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Introduction

This text is written as my thesis for the bachelor program of mathematics and
physics at Utrecht University. The content of the thesis was supposed to be that
of a masters course and the reader is assumed to have followed an introductory
course in Differential Geometry. The main source of information for this thesis was
the book Differential analysis on complex manifolds by Raymond O. Wells and the
explanation of Gil Cavalcanti about the subjects covered. The aim of this thesis is
to proof the Hodge Decomposition Theorem which says that the de Rham groups
can be written as the direct sum of the Dolbeault groups of the same total degree.
The organization of the thesis is as follows. We will start by recalling the basic
definitions of manifolds and vector bundles in the first chapter. We assume the
reader to be familiar with the most of this. Also we introduce the concepts of
almost complex and complex structures and differential forms of type (p, q). We
finish the chapter with a discussion of integrability and the Newlander-Nirenberg
theorem.
In the second chapter we define sheaves and presheaves. We will skip most of
the details regarding this subject and state the most important results mainly for
completeness and to define the cohomology in a rather general way, which has some
advantages. For the skipped proofs and details we refer the reader to [4]. We will
also give some explicit representations of these cohomology groups in some given
geometric situations.
The third chapter is concerned with the local description of vector bundles and
sections of vector bundles. These are used to define Hermitian metrics and inner
products, concepts which are well known from the classical Rn case, in the more
general setting of complex manifolds.
In the fourth chapter we will again skip most of the details (here we also refer
the reader to [4] for the details) since the theory of pseudodifferential operators
is much too big to treat in this thesis. The main results from this chapter are
that it is possible in the various cases we are interested in to represent the earlier
defined cohomology groups in terms of harmonic functions, which are defined to be
the kernel of elliptic operators. We will treat in detail the representation of these
cohomology groups because they will play an important role in the proof of the
Hodge Decomposition Theorem.
In the fifth chapter we will apply the results of the previous two chapters to the
study of compact complex manifolds. The most important results in the first part
of the chapter are the two duality theorems known as Poincaré and Serre duality.
The biggest part of the fifth chapter is concerned with representation theory and a
specific representation of sl(2,C) which gives us the last results needed for the proof
of the decomposition theorem. After this we define what it means for a manifold
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2 INTRODUCTION

to be of Kähler type. These type of manifolds are the setting in which the Hodge
decomposition holds. We end the chapter by giving a rather short proof of the
Hodge Decomposition Theorem, which is possible by the work done in the previous
chapters, and state some of its direct consequences.



CHAPTER 1

Manifold & Vector Bundles

In this first chapter we will be concerned with the basic definitions and concepts
used in the rest of the text. Since we assume the reader to be familiar with concepts
such as manifolds, differential forms on differentiable manifolds and partitions of
unity, the goal of the first part of the chapter is to introduce notation. We will
start by recalling the definitions of differentiable and complex manifolds and vector
bundles over manifolds. After this we will introduce almost complex structures
and differential forms of type (p, q). We finish the chapter with a discussion of
integrability and the Newlander-Nirenberg theorem.

1. Manifolds & S-structures

We will begin with some basic definitions. As usual let R and C denote the field
of real and complex numbers and we write K if we want to denote either of these
fields. Given an open D ⊂ Kn we have the following K-vector spaces of functions on
D:

● K = R We let E(D) denote the real valued smooth (differentiable) functions
on D. That is, f ∈ E(D) if and only if f is a real valued function and the
partial derivatives of all order exist and are continuous at every point in D.

● K = C We let O(D) denote the complex valued holomorphic functions on
D. That is, f ∈ O(D) if and only if f can be represented by a convergent
power series around every point of D.

If we want to denote either of these families of functions, we write S. For the elements
of S on an open D ⊂ Kn we write S(D).

Definition 1.1. A topological n-manifold is a Hausdorff topological space with a
countable basis which is locally homeomorphic to an open subset of Rn. The integer
n is called the topological dimension of the manifold.

Definition 1.2. An S-structure, SM on a K-manifold M is a family of K-valued
continuous functions defined on the open sets of M such that the following holds.

(1) For every p ∈ M , there exists an open neighborhood U of p and a homeo-
morphism h ∶ U → U ′, where U ⊂ Kn is open, such that for any open set
V ⊂ U

f ∶ V → K ∈ SM if and only if f ○ h−1 ∈ S(h(V )).

(2) If f ∶ U → K, where U = ⋃iUi with Ui open in M , then f ∈ SM if and only
if, f ∣Ui ∈ SM for all i.
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Definition 1.3. A manifold M with a S-structure is called an S-manifold and is
denoted by (M,SM). The elements of SM are called S-functions on M . If N is a
subset of M then a S-function on N is defined to be the restriction of an S-function
defined on some open containing N .

We denote by SM ∣N all functions on relatively open subsets of N which are re-
strictions of S-functions on open subsets of M . An open subset U ⊂ M and a
homeomorphism h ∶ U → U ′ ⊂ Kn as above is called an S-coordinate system. A
collection {(Uα, hα)}α∈A is called an atlas for M .
For the classes of functions defined above we have the following names for the S-
manifolds:

● S = E: differentiable (or smooth) manifold and EM is called a differentiable
structure. The functions in E are called C∞ or smooth functions on open
subsets of M .

● S = O: complex manifold and OM is called a holomorphic structure. The
functions in O are called holomorphic functions on open subsets of M .

Now we have defined manifolds with some structure on them we can define maps
between manifolds preserving this structure.

Definition 1.4. An S-morphism F ∶ (M,SM)→ (N,SN) is a continuous map from
M to N , such that

f ∈ SN implies f ○ F ∈ SM .
An S-isomorphism is an S-morphism F ∶ (M,SM)→ (N,SN) such that F is a home-
omorphism and F−1 ∶ (N,SN)→ (M,SM) is also a S-morphism.

Given an S-manifold (M,SM) and two coordinate systems, h1 ∶ U1 → Kn and h2 ∶
U2 →Kn such that U1 ∩U2 ≠ ∅ then it follows that

(1.1) h2 ○ h−1
1 ∶ h1(U1 ∩U2)→ h2(U1 ∩U2)

is an S-morphism on open subsets of (Kn,SKn). To see this note that if we are given
f ∈ SKn , then f ○ h2 ∈ SM by Definition 1.2 (1) since f ○ h2 ○ h−1

2 = f ∈ SKn . By the
same definition, we have f ○h2 ○h−1

1 ∈ SKn . Conversely, assume we are given an open
cover {Uα}α∈A of a topological manifold M and a set {hα ∶ Uα → V ⊂ Kn}, such that
for every α,β ∈ A we have hα ○ h−1

β is an S-morphism. We can pull S back by the

{hα}α∈A to obtain a S-structure on M. That is, we define SM to be {f ∶ U → K} such
that U ⊂M is open, and f ○ h−1

α ∈ S(hα(U ∩Uα)) for all α ∈ A.
Just as in the case of the S-structures we have the following special names for the
S-morphisms and the S-isomorphisms respectively:

● S = E: differentiable (smooth) mapping and diffeomorphism.
● S = O: holomorphic mapping and biholomorphism.

2. Vector bundles & bundle maps

Definition 1.5. A K-vector bundle of rank r is a surjective continuous map π ∶
E → X from a Hausdorff space E, the total space, onto a Hausdorff space X, the
base space, which satisfies the following conditions.

(1) For all p ∈X the fiber over the basepoint p, Ep ∶= π−1(p), is a K-vector space
of dimension r.
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(2) For all p ∈ X there is a neighbourhood U of p and a homeomorphism
h ∶ π−1(U)→ U ×Kr that preserves basepoints, i.e. h(Ep) ⊂ {p} ×Kr.

(3) For all u ∈ U the composition hu ∶ Eu
hÐ→ {u} × Kr proj.

ÐÐ→ Kr is a K-vector
space isomorphism.

A pair (U,h) is called a local trivialization. If E and X are S-manifolds, π is an
S-morphism and the local trivializations are S-isomorphisms we call π ∶ E → X an
S-bundle.

Definition 1.6. Let E
πÐ→ X be an S-bundle. Then a S-subbundle, F ⊂ E is a

S-submanifold that satisfies the following condition:

(1) F ∩Ex is a vector subspace of Ex.
(2) π∣F ∶ F → X has an S-bundle structure induced by the S-bundle structure

of E.

The second condition means that there exist local trivialization such that the fol-
lowing diagram commutes.

E∣U U ×Kr

F ∣U U ×Ks

≅

i id × j
≅

Here we have that s ≤ r, i is the inclusion map of F in E and j is the inclusion map
of Ks as subspace of Kr.
Again we have the following special names for S-bundles

● S = E: differentiable vector bundle.
● S = O: holomorphic vector bundle.

From Definition 1.5 we see that if we are given two local trivializations (Uα, hα) and
(Uβ, hβ) we get from the map

hα ○ h−1
β ∶ π−1(Uα ∩Uβ) ×Kr → (Uα ∩Uβ) ×Kr

an induced map
gαβ ∶ Uα ∩Uβ → GL(r,K)

called a transition function, defined by

gαβ(p) ∶ hpα ○ (h
p
β)

−1 ∶Kr →Kr.

The transition functions satisfy the following conditions which follow immediately
from the definition,

gαγ ○ gγβ ○ gβα = Ir on Uα ∩Uβ ∩Uγ(1.2)

gαα = Ir on Uα.

Conversely if we are given a manifold M with an open cover U = {Uα}α∈A where
we have given for every nonempty intersection Uα ∩ Uβ an S function gαβ which
satisfy equation 1.2, we can construct a vector bundle having the gαβ as transition
functions. We define

Ẽ = ⊍
α∈A

Uα ×Kr
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equiped with the natural topology and S-structure. We define an equivalence relation
on Ẽ by

(x, v) ∼ (y,w) for (x, v) ∈ Uα ×Kr and (y,w) ∈ Uβ ×Kr

if and only if
x = y and w = gβαv.

By condition 1.2 we see that v = Irv = gααv. Also, given w = gβαv and u = gγβw we
get by the same condition that v = Irv = gαγgγβgβαv = gαγgγβw = gαγu from which it

follows that u = gγαv. Therefore we have, using g−1
βα = gαβ, v ∼ w implies w ∼ v, v ∼ v,

and v ∼ u whenever u ∼ w and w ∼ v so the equivalence relation is well-defined.
Now let E = Ẽ/ ∼, the set of all equivalence classes, equipped with the quotient
topology and we let π ∶ E →M given by the projection E ∋ [(p, v)]↦ p ∈M . To see
that E also has a S structure we note that we can use the S structures on M (and
thus on the Uα‘s ) and Kr to get coordinate functions that satisfy condition 1.1 and
these give then the S structure on E. From this it follows that the E constructed is
actually a S-vector bundle.
Given a differentiable manifold M , we define

EM,p ∶= limÐ→
p∈ ⊂
open

M

EM(U)

to be the algebra of germs of smooth functions at the point p ∈ M . An element
of EM,p is called a germ of a smooth function at p. We could also have defined
two smooth functions, f and g to be equivalent whenever they coincide on some
open neighborhood of p and take the set of equivalence classes. It is clear that
EM,p is an algebra over R under pointwise multiplication and addition of (in the
second definition representatives of) smooth functions. Now we define the tangent
space, TpM to M at the point p to be the set of all derivations of EM,p. Recall
that a derivation D ∶ E → R of the algebra EM,p is a homomorphism satisfying,
D(fg) = f(p)D(g) +D(f)g(p). See for example [2,3].
Since M is a differentiable manifold we can find a diffeomorphism h ∶ U → Rn on an
open neighborhood U of p. We let h∗ and h∗ denote the pullback and push forward
by h respectively. Then it is well known that , denoting by xi the standard coordinate
functions in Rn, the set of derivations { ∂

∂x1
. . . ∂

∂xn
} form a basis for Th(p)Rn and that

h∗ ∶ TpM
≅Ð→ Th(p)Rn is an isomorphism. So we have that at each point p ∈ M the

tangent space TpM is a vector space with the same dimension as the manifold.

Definition 1.7. Let f ∶M → N be a smooth map between differentiable manifolds.
The differential mapping of f at p is the linear map

df ∶ TpM → Tf(p)N

defined by
df(v)(g) = v(g ○ f)

for v ∈ TpM and g ∈ EN,f(p).

Now we construct the tangent bundle, let

TM = ⊍
p∈M

TpM

with the natural projection π ∶ TM →M defined by π(v) = p if v ∈ TpM .
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Let {(Uα, hα)}α∈A be an atlas for M and denote TUα = π−1(Uα). We know from the
definition of the differential that for v ∈ TUα we have

dhα(v) =
n

∑
i=1

vi(p)
∂

∂xi
∣
hα(p)

∈ Thα(p)R
n.

We define

ψα ∶ TUα → Uα ×Rn

by

ψα(v) = (p, v1(p), . . . , vn(p))
for v ∈ TpM ⊂ TUα. It is clear that ψα is a fiber preserving bijection. With the same

notation as in Definition 1.5 we define ψpα ∶ TpM
ψαÐ→ Uα ×Rn

proj.
ÐÐ→ Rn which clearly

is a vector space isomorphism. Now we can define transition functions

gαβ ∶ Uβ ∩Uα → GL(n,R)
by

gαβ(p) = ψpα ○ (ψ
p
β)

−1 ∶ Rn → Rn.
From the above expressions for ψα in local coordinates it is clear that the gαβ are
smooth functions on Uα ∩ Uβ. We give TM the topology where U ⊂ TM is open if
and only if ψα(U ∩ TUα) ⊂ Uα ×Rn is open for all α. This is well defined since the
gαβ are smooth and therefore

ψα ○ ψ−1
β ∶ (Uα ∩Uβ) ×Rn →∶ (Uα ∩Uβ) ×Rn

is a diffeomorphism for any α and β. With this topology TM becomes a differentiable
vector bundle where the projection π and the local trivializations {(Uα, ψα)} are
smooth maps.
Analogously if we let (X,Ox) be a complex manifold of complex dimension n, we let

OX,x ∶= limÐ→
x∈U ⊂

open
X

O(U)

be the C algebra of germs of holomorphic functions at x ∈ X and let TxX be the
holomorphic (or complex) tangent space of X at x, consisting of all the derivations of

OX,x. The set of derivations { ∂
∂z1

, . . . , ∂
∂zn

} form a basis for TxX and in the same way

as before we can make TX into a complex vector bundle, with all fibers isomorphic
to Cn.
Next we introduce the notion of maps between S bundles.

Definition 1.8. Let πE ∶ E →X and πF ∶ F →X be S-bundles over X. Then,

(1) a homomorphism of S-bundles f ∶ E → F is a fiber preserving S-morphism
of the total spaces, which is K-linear mapping on each fiber.

(2) a isomorphism of S-bundles is a fiber preserving S-isomorphism of the total
space, which is a K-linear isomorphism on each fiber.

For bundles over different base spaces we have:

Definition 1.9. Let πE ∶ E → X and πF ∶ F → Y be two S-bundles over different
base spaces. Then an S-bundle morphism is an S-morphism of total spaces f ∶ E →
F which is a K-linear map between the fibers. This induces an S-morphism of
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base spaces f̃ , defined by f̃(πEe) = πF (f(e)), which makes the following diagram
commutative.

E F

X Y

f

πE πF
f̃

Note that taking X = Y and f̃ = Id reduces to Definition 1.8.

Proposition 1.10 Given an S-morphism f ∶X → Y and an S-bundle π ∶ E → Y ,
then there exists an S-bundle π′ ∶ E′ →X and an S-bundle morphism g such that the
following diagram commutes.

E′ E

X Y

g

π′ π
f

Moreover, E′ is unique up to equivalence. We call E′ the pullback of E by f and
denote it by f∗E.

Proof. Define

E′ = {(x, e) ∈X ×E∣f(x) = π(e)}.
We have the natural projections π′ ∶ E′ → X defined by (x, e) ↦ x and g ∶ E′ → E
defined by (x, e) ↦ e. Since each Ef(x) is a K- vector space we can make each

E′
x = {x} × Ef(x) into a K-vector space. Given a local trivialization (U,h) of E

which by definition says that

E∣U
hÐ→ U ×Kn

then it is clear that

E′∣
f−1(X) Ð→ f−1(U) ×Kn

is a local trivialization of E′. To see the uniqueness suppose that another bundle
π̃ ∶ Ẽ →X and a bundle morphism g̃ ∶ Ẽ → E are given and that again the following
diagram commutes.

