhood U∞ of N∞.
It is now time to glue the manifolds together. Let W = g̃(U∞ \N∞). The map g̃−1 : W → E is a

symplectomorphism. Since E0 is symplectically embedded in M1 by f̂ , it can be taken out, and be
replaced by W , to obtain M1#ψM2. We now have a symplectic structure on M1#ψM2. �

The construction can be used to glue symplectic manifolds together, and thus yields a lot of
examples of symplectic manifolds.

2. Application: examples of symplectic manifolds

Although the definition of a symplectic structure seems quite obscure, symplectic structures
are very common and there are a lot of different symplectic manifolds. This is illustrated by the
following theorem.

Theorem 3.4 (Gompf [4]). Let G be a finitely generated group. Now there is a closed symplectic
4-manifold which has G as its fundamental group.

Proof. Let G = 〈g1, ..., gk | r1, ..., rl〉, we will construct a corresponding 4-manifold.
Let F be a surface with genus k, the number of generators. Fix a collection of circles αi, βj ⊂ F
that represent a basis of H1(F ;Z), such that the intersections αi∩βj consists of one point precisely
when i = j and are otherwise empty, and the intersections αi ∩ αj and βi ∩ βj are empty.
Now take l immersed curves γj in F representing the relators rj in the free group π1(F )/〈β1, ..., βk〉,
and take γl+i = βi (i = 1, ..., k). We now have a set of k + l curves γi on F .
Take a torus T 2 with generating circles α and β and consider the 4-manifold F × T 2. In this,
we have a collection of k + l tori Ti = γi × α and the torus T0 = {pt.} × T 2. These tori can be
perturbed to be disjoint. To do this, note that α can be moved a little bit for every i, since α has
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self-intersection number zero. The torus T0 can be chosen disjointly by taking a point in F that
is not in any of the curves. Such a point exists, since the curves are embedded submanifolds of a
lower dimension, so finitely many of them can never cover the entire manifold. Since F and T are
both orientable surfaces, they allow symplectic structures ωF and ωT . On their product, we have
the symplectic structure ωF + ωT . The torus T0 is a symplectic submanifold, but the other tori Ti
are Lagrangian (the symplectic form vanishes on them). To fix this, we alter the form on F × T a
little bit. Consider a specific torus Ti, with i ≥ 1. Denote (a representation of) its Poincaré dual by
αi. Take α =

∑
i αi. Around the tori Ti, we define normal neighborhoods νTi and a set of larger

normal neighborhoods ν ′Ti, such that for each i, νTi is contained in ν ′Ti and all neighborhoods ν ′Ti
are disjoint. We can pick such a set of neighborhoods since the tori Ti are closed, disjoint subsets.
Take smooth bump functions ρi that are 1 on νTi and 0 outside ν ′Ti. Take volume forms µi on each
torus, by the inherited orientation of F ×T . We can assume [µi] = [α|ν′Ti ] ∈ H2

dR(ν ′Ti) by rescaling
the forms µi, so we can find local 1-forms θi such that dθ = µi − α. Using this, consider:

η = α+ d
∑
i

ρiθi

This form is closed, and it restricts to a volume (hence symplectic) form on each of the tori Ti. Now
we can use Corollary 2.13 to find a positive number t such that ωF + ωT + tη is symplectic on the
manifold F ×T . Moreover, since the first two terms are equal to the zero form on the tori, the third
term is the only thing that is left and it is symplectic. We now have a symplectic manifold in which
all tori Ti are symplectic submanifolds. This situation is the one we need to apply the symplectic
summation. We have k + l + 1 disjoint symplectic submanifolds of F × T 2.
We now use the 4-manifold E(1), which is defined above. This is a manifold with symplectic fibers.
Since E(1) is the connected sum of simply connected manifolds, it is simply connected. When we
cut out a regular neighborhood νT of such a fiber, the result E(1) \ νT is still simply connected.
Take the symplectic sum of F × T 2 with k + l + 1 copies of E(1), glued along the tori T ′i and a
regular fiber of every E(1).
The Seifert-van Kampen theorem directly implies that the fundamental group of this manifold is
indeed G. The symplectic sum gives a symplectic structure on our manifold. �



CHAPTER 4

Lefschetz fibrations

1. A generalization of fiber bundles

Recall the manifold E(1) introduced in Section 4. This manifold has a structure that resembles
the structure of a fiber bundle, but it has a finite number of points in which the fiber differs. In this
section, we give a generalization of this behavior: the Lefschetz fibration. Lefschetz fibrations are
generalizations of the well-known concept of fiber bundles. We first give a definition of the latter.

Definition 4.1. A fiber bundle consists of two manifolds E,B and a surjective map π : E → B
called the projection with the following local triviality condition. For every point x ∈ B there is
a neighborhood U ⊂ B such that π restricted to π−1(U) is the projection map of a topological
product U × F . The topological space F is called the fiber and does not depend on x or U .
B is called the base space

Of course, products of spaces E = B × F are examples of fiber bundles. These bundles are
called trivial bundles. An easy nontrivial example of a fiber bundle is the Möbius band, which is a
fiber bundle with base space B = S1 and fiber F = I.
The definition of Lefschetz fibration generalizes this concept, by allowing a finite number of singular
points. In these singular points, the projection map will not be a product, but we do restrict the
behaviour of π.

Definition 4.2. Let X be a compact, connected, oriented, smooth 4-manifold and Σ a compact,
connected, oriented, smooth 2-manifold. A Lefschetz fibration is a map π : X → Σ with the
following properties.

• π−1(∂Σ) = ∂X
• Each critical point of π lies in the interior (complement of the boundary) of X.
• For each critical point of π, we can find a pair of orientation preserving complex coordinate

charts, one on X, centered at the critical point, and one on Σ, such that π(z1, z2) = z2
1 +z2

2

on these charts.

A priori, this definition does not look like the definition of a fiber bundle, but they actually
are quite alike: when we restrict the map to fibers of regular values, a Lefschetz fibration is a fiber
bundle.

Proposition 4.3. Let π : X → Σ be a Lefschetz fibration and let C ⊂ Σ be the collection of
critical values of π. The map π̃ = π|X\π−1(C) is a fiber bundle.

Proof. Recall the theorem of Ehresmann [3], which states that any proper, surjective submer-
sion is a fiber bundle. π̃ is a submersion by definition of critical points. To prove that it is surjective,
note that there can only be finitely many critical points, since X is compact and the critical points
all have non-intersecting neighborhoods. This means that Σ \ C is still connected. The map π̃ is
open, since it is a submersion, and its image is closed since X is compact. We conclude that it is
surjective. The map π is proper since it is a continuous map between compact sets. The properness
of π̃ follows directly, since every compact subset of Σ \C has to be a closed subset of Σ which does
not contain a critical value, hence its inverse images under π̃ and π coincide. �

12
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We conclude that away from a finite number of singular fibers, π is a fiber bundle, so this
definition can really be considered a generalization of fiber bundles.

