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Introduction

This text is written as my thesis for the bachelor program of mathematics and
physics at Utrecht University. The content of the thesis was supposed to be that
of a masters course and the reader is assumed to have followed an introductory
course in Differential Geometry. The main source of information for this thesis was
the book Differential analysis on complexr manifolds by Raymond O. Wells and the
explanation of Gil Cavalcanti about the subjects covered. The aim of this thesis is
to proof the Hodge Decomposition Theorem which says that the de Rham groups
can be written as the direct sum of the Dolbeault groups of the same total degree.
The organization of the thesis is as follows. We will start by recalling the basic
definitions of manifolds and vector bundles in the first chapter. We assume the
reader to be familiar with the most of this. Also we introduce the concepts of
almost complex and complex structures and differential forms of type (p,q). We
finish the chapter with a discussion of integrability and the Newlander-Nirenberg
theorem.

In the second chapter we define sheaves and presheaves. We will skip most of
the details regarding this subject and state the most important results mainly for
completeness and to define the cohomology in a rather general way, which has some
advantages. For the skipped proofs and details we refer the reader to [4]. We will
also give some explicit representations of these cohomology groups in some given
geometric situations.

The third chapter is concerned with the local description of vector bundles and
sections of vector bundles. These are used to define Hermitian metrics and inner
products, concepts which are well known from the classical R" case, in the more
general setting of complex manifolds.

In the fourth chapter we will again skip most of the details (here we also refer
the reader to |4] for the details) since the theory of pseudodifferential operators
is much too big to treat in this thesis. The main results from this chapter are
that it is possible in the various cases we are interested in to represent the earlier
defined cohomology groups in terms of harmonic functions, which are defined to be
the kernel of elliptic operators. We will treat in detail the representation of these
cohomology groups because they will play an important role in the proof of the
Hodge Decomposition Theorem.

In the fifth chapter we will apply the results of the previous two chapters to the
study of compact complex manifolds. The most important results in the first part
of the chapter are the two duality theorems known as Poincaré and Serre duality.
The biggest part of the fifth chapter is concerned with representation theory and a
specific representation of s[(2,C) which gives us the last results needed for the proof
of the decomposition theorem. After this we define what it means for a manifold
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to be of Kéahler type. These type of manifolds are the setting in which the Hodge
decomposition holds. We end the chapter by giving a rather short proof of the
Hodge Decomposition Theorem, which is possible by the work done in the previous
chapters, and state some of its direct consequences.



CHAPTER 1

Manifold & Vector Bundles

In this first chapter we will be concerned with the basic definitions and concepts
used in the rest of the text. Since we assume the reader to be familiar with concepts
such as manifolds, differential forms on differentiable manifolds and partitions of
unity, the goal of the first part of the chapter is to introduce notation. We will
start by recalling the definitions of differentiable and complex manifolds and vector
bundles over manifolds. After this we will introduce almost complex structures
and differential forms of type (p,q). We finish the chapter with a discussion of
integrability and the Newlander-Nirenberg theorem.

1. Manifolds & 8-structures

We will begin with some basic definitions. As usual let R and C denote the field
of real and complex numbers and we write K if we want to denote either of these

fields. Given an open D c K™ we have the following K-vector spaces of functions on
D:

e K=R We let £(D) denote the real valued smooth (differentiable) functions
on D. That is, f € E(D) if and only if f is a real valued function and the
partial derivatives of all order exist and are continuous at every point in D.

e K =C We let O(D) denote the complex valued holomorphic functions on
D. That is, f € O(D) if and only if f can be represented by a convergent
power series around every point of D.

If we want to denote either of these families of functions, we write 8. For the elements
of 8 on an open D c K" we write $(D).

Definition 1.1. A topological n-manifold is a Hausdorff topological space with a
countable basis which is locally homeomorphic to an open subset of R™. The integer
n is called the topological dimension of the manifold.

Definition 1.2. An S-structure, 8j; on a K-manifold M is a family of K-valued
continuous functions defined on the open sets of M such that the following holds.

(1) For every p € M, there exists an open neighborhood U of p and a homeo-
morphism h : U — U’, where U c K" is open, such that for any open set
VcU

f:V > Ke8y if and only if foh™ eS(h(V)).

(2) If f:U - K, where U = U, U; with U; open in M, then f € 8y if and only
if, fly, € S for all i.
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Definition 1.3. A manifold M with a S-structure is called an 8-manifold and is
denoted by (M,87). The elements of 8y, are called 8-functions on M. If N is a
subset of M then a 8-function on N is defined to be the restriction of an 8-function
defined on some open containing N.

We denote by 8y/|y all functions on relatively open subsets of N which are re-
strictions of S-functions on open subsets of M. An open subset U ¢ M and a
homeomorphism h : U - U’ ¢ K™ as above is called an 8-coordinate system. A
collection {(Uy,ha)}aea is called an atlas for M.

For the classes of functions defined above we have the following names for the 8-
manifolds:

e 8§ =&: differentiable (or smooth) manifold and & is called a differentiable
structure. The functions in € are called C* or smooth functions on open
subsets of M.

e § = 0: compler manifold and Oy is called a holomorphic structure. The
functions in O are called holomorphic functions on open subsets of M.

Now we have defined manifolds with some structure on them we can define maps
between manifolds preserving this structure.

Definition 1.4. An S8-morphism F : (M,8y;) — (N,8x) is a continuous map from
M to N, such that

f eS8y implies fo F e8yy.
An 8-isomorphism is an S-morphism F': (M,8ys) — (N,8x) such that F is a home-
omorphism and F~': (N,8y) — (M,8)s) is also a S-morphism.

Given an 8-manifold (M,8,s) and two coordinate systems, h; : Uy - K™ and hy :
Us — K™ such that U; n Uy # & then it follows that

(1.1) hy o hi' : hi(Up nUs) = ho(Uy N Us)

is an 8-morphism on open subsets of (K", 8xn). To see this note that if we are given
f € 8kn, then f o hy € 8 by Definition (1) since fohgohy! = f € 8kgn. By the
same definition, we have fohgohy! € Sxn. Conversely, assume we are given an open
cover {Upg }aea of a topological manifold M and a set {hq : Uy, > V c K"}, such that
for every a, 8 € A we have h, o hél is an S-morphism. We can pull § back by the
{ha}aeca to obtain a 8-structure on M. That is, we define 87 to be {f : U - K} such
that U c¢ M is open, and f o h ! € $(ho(UnU,)) for all a € A.

Just as in the case of the 8-structures we have the following special names for the
S-morphisms and the 8-isomorphisms respectively:

e 8§ =&: differentiable (smooth) mapping and diffeomorphism.
e §=0: holomorphic mapping and biholomorphism.

2. Vector bundles & bundle maps

Definition 1.5. A K-vector bundle of rank r is a surjective continuous map 7 :
E - X from a Hausdorff space F, the total space, onto a Hausdorfl space X, the
base space, which satisfies the following conditions.

(1) For all p € X the fiber over the basepoint p, E, := 7~1(p), is a K-vector space
of dimension r.
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(2) For all p € X there is a neighbourhood U of p and a homeomorphism
h:7n Y (U) - U x K" that preserves basepoints, i.e. h(Ep) c{p} xK".

(3) For all u € U the composition h* : E, L {u} x K* 2% K7 is a K-vector
space isomorphism.

A pair (U, h) is called a local trivialization. If E and X are 8-manifolds, 7 is an
S-morphism and the local trivializations are 8-isomorphisms we call 7: F - X an
S-bundle.

Definition 1.6. Let E = X be an S-bundle. Then a S-subbundle, F c F is a
8-submanifold that satisfies the following condition:

(1) FnE, is a vector subspace of Ej.
(2) 7|p:F — X has an 8-bundle structure induced by the 8-bundle structure
of E.

The second condition means that there exist local trivialization such that the fol-
lowing diagram commutes.

Ely = UxK

%‘ ‘idxj

F|UE’U><KS

Here we have that s < r, ¢ is the inclusion map of F' in F and j is the inclusion map
of K*® as subspace of K".
Again we have the following special names for 8-bundles

o 8§ =¢&: differentiable vector bundle.
o 8§ =0: holomorphic vector bundle.

From Definition [I.5] we see that if we are given two local trivializations (Ua, hqa) and
(U, hg) we get from the map
haohg' i 7 (UanUs) x K" - (Uy nUg) x K"
an induced map
Gop * Uyn Ug - GL(T‘, K)
called a transition function, defined by
Gus(p)  HE o (W) KT = K.

The transition functions satisfy the following conditions which follow immediately
from the definition,

(1.2) Gay © g3 °9sa =1 on Uy nUgn U,
Jaa = I, on U,.

Conversely if we are given a manifold M with an open cover U = {Uy}aea Where
we have given for every nonempty intersection U, nUg an 8 function g,g which
satisfy equation we can construct a vector bundle having the g,g as transition
functions. We define

E=J)U,xK"
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equiped with the natural topology and S-structure. We define an equivalence relation
on E by

(z,v) ~ (y,w) for (z,v) € Uy x K" and (y,w) e Ug x K"
if and only if

=y and W = ggav.

By condition we see that v = I,v = gaqv. Also, given w = ggov and u = g,gw we
get by the same condition that v = I,v = gay 989800 = Jay W = Gayu from which it
follows that u = gyov. Therefore we have, using géi = gaB, v ~ w implies w ~ v, v ~ v,
and v ~ u whenever u ~ w and w ~ v so the equivalence relation is well-defined.
Now let F = E/ ~, the set of all equivalence classes, equipped with the quotient
topology and we let 7 : E — M given by the projection E 5 [(p,v)] — pe M. To see
that F also has a 8 structure we note that we can use the 8 structures on M (and
thus on the U,‘s ) and K" to get coordinate functions that satisfy condition and
these give then the 8 structure on £. From this it follows that the E constructed is
actually a S-vector bundle.
Given a differentiable manifold M, we define

Empr= lim En(U)
pe ¢ M

open

to be the algebra of germs of smooth functions at the point p € M. An element
of Epyp is called a germ of a smooth function at p. We could also have defined
two smooth functions, f and g to be equivalent whenever they coincide on some
open neighborhood of p and take the set of equivalence classes. It is clear that
Enyp is an algebra over R under pointwise multiplication and addition of (in the
second definition representatives of) smooth functions. Now we define the tangent
space, T, M to M at the point p to be the set of all derivations of €,7,. Recall
that a derivation D : & — R of the algebra €7, is a homomorphism satisfying,
D(fg) = £()D(g) + D(£)g(p). Sece for example  [2,3).

Since M is a differentiable manifold we can find a diffeomorphism A : U — R" on an
open neighborhood U of p. We let h* and h, denote the pullback and push forward
by h respectively. Then it is well known that , denoting by z; the standard coordinate
functions in R™, the set of derivations {8%1 e %} form a basis for Tj,(,)R™ and that

hy « TyM =N Th(pyR™ is an isomorphism. So we have that at each point p € M the
tangent space T, M is a vector space with the same dimension as the manifold.

Definition 1.7. Let f: M — N be a smooth map between differentiable manifolds.
The differential mapping of f at p is the linear map
df : TyM — Ty N
defined by
df (v)(g) =v(ge f)
for ve T,M and g € Ep ¢(p)-

Now we construct the tangent bundle, let
T™ = ) T,M
peM
with the natural projection 7 :TM — M defined by 7(v) =p if ve T,M.
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Let {(Ua, ha)}aca be an atlas for M and denote TU, = 7~1(Uy,). We know from the
definition of the differential that for v € TU, we have

n a "
dhq(v) ;vz(p) 92 . ) € Tp,,, (»)R™
We define
Vo : TUy = Uy x R?
by

Ya(v) = (P, v1(P), - -, vn(p))
for ve T,M c TU,. It is clear that v, is a fiber preserving bijection. With the same

notation as in Definition we define ¢5 : T, M o, Uy xR" P, R™ which clearly
is a vector space isomorphism. Now we can define transition functions

9ap :UgnUy - GL(1,R)
by
Gus(p) = U8 0 (W5) 1 R” > R
From the above expressions for 1, in local coordinates it is clear that the g,g are
smooth functions on U, nUg. We give T'M the topology where U c T'M is open if

and only if 1, (U NTU,,) c U, x R™ is open for all . This is well defined since the
Jap are smooth and therefore

Yo o5+ (Ua nUg) x R™ »: (Uy nUp) x R"

is a diffeomorphism for any « and 8. With this topology T'M becomes a differentiable
vector bundle where the projection 7 and the local trivializations {(Ua,%q)} are
smooth maps.

Analogously if we let (X, 0,) be a complex manifold of complex dimension n, we let

Oxq.:= lim O(U)
zeU c X

open

be the C algebra of germs of holomorphic functions at = € X and let 7, X be the
holomorphic (or complez) tangent space of X at x, consisting of all the derivations of
Ox .. The set of derivations {%, e %} form a basis for 7, X and in the same way
as before we can make T'X into a complex vector bundle, with all fibers isomorphic
to C™.

Next we introduce the notion of maps between & bundles.

Definition 1.8. Let ng: F - X and np : F - X be S-bundles over X. Then,

(1) a homomorphism of 8-bundles f : E — F is a fiber preserving 8-morphism
of the total spaces, which is K-linear mapping on each fiber.

(2) a isomorphism of 8-bundles is a fiber preserving 8-isomorphism of the total
space, which is a K-linear isomorphism on each fiber.

For bundles over different base spaces we have:

Definition 1.9. Let g : F - X and g : F - Y be two S-bundles over different
base spaces. Then an S-bundle morphism is an 8-morphism of total spaces f: F —
F which is a K-linear map between the fibers. This induces an S8-morphism of
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base spaces f, defined by f (rge) = mp(f(e)), which makes the following diagram
commutative.

I

E F
o |
f Y

X —

Note that taking X =Y and f = Id reduces to Definition

Proposition 1.10 Given an S-morphism f: X =Y and an 8-bundlew: E =Y,
then there exists an 8-bundle 7' : E' — X and an 8-bundle morphism g such that the
following diagram commutes.

, 9
E—F

|l

X—Y

Moreover, E' is unique up to equivalence. We call E' the pullback of E by f and
denote it by f*E.

PROOF. Define
E'={(z,e) e X x E|f(z) =m(e)}.
We have the natural projections 7’ : E' - X defined by (z,e) » x and g: E' - FE
defined by (w,e) = e. Since each Ey, is a K- vector space we can make each

E; = {x} x Ef(; into a K-vector space. Given a local trivialization (U,h) of E
which by definition says that
El, & U<k
then it is clear that
= [7(U) xK"

Bl

is a local trivialization of E’. To see the uniqueness suppose that another bundle
7: F - X and a bundle morphism §: F — E are given and that again the following
diagram commutes.

- g

E——F
~J JT(
X Y

h(e) = (w(€),g(€)) e {m(e)} x E.
This is a bundle homomorphism since by commutativity we have f(7(€)) =n(g(é))

and therefore h(€) € E'. Since h is also an isomorphism on fibers it is a bundle
isomorphism. O

I

Define h: E — E by
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Let E ER F be a vector bundle homomorphism of K vector bundles over a space X
then we define

Ker f = 1) Ker f,

zreX

Imf=J)Imf,

reX
where f. = f|g .
Suppose now that we have a sequence of vector bundle homomorphisms over the

same base space X,

—>ELF£>G—>

then we say the sequence is exact at F' if Kerg = Im f. A short exact sequence of
vector bundles is defined to be a sequence of vector bundles of the form,

0-ELESE S0
which is exact at E', E, and E”. It then follows that f is injective, g is surjective
and Im f = Ker g is a subbundle of F.
Given two vector spaces A and B, we can combine them to form new vector spaces.
Some of the important examples include:

A@® B, the direct sum.

A ® B, the direct product.

AF A, the antisymmetric tensor product of degree k.
e S¥(A), the symmetric tensor product of degree k.

Since the fibers of vector bundles are vector spaces we can extend the above con-
structions to vector bundles (over the same base space) by performing them fiber
wise. For example, given two vector bundles 7 : F - X and np : F' - X then we
define
EeF=J)E,®F,
peX

with the projection 7: E®@ F — X given by m(v) =pif v e E, @ F),. It is clear that we
can also extend the local trivializations and transition functions thus £ & F' becomes
a vector bundle. Moreover if F and I are 8-bundles E & F will also be an 8-bundle.
Using vector bundles we can generalize the notion of a function in the following way.