Ẽ E

X Y

g̃

π̃ π
f

Define h ∶ Ẽ → E by

h(ẽ) = (π̃(ẽ), g̃(ẽ)) ∈ {π(ẽ)} ×E.
This is a bundle homomorphism since by commutativity we have f(π̃(ẽ)) = π(g̃(ẽ))
and therefore h(ẽ) ∈ E′. Since h is also an isomorphism on fibers it is a bundle
isomorphism. �
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Let E
f
Ð→ F be a vector bundle homomorphism of K vector bundles over a space X

then we define

Ker f = ⊍
x∈X

Ker fx

Im f = ⊍
x∈X

Im fx

where fx = f ∣Ex .
Suppose now that we have a sequence of vector bundle homomorphisms over the
same base space X,

. . .Ð→ E
f
Ð→ F

g
Ð→ GÐ→ . . .

then we say the sequence is exact at F if Ker g = Im f . A short exact sequence of
vector bundles is defined to be a sequence of vector bundles of the form,

0Ð→ E′ fÐ→ E
g
Ð→ E′′ Ð→ 0

which is exact at E′,E, and E′′. It then follows that f is injective, g is surjective
and Im f = Ker g is a subbundle of E.
Given two vector spaces A and B, we can combine them to form new vector spaces.
Some of the important examples include:

● A⊕B , the direct sum.
● A⊗B, the direct product.
● ∧kA, the antisymmetric tensor product of degree k.
● Sk(A), the symmetric tensor product of degree k.

Since the fibers of vector bundles are vector spaces we can extend the above con-
structions to vector bundles (over the same base space) by performing them fiber
wise. For example, given two vector bundles πE ∶ E → X and πF ∶ F → X then we
define

E ⊕ F = ⊍
p∈X

Ep ⊕ Fp

with the projection π ∶ E⊕F →X given by π(v) = p if v ∈ Ep⊕Fp. It is clear that we
can also extend the local trivializations and transition functions thus E⊕F becomes
a vector bundle. Moreover if E and F are S-bundles E⊕F will also be an S-bundle.
Using vector bundles we can generalize the notion of a function in the following way.

Definition 1.11. An S-section of a S-bundle E
πÐ→ X is an S-morphism s ∶ X → E

satisfying

π ○ s = 1X ,

which says that s maps a point x ∈X to Ex the fiber over x.

We denote the S-sections of E over X by S(X,E), the sections of E∣U over U ⊂ X
will be denoted by S(U,E). Consider the trivial bundle M ×R over M . Then we can
identify E(M,M ×R) with E(M), the smooth real valued functions on M . Similarly
we can identify E(M,M ×Rn) with the smooth vector valued functions on M . As we
have seen arbitrary vector bundles are locally of the form U ×Rn thus we can view
sections locally as vector valued functions. Since two different local representations
of a vector bundle are related by transition functions we can view sections of vector
bundles as “twisted” vector valued functions.
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The fact that the fibers of vector bundles are vector spaces also makes it possible
to make S(X,E) into a vector space under pointwise addition and multiplication by
scalars, that is:

(1) For s, t ∈ S(X,E) we define (s + t)(x) ∶= s(x) + t(x) for all x ∈X.
(2) For s ∈ S(X,E), λ ∈ K and x ∈X we define (λs)(x) ∶= λs(x) for all x ∈X.

If we consider the tangent bundle TM
πÐ→ M we can use the remarks above to

construct some important examples of vector bundles:

● The cotangent bundle, T ∗M , whose fiber at x ∈ M is given given by the
R-linear dual space to TxM .

● The exterior algebra bundles, ∧pTM,∧pT ∗M whose fiber at x ∈M is given
by the antisymmetric tensor product (of degreep) of TxM and T ∗xM respec-
tively.

● The symmetric algebra bundles, SkTM and SkT ∗M whose fiber at x ∈M
is given by the symmetric tensor product of TxM and T ∗xM respectively.

We define the smooth differential forms of degree p on the open set U ⊂M to be the
smooth sections of the exterior cotangent bundle of degree p denoted by

Ep(U) = E(U,∧pT ∗M))

on which, as usual, we can define the exterior derivative

d ∶ Ep(U)→ Ep+1(U),

see for example [2,3]. Related to sections of vector bundles is the notion of a frame of
a vector bundle, which we will later use to obtain local representations for differential
forms.

Definition 1.12. Let an S bundle E → X of rank r and an open U ⊂ X be given.
Then a frame for E over U is a set of r S-sections {s1, . . . , sr} that form a basis for
Ex for any x ∈ U .

We note that any S bundle, E → X has a local frame. Moreover the existence of a
local frame is equivalent to the existence of a local trivialization and the existence
of a global frame is equivalent to the bundle being trivial. To see this let U be a
trivializing neighborhood for E, then we have

h ∶ E∣U → U ×Kr

which induces an isomorphism

h∗ ∶ S(U, E∣U)→ S(U,U ×Kr).

It is clear that the set of vector valued functions ei ∶ U → U ×Kr where ei is the i-th
(constant) coordinate functions form a frame for U ×Kr. Since h∗ is an isomorphism
on fibers it follows that {h−1

∗ (ei)} form a frame for E∣U . Conversely given a local
frame {wi} for E∣U it is easy to see that the map

r

∑
i=1

αiwi(x)↦ (x,α1, . . . , αr)

sending ∑ri=1 αiwi(x) ∈ Ex ⊂ E∣U to an element of U×Kr defines a local trivialization.
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3. Almost Complex Manifolds & ∂̄ Operator

Let V be a real vector space then it is possible to construct from V a complex vector
space, the complexification of V , denoted by Vc, in which we can multiply vectors
in V with complex scalars. The complexification of V is given by V ⊗R C, where
multiplication by complex numbers is defined by λ(v ⊗ z) = v ⊗ (λz). Since Vc is
obtained by tensoring a real vector space with the complex numbers, we also have
a complex conjugation on Vc defined by v ⊗ z = v ⊗ z , for v ∈ V and λ, z ∈ C. Note
that V sits inside V ⊗RC if we identify v with v⊗1 and that given a basis {v1 . . . vn}
of V the elements {v1 ⊗ 1, . . . vn ⊗ 1, v1 ⊗ i, . . . vn ⊗ i} form a basis for V ⊗R C over
the reals. It follows that dimC V ⊗ C = dimR V and dimR V ⊗ C = 2 dimR V . Given
a R linear map f ∶ V → V this extends to a C linear map f̃ ∶ V ⊗R C → V ⊗R C by
defining f̃(v ⊗ z) = f(v)⊗ z for v ∈ V and z ∈ C.
Now let V be a real vector space and assume that we are given an R linear isomor-
phism J ∶ V → V with the property that J2 = −I. We call J a complex structure on
V . In this case there is another way to make V into a complex vector space. Namely
define multiplication by complex scalars z = α + iβ by

(α + iβ)v ∶= αv + βJv, α, β ∈ R i =
√
−1.

It is clear that since J2 = −I, this makes V into a complex vector space which we
denote by VJ . Conversely if V is a complex vector space, then we can also view it
as a vector space over R and then multiplication by i is an R linear endomorphism
has all the properties of a complex structure and we denote this endomorphism by
J . Note that if {v1, . . . , vn} is a basis for V over C then {v1, . . . , vn, Jv1, . . . Jvn} is
a basis for V over R.

Example 1.13. Consider Cn and let {z1, . . . zn} be a complex basis for this space.
Then writing zi = xi + iyi where xi = Re zi and yi = Im zi, we can identify Cn with
R2n = {x1, y1, . . . , xn, yn}. Since we have in Cn that

iz1 = i(x1 + iy1) = (−y1) + i(x1)

it follows that complex multiplication in Cn induces a complex structure J on R2n

defined by

J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn).
This complex structure is called the standard complex structure on R2n

Definition 1.14. Let X be a smooth manifold of dimension 2n. Let J be a vector
bundle isomorphism

J ∶ TX → TX,

such that for each x ∈ X, Jx ∶ TxX → TxX is a complex structure for TxX. Then J
is an almost complex structure for the smooth manifold X. The pair (X,J) is called
an almost complex manifold.

We see that such a manifold is indeed “almost complex” in the sense that it can be
viewed as a real manifold with a complex tangent bundle.
Now let V be a real vector space with a complex structure J . We consider the
complexification V ⊗RC of V and extend J to a C linear map on the complexification
as before. Then it still holds that J2 = −I thus we get that J has two eigenvalues
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{i,−i} and we denote the corresponding eigenspaces by V 1,0 corresponding to i and
V 0,1 corresponding to −i. From this we get that

V ⊗R C = V 1,0 ⊕ V 0,1.

If v ⊗ α ∈ V 1,0 then it follows from the way we defined conjugation in V ⊗R C that

J (v ⊗ α) = (Jv)⊗ α = (Jv)⊗ α = iv ⊗ α = −iv ⊗ α = −iv ⊗ α,

so we have v ⊗ α ∈ V 0,1. We see that conjugation is an R linear (and C anti-linear)
map, and thus V 1,0 ≅R V 0,1. Furthermore, since we have defined iv = Jv and not
−iv = Jv on VJ we get that Vj is C linearly isomorphic to V 1,0 and we will identify
these two spaces with each other from now on.
Now we consider the exterior algebras of these spaces , ∧Vc, ∧V 1,0 and ∧V 0,1. There
are injections

V 1,0

V 0,1

VC

and if we define ∧p,qV to be the subspace of Vc generated by elements u ∧ w for
u ∈ ∧pV 1,0 and w ∈ ∧qV 0,1 then we have the direct sum

∧Vc =
2n

∑
r=0

∑
p+q=r

∧p,qV

where n = dimC V
1,0. We will now apply this to the cotangent bundle. Let smooth

manifold X of dimension m be given. Let TXc = TX ⊗R C and T ∗Xc = T ∗X ⊗R C
the complexification of the tangent and cotangent bundle respectively. Then after
forming the exterior algebra bundle ∧T ∗Xc we define

Er(Xc) = E(X,∧T ∗Xc)

the complex valued differential forms of total degree r on X. If there is no chance of
confusion with the real valued differential forms we will also write Er(T ∗X).
Now consider (X,J) an almost complex manifold. Then again J extends to an
C linear vector bundle isomorphism on TXc with eigenvalues {i,−i}. Note that
these eigenvalues are fiberwise since for every x ∈X Jx is an isomorphism on TxXc.
In the same way as discussed before we have TxXc = TxX1,0 ⊕ TxX0,1 and define
TX1,0, TX0,1 to be the bundles of ±i eigenspaces of J respectively. We can define
conjugation on TXc to be fiberwise the conjugation defined before and then it follows

again TX1,0 = TX0,1. Let T ∗X1,0 and T ∗X0,1 be the complex dual bundles of TX1,0

and TX0,1. Then writing ∧T ∗Xc, ∧T ∗X1,0 and ∧T ∗X0,1 for the exterior algebra
bundles, we have as before

T ∗Xc = T ∗X1,0 ⊕ T ∗X0,1

also we have injections

∧T ∗X1,0

∧T ∗X0,1

∧T ∗Xc
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and defining the complex valued differential forms of type (p,q) to be

Ep,q = E(X,∧p,qT ∗X),
we get again a direct sum composition

∧Er(X) = ∑
p+q=r

Ep,q(X).

This decomposition gives rise to projections

πp,q ∶ Er → Ep,q, p + q = r.
Also since d ∶ Ep,q(X)→ Ep+q+1(X) we can use the projections to define

∂ ∶ Ep,q(X)→ Ep+1,q(X)
∂̄ ∶ Ep,q(X)→ Ep,q+1(X)

by
∂ = πp+1,q ○ d
∂̄ = πp,q+1 ○ d

and we can extend them by complex linearity to E∗ = ∑dimX
r=0 Er(X). Denoting

complex conjugation by Q, we have the following proposition.

Proposition 1.15 For any f ∈ E∗(X) we have

Q∂̄(Qf) = ∂f.

Proof. Let f ∈ Er(X), with r = p + q, be given. Since Q ∶ Ep,q ≅Ð→ Eq,p is
an isomorphism it follows that Qπp,qf = πq,pQf . Furthermore since the exterior
derivative is complex linear we have that Q(df) = dQf . Combining this we get for
f ∈ Er

Q∂̄(Qf) = ∑
p+q=r

Q∂̄(Qf) = ∑
p+q=r

Qπp,q+1Qf = ∑
p+q=r

QQπq+1,pf = ∑
q+p=r

πp+1,qf = ∂f.

Where in the last step we used that Q2 = I and the fact that p and q are dummy
indices since we sum over all p, q such that p + q = r. �

From this proposition we see that ∂̄
2 = 0 if and only if ∂2 = 0. Consider d ∶ Ep,q(X)→

Ep+q+1(X), using the decomposition of Er we see that d can be decomposed as

d = ∑
r+s=p+q+1

πr,s ○ d = ∂ + ∂̄ + . . .

There is a special class of complex structures called integrable complex structures
which have the property that d = ∂ + ∂̄. If this is the case then we see that

d2 = ∂2 + (∂∂̄ + ∂̄∂) + ∂̄2

and since we know that d2 = 0 and all the operators in the sum project to a different
component of Ep+q+2 it follows that for integrable almost complex structures

∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0.

We now proof a proposition and an important theorem which will be the main result
of this section.

Proposition 1.16 A complex manifold induces an almost complex structure on
its underlying differentiable manifold.
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Proof. Let X be a complex manifold and denote by X0 the underlying dif-
ferentiable manifold. For every point x ∈ X we have a local frame for TxX given
{ ∂
∂z1

, . . . , ∂
∂zn

}. Just as in Example 1.13 complex multiplication on TxX induces

a complex structure Jx on TxX0, which has a local frame { ∂
∂x1

, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn

},

defined by

Jx(
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn
) = (− ∂

∂y1
,
∂

∂x1
, . . . ,− ∂

∂yn
,
∂

∂xn
).

To see that J ∶ TX0 → TX0 is a vector bundle isomorphism it remains to show that
Jx depends smoothly on x. Let (h,U) be a holomorphic coordinate chart around x
then we know that

TX0 ≅ h(U) ×R2n

and with respect to this trivialization J ∣U takes the form

id × J ∶ h(U) ×R2n → h(U) ×R2n

with
J(x1, y1, . . . , xn, yn) = (−y1, x1, . . . ,−yn, xn)

where {x1, y1, . . . xn, yn} is a basis for R2n. Then we see that J is a constant map
in local coordinates and thus it depends smoothly on x. Therefore J as defined is
indeed an almost complex structure on X0. �

Theorem 1.17 The induced almost complex structure on a complex manifold
is integrable.

Proof. Let X be a complex manifold and (X0, J) the underlying real manifold
with the induces almost complex structure as in Proposition 1.16. We have seen
that for a vector space (V, J) we have V ≅ V 1,0 and since TX and TX0 are C-linear
isomorphic when we use the complex structure on TX0 induced by J , we get that

TX ≅ TX1,0
0 and TX∗ ≅ T ∗X1,0

0 .

If zj = xj + iyj for j = 1, . . . , n are local coordinates for X we set

∂

∂zj
= 1

2
( ∂

∂xj
− i ∂
∂yj

) , j = 1, . . . , n

∂

∂z̄j
= 1

2
( ∂

∂xj
+ i ∂
∂yj

) , j = 1, . . . , n

where { ∂
∂x1

, . . . , ∂
∂xn

, ∂
∂y1

, . . . ∂
∂yn

} form a local frame for TX0c and { ∂
∂z1

, . . . , ∂
∂zn

}
form a local frame for TX. Since we identified TX ≅ TX1,0

0 it follows that the ∂
∂zj

form a local frame for TX0
1,0 and the ∂

∂z̄j
form a local frame for TX0

0,1 (recall that

TX0
1,0 and TX0

0,1 are related by complex conjugation). It follows that

dzj = dxj + idyj , j = 1, . . . , n

dz̄j = dxj − idyj , j = 1, . . . , n

which are dual to ∂
∂zj

and ∂
∂z̄j

form a local frame for T ∗X1,0
0 and T ∗X0,1

0 respectively.