2. Basic properties and topology of Lefschetz fibrations

To give some intuition of what a Lefschetz fibration looks like, we take a closer look at a critical
point and try to construct a regular neighborhood of this. Around the critical point, π is given by
(z1, z2) 7→ z2

1 + z2
2 in complex coordinates. This means a nearby regular fiber (the inverse image of

a non-singular point) is given by the formula z2
1 + z2

2 = t, with t 6= 0. We assume t to be a positive
real number, because we can multiply by a complex unit to make it one. The fiber is locally given
by the formula x2

1 + x2
2 − y2

1 − y2
2 = t, which gives a submanifold of C2. This submanifold can be

identified with the cotangent bundle of S1 by viewing the latter as a submanifold of C2 and using
the formula (x, y) 7→ (|x|−1x, |x|y). When we intersect this fiber with R2 (and hence only view the
coordinates xi), we get a circle S1 given by the formula x2

1 + x2
2 = t, which bounds a disk Dt. As

t approaches 0, this disk shrinks to a point. Its boundary ∂Dt is called the vanishing cycle of this
critical point. We explicitly see the singular fiber being obtained from the regular fiber by collapsing
this vanishing cycle to a point. Its neighborhood cylinder does not vanish.
Regular fibers are oriented 2-manifolds, which are classified: all connected oriented 2-manifolds are
spaces with a genus n, in which n = 0 represents the sphere S2. Now it is important to classify
different vanishing cycles.
For the sphere, there is only one cycle, and it separates the sphere into two pieces. For the torus

Figure 1. A sphere with its equator as vanishing cycle. When the vanishing cycle is collapsed to a
point, an almost disconnected space arises.

T 2, there are two different cycles, one of which separates the torus. For surfaces with higher genus,
it is possible to have a separating cycle, as well as a non-separating cycle. Having a separating
vanishing cycle will result in a singular fiber that is almost disconnected, but for one (singular)
point connecting the two components.

Figure 2. On the left is a torus with two possible vanishing cycles. Collapsing them gives two different
pinched manifolds, which are exibited on the right.
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3. The exact sequence of a Lefschetz fibration

The fibers of Lefschetz fibrations are not necessarily connected, but it would be nice to focus
on cases where they are. In order to do that, we prove the following.

Theorem 4.4. Let π : X → Σ be a Lefschetz fibration with fiber F . The maps F ↪→ X → Σ
induce an exact sequence

π1(F )→ π1(X)→ π1(Σ)→ π0(F )→ 0

Remark 4.5. The function π1(Σ) → π0(F ) is defined as a function between sets, but since
π0(F ) is a pointed set, it still makes sense to talk of exactness here.

Proof. This exact sequence is much like the standard exact sequence of a fiber bundle, for
which the above statement holds. Just like in the exact sequence of fiber bundles, we define the last
map, let us call it τ , with the homotopy lifting property. This states that for every path γ : [0, 1]→ Σ
and point x in the fiber of γ(0), there is a unique (up to homotopy) path γ̃ : [0, 1] → X such that
π ◦ γ̃(t) = γ(t) for every t ∈ [0, 1] and γ̃(0) = x. Elements γ of π1(σ) are represented by loops. We
apply the above procedure to γ, taking x in the base component of the fiber. Now define τ(γ) to
be the component of the endpoint γ̃(1).
The problem with translating this to Lefschetz fibrations, is that it only works in the regular part.
In the singular points, X is not a fiber bundle. If the path avoids singular values, we are done. If
it does not, we need to use a local homotopy to make the path go around the singular value. The
only risk here is that a path in the base space jumps to another connected component of the fiber
when passing through a singular point. However, in the previous section we saw what the singular
fibers look like: relative to a regular fiber, an embedded copy of S1 is collapsed. Since S1 itself is
connected, it can only be embedded into one connected components. Collapsing this vanishing cycle
will never connect two components that were previously disconnected. We conclude that there is
no risk of the lifted path ending up in a different connected component.
The endpoint of the path does not depend on the homotopy or the lift, so τ is well-defined.
The exactness at π1(Σ) is easy to see: a loop in Σ lifts to a loop in X precisely when its lift begins
and ends in the same component of the fiber. For exactness at π1(X), notice that a path in Σ is a
constant path precisely when its lift is a path in one fiber. �

Corollary 4.6. Without loss of generality, we can assume the fibers of a Lefschetz fibration
to be connected.

Proof. If the fibers of a Lefschetz Fibration π : X → Σ are not connected, then π1(X) maps

to a finite-index subgroup of π1(Σ), which corresponds to a finite covering Σ̃ of Σ, so we can lift π

to this finite covering space and view the new Lefschetz fibration π̃ : X → Σ̃, which has connected
fibers F̃ .

X Σ

Σ̃

π

π̃

This new Lefschetz fibration looks locally the same, but it sends different connected components of
the fiber to different points in Σ̃. To see this, we can take the exact sequence of this new Lefschetz
fibration:

π1(F̃ )→ π1(X)→ π1(Σ̃)→ π0(F̃ )→ 0

Since it is exact at π1(Σ̃) and the map π1(X) → π1(Σ̃) is surjective by the construction of the

covering space, the fact that π0(F̃ ) is a one-point space follows directly. �



CHAPTER 5

The main theorem in 4 dimensions

1. Main theorem: Lefschetz fibrations and symplectic structures

We are now ready to state and prove the following important theorem.

Theorem 5.1 (Gompf [4]). Let X be a closed 4-manifold and let π : X → Σ be a Lefschetz
fibration. Let [F ] denote the homology class of the fiber. Now X admits a symplectic structure with
symplectic fibers if and only if [F ] 6= 0 in H2(X;R).

Proof. One of the implications is easy to prove: if X has a symplectic structure ω that restricts
to a symplectic structure on the fibers, we would have a symplectic 2-form on F , which is a volume
form. This means we have 〈[ω], [F ]〉 =

∫
F ω 6= 0, so [F ] can not be equal to the zero class.

The other direction is more complicated. It requires a quite explicit construction of a symplectic
structure on X.
By Corollary 4.6, we can assume that the fibers are connected. In light of the classification of
2-manifolds, this means the fibers are surfaces of a certain genus. We now perturb π such that any
fiber contains at most one critical point.
Before we proceed, we need the following lemma, which allows us to define a useful closed form.
This form will help us to glue closed forms together later, without losing their closedness.

Lemma 5.2. For X as above, there is a closed 2-form ζ on X such that for any closed surface
F0 contained in a single fiber, we have

∫
F0
ζ > 0. Of course, we assume F0 to have the orientation

induced by the fiber it is contained in.

Proof. The important thing to notice here, is that there are not many closed surfaces in the
fibers. If the vanishing cycle of a critical point separates the fiber (meaning its complement is not
connected), the singular fiber can we written as the union of two closed surfaces, F = F0 ∪ F1, and
these are the only nonempty closed surfaces, apart from F itself. If the vanishing cycle does not
separate the fiber, the only closed surface in F is F itself. It is important to note that there is only
one vanishing cycle per critical fiber, since we assumed π to be injective on the set of critical points.
Since we assumed F to be in a nonzero cohomology class, we can find an element a ∈ H2(X;R) such
that 〈a, [F ]〉 > 0. Looking at a specific singular fiber F , assume it can be written as F = F0 ∪ F1,
the union of two closed surfaces. If this is not the case, we are already done.
We know s := 〈a, [F ]〉 > 0. Because of the local model of the singular point, described in Section
2 of the previous chapter, we know the two surfaces F0 and F1 intersect transversely in one point,
so we have 〈a, [F ]〉 = 〈a, [F0]〉+ 〈a, [F1]〉. A problem will arise if one of these terms is negative. We
can assume it is the first one.
If r := 〈a, [F0]〉 ≤ 0, we take the cohomology class a′ = a + (λs − r)PD[F1], with PD the
Poincaré dual and λ ∈ (0, 1). This class evaluates positively on any surface in F . Note that
for any surface S, 〈PD[F1], S〉 is given by the intersection number of S and F1, and the in-
tersection number [F0] · [F1] is equal to one. Furthermore, note that [F ]2 = 0, since the fiber
F can be moved around freely in a fibration without creating a self-intersection. This gives
0 = [F ]2 = [F0 + F1]2 = [F0]2 + [F1]2 + 2[F0] · [F1] = [F0]2 + [F1]2 + 2.
Although F0 and F1 might be very different, [F0]2 and [F1]2 have to be equal, since any nonzero