Definition 1.11. An S-section of a 8-bundle E 5 X is an S-morphism s: X - FE
satisfying
mos=1x,

which says that s maps a point x € X to E, the fiber over z.

We denote the 8-sections of E over X by 8(X, E), the sections of E|; over U c X
will be denoted by 8(U, E'). Consider the trivial bundle M xR over M. Then we can
identify E(M, M xR) with (M), the smooth real valued functions on M. Similarly
we can identify (M, M xR™) with the smooth vector valued functions on M. As we
have seen arbitrary vector bundles are locally of the form U x R™ thus we can view
sections locally as vector valued functions. Since two different local representations
of a vector bundle are related by transition functions we can view sections of vector
bundles as “twisted” vector valued functions.
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The fact that the fibers of vector bundles are vector spaces also makes it possible
to make 8(X, E') into a vector space under pointwise addition and multiplication by
scalars, that is:

(1) For s,t € 8(X, E) we define (s+1t)(x) :=s(z) +t(zx) for all z € X.

(2) For se 8(X,E), AeK and z € X we define (As)(zx) := As(z) for all z € X.

If we consider the tangent bundle T'M 5 M we can use the remarks above to
construct some important examples of vector bundles:

e The cotangent bundle, T* M, whose fiber at x € M is given given by the
R-linear dual space to T, M.

e The exterior algebra bundles, APT M, APT* M whose fiber at x € M is given
by the antisymmetric tensor product (of degreep) of T,, M and T, M respec-
tively.

e The symmetric algebra bundles, S*TM and S*T*M whose fiber at € M
is given by the symmetric tensor product of T, M and T, M respectively.

We define the smooth differential forms of degree p on the open set U ¢ M to be the
smooth sections of the exterior cotangent bundle of degree p denoted by

EP(U) = E(U,ANPT*M))
on which, as usual, we can define the exterior derivative
d: eP(U) - (V)

see for example [2,3]. Related to sections of vector bundles is the notion of a frame of
a vector bundle, which we will later use to obtain local representations for differential
forms.

Definition 1.12. Let an § bundle F - X of rank » and an open U c X be given.
Then a frame for E over U is a set of r 8-sections {s1,...,s,} that form a basis for
E, for any x € U.

We note that any & bundle, £ — X has a local frame. Moreover the existence of a
local frame is equivalent to the existence of a local trivialization and the existence
of a global frame is equivalent to the bundle being trivial. To see this let U be a
trivializing neighborhood for E, then we have

h: El; - UxK"
which induces an isomorphism
hy:8(U, E|;;) = 8(U,U xK").

It is clear that the set of vector valued functions e¢; : U - U x K" where ¢; is the i-th
(constant) coordinate functions form a frame for U xK". Since hy is an isomorphism
on fibers it follows that {h;'(e;)} form a frame for E|;. Conversely given a local
frame {w;} for E|; it is easy to see that the map

T
Z ajwi(x) » (z,00,...,04)
i=1

sending Yi_; cyw;(z) € E, ¢ E|; to an element of UxK" defines a local trivialization.
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3. Almost Complex Manifolds & 0 Operator

Let V be a real vector space then it is possible to construct from V' a complex vector
space, the complexification of V', denoted by V., in which we can multiply vectors
in V with complex scalars. The complexification of V' is given by V ®r C, where
multiplication by complex numbers is defined by A(v ® z) = v ® (Az). Since V, is
obtained by tensoring a real vector space with the complex numbers, we also have
a complex conjugation on V. defined by v®z=v®7Z , for ve V and A,z € C. Note
that V sits inside V ®g C if we identify v with v®1 and that given a basis {v; ... v, }
of V the elements {v1 ® 1,...v, ® 1,01 ®4,...v, ® i} form a basis for V ®g C over
the reals. It follows that dim¢ V ® C = dimg V' and dimg V ® C = 2dimg V. Given
a R linear map f:V — V this extends to a C linear map f:V @g C - V ®r C by
defining f(v®z) = f(v)®z for ve V and z € C.

Now let V be a real vector space and assume that we are given an R linear isomor-
phism J : V - V with the property that J? = —I. We call J a complex structure on
V. In this case there is another way to make V into a complex vector space. Namely
define multiplication by complex scalars z = a + i by

(a+iB)v:=av+ pJv, a,BeR i=v-1.

It is clear that since J? = —I, this makes V into a complex vector space which we
denote by V;. Conversely if V' is a complex vector space, then we can also view it
as a vector space over R and then multiplication by ¢ is an R linear endomorphism
has all the properties of a complex structure and we denote this endomorphism by
J. Note that if {vy,...,v,} is a basis for V over C then {vy,...,v,,Jv1,...Jo,} is
a basis for V' over R.

Example 1.13. Consider C™ and let {z1,...2,} be a complex basis for this space.
Then writing z; = x; + iy; where x; = Rez; and y; = Im z;, we can identify C™ with
R?" = {x1,y1,...,Tn,Yn}. Since we have in C" that

iz1 =i(x1 +1y1) = (—y1) +i(x1)
it follows that complex multiplication in C" induces a complex structure J on R?"
defined by
J(x1,915 o Ty Yn) = (Y1, X1« oy, —Yny Tn)-
This complex structure is called the standard complex structure on R?"

Definition 1.14. Let X be a smooth manifold of dimension 2n. Let J be a vector
bundle isomorphism

J:TX > TX,

such that for each x € X, J, : T, X - T, X is a complex structure for 7, X. Then J
is an almost complex structure for the smooth manifold X. The pair (X, J) is called
an almost complexr manifold.

We see that such a manifold is indeed “almost complex” in the sense that it can be
viewed as a real manifold with a complex tangent bundle.

Now let V be a real vector space with a complex structure J. We consider the
complexification V @rC of V' and extend J to a C linear map on the complexification
as before. Then it still holds that J? = —I thus we get that J has two eigenvalues
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{i,~i} and we denote the corresponding eigenspaces by V' corresponding to i and
V9! corresponding to —i. From this we get that

VerC=V""e Vo
If v®a e V0 then it follows from the way we defined conjugation in V ®r C that
Jwea)=(Jv)ea=(Jv)ea=wea=-wQ@a=-wea,

so we have v ® @ € V%!, We see that conjugation is an R linear (and C anti-linear)
map, and thus V10 2 V%! Furthermore, since we have defined iv = Jv and not
—iv = Jv on V; we get that Vj is C linearly isomorphic to V19 and we will identify
these two spaces with each other from now on.
Now we consider the exterior algebras of these spaces , AV, AV and AV®!. There
are injections
1,0

v — Ve

VO,l —
and if we define APV to be the subspace of V. generated by elements u A w for
uwe APVIY and w e A7V0! then we have the direct sum

2n
AVe=D" Y APV

r=0p+q=r

where n = dimc V9. We will now apply this to the cotangent bundle. Let smooth
manifold X of dimension m be given. Let TX,=TX @r C and T*" X, =T"X @g C
the complexification of the tangent and cotangent bundle respectively. Then after
forming the exterior algebra bundle AT* X, we define

€7 (X.) = &(X, AT* X,)

the complex valued differential forms of total degree r on X. If there is no chance of
confusion with the real valued differential forms we will also write £ (T*X).

Now consider (X,.J) an almost complex manifold. Then again J extends to an
C linear vector bundle isomorphism on T'X,. with eigenvalues {i,—i}. Note that
these eigenvalues are fiberwise since for every x € X J, is an isomorphism on 7T, X..
In the same way as discussed before we have T, X. = T, X L0 ¢ 7, X% and define
TX40 TX% to be the bundles of +i eigenspaces of J respectively. We can define
conjugation on T' X, to be fiberwise the conjugation defined before and then it follows
again TX10 = TX%! Let T* X0 and 7% X%! be the complex dual bundles of X
and TX%', Then writing AT*X,, AT*X19 and AT*X%! for the exterior algebra
bundles, we have as before

T"X =T X" o T X%
also we have injections

AT XY
- L ATTX
AN XD
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and defining the complex valued differential forms of type (p,q) to be
EPL = (X, AT X)),
we get again a direct sum composition
AT (X)= ) EPI(X).
p+q=r
This decomposition gives rise to projections
Tpg: € = &MY, ptq=r.
Also since d: EP9(X) — EP**1(X) we can use the projections to define
0: EPI(X) - EPTHI(X)
d: EPI(X) - EPIL(X)
by
0=mps140d
0=mpge10d
and we can extend them by complex linearity to & = Y3mX (X)) Denoting
complex conjugation by ), we have the following proposition.
Proposition 1.15 For any f € £*(X) we have
QI(Qf) = 9f.

PROOF. Let f € &€ (X), with 7 = p + ¢, be given. Since Q : €M7 5 €97 ig
an isomorphism it follows that Qmp,qf = 7, ,Qf. Furthermore since the exterior
derivative is complex linear we have that Q(df) = dQf. Combining this we get for
feé&”

Qé(Qf) = Z Qé(Qf) = Z Qﬂ-p,q+1Qf: Z QQﬂ'q+1,pf: Z 7Tp+1,qf:af'
p+q=r p+q=r p+q=r q+p=r
Where in the last step we used that Q? = I and the fact that p and ¢ are dummy
indices since we sum over all p, ¢ such that p+¢q=r. O

From this proposition we see that 8° = 0 if and only if 8% = 0. Consider d: EP1(X) -
ePTI+L( X)) using the decomposition of & we see that d can be decomposed as

d= Z 7Tr750d=({9+8+...

r+s=p+q+1

There is a special class of complex structures called integrable complex structures
which have the property that d = 9 + 0. If this is the case then we see that

d* = 0%+ (00 +90) + &

and since we know that d2 = 0 and all the operators in the sum project to a different
component of EPT9*2 it follows that for integrable almost complex structures

92=00+90=5"=0.

We now proof a proposition and an important theorem which will be the main result
of this section.

Proposition 1.16 A complex manifold induces an almost complex structure on
its underlying differentiable manifold.
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PRrROOF. Let X be a complex manifold and denote by Xy the underlying dif-
ferentiable manifold For every pomt x € X we have a local frame for T, X given

{6%1’ ey az }. Just as in Example complex multiplication on T, X induces

0 0 0

a complex structure J, on T,Xo, which has a local frame {%, Bgr 0 Ben By )

defined by

g 0 0 g 0 o 0

TG oy B o) g B

T oy1 Tn OlYn Y1 0T Yn OTn
To see that J : T Xy — T Xy is a vector bundle isomorphism it remains to show that
J; depends smoothly on z. Let (h,U) be a holomorphic coordinate chart around z
then we know that

TXo 2 h(U) xR*"
and with respect to this trivialization J|;; takes the form
idx J: h(U) xR*™ > h(U) x R*"
with
J(x1, Y15 Ty Yn) = (FY1L, 21, o, ~Yn,s Tn)

where {21,Y1,...2Zn,Yn} is a basis for R?®. Then we see that .J is a constant map

in local coordinates and thus it depends smoothly on x. Therefore J as defined is
indeed an almost complex structure on Xj. O

Theorem 1.17 The induced almost complexr structure on a complex manifold
1s integrable.

PROOF. Let X be a complex manifold and (X, J) the underlying real manifold
with the induces almost complex structure as in Proposition We have seen
that for a vector space (V,.J) we have V = V19 and since TX and T' X, are C-linear
isomorphic when we use the complex structure on T'Xy induced by J, we get that

TX=TX)’ and TX* 2T"X)°

If z; = x; +1y; for j =1,...,n are local coordinates for X we set
g 1(0 .0 .
8,2] (8_:1:]_ a—yj) j=1...,n
i_:l(i+ii), j=1...,n
0z; 2\0x; Oy
where {%,,%,%1,%} form a local frame for T X, and {6%1,,%

form a local frame for TX. Since we identiﬁed TX =2TX, L0 it follows that the a%j
form a local frame for TX""" and the En - form a local frame for T X"! (recall that
TXo" and TXy"! are related by complex conjugation). It follows that

dz; = dz; +idyj, j=1,....n

dz; = dz; —idyj, 7=1,.
which are dual to 57~ and 8 form a local frame for T X, 1 0 and T* X respectively.
We also get the 1dent1t1es

1
dzj = §(dzj+d2j) dyj:;i(dzj_dzj)'
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Let s € EP? be given, then the above remarks imply, using multi-index notationH

! —
s = Z audzl Adz?.
I,J

We have
_ n / 8aU 8aU T _J
ds = Z _d$J+a—dy] ANdz' NdZ
i j Yj

8@[] _ I _J
Lz nd2! Adz’ + " qz Ad2t A dE
=1 1,7 8,2] lelz; 0z

Since the first term is of type (p + 1,¢) and the second of type (p,q + 1) it follows
that

0= Z&zj 2j 0= Z@z]dzj

and hence d = 0 + 0 which means by definition that the induces almost complex
structure is integrable. O

The converse of this theorem is also true and is known as the Newlander-Nirenberg
theorem.

Theorem 1.18 Let (X,J) be an integrable almost complex manifold. Then
there exists a unique complex structure Ox on X which induces the almost complex
structure J.

Since we do not use this theorem we will omit the proof and instead refer the reader
to [1].

1Recall that letting N = {1,...,n} we can consider multi-indices I = {u1,...,pup} where p1,..., tp
are distinct elements of N and we set |I| = p. Using such multi-indices we let

21 = 2Zpy Nt AN 2y,

An increasing multi-index I = {p1,. .., up} has the property that yi <--- <y, and we let 37 denote
summation over increasing multi-indices only.






CHAPTER 2

Sheaves & Cohomology

In this chapter we will be dealing with sheaves. Sheaves are useful because we can
use them to keep track of local information attached to open sets of a topological
space and pass to a global solution of a given problem after solving it locally. In
the first section we will give the basic definition of presheaves and sheaves. We also
introduce resolutions of sheaves and some examples of resolutions. In the second
section we define sheaf cohomology and proof some isomorphisms which give us
explicit versions of the de Rham and Dolbeault theorems.

1. Presheaves & Sheaves
We begin with some definitions introducing the concepts of presheaves and sheaves.

Definition 2.1. A presheaf F over a topological space X is
(1) An assignment to each nonempty open set U c X of a set F(U).
(2) A collection of mappings (called restriction homomorphisms)
ry 1 F(U) > F(V),
for each pair of open sets U and V such that V c U, satisfying:
(a) rY = identity on U(= 1y).
(b) For U >V oW, we have rf, =y, orl/.

Given two presheaves F and G over X, a morphism of presheaves
h:F—-§
is a collection of maps
hy = F(U) - §(U)

for each open set U c X such that each hy commutes with the restriction homo-
morphisms. The elements of F(U) will be called sections of F over U. If the F(U)
have some kind of algebraic structure (for example abelian groups) we also require
the restriction and sheaf homomorphisms to preserve this structure ( for example Tg

and hy are commuting group homomorphisms). If the hy are inclusion mappings
then F is called a subpresheaf of G.

Definition 2.2. A presheaf F is called a sheaf if for every collection U; of open
subsets of X with U = JU; the following is true

(1) If s,t e F(U) and rgi(s) = rgi(t) for all 4, then s =t¢.
(2) If s; € F(U;) and if for U; nU; # @ we have

U; Uj
0w, (51) = Ty, (55)

for all i and 7, then there exists an s € F(U) such that rgi(s) = s; for all 4.

17
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A morphism of sheaves is a morphism of presheaves of the underlying sheaf and
if the hy and a isomorphism of sheaves is a sheaf morphism where the hy are
isomorphisms.

Some examples of sheaves are:

Example 2.3. Let X and Y be topological spaces. We define a sheaf Cx y over X
by the presheaf
Cxy(U)={f:U —Y]|f is continuous}.

The restriction homomorphisms are given by the natural restriction of functions.

Example 2.4. Let X be a topological space and G an abelian group. For each
open, connected U c X the assignment U — G defines a sheaf called the constant
sheaf (with coefficients in G).

Example 2.5. Let E - X be a 8-bundle. Define a presheaf S(F) by setting
S(E)(U) = 8(U,E), for U c X open with the natural restriction of sections as
restriction homomorphisms. We call 8( F) the sheaf of 8-sections of the vector bundle
E. Since 8(F) is a subsheaf of Cx g it is in fact a sheaf. Special cases of this example
include € the sheaf of differential forms on a differentiable manifold and €57 the
sheaf of differential forms of type (p,q) on a complex manifold X.