We also get the identities

dxj =
1

2
(dzj + dz̄j) dyj =

1

2i
(dzj − dz̄j) .
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Let s ∈ Ep,q be given, then the above remarks imply, using multi-index notation 1

s = ∑′

I,J

aIJdz
I ∧ dz̄J .

We have

ds =
n

∑
j=1
∑′

I,J

(∂aIJ
∂xj

dxj +
∂aIJ
∂yj

dyj) ∧ dzI ∧ dz̄J

=
n

∑
j=1
∑′

I,J

∂aIJ
∂zj

dzj ∧ dzI ∧ dz̄J +
n

∑
j=1
∑′

I,J

∂aIJ
∂z̄j

dz̄j ∧ dzI ∧ dz̄J .

Since the first term is of type (p + 1, q) and the second of type (p, q + 1) it follows
that

∂ =
n

∑
j=1

∂

∂zj
dzj ∂̄ =

n

∑
j=1

∂

∂z̄j
dz̄j

and hence d = ∂ + ∂̄ which means by definition that the induces almost complex
structure is integrable. �

The converse of this theorem is also true and is known as the Newlander-Nirenberg
theorem.

Theorem 1.18 Let (X,J) be an integrable almost complex manifold. Then
there exists a unique complex structure OX on X which induces the almost complex
structure J .

Since we do not use this theorem we will omit the proof and instead refer the reader
to [1].

1Recall that letting N = {1, . . . , n} we can consider multi-indices I = {µ1, . . . , µp} where µ1, . . . , µp
are distinct elements of N and we set ∣I ∣ = p. Using such multi-indices we let

zI = zµ1 ∧ ⋅ ⋅ ⋅ ∧ zµp

An increasing multi-index I = {µ1, . . . , µp} has the property that µ1 ≤ ⋅ ⋅ ⋅ ≤ µp and we let ∑′
I denote

summation over increasing multi-indices only.





CHAPTER 2

Sheaves & Cohomology

In this chapter we will be dealing with sheaves. Sheaves are useful because we can
use them to keep track of local information attached to open sets of a topological
space and pass to a global solution of a given problem after solving it locally. In
the first section we will give the basic definition of presheaves and sheaves. We also
introduce resolutions of sheaves and some examples of resolutions. In the second
section we define sheaf cohomology and proof some isomorphisms which give us
explicit versions of the de Rham and Dolbeault theorems.

1. Presheaves & Sheaves

We begin with some definitions introducing the concepts of presheaves and sheaves.

Definition 2.1. A presheaf F over a topological space X is

(1) An assignment to each nonempty open set U ⊂X of a set F(U).
(2) A collection of mappings (called restriction homomorphisms)

rUV ∶ F(U)→ F(V ),
for each pair of open sets U and V such that V ⊂ U , satisfying:
(a) rUU = identity on U(= 1U).
(b) For U ⊃ V ⊃W , we have rUW = rVW ○ rUV .

Given two presheaves F and G over X, a morphism of presheaves

h ∶ F → G

is a collection of maps
hU ∶ F(U)→ G(U)

for each open set U ⊂ X such that each hU commutes with the restriction homo-
morphisms. The elements of F(U) will be called sections of F over U . If the F(U)
have some kind of algebraic structure (for example abelian groups) we also require
the restriction and sheaf homomorphisms to preserve this structure ( for example rUV
and hU are commuting group homomorphisms). If the hU are inclusion mappings
then F is called a subpresheaf of G.

Definition 2.2. A presheaf F is called a sheaf if for every collection Ui of open
subsets of X with U = ⋃Ui the following is true

(1) If s, t ∈ F(U) and rUUi(s) = r
U
Ui

(t) for all i, then s = t.
(2) If si ∈ F(Ui) and if for Ui ∩Uj ≠ ∅ we have

rUiUi∩Uj(si) = r
Uj
Ui∩Uj

(sj)

for all i and j, then there exists an s ∈ F(U) such that rUUi(s) = si for all i.

17
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A morphism of sheaves is a morphism of presheaves of the underlying sheaf and
if the hU and a isomorphism of sheaves is a sheaf morphism where the hU are
isomorphisms.
Some examples of sheaves are:

Example 2.3. Let X and Y be topological spaces. We define a sheaf CX,Y over X
by the presheaf

CX,Y (U) = {f ∶ U → Y ∣f is continuous}.
The restriction homomorphisms are given by the natural restriction of functions.

Example 2.4. Let X be a topological space and G an abelian group. For each
open, connected U ⊂ X the assignment U → G defines a sheaf called the constant
sheaf (with coefficients in G).

Example 2.5. Let E → X be a S-bundle. Define a presheaf S(E) by setting
S(E)(U) = S(U,E), for U ⊂ X open with the natural restriction of sections as
restriction homomorphisms. We call S(E) the sheaf of S-sections of the vector bundle
E. Since S(E) is a subsheaf of CX,E it is in fact a sheaf. Special cases of this example
include E∗X the sheaf of differential forms on a differentiable manifold and E

p,q
X the

sheaf of differential forms of type (p, q) on a complex manifold X.

A graded sheaf is a family of sheaves indexed by integers, F∗ = {Fα}α∈Z. A sequence
of sheaves is a graded sheaf connected by sheaf mappings

. . .Ð→ F0 α0Ð→ F1 α1Ð→ F2 Ð→ . . .

A sequence of sheaves is called a differential sheaf if the composite of any pair of
maps is zero, that is, αj ○ αj1 = 0. A resolution of a sheaf F is an exact sequence 1

of the form
0Ð→ F Ð→ F0 Ð→ F1 Ð→ . . .Ð→ Fm Ð→ . . .

which we will denote by
0Ð→ F Ð→ F∗.

We give some important examples of sheaf resolutions that will be used later on.

Example 2.6. Let X be a differentiable manifold with dimRX =m and let E
p
X be

the sheaf of real-valued differential forms of degree p. Then there is a resolution of
the constant sheaf R given by

0Ð→ R iÐ→ E0
X

dÐ→ E1
X

dÐ→ . . .
dÐ→ EmX

dÐ→ 0,

where i is the natural inclusion and d is the exterior differentiation operator. Since
d2 = 0 this is a differential sheaf. Using the classical Poincaré Lemma we obtain
exactness of the sheaf. We shall denote this sheaf resolution by 0 Ð→ R Ð→ E∗X (or
0Ð→ CÐ→ E∗X when using complex coefficients).

Example 2.7. Let X be a complex manifold with dimCX = n and let Ep,q be the
sheaf of (p, q) forms on X. For p ≥ 0 fixed we have the sequence of sheaves

0Ð→ Ωp iÐ→ Ep,0
∂̄Ð→ Ep,1

∂̄Ð→ . . .
∂̄Ð→ Ep,n

∂̄Ð→ 0.

1By definition a sequence of sheaves is exact if it is exact at stalk level. We did not define this and
refer the reader to [4] for details
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Here Ωp is by definition the kernel of the map Ep,0
∂̄Ð→ Ep,1, the sheaf of holomorphic

differential forms of type (p,0), which we usually call holomorphic forms of degree
p. Since ∂̄2 = 0 we have for each p a differential sheaf

0Ð→ Ωp Ð→ Ep,∗.

Exactness of this differential sheaf can be obtained by the Grothendieck version of
the Poincaré lemma for the ∂̄-operator. So we have, in fact, for every p a sheaf
resolution of Ωp.

2. Cohomology theory

We now want to define sheaf cohomology. To do this we will be making use of global
sections of sheaves and we would like the following to be true. Given a short exact
sequence of sheaves

0Ð→ AÐ→ BÐ→ CÐ→ 0,

we would like that the induced sequence

0Ð→ A(X)Ð→ B(X)Ð→ C(X)Ð→ 0

is also exact. It appears however that exactness at C(X) is not necessarily the
case. After some work, which we will skip here, it can be shown that when dealing
with sheaves of abelian groups over paracompact Hausdorff spaces (which we will
always be doing), the following condition is sufficient for the exactness of the above
sequence.

Definition 2.8. A sheaf F over a space X is soft if for any closed subset S ⊂ X
the restriction mapping

F(X)→ F(S)
is surjective. This says that any section of F over S can be extended to a section of
F over X.

We will now show that if a sheaf has a partition of unity it is soft. In particular this
implies that the sheaves E

p
X and Ep,q(X) from the previous examples are soft.

Definition 2.9. A sheaf of abelian groups F over a paracompact Hausdorff space
X is fine if for any locally finite open cover {Ui} of X there exists a family of sheaf
morphisms

{ηi ∶ F → F}
such that

(1) ∑ηi = 1.
(2) ηi(Fx)2 = 0 for all x in some neighborhood of the complement of Ui.

The family {ηi} is called a partition of unity of F subordinate to the covering {Ui}.

The sheaves from the previous examples are fine because multiplication by a differ-
entiable globally defined function defines a sheaf homomorphism in a natural way so
we can use the C∞ partitions of unity to get a sheaf partition of unity. The following
proposition gives the desired result that sheaves with a partition of unity are soft.

Proposition 2.10 Fine sheaves are soft.

2Here Fx denotes the stalk of F at x. We did not cover this and refer the reader to [4].
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Proof. Let F be a fine sheaf over X and let S be a closed subset of X. Suppose
that s ∈ F(S). Then there is an opoen cover {Ui} of S and there are sections
si ∈ F(Ui) such that

Si∣S∩Ui = S∣S∩Ui .
Let U0 = X ∖ S and s0 = 0, so that {Ui} extends to an open covering of all of X.
Since X is paracompact, we may assume {Ui} to be locally finite and hence there
is a sheaf partition of unity {ηi} subordinate to {Ui}. Now ηi(si) is a section on Ui
which is zero in a neighborhood of the boundary of Ui, so we can extend it to a
section on all of X. Thus we can define

s̃ =∑
i

ηi(si)

and obtain the required extension of s. �

Theorem 2.11 If A is a soft sheaf and

0Ð→ A
g
Ð→ B

hÐ→ CÐ→ 0

is a short exact sequence of sheaves. Then the induced sequence

0Ð→ A(X)
gXÐ→ B(X) hXÐÐ→ C(X)Ð→ 0

is exact.

From this theorem we get the following corollary.

Corollary 2.12 If
0Ð→ S0 Ð→ S1 Ð→ S2 Ð→ . . .

is an exact sequence of soft sheaves, then the induced section sequence of soft sheaves,
then the induced section sequence

0Ð→ S0(X)Ð→ S1(X)Ð→ S2(X)Ð→ . . .

is also exact.

The last result we need before defining the cohomology groups is that for any sheaf
S over a topological space X it is possible to construct a canonical soft resolution.

Let S be a given sheaf and let S̃
πÐ→ X be the étalé space associated to S3. We let

C0(S) be the presheaf defined by

C0(S)(U) = {f ∶ U → S̃∣π ○ f = 1U}.
This presheaf is a sheaf and is called the sheaf of discontinuous sections of S over
S. There is a natural injection

0Ð→ SÐ→ C0(S).
Now let F1(S) = C0(S)/S and define by induction:

Fi(S) = Ci−1(S)/Fi−1(S)
and

Ci(S) = C0(Fi(S)).
Using this notation we have the following theorem stating the existence of a canonical
soft resolution for any sheaf over a topological space.

3For the definition and details about the étalé space associated to a sheaf, see [4]
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Theorem 2.13 Let S be any sheaf over a topological space X. There exists a
canonical soft resolution of S given by

0Ð→ SÐ→ C0(S)Ð→ C1(S)Ð→ C2(S)Ð→ . . .

which we abbreviate by

0Ð→ SÐ→ C∗(S).

Again it takes some work to actually proof this and we refer the reader to [4]for the
details. We remark that examples 2.6 and 2.7 are soft resolutions of the constant
sheaf and of the sheaf of holomorphic p-forms respectively.
To define the cohomology groups of a space X with coefficients in a sheaf S consider
the canonical resolution of S given above. Then we can take global sections and get
a sequence of the form

(2.1) 0Ð→ Γ(X,S)Ð→ Γ(X,C0(S))Ð→ Γ(X,C1(S))Ð→ . . .

and if the sheaf S is soft we see by Corollary 2.12 that this sequence is exact every-
where. We denote

C∗(X,S) ∶= Γ(X,C∗(S))
and write Equation 2.1 in the form

0Ð→ Γ(X,S)Ð→ C∗(X,S).

Definition 2.14. Let S be a sheaf over a space X and let

Hq(X,S) ∶=Hq(C∗(X,S))

where Hq(C∗(X,S)) is the q-th derived group of the cochain complex C∗(X,S),
that is,

Hq(C∗) = Ker(Cq → Cq+1)
Im(Cq−1 → Cq)

, where C−1 = 0.

The abelian groupsHq(X,S) are defined for q ≥ 0 and are called the sheaf cohomology
groups of the space X of degree q and with coefficients in S.

These cohomology groups have the following properties.

Theorem 2.15 Let X be a paracompact Hausdorff space. Then

(1) For any sheaf S over X
(a) H0(X,S) = Γ(X,S).
(b) If S is soft, then Hq(X,S) = 0 for q > 0.

(2) For any sheaf morphism

h ∶ A→ B

there is, for each q ≥ 0 a group homomorphism

hq ∶Hq(X,A)→Hq(X,B)

such that:
(a) h0 = hX ∶ A(X)→ B(X).
(b) hq is the identity map if h is the idenitity map,for all q ≥ 0.
(c) gq ○ hq = (g ○ h)q for all q ≥ 0, if g ∶ B→ C is a second sheaf morphism.
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(3) For each short exact sequence of sheaves

0→ A→ B→ C→ 0

there is a group homomorphism

δq ∶Hq(X,C)→Hq+1(X,A)
for all q ≥ 0 such that:
(a) The induced sequence

0Ð→H0(X,A)Ð→H0(X,B)Ð→H0(X,C) δ0Ð→H1(X,A)Ð→ . . .

is exact.
(b) A commutative diagram

0 A′ B′ C′ 0

0 A B C 0

induces a commutative diagram

0 H0(X,A′) H0(X,B′) H0(X,C′)′ 0

0 H0(X,A) H0(X,B) H0(X,C) 0

This definition of the cohomology groups is quite abstract. However we will state
a theorem which enables us to represent these groups more explicitly in a given
geometric situation. First we make the following definition.

Definition 2.16. A resolution of a sheaf S over a space X

0→ S→ A∗

is called acyclic if Hq(X,Ap) = 0 for all q > 0 and p ≥ 0.

Note that a soft resolution of a sheaf is acyclic.

Theorem 2.17 Let S be a sheaf over a space X and let

0→ S→ A∗

be a resolution of S. Then there is a natural homomorphism

γp ∶Hp(Γ(X,A∗))→Hp(X,S)
where Hp(Γ(X,A∗)) is the pth derived group of the cochain comples Γ(X,A∗).
Moreover if

0→ S→ A∗

is acyclic then γp is an isomorphism.

We now obtain the following results.

Theorem 2.18 Let X be a differentiable manifold. Then

Hq(X,C) ≅
Ker(Eq(X) dÐ→ Eq+1(X))

Im(Eq−1(X) dÐ→ Eq(X))
.
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Proof. The resolution in Example 2.6 is a fine resolution, and we can apply
Theorem 2.17. �

Theorem 2.19 Let X be a complex manifold. Then

Hq(X,Ωp) ≅
Ker(Ep,q(X) ∂̄Ð→ Ep,q+1(X))

Im(Ep,q−1(X) ∂̄Ð→ Ep,q(X))
.

Proof. The resolution given in Example 2.7 is a fine resolution, and we can
apply Theorem 2.17. �

We can extend this last theorem in the following way. Recall from Example 2.7 that
we have the following resolution for Ωp,

0Ð→ Ωp Ð→ Ep,0
∂̄Ð→ Ep,1

∂̄Ð→ . . .
∂̄Ð→ Ep,n Ð→ 0.

Now if E is a holomorphic vector bundle then we have the sheaf of holomorphic
sections of E denoted by O(E). It can then be shown that we have the following
resolution of the sheaf Ωp ⊗O O(E),

0Ð→ Ωp ⊗O O(E)Ð→ Ep,0 ⊗O O(E) ∂̄⊗1ÐÐ→ . . .
∂̄⊗1ÐÐ→ Ep,n ⊗O O(E)Ð→ 0.