15
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intersection must come from a neighborhood of the singular point, in which F0 and F1 look sym-
metric. We can now conclude that 〈PD[F1], [F1]〉 = −1. Keeping this in mind, evaluating a′ on the
surfaces gives

〈a′, [F0]〉 = 〈a, [F0]〉+ (λs− r)〈PD[F1], F0〉 = r + λs− r = λs > 0

〈a′, [F1]〉 = 〈a, [F1]〉+ (λs− r)〈PD[F1], [F1]〉 = s− r − (λs− r) = (1− λ)s > 0

〈a′, [F ]〉 = 〈a, [F ]〉+(λs−r)〈PD[F1], [F ]〉 = 〈a, [F ]〉+(λs−r)(〈PD[F1], [F0]〉+[F1]2 = s+(λs−r)(1−1) = s > 0

This modification a 7→ a′ only alters our cohomology class on the specific fibers, not on any other
fiber. Since there are only finitely many singular fibers, we only have to modify the cohomology
class a finite number of times. After these modification, represent the class by a 2-form ζ. This
provides the solution. �

Note that we not only proved the statement, but kept some freedom of choice in any separated
singular fiber; the procedure works for any λ strictly between 0 and 1. This means that, for a
separated fiber, we can choose how the integral is divided over the two surfaces.
With this in mind, we will start constructing a symplectic structure on X. We do this in four steps:

(1) we define a symplectic form on every fiber,
(2) we extend it to regular neighborhoods of the fibers,
(3) we glue the forms together,
(4) we take a sum with a symplectic form on Σ, to get nondegeneracy in every direction, hence

on the entire X.

Step (1): Let Fy denote the fiber of y ∈ Σ. Since X is a Lefschetz fibration, we can choose
open balls Vj in X around the critical points of X, such that in these balls, π is given as
π(z1, z2) = z2

1 + z2
2 . Shrink these balls to be disjoint. Now take the standard symplectic form

ωVj = dx1 ∧ dy1 + dx2 ∧ dy2. This is symplectic on Vj ∩ Fy, since Fy is a holomorphic curve. To
extend it to all of Fy, pick an open ball Uj with closure in Vj , which still contains the critical value.
Since Fy \ Uj is an oriented surface, there is a symplectic form ωF\Uj on it (Example 2.11), which
possibly does not agree with ωVj . These two forms can be glued together using a partition of unity
subordinate to the cover {Vj ∩Fy, Fy \Uj}. In this way, we get a symplectic form ωy on every fiber
Fy, for y ∈

⋃
j Uj . This form is indeed symplectic, since by the definition of a Lefschetz fibration,

the chart on Uj has an orientation compatible with the one of the fiber (which is enherited from
the orientation of X). For the points y outside Uj , define ωy such that it is symplectic along Fy.
This can be done since all oriented 2-manifolds are symplectic (Example 2.11 again). We now have
a symplectic form on every fiber.
This is where Lemma 5.2 comes in again; we can assume [ωy] = [ζ|Fy ] in H2

dR(Fy). The cohomology
class of a 2-form is completely determined by its integral on all closed surfaces contained in one
fiber. First of all, we can just rescale ωy to obtain the same integral on the fiber Fy as ζ. At the
critical point, we have to be careful to make sure that the integral is separated in the right way, but
remember, we still have some freedom regarding the λ we choose, so we can completely determine
how ζ splits the integral. Just make sure it does it in the same way as ωy.

Step (2): The problem is that these forms are only symplectic along the 2-dimensional fibers,
while we want to have a symplectic form defined on the 4-dimensional X. The next step in accom-
plishing this is extending the forms to regular neighborhoods of the fibers. For regular y ∈ Σ, define
a neighborhood Wy ⊂ Σ containing no critical values. Define W̃y = π−1(Wy) and let ry : W̃y → Fy
be a retraction. Now define ηy as the pullback, ηy = r∗yωy = ωy ◦ ry.
For y ∈ Σ a critical value, we proceed a bit differently. Define Wy to contain only y as critical

value and again let W̃y = π−1(Wy). Assume W̃y contains Uj , the closure of the ball chosen around

y before. This can be obtained by shrinking Uj . This time, define a retraction ry : W̃y → Fy ∪ Uj
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and let ηy = r∗y(ωy or ωUj ).

Figure 1. The retraction r for y a singular value.

Step (3): Glue the forms together. Note that the regular neighborhoods of Fy define an open
cover of a compact manifold, so we can take a finite subcover {Wy|y ∈ I} of Σ, for I some finite
subset of Σ. Let {ρy|y ∈ I} be a partition of unity subordinate to this cover. We have [ηy] = [ζ|W̃y

]

in H2
dR(Fy), and H2

dR(W̃y) = H2
dR(Fy) (because of the retraction), so [ηy − ζ|W̃y

] = 0 ∈ H2
dR(W̃y).

This means there exists a 1-form θy on W̃y such that dθy = ηy−ζ|W̃y
. Take η = ζ+d(

∑
y∈I(ρy◦π)θy)

on X.
This is a closed form, and it is symplectic along the fibers of π. Closedness is obvious, since
dη = dζ = 0. For symplecticness along the fibers, note

η|Fx = ζ|Fx +
∑
y∈I

ρy(x)dηy|Fx = ζ|Fx +
∑
y∈I

ρy(x)(ηy|Fx − ζ|Fx) =
∑
y∈I

ρy(x)ηy|Fx

The last expression is a convex sum of volume forms, hence it is symplectic.

Step (4): It is now time to construct the final form. On the surface Σ, define a symplectic form
ωΣ that is compatible with the complex structure on

⋃
j π(Uj). At the charts π(Uj) (or better: at

their neighborhoods π(Vj), as used above), we have such a form by Theorem 2.17, and it can be
extended to the entire manifold by defining a volume form compatible to the orientation on the
remaining part Σ \

⋃
j π(Uj) and gluing using a subordinate partition of unity.

Now, for t > 0 a real number, define
ωt = tη + π∗ωΣ

For sufficiently small t, ωt is the symplectic form we are looking for.
There are three things we have to check: closedness, nondegeneracy along the fibers and overall
nondegeneracy. The first two are pretty straightforward. The form ωt is closed since η and ωΣ are
both closed. Restricted to a fiber, ωt is equal to tη since π is constant on a fiber, hence π∗ = 0.
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The form η was already proven to be symplectic along the fibers, and so is any nonzero multiple of it.

For overall nondegeneracy, we view points within and outside Uj separately. First, pick x ∈ Fy
a regular point outside Uj and consider its tangent space TxX. We take a look at the orthogonal
complement of TxFy. This complement is the same with respect to η as it is with respect to ωt:

let v ∈ TxFy and u ∈ (TxFy)
⊥η , the orthogonal complement with respect to η. By definition, we

have η(u, v) = 0, so ωt(v, u) = tη(v, u) + ωΣ(π∗(v), π∗(u)) = 0 + ωΣ(0, π∗(u)) = 0, so (TxFy)
⊥η ⊂

(TxFy)
⊥ωt . This is one inclusion. Because they are vector spaces of the same dimension, the other

one follows. The subspaces TxFy and (TxFy)
⊥ are complementary: because η is nondegenerate on

TxFy, they can not have an intersection, but their dimensions add up to the total space.