A graded sheaf is a family of sheaves indexed by integers, F* = {F“},ez. A sequence
of sheaves is a graded sheaf connected by sheaf mappings

(07 (7
L= Dot S g2

A sequence of sheaves is called a differential sheaf if the composite of any pair of
maps is zero, that is, aj o aj, = 0. A resolution of a sheaf F is an exact sequenceEI
of the form
0-F->F gl . SsFm o .
which we will denote by
0—F—F".

We give some important examples of sheaf resolutions that will be used later on.

Example 2.6. Let X be a differentiable manifold with dimg X =m and let €% be
the sheaf of real-valued differential forms of degree p. Then there is a resolution of
the constant sheaf R given by
0-R5eL 4el & Lemdg

where ¢ is the natural inclusion and d is the exterior differentiation operator. Since
d? = 0 this is a differential sheaf. Using the classical Poincaré Lemma we obtain
exactness of the sheaf. We shall denote this sheaf resolution by 0 — R — €% (or
0 — C — €% when using complex coefficients).

Example 2.7. Let X be a complex manifold with dim¢ X =n and let EP? be the
sheaf of (p,q) forms on X. For p > 0 fixed we have the sequence of sheaves

0-qr Lep0 % ep1 8 9 epn O g

1By definition a sequence of sheaves is exact if it is exact at stalk level. We did not define this and
refer the reader to [4] for details
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Here QP is by definition the kernel of the map &P° 5 &P the sheaf of holomorphic
differential forms of type (p,0), which we usually call holomorphic forms of degree
p. Since 9% = 0 we have for each p a differential sheaf

0— QP — &P,

Exactness of this differential sheaf can be obtained by the Grothendieck version of
the Poincaré lemma for the 0-operator. So we have, in fact, for every p a sheaf
resolution of Q7.

2. Cohomology theory

We now want to define sheaf cohomology. To do this we will be making use of global
sections of sheaves and we would like the following to be true. Given a short exact
sequence of sheaves
0-A—-B—->C—-0,
we would like that the induced sequence
0->AX)->B(X)—-CX)—0

is also exact. It appears however that exactness at C(X) is not necessarily the
case. After some work, which we will skip here, it can be shown that when dealing
with sheaves of abelian groups over paracompact Hausdorff spaces (which we will
always be doing), the following condition is sufficient for the exactness of the above
sequence.

Definition 2.8. A sheaf F over a space X is soft if for any closed subset S c¢ X
the restriction mapping

F(X) - F(5)
is surjective. This says that any section of F over S can be extended to a section of
F over X.

We will now show that if a sheaf has a partition of unity it is soft. In particular this
implies that the sheaves €5 and €79(X) from the previous examples are soft.

Definition 2.9. A sheaf of abelian groups F over a paracompact Hausdorff space
X is fine if for any locally finite open cover {U;} of X there exists a family of sheaf
morphisms
{ni:F -7}

such that

(1) Xmi=1.

(2) ni(Fy )Elz 0 for all = in some neighborhood of the complement of Us;.
The family {7;} is called a partition of unity of F subordinate to the covering {U;}.

The sheaves from the previous examples are fine because multiplication by a differ-
entiable globally defined function defines a sheaf homomorphism in a natural way so
we can use the C'* partitions of unity to get a sheaf partition of unity. The following
proposition gives the desired result that sheaves with a partition of unity are soft.

Proposition 2.10 Fine sheaves are soft.

2Here F, denotes the stalk of F at . We did not cover this and refer the reader to l4].
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PROOF. Let ¥ be a fine sheaf over X and let S be a closed subset of X. Suppose

that s € F(S5). Then there is an opoen cover {U;} of S and there are sections
s; € F(U;) such that

Silsav, = Slsau, -
Let Up = X N S and sy = 0, so that {U;} extends to an open covering of all of X.
Since X is paracompact, we may assume {U;} to be locally finite and hence there
is a sheaf partition of unity {7;} subordinate to {U;}. Now 7;(s;) is a section on U;
which is zero in a neighborhood of the boundary of U;, so we can extend it to a
section on all of X. Thus we can define

5= ni(si)
i
and obtain the required extension of s. O
Theorem 2.11 If A is a soft sheaf and

OﬁAiBl(‘z—)O

is a short exact sequence of sheaves. Then the induced sequence
0 - A(X) 25 B(x) 2 e(x) -0

18 exact.

From this theorem we get the following corollary.

Corollary 2.12 If
0—-8)—>8 =8 — ...
1 an exact sequence of soft sheaves, then the induced section sequence of soft sheaves,
then the induced section sequence

0—8p(X) = 81(X) = 8(X) — ...
is also exact.

The last result we need before defining the cohomology groups is that for any sheaf
8 over a topological space X it is possible to construct a canonical soft resolution.

Let 8 be a given sheaf and let § 5> X be the étalé space associated to We let
€Y(8) be the presheaf defined by

GO(S)(U):{f:UeS]ﬂ'oleU}.

This presheaf is a sheaf and is called the sheaf of discontinuous sections of 8 over
S. There is a natural injection

0—8— C%8).
Now let F1(8) = €°(8)/8 and define by induction:

F(8) =€1(8)/F(8)
and
C'(8) = € (F(8)).
Using this notation we have the following theorem stating the existence of a canonical
soft resolution for any sheaf over a topological space.

3For the definition and details about the étalé space associated to a sheaf, see |4]
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Theorem 2.13 Let § be any sheaf over a topological space X. There exists a
canonical soft resolution of 8 given by

0—8—0e%8)—Cl(8) = C*8) —...
which we abbreviate by
0—8—C*(8).

Again it takes some work to actually proof this and we refer the reader to [4]for the
details. We remark that examples and are soft resolutions of the constant
sheaf and of the sheaf of holomorphic p-forms respectively.

To define the cohomology groups of a space X with coefficients in a sheaf § consider
the canonical resolution of 8§ given above. Then we can take global sections and get
a sequence of the form

(2.1) 0—TI'(X,8) = TI'(X,C%8)) = I'(X,C(8)) - ...
and if the sheaf 8 is soft we see by Corollary that this sequence is exact every-
where. We denote

C*(X,8) =T(X,C*(8))
and write Equation [2.1] in the form

0->T(X,8) - C*(X,38).
Definition 2.14. Let 8 be a sheaf over a space X and let

HY(X,8) = HY(C* (X,$))

where HY(C*(X,8)) is the g-th derived group of the cochain complex C*(X,8),
that is,

_ Ker(C1 - C71)
- Im(Ce! - C9)’
The abelian groups H?( X, 8) are defined for ¢ > 0 and are called the sheaf cohomology
groups of the space X of degree q and with coefficients in S.

where C' = 0.

HI(CY)

These cohomology groups have the following properties.

Theorem 2.15 Let X be a paracompact Hausdorff space. Then

(1) For any sheaf 8 over X
(a) H'(X,8) =T(X,8).
(b) If 8 is soft, then H1(X,8) =0 for ¢> 0.

(2) For any sheaf morphism

h:A—-B
there is, for each ¢ >0 a group homomorphism
he: HY(X,A) - H1(X,B)

such that:
(a) ho=hx: A(X) - B(X).
(b) hg is the identity map if h is the idenitity map,for all ¢ > 0.
(c) ggohg=(goh)g forallq>0, if g: B - C is a second sheaf morphism.
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(3) For each short exact sequence of sheaves
0-A-B-C-0
there is a group homomorphism
67: HY(X,C) - HT"Y(X,A)
for all ¢ >0 such that:
(a) The induced sequence
0— H(X,A) - H'(X,B) - H(X,0) LN HY(X,A)— ...

18 exact.
(b) A commutative diagram

0 —A—B—C—0

b

O*}A,H‘B,HGI*}O
mduces a commutative diagram
0— HY(X,A) — HY(X,B) — H°(X,C) — 0
l ! !
0— H°%(X,A") — H(X,B") — H(X,C") —0

This definition of the cohomology groups is quite abstract. However we will state
a theorem which enables us to represent these groups more explicitly in a given
geometric situation. First we make the following definition.

Definition 2.16. A resolution of a sheaf 8§ over a space X
0->8—->A"

is called acyclic it H1(X,AP) =0 for all ¢ >0 and p > 0.

Note that a soft resolution of a sheaf is acyclic.

Theorem 2.17 Let 8 be a sheaf over a space X and let

0->8—>A"

be a resolution of 8. Then there is a natural homomorphism
A7 HP(I(X, A7) — HP(X,8)

where HP(T'(X,A")) is the pth derived group of the cochain comples T'(X,A").
Moreover if

0->8—>A"
1s acyclic then vP is an isomorphism.

We now obtain the following results.

Theorem 2.18 Let X be a differentiable manifold. Then
Ker (Eq(X) N eq+1(X))

HY(X,C) = .
Im(eq—l(X) LA eq(X))
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PROOF. The resolution in Example is a fine resolution, and we can apply
Theorem 0

Theorem 2.19 Let X be a compler manifold. Then
Ker (EP’Q(X) A spﬁq“(X))

rnan= Im(ﬁp’q_l(X) 2, spvq(X)) |

PROOF. The resolution given in Example is a fine resolution, and we can
apply Theorem [2.1 O

We can extend this last theorem in the following way. Recall from Example 2.7] that
we have the following resolution for Q7
0_,Qp_>8p,0é,8p71 i”.é)gpm_)()'

Now if E is a holomorphic vector bundle then we have the sheaf of holomorphic
sections of E denoted by O(F). It can then be shown that we have the following
resolution of the sheaf QP ®9 O(F),
0= QP @y O(E) — &P @y O(E) 225 . 224 ern gy 0(E) — 0.
We note that
Ry O(FE)2O(ANT*X ®c F)
and
&Py O(F) 2 M1 es E(F)
2 E(ANIT*X ®c E),

where E(E) denotes the sheaf of differentiable sections of E. We call O(X, APT* X ®¢
E) the (global) holomorphic p-forms on X with coefficients in E and we will denote
this by QP(X, E). The sheaf of holomorphic p-forms with coefficients in E by QP (E).
The differentiable (p, q)-forms with coefficiens in E will be denoted by

EPUX FE)=&E(X,APIT*"X ®@c E).
Defining 0 = 0 ® 1 we can rewrite the previous resolution in the form
3] 0 3] 0
0— QP(E) - &PY(F) S ePl(E) 5 ... S eP™(E) 50
since this is a fine resolution we have the following theorem.

Theorem 2.20 Let X be a complex manifold and let E — X be a holomorphic
vector bundle. Then
5E 1
K PUX E) — EPITY(XE
Hq(X,Qp(E))E 61‘(8 ( ) ) = € ( ) ))
Im(EPI (X, E) = eP9(X,E))







CHAPTER 3

Hermitian Geometry

In this chapter we will use local frames to define Hermitian metrics on vector bundles
and prove that every vector bundle admits a Hermitian metric. We will do this in
the context of differentiable C-vector bundles over a differentiable manifold X.

1. Hermitian geometry

In this section all vector bundles will be complex vector bundles. Let such a vector
bundle E — X of rank r be given. Suppose that f = (e1,...,e,) is a frame at x € X.
Recall that this means that there is some open neighborhood U of x such that the
sections {e1,...,e,}, where ¢; € E(U, E), are linearly independent at each point of
U( if we want to denote more explicitly the dependance of f on U we write f|;).
Given a map g : U — Gl(r,C) there is an action of g on the set of all frames on U

defined by
[Tty

where
(fg)(z) = (ZT: gpl(a:)ep(x), cey ZT: gpr(x)ep(x)) ) zeU.
p=1 p=1

That is, we regard f as a row vector and use normal matrix multiplication to get
a new row vector fg. Since for every x € U, g(z) is an invertible matrix and the
components of f are linearly independent we get that the components of fg are also
linearly independent and therefore fg is a new frame. Moreover for every two frames
fand f on U it is possible to find a mapping g : U — Gl(r,C) such that f = fg. The
mapping g is called a change of frame. We can use frames to give local descriptions
of geometric objects. We start by giving a local description of sections of a vector
bundle. Let a vector bundle E - X and a frame f = (e1,...,e,) over U c X be
given. We know from the discussion following Definition that for every x € X
there exists a frame f|;; around x if we just choose U small enough. Let § € E(U, E)
then we can write

(3.1) £=S (e

p=1

where the £°(f) € E(U) are uniquely defined and dependent on the frame f. We get
an induced map

(3.2) (U, E) L e(U) =e(U,U xC7)

25
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defined by
&'(f)
£~ &(f) =
£ (f)

Let f = (e1,...,e,) and g a change of frame over U such that fg = (e],...,e.) then
we have the identities

E=28(f9)ep =26 (fle,  and e =3 gae,
P o p
substituting we get
£=2 267 (Ngpep
o p
but this implies
&(f9) =Y. 9,8 (f)

or
(3.3) 9§(f9) = &(f)

where the product is matrix multiplication. Analogously if F is a holomorphic vector
bundle, we also have holomorphic frames, f = (e1,...,e,) where e; € O(U, E) are

linearly independent, and holomorphic frames where g : U — Gl(r, C) is holomorphic.
Then with respect to a holomorphic frame we have again a map
¢
O(U,E) -5 0(U)" 2 &(U,U x C").
We shall now introduce the concept of a metric on a vector bundle.

Definition 3.1. Let E — X be a vector bundle. A Hermitian metric, h, on E is
defined to be the assignment of a Hermitian inner product (-, )., to each fiber E, of
E such that for every open U c X and &,y € E(U, E) the map

(§&,x):U~C

defined by
z = (§(2), X())a

is smooth.

The smoothness condition says that the Hermitian inner products on different fibers
vary smoothly. Now let a frame f = (ey,...,e,) for E over some open U c X be
given. We define h(f),0 = (€s,€,) and let h(f) = [h(f)ys]| denote the r x r matrix
of smooth functions h(f),s. If we write n = ¥ ,7°(f)e, and § = ¥,£7(f)e, for
n,§ € E(U,E) it follows from the fact that for every x € U h, is an Hermitian inner

product that
(&) =& (Neas 0" (fep)
o P
=217 (Fhap(FIEP(f)
Po

but this is the same as

(3.4) (&m =n"(HFES)
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where n* denotes conjugate transpose and the multiplication is matrix multiplica-

tion. From the fact that (e, es) = (es,€,) it follows that hA(f)* = h(f) and so h(f)
is a Hermitian matrix. Similarly from the fact that (n,n) > 0 it follows that h(f) is
a positive definite matrix. The transformation rule for frames, Equation [3.3| implies
that for a change of frame g

(&) =0 (HRES) =n* (fOR(f9)E(fg) =n"g  h(fg)g  E(f)

which in turn implies that

(3.5) h(fg)=g"h(f)g-

This is the transformation rule for local representations of a Hermitian metric.
Theorem 3.2 Fvery vector bundle E — X admits a Hermitian metric.

PRroOF. To prove the theorem we will construct a Hermitian metric. We know
there exists a locally finite cover {U,} of X and frames fo|;; . For every x € U, we
define a Hermitian inner product on E, c El;; by

(&mz =n(fa)"(x) - £(fo) (2).

It is clear that this definition satisfies all the properties of an Hermitian inner prod-
uct. Since the U, can overlap, let {p,} be a smooth partition of unit subordinate

to {U,} and define

The positivity and symmetry of the Hermitian metric follows from the positivity
and symmetry of the Hermitian inner product. The only condition that we have left
to check is that this inner product depends smoothly on x but this is clear since

x> (E(x),n(x))e = Y p(x)an(fa) " (x) - £(fa) ()

is smooth in z. This concludes the construction. O






CHAPTER 4

Elliptic Operator Theory

In this chapter we will develop all the results with regard to differentiable operators
needed for the next chapter. We will skip a lot of details since the general theory
and background of the stated results is too extensive for this text. In the first section
we will discuss the basic structure of differential operators and their symbols. We
will also give a few examples of symbol sequences in the cases of the de Rham and
Dolbeault complexes. In the second section we will generalize the discussion of the
first section to the context of pseudodifferential operators. In the third section we
will define what it means for an operator to be elliptic and prove an important
decomposition theorem for self-adjoint elliptic operators. In the last section we
generalize elliptic operators to elliptic complexes. The main result from this section
is that we can represent the de Rham and Dolbeault cohomology groups by harmonic
forms.

1. Differential Operators

Suppose we are given two differentiable C-vector bundles E and F both over the
same differentiable manifold X. A C-linear map

L:&(X,E) - &(X, F)

is called a differential operator for any choice of local coordinates and trivializations
there exists a linear partial differential operator L such that the following diagram
cominutes.