We note that
Ωp ⊗O O(E) ≅ O(∧pT ∗X ⊗C E)

and

Ep,q ⊗O O(E) ≅ Ep,q ⊗E E(E)
≅ E(∧p,qT ∗X ⊗C E),

where E(E) denotes the sheaf of differentiable sections of E. We call O(X,∧pT ∗X⊗C
E) the (global) holomorphic p-forms on X with coefficients in E and we will denote
this by Ωp(X,E). The sheaf of holomorphic p-forms with coefficients in E by Ωp(E).
The differentiable (p, q)-forms with coefficiens in E will be denoted by

Ep,q(X,E) ∶= E(X,∧p,qT ∗X ⊗C E).
Defining ∂̄E = ∂̄ ⊗ 1 we can rewrite the previous resolution in the form

0Ð→ Ωp(E)Ð→ Ep,0(E) ∂̄EÐ→ Ep,1(E) ∂̄EÐ→ . . .
∂̄EÐ→ Ep,n(E) ∂̄EÐ→ 0

since this is a fine resolution we have the following theorem.

Theorem 2.20 Let X be a complex manifold and let E →X be a holomorphic
vector bundle. Then

Hq(X,Ωp(E)) ≅ Ker(Ep,q(X,E) ∂̄EÐ→ Ep,q+1(X,E))

Im(Ep,q−1(X,E) ∂̄EÐ→ Ep,q(X,E))
.





CHAPTER 3

Hermitian Geometry

In this chapter we will use local frames to define Hermitian metrics on vector bundles
and prove that every vector bundle admits a Hermitian metric. We will do this in
the context of differentiable C-vector bundles over a differentiable manifold X.

1. Hermitian geometry

In this section all vector bundles will be complex vector bundles. Let such a vector
bundle E →X of rank r be given. Suppose that f = (e1, . . . , er) is a frame at x ∈X.
Recall that this means that there is some open neighborhood U of x such that the
sections {e1, . . . , er}, where ei ∈ E(U,E), are linearly independent at each point of
U( if we want to denote more explicitly the dependance of f on U we write f ∣U ).
Given a map g ∶ U → Gl(r,C) there is an action of g on the set of all frames on U
defined by

f ↦ fg

where

(fg)(x) =
⎛
⎝

r

∑
ρ=1

gρ1(x)eρ(x), . . . ,
r

∑
ρ=1

gρr(x)eρ(x)
⎞
⎠
, x ∈ U.

That is, we regard f as a row vector and use normal matrix multiplication to get
a new row vector fg. Since for every x ∈ U , g(x) is an invertible matrix and the
components of f are linearly independent we get that the components of fg are also
linearly independent and therefore fg is a new frame. Moreover for every two frames
f and f̃ on U it is possible to find a mapping g ∶ U → Gl(r,C) such that f̃ = fg. The
mapping g is called a change of frame. We can use frames to give local descriptions
of geometric objects. We start by giving a local description of sections of a vector
bundle. Let a vector bundle E → X and a frame f = (e1, . . . , er) over U ⊂ X be
given. We know from the discussion following Definition 1.12 that for every x ∈ X
there exists a frame f ∣U around x if we just choose U small enough. Let ξ ∈ E(U,E)
then we can write

(3.1) ξ =
r

∑
ρ=1

ξρ(f)eρ

where the ξρ(f) ∈ E(U) are uniquely defined and dependent on the frame f . We get
an induced map

(3.2) E(U,E)
`fÐ→ E(U)r ≅ E(U,U ×Cr)

25
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defined by

ξ ↦ ξ(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1(f)
⋅
⋅
⋅

ξr(f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let f = (e1, . . . , er) and g a change of frame over U such that fg = (e′1, . . . , e′r) then
we have the identities

ξ =∑
ρ

ξρ(fg)e′ρ =∑
σ

ξσ(f)e′σ and e′σ =∑
ρ

g−1
ρσeρ

substituting we get
ξ =∑

σ
∑
ρ

ξσ(f)g−1
ρσeρ

but this implies
ξρ(fg) =∑

σ

g−1
ρσξ

σ(f)

or

(3.3) gξ(fg) = ξ(f)
where the product is matrix multiplication. Analogously if E is a holomorphic vector
bundle, we also have holomorphic frames, f = (e1, . . . , er) where ei ∈ O(U,E) are
linearly independent, and holomorphic frames where g ∶ U → Gl(r,C) is holomorphic.
Then with respect to a holomorphic frame we have again a map

O(U,E)
`fÐ→ O(U)r ≅ E(U,U ×Cr).

We shall now introduce the concept of a metric on a vector bundle.

Definition 3.1. Let E → X be a vector bundle. A Hermitian metric, h, on E is
defined to be the assignment of a Hermitian inner product ⟨⋅, ⋅⟩x, to each fiber Ex of
E such that for every open U ⊂X and ξ, χ ∈ E(U,E) the map

⟨ξ, χ⟩ ∶ U → C
defined by

x↦ ⟨ξ(x), χ(x)⟩x
is smooth.

The smoothness condition says that the Hermitian inner products on different fibers
vary smoothly. Now let a frame f = (e1, . . . , er) for E over some open U ⊂ X be
given. We define h(f)ρσ = ⟨eσ, eρ⟩ and let h(f) = [h(f)ρσ] denote the r × r matrix
of smooth functions h(f)ρσ. If we write η = ∑ρ ηρ(f)eρ and ξ = ∑σ ξσ(f)eσ for
η, ξ ∈ E(U,E) it follows from the fact that for every x ∈ U hx is an Hermitian inner
product that

⟨ξ, η⟩ = ⟨∑
σ

ξσ(f)eσ,∑
ρ

ηρ(f)eρ⟩

=∑
ρ,σ

ησ(f)hσρ(f)ξρ(f)

but this is the same as

(3.4) ⟨ξ, η⟩ = η∗(f)h(f)ξ(f)
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where η∗ denotes conjugate transpose and the multiplication is matrix multiplica-

tion. From the fact that ⟨eρ, eσ⟩ = ⟨eσ, eρ⟩ it follows that h(f)∗ = h(f) and so h(f)
is a Hermitian matrix. Similarly from the fact that ⟨η, η⟩ ≥ 0 it follows that h(f) is
a positive definite matrix. The transformation rule for frames, Equation 3.3 implies
that for a change of frame g

⟨ξ, η⟩ = η∗(f)h(f)ξ(f) = η∗(fg)h(fg)ξ(fg) = η∗g−1∗h(fg)g−1ξ(f)
which in turn implies that

(3.5) h(fg) = g∗h(f)g.
This is the transformation rule for local representations of a Hermitian metric.

Theorem 3.2 Every vector bundle E →X admits a Hermitian metric.

Proof. To prove the theorem we will construct a Hermitian metric. We know
there exists a locally finite cover {Uα} of X and frames fα∣Uα . For every x ∈ Uα we
define a Hermitian inner product on Ex ⊂ E∣Uα by

⟨ξ, η⟩αx = η(fα)∗(x) ⋅ ξ(fα)(x).
It is clear that this definition satisfies all the properties of an Hermitian inner prod-
uct. Since the Uα can overlap, let {ρα} be a smooth partition of unit subordinate
to {Uα} and define

⟨ξ, η⟩x =∑
α

ρα(x)⟨ξ, η⟩αx .

The positivity and symmetry of the Hermitian metric follows from the positivity
and symmetry of the Hermitian inner product. The only condition that we have left
to check is that this inner product depends smoothly on x but this is clear since

x↦ ⟨ξ(x), η(x)⟩x =∑
α

ρ(x)αη(fα)∗(x) ⋅ ξ(fα)(x)

is smooth in x. This concludes the construction. �





CHAPTER 4

Elliptic Operator Theory

In this chapter we will develop all the results with regard to differentiable operators
needed for the next chapter. We will skip a lot of details since the general theory
and background of the stated results is too extensive for this text. In the first section
we will discuss the basic structure of differential operators and their symbols. We
will also give a few examples of symbol sequences in the cases of the de Rham and
Dolbeault complexes. In the second section we will generalize the discussion of the
first section to the context of pseudodifferential operators. In the third section we
will define what it means for an operator to be elliptic and prove an important
decomposition theorem for self-adjoint elliptic operators. In the last section we
generalize elliptic operators to elliptic complexes. The main result from this section
is that we can represent the de Rham and Dolbeault cohomology groups by harmonic
forms.

1. Differential Operators

Suppose we are given two differentiable C-vector bundles E and F both over the
same differentiable manifold X. A C-linear map

L ∶ E(X,E)→ E(X,F )
is called a differential operator for any choice of local coordinates and trivializations
there exists a linear partial differential operator L̃ such that the following diagram
commutes.

E(X,E)∣U E(X,F )∣U

E(U,U ×Cp) E(U,U ×Cq)

[E(U)]p [E(U)]q

L

L̃

≅ ≅

⊂ ⊂

Recall that L̃ being a linear partial differential operator means that for f = (f1, . . . , fp) ∈
[E(U)]p we have

L̃(f)i =
p

∑
j=1
∣α∣≥k

aijαD
αfj , i = 1, . . . , q.

Here we are using the notation Dj = ∂
∂xj

and Dα = (−i)∣α∣Dα1
1 . . .Dαn

n . If there

are no derivatives of order k ≥ k + 1 appearing in the local representation then the
differential operator is said to be of order k. The vector space of all differential
operators of order k from E(X,E) to E(X,F ) is denoted by Diffk(E,F ). We will

29
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also use another class of mappings denoted by OPk(E,F ) called operators of order
k. This is defined to be the vector space of C-linear mappings

T ∶ E(X,E)→ E(X,F )

(where X is a differentiable manifold) such that there exists a continuous extension
of T

T̄s ∶W s(X,E)→W s−k(X,F )
for all s. Here W s(X,E) is the completion of E(X,E) with respect to the sobolev
norm ∣∣.∣∣s as defined in [4].
We recall the definition of a formal adjoint operator.

Definition 4.1. Let

L ∶ E(X,E)→ E(X,F )
be a C-linear map. Then a C-linear map

L∗ ∶ E(F,X)→ E(X,E)

is called an adjoint of L if

(Lf, g) = (f,L∗g)
for all f ∈ E(X,E), q ∈ E(X,F ).

We now have the following proposition which we will not prove. (for a proof see [4])

Proposition 4.2 Let L ∈ Diffk(E,F ). Then L∗ exists, and L∗ ∈ Diffk(F,E).

We now want to introduce the symbol of an operator which can be used to classify
differential operators. That is, we want to define a mapping which assigns to each
differential operator its symbol. In order to do this we first define the set of symbols.
Let L ∈ Diffk(E,F ) where E and F are given vector bundles over a differentiable
manifold X. Given T ∗X, the real cotangent bundle to X we denote by T ′X the
real cotangent bundle with the zero cross section removed, the bundle of nonzero
cotangent vectors, with the projection map π ∶ T ′X → X. As in Proposition 1.10,
let π∗E and π∗F denote the pullbacks of E and F over T ′X. For k ∈ Z we define

Smblk(E,F ) = {σ ∈ Hom(π∗E,π∗F )1∣σ(x, ρv) = ρkσ(x, v)∀(x, v) ∈ T ′X,ρ > 0}.

Now that we have defined the set of symbols we define a linear map

(4.1) σk ∶ Diffk(E,F )→ Smblk(E,F )

in the following way. First note that by the definition of the pullback of a vector
bundle and the fact we are pulling E and F back by the projection map we have
that σ(L)(x, v) should be a linear mapping from Ex to Fx. Let (x, v) ∈ T ′X and
e ∈ Ex be given. Find g ∈ E(X) and f ∈ E(X,E) such that dgx = v and f(x) = e then

σk(L)(x, v)e = L( i
k

k!
(g − g(x))kf)(x) ∈ Fx

1Recall that Hom(π∗E,π∗F ) is the vector bundle whose fiber at x is the space of linear maps from
π∗Ex to π∗Fx
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we call σk(L) the k-symbol of the differential operator L. Note that this indeed, for
every (x, v) ∈ T ′X, defines a linear mapping

σk(L)(x, v) ∶ Ex → Fx

which is an element of Smblk(E,F ) and independent of the choices made. Indeed,

concretely, if we let L ∈ Diffk(E,F ) with L̃ ∶ E(U)p → E(U)q given by

∑
∣ν∣≤k

AνD
ν

where {Aν} are q × p matrices of smooth functions on U . We claim that

σk(L)(x, v) = ∑
∣ν∣=k

Aµ(x)ξν

where v = ξ1dx1+ ⋅ ⋅ ⋅+ξndxn. To see this choose g ∈ E(U) such that v = dg = ∑ ξjdxj .
Then for e ∈ Cp we have

σk(L)(x, v)e = ∑
∣ν∣≤k

AνD
ν ( i

k

k!
(g − g(x))ke)(x).

Since all the terms with derivative of order ≤ k−1 will contain a factor (g − g(x)) ∣x = 0
the only nonzero terms are the ones with ∣ν∣ = k. These are given by (recalling

Dν = (−i)∣ν∣Dν1
1 . . .Dνn

n )

(4.2)

∑
∣ν∣=k

Aν(x)
k!

k!
(D1g(x))ν1 . . . (Dn(g))νn

= ∑
∣ν∣=k

Aν(x)ξν11 . . . ξνnn = ∑
∣ν∣=k

Aν(x)ξν .

We obtain the following proposition.

Proposition 4.3 The symbol map σk gives rise to an exact sequence

0Ð→ Diffk−1(E,F )
j
Ð→ Diffk(E,F ) σkÐ→ Smblk(E,F )

where j is the natural inclusion.

This is a simple consequence from Equation 4.2 since elements of Diffk−1(E,F ) do
not have partial derivatives of order k. We also state the following property of sym-
bols. Given L1 ∈ Diffk(E,F ) and L2 ∈ Diffm(F,G) we have L2L1 ∈ Diffk+m(E,G)
with

σk+m(L2L1) = σm(L2)σ(L1).
We now look at the symbol maps of some important differential operators.

Example 4.4. Consider the de Rham complex

E0(X) dÐ→ E1(X) dÐ→ . . .
dÐ→ En(X)

given by exterior differentiation on differential forms. Letting T ∗ = T ∗X ⊗C we can
rewrite this as

E(X,∧0T ∗) dÐ→ E(X,∧1T ∗) dÐ→ . . .

We want to compute the associated 1-symbol maps

(4.3) ∧0 T ∗x
σ1(d)(x,v)ÐÐÐÐÐÐ→ ∧1T ∗x

σ1(d)(x,v)ÐÐÐÐÐÐ→ ∧2T ∗x Ð→ . . .
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Let e ∈ ∧pT ∗x, f ∈ ∧pT ∗ with f(x) = e and g ∈ E(X) such that dg = v then using the
definition of the symbol map we obtain

σ1(d)(x, v)e = d (i(g − g(x))f) (x)
= id ((g − g(x))f) (x)
= id(g − g(x))(x) ∧ f(x) + (g(x) − g(x))df(x)
= idg(x) ∧ f(x)
= iv ∧ e.

We know that v∧v = 0. It is also true that if for some vector space V we have a ∈ ∧kV
and v ∈ V such that v ∧ a = 0, then it follows that a = v ∧ b for some b ∈ ∧k−1V 2.
From this we conclude that the symbol sequence is exact.

Example 4.5. Consider the Dolbeault complex on a complex manifold X,

Ep,0(X) ∂̄Ð→ Ep,1(X) ∂̄Ð→ . . .
∂̄Ð→ Ep,n(X)Ð→ 0.

Then we have the associated symbol sequence

Ð→ ∧p,q−1T ∗xX
σ1(∂̄)(x,v)ÐÐÐÐÐÐ→ ∧p,qT ∗xX

σ1(∂̄)(x,v)ÐÐÐÐÐÐ→ ∧p,q+1T ∗xX Ð→ .

Since v ∈ T ∗xX,where T ∗xX is considered as a real cotangent bundle we have that
v = v1,0 + v0,1, given by the injection

0Ð→ T ∗xX Ð→ T ∗xX ⊗R C = T ∗X1,0 ⊕ T ∗X0,1

= ∧1,0T ∗X ⊕ ∧0,1T ∗X.