So, since π∗ωΣ is nondegenerate on (TxFy)
⊥ωt , it is nondegenerate on (TxFy)

⊥η . Now we can pick

t small enough to have the restriction of ωt nondegenerate on (TxFy)
⊥, since nondegeneracy is an

open property (Remark 2.13). We also know that η is symplectic on TxFy, and for any vectors

v ∈ TxFy and w ∈ (TxFy)
⊥, we have η(v, w) = 0. Moreover, π∗ωΣ will give zero if one of its entries

is in TxFy, regardless of the other one.

For certain u ∈ TxX, write u = v + w, with v ∈ TxFy and w ∈ (TxFy)
⊥. Using the symplecticness

of η and ωt|(TxFy)⊥ , we obtain v′ ∈ TxFy and w′ ∈ (TxFy)
⊥ such that η(v, v′) > 0 and ωt(w,w

′) > 0.

Now take u′ = v′ + w′, we have:

ωt(u, u
′) = tη(v + w, v′ + w′) + π∗ωΣ(v + w, v′ + w′)

= tη(v, v′) + tη(v, w′) + tη(w, v′) + tη(w,w′) +π∗ωΣ(v, v′) +π∗ωΣ(v, w′) +π∗ωΣ(w, v′) +π∗ωΣ(w,w′)

= tη(v, v′) + tη(w,w′) + π∗ωΣ(w,w′) = tη(v, v′) + ωt|(TxFy)⊥(w,w′) > 0

We conclude that ωt is nondegenerate at x. Since ωt varies smoothly on the manifold and X \
⋃
j Uj

is compact, we can choose an overall t > 0 such that ωt is symplectic on the entire X \
⋃
j Uj .

We now only need to worry about the open balls Uj . In here, η = ωUj is given by the standard
symplectic form x1∧y1 +x2∧y2, since the retraction r∗ is equal to the identity here. For a nonzero
tangent vector v, we have

ωt(v, iv) = tη(v, iv) + ωΣ(π∗v, π∗iv)

We view the terms separately. First of all, within Uj , η is given explicitly by η = dx1∧dy1+dx2∧dy2.
It is now a pretty standard result that applying this to (v, iv) gives ||v||2, but since we have not
introduced a lot of compatibility results here, it is better to do the explicit calculation. Take
v = λ1

∂
∂x1

+ λ2
∂
∂y1

+ λ3
∂
∂x2

+ λ4
∂
∂y2

. We get:

η(v, iv) = (dx1∧dy1+dx2∧dy2)

(
λ1

∂

∂x1
+ λ2

∂

∂y1
+ λ3

∂

∂x2
+ λ4

∂

∂y2
, λ2

∂

∂x1
− λ1

∂

∂y1
+ λ4

∂

∂x2
− λ3

∂

∂y2

)

= λ2
1 − (−λ2)2 + λ2

3 − (−λ2
4) > 0

Second, since π is given by (z1, z2) 7→ z2
1 + z2

2 and is hence holomorphic, π∗ is a complex linear map,
so π∗iv = iπ∗v for any v. Using this, we get

ωt(v, iv) = t||v||2 + ωΣ(π∗v, iπ∗v) > 0

The positivity of the first term is obvious and the second term is nonnegative because of the
compatibility of ωΣ with the complex structure. We conclude that ωt is everywhere nondegenerate,
hence the symplectic form we are looking for. �
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2. Lefschetz pencils

In this section, a slightly different structure is introduced: the Lefschetz pencil. Like a Lefschetz
fibration, a Lefschetz pencil is like a fiber bundle, but with a bit more freedom. Intuitively speaking,
Lefschetz pencils are fibrations over the 2-sphere that are allowed to have singular points, and its
fibers are allowed to intersect in a finite number of points. Here is the definition.

Definition 5.3. Let X be a closed, connected, oriented, smooth 4-manifold.
A Lefschetz pencil on X consists of a nonempty finite subset B and a smooth map π : X \B →
CP1, such that the following properties hold.

• Around every point b ∈ B we can define an orientation preserving coordinate chart such
that π is given by projectivization C2 \ {0} → CP1, (z1, z2) 7→ [z1, z2].
• For each critical point of π, we can find a pair of orientation preserving complex coordinate

charts, one onX, centered at the critical point, and one on CP1, such that π(z1, z2) = z2
1+z2

2

on these charts.

Lefschetz pencils can be viewed as loosened versions of Lefschetz fibrations, but they are not
technically a generalization, since B is not allowed to be empty, and only the surface CP1 can be
the base space. There is, however, a way to obtain a Lefschetz fibration (over CP1) from a Lefschetz
pencil: by blowing up. The points in B are in the closure of any fiber and can be viewed as the
intersections of the fibers. The fibers are usually defined by Fy = π−1(y) = π−1(y)∪B. Through a
point b ∈ B, there are fibers in any (complex) direction. These directions are separated by blowing
up b, and this creates a copy of CP1, which is a section of π since it intersects every fiber exactly once.
By exploiding this procedure, we can get symplectic structures on Lefschetz pencils. A Lefschetz
pencil can be blown up to get a Lefschetz fibration, and on this there is a symplectic structure
because of Theorem 5.1. This Lefschetz fibration can then be blown down again, preserving the
symplectic structure, hence inducing a structure on the pencil. For the details, see [4]. There is

Figure 2. A lower dimensional model of a blow up of a Lefschetz Pencil. The pencil has two singular
fibers. When the base locus B is blown up, it becomes a section.

also an implication in the other direction. In this thesis, we will state this theorem, but not prove
it.

Theorem 5.4. [1] Any symplectic 4-manifold admits a Lefschetz pencil.

These theorems together imply that a 4-manifold X admits a symplectic structure precisely if
it admits a Lefschetz pencil. This is a useful tool in classifying symplectic 4-manifolds.



CHAPTER 6

Generalization

1. Hyperpencils

Lefschetz fibrations and Lefschetz pencils are defined as a 4-dimensional concept, but a
higher-dimensional equivalent can be defined. In the remaining part of the thesis, we will take
a look at hyperpencils, a generalization of Lefschetz pencils to arbitrary even dimensions. Like
Lefschetz pencils, hyperpencils are like fibrations with 2-dimensional fibers, but some critical points
and intersections of the fibers are allowed, although their behavior is restricted. Using this, we
can use the well-understood case of 2-manifolds to study higher dimensional manifolds and their
symplectic structures.

Before we can proceed to the definition of hyperpencils, we first need a technical condition
for the restriction of the critical points.

Definition 6.1. Let f : X → Y be a smooth map between manifolds and let K ⊂ X be the set
of critical points. Let P =

⋃
x∈X\K ker f∗|x ⊂ TX. Let Px = P ∩TxX. A point x ∈ X is wrapped

if span Px has (real) codimension at most 2 in ker f∗|x.

Note that regular points are always wrapped, so this definition is only relevant for critical
points. Intuitively speaking, a wrapped critical point is “less critical” than an unwrapped one.
The definition of wrapped critical points is quite general. The critical points of Lefschetz fibrations
are wrapped, but in four dimensions, there is way more freedom. In fact, any critical point of a
map f from a 4-manifold to a 2-manifold is wrapped. This is because with these dimensions, the
dimension of ker f∗ is 2 in any regular point, while in singular points, the dimension of the kernel
can not exceed 4. This means that the codimension of span Px is at most 2.
In higher dimensions, this definition actually is distinctive. An example of a critical point that is
not wrapped is the point (0, 0, 0) of the map f(z1, z2, z3) = (z2

1 , z
2
2). In this point, Px has (real)

codimension 4.

We are now ready to give the definition of a hyperpencil.

Definition 6.2. A hyperpencil on a smooth, closed, oriented 2n-manifold X consists of a finite
subset B ⊂ X (called the base locus) and a map π : X → CPn−1 with the following properties.