(e [E(U)]¢
211 211
E(U,U xCP) — E(U,U x CT)
U U

L
8(AX:E/‘NU - E(XaF)|U
Recall that L being a linear partial differential operator means that for f = (f1,. .., fp) €
[E(U)]P we have

~ p .
L(f)’L: ZazajDafja 1=1,...,q.

j=1

||k
a% and D = (=)l*ID¢* .. D, 1f there
are no derivatives of order k£ > k + 1 appearing in the local representation then the
differential operator is said to be of order k. The vector space of all differential

operators of order k from E(X, F) to E(X, F) is denoted by Diff(E, F'). We will

Here we are using the notation D; =

29
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also use another class of mappings denoted by OP(E, F') called operators of order
k. This is defined to be the vector space of C-linear mappings

T:&(X,E)— &(X,F)

(where X is a differentiable manifold) such that there exists a continuous extension
of T

Ty : WS(X,E) > WX, F)
for all s. Here W*(X, E) is the completion of (X, F) with respect to the sobolev
norm ||.||s as defined in [4].
We recall the definition of a formal adjoint operator.

Definition 4.1. Let
L:&(X,E)—&E(X,F)
be a C-linear map. Then a C-linear map
L*:&(F,X)—E&(X,E)

is called an adjoint of L if

(Lf.9)=(f,L"g)
for all fe E(X,F),qe&(X,F).

We now have the following proposition which we will not prove. (for a proof see [4])
Proposition 4.2 Let L e Diffy,(E,F). Then L* exists, and L* € Diff,(F, E).

We now want to introduce the symbol of an operator which can be used to classify
differential operators. That is, we want to define a mapping which assigns to each
differential operator its symbol. In order to do this we first define the set of symbols.
Let L € Diff,(E, F) where E and F are given vector bundles over a differentiable
manifold X. Given T*X, the real cotangent bundle to X we denote by T'X the
real cotangent bundle with the zero cross section removed, the bundle of nonzero
cotangent vectors, with the projection map 7 : 7"X — X. As in Proposition m
let 7*F and 7*F denote the pullbacks of E and F over T'X. For k € Z we define

Smbl,(E, F) ={c € Hom(W*E,ﬂ*FU(x,pv) = pFo(z,0)¥(z,v) e T'X, p> 0}.
Now that we have defined the set of symbols we define a linear map

in the following way. First note that by the definition of the pullback of a vector
bundle and the fact we are pulling £ and F' back by the projection map we have
that o(L)(x,v) should be a linear mapping from E, to F,. Let (x,v) € T'X and
e € E, be given. Find g € £(X) and f € E(X, E) such that dg, = v and f(x) = e then

i
D) 0)e= Lo =o' ) @)

IRecall that Hom(#*E,7* F') is the vector bundle whose fiber at x is the space of linear maps from
7*E, to 7 Fy
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we call o (L) the k-symbol of the differential operator L. Note that this indeed, for
every (x,v) € T'X, defines a linear mapping
Uk(L)(LL‘,U) s By > Fy

which is an element of Smbl,(E, F') and independent of the choices made. Indeed,
concretely, if we let L € Diff,(E, F') with L: E(U)P - E(U)Y given by

> A,D”

lv|<k
where {A,} are g x p matrices of smooth functions on U. We claim that

op(L)(z,0) = 3, Au(x)€”
lvI=k

where v = §1dzy +- -+ + &y dxy. To see this choose g € E(U) such that v = dg = ¥, §;dz;.
Then for e € CP we have

Z'k
D= T a0 (4= a@)e) o).
lv|<k :

Since all the terms with derivative of order < k-1 will contain a factor (¢ — g(z))|» =0
the only nonzero terms are the ones with |v| = k. These are given by (recalling
DY = (-i)MDy* .. D)

S A () (Dig(e) . (D))"

(4.2) =k
= > Azt g = > Ay(x)e.
lv|=k |v|=k

We obtain the following proposition.

Proposition 4.3 The symbol map oy, gives rise to an exact sequence

0 = Diffy_1 (E, F) % Diffy(E, F) 75 Smbl,(E, F)
where j is the natural inclusion.

This is a simple consequence from Equation since elements of Diffy_; (E, F') do
not have partial derivatives of order k. We also state the following property of sym-
bols. Given Ly € Diffp(E, F) and Lo € Diff,,,(F,G) we have LyL; € Diffy,,,(E,G)
with

Opsm(LaLly) = om(La)o(Ly).
We now look at the symbol maps of some important differential operators.

Example 4.4. Consider the de Rham complex
x)yLelx) L. Lenx)

given by exterior differentiation on differential forms. Letting 7" = T* X ® C we can
rewrite this as

e(X, AT & e(x, AT S .
We want to compute the associated 1-symbol maps

a1(d)(z,v) /\lT; o1(d)(z,v) /\2T;—>

(4.3) AT
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Let e e NPTz, f e APT* with f(x) = e and g € E(X) such that dg = v then using the
definition of the symbol map we obtain
o1(d)(z,v)e =d(i(g-g(z))f) (z)
=id ((g-9(z))f) (z)
=id(g - g(x))(z) A f(x) + (g(z) - g(z))df ()
=idg(x) A f(x)
=1Uv Ae.
We know that vAv = 0. It is also true that if for some vector space V we have a € AFV

and v € V such that v A a = 0, then it follows that a = v A b for some b € AF1V H
From this we conclude that the symbol sequence is exact.

Example 4.5. Consider the Dolbeault complex on a complex manifold X,
ero(x) Lertx) S L ernix) > o.
Then we have the associated symbol sequence

c1(9)(zw) o1(9)(x,v)
N —_— A

— AP X APATY X PAITEX
Since v € Ty X ,where T, X is considered as a real cotangent bundle we have that
v =00+ 0% given by the injection
0-TiX > T XepC=T"X"Wor X"
=AT*X @ AV'THX.

The computation for the symbol oy (0) is the same as before only now we have
g = v%! so we get

01(0)(z,v)e = iv"! Ae.
Again the symbol sequence is exact.

Example 4.6. Let E — X be a holomorphic vector bundle over a complex manifold
X. We then consider the differentiable (p, ¢)-forms with coefficients in £, EP9(X, F)
and we have the following complex

— er(X, E) 25 ert (X E) -
with the associated symbol sequence

o1(0g)(xv)
—_— > /\

— NPT @ E, PO @ B, —

1,04 %1 and again we have for f®e €

Just like in the previous example we let v =v
NPT @ By,
o1(0)(z,v)f®e=(iv" A f)oe

and the symbol sequence is again exact.

2To see this extend v to a basis {v=v1,...,un} for V. Then a basis for ARV s given by vi, A---Avg,
with i1 <.+ <ij. Therefore a = ¥ a;y,...,i, Vi) A AViy, = 25 11 Qi VA AVi + 205 41 iy
+*Av;,,. Now vAa =0 implies ¥, .q ai,
for i1 # 1. It then follows immediatly that a = Y a1,...;, v A ... vy, =V A Y ai,
for some b e A*71V.

,,,,,

i Usy A .., =0, since vAv =0, and therefore a;, .5, =0

.....

ikviz/\..,vik =vAb

.....
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2. Pseudodifferential Operators

In the previous section we defined differential operators, in this section we would
like to generalize these operators to so called pseudodifferential operators. Given
U c R", open and p(z,&) a polynomial of degree m in & with smooth coefficients
depending on = € U we can define a differential operator P = p(z, D) by replacing
£=(&,...,&) by (=iDy,...,—iDy). For u e D(U) (where D(U) c E(U) denote the
compactly supported functions) we can write using the Fourier transform

Pu(a) = p(a. Dyu(x) = [ pla,€)i(¢)e "<

where (z, &) is the standard Euclidean inproduct and @(¢) = (27)™ [ u(z)e " dx
is the Fourier transform of u. We see from this that we can define differential
operators by using polynomials p(z,£). To generalize our definition of differential
operators we can therefore generalize the functions p(z,§).

Definition 4.7. Let U be an open set in R" and let m be any integer.
(1) Let S™ be the class of smooth functions p(z, ) defined on U x R™ such that
for any compact set K c U and multiindices «, 8 there exists a constant
Ca K, depending on «, 3, K and p with

DIDgp(z,€)| < Caprc(L+ D™, ze K geR™
(2) Let S™(U) denote the subset of p e S™(U) such that the limit

o (p) (2,6 = Jim P2

exists for € # 0 and with

p(@,€) = $(E)om(p)(2,€) € S™ ()
where ¢ € C*(R") is a cut off function with ¥(£) = 0 near £ = 0 and
¥(§) =1 outside the unit ball.
(3) Let Si*(U) denote the subset of p € S™(U) such that p(z, &) has uniform

compact support in the z variable.
(4) Let Sg*(U) = S™(U) n S5 (U).

Note that o, (p)(x,&) is the m-th order homogeneous part of the polynomial where
all the lower order terms have gone to zero in the limit and there are no higher order
terms since this would imply that the limit does not exist. Also note that if p(z, &)
is a polynomial of degree m as before and if the coefficients have compact support
in U then p e S§*(U).

Now we have introduced our generalized classes of functions the definition of the
pseudodifferential operators is straight forward. For any open U c R™, p € §™(U)
and u € D(U) we define a canonical pseudodifferential operator of order m L(p) by
(the local representation)

Lpyu(a) = [ plo,&yi(e)e e,

It can be shown that this defines a linear operator of order m mapping D(U) into
E(U). We will not show this here and direct the reader to [4] for a proof. Having
defined pseudodifferential operators on R" we now define them in the general case.
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Definition 4.8. Let L be a linear mapping L : D(X, E) to E(X,F). Then L is
a pseudodifferential operator on X if and only if for any coordinate chart U with
trivializations of F and F over U and for any open set U’ c U there exists a 7 x p
matrix (p¥), p¥ € ST*(U), so that the induced map

Ly : DU = EU)

with u e D(U")P Lo, Lu, extending u by zero to be an element of D(X, E') ( where
p =rank F, r = rank F', and we identify (U )P with £(U, E') and £(U)" with E(U, F)),
is a matrix of canonical pseudodifferential operators L(p¥),i=1,...,r, j=1,...,p.
Moreover, we say that L has order m if the canonical pseudodifferential operators

L(p¥) are of order m. The class of all pseudodifferential operators on X of order m
is denoted by PDiff,,(X).

Again it can be shown that this indeed defines operators of order m. Since we want
to make use of the symbol map in the general setting of pseudodifferential operators
we have to also generalize the definition of our symbol map. The way to do this
is define the so called local m-symbol of a pseudodifferential operator on coordinate
charts. Then it is possible to proof that this local definition is invariant under local
change of coordinates and we obtain a global m-symbol . We immediatly state the
global m-symbol and again refer the reader to [4] for details.

Proposition 4.9 Let E and F' be vector bundles over a differentiable manifold
X. There exists a canonical linear map

om : PDIff,,,(E, F') - Smbl,,(E, F)
which is defined locally in a coordinate chart U c X by
om(Lu)(,€) = [om(p7) (2, )]
where Ly = [L(p¥)] is a matriz of canonical pseudodifferential operators, and where
(2,8) €U x (R" ~{0}) is a point in T'U expressed in the local coordinates of U.
3. A parametrix for Elliptic Differenital Operators
Let E and F' be vector bundles over a differentiable manifold X.

Definition 4.10. Let s € Smblg(F,F). Then s is said to be elliptic if and only if
for any (x,€) € T'X, the linear map

s(x,g) : E:r g Fz
is an isomorphism.

Definition 4.11. Let L € PDiffy(E, F'). Then L is said to be elliptic (of order k)
if and only if o3 (L) is an elliptic symbol.
If L e Diff,,,(E, F') we set
Hi ={§ e &(X, E)|LE = 0}
and we set
Hi = {ne WE)(&m)p=0,6 e Hy b

We define Hy, : E(X, E) - E(X, E) to be the orthogonal projection onto the kernel
of L. If we restrict L to the orthogonal complement of its kernel, H7, then L has
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no kernel. In fact L : H; — H7 is an isomorphism, hence we can form its inverse.
The proof of these claims are stated in the following theorem.

Theorem 4.12 Let L € Diff,,,(E) be self-adjoint and elliptic. Then there exist
linear mappings Hy, and Gp,
Hp:E&(X,FE) - E(X,E)
Gp:&(X,E) - &(X,F)
with the following properties:
(1) HL(E(X,E)) =H(F) and dime H(E) < co.
(2) LoGp+Hp=GpoL+ Hp =1g, where Ig is the identity on E(X, F).
(3) Hy and G € OPy(E), and , in particular extend to bounded operators on
WOE).
(4) S(XaE) = :H:L(X7E)) ®Gro L(E’(X7E)) = fH:L(XaE) ®Lo GL(E(XvE));
and this decomposition is orthogonal with respect to the inner product in
WOYUE).

The operator Gp, is called the Green’s operator associated to L. The sections in
Hy for a self adjoint elliptic operator are called L-harmonic sections or just har-
monic sections. These harmonic sections will play an important role in the Hodge
Decomposition Theorems in Chapter [5| and this is the main reason for stating this
theorem.

4. Elliptic Complexes

The basic idea of elliptic complexes is that instead of a pair of vector bundles with a
differential operator between them we study sequences of differential operators be-
tween sequences of vector bundles all over the same compact differentiable manifold.

In more detail, let X be a given compact differentiable manifold and FEy,..., En be
a sequence of vector bundles over X. Suppose we are given a sequence of differential
operators, of some fixed order k, Ly, ..., Ly_1 mapping as follows
(4.4) &(Eo) 2o e(B) B e(By) 22 . BN e(Ey).
We then have the associated symbol sequence
L L Ly
0— 7" Ey 7(Lo) m* Eq o(t) T Ey — ... M m*En — 0.

Definition 4.13. The sequence of operators and vector bundles E in Equation
is called a complexif L;oL; 1 =0,i=1,... N —1. Such a complex is called an elliptic
complez if the associated symbol sequence is exact.

If F is a complex as in the above definition then we can define

_ Ker (Lg: E(Ey) = E(Eqr1)) _ ZU(E)

~ Im (Lg-1: E(Eg-1) ~ E(Ey)) - Bi(E)

called the cohomology groups of the complex E, ¢ =0,..., N. Note that we use the
convention L_1 = Ly = E_1 = Ex;1 = 0 so that the definition makes sense. The

de Rham and Dolbeault complexes, which we discussed in Examples [£.4] and
[4.6] are the examples of elliptic complexes we will mostly be dealing with. For each

H(E)
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elliptic complex there is a generalization of the Laplacian. If we have the operators
Lj:E(Ej) — E(j+1) in the elliptic complex we define the Laplacian operators of the
elliptic complex E by
AjZL;Lj-i-Lj_lL;_lZS(Ej)AE(Ej), jZO,...,N.
These operators are elliptic and self-adjoint. Using Theorem we see that that
each A; has a Greens operator Ga; and an orthogonal projection operator H; onto
j‘C(E]) = }CAJ.(EJ‘) = ker Aj : S(EJ) g E(EJ)

which are the Aj-harmonic sections. To simplify the notation we introduce the
following. Let

N
e(E) =€E5(Ej)

denote the graded vector space with the natural grading. We can extend the oper-
ators L, L*,A,G and H to &(F) by setting for example

L&) =L(&+ - +&n) = Lobo + ... Lnén.

The relations
A=LL*+L*L
I=H+GA=H+AG

from Theorem still hold. Also we note that with respect to this grading L has
degree +1, L* has degree -1 and A,G and H have degree 0. We will denote by
H(E) = ®FH(E;) the total space of A-harmonic sections. Given an inner product
on each E(E;) we extend the inner product to E(E) in the obvious way by

N

(57 77>E = Z(fja UJ)EJ .

3=0

The main theorem is now:

Theorem 4.14 Let (E(E),L) be an elliptic complex equipped with an inner
product. Then we have the following:

(1) There is an orthogonal decomposition
E(E)=H(E)®e LL*"G(&(E))® L*LG(E(E)).

(2) The following commutation relations are valid:
(a) I=H+AG=H+GA.
(b) HG=GH=HA =AH =0.
(¢c) LA=AL, L*A=AL".
(d) LG=GL, L*G=GL".