The computation for the symbol σ1(∂̄) is the same as before only now we have
∂̄g = v0,1 so we get

σ1(∂̄)(x, v)e = iv0,1 ∧ e.
Again the symbol sequence is exact.

Example 4.6. Let E →X be a holomorphic vector bundle over a complex manifold
X. We then consider the differentiable (p, q)-forms with coefficients in E, Ep,q(X,E)
and we have the following complex

Ð→ Ep,q(X,E) ∂̄EÐ→ Ep,q+1(X,E)Ð→
with the associated symbol sequence

Ð→ ∧p,qT ∗x ⊗Ex
σ1(∂̄E)(x,v)ÐÐÐÐÐÐ→ ∧p,q+1T ∗x ⊗Ex Ð→ .

Just like in the previous example we let v = v1,0 + v0,1 and again we have for f ⊗ e ∈
∧p,qT ∗x ⊗Ex

σ1(∂̄)(x, v)f ⊗ e = (iv0,1 ∧ f)⊗ e
and the symbol sequence is again exact.

2To see this extend v to a basis {v = v1, . . . , vn} for V . Then a basis for ∧kV is given by vi1 ∧⋅ ⋅ ⋅∧vik
with i1 < ⋅ ⋅ ⋅ < ik. Therefore a = ∑ai1,...,ikvi1∧⋅ ⋅ ⋅∧vik = ∑i1=1 a1,i2,...,ikv∧⋅ ⋅ ⋅∧vik +∑i1≠1 ai1,...,ikvi1∧
⋅ ⋅ ⋅∧vik . Now v∧a = 0 implies ∑i1≠1 ai1,...,ikv

v
i1 ∧ . . . vik = 0, since v∧v = 0, and therefore ai1,...,ik = 0

for i1 ≠ 1. It then follows immediatly that a = ∑a1,...,ikv ∧ . . . vik = v ∧∑ai2,...,ikvi2 ∧ . . . vik = v ∧ b
for some b ∈ ∧k−1V.
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2. Pseudodifferential Operators

In the previous section we defined differential operators, in this section we would
like to generalize these operators to so called pseudodifferential operators. Given
U ⊂ Rn, open and p(x, ξ) a polynomial of degree m in ξ with smooth coefficients
depending on x ∈ U we can define a differential operator P = p(x,D) by replacing
ξ = (ξ1, . . . , ξn) by (−iD1, . . . ,−iDn). For u ∈D(U) (where D(U) ⊂ E(U) denote the
compactly supported functions) we can write using the Fourier transform

Pu(x) = p(x,D)u(x) = ∫ p(x, ξ)û(ξ)ei⟨x,ξ⟩dξ

where ⟨x, ξ⟩ is the standard Euclidean inproduct and û(ξ) = (2π)−n ∫ u(x)e−i⟨x,ξ⟩dx
is the Fourier transform of u. We see from this that we can define differential
operators by using polynomials p(x, ξ). To generalize our definition of differential
operators we can therefore generalize the functions p(x, ξ).

Definition 4.7. Let U be an open set in Rn and let m be any integer.

(1) Let S̃m be the class of smooth functions p(x, ξ) defined on U ×Rn such that
for any compact set K ⊂ U and multiindices α,β there exists a constant
Cα,β,K , depending on α,β,K and p with

∣Dβ
xD

α
ξ p(x, ξ)∣ ≤ Cα,β,K(1 + ∣ξ∣)m−∣α∣, x ∈K,ξ ∈ Rn.

(2) Let Sm(U) denote the subset of p ∈ S̃m(U) such that the limit

σm(p)(x, ξ) = lim
λ→∞

p(x,λξ)
λm

exists for ξ ≠ 0 and with

p(x, ξ) − ψ(ξ)σm(p)(x, ξ) ∈ S̃m−1(U)
where ψ ∈ C∞(Rn) is a cut off function with ψ(ξ) = 0 near ξ = 0 and
ψ(ξ) = 1 outside the unit ball.

(3) Let S̃m0 (U) denote the subset of p ∈ S̃m(U) such that p(x, ξ) has uniform
compact support in the x variable.

(4) Let Sm0 (U) = Sm(U) ∩ S̃m0 (U).

Note that σm(p)(x, ξ) is the m-th order homogeneous part of the polynomial where
all the lower order terms have gone to zero in the limit and there are no higher order
terms since this would imply that the limit does not exist. Also note that if p(x, ξ)
is a polynomial of degree m as before and if the coefficients have compact support
in U then p ∈ Sm0 (U).
Now we have introduced our generalized classes of functions the definition of the
pseudodifferential operators is straight forward. For any open U ⊂ Rn, p ∈ S̃m(U)
and u ∈ D(U) we define a canonical pseudodifferential operator of order m L(p) by
(the local representation)

L(p)u(x) = ∫ p(x, ξ)û(ξ)ei⟨x,ξ⟩dξ.

It can be shown that this defines a linear operator of order m mapping D(U) into
E(U). We will not show this here and direct the reader to [4] for a proof. Having
defined pseudodifferential operators on Rn we now define them in the general case.
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Definition 4.8. Let L be a linear mapping L ∶ D(X,E) to E(X,F ). Then L is
a pseudodifferential operator on X if and only if for any coordinate chart U with
trivializations of E and F over U and for any open set U ′ ⊂ U there exists a r × p
matrix (pij), pij ∈ Sm0 (U), so that the induced map

LU ∶D(U ′)p → E(U)r

with u ∈ D(U ′)p LUÐÐ→ Lu, extending u by zero to be an element of D(X,E) ( where
p = rankE, r = rankF , and we identify E(U)p with E(U,E) and E(U)r with E(U,F )),
is a matrix of canonical pseudodifferential operators L(pij), i = 1, . . . , r, j = 1, . . . , p.
Moreover, we say that L has order m if the canonical pseudodifferential operators
L(pij) are of order m. The class of all pseudodifferential operators on X of order m
is denoted by PDiffm(X).

Again it can be shown that this indeed defines operators of order m. Since we want
to make use of the symbol map in the general setting of pseudodifferential operators
we have to also generalize the definition of our symbol map. The way to do this
is define the so called local m-symbol of a pseudodifferential operator on coordinate
charts. Then it is possible to proof that this local definition is invariant under local
change of coordinates and we obtain a global m-symbol . We immediatly state the
global m-symbol and again refer the reader to [4] for details.

Proposition 4.9 Let E and F be vector bundles over a differentiable manifold
X. There exists a canonical linear map

σm ∶ PDiffm(E,F )→ Smblm(E,F )
which is defined locally in a coordinate chart U ⊂X by

σm(LU)(x, ξ) = [σm(pij)(x, ξ)]
where LU = [L(pij)] is a matrix of canonical pseudodifferential operators, and where
(x, ξ) ∈ U × (Rn ∖ {0}) is a point in T ′U expressed in the local coordinates of U .

3. A parametrix for Elliptic Differenital Operators

Let E and F be vector bundles over a differentiable manifold X.

Definition 4.10. Let s ∈ Smblk(E,F ). Then s is said to be elliptic if and only if
for any (x, ξ) ∈ T ′X, the linear map

s(x, ξ) ∶ Ex → Fx

is an isomorphism.

Definition 4.11. Let L ∈ PDiffk(E,F ). Then L is said to be elliptic (of order k)
if and only if σk(L) is an elliptic symbol.

If L ∈ Diffm(E,F ) we set

HL = {ξ ∈ E(X,E)∣Lξ = 0}
and we set

H⊥L = {η ∈W 0(E)∣(ξ, η)E = 0, ξ ∈HL}.
We define HL ∶ E(X,E) → E(X,E) to be the orthogonal projection onto the kernel
of L. If we restrict L to the orthogonal complement of its kernel, H⊥L, then L has
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no kernel. In fact L ∶ H⊥L → H⊥L is an isomorphism, hence we can form its inverse.
The proof of these claims are stated in the following theorem.

Theorem 4.12 Let L ∈ Diffm(E) be self-adjoint and elliptic. Then there exist
linear mappings HL and GL

HL ∶ E(X,E)→ E(X,E)

GL ∶ E(X,E)→ E(X,E)
with the following properties:

(1) HL(E(X,E)) =HL(E) and dimCHL(E) <∞.
(2) L ○GL +HL = GL ○L +HL = IE, where IE is the identity on E(X,E).
(3) HL and GL ∈ OP0(E), and , in particular extend to bounded operators on

W 0(E).
(4) E(X,E) = HL(X,E)) ⊕GL ○ L(E(X,E)) = HL(X,E) ⊕ L ○GL(E(X,E)),

and this decomposition is orthogonal with respect to the inner product in
W 0(E).

The operator GL is called the Green’s operator associated to L. The sections in
HL for a self adjoint elliptic operator are called L-harmonic sections or just har-
monic sections. These harmonic sections will play an important role in the Hodge
Decomposition Theorems in Chapter 5 and this is the main reason for stating this
theorem.

4. Elliptic Complexes

The basic idea of elliptic complexes is that instead of a pair of vector bundles with a
differential operator between them we study sequences of differential operators be-
tween sequences of vector bundles all over the same compact differentiable manifold.
In more detail, let X be a given compact differentiable manifold and E0, . . . ,EN be
a sequence of vector bundles over X. Suppose we are given a sequence of differential
operators, of some fixed order k, L0, . . . , LN−1 mapping as follows

(4.4) E(E0)
L0Ð→ E(E1)

L1Ð→ E(E2)
L2Ð→ . . .

LN−1ÐÐÐ→ E(EN).
We then have the associated symbol sequence

0Ð→ π∗E0
σ(L0)ÐÐÐ→ π∗E1

σ(L1)ÐÐÐ→ π∗E2 Ð→ . . .
σ(LN−1)ÐÐÐÐÐ→ π∗EN Ð→ 0.

Definition 4.13. The sequence of operators and vector bundles E in Equation 4.4
is called a complex if Li ○Li−1 = 0, i = 1, . . .N −1. Such a complex is called an elliptic
complex if the associated symbol sequence is exact.

If E is a complex as in the above definition then we can define

Hq(E) =
Ker (Lq ∶ E(Eq)→ E(Eq+1))
Im (Lq−1 ∶ E(Eq−1)→ E(Eq))

= Z
q(E)

Bq(E)
called the cohomology groups of the complex E, q = 0, . . . ,N . Note that we use the
convention L−1 = LN = E−1 = EN+1 = 0 so that the definition makes sense. The
de Rham and Dolbeault complexes, which we discussed in Examples 4.4, 4.5 and
4.6 are the examples of elliptic complexes we will mostly be dealing with. For each
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elliptic complex there is a generalization of the Laplacian. If we have the operators
Lj ∶ E(Ej)→ E(j+1) in the elliptic complex we define the Laplacian operators of the
elliptic complex E by

∆j = L∗jLj +Lj−1L
∗
j−1 ∶ E(Ej)→ E(Ej), j = 0, . . . ,N.

These operators are elliptic and self-adjoint. Using Theorem 4.12 we see that that
each ∆j has a Greens operator G∆j and an orthogonal projection operator Hj onto

H(Ej) =H∆j(Ej) = ker ∆j ∶ E(Ej)→ E(Ej)

which are the ∆j-harmonic sections. To simplify the notation we introduce the
following. Let

E(E) =
N

⊕
j=0

E(Ej)

denote the graded vector space with the natural grading. We can extend the oper-
ators L,L∗,∆,G and H to E(E) by setting for example

L(ξ) = L(ξ0 + ⋅ ⋅ ⋅ + ξN) = L0ξ0 + . . . LNξN .

The relations

∆ = LL∗ +L∗L
I =H +G∆ =H +∆G

from Theorem 4.12 still hold. Also we note that with respect to this grading L has
degree +1, L∗ has degree −1 and ∆,G and H have degree 0. We will denote by
H(E) = ⊕H(Ej) the total space of ∆-harmonic sections. Given an inner product
on each E(Ej) we extend the inner product to E(E) in the obvious way by

⟨ξ, η⟩E =
N

∑
j=0

⟨ξj , ηj⟩Ej .

The main theorem is now:

Theorem 4.14 Let (E(E), L) be an elliptic complex equipped with an inner
product. Then we have the following:

(1) There is an orthogonal decomposition

E(E) =H(E)⊕LL∗G(E(E))⊕L∗LG(E(E)).

(2) The following commutation relations are valid:
(a) I =H +∆G =H +G∆.
(b) HG = GH =H∆ = ∆H = 0.
(c) L∆ = ∆L, L∗∆ = ∆L∗.
(d) LG = GL, L∗G = GL∗.

(3) dimCH(E) <∞, and there is a canonical isomorphism

H(Ej) ≅Hj(E).

We will now discuss some examples in which we will see that it is possible to represent
various cohomology groups by harmonic forms. This property will play an important
role in the proof of the Hodge Decomposition Theorem.



4. ELLIPTIC COMPLEXES 37

Example 4.15. We have seen in Theorem 2.18 that

Hr(X,C) ≅Hr(E∗(X))

and when X is a differentiable manifold we shall make this isomorphism an iden-
tification and just call Hr(X,C) the de Rham group with complex coefficients. If
X is also compact then there is a Riemannian metric on X. This induces an inner
product on ∧pT ∗X and therefore (E∗(X), d) becomes an elliptic complex with inner
product. We shall denote the associated Laplacian by ∆ = ∆d = dd∗ + d∗d. The
vector space of ∆-harmonic forms is denoted by

Hr(X) =H∆(∧rT ∗X).

Now from Theorem 4.14 we get that

Hr(X,C) ≅Hr(X).

This is a very important relation and it says that every cohomology class in the de
Rham cohomology, c ∈Hr(X,C), can be represented by a unique harmonic form φ.

Example 4.16. For a compact complex manifold X we consider again the elliptic
complex

. . .
∂̄Ð→ Ep,q(X) ∂̄Ð→ Ep,q+1(X) ∂̄Ð→ . . .

We have seen in Theorem 2.19 that

Hq(X,Ωp) ≅Hq((∧p,∗T ∗X, ∂̄)).

If we equip ∧p,qT ∗X with a Hermitian metric then the complex becomes a elliptic
complex with an inner product. We denote the associated Laplacian by

◻ = ∂̄∂̄∗ + ∂̄∗∂̄

and denote by

Hp,q(X) =H◻(∧p,qT ∗X)
the ◻- harmonic (p, q)-forms. Just as in the previous example we now have by
Theorem 4.14 that

Hq(X,Ωp) ≅Hp,q(X).

Just as before, this example can be extended to the case where we have coefficients
in a vector bundle.

Example 4.17. Let E → X be a holomorphic vector bundle over a compact com-
plex manifold X and let (Ep,∗(X,E), ∂̄) be the elliptic complex of (p, q)-forms with
coefficients in E. By Theorem 2.20 we have

Hq(X,Ωp(E)) ≅Hq((E(∧p,qT ∗X ⊗C E), ∂̄E)).

The bundles in the complex are of the form ∧p,qT ∗X⊗E and equipping them with a
Hermitian metric we get again an elliptic complex with an inner product. We define
the associated Laplacian by

◻ = ∂̄E ∂̄∗E + ∂̄∗E ∂̄E
and let again

Hp,q(X) =H◻(∧p,qT ∗X ⊗E)
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denote the ◻-harmonic E-valued (p, q)-forms. Then by Theorem 4.14 we have the
isomorphism

Hq(X,Ωp(E)) ≅Hp,q(X,E).



CHAPTER 5

Compact Complex Manifolds & The Hodge
Decomposition

In this chapter we will apply the result of the previous chapters to the study of
compact complex manifolds. This is the most important chapter, as we will proof
the main theorem of the text, the Hodge Decomposition Theorem. This theorem
states that the de Rham groups can be expressed as the direct sum of the Dolbeault
groups of the same total degree. We will start by introducing the fundamental 2-
form and the Hodge ∗-operator in the first section. Section two will deal with the
theory about harmonic forms on compact manifolds. We will also prove two duality
theorems known as the Poincaré and Serre duality. In the third section we will be
concerned with a finite dimensional representation for the Lie algebra sl(2,C) and
using this representation we will derive the Lefschetz decomposition theorem for a
Hermitian exterior algebra. In the fourth section we introduce the concepts of a
Kähler metric and Kähler manifolds. In this section we will also prove various com-
mutation relations for the operators d, ∂, ∂̄ and their associated Laplacian operators.
These relations are the final ingredients for our proof of the Hodge Decomposition
Theorem in the fifth section.