• Around every point b ∈ B, we can find an orientation preserving complex chart on which
π becomes projectivization Cn → CPn−1, (z1, ..., zn) 7→ [z1 : ... : zn].
• Each critical point of π is wrapped and has a neighborhood with a continuous (ωstd, f)-

compatible almost-complex structure, in which ωstd denotes the standard Fubini-Study
metric on CPn−1.
• Each fiber Fy = π−1(y) ⊂ X (y ∈ CP1) contains only finitely many critical points of π and

each connected component of F \ {critical points} intersects B.

The remaining part of this thesis will consists of the construction of complex and symplectic
structures on hyperpencils. A more precise formulation of the statement will be given in Theorem
6.3.

20
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2. The main theorem in 2n dimensions

With the generalizations of the definitions, we are ready to state and prove a generalization of
Theorem 5.1 to arbitrary even dimensions. The generalization uses pencils instead of fibrations,
since we want to keep it as general as possible.

Theorem 6.3 (Gompf [6]). Let f : X \ B → CPn−1 be a hyperpencil and let ωstd denote the
standard Fubini-Study symplectic form on CPn−1.

(1) There exists an almost-complex structure J on X that is (ωstd, f)-compatible on X \ B,
and agrees near B with the complex structure given there by the definition of hyperpencils.

(2) For any such J , there is a symplectic structure ω on X that tames J .

Proof. Since the proof of this theorem is quite long and has a complicated structure, we first
spend some lines on a simple outline, before going into the details.
For part (1), the most important step is proving a lemma that allows us to glue together almost-
complex structures on the total space of the hyperpencil. For this lemma, we first need some
linear algebra and then a partition of unity, to glue existing local almost-complex structures into a
global one. This almost-complex structure can be chosen to be compatible with the already defined
symplectic form on CPn−1.
Once we have an almost-complex structure on the hyperpencil, we can proceed with part (2) of
the theorem, that has a proof that resembles the proof of Theorem 5.1. We generalize the proof to
arbitrary dimensions, using a lemma. Once we have done this, we translate this into the situation
at hand and construct a symplectic structure on the hyperpencil, thereby proving the theorem.

Part (1) of the proof

For the first part, we will first introduce a lemma and apply it to the hyperpencil:

Lemma 6.4. Let f : X → Y be a smooth map between manifolds of dimension 2n and 2n − 2
respectively. We view df as a fiberwise map between the two bundles TX → X and f∗TY → X. Let
C ⊂ D ⊂ X be closed subsets. Assume that the regular points of f |X\C form a dense set in X \ C.
Let ωY be a nondegenerate 2-form on f∗TY . Let JC be an (ωY , f)-compatible almost-complex
structure on a neighborhood U of C.
Suppose that each x ∈ X \ U has a neighborhood Wx with an (ωY , f)-compatible almost-complex
structure on its tangent bundle, and that for some neighborhood V of D, for all x ∈ V \ U , the
induced structures on f∗TY agree with each other and with f∗JC wherever the domains overlap.
Let JD denote the resulting almost-complex structure on the fibers of f∗TY .

(1) Assume all critical points of f in X \ D are wrapped. Then JC |C extends to an ωY , f)-
compatible almost-complex structure J on X, with f∗J |D = JD.

(2) Assume D = X and ωX is a 2-form on X. If the local almost-complex structures on X
giben above (including JC) can be chosen to be ωX-tame, then J can be assumed to be
ωX-tame.

Once we have proven this lemma, we will apply it to the hyperpencil, using the same f and
replacing X of the lemma by X \ B. Let C = D ⊂ X \ B be a finite collection of closed balls,
one around each b ∈ B, contained in the local charts given by the definition of hyperpencils. Let
U = V be a collection of slightly bigger open balls, still contained in the charts. The structure JC
of the lemma will of course be the complex structure on C obtained from the charts. For any x, we
should have a complex structure in a neighborhood Wx. For critical points x, these are available by
the definition of hyperpencils. For regular points, they can be constructed easily. The remaining
assumption of the lemma is the denseness of regular points of f , which is immediate, since an open
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ball of singular points would intersect a fiber F in more than a finite number of points, which
contradicts the definition of a hyperpencil. To prove this lemma, we need another (sub)lemma,
about complex linear algebra, to define taking powers of matrices properly. This will later be used
to define a useful retraction of linear maps to almost-complex structures.

Sublemma 6.5. Let A ⊂ GLn(C) denote the open subset of matrices with no real, nonpositive
eigenvalues. For r ∈ R, let ρr : C \ (−∞, 0]→ C denote the branch of the holomorphic map z 7→ zr

with ρr(1) = 1. There is a unique holomorphic map ρ : A× R → GLn(C), which will be denote by
ρ(A, r) = Ar, with the following properties.

(1) Each λ-eigenvector of Z is a ρr(λ)-eigenvector of Ar.
(2) For m ∈ Z, An is the usual exponential of matrices, with A−1 the inverse and A0 the

identity matrix.
(3) If |r| < 1 or s ∈ Z, (Ar)s = Ars.
(4) If T : Cn → Ck is a linear transformation with TA = BT , then TAr = BrT whenever both

sides are defined.
(5) If A is real, than so is Ar for any r.

(6) Let m be a nonzero integer. A
1
m is the unique solution to the equation Xm = A for which

all eigenvalues of X lie in the image of ρm.

Proof. Let A ∈ A and r ∈ R. Consider the Jordan form of A. This splits Cn as the sum
of generalizes eigenspaces Vλ = ker(A − λI)n. On such a space Vλ, we write A = λ(NA + I) for
NA = 1

λA− I. Note that NA is a nilpotent transformation on this eigenspace, since it is a multiple
of the nilpotent A−λI. Define pr to be the power series expansion of the function ρr(1 + z) around
0. Notice that, since NA is nilpotent, pr(NA) is a polynomial of transformations.
Set ρ(A, r) = ρr(λ)pr(NA).
First of all, we want to check that ρ is indeed holomorphic. Consider the polynomial equation
detA− λI = 0. The solutions of this are the eigenvalues of matrices A ∈ A, and because the
equation is polynomial, this set forms an algebraic variety in A×C. The subset S ⊂ A of matrices
that have less than n distinct eigenvalues is also an algebraic variety, because we can express this
is polynomial equation as well. Over A \ S, the set of matrices with n distinct eigenvalues, the
eigenvalues vary holomorphically. Locally, we can now construct holomorphically varying bases of
eigenvectors over A \ S and in these bases, ρ is holomorphic.

We now check the properties listed in the lemma.

(1) For a λ-eigenvector v, NAv = 0, so Ar acts as ρr(λ)I.
(2) Since the functions ρr and pr have the same property, this follows directly.
(3) ρr and pr also have this property.
(4) Take a transformation T such that TA = BT . This implies that T sends every generalized

λ-eigenspace to itself. Now note that we also have TNA = NBT . Together with the fact
that, on every λ-eigenspace, ρr(λ) is a constant, we now have TAr = Tρr(λ)pr(NA) =
ρr(λ)pr(NB)T = BrT .

(5) Take A to be real. Since the generalized eigenvectors span Cn, Rn is spanned by the vectors
v + v, v ∈ Vλ, in which λ ranges over all eigenvalues of A. Since v ∈ Vλ, Ar(v + v) =

Ar(v) +Ar(v) follows immediately, so Ar gives real values on every vector in Rn.
(6) Write X = λ(I+NX) on each of its generalized eigenspaces. Now A = Xm = λm(I+NX)m

on each Vλ. The last term has the form I + N ′ with N ′ a nilpotent matrix. Hence

A
1
m = ρ(Xn, 1

n = X, since the only nth root of λm that is in the image of ρ 1
m

is λ itself.