(3) dimc H(FE) < oo, and there is a canonical isomorphism
H(E;) = H(E).
We will now discuss some examples in which we will see that it is possible to represent

various cohomology groups by harmonic forms. This property will play an important
role in the proof of the Hodge Decomposition Theorem.
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Example 4.15. We have seen in Theorem that
H"(X,C)=H"(E" (X))

and when X is a differentiable manifold we shall make this isomorphism an iden-
tification and just call H"(X,C) the de Rham group with complex coefficients. If
X is also compact then there is a Riemannian metric on X. This induces an inner
product on APT* X and therefore (£*(X),d) becomes an elliptic complex with inner
product. We shall denote the associated Laplacian by A = Ay = dd* + d*d. The
vector space of A-harmonic forms is denoted by

H(X) =HA(NT*X).
Now from Theorem we get that
H"(X,C)2zH"(X).
This is a very important relation and it says that every cohomology class in the de

Rham cohomology, c € H"(X,C), can be represented by a unique harmonic form ¢.

Example 4.16. For a compact complex manifold X we consider again the elliptic
complex

L2 eraxy Loerarixy L
We have seen in Theorem [2.19] that
HI(X,QP) = HI((A\P*T* X, 0)).

If we equip APYT* X with a Hermitian metric then the complex becomes a elliptic
complex with an inner product. We denote the associated Laplacian by

O=00"+0"0
and denote by
HPUX) = Hg(APIT* X)
the O- harmonic (p,q)-forms. Just as in the previous example we now have by
Theorem [£.14] that
H(X,QF) 2 HPY(X).

Just as before, this example can be extended to the case where we have coefficients
in a vector bundle.

Example 4.17. Let £ — X be a holomorphic vector bundle over a compact com-
plex manifold X and let (£ (X, F),0) be the elliptic complex of (p, ¢)-forms with
coefficients in E. By Theorem [2.20| we have

HY(X,Q(E)) 2 HY((E(A\PIT* X ¢ E), 5)).

The bundles in the complex are of the form AP9T* X ® E' and equipping them with a
Hermitian metric we get again an elliptic complex with an inner product. We define
the associated Laplacian by
d= 5}55& + 52;5}5
and let again
HPUX) =Hg(AMIT* X @ F)
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denote the O-harmonic E-valued (p,q)-forms. Then by Theorem we have the
isomorphism

HY(X,Q(E)) 2 H*(X, E).



CHAPTER 5

Compact Complex Manifolds & The Hodge
Decomposition

In this chapter we will apply the result of the previous chapters to the study of
compact complex manifolds. This is the most important chapter, as we will proof
the main theorem of the text, the Hodge Decomposition Theorem. This theorem
states that the de Rham groups can be expressed as the direct sum of the Dolbeault
groups of the same total degree. We will start by introducing the fundamental 2-
form and the Hodge *-operator in the first section. Section two will deal with the
theory about harmonic forms on compact manifolds. We will also prove two duality
theorems known as the Poincaré and Serre duality. In the third section we will be
concerned with a finite dimensional representation for the Lie algebra s[(2,C) and
using this representation we will derive the Lefschetz decomposition theorem for a
Hermitian exterior algebra. In the fourth section we introduce the concepts of a
Kahler metric and Kéahler manifolds. In this section we will also prove various com-
mutation relations for the operators d, 9,  and their associated Laplacian operators.
These relations are the final ingredients for our proof of the Hodge Decomposition
Theorem in the fifth section.

1. Hermitian Exterior Algebra on a Hermitian Vector Space

Let V be a finite dimensional real vector space equiped with an inner product (-,-).
Let {e1,...,eq} be an orthonormal basis for V' where d = dim V' then we know that
{eiy Aooney, 1 1<y -+ < iy < d} is a basis for AV (which shall be orthonormal
under the induced inner product). Also an orientation for V' is given by an ordering
of the a basis such as {ej,...,eq}. This is equivalent to the choice of sign for a
particular d form, for example e; A --- A g4 called a volume element, denoted by vol.
It is possible to equip the exterior algebra AV of V' with an inner product (-|-) (notice
the difference between the notation (-|-) and (-,-) for the inner product on AV and
V respectively) induced by the inner product on V. Namely define (-|-) on the basis
elements of A*V to be

(eil ZARRARA eik’€j1 ARRRNA e]k) = det [(einﬂ ejn):l

where [{e;,,,€;j,)] denotes the k x k matrix with elements (e;,,,e;,). We extend
this definition to all of AV by linearity. To see that (:|-) is symmetric note that
det A = det AT. For positive definiteness not that for any basis element e;, A--- Ae;,
of AFV and X € R we have

(Aeiy Ao nej | Xeiy Ao neg, ) =det )\Q(eim,em) =A2detI=X%2>0

since the {ej,...,e4} form an orthonormal basis of V.

39
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Now let {€1,...€4} be another orthonormal basis for V' then we know that
éi = Z Aijej
J

where A = [Ai j] is an orthogonal matrix. Computing the inner product we get for
two random basis vector ,&;; A---A€;, and €;, A--- A €j, that

(Eiy A NElEj Ao A Ej) = det [T, AinpAjnales, €o)]

where 1 <m,n < k.
But from (e;, e;) = 0;; it follows that

det [0 AippAjuolep eo)] = det [Z, A pAj, o] = det [ATAi, 5, | = det [ 8, ]
while on the other hand
(i Aveneglej, Ao Aej) =det[{ei,, ejn)] = det [6, ]
where [5z‘n,jm] denotes the k x k matrix whose element at the position n,m is given

by ;... From linearity it follows that (:|-) is independent of the orthonormal basis
chosen. Moreover using multi-index notation it is easy to check that given a =

Z/m:k a'er = Z/m:k bler we have
(a|B) = Z,albl-
\I=k

We now introduce an operator used to extend this inner product. Given an or-
thonormal basis (of a d dimensional real vector space) with a volume element we
define the Hodge *-operator to be a map

%1 APV APy
on basis elements by
t(€iy At A€y, ) B ke A A,

where {ji,...,Jq-p is the complement of {i1,... iy} in {1,...,d} and the sign is
chosen such that

(5.1) eiy Aei, A*(ey A--Aneg,) =vol.

To define * on all of APV we can just extend the definition on the basis elements by
using the bilinearity of the wedge product. We claim that given a = Z" I=p aler, B =
Z,|I|:p ble; € APV we have

(5.2) a A= ={(alf)vol

where (|-} as before. To see this note that

aA*fF= Z' arbyer A xey
[|=[J]=p
but the wedge product vanishes unless I = J and in that case we have ey A xey = vol
so we get
an*B=">"arbrvol = (a|f)vol.
H|=p



1. HERMITIAN EXTERIOR ALGEBRA ON A HERMITIAN VECTOR SPACE 41

We also see from this that the Hodge * operator is independent of basis (since
(-|') and vol are) and depends only on the inner product structure of V' and the
choice of orientation.We extend the inner product given by Equation to complex
valued differential forms in the following way. Let «, 8 € APV ® C then we can write
o= Z|/I|=p arer and B = Z|/I|=p brer where ay,by € C. Define

(alB) = Y arbr.
[l=p
It is clear that in the case that «, are real we get our old inner product back.
Furthermore, also extending the Hodge * operator to APV ® C by complex linearity
we get

(5.3) a A+ ={alB)vol.
Next define a linear map w : AV — AV by
w = Z(_l)d’f-l—’fﬂr

where II,. : AV - ATV denotes projection onto the homogeneous vectors of degree r.
Let {i1,...,ip,j1,---Jd-p} be an ordered set then we see that it takes p(d—p) = dp—p*
transposition to get to the ordered set {j1,...,jd-p,?1,...,%p}. Using this and noting
that dp — p® has the same parity as dp — p we get that w = *x. Moreover, in the
special case that d is even we have

(5.4) w=Y(-1)"T].

We now introduce the notion of forms on a vector space and use this to define the so
called fundamental form which is related to the metric. Let E be a complex vector
space with dim¢ E' = n (note that we dont assume E to have a metric because a
metric is not needed for the notion of general forms). Let E’ be the real dual to the
underlying real vector space of E, that is E’ is the R vector space of real valued, R
linear maps from E to R. Then we define

FZE’@RC

to be the C vector space of complex valued R linear maps from E to C. Note that
dimg E’ = 2n we have dim¢ F = 2n. We form the exterior algebra on F' denoted by

2n
AF =Y APF.

p=0
Elements of APF' are called p-forms or p-covectors on E. Conjugation on AF' is given
by

w(v1,...,vp) =w(v1,...,0p) for v; e E,we APE.

Let AbCF and A%'F be the subspace of A'F consisting of complex linear and anti-
linear forms respectively. Then we see that ALOF = AC1F and

ANF=AOF e
from which we get, just as in Chapter [l a bigrading on F

2n
AF =30 3 APAF.

r=0 p+q=r
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Now suppose our vector space is equipped with a Hermitian metric (-,-). Since the
inner product is a map from E x E to C it is actually Hermitian symmetric positive
definite 2-form, which is linear in the first argument and anti-linear in the second

(this is called sesquilinear). Letting {z1,...,2,} be a basis for AbYF it follows that
{Z1,...,2,} is a basis for A%'F and that we can write

(u,v) = h(u,v)
where

h= Z Py zm ® Z,
w,v

and hy, is a positive definite Hermitian matrix. From z; = z; + 1y; and z; = x; — iy,
it follows that

h = Z hyw (2 +iyu) ® (T — iyy)

v
= Zhuy(xu®xy)+yﬂ®yl,)+i2hw(yu®xl,—:z:#®yl,).
wv w,v

In other words, we can write
h=5+iA

where S is a symmetric positive definite bilinear form representing the Fuclidean
inner product induced on the underlying real vector space of A by the Hermitian
metric on E namely S=3%, , b (7, ®7,) +y, ®y,). Using
Zu+ 2y 2y~ 2y
xT = —7 = e—
ST Y=o

we get that

A=Y "hu (Y ®x) -2, 0Y)

v
h
=3 EE((i2p—i20) ® (20 + 2) = (24 + 24) ® (12, —i2,))
v
=—1 Z vz A Zy.
v

We define the fundamental 2-form associated to the Hermitian metric to be

(5.5) Q== bz A%
24

Using this definition we get
(5.6) h=S-2i0
where S is as before. Note that € is of type (1,1) and that since

_ 1 _ T — _ ] _
Q:—Zhwzﬂ/\z,,:——z,zu@z,,:—Zzy®z#:9
2w 2w 2w
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and therefore €2 is a real 2-form of type (1,1). By taking the dual of a orthonormal
basis of E' we see that it is always possible to find a basis {z,} of AYOF such that
hyy is the identity matrix. In this case we have

S:qu®yu+yu®xuv

(5.7) _
Q:quAy#:%Zzqu#.

We easily see that
(5.8) Q" =nlzy Ayr A ATy AYn.

But this is a volume form on E’ and therefore gives an orientation on E’. Moreover,
it follows from S = ¥, v, ® , + y, ® y,, that {z,,y,} is an orthonormal basis for
E’" (because S represents the euclidean inner product on underlying real vector
space of E and therefore induces a euclidean inner product on E’ and a basis of
E’ is orthonormal with respect to this induces inner product if it is the dual to
a orthonormal basis of the underlying real vector space of F) and thus there is a
naturally defined Hodge * operator

(5.9) x: A\PE' — A\PVPE!
induced from the Hermitian inner product on E. We define

1

vol = —=Q)

n!
which is independent of the choice of basis (since 2 is). In the special case of the
orthonormal basis we used earlier we have that

vol=21 AYy1 A ATy AYp.

We will now use the above discussion to define linear operators mapping AF — AF.
Since these operators will be defined in terms of the above structure it follows that
their definitions all follow from the Hermitian inner product structure on E. We had
already defined w for even dimensional manifold by Equation [5.4] Extending this
definition by complex linearity we get

w:AF — AF.
Similarly we extend * defined in Equation by complex linearity which gives
% : APF > A2VPR,

Note that both w and * are real operators which says by definition that they com-
mute with complex conjugation, i.e. for a real operator D we have D(Z) = D(x)
Next define

JiAF > AF
by
J=> P,
where IT : AF - AP9F is the usual projection. Note that if v € ALY then Jv = iv

and if v € A1 F then Jv = jv. This is exactly the same as the J operator defined
in Chapter [I] which represents the complex structure. Therefore we see that the .J
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here defined is the natural multilinear extension of the complex structure operator
J to the exterior algebra AF. Lastly we define a linear operator L : AF — AF by

L(v) =QAw.

Then we see that L : AP9F — AP*LI*LE gince Q is of type (1,1) and that L is a real
operator since 2 is a real 2-form.

As we saw in Equation APF is equiped with an inner product. Then we have
the following proposition.

Proposition 5.1 With respect to the inner product defined by [5.3 L has a
Hermitian adjoint L* : APF — AP72F given by

L*=wx*Lx*.
PROOF. Let av€ APF and B € AP*2F be given then we compute
(La, By = QAna A (%B)
=aAQA(%B)
=an(L*p)
=an (xw*L*B3)
—an(Gwe)
= (a,w * L * () vol
= (a, L*B) vol
where we used that *wx* = * * %% = ww = id, and that L, w, * are real operators. [J

From this proposition we see that L* is a real operator, homogeneous of degree —2.
Using the following proposition we shall see that L* is bihomogeneous of degree
(-1,-1). However we first need to proof a Lemma needed in the proof of the
proposition. We shall use the notation, where M is a multi-index,

wy =[] zuAzy= (—2i)Ml [T zunyp

peM peM
(here the product denotes the wedge product) where {z1,. .., 2,} is a basis for ALOF.
Also we let N ={1,...,n} then we have the following lemma.

Lemma 5.2 Suppose that A, B and M are mutually disjoint increasing multi-
indices. Then
*(zaNzZp Awpr) =y(a,b,m)za AZp Awyy
for a non-vanishing constant v(a,b,m), where a = |A|, b = |B|, m = |M| and M' =
N-(AuBuUM). Moreover

p(p+1)

y(a,bym) =i (=1) "2 (=2i)P "
where p=a+ b+ 2m 1is the total degree of zo N Zp AN wyy.

PROOF. Write v = z4 A Zg Aw)y and if for a multi-index A we have A = AU Ay
define
0 ifAinAy+g.

Ardz _ ]y

€4 if A1 A5 is an even permutation of A.

-1 if A1 A5 is an odd permutation of A.
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Using this we get
24 = Z’ eﬁlAQi‘”:UAl AYy,
A=A UA;
where we sum over increasing multi-indices Ai, Ao such that A = A;UAs. To see this
note that if A= {u1,...,uq} then 24 = (2, +iyu, ) A+ A (2, +1y,, ) and expanding
this gives exactly the summation above. Thus we get
v=(-20)" Y ey BBty Ay nxp AV, A ] 2u Ay

A=A1UA1 MEM

B:BluBz
Now we have expressed v in terms of a real basis we shall use the complex linearity
of * to compute *v term by term. To simplify the notation we shall assume B = @
note that the computation of the general case is completely analogous to this one.
We have

#(z4 Awpy) = (=20)™ Z' eﬁlAQi‘” A, AYa, A [ Tp Ay g
A:A1UA2 /,LEM

It is easy to see that the result of * acting on the expression in brackets should be
of the form

T4, AYA A [ Zu Ay
peM’

where M' = N—-(AuM). The only thing we have to do is determine the sign. Since
I1,er Ay, has an even number of terms is irrelevant for the sign since transposing
an even number of times doesnt change the sign of the expression and therefore we
can always move the products around without changing sign. It follows that it is
enough to consider

2
LAy ANYA, NTAy AYAy = (1)2T 4, Aya, ATa, AYa,.
In general we have that
ICldc]-1)
2
To see this note that y,, has to move |C| -1 places ,y,, has to move |C| -2 places,

xo Aye = (-1) Tpy Ay A N Ty A Y-

etc. Therefore the total number of transpositions is 1+---+|C|-1 = % Using
this identity we get that the sign in [1| should be
(c1yedy ala =) jas(ea=l) gy
2 2
Now substituting this in Equation |If and using

A1As _ (—1)a1a26§2A1

€a
ia2 — ,L-a(_l)au ,L-al

we get

*(ZA /\wM) _ ia(—Qi)m Z/ 622%112‘@1 {(_1)r+a1+a1a2}xA2 AYa, A H Ty A Yy
A=A1UA2 ,U,EM'

Since we have
1) pptl)
2

(e - (<) *5 < (1)
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we can pull the bracketed term outside the summation and we obtain the wanted
equation for the case B = @. O

Let, as usual, [M,N] = MN — NM denote the commutator of two given endomor-
phisms on a vector space.