1. Hermitian Exterior Algebra on a Hermitian Vector Space

Let V be a finite dimensional real vector space equiped with an inner product ⟨⋅, ⋅⟩.
Let {e1, . . . , ed} be an orthonormal basis for V where d = dimV then we know that
{ei1 ∧ ⋅ ⋅ ⋅ ∧ eip ∶ 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ ip ≤ d} is a basis for ∧V (which shall be orthonormal
under the induced inner product). Also an orientation for V is given by an ordering
of the a basis such as {e1, . . . , ed}. This is equivalent to the choice of sign for a
particular d form, for example e1 ∧ ⋅ ⋅ ⋅ ∧ ed called a volume element, denoted by vol.
It is possible to equip the exterior algebra ∧V of V with an inner product ⟨⋅∣⋅⟩ (notice
the difference between the notation ⟨⋅∣⋅⟩ and ⟨⋅, ⋅⟩ for the inner product on ∧V and
V respectively) induced by the inner product on V . Namely define ⟨⋅∣⋅⟩ on the basis
elements of ∧kV to be

⟨ei1 ∧ ⋅ ⋅ ⋅ ∧ eik ∣ej1 ∧ ⋅ ⋅ ⋅ ∧ ejk⟩ = det [⟨eim , ejn⟩]

where [⟨eim , ejn⟩] denotes the k × k matrix with elements ⟨eim , ejn⟩. We extend
this definition to all of ∧V by linearity. To see that ⟨⋅∣⋅⟩ is symmetric note that
detA = detA⊺. For positive definiteness not that for any basis element ei1 ∧ ⋅ ⋅ ⋅ ∧ eik
of ∧kV and λ ∈ R we have

⟨λei1 ∧ ⋅ ⋅ ⋅ ∧ eik ∣λei1 ∧ ⋅ ⋅ ⋅ ∧ eik⟩ = detλ2⟨eim , ei,n⟩ = λ2 det I = λ2 ≥ 0

since the {e1, . . . , ed} form an orthonormal basis of V .

39
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Now let {ẽ1, . . . ẽd} be another orthonormal basis for V then we know that

ẽi =∑
j

Aijej

where A = [Aij] is an orthogonal matrix. Computing the inner product we get for
two random basis vector ,ẽi1 ∧ ⋅ ⋅ ⋅ ∧ ẽik and ẽj1 ∧ ⋅ ⋅ ⋅ ∧ ẽjk that

⟨ẽi1 ∧ ⋅ ⋅ ⋅ ∧ ẽik ∣ẽj1 ∧ ⋅ ⋅ ⋅ ∧ ẽjk⟩ = det [∑ρσAimρAjnσ⟨eρ, eσ⟩]

where 1 ≤m,n ≤ k.
But from ⟨ei, ej⟩ = δij it follows that

det [∑ρσAimρAjnσ⟨eρ, eσ⟩] = det [∑ρAimρAjnρ] = det [A⊺Aimjn] = det [δimjn]

while on the other hand

⟨ei1 ∧ ⋅ ⋅ ⋅ ∧ eik ∣ej1 ∧ ⋅ ⋅ ⋅ ∧ ejk⟩ = det [⟨eim , ej,n⟩] = det [δinjm]

where [δin,jm] denotes the k × k matrix whose element at the position n,m is given
by δimjn . From linearity it follows that ⟨⋅∣⋅⟩ is independent of the orthonormal basis
chosen. Moreover using multi-index notation it is easy to check that given α =
∑′

∣I ∣=k
aIeI β = ∑′

∣I ∣=k
bIeI we have

⟨α∣β⟩ = ∑′

∣I ∣=k

aIbI .

We now introduce an operator used to extend this inner product. Given an or-
thonormal basis (of a d dimensional real vector space) with a volume element we
define the Hodge ∗-operator to be a map

∗ ∶ ∧pV → ∧d−pV
on basis elements by

∗(ei1 ∧ ⋅ ⋅ ⋅ ∧ eip)↦ ±ej1 ∧ ⋅ ⋅ ⋅ ∧ ejd−p
where {j1, . . . , jd−p is the complement of {i1, . . . , ip} in {1, . . . , d} and the sign is
chosen such that

(5.1) ei1 ∧ eip ∧ ∗(ei1 ∧ ⋅ ⋅ ⋅ ∧ eip) = vol .

To define ∗ on all of ∧pV we can just extend the definition on the basis elements by
using the bilinearity of the wedge product. We claim that given α = ∑′

∣I ∣=p
aIeI , β =

∑′

∣I ∣=p
bIeI ∈ ∧pV we have

(5.2) α ∧ ∗β = ⟨α∣β⟩vol

where ⟨⋅∣⋅⟩ as before. To see this note that

α ∧ ∗β = ∑′

∣I ∣=∣J ∣=p

aIbJeI ∧ ∗eJ

but the wedge product vanishes unless I = J and in that case we have eI ∧ ∗eI = vol
so we get

α ∧ ∗β = ∑′

∣I ∣=p

aIbI vol = ⟨α∣β⟩vol .
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We also see from this that the Hodge ∗ operator is independent of basis (since
⟨⋅∣⋅⟩ and vol are) and depends only on the inner product structure of V and the
choice of orientation.We extend the inner product given by Equation 5.1 to complex
valued differential forms in the following way. Let α,β ∈ ∧pV ⊗C then we can write
α = ∑′

∣I ∣=p aIeI and β = ∑′
∣I ∣=p bIeI where aI , bI ∈ C. Define

⟨α∣β⟩ = ∑′

∣I ∣=p

aI b̄I .

It is clear that in the case that α,β are real we get our old inner product back.
Furthermore, also extending the Hodge ∗ operator to ∧pV ⊗C by complex linearity
we get

(5.3) α ∧ ∗β̄ = ⟨α∣β⟩vol .

Next define a linear map w ∶ ∧V → ∧V by

w =∑(−1)dr+rΠr

where Πr ∶ ∧V → ∧rV denotes projection onto the homogeneous vectors of degree r.
Let {i1, . . . , ip, j1, . . . jd−p} be an ordered set then we see that it takes p(d−p) = dp−p2

transposition to get to the ordered set {j1, . . . , jd−p, i1, . . . , ip}. Using this and noting

that dp − p2 has the same parity as dp − p we get that w = ∗∗. Moreover, in the
special case that d is even we have

(5.4) w =∑
r

(−1)r∏
r

.

We now introduce the notion of forms on a vector space and use this to define the so
called fundamental form which is related to the metric. Let E be a complex vector
space with dimCE = n (note that we dont assume E to have a metric because a
metric is not needed for the notion of general forms). Let E′ be the real dual to the
underlying real vector space of E, that is E′ is the R vector space of real valued, R
linear maps from E to R. Then we define

F = E′ ⊗R C

to be the C vector space of complex valued R linear maps from E to C. Note that
dimRE

′ = 2n we have dimC F = 2n. We form the exterior algebra on F denoted by

∧F =
2n

∑
p=0

∧pF.

Elements of ∧pF are called p-forms or p-covectors on E. Conjugation on ∧F is given
by

ω̄(v1, . . . , vp) = ω(v1, . . . , vp) for vi ∈ E,ω ∈ ∧pF.
Let ∧1,0F and ∧0,1F be the subspace of ∧1F consisting of complex linear and anti-

linear forms respectively. Then we see that ∧1,0F = ∧0,1F and

∧1F = ∧1,0F ⊕ ∧0,1F

from which we get, just as in Chapter 1 a bigrading on F

∧F =
2n

∑
r=0

∑
p+q=r

∧p,qF.
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Now suppose our vector space is equipped with a Hermitian metric ⟨⋅, ⋅⟩. Since the
inner product is a map from E ×E to C it is actually Hermitian symmetric positive
definite 2-form, which is linear in the first argument and anti-linear in the second
(this is called sesquilinear). Letting {z1, . . . , zn} be a basis for ∧1,0F it follows that
{z̄1, . . . , z̄n} is a basis for ∧0,1F and that we can write

⟨u, v⟩ = h(u, v)

where

h =∑
µ,ν

hµνzm ⊗ z̄ν

and hµν is a positive definite Hermitian matrix. From zj = xj + iyj and z̄j = xj − iyj
it follows that

h =∑
µ,ν

hµν(xµ + iyµ)⊗ (xν − iyν)

=∑
µ,ν

hµν (xµ ⊗ xν) + yµ ⊗ yν) + i∑
µ,ν

hµν (yµ ⊗ xν − xµ ⊗ yν) .

In other words, we can write

h = S + iA
where S is a symmetric positive definite bilinear form representing the Euclidean
inner product induced on the underlying real vector space of A by the Hermitian
metric on E namely S = ∑µ,ν hµν (xµ ⊗ xν) + yµ ⊗ yν). Using

xµ =
zµ + z̄µ

2
, yµ =

zµ − z̄µ
2i

we get that

A =∑
µ,ν

hµν (yµ ⊗ xν − xµ ⊗ yν)

=∑
µ,ν

hµν

2
((iz̄µ − izµ)⊗ (zν + z̄ν) − (zµ + z̄µ)⊗ (iz̄ν − izν))

= −i∑
µ,ν

hµνzµ ∧ z̄ν .

We define the fundamental 2-form associated to the Hermitian metric to be

(5.5) Ω = i

2
∑
µ,ν

hµνzµ ∧ z̄ν .

Using this definition we get

(5.6) h = S − 2iΩ

where S is as before. Note that Ω is of type (1,1) and that since

Ω̄ = i

2
∑
µ,ν

hµνzµ ∧ z̄ν = −
i

2
∑
µ,ν

z̄µ ⊗ zν =
i

2
∑
µ,ν

zν ⊗ z̄µ = Ω
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and therefore Ω is a real 2-form of type (1,1). By taking the dual of a orthonormal
basis of E we see that it is always possible to find a basis {zµ} of ∧1,0F such that
hµν is the identity matrix. In this case we have

(5.7)

S =∑xµ ⊗ yν + yµ ⊗ xν ,

Ω =∑xµ ∧ yµ =
i

2
∑ zµ ∧ z̄µ.

We easily see that

(5.8) Ωn = n!x1 ∧ y1 ∧ ⋅ ⋅ ⋅ ∧ xn ∧ yn.

But this is a volume form on E′ and therefore gives an orientation on E′. Moreover,
it follows from S = ∑µ xµ ⊗ xµ + yµ ⊗ yµ that {xµ, yµ} is an orthonormal basis for
E′ (because S represents the euclidean inner product on underlying real vector
space of E and therefore induces a euclidean inner product on E′ and a basis of
E′ is orthonormal with respect to this induces inner product if it is the dual to
a orthonormal basis of the underlying real vector space of E) and thus there is a
naturally defined Hodge ∗ operator

(5.9) ∗ ∶ ∧pE′ → ∧2n−pE′

induced from the Hermitian inner product on E. We define

vol = 1

n!
Ω

which is independent of the choice of basis (since Ω is). In the special case of the
orthonormal basis we used earlier we have that

vol = x1 ∧ y1 ∧ ⋅ ⋅ ⋅ ∧ xn ∧ yn.

We will now use the above discussion to define linear operators mapping ∧F → ∧F .
Since these operators will be defined in terms of the above structure it follows that
their definitions all follow from the Hermitian inner product structure on E. We had
already defined w for even dimensional manifold by Equation 5.4. Extending this
definition by complex linearity we get

w ∶ ∧F → ∧F.

Similarly we extend ∗ defined in Equation 5.9 by complex linearity which gives

∗ ∶ ∧pF → ∧2n−pF.

Note that both w and ∗ are real operators which says by definition that they com-

mute with complex conjugation, i.e. for a real operator D we have D(x̄) =D(x)
Next define

J ∶ ∧F → ∧F
by

J =∑ ip−qΠp,q

where Π ∶ ∧F → ∧p,qF is the usual projection. Note that if v ∈ ∧1,0 then Jv = iv
and if v ∈ ∧0,1F then Jv = iv. This is exactly the same as the J operator defined
in Chapter 1 which represents the complex structure. Therefore we see that the J
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here defined is the natural multilinear extension of the complex structure operator
J to the exterior algebra ∧F . Lastly we define a linear operator L ∶ ∧F → ∧F by

L(v) = Ω ∧ v.
Then we see that L ∶ ∧p,qF → ∧p+1,q+1F since Ω is of type (1,1) and that L is a real
operator since Ω is a real 2-form.
As we saw in Equation 5.3, ∧pF is equiped with an inner product. Then we have
the following proposition.

Proposition 5.1 With respect to the inner product defined by 5.3 L has a
Hermitian adjoint L∗ ∶ ∧pF → ∧p−2F given by

L∗ = w ∗L ∗ .

Proof. Let α ∈ ∧pF and β ∈ ∧p+2F be given then we compute

⟨Lα,β⟩ = Ω ∧ α ∧ (∗β̄)
= α ∧Ω ∧ (∗β̄)
= α ∧ (L ∗ β̄)
= α ∧ (∗w ∗L ∗ β̄)

= α ∧ (∗w ∗ β)
= ⟨α,w ∗L ∗ β⟩vol

= ⟨α,L∗β⟩vol

where we used that ∗w∗ = ∗ ∗ ∗∗ = ww = id, and that L,w,∗ are real operators. �

From this proposition we see that L∗ is a real operator, homogeneous of degree −2.
Using the following proposition we shall see that L∗ is bihomogeneous of degree
(−1,−1). However we first need to proof a Lemma needed in the proof of the
proposition. We shall use the notation, where M is a multi-index,

wM = ∏
µ∈M

zµ ∧ z̄µ = (−2i)∣M ∣ ∏
µ∈M

xµ ∧ yµ

(here the product denotes the wedge product) where {z1, . . . , zn} is a basis for ∧1,0F .
Also we let N = {1, . . . , n} then we have the following lemma.

Lemma 5.2 Suppose that A,B and M are mutually disjoint increasing multi-
indices. Then

∗(zA ∧ z̄B ∧wM) = γ(a, b,m)zA ∧ z̄B ∧wM ′

for a non-vanishing constant γ(a, b,m), where a = ∣A∣, b = ∣B∣, m = ∣M ∣ and M ′ =
N − (A ∪B ∪M). Moreover

γ(a, b,m) = ia−b(−1)
p(p+1)

2
+m(−2i)p−n

where p = a + b + 2m is the total degree of zA ∧ z̄B ∧wM .

Proof. Write ν = zA ∧ z̄B ∧wM and if for a multi-index A we have A = A1 ∪A2

define

εA1A2
A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ifA1 ∩A2 ≠ ∅.
1 if A1A2 is an even permutation of A.

−1 if A1A2 is an odd permutation of A.
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Using this we get

zA = ∑′

A=A1∪A2

εA1A2
A ia2xA1 ∧ YA2

where we sum over increasing multi-indices A1,A2 such that A = A1∪A2. To see this
note that if A = {µ1, . . . , µa} then zA = (xµ1 + iyµ1)∧ ⋅ ⋅ ⋅ ∧ (xµa + iyµa) and expanding
this gives exactly the summation above. Thus we get

ν = (−2i)m ∑′

A=A1∪A1
B=B1∪B2

εA1A2
A εB1B2

B ia2−b2xA1 ∧ yA2 ∧ xB1 ∧ YB2 ∧ ∏
µ∈M

xµ ∧ yµ.

Now we have expressed ν in terms of a real basis we shall use the complex linearity
of ∗ to compute ∗ν term by term. To simplify the notation we shall assume B = ∅
note that the computation of the general case is completely analogous to this one.
We have

∗(zA ∧wM) = (−2i)m ∑′

A=A1∪A2

εA1A2
A ia2 ∗

⎧⎪⎪⎨⎪⎪⎩
xA1 ∧ yA2 ∧ ∏

µ∈M

xµ ∧ yµ
⎫⎪⎪⎬⎪⎪⎭
.

It is easy to see that the result of ∗ acting on the expression in brackets should be
of the form

±xA2 ∧ yA1 ∧ ∏
µ∈M ′

xµ ∧ yµ

where M ′ = N −(A∪M). The only thing we have to do is determine the sign. Since

∏µ∈M ′ xµ∧yµ has an even number of terms is irrelevant for the sign since transposing
an even number of times doesnt change the sign of the expression and therefore we
can always move the products around without changing sign. It follows that it is
enough to consider

xA1 ∧ yA2 ∧ xA2 ∧ yA1 = (−1)a
2
2xA1 ∧ yA1 ∧ xA2 ∧ yA2 .