What remains is uniqueness, which follows directly from the holomorphicity of ρ. Since ρ is unique
on the dense subset of diagonalizable matrices, and holomorphicity implies continuity, ρ extends in
a unique way to all of A. �

Using this, we can prove Lemma 6.4 to obtain suitable almost-complex structures.
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Proof. (of Lemma 6.4) To define a global almost-complex structure on X, first assume that
D = C (the other case will be studied later). Recall that we have an open set Wx around every point
x ∈ X with an almost-complex structure on it. Since all manifolds are paracompact, we can take
a locally finite subcover {Wα} of X. Now define a partition of unity ρα subordinate to the cover
{Wα} and define the global map A =

∑
α ραJα. This is a linear map, but a convex combination

of (almost-)complex structures is not in general an (almost-)complex structure again. To obtain
a continuously varying almost-complex structure, we define a retraction, using the power-operator
described in the previous lemma.
Let V be a real, finite-dimensional vector space and let B be the set of linear operators with no
real eigenvalues. Let J be the set of complex structures on V . Now the function r : B → J ,

defined B 7→ B(−B2)−
1
2 is a real-analytic retraction. To see that this is well-defined, notice that

−B2 indeed has no real, nonpositive eigenvalues, for if −λ2 would be an eigenvalue of −B2, we
would have 0 = det (−B2 − (−λ2)I) = det (B + λI) det (B − λI), implying that ±λ would be an
eigenvalue of B. So, we can indeed take powers of −B2. To see that r is a retraction, notice that

for arbitrary B ∈ B, we have r(B)2 = B(−B2)−
1
2 (−B2)−

1
2B = B(−B2)−1B = −I, using the fact

that powers of commuting operators commute, by point 4 of the previous lemma. Furthermore, if
B is a complex structure, r(B) = B follows immediately, so we indeed have a retraction.
We want to take r

∑
α ραJα = r(A) as the required almost-complex structure. For that, we first

need to make sure A has no real eigenvalues.

Sublemma 6.6. A has no real eigenvalues on any tangent space.

Proof. First note that the map B =
∑

α ραf∗Jα has no real eigenvalues on any tangent space,
since each term f∗Jα is ωY -tame. This would induce a contradiction, since ω is anti-symmetric.
Since dfA = Bdf , each λ-eigenvector of A is mapped to either an eigenvector of B or to 0, and since
the former do not exist for real λ, each real eigenvector of A is in the kernel of df .
Now we must make sure there are no real eigenvectors in ker df . Recall the definition of the set
P ⊂ ker df ⊂ TX of the wrapped points definition, which is the limit (taken over all regular values
x) of the kernel of dfx. For x ∈ X, a tangent vector v ∈ TxX can be written as the limit of a
sequence {vi} with each vi in the kernel of dfxi for some sequence {xi} of regular points converging
to x.
The sequence of 2-planes ker dfxi might not converge, but we can take a subsequence that does. Its
limit will be a 2-plane Π ⊂ Px, containing v. For large i, the plane ker dfxi will be a Jα-complex
subspace for any α, since every Jα is (ωY , f)-compatible.
Of course, now we can find a v′ ∈ TxX/Π and repeat this procedure. In the end, we find a
decomposition spanRPx =

⊕
Πj , in which each plane Πj is a Jα-complex subspace of TxX for each

Jα defined at x. The quotient Qx = TxX/spanR
⊕

Πj now inherits an almost-complex structure J̃α
from each Jα. The (complex) dimension of Qx is at most 1 by assumption, since all critical points
are wrapped. On a (complex) 1-dimensional vector space, we can always find a form ω that tames
the almost-complex structure, so it can not have real eigenvectors here as well. The only thing
left to exclude are real eigenvectors in spanR

⊕
Πj . However, a direct sum of taming forms on the

subspaces Px tames each Jα, so here, too, are no real eigenvectors. �

Since A has no real eigenvalues in any point, the retraction r is well-defined and there is an
almost-complex structure satisfying the requirements.
To finish the proof of part 1, we must consider the general case, in which D and C do not necessarily
coincide. By intersecting each Wα with the neighborhood V of D, adding a new Wα = X \ D
(on which we have Jα = r(A)|X\D) to the set of opens and extending JD to r(B), we reduce this
general case to the case where D = X.
To prove this case, consider a vector v ∈ TxX. This lies in a 2-plane Π = lim kerTxiX and Π
is a Jα-complex line for any Jα (including JC) defined at TxX. Each Jα induces an almost-
complex structure on TxX, namely the limit of the structures induced on the sequence of spaces
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TxiX/ ker dfxi . Since these structures are also determined by JD, using the isomorphism between
im dfxi and TxiX/ ker dfxi , they do not depend on α.
Let Z ⊂ X denote the subset of X for which dimC spanRPx is at least 2. (Note that for n at least
3, Z is empty, as consequence of all critical points being wrapped, so this is an extension only
needed in a very particular case.) For x ∈ Z, TxX contains at least two linearly independent planes
Π1 and Π2, and the Jα-complex map TxX → TxX/Π1 ⊕ TxX/Π2 determines an almost-complex
structure on TxX, since it is injective. Thus, over C ′ = C ∪ Z, the structures Jα match and fit
together into a continuous, (ωY , f)-compatible structure JC′ , that depends only on JC and JD.
We can now construct a Riemannian metric.

P is an oriented subbundle of the tangent space T (X \ C ′). We can now define J on X \ C ′ as
a counterclockwise rotation over an angle of π

2 . For each x ∈ X \ C ′, dfx factors through TxX/Px,
on which J agrees with each Jα, so J |X\C′ is (ωY , f)-compatible.
We have defined structures on X and on X \C ′. Now all we have to do is prove they can be glued
together along the boundary of C ′. To do this, consider a point x ∈ C ′ that is a limit point of
X \ C ′. On this, we have the almost-complex structure Jx. If it is not continuously approached
by J |X\C′ , there is a sequence {xi} in X \ C ′ such that Jxi does not approach Jx. By passing to
a subsequence, we can assume that the 2-planes Pxi converge to some Π, since the 2-subplanes of
a tangent space form a compact Grassmann-manifold. We now otain Jxi → Jx: take a Jα that
is defined in a neighborhood of x. This coincides (by definition of JC′) with JC′ . Because of the
continuity of g, Jxi converges to this. This contradiction implies that the structures fit together at
the boundary, so we obtained an overall structure.