Proposition 5.3 Let E be a Hermitian vector space with dimc E = n with
fundamental form € and associated operators w,J,L and L*. Then:

(1) #1L, g = Iy g n—p*.
(2) (L] = [L.J] = (L, w] = [L*,7] =0,
(3) [L*,L] =3 (n—p)II,.

PROOF. For the first part of the proposition note that any element of AF can
be written in the form ZAB’M cA,B,MZA N Zp Awyr. The type of a term of the form
zA A Zpwyy is (m+a,m+b) where |A| = a,|B| =b,|M|=m and |N| =n. Then we see
from Lemmal5.2|that since M’ = N-(AuBUM) ,and therefore |M’| = m’ = n—a—b-m,
that the type of *(z4AZpAwpy is (a+m/,b+m') = (a+n—a-b-m,b+n—a—-b-m) =
(n=(b+m),n—(a+m)) =(n—q,n—-p). This proves the first identity. We note that
this is equivalent to

t| gt APLE — AVONPR
is an isomorphism.

The second part of the proposition is an easy computation using the fact that L is
a homogeneous operator of type (1,1) and L* is a homogeneous operator of type

(-1,-1). For the third part (we use the same notation as in Lemma ) we use
Equation [5.7] which gives

L(zanzZpAwp) =QAzAANZB AWy

i n
(510) :5 Z:lzu/\iu NZANZB AW
. #:

1
= §ZA/\EB /\( Z wMU{M})

peM’

where, as before M = N - (Au Bu M). For the second equation we used that
x Az =0 and that all terms where p ¢ M’ give such doubled terms. On the other
hand using [5.2] and L* = w * L* we get that

2
(5.11) L*(ZA/\ZB/\U}M):—‘ZA/\ZB/\ Z War—{uy |-
v peM
Using these formulas we get
L*'L-LL"=(n-p)zaAZp Awyg

where p is the degree of z4 A Zg A wpy. This gives the last part of the proposition.
O
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2. Harmonic Theory on Compact Manifolds

As we have seen the laplacian on a Riemannian manifold is defined to be dd* + d*d,
where d* is the adjoint of d with respect to some inner product on the complex
E*(X) of complex valued differential forms on X. In this section we will use the
Hodge star operator to define a particular inner product on the vector space of
differential forms of a given degree. The inner product we define will enable us to
find explicit formula’s for the adjoint of d and other operators.
Assume we have a compact oriented Riemannian manifold X of dimension d. Like
in Section [1] the Riemannian structure and the orientation of X define the Hodge *
operator

«: APTHX S A4PTHX
for each = € X. But since it is possible to find for all z € X a neighborhood U of
x and a smooth orthonormal frame of APT* X defined on U we see that * actually
defines a smooth bundle map. Therefore it follows that, extending * by complex
linearity to APT*X @ C = EP(X) we get an isomorphism of sections

1 EP(X) > e4P(X).
We define integration of d-forms in the standard way, see for example [2]. Let

¢ € €4X), {¢a} a partition of unit subordinate to a finite cover of X and fo : Uy C
R™ — X the associated coordinate mappings, then we set

Jo0=% [, Ja6a) =T [, ga(@)dar - ndrg

where the smooth function g, has compact support in U, and it is a well known fact
that this definition is independent of of the covering and partition of unit. Given
o, € EP(X) we know that ¢ A »1) is a d-form which makes it possible to define the
so called Hodge inner product on £*(X) by

(0.0) = [ onrv 6.0 € £7(X)
(¢,7/))=0 @EEP(X),’QZJEEq(X),piq,
We then have the following properties of the Hodge inner product.

Proposition 5.4 The form (-,-) defined by Equation actually is a posi-
tive definite, Hermitian symmetric, sesquilinear form on the complex vector space
E°(X) = @ EP(X).

PrOOF. We have seen in Equation that the Riemannian mertic on X induces
an Hermitian inner product, (-,-) on APT X for each x € X defined by

) A #1) = (¢, ) vol.

(5.12)

Then it is easy to see that

(0.0) = [ onxi= [ (0.0)vol

where ¢, 1) € (X)) is a positive semidefinite, sesquilinear Hermitian form on &7 (X).
We want it to be a positive definite form but this is not clear a priori since it could
be the case that (-,-) is nonzero only for x in a subset of X that has measure zero
and thus contributes nothing to the integral. To see that this cannot happen let
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¢ € EP(X) such that ¢ is non zero at xg € X. Then it is possible to find an local

orthonormal frame for {ej,...,eq} for T*X ® C around z( such that
¢ = Z,¢I€I
[=p
and

drxp="|pr*vol

[I|=p

near xg. Since ZII I=p |p7|? > 0 it follows that the contribution to the integral

(6.0)= [ on+d
will be nonzero and therefore (¢, ¢) >0 if ¢ 0 O

Proposition 5.5 The direct sum decomposition E"(X) = ¥, E? is an or-
thogonal direct sum decomposition with respect to the Hodge inner product.

PROOF. Let ¢ € EP9(X) and ¢ € E"*(X) such that p+q =r+s be given. We see
that 1 is of type (s,r) and with Proposition [5.3[we get that *) is of type (n—r,n-s)
from which it follows that ¢ A *1) is of type (n—r +p,n —s+¢). It is easy to see
that ¢ A+t will be a 2n form only if 7 = p and s = ¢q. Otherwise, ¢ A %1 is zero. This
concludes the proof of the proposition. O

One of the benefits of the Hodge inner product is that it is relatively easy to compute
the adjoints of the linear operators we defined on £*(X). However to do this we
first need to extend our definition of the Hodge * operator. We first define
£ 4 (X) > &4 (X)

by ;gb = *Q_S. Then

*APT* X, - ATTPTH X,
is a conjugate-linear isomorphism.
Now let X be a Hermitian complex manifold and £ — X a Hermitian vector bundle.

We want to expend * to differential forms with coefficients in E. To do this we first
choose a conjugate bundle isomorphism of F onto its dual bundle E*

7B > E*

one possibility is to define 7 fiberwise by e ~ (-, e) where (-,-) for e € E, and where
(-,-) denotes the Hermitian inner product on E,. We then extend * ,

fp:iANPT*X. @ B » A" PT*X,. @ B
by
“p(gp@e)=%(¢)®T(e)
where ¢ € APT X, and e € E,. Recalling that £"(X, E) are by definition sections of

A'T*X. ® E we extend the Hodge inner product to £*(X, F) in the following way.
Let ¢ € E"(X,E) and ¢ € E°(X, E) be given then

(qb,w):{ofx‘zmw ree

rT¥S
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Note that given ¢ € APTY X, e € Ey,1p € A2 PTF X, f € E we have
(¢@e)n (Y@ f)=dnt-fle) e ATy X,

so the definition of the Hodge inner product extension indeed makes sense. Moreover
it is clear that *p preserves the bigrading on £*(X, E) since the extensions only
differ from the old inner product in the way they act on the coefficients and this is
independent of the bigrading. It follows that

% EPU(X, E) » EMPU(X, EY)

is a conjugate-linear isomorphism. Therefore we see that Proposition [5.5|still holds
in this case. Now we have the following propositions regarding the adjoints of various
operators with respect to the Hodge inner product.

Proposition 5.6 Let X be an oriented compact Riemannian manifold of real
dimension m and let V = dd* + d*d where d* is the adjoint of d with respect to the
Hodge inner product on £*(X). Then

(1) d* = (_1)m+mp+1;d; — (_1)m+mp+1 xd* on SP(X).
(2) *V = V=, *V = V*.

PROOF. Let ¢ € €P71(X) and ¢ € EP(X) be given. Then we have
(d9, ) = [ donsy

- [d@nsv) - (17" [ onasy
T X
where we used that d(¢ A1) = dp A+ (=1)P~Lé A drp. Using Stokes theorem we see
that the first term vanishes. Using #* = *x = w and *w»* = xw* = 1 we obtain

(d6.v) = (-1 [ o3 as)w

= (—1)PA¢A ;(;wd;)¢ _ (_1)m+mp+1(¢7;d;7/1)-

For the last equation note that ¢ € EP(X) so *1) € E™P. From here we get that
d% € E™PTH(X) and the sign we get from w is given by (—1)m2_mp+m+m_p+1 together
with the (=1)P factor in front of the integral we get a sign (-=1)™"™*1 We conclude
that d* = (=1)™"P*1xdx and since d is real we also have d* = (=1)™""P*! « dx,
For the second part we write, given ¢ € EP(X),

#Vp = (=1)"TPH (rdx dx +(=1)" # xd x d) &
V= (=1 (G d s x+ (=1)m * d * dx) ¢
= (D)™ (rd w d o +(-1)"d x dx %) ¢

which is a simple computation. So if we show that wd * d¢ = d * dw¢ we are done.
To see this recall that w = Y.(~1)P*"PII, from which it follows that

d* dwe = (=1)P""Pd x d¢
and since d * d¢ has degree m — p, we get
wd * dgp = (1) PP g dgp = (=1)PPd % dgp

so we are done.
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In the Hermitian case we have a similar result, given by the following proposition.
Note that *g- is defined in the same way as *g by using 77! : E* - E.

Proposition 5.7 Let X be a Hermitian complexr manifold and let E — X be a
Hermitian holomorphic vector bundle. Then

(1) 0: EPY(X,E) - EPIY(X | F) has an adjoint 0* with respect to the Hodge
inner product on £°* (X, E) given by

0" = —%p«0%p.
(2) IfO=00" +0*0 is the complex laplacian acting on €**(X, E), then
O = *g0.

PRrROOF. In this case we also have *g*xg+ = w. Since the real dimension of X
is even, this reduces to Y.(-1)PIL,. For the proof of the first statement let ¢ €
EPI (X, E) and ¢ € EP9(X,E). Then ¢ A #p1) is of type (n,n - 1) it follows that
d(pA*pp) =d(p A *pgrp) since O is zero on type (n,n — 1) forms. Moreover,

AP A %) =06 A xp+ (F1)P 1P A D% gy,

Using this identity and Stokes theorem as in the proof of Proposition [5.6| we obtain,
(90.0) = (17" [ 6 n05 50
= ()" [ ¢ nsp(wipdip)

= —f¢A *p(*p 0% gY)
= (¢7_;E*5;E¢)-

This proves the first part of the proposition. The proof is the second statement is
exxactly the same as in Proposition where we replace 0 for d, O for A and *g
for *.

g

Using the above results we will now prove two well-known duality theorems. First
we state the fact that if F is a finite dimensional complex vector space, then it
is conjugate-linearly isomorphic to a complex vector space F' if and only if F' is
complex-linearly isomorphic to E*. The first duality theorem we will proof is known
as the Poincaré duality.

Theorem 5.8 Let X be a compact m-dimensional orientable differentiable man-
ifold. Then there is a conjugate linear isomorphism

o': H'(X,C) » H"™"(X,C),
and hence H™™ " (X, C) is isomorphic to the dual of H"(X,C).

PRrROOF. We introduce a Riemannian metric on X and choose an orientation.
Let * be the associated *-operator. Then the following diagram commutes.
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*

er(X) emT(X)
JHA i JHA
H(X) ——— H"(X)

112 112

H"(X,C) —Z— H™"(X,C)

Here Ha denotes the projection onto the harmonic forms. From Proposition [5.6] we
known that * maps harmonic forms to harmonic forms since A* = *A. Moreover,
the de Rham groups H" (X, C) are isomorphic to H" (X ), and o denotes the induced
conjugate linear isomorphism. O

Now we have the second duality theorem which is known as the Serre duality.

Theorem 5.9 Let X be a compact complex manifold of complex dimension n
and let E - X be a holomorphic vector bundle over X. Then there is a conjugate
linear isomorphism

o:Hr(X,QP(E)) - H" (X, Q" P(E™)),
and hence these spaces are dual to one another.

ProoOF. We introduce Hermitian metrics on X and X so we can define the *g
operator. Then the following diagram commutes.

*E
erI(X, E) enPna( X [*)
|2 |
HPI(X, E) Y grrnmy( X B
112 112
HP(X,E) T H"Pn=4(X, B*)
112 112
o

HY(X,Q°(F)) H" (X, Q" P(E"))

This proves the theorem. Here we used that ¥z maps harmonic forms to harmonics
since we know from Proposition that Oxg = *gO. We also used the known fact
that the Dolbeault groups, which we denoted by { HP4(X, E)}, are isomorphic to
HY(X,QP(E)) (See Theorem [2.20)). O

3. Representations of s[(2,C) on Hermitian Exterior Algebras

First we recall some basic definitions. A Lie algebra is a vector space i equipped
with a Lie bracket [-,-], which is bilinear anticommutative and satisfies the Jacobi
identity. A represenation of a lie algebra Ll on a complex vector space V is an algebra
homomorphism

73— End(V)
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where End (V') denotes the Lie algebra of enodmorphism of V' with the Lie bracket
[A,B] = AB - BA. The dimensions of the representation is the dimension of the
vector space V. A representation w is called irreducible if there is no proper invariant
subspace Vy # @ of V. That is, a subspace Vy c V such that 0 # Vy # V and

m(X)Voc Vp for all X € 4l.

Given two representations w1 and w9 on Vi and Vb respectively, m = w1 & 7o is a
representation on V; @ Vo. Two representations are called equivalent if there exists
an isomorphism S : Vi3 — V5 such that m = SIS, A representation is called
reducible if it is equivalent to a direct sum of irreducible representations. Recall
that a Lie group is a group which is also a smooth manifold. A representation of
a Lie group G of a finite-dimensional complex vector space V is a real analytic
homomorphism p : G - GL(V'), where as usual GL(V') denotes the Lie group of
nonsingular endomorphisms of the vector space V. For Lie groups we have the same
notions of irreducibility, complete reducibility, equivalence etc. as for Lie algebra’s.
To every Lie group G we can associate a Lie algebra g which is by definition 7. G, the
tangent space of GG at the identity, or equivalently the vector space of left invariant
vector fields of G. It is a standard result that Lie brackets preserve left invariance,
see for example [2]. We will now introduce a specific Lie algebra which will be the
only one of interest for our discussion. The lie algebra s[(2,C) is by definition the
vector space of 2 x2 complex matrices with trace zero endowed with the commutator
bracket of matrices. It is the associated Lie algebra to the Lie group SL(2,C) the
group of 2 x 2 matrices with complex coefficients and determinant equal to 1. To see
this note that there exists an exponential map

(5.13) exp : sl(2,C) - SL(2,C)

given as usual by,

[ele) n
X
expX =¢e” = —_—
P 2
from which we see that J
tX _
a e |t:0 = X

for an arbitrary matrix X. We will also use the well known identity from matrix
calculus
det(e!X) = TX,

Let X € 5[(2,C) then since Tr(X) = 0 it follows that det(e!*) = 1, therefore e!X
path in SL(2,C) going through the identity for ¢t = 0 with speed X. On the other
hand let Y be any 2 x 2 matrix such that det(e!?) = 1 then, since that e! ™Y =1, it
follows that ¢t Tr(Y") is an integer multiple of 27 which is only possible if Tr(Y") = 0.
So sl(2,C) is indeed the tangent space to SL(2,C) at the identity. The elements
of 5[(2,C) depend on 4 — 1 = 3 parameters since they are 2 x 2 matrices with the
condition det = 1, it follows that dims[(2,C) = 3. A basis is given by

T [ I L I )

with the following commutation relations
(5.15) [X,Y]=H, [H,X]=2X, [H,Y]=-2Y
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We also introduce the special element of sl(2,C);
. 0 1
w—z(X+Y)—[Z. 0]
called the Weyl element. Note that we have
wHw=-H, wXw'=zY, wYw'=X.
We will be using the following result from Lie Theory.

Proposition 5.10 There is a one-to-one correspondence between representa-

tions of s1(2,C) and SL(2,C). More explicitly, let

p:sl(2,C) > End(V)
be given and g = eX € SL(2,C) where X € sl(2,C) then the corresponding represen-
tation

m:SL(2,C) - GL(V)
s given by

m(eX) = P,

Conversely p = dm where d denotes the derivative mapping.

Proposition 5.11 Let p be a presentation of sl(2,C) on a finite-dimensional
complex vector space, then p is completely reducible.