In general we have that

xC ∧ yC = (−1) ∣C ∣(∣C ∣ − 1)
2

xµ1 ∧ yµ1 ∧ ⋅ ⋅ ⋅ ∧ xµ∣C∣ ∧ yµ∣C∣ .

To see this note that yµ1 has to move ∣C ∣ − 1 places ,yµ2 has to move ∣C ∣ − 2 places,

etc. Therefore the total number of transpositions is 1+ ⋅ ⋅ ⋅ + ∣C ∣−1 = ∣C∣(∣C∣−1)
2 . Using

this identity we get that the sign in 1 should be

(−1)a
2
2 + a1(a1 − 1)

2
+ a2(a2 − 1)

2
∶= (−1)r.

Now substituting this in Equation 1 and using

εA1A2
A = (−1)a1a2εA2A1

A

ia2 = ia(−1)a1ia1

we get

∗(zA ∧wM) = ia(−2i)m ∑′

A=A1∪A2

εA2A1
A ia1 {(−1)r+a1+a1a2}xA2 ∧ yA1 ∧ ∏

µ∈M ′
xµ ∧ yµ.

Since we have

(−1)r+a1+a1a2 = (−1)
a(a=1)

2 = (−1)
p(p+1)

2
+m
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we can pull the bracketed term outside the summation and we obtain the wanted
equation for the case B = ∅. �

Let, as usual, [M,N] =MN −NM denote the commutator of two given endomor-
phisms on a vector space.

Proposition 5.3 Let E be a Hermitian vector space with dimCE = n with
fundamental form Ω and associated operators w,J,L and L∗. Then:

(1) ∗Πp,q = Πn−q,n−p∗.
(2) [L,w] = [L,J] = [L∗,w] = [L∗, J] = 0.
(3) [L∗, L] = ∑2n

p=0(n − p)Πp.

Proof. For the first part of the proposition note that any element of ∧F can
be written in the form ∑′

A,B,M cA,B,MzA ∧ z̄B ∧wM . The type of a term of the form

zA ∧ z̄BwM is (m + a,m + b) where ∣A∣ = a, ∣B∣ = b, ∣M ∣ =m and ∣N ∣ = n. Then we see
from Lemma 5.2 that sinceM ′ = N−(A∪B∪M) ,and therefore ∣M ′∣ =m′ = n−a−b−m,
that the type of ∗(zA∧ z̄B ∧wM is (a+m′, b+m′) = (a+n−a−b−m,b+n−a−b−m) =
(n− (b+m), n− (a+m)) = (n− q, n−p). This proves the first identity. We note that
this is equivalent to

∗∣∧p,qF ∶ ∧p,qF → ∧n−q,n−pF

is an isomorphism.
The second part of the proposition is an easy computation using the fact that L is
a homogeneous operator of type (1,1) and L∗ is a homogeneous operator of type
(−1,−1). For the third part (we use the same notation as in Lemma 5.2 ) we use
Equation 5.7 which gives

(5.10)

L(zA ∧ z̄B ∧wM) = Ω ∧ zA ∧ z̄B ∧wM

= i

2

⎛
⎝

n

∑
µ=1

zµ ∧ z̄µ
⎞
⎠
∧ zA ∧ z̄B ∧wM

= i

2
zA ∧ z̄B ∧

⎛
⎝ ∑µ∈M ′

wM∪{µ}

⎞
⎠

where, as before M ′ = N − (A ∪ B ∪M). For the second equation we used that
x ∧ x = 0 and that all terms where µ ∉ M ′ give such doubled terms. On the other
hand using 5.2 and L∗ = w ∗L∗ we get that

(5.11) L∗(zA ∧ z̄B ∧wM) = 2

i
zA ∧ z̄B ∧

⎛
⎝∑µ∈M

wM−{µ}

⎞
⎠
.

Using these formulas we get

L∗L −LL∗ = (n − p)zA ∧ z̄B ∧wM

where p is the degree of zA ∧ z̄B ∧wM . This gives the last part of the proposition.
�
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2. Harmonic Theory on Compact Manifolds

As we have seen the laplacian on a Riemannian manifold is defined to be dd∗ + d∗d,
where d∗ is the adjoint of d with respect to some inner product on the complex
E∗(X) of complex valued differential forms on X. In this section we will use the
Hodge star operator to define a particular inner product on the vector space of
differential forms of a given degree. The inner product we define will enable us to
find explicit formula’s for the adjoint of d and other operators.
Assume we have a compact oriented Riemannian manifold X of dimension d. Like
in Section 1 the Riemannian structure and the orientation of X define the Hodge ∗
operator

∗ ∶ ∧pT ∗xX
≅Ð→ ∧d−pT ∗xX

for each x ∈ X. But since it is possible to find for all x ∈ X a neighborhood U of
x and a smooth orthonormal frame of ∧pT ∗X defined on U we see that ∗ actually
defines a smooth bundle map. Therefore it follows that, extending ∗ by complex
linearity to ∧pT ∗X ⊗C = Ep(X) we get an isomorphism of sections

∗ ∶ Ep(X) ≅Ð→ Ed−p(X).
We define integration of d-forms in the standard way, see for example [2]. Let

φ ∈ Ed(X), {φα} a partition of unit subordinate to a finite cover of X and fα ∶ Uα ⊂
Rn →X the associated coordinate mappings, then we set

∫
X
φ =∑

α
∫
Uα
f∗α(φαφ) =∑

α
∫
Rd
gα(x)dx1 ∧ ⋅ ⋅ ⋅ ∧ dxd

where the smooth function gα has compact support in Uα and it is a well known fact
that this definition is independent of of the covering and partition of unit. Given
φ,ψ ∈ Ep(X) we know that φ ∧ ∗ψ is a d-form which makes it possible to define the
so called Hodge inner product on E∗(X) by

(5.12)
(φ,ψ) = ∫

X
φ ∧ ∗ψ φ,ψ ∈ Ep(X)

(φ,ψ) = 0 φ ∈ Ep(X), ψ ∈ Eq(X), p ≠ q.
We then have the following properties of the Hodge inner product.

Proposition 5.4 The form (⋅, ⋅) defined by Equation 5.12 actually is a posi-
tive definite, Hermitian symmetric, sesquilinear form on the complex vector space
E∗(X) =⊕d

p=0 E
p(X).

Proof. We have seen in Equation 5.3 that the Riemannian mertic on X induces
an Hermitian inner product, ⟨⋅, ⋅⟩ on ∧pT ∗xX for each x ∈X defined by

ψ ∧ ∗ψ̄ = ⟨φ,ψ⟩vol .

Then it is easy to see that

(φ,ψ) = ∫
X
φ ∧ ∗ψ̄ = ∫

X
⟨φ,ψ⟩vol

where φ,ψ ∈ EP (X) is a positive semidefinite, sesquilinear Hermitian form on Ep(X).
We want it to be a positive definite form but this is not clear a priori since it could
be the case that ⟨⋅, ⋅⟩ is nonzero only for x in a subset of X that has measure zero
and thus contributes nothing to the integral. To see that this cannot happen let



48 5. COMPACT COMPLEX MANIFOLDS & THE HODGE DECOMPOSITION

φ ∈ Ep(X) such that φ is non zero at x0 ∈ X. Then it is possible to find an local
orthonormal frame for {e1, . . . , ed} for T ∗X ⊗C around x0 such that

φ = ∑′

∣I ∣=p

φIeI

and

φ ∧ ∗φ̄ = ∑′

∣I ∣=p

∣φI ∣2 vol

near x0. Since ∑′
∣I ∣=p ∣φI ∣

2 > 0 it follows that the contribution to the integral

(φ,φ) = ∫
X
φ ∧ ∗φ̄

will be nonzero and therefore (φ,φ) > 0 if φ ≠ 0 �

Proposition 5.5 The direct sum decomposition Er(X) = ∑p+q=r Ep,q is an or-
thogonal direct sum decomposition with respect to the Hodge inner product.

Proof. Let φ ∈ Ep,q(X) and ψ ∈ Er,s(X) such that p+ q = r+s be given. We see
that ψ̄ is of type (s, r) and with Proposition 5.3 we get that ∗ψ̄ is of type (n−r, n−s)
from which it follows that φ ∧ ∗ψ̄ is of type (n − r + p,n − s + q). It is easy to see
that φ∧∗ψ̄ will be a 2n form only if r = p and s = q. Otherwise, φ∧∗ψ̄ is zero. This
concludes the proof of the proposition. �

One of the benefits of the Hodge inner product is that it is relatively easy to compute
the adjoints of the linear operators we defined on E∗(X). However to do this we
first need to extend our definition of the Hodge ∗ operator. We first define

∗̄ ∶ E∗(X)→ E∗(X)

by ∗̄φ = ∗φ̄. Then

∗̄ ∶ ∧pT ∗Xc → ∧m−pT ∗Xc

is a conjugate-linear isomorphism.
Now let X be a Hermitian complex manifold and E →X a Hermitian vector bundle.
We want to expend ∗̄ to differential forms with coefficients in E. To do this we first
choose a conjugate bundle isomorphism of E onto its dual bundle E∗

τ ∶ E → E∗

one possibility is to define τ fiberwise by e ↦ ⟨⋅, e⟩ where ⟨⋅, ⋅⟩ for e ∈ Ex and where
⟨⋅, ⋅⟩ denotes the Hermitian inner product on Ex. We then extend ∗̄ ,

∗̄E ∶ ∧pT ∗Xc ⊗E → ∧2n−pT ∗Xc ⊗E∗

by

∗̄E(φ⊗ e) = ∗̄(φ)⊗ τ(e)
where φ ∈ ∧pT ∗xXc and e ∈ Ex. Recalling that Er(X,E) are by definition sections of
∧rT ∗Xc ⊗E we extend the Hodge inner product to E∗(X,E) in the following way.
Let φ ∈ Er(X,E) and ψ ∈ Es(X,E) be given then

(φ,ψ) =
⎧⎪⎪⎨⎪⎪⎩

∫
X
φ ∧ ∗̄Eψ r = s

0 r ≠ s
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Note that given φ ∈ ∧pT ∗xXc, e ∈ Ex, ψ ∈ ∧2n−pT ∗xXc, f ∈ E∗
x we have

(φ⊗ e) ∧ (ψ ⊗ f) = φ ∧ ψ ⋅ f(e) ∈ ∧2nT ∗xXc

so the definition of the Hodge inner product extension indeed makes sense. Moreover
it is clear that ∗̄E preserves the bigrading on E∗(X,E) since the extensions only
differ from the old inner product in the way they act on the coefficients and this is
independent of the bigrading. It follows that

∗̄E ∶ Ep,q(X,E)→ En−p,n−q(X,E∗)
is a conjugate-linear isomorphism. Therefore we see that Proposition 5.5 still holds
in this case. Now we have the following propositions regarding the adjoints of various
operators with respect to the Hodge inner product.

Proposition 5.6 Let X be an oriented compact Riemannian manifold of real
dimension m and let ∇ = dd∗ + d∗d where d∗ is the adjoint of d with respect to the
Hodge inner product on E∗(X). Then

(1) d∗ = (−1)m+mp+1∗̄d∗̄ = (−1)m+mp+1 ∗ d ∗ on Ep(X).
(2) ∗∇ = ∇∗, ∗̄∇ = ∇∗̄.

Proof. Let φ ∈ Ep−1(X) and ψ ∈ Ep(X) be given. Then we have

(dφ,ψ) = ∫
X
dφ ∧ ∗̄ψ

= ∫
x
d(φ ∧ ∗̄ψ) − (−1)p−1∫

X
φ ∧ d∗̄ψ

where we used that d(φ∧ψ) = dφ∧ψ + (−1)p−1φ∧ dψ. Using Stokes theorem we see
that the first term vanishes. Using ∗∗ = ∗̄∗̄ = w and ∗w∗ = ∗̄w∗̄ = 1 we obtain

(dφ,ψ) = (−1)p∫
X
φ ∧ ∗̄(∗̄−1d∗̄)ψ

= (−1)p∫
X
φ ∧ ∗̄(∗̄wd∗̄)ψ = (−1)m+mp+1(φ, ∗̄d∗̄ψ).

For the last equation note that ψ ∈ Ep(X) so ∗̄ψ ∈ Em−p. From here we get that

d∗̄ ∈ Em−p+1(X) and the sign we get from w is given by (−1)m2−mp+m+m−p+1 together
with the (−1)p factor in front of the integral we get a sign (−1)m+mp+1. We conclude
that d∗ = (−1)m+mp+1∗̄d∗̄ and since d is real we also have d∗ = (−1)m+mp+1 ∗ d∗.
For the second part we write, given φ ∈ Ep(X),

∗∇φ = (−1)m+mp+1 (∗d ∗ d ∗ +(−1)m ∗ ∗d ∗ d)φ

∇ ∗ φ = (−1)m+m(m−p)+1 (d ∗ d ∗ ∗ + (−1)m ∗ d ∗ d∗)φ
= (−1)m+mp+1 (∗d ∗ d ∗ +(−1)md ∗ d ∗ ∗)φ

which is a simple computation. So if we show that wd ∗ dφ = d ∗ dwφ we are done.
To see this recall that w = ∑(−1)p+mpΠp from which it follows that

d ∗ dwφ = (−1)p+mpd ∗ dφ
and since d ∗ dφ has degree m − p, we get

wd ∗ dφ = (−1)m−p+m(m−p)d ∗ dφ = (−1)mp+pd ∗ dφ
so we are done.

�



50 5. COMPACT COMPLEX MANIFOLDS & THE HODGE DECOMPOSITION

In the Hermitian case we have a similar result, given by the following proposition.
Note that ∗̄E∗ is defined in the same way as ∗̄E by using τ−1 ∶ E∗ → E.

Proposition 5.7 Let X be a Hermitian complex manifold and let E Ð→X be a
Hermitian holomorphic vector bundle. Then

(1) ∂̄ ∶ Ep,q(X,E) → Ep,q+1(X,E) has an adjoint ∂̄∗ with respect to the Hodge
inner product on E∗,∗(X,E) given by

∂̄∗ = −∗̄E∗ ∂̄∗̄E .

(2) If ◻ = ∂̄∂̄∗ + ∂̄∗∂̄ is the complex laplacian acting on E∗,∗(X,E), then

◻E = ∗̄E◻.

Proof. In this case we also have ∗̄E ∗̄E∗ = w. Since the real dimension of X
is even, this reduces to ∑(−1)pΠp. For the proof of the first statement let φ ∈
Ep,q−1(X,E) and φ ∈ Ep,q(X,E). Then φ ∧ ∗̄Eψ is of type (n,n − 1) it follows that
∂̄(φ ∧ ∗̄Eψ) = d(φ ∧ ∗̄Eψ) since ∂ is zero on type (n,n − 1) forms. Moreover,

∂̄(φ ∧ ∗̄Eψ) = ∂̄φ ∧ ∗̄Eψ + (−1)p+q−1φ ∧ ∂̄∗̄Eψ.

Using this identity and Stokes theorem as in the proof of Proposition 5.6 we obtain,

(∂̄φ,ψ) = (−1)p+q ∫
X
φ ∧ ∂̄∗̄Eψ

= (−1)p+q ∫ φ ∧ ∗̄E(w∗̄E∗ ∂̄∗̄Eψ)

= −∫ φ ∧ ∗̄E(∗̄E∗ ∂̄∗̄Eψ)

= (φ,−∗̄E∗ ∂̄∗̄Eψ).

This proves the first part of the proposition. The proof is the second statement is
exxactly the same as in Proposition 5.6 where we replace ∂̄ for d, ◻ for ∆ and ∗̄E
for ∗.

�

Using the above results we will now prove two well-known duality theorems. First
we state the fact that if E is a finite dimensional complex vector space, then it
is conjugate-linearly isomorphic to a complex vector space F if and only if F is
complex-linearly isomorphic to E∗. The first duality theorem we will proof is known
as the Poincaré duality.