For part 2 of the lemma, consider a 2-form ωX on X that tames all Jα and JC . Recall the construc-
tion of the 2-bundle P , which is a subbundle of the tangent space TX. On X \ C ′, define Q as its
symplectic orthogonal complement with respect to ωX , so Q = {v ∈ T (X \C ′)|ωX(v, p) = 0∀p ∈ P}.
(We have not established the symplecticness of ωX , but we can use this definition anyway.) Q⊕ P
is a ωX -orthogonal sum splitting of the tangent space, since ωX is nondegenerate on P .
Note that any subbundle of TX that is complementary to P can be written as the graph of a
continuous section ψ of Hom(Q,P ). For such a ψ, we define an almost-complex structure Jψ on
X \C ′, using the structure J as defined above. On the subbundle P , take Jψ to be just J . There is
a canonical vector space isomorphism between the graph of ψ and Q, since this graph is a section
of the bundle Hom(Q,P ). We can use this isomorphism to obtain an almost-complex structure on
graph ψ as well, so we now have an almost-complex structure Jψ on T (X \ C ′).
Any Jψ can be expressed in terms of J0 (defined in the same way, with ψ = 0 the 0-section). The
structure J0 agrees with Jψ on TxX/Qx, since the graph at x, graph(ψx), equals Qx if ψ = 0. Now
take a point (q, ψ(q)) ∈ graph(ψ) ⊂ Q⊕P . We have Jψ(q, ψ(q)) = (J0(q), ψ(J0(q))). Now take any
(q, p) ∈ Q⊕ P . We have

Jψ(q, p) = Jψ(q, ψ(q)) + Jψ(p− ψ(q)) = (J0(q), ψ(J0(q))− Jψ(q) + J(p))

Since J and Jψ coincide on P . We now claim that Jψ tames ωX for certain ψ. First of all, using
the equation above, we have

ωX((q, p), Jψ(q, p))ωX(q, J0(q))+ωX(p, J0(q))+ωX(q, (ψJ0−Jψ)(q)+J(p))+ωX(p, (ψJ0−Jψ)(q)+J(p))

(2) = ωX(q, J0(q)) + ωX(p, J(p)) + ωX(p, (ψJ0 − Jψ)q)

For the last equality, we use the fact that P and Q are J-complex and Jψ-complex subspaces, and
ωX -orthogonal to each other, hence terms of the form ωX(p, J(q)) vanish.
We view the three terms on the right hand side separately. All three of them are positive if
(p, q) 6= (0, 0). We prove them in different order, since the positivity of the first term is the most
difficult and its proof relies on the other two.
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• The first term is immediate, since J is ωX -tame on Px for every x ∈ X \C ′, since all fibers
are correctly oriented J-complex lines.
• For the third term, we can choose ψ such that its graph is a J-complex subbundle of
T (X \ C). This is easy, since any complex subbundle is the graph of some ψ. Now
Jψ = J |X\C′ . Since J agrees with some Jα at every point, it is ωX -tame.
• The positivity of the first term follows from the fact that J0|Qx is ωX -tame for any x ∈
X \C ′. To prove this tameness, define symmetric 2-form g by g(v, w) = 1

2(ωX(v, J0(w)) +
ωX(w, j0(v))). Since g(q, q) = ω(q, J0(q)), we can rephrase the statement and prove that
g is positive definite. For this, define a J0-invariant inner product on Qx. Let Q− be the
span of vectors v ∈ Q that satisfy g(v, v) ≤ 0. We prove that this is the zero space. Since
both g and the defined inner product are J0-invariant, Q− is a J0-complex subspace of Qx:
if v ∈ Q−, which means g(v, v) ≤ 0, so g(J(v), J(v)) ≤ 0 as well, so J(v) ∈ Q−. If we
assume ψ to be a linear transformation such that graph ψ is a Jα-complex subbundle of
TxX, as we did above, then Jψ|graph ψ = Jα|graph ψ is ωX -tame. So Equation 2 is positive
for any pair (q, p) = (q, ψ(q)). But this condition cancels two of the terms, so we are left
with the equation ωX(q, J0(q)) +ωX(p, ψ(J0(q))). The first term is precisely g(q, q), which
is nonpositive on Q−. This means that the other term can not vanish here. Hence p = ψ(q)
can not vanish on Q− unless q does, so ψ has a trivial kernel. Since this means we have an
injection of Qx into Px, we can conclude that dimCQ− ≤ dimC Px = 1, so we only have to
rule out the case dimCQ− = 1. If this is the case, and Qx also has dimension 1, then J0|Qx
is immediately ωX -tame, so we are done. Assume that Qx has dimension higher than 1.
Consider the function q 7→ g(q, q), which takes both positive and nonpositive values on
Qx \ {0}, so there is a nonzero vector q in Qx on which the function vanishes because of
the connectedness of Qx \ {0}. Now the function vanishes on the entire J0-complex line
Q0 containing q, so it can not be nondegenerate on Q0 ⊕ Px, which is the direct sum of
ωX -orthogonal subspaces. However, this direct sum is a Jα-complex subspace, since both
its terms are Jα-complex subspaces. This contradicts the assumption that Jα is ωX -tame,
so we have a contradiction.

On X \C ′, we now have the required almost-complex structure. All that is left is extending it over
all of X. Pick a point x ∈ C ′. At this point, J agrees with some Jα, which is ωX -tame on the closed
set C ′. Since taming is an open condition, J is ωX -tame on some open neighborhood U ′ of C ′.
We use this neighborhood to glue the structures together. Define a smooth function ρ : X → [0, 1]
that is 1 at C ′ and 0 outside U ′. Now Jρψ is an ωX -tame almost-complex structure on X \C ′ that
extends as J over C ′. We have the almost-complex structure we wanted. �

We can now immediately apply Lemma 6.4. By the first part of the lemma, which we can use
since all critical points are wrapped by definition, we obtain an almost-complex structure J on
X\B. Since B is a finite set, J is defined on a dense set of X, and hence extends immediately over X.

Part (2) of the proof

Part 2 will follow from yet another lemma, that resembles Theorem 5.1. This lemma is used to
define the symplectic structure.

Lemma 6.7. Let f : X → Y be a map between manifolds. Let C ⊂ X be closed, and such that
X \ intC is compact. Let WC be a neighborhood of C. Let ωY be a symplectic form on Y and let J
be an (ωY , f)-tame almost-complex structure on X.
Fix a cohomology class c ∈ H2

dR(X). Suppose that for each y ∈ Y , the inverse image f−1(y) has
a neighborhood Wy ⊂ X that contains WC , such that the restriction H1

dR(Wy) → H1
dR(WC) is

surjective. Let ηy be a closed 2-form on Wy such that [ηy] = c|Wy ∈ H2
dR(Wy) and such that ηy

tames J on each of the complex subspaces ker dfx for x ∈Wy. Suppose that all these forms ηy agree
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on WC , and that the resulting form ηC on WC tames J on TX|C .
Now there is a closed 2-form η on X that agrees with ηC in a neighborhood of C, with [η] = c ∈
H2
dR(X), and such that for t > 0 small enough, the form ωt = tη + f∗ωY on X tames J .

Proof. First, we fix a representative ζ of c, so [ζ] = c. For each y ∈ Y , [ηy] = c|Wy , so on Wy,
we can write ηy = ζ + dαy, in which αy is a 1-form. Fix a point y0 ∈ Y and set αC = αy0 |WC

. For
each y, we have d(αC − αy) = (ηy0 − ζ)− (ηy0 − ζ) = 0 on WC , so [αC − αy] ∈ H1

dR(WC). We can
now use the assumed surjectiveness of the restriction to find an extension of this form to Wy.
Choose a function g : Wy → R with dg = αC −αy near C. Define α′y = αy + dg, to obtain α′y = αC
near C, for every y ∈ Y .
Cover Y by sets Ui, such that each f−1(Ui) is contained in some Wy, and let {ρi} be a partition of
unity subordinate to this cover.
Let η = ζ + d

∑
i(ρi ◦ f)αyi , in which αyi denotes the 1-forms corresponding to a point yi ∈ Ui. It

is immediate that η is a closed form in the same cohomology class as ζ, which is c, since they differ
by a differential.
To finish the proof, we have to show that ωt indeed tames J for small t > 0. We perform the
differentiation to obtain

η = ζ + d
∑
i

(ρi ◦ f)αyi = ζ +
∑
i

(ρ ◦ f)dαyi +
∑
i

(dρi ◦ df) ∧ αyi

and look what this does on the subspaces ker dfx. The last term obviously vanishes when applied
to a pair of vectors in the kernel, so on each individual ker dfx, we have η = ζ + d

∑
i(ρi ◦ f)ηyi =∑

i(ρi ◦ f)ηyi . Since we assumed all the forms ηy to tame J , this is a convex combination of taming
forms, so J is η-tame when J is restricted to a space ker dfx.