We will now describe these irreducible representations. Assume a fixed finite dimen-
sional representation p of s[(2,C) on a complex vector space V' to be given.

Definition 5.12. For a finite dimensional representation p of s[(2,C) on a complex
vector space V we define V* to be the eigenvectors of p(H) with eigenvalue A. A
v eV is said to have weight \. We say that a vector v € V* is primitive of weight
A if v is nonzero and p(X)v = 0.

Using this terminology we have the following Lemma’s.

Lemma 5.13 The following is true.

(1) The sum Y \c V? is a direct sum.
(2) If v is of weight X\, then p(X)v is of weight A +2 and p(Y )v is of weight
A=2.

PROOF. The first assertion just says that eigenvectors with different eigenvalues
are linearly independent. For the second statement we will use the linearity of p and
the commutation relations, [H, X ] =2X and [H,Y] =-2Y.

p(H)p(X)v = (p(H)p(X) - p(X)p(H)) v+ p(X)p(H)v
= p([H, X])o + Ap(X)o
=p(2X)v + Ap(X)v
=(A+2)p(X)v.
Similarly we get p(H)p(Y)v=(A-2)p(Y ). O

Lemma 5.14 FEwvery representation p of s{(2,C) on a finite dimensional complex
vector space V, has at least one primitive vector.
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PROOF. Let vg be an eigenvector os p(X), then we consider the sequence

Vo, p(X)UOa p(X)2U05 s

The nonzero terms in this sequence are all linearly independent (since they have
different eigenvalues). Since V is finite dimensional it follows that this sequence
must become zero at some point. Therefore, for some k, we have p(X )kvo =0 and
p(X)¥ 1y + 0 and we have a primitive vector v = p(X)*1v. O

We now have the basic description of an irreducible representation of s[(2,C) on a
finite dimensional complex vector space.

Theorem 5.15 Let p be a irreducible representation p of sl(2,C) on a finite
dimensional complex vector space V. Let vg be a primitive vector of weight \. Then
setting v_1 =0 and

1
vnzﬁp(Y)”vo, n=0,1...,m,...

we get for n >0,

(1) p(H)vn = (A=2n)vy,
(2) p(Y)v, =(n+1)v,q1,
(3) p(X)vp=(A+n+1)v,_1.

Moreover, A =m, where m+ 1 =dim¢ V, and
p(Y) "y =0, n>m.
Proor. follows immediatly from Lemma is clear from the definition
of v,. follows from induction on n. For n = 0 we have p(X)vy = 0 since v is

a primitive vector. Suppose that holds for n — 1 then we get, using [X,Y] = H
and the induction hypothesis for n -1,

np(X)vn = p(X)p(Y)vn-1 = p(Y)p(X)n-1 + p([X, Y ])vn-1
=(A=n+2)p(Y)vp—2+ p(H)vp-1
=(A-n+2)(n=1)vp 1+ (A=2n+2)v,_1
=n(A=n+1)v,_1

which yields after dividing by n. Since V is finite dimensional we have vy, ..., v,
all nonzero and v,,+1,... all zero. Using we get

0=p(X)Vms1=A=(m+1)+1Dvy =(A=m)vy,

and since vy, # 0 it follows that A = m. It also follows using that p(Y)"vo =0
for n > m. We now show that m + 1 = dim¢c V' and then we are done. Let V,, =
Span{vg,...,vn}. We then claim that V,, is invariant under the action of p on V.
Since p is irreducible this implies that V,;, =V and dimcV = m + 1. To see this let
v =Y anv, be a vector in V,, then we have

p(H)?} = Z an(m - 2n)vn
p(Y)v= Z an(n+1)vp
p(X)v=> an(m-n+1)v,
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all these vectors are in V;,, again and so p(sl(2,C))V,, c V,,, and we conclude that
dimcV =m+1. Il

The next theorem states that up to equivalence there is only one irreducible repre-
sentation of dimension m + 1.

Theorem 5.16 Let V' be a complex vector space of dimension m+1 for m > 0.
Let {vg,...,vm} be a basis for V. Define a representation p of s{(2,C) on V by

(1) p(H)vn = (m = 2n)on,

(2) p(Y)v, = (n+1)vpq1,
(3) p(X)vn = (m-n+1)vp,

formn =0,...,m and v_1 = vy = 0. This representation is irreducible and any
wrreducible representation of dimension m + 1 is equivalent to this one.

PROOF. It is easy to see that p defined above is indeed a representation. For
the second part of the statement let V be a nonzero subspace of V invariant under
p. Then there is an eigenvector of p(H) in Vj. But since the list of eigenvectors
{vo,...,vm} is complete there must be a 0 < k < m such that v € Vj. But then we
can use the actions of p(Y) and p(X) to see that Vj contains v, for n=0,...m. In
other words Vj = V and p is irreducible. Theorem [5.15] gives that any irreducible
representation of dimension m + 1 is equivalent to this one. Il

Corollary 5.17 Given an irreducible representation of dimension m + 1, p :
sl(2,C) = V let ¢ € V be an eigenvector of p(H) of weight \. Then there exists a
primitive vector ¢g of weight A+ 2r, for an integer r > 0, such that

¢ =p(Y) 9o,

and where
m—r)! -
oo = g,
m!r!
PrOOF. We let {vp,...,v,} be a basis for V as in Theorem then for a fixed

r, 0 <r <m we have

|
p(X) vp=(m=-r+1)(m-r+2)-muyy= Lvo.
(m-r)!
From this we see that
mlr!

PO (X vy = L 2o o =

Now if ¢ is an eigenvector of p(H) then ¢ is a multiple of one of the eigenvectors
{vo,...,um} ie. ¢ =av, so

_ (m - ’I")' r r
6= Ry ey

and defining
~ (m-r)!

do= Tl (xy
m.r:

we see that ¢g is primitive. O
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We will now introduce specific representations for SL(2,C) and sl(2,C) on C?. To
this we consider elements of C? as column vectors and let a basis be given by

1 0
V1,0 = |:0:|, V1,1 = |:1:| .

Then there is a natural action of SL(2,C) on C? by matrix multiplication and we
can define a representation m of SL(2,C) by

m1(g) = (v = gv)

for any v € C? and g € SL(2,C) where the product is matrix multiplication. Let
S™(C?) denote the m-fold symmetric tensor product of C? with itself. We extend
71 by multilinearity to a representation of SL(2,C) on S™(C?), denoted by m,p,.
Note that the dimension of S™(C?) is m + 1E| Moreover we know from Proposition
that the representation 7, induces a representation p,, = dm,, of sl(2,C) on
C* in the following way. Let t —» A; be a path in SL(2,C) such that Ag = I and
% Atlyeo = X. Let v1 ® - ® vy, € S™(C?) then

d
X(v1®--®vpy) = (%At)

(01 ® - ® vpn)
=0

d
= % (At(vl ®-- ®Um))‘ ~
- (A @@ Ao)

ar ! o
:Z(Atvl®---®Atvi®"‘®AtUm)‘t:0

m
=2@1®---®Xvi®-~-®vm.

It follows that p,, is just like 7, the multilinear extension of matrix multiplication,
but in the case of p,, this extension is a derivation. Using the basis of s[(2,C) given
by Equation we obtain

p1(H)vip =01, p1(X)v10=0, p1(Y)vio=v1,1,

with similar results for the other basis vector, from which we see that p; satisfies
the relations of Theorem [5.16| and therefore it is irreducible. For the general case
define

m-k_ .k
Umk = V10 V015 0<k<m

L It is well known that the m — fold symmetric tensor product S™(V)of a n-dimensional vector

n+m-1

space V is given by the binomial coefficient ( which in this case reduces to dim S™(C?) =

( +1)
=m+1
m
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these m + 1 elements form a basis of S™(C?). For this basis we can compute the
following relations:

pm(H ) i = (m = 2k) vy, i 0<k<m,
pm(X)Um,O =0,

pm(Y)Um,m =0,

P (X )V i = kU -1 1<k<m,

P (Y )0 i = (M = k) Uy i1 0<k<m-1.

Using this relations we can express every basis vector vy, j in terms of the action of
Pm ON Uy o(which is primitive), that is vy, 0 generates S™(C?) and therefore p,, is
irreducible and equivalent to the representation in Theorem Set

oK = mekUm,Oa
then repeated use of py, (Y )y k = (M — k) vy, k11 gives

m! -k, k
mvfo V11

and using this definition it is easy to compute the action of the Weyl element w on

¢k>

O =

()0 = s 0) (o750
but 7, (w) was defined to be the multilinear extension of matrix multiplication and
since

T (w)vio = v 1, T (w)vr,1 = v,
it follows that

ml m k!
Wm(w)qbk = ml vO,l kvfo =1 mqu_k

From this we obtain

(5.16) T (W) P (Y )F g = 0™ !Pm(Y)m_k%,

k!
(m—k)
which will be used later in the proof of Lemma Now we consider another explicit
representation of s[(2,C) this time on the exterior algebra of forms on an Hermitian
vector space E. Let E be a fixed Hermitian vector space of complex dimension n
with its algebra of forms AF and operators L and L* as in Section [2 We will write

A=L",
2n

B:=Y (n-p)],
p=0

and we can define a representation « :s[(2,C) - End(AF') by
a(X) =A, a(Y)=1L, a(H) = B.
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To see that this is indeed a representation we have to show that the commutation
relations [B, L] = -2L,[B,A] =2A and [A, L] = B hold. Let v be a k-form then

[B,L]Jv=(BL-LB)v=B(QAv)-L((n-k)v)
=(n-(k+2)QArv-(n-k)QAv
=-2QAv=-2Lv,

which proves the first commutation relation. For the second commutation relation,
[B,A] = 2A note that for a k — form v, the operator B only multiplies v with a
number. Furthermore since A is the adjoint of L it is a homogeneous operator of
degree -2 so we get

[B,AJv=(BA-AB)v=(n-k+2)Av-(n-k)Av
= 2Av.

The third commutation relation [A,L] = B follows immediately from Proposition
.3 so « is a representation.

Definition 5.18. A p-form ¢ € APF is said to be primitive if A¢ = 0.

In the next two theorems we will see that if ¢ is a primitive p-form then the action of
a generates a subspace Fy, ¢ AF of dimension n—p+ 1, on which «a acts irreducibly.
The action of « also leaves the real form AgrF invariant since L, A and B are real
operators. Thus we get a decomposition of AgrF' into irreducible components, which
is compatible with the decomposition F' = & AP? I since L, A and B are bihomoge-
neous. This decomposition is called the Lefschetz decomposition. Furthermore we
know from Proposition that a induces a representation of SL(2,C) on AF wich
we will denote by 7. Also we denote () = max(z,0).

Theorem 5.19 Let E be an Hermitian vector space of complex dimension n.

(1) If ¢ € APF is a primitive p-form, then Li¢p =0, ¢ > (n—p+1)*.
(2) There are no primitive forms of degree p > n.

PROOF. Let ¢ be a primitive p-form and let Fy be the subspace of AF generated
by the action of s[(2,C) on ¢ by the representation o. Then clearly Fy is invariant
under the action of sl(2,C) so « acts irreducibly on Fy. Then using Theorem
we get that a(H )¢ = m¢ where m + 1 = dim Fy. Since a(H) = B = ¥.(n - p)II, we
also have a(H)¢ = (n—p)¢, so m =n —p. Again by Theorem it follows that
a(Y)ip=Li¢ =0 for ¢ > (n—p+1)". The second part of the theorem is a simple
consequence from the fact that dim Fyy =n-p+ 1. O

The next theorem states the Lefschetz decomposition for a Hermitian exterior alge-
bra, as mentioned earlier.

Theorem 5.20 Let E be an Hermitian vector space of complex dimension n,
and let ¢ € APF be a p-form, then
(1) One can write ¢ uniquely in the form

(5.17) 6= 3 L4,

r2(p-n)*
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where each ¢, is a primitive (p — 2r)-form. Moreover, each ¢, can be ex-
pressed in the form

(5.18) ¢r = arsL°A"°0, ars € Q.

(2) If L™ ¢ =0, then the primitive (p—2r)-forms ¢, appearing in the decompo-
sition vanish if r > (p—n+m)*, that is,

(3) If p<n, and L™ Py =0 then ¢ =0.

PROOF. By Proposition [5.11] the representation space V = AF decomposes into
a direct sum of irreducible subspaces, that is V = V; & --- & V. Given a p-form ¢ it
follows that

¢=9! 4o byt
where 7 € V;. Using Corollary and the fact that each v is an eigenvector of
a(H) of weight n — p, we see that

W =Ly
where x; is a primitive (p — 2r;)-form and
(5.19) Xj =AY, e

Collecting primitive forms of the same degree we get a decomposition of ¢ of the
form
¢= Z Lr¢r
r>(n-p)*
where each ¢, is primitive of degree (p—2r). Suppose there is another such decom-
position of ¢ then if we subtract these two we get a decomposition

(520) 0= gﬁo-‘rLgbl +--'+ngbm
where each ¢; is primitive j =0,...,m > 1. From Theorem we know that
(5.21) AR LR = cpo, k=1,...,m

for 0 # ¢, € Q. Now applying A™ to Equation and using Equation we get
the following

0=A"¢o+ A" (AL) ¢1 + -+ A (A" L™ ) oy + AL oy
= Am¢0 + Am_lcl¢1 +oeee Acm—1¢m—l + Cmgbm
= Cm¢m

where we used that all ¢, are primitive. Since all ¢, # 0 it follows that ¢,, = 0
contradicting the assumption that ¢, was primitive. Therefore we conclude that
the decomposition given by Equation [5.17] is unique. To see Equation let a
p-form ¢ have the decomposition

¢=¢o+Lpi+--+ Loy,
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where the ¢; are primitive (p — 2j)-forms. Applying A™ to this equation as before
we get

A"} = cpum
from which it follows that .

¢m = _Amd)

Cm
Using induction from above, which means starting with m and then doing the case
m — 1 etc., we get formulas as in Equation for each ¢;, 7 = 0,...,m. The
second and third part of the theorem are consequences of the uniqueness of the

decomposition in Equation Namely using the first part of the theorem we have
p q Yy g p
OZLmqb:Lm Z Lr¢r: Z Lm+r¢r‘
r>(p-n)* r>(p-n)*

From Theorem and the primitiveness of ¢, it follows that Li¢, = 0 if ¢ >
(n—=(p-2r)+1)" (recall that each ¢, is a (p — 2r)-form). This implies, taking
g=r+m, that L"™"¢, =0 if r+m > (n—p+2r+1)" or equivalently r < (p—n+m).
So we have

0= > L™= > Lig,
r>(p-n+m)* g=(p+2m-n)*
This is a primitive decomposition of the zero form from which it folllows that ¢q_,, =
0 for g > (p+2m—-n)* that is, ¢, =0 for r > (p—n+m)*, as desired. The third part
of the theorem follows as a special case of the second part. O

We will now prove some relations between the operators *, A and L. Let E be an
Hermitian vector space with fundamental form

n
Q= Zx#/\yu
pn=1

as before, where {x,,y,} is again an orthonormal basis for E’. We define for any
p-form n € AF the operator e(n) given by

e(n) =nno.

If n is a real 1-form we have

(5.22) e’ (n) = xe(n) *.
To see this let ¢ € APF and ¢ € AP*'F then

(e(n)¢,£)=[nA¢M£
:(_1)1’/(;5/\;;*177/\;5
= (- [ éns (unasg)
= [ on% ()
= (6, %e(n) *€)

where we used that 7 is real to replace * by * and the sign in front of the integral
goes away because 1 A £ is a 2n — p form. From this computation it is also clear
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that if n is any 1-form, not necessary real then we have e*(n) = *e(n)*. Given an

oriented orthonormal basis {ey,...,ea,} of E’ we have
€iy A A€ if j1 € {j2,...,Jr}
5.23 “(e; A nes )= 2 Tk Y
5:23) (o) (en A ne) {0 el
Note that
L=e(Q) =) e(zu)e(yu),
p=1
A=e"(Q) = Z e (yp)e* (zp).
pn=1

Since € is a 2-form we have
[L,e(n)] =0, for any n e AF
while
[Ae(zu)] =€ (yu)
[Ase(yu)] = —€"(zu)
for p=1,...,n. This can be seen in the following way. To start note that the second

equation follows from the first by reversing the role of z, and y,, in the definition of
the L operator. To see the first equation we write

= 3 e w)e (eeley) - o) 3 e (e ()
p=1 p=1

=e"(y;)e" (z))e(x;) —e(x)) —e(xj)e” (y;)e ()
because, as we know from Equation e(x;) commutes with e*(x,) and e*(y,)
for j # u. Now let ¢ be a given form then

(5.24)

(5.25)

Y=+ Ao+ Yy AP+ AY; Aty
where the 91,2,13 and 14 do not contain any x; or y;. Then it is clear that
[Ase(z;) ]9 =3 — x5 APa
and
e (Y)Y =3 — x5 Aiba

and we are done.
Now let n be a (1,0)-form. Then

(A, e(n)] = —ie”(77)
[A,e(7)] =ie”(n)

This follows from a simple computation. It suffices to consider the special case
n = x; +1y; and using Equation we have

[Ase(zj +iy;)] = [A e(x)] +i[A, e(y;)]
=—i(e" () +ie”(y;))
=—i(e"(xj —1iy;))

(5.26)
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where in the last step we used e*(n) = *e(n)*. The second equation follows in a
similar way. Moreover, if 7 is a real 1-form, then

(5.27) [A,e(n)] = —Je*(n)J_l.

To see this we use the fact that every real 1-form can be written in the form n = ¢+ ¢
where ¢ is a (1,0)-form. This follows easily since every 1-form is the sum of a (1,0)
and a (0,1) form and the requirement that ¢ is real gives that the (1,0) and (0,1)
are each others complex conjugate. Then we have using [5.26

[A, e(n)] = —ie* (6) + ie* (6)
but
~i"(¢) = ~Je* (9)J
ie* (¢) = =Je* (¢)J
so the relation follows.
We introduce the following operator on AF and proof a Lemma showing the rela-

tionship between * and this operator. Define # = m,(w) = exp(%(A +L)). The

following two Lemmas show the relationship between the * and # operators (recall
that J = Y, 7 1, ).

Lemma 5.21 Let n be a real 1-form. Then
#e(n)# = —iJe ()]

Proor. We define

et(n) = exp(it(A+ L)) - e(n) - exp(-it(A + L))
and note that e%(n) = #e(n)# 1 and eo(n) = e(n). Now let A and B be operators
then using exp(A) =Y, % we get

2 2
eABe_A:(1+A+A7+...)B(1+A+A7+...)

k . .
:B+AB—BA+l(A2B—2ABA+BA2)+.-.+lz(’?)Ak-lBAu...
2! k=g \e
= B+ [A, B+ oA LA, B]] + S [A[A[4,B])] +..
So defining
ad(X)Y = [X,Y]

for operators X and Y we obtain

o0

(5.28) cn) = 3 rad® ([it(A+ D)) e(r).
k=0 "*

We know that AL = LA + B and ade(n) = 0. Also since 7 is of degree 1 we have

ad(-B)e(n) = e(n). Combining this with the fact that ad®(A + L) is a sum of
monomials in ad(A) and ad(L) we see that we get

e(n) = f(;)ak(w ad®(A)e(n)



3. REPRESENTATIONS OF sl((2,C) ON HERMITIAN EXTERIOR ALGEBRAS 63

with ag(t) real analytic functions in ¢. Since A commutes with J and e*(n) we see,
using Equation that

(5.29) er(n) = ao(t)e(n) + a1 (t) ad(A)e(n).

Differentiating Equation [5.28| with respect to ¢ we obtain the following differential
equation for e;(n)

er(n) =i(ad(A+L))e(n)
eo(n) = e(n)
which we can solve using Equation Namely
er(n) = ag(t)e(n) +aj(t) ad(A)e(n)
and according to the differential equation this must be equal to
i(ad(A+L)) [ao(t)e(n) + a1 (t) ad(N)e(n)] = iao(t) ad(A)e(n)+iar (t) ad(L) ad(A)e(n)
where we used the fact that ad?(A)e(n) = 0 andad(L)e(n) = 0. However
ad(L)ad(A)e(n) =ad([L,A]) + ad(A)ad(L)e(n)
=ad(-B)e(n) = e(n)

(5.30)

so we obtain

ag(t)e(n) +ay(t) ad(A)e(n) = iao(t) ad(A)e(n) +iai(t)e(n)
which implies

ab(t) = ias (t),
a} (1) = iao (1),

So we let ag(t) = cos(t),ai(t) =isin(t) and we conclude that

(5.31) er(n) = cos(t)e(n) +isin(t) ad(A)e(n)

is the unique solution to the differential equation. Taking ¢ = 7 gives
ez =il e(n)]

which proves the Lemma using Equation

Lemma 5.22 Let ¢ € APF. Then
+p =T 4.

PROOF. For the *-operator we have the following relations when = is acting on
p-forms

1
(5.32) *1=vol = —'L"(l)7
n!

(5.33) *e(n) = (=1)Pe"(n)x,
where 7 is a real 1-form. Relation is clear. To see relation let ¢ € APE be
given then,

xe(n)g = *e(n) »w* ¢ = (-1)*"Pe*(n) * ¢ = (-1)Pe* (n) * ¢.
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Since any form in AF can be obtained by repeated application of e(n) to 1 (for
differen 7) we get that * is the only operator satisfying and We now

define an operator * on AP by
F=iP gy
and show that it satisfies and and therefore equals *. Using Equation [5.16

we obtain

(5.34) #a(Y)rpy =i™

(= F)

where ¢q is primitive of weight m. But ¢g = 1 is a primitive 0-form of weight n so
we get using Equation in the case k=0

-1

#1="1"(1).

n!

a(Y)™ F ey

Therefore
- "
*1=4"—L"(1) =vol.
n!

Also, for n e /\]ﬁF, and ¢ € APF| we get
ke(n)g =i T e (n)o
=P ()P e (n)# #

= P (1)Pe () T H G
= (-1)Pe* (n) %9,

from which we conclude that [5.33] also holds for ¥. Thus * = %.

4. Differential Operators on a Kahler Manifold

In section [I] we saw that given a Hermitian complex manifold X with an Hermitian
metric h we have an associated fundamental form €2 as in Equation [5.5

Definition 5.23. A Hermitian metric h on X is called a Kdhler metric if the
fundamental form 2 associated with h is closed, that is df2 = 0.

Definition 5.24. A complex manifold X is said to be of Kdhler type if it admits
at least one Kéahler metric. A complex manifold equipped with a Kéhler metric is
called a Kdhler manifold.

In our study of Kéhler manifolds we will make use of the following Laplacian oper-
ators,

A =dd* +d*d,
0=080" +90,
O=00"+0"0.



4. DIFFERENTIAL OPERATORS ON A Kéhler MANIFOLD 65

We will also make use of the following operators
d.=J7rdJ =wJdJ,
d=Jd* T =wJd*J.

These are real operators. Let ¢ be a (p,q)-form then we have
dep =wJdJ o
= (1) (96 + 99)
- (_1)p+q+12~p—q(ip+1—q3¢ + ip—q—1§¢)
— (_1)p+q+12~p—q+p+1—q(a¢ _ 5¢)
- (ST i(06 - 99)

= _Z(a - 6)¢7
from this it follows immediately that
(5.35) dd. = 100 —i00 = 2i00,

which is a real operator of type (1,1) acting on differential forms in £*(X).

Theorem 5.25 Let X be a Kdhler manifold. Then

(1) [L,d]=0,[L*,d*]=0.
(2) [L,d*]=d.,[L*,d] =-d.
PRrROOF. For part let ¢ be a p-form then we compute
(Ld—dL)p=QAdp—d(Q2Ad) =QAdd—dQUAp—QAd,

and since df) = 0 by the Kahler assumption, the sum is zero. The second part of
is just the adjoint statement of the first part. Similarly the second statement of
part is the adjoint of the first statement, so we will only show that

L*d-dL* =-J'd*J,
from Proposition [5.6 we see that when acting on p-forms,
4 = (~1)P* v d L,
Let ¢ be a p-form then we get the following two identities from Lemma
#o =i P % 6,
#lo=" "1,
Therefore we see that
#d#—1¢ _ i—(2n—p+1)2+nip2—nj wdx) J—1¢
=P T xd+"t T
=iJ ((-1)P ! xdx"t) gt
=iJd*J "¢

(5.36)
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where the last step follows again from Proposition Now we repeat the technique
used in the proof of Lemma Let

dy =exp[it(A+ L)]odoexp[-it(A+L)],

then we have again

di = ;;) o ad® [it(A + L)] d.
Also note that dz = #d#7. As before ad®(A + L) is the sum of monomials in ad(A)
and ad(L) but from the K&hler condition (according to theorem [5.25) follows that
ad(L)d =0 so we get

[ee]

(5.37) di = > ag(t)ad®(A)d.

k=0
From the relation in Lemma [5.22] between * and # it follows that dz = #d#! is
an operator of degree —1. Since there is only one term in Equation which has
degree —1 we get that
(5.38) ds = al(g) ad(A)d.

Now we can combine and to conclude that iJd*J™!' is proportional to
ad(A)d, and hence ad® Ad = 0 for k > 2 since A commutes with d* and J. So just as
in the proof of Lemma [5.21] we get

di = aog(t)d + aq(t) ad(A)d,
from which we get
d; = cos(t)d + isin(t) ad(A)d.
Letting ¢ = § and using that Jd*J ~1 = —J7'd*J concludes the prove.

Corollary 5.26 Let X be a Kdhler manifold. Then
[L,d.]=0, [L*,d:]=0, [L,d;]=-d, [L*,d.]=d"

c

PRrROOF. From Proposition that J commutes with L and L*. Also it can be
seen directly from the definition that (d.). = —d and (d}). = —d*. Then the corollary
follows directly from Theorem [5.25 U

Corollary 5.27 Let X be a Kdhler manifold. Then
[L,0]=[L,0]=[L*,0*]=[L*,0%]=0,
(5.39) [L,0%]=1i0, [L,0*]=-i0,

[L*,0] =i0%, [L*,0]=-i0",

d*d.=-d.d* = d*Ld* = -d.L*d,,
dd} = —d*d = d}Ld} = -dL*d,
00" = -0*0 = —i0"LO* = —idL*0,
00" = -0*0 =i0*LO* =i0OL*0.

(5.40)
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PRrROOF. The Equations in [5.39| are a direct result of Theorem by using
d. = i(0 — 0) and comparing bidegrees. The equations can all be seen in a
similar way, for example using d* = [L*,d.] we get

d*d.=L"d.d.-d.L"d. =-d.L"d.,
-d.d* =-d.L*d. +d.d.L* = -d.L"d,.

Using the other commutation relations the relations follow. O

With this result we can prove a very important theorem about the Laplacian oper-
ators we introduced earlier on Ké&hler manifolds.

Theorem 5.28 Let X be a Kdhler manifold. If the differential operators d,d*,0,0*,0,0*,0,0
and A are defined with respect to the Kdhler metric on X. Then

[A+]=[A,d]=[A,L]=0
and
A =20=20.
In particular,

(1) O and O are real operators.
(2) Algpq: EPT - EPT,
PRrOOF. To see that [A,d] = 0 note that
Ad=dd"d+d*dd =dd"d = ddd* + dd"d = dA.

Using Proposition it follows that [A, *] = 0. Now we prove that [A, L] =0. We
have, using [L,d] = 0 and Theorem

AL- LA =dd*L +d*dL - Ldd* = Ld*d
=dd*L +d*Ld - dLd* - Ld*d
= —d[L,d*]-[L,d*]d
= —dd, — d.d.

But from Equation it follows that dd. = —d.d and so we conclude [A, L] = 0.
To see the relations between the Laplacian operators we use Corollary to write

A=dd*+d*d=d[L*,d.]+[L*,d.]d
=dL*d. - dd.L" + L*d.d — d.L*d.
Now multiplying from the left with J and from the right with J~! we obtain
Ac.=-d. L +d.dL” — L*dd. + dL*d..
But A. = A since, as we saw earlier, dd. = —d.d. Note that
d+id.=0+0-i*(0-09) =20
from which it follows that
4(00* +070) = (d +id.)(d" —id}) + (d* —id)(d +id,)
= (dd* +d*d) + (ded) + dd.) +i(d.d* +d*d.) —i(dd}; + d.d).
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Now using Corollary we get that the last two terms vanish. Also we have
A=A =J AT =7 dd* T + T d*dJ = dod) + dd.

combining this we conclude
4n0=A+A=2A

so 20 = A. The second relation follows analogously. Since A is a real operator so
are O and O and since O is of bidegree (0,0) so is A. This concludes the proof.
O

Corollary 5.29 On a Kdihler manifold, the operator A commutes with J, L*,d,,d,0*
and d*.

From Theorem [5.28 we see that on a Kéhler manifold A-harmonic differential forms
are the same as O-harmonic and O-harmonic forms. We will call these harmonic
forms on X and denote them by H"(X) and HPY(X). The primitive harmonic
r-forms shall be denoted by Hj(X) = ker L* : H"(X) - H"%(X) and the prim-
itive harmonic (p,q)-forms shall be denoted by HE?(X) = ker L* : HPI(X) —
HPL971(X). Note that these maps are well defined since A commutes with L*.

Corollary 5.30 On a compact Kihler manifold X there are direct sum decom-
positions:

()= Y LX),

s2(r-n)*
j{p:(I(X) — Z Lsi}_cg—s,q—s.
s2(p+q—n)*
PROOF. Let ¢ € H"(X) then we know from Theorem that
¢= E Ls¢s
s2(r-n)*

where for each s > (r—n)*, ¢s is a primitive (r — 2s)-form. Since A commutes with
L and L* it follows from Equation that

A¢s = apLFL*k+sAd =0
k

since ¢ € H"(X) but this implies that ¢5 € H"™** and it is in K} > since ¢ is
primitive. Since ¢ was arbitrary we conclude

H(X)= > LK *(X).

s2(r-n)*
The second statement is proven similarly. O
Corollary 5.31 Let X be a compact Kdhler manifold, then
L"P = ¢(Q)"P: HP(X,C) » H*P(X,C)
18 an iromorphism, where €0 is the Kdahler form on X.

PROOF. We represent the cohomology groups by harmonic forms. It follows
from Corollary that L™P is surjective and from Theorem that L™P is
injective. Il
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5. The Hodge Decomposition Theorem on Compact Kahler Manifolds

We are now in the position to prove the central theorem of this thesis, the Hodge
Decomposition Theorem. The proof will be surprisingly short but it is important to
realize how much work we have done in order to be able to present such an elegant
proof. Let X be a compact complex manifold. We then have the de Rham groups
on X, represented by d-closed forms, and which we will denote here by H"(X,C).
We also have the the Dolbeault groups on X, represented by 0-closed forms, which
we will denote here by HPY(X). In general it does not have to be the case that
d-closed forms are 0 closed or vice versa, however on Kahler manifolds we have that
this is indeed the case, as is stated in the following theorem.

Theorem 5.32 Let X be a compact complex manifold of Kahler type. Then
there is a direct sum decomposition
(5.41) H"(X,C) = 2 HP1(X)
pt+q=r
and, moreover,
(5.42) HP(X) = HTP(X).

PROOF. Since we can represent cohomology by Harmonic forms it is enough to
show
H'(X) = Z HPI(X).
p+q=r
To see this, let ¢ € H"(X). This implies that A¢ =0 but since A = 20 we get G¢ = 0.
Writing out ¢ in bihomogeneous terms we get

O =T¢"0 +---+Tp"".

Since T preserves bidegree it follows that T¢™" = --- = G¢"" = 0. Thus we have a
map
THN(X) > Y HPI(X),
p+q=r
defined by
o (60, 0"7).

It is easy to see that this map is injective. To see it is surjective let ¢ € HP4(X)
then O¢ = %Aqﬁ = 0 which implies that ¢ € H?*9(X) and so 7 is surjective. The
second statement of the Theorem follows from the fact that O is a real operator and
complex conjugation is an isomorphism from &P to £7P. O

Now we have proved our most important theorem we conclude with some direct
consequences. Recall the definitions of the Betti numbers b,(X) = dim¢ H" (X, C)
and the Hodge numbers h?9(X) = dimg H?9(X). We get the following Corollary
from the Hodge Decomposition Theorem.

Corollary 5.33 Let X be a compact Kdhler manifold. Then
(1) bT(X) = Zp+q:7‘ hp,q(X).
(2) hP9(X) = h?P(X).
(3) by(X) is even when q is odd.
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