ωt(v, Jv) = tη(v, Jv) + f∗ωY (v, Jv)

We assumed J to be (ωY , f)-tame, so the last term is positive as long as v is not in the kernel of df
and zero otherwise. On ker df , η(v, Jv) is positive, and since v 7→ η(v, Jv) is a continuous function,
it takes positive values on a neighborhood U of ker df .
We take a look at the unit ball Σ of the tangent space. For this, we can use any convenient
metric. If we just consider C, we have η(v, Jv) = ηC(v, Jv) > 0, so ωt(v, Jv) is just the sum of
positive terms. Outside C, look at the compact set Σ|X\int C\U . Since this is a compact set and
v 7→ η(v, Jv) is continuous, it is bounded on this set. Since this set has empty intersection with
ker df , f∗ωY (v, Jv) is strictly positive, and hence bounded by a positive constant from below, since
Σ|X\int C\U is constant. We conclude that for small enough t, ωt(v, Jv) only takes positive values
on the unit sphere, hence on the entire tangent space. The form ωt tames J on X. �

This lemma can be applied to the hyperpencil in the following way. Let C and U be as above,
collections of closed balls. Let WC be a neighborhood of C with closure contained in U . Let
y ∈ CPn−1 and let Fy denote its fiber. Let K ⊂ Fy denote the set of critical points lying in the
fiber. Recall that this is a finite set. Let ∆ ⊂ X \ U be a collection of disjoint open balls, one
around each point of K. On ∆ ∪ U , we define a closed 2-form σ in the following way. Since K is a
finite set, we can choose σ to tame J at K. Since taming is an open condition, we can assume that
σ tames J on all of ∆, which can be achieved by shrinking ∆. On U , we have complex coordinates,
so we just take σ to be the standard symplectic form on Cn. We scale this such that the integral of
σ is always smaller than 1

2 on each complex line through 0 intersected with U . The structure J is
now σ-tame on ∆ ∪ U .
J is also (ωstd, f)-tame on X \B, so Fy \K is a smooth J-holomorphic curve in X \K with complex
orientation agreeing with its pre-image orientation, and each components intersects B nontrivially.
We now make a small detour to investigate the possibility of the fiber Fy being knotted at K. We
can assume ∂∆ and Fy are transverse, so they intersect in a finite collection of circles. Every such
circle can be connected to a point b ∈ B by a path in Fy \K, since each circle lies in a connected
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component, and any component intersects B. Let ∆′ be a collection of smaller balls, contained in
the interior of ∆, that still contains K, disjoint from these paths. Make sure ∆′ and Fy are again
transverse. Each component Fi of the compact surface Fy \∆′ either is contained in ∆ or intersects
B. Let Wy be the union of int ∆′ ∪WC with a tubular neighborhood of Fy \ int ∆′ ⊂ X \ int ∆′.

Extend each Fi to a closed, oriented surface F̂i by attaching a surface in ∆′. Now the classes [F̂i]
form a basis of H2(Wy,Z).
It is now time to start constructing our required form, after which we will apply Theorem 6.7. First
notice that σ|Fi ∩ (∆ supWC) is a positive area form, since Fy is J-holomorphic and J is σ-tame on
∆∪U . We rescale σ on ∆ such that

∫
F̂i∩∆ σ <

1
2 for each i. Extend σ over each Fi intersecting B as

a positive area form, such that
∫
F̂iσ

equals the number of points in which B and Fi intersect. Define

π : Wy →Wy by smoothly gluing the identity on Wy ∩ (∆∪U) to the normal bundle projection on
Wy \ ∆. Now =π ⊂ Fy ∩ ∆ ∩ U and π restricted to Fy ∪ ∆0 ∪WC is the identity (since this is a
subset of Wy ∩ (∆ ∪ U)).
ηy = π∗σ is a well-defined closed 2-form on Wy. On Wy ∩ (int ∆ ∪WC), ηy equals σ, so it tames
J . More specific, it tames each J |ker dfx , as is required in order to apply Theorem 6.4. The form
ηy|Fy\K tames J on each TxFy = ker dfx. Using the openness of taming again, we can shrink Wy

and assume ηy tames J |ker dfx for all x ∈Wy.
For the application of Theorem 6.4, we will take the cohomology class c to be cf , the Poincaré dual

of the fiber, so that we have 〈ηy, F̂i〉 = 〈σ, F̂i〉 = #Fi ∩ B = 〈c, F̂i〉 for each F̂i intersecting B. For

F̂i not intersecting B, we have 〈c, F̂i〉 = 0 = 〈ηy, F̂i〉, since ηy = σ is exact on F̂i. Since c and ηy
agree on a basis of H2(Wy;Z), we can conclude that [ηy] = c|Wy ∈ H2

dR(Wy). We can now apply

Theorem 6.7 to X \B, using ωy = ωstd on Y = CPn−1. Note that H1
dR(WC) = 0, since WC consists

of punctured 2n-balls (they are punctured because the points of B are taken out). The 2-form η on
X \ B is now canonical, and the standard form, relative to the charts, on C. This extends to X.
Now a t > 0 can be chosen such that ωt = tη + f∗ωstd.
This form is well-defined and J-tame on X \ B, but it is singular at B. Next, we describe the
singularities and find a way to eliminate them. Since J and η are standard in the local coordinates
and f is projectivization, we can write η in spherical coordinates: η = r2f∗ωstd + 1

2πd(r2) ∧ β [2].

In this formula, r is the radial coordinate on Cn and β is the pull-back to Cn \ {0} = S2n−1 × R
of the connection 1-form on S2n−1. To verify this formula, note that H on Cn \ {0} is orthogonal
to each complex line L through 0 under both η and the standard symplectic form. On each L,
d(r2) ∧ β = 2rdr ∧ dθ is standard (up to a scale factor that does not depend on L). The two terms
are scaled compatibly since dη = 0.
ωt = (1 + tr2)f∗ωstd + t

2πd(r2) ∧ β in these coordinates. This is clearly singular at 0. We now

perform a substitution of variables R = 1+tr2

1+t (t is constant here) and obtain η(R) = 1
1+tωt(r). So,

we have a radial, symplectic embedding φ : (Cn \ {0}, 1
1+tωt) → (Cn, η). For V ⊂ Cn the image of

the given coordinate chart at b ∈ B, define a radially symmetric diffeomorphism onto an open ball,
that agrees with φ outside of a closed ball around 0 in V . In any such open ball, let ω be φ∗0η near b
and 1

1+t elsewhere. These pieces fit together since φ is a symplectic embedding, so this construction
defines a symplectic form on X.
The only thing left to do now is verifying whether ω indeed has the desired properties. Away
from B, we have ω = 1

1+tωt, and any multiple of ωt tames J . Let b ∈ B. Near b, we have local
coordinates such that J is the standard complex structure and ω = φ∗0η, wich η standard up to a
constant factor. By the radial symmetry of φ0, H is preserved on Cn \ {0}, and so is η|H . The
form φ0 also preserves each complex line through 0, and φ∗0η is a positive area form on each of
these complex lines. Since these complex lines and H are η-orthogonal and J-holomorphic, J is
also ω-tame near B. We conclude that ω tames J on all of X.// The cohomology class [ω] is easily
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computed, since we can work outside of C. We have

[ω] =
1

1 + t
[ωt] =

1

1 + t
(tc+ [f∗ωstd]) =

1

1 + t
(c+ tc) = c

So, the constructed form has the desired properties. �
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