Theorem 5.8 Let X be a compact m-dimensional orientable differentiable man-
ifold. Then there is a conjugate linear isomorphism

σ ∶Hr(X,C)→Hm−r(X,C),

and hence Hm−r(X,C) is isomorphic to the dual of Hr(X,C).

Proof. We introduce a Riemannian metric on X and choose an orientation.
Let ∗ be the associated ∗-operator. Then the following diagram commutes.
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Er(X) Em−r(X)

Hr(X) Hm−r(X)

Hr(X,C) Hm−r(X,C)

∗̄

H∆ H∆

∗̄

σ

≅ ≅

Here H∆ denotes the projection onto the harmonic forms. From Proposition 5.6 we
known that ∗̄ maps harmonic forms to harmonic forms since ∆∗̄ = ∗̄∆. Moreover,
the de Rham groups Hr(X,C) are isomorphic to Hr(X), and σ denotes the induced
conjugate linear isomorphism. �

Now we have the second duality theorem which is known as the Serre duality.

Theorem 5.9 Let X be a compact complex manifold of complex dimension n
and let E → X be a holomorphic vector bundle over X. Then there is a conjugate
linear isomorphism

σ ∶Hr(X,Ωp(E))→Hn−r(X,Ωn−p(E∗)),
and hence these spaces are dual to one another.

Proof. We introduce Hermitian metrics on X and X so we can define the ∗̄E
operator. Then the following diagram commutes.

Ep,q(X,E) En−p,n−q(X,E∗)

Hp,q(X,E) Hn−p,n−q(X,E∗)

Hp,q(X,E) Hn−p,n−q(X,E∗)

Hq(X,Ωp(E)) Hn−q(X,Ωn−p(E∗))

∗̄E

H◻ H◻

∗̄E

τ

σ

≅ ≅

≅ ≅

This proves the theorem. Here we used that ∗̄E maps harmonic forms to harmonics
since we know from Proposition 5.7 that ◻∗̄E = ∗̄E◻. We also used the known fact
that the Dolbeault groups, which we denoted by {Hp,q(X,E)}, are isomorphic to
Hq(X,Ωp(E)) (See Theorem 2.20). �

3. Representations of sl(2,C) on Hermitian Exterior Algebras

First we recall some basic definitions. A Lie algebra is a vector space U equipped
with a Lie bracket [⋅, ⋅], which is bilinear anticommutative and satisfies the Jacobi
identity. A represenation of a lie algebra U on a complex vector space V is an algebra
homomorphism

π ∶ U→ End(V )
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where End(V ) denotes the Lie algebra of enodmorphism of V with the Lie bracket
[A,B] = AB − BA. The dimensions of the representation is the dimension of the
vector space V . A representation π is called irreducible if there is no proper invariant
subspace V0 ≠ ∅ of V . That is, a subspace V0 ⊂ V such that 0 ≠ V0 ≠ V and

π(X)V0 ⊂ V0 for all X ∈ U.
Given two representations π1 and π2 on V1 and V2 respectively, π = π1 ⊕ π2 is a
representation on V1 ⊕ V2. Two representations are called equivalent if there exists
an isomorphism S ∶ V1 → V2 such that π1 = S−1π2S. A representation is called
reducible if it is equivalent to a direct sum of irreducible representations. Recall
that a Lie group is a group which is also a smooth manifold. A representation of
a Lie group G of a finite-dimensional complex vector space V is a real analytic
homomorphism ρ ∶ G → GL(V ), where as usual GL(V ) denotes the Lie group of
nonsingular endomorphisms of the vector space V . For Lie groups we have the same
notions of irreducibility, complete reducibility, equivalence etc. as for Lie algebra’s.
To every Lie group G we can associate a Lie algebra g which is by definition TeG, the
tangent space of G at the identity, or equivalently the vector space of left invariant
vector fields of G. It is a standard result that Lie brackets preserve left invariance,
see for example [2]. We will now introduce a specific Lie algebra which will be the
only one of interest for our discussion. The lie algebra sl(2,C) is by definition the
vector space of 2×2 complex matrices with trace zero endowed with the commutator
bracket of matrices. It is the associated Lie algebra to the Lie group SL(2,C) the
group of 2×2 matrices with complex coefficients and determinant equal to 1. To see
this note that there exists an exponential map

(5.13) exp ∶ sl(2,C)→ SL(2,C)
given as usual by,

expX = eX =
∞

∑
n=0

Xn

n!

from which we see that
d

dt
etX ∣

t=0
=X

for an arbitrary matrix X. We will also use the well known identity from matrix
calculus

det(etX) = eTrX .

Let X ∈ sl(2,C) then since Tr(X) = 0 it follows that det(etX) = 1, therefore etX

path in SL(2,C) going through the identity for t = 0 with speed X. On the other
hand let Y be any 2 × 2 matrix such that det(etY ) = 1 then, since that etTrY = 1, it
follows that tTr(Y ) is an integer multiple of 2πi which is only possible if Tr(Y ) = 0.
So sl(2,C) is indeed the tangent space to SL(2,C) at the identity. The elements
of sl(2,C) depend on 4 − 1 = 3 parameters since they are 2 × 2 matrices with the
condition det = 1, it follows that dim sl(2,C) = 3. A basis is given by

(5.14) X = [0 1
0 0

] , Y = [0 0
1 0

] , H = [1 0
0 −1

]

with the following commutation relations

(5.15) [X,Y ] =H, [H,X] = 2X, [H,Y ] = −2Y
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We also introduce the special element of sl(2,C);

w = i(X + Y ) = [0 i
i 0

]

called the Weyl element. Note that we have

wHw−1 = −H, wXw−1 = Y, wY w−1 =X.
We will be using the following result from Lie Theory.

Proposition 5.10 There is a one-to-one correspondence between representa-
tions of sl(2,C) and SL(2,C). More explicitly, let

ρ ∶ sl(2,C)→ End(V )
be given and g = eX ∈ SL(2,C) where X ∈ sl(2,C) then the corresponding represen-
tation

π ∶ SL(2,C)→ GL(V )
is given by

π(eX) = eρ(X).
Conversely ρ = dπ where d denotes the derivative mapping.

Proposition 5.11 Let ρ be a presentation of sl(2,C) on a finite-dimensional
complex vector space, then ρ is completely reducible.

We will now describe these irreducible representations. Assume a fixed finite dimen-
sional representation ρ of sl(2,C) on a complex vector space V to be given.

Definition 5.12. For a finite dimensional representation ρ of sl(2,C) on a complex
vector space V we define V λ to be the eigenvectors of ρ(H) with eigenvalue λ. A
v ∈ V λ is said to have weight λ. We say that a vector v ∈ V λ is primitive of weight
λ if v is nonzero and ρ(X)v = 0.

Using this terminology we have the following Lemma’s.

Lemma 5.13 The following is true.

(1) The sum ∑λ∈C V λ is a direct sum.
(2) If v is of weight λ, then ρ(X)v is of weight λ + 2 and ρ(Y )v is of weight

λ − 2.

Proof. The first assertion just says that eigenvectors with different eigenvalues
are linearly independent. For the second statement we will use the linearity of ρ and
the commutation relations, [H,X] = 2X and [H,Y ] = −2Y .

ρ(H)ρ(X)v = (ρ(H)ρ(X) − ρ(X)ρ(H)) v + ρ(X)ρ(H)v
= ρ([H,X])v + λρ(X)v
= ρ(2X)v + λρ(X)v
= (λ + 2)ρ(X)v.

Similarly we get ρ(H)ρ(Y )v = (λ − 2)ρ(Y )v. �

Lemma 5.14 Every representation ρ of sl(2,C) on a finite dimensional complex
vector space V , has at least one primitive vector.
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Proof. Let v0 be an eigenvector os ρ(X), then we consider the sequence

v0, ρ(X)v0, ρ(X)2v0, . . .

The nonzero terms in this sequence are all linearly independent (since they have
different eigenvalues). Since V is finite dimensional it follows that this sequence
must become zero at some point. Therefore, for some k, we have ρ(X)kv0 = 0 and
ρ(X)k−1v0 ≠ 0 and we have a primitive vector v = ρ(X)k−1v0. �

We now have the basic description of an irreducible representation of sl(2,C) on a
finite dimensional complex vector space.

Theorem 5.15 Let ρ be a irreducible representation ρ of sl(2,C) on a finite
dimensional complex vector space V . Let v0 be a primitive vector of weight λ. Then
setting v−1 = 0 and

vn =
1

n!
ρ(Y )nv0, n = 0,1 . . . ,m, . . .

we get for n ≥ 0,

(1) ρ(H)vn = (λ − 2n)vn,
(2) ρ(Y )vn = (n + 1)vn+1,
(3) ρ(X)vn = (λ + n + 1)vn−1.

Moreover, λ =m, where m + 1 = dimC V , and

ρ(Y )nv0 = 0, n >m.

Proof. (1) follows immediatly from Lemma 5.13. (2) is clear from the definition
of vn. (3) follows from induction on n. For n = 0 we have ρ(X)v0 = 0 since v0 is
a primitive vector. Suppose that (3) holds for n − 1 then we get, using [X,Y ] = H
and the induction hypothesis for n − 1,

nρ(X)vn = ρ(X)ρ(Y )vn−1 = ρ(Y )ρ(X)vn−1 + ρ([X,Y ])vn−1

= (λ − n + 2)ρ(Y )vn−2 + ρ(H)vn−1

= (λ − n + 2)(n − 1)vn−1 + (λ − 2n + 2)vn−1

= n(λ − n + 1)vn−1

which yields (3) after dividing by n. Since V is finite dimensional we have v0, . . . , vm
all nonzero and vm+1, . . . all zero. Using (3) we get

0 = ρ(X)vm+1 = (λ − (m + 1) + 1)vm = (λ −m)vm
and since vm ≠ 0 it follows that λ = m. It also follows using (2) that ρ(Y )nv0 = 0
for n > m. We now show that m + 1 = dimC V and then we are done. Let Vm =
Span{v0, . . . , vm}. We then claim that Vm is invariant under the action of ρ on V .
Since ρ is irreducible this implies that Vm = V and dimC V = m + 1. To see this let
v = ∑αnvn be a vector in Vm then we have

ρ(H)v =∑αn(m − 2n)vn
ρ(Y )v =∑αn(n + 1)vn+1

ρ(X)v =∑αn(m − n + 1)vn−1
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all these vectors are in Vm again and so ρ(sl(2,C))Vm ⊂ Vm and we conclude that
dimC V =m + 1. �

The next theorem states that up to equivalence there is only one irreducible repre-
sentation of dimension m + 1.

Theorem 5.16 Let V be a complex vector space of dimension m+ 1 for m ≥ 0.
Let {v0, . . . , vm} be a basis for V. Define a representation ρ of sl(2,C) on V by

(1) ρ(H)vn = (m − 2n)vn,
(2) ρ(Y )vn = (n + 1)vn+1,
(3) ρ(X)vn = (m − n + 1)vn−1,

for n = 0, . . . ,m and v−1 = vm+1 = 0. This representation is irreducible and any
irreducible representation of dimension m + 1 is equivalent to this one.

Proof. It is easy to see that ρ defined above is indeed a representation. For
the second part of the statement let V0 be a nonzero subspace of V invariant under
ρ. Then there is an eigenvector of ρ(H) in V0. But since the list of eigenvectors
{v0, . . . , vm} is complete there must be a 0 ≤ k ≤ m such that vk ∈ V0. But then we
can use the actions of ρ(Y ) and ρ(X) to see that V0 contains vn for n = 0, . . .m. In
other words V0 = V and ρ is irreducible. Theorem 5.15 gives that any irreducible
representation of dimension m + 1 is equivalent to this one. �

Corollary 5.17 Given an irreducible representation of dimension m + 1, ρ ∶
sl(2,C) → V let φ ∈ V be an eigenvector of ρ(H) of weight λ. Then there exists a
primitive vector φ0 of weight λ + 2r, for an integer r ≥ 0, such that

φ = ρ(Y )rφ0,

and where

φ0 =
(m − r)!
m!r!

ρ(X)rφ.

Proof. We let {v0, . . . , vm} be a basis for V as in Theorem 5.16 then for a fixed
r, 0 ≤ r ≤m we have

ρ(X)rvr = (m − r + 1)(m − r + 2)⋯mv0 =
m!

(m − r)!
v0.

From this we see that

ρ(Y )rρ(X)rvr = 1 ⋅ 2⋯r m!

(m − r)!
vr =

m!r!

(m − r)!
vr.

Now if φ is an eigenvector of ρ(H) then φ is a multiple of one of the eigenvectors
{v0, . . . , vm} i.e. φ = αvr so

φ = (m − r)!
m!r!

ρ(Y )rρ(X)rφ

and defining

φ0 =
(m − r)!
m!r!

ρ(X)rφ

we see that φ0 is primitive. �
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We will now introduce specific representations for SL(2,C) and sl(2,C) on C2. To
this we consider elements of C2 as column vectors and let a basis be given by

v1,0 = [1
0
] , v1,1 = [0

1
] .

Then there is a natural action of SL(2,C) on C2 by matrix multiplication and we
can define a representation π1 of SL(2,C) by

π1(g) = (v ↦ gv)

for any v ∈ C2 and g ∈ SL(2,C) where the product is matrix multiplication. Let
Sm(C2) denote the m-fold symmetric tensor product of C2 with itself. We extend
π1 by multilinearity to a representation of SL(2,C) on Sm(C2), denoted by πm.
Note that the dimension of Sm(C2) is m + 1.1 Moreover we know from Proposition
5.10 that the representation πm induces a representation ρm = dπm of sl(2,C) on
C2 in the following way. Let t ↦ At be a path in SL(2,C) such that A0 = I and
d
dt At∣t=0 =X. Let v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm ∈ Sm(C2) then

X(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm) = ( d
dt
At)∣

t=0
(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm)

= d

dt
(At(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vm))∣

t=0

= d

dt
(Atv1 ⊗ ⋅ ⋅ ⋅ ⊗Atvm)∣

t=0

=
m

∑
i=1

(Atv1 ⊗ ⋅ ⋅ ⋅ ⊗ Ȧtvi ⊗ ⋅ ⋅ ⋅ ⊗Atvm)∣
t=0

=
m

∑
i=1

v1 ⊗ ⋅ ⋅ ⋅ ⊗Xvi ⊗ ⋅ ⋅ ⋅ ⊗ vm.

It follows that ρm is just like πm the multilinear extension of matrix multiplication,
but in the case of ρm this extension is a derivation. Using the basis of sl(2,C) given
by Equation 5.14 we obtain

ρ1(H)v1,0 = v1,0, ρ1(X)v1,0 = 0, ρ1(Y )v1,0 = v1,1,

with similar results for the other basis vector, from which we see that ρ1 satisfies
the relations of Theorem 5.16 and therefore it is irreducible. For the general case
define

vm,k = vm−k1,0 vk0,1, 0 ≤ k ≤m

1 It is well known that the m − fold symmetric tensor product Sm(V )of a n-dimensional vector

space V is given by the binomial coefficient (n +m − 1
m

) which in this case reduces to dimSm(C2) =

(m + 1
m
) =m + 1
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these m + 1 elements form a basis of Sm(C2). For this basis we can compute the
following relations:

ρm(H)vm,k = (m − 2k)vm,k 0 ≤ k ≤m,
ρm(X)vm,0 = 0,

ρm(Y )vm,m = 0,

ρm(X)vm,k = kvm,k−1 1 ≤ k ≤m,
ρm(Y )vm,k = (m − k)vm,k+1 0 ≤ k ≤m − 1.

Using this relations we can express every basis vector vm,k in terms of the action of

ρm on vm,0(which is primitive), that is vm,0 generates Sm(C2) and therefore ρm is
irreducible and equivalent to the representation in Theorem 5.16. Set

φk = ρmY kvm,0,

then repeated use of ρm(Y )vm,k = (m − k)vm,k+1 gives

φk =
m!

(m − k)!
vm−k1,0 vk1,1

and using this definition it is easy to compute the action of the Weyl element w on
φk,

πm(w)φk =
m!

(m − k)!
πm(w) (vm−k1,0 vk1,1)

but πm(w) was defined to be the multilinear extension of matrix multiplication and
since

π1(w)v1,0 = iv1,1, π1(w)v1,1 = iv1,0,

it follows that

πm(w)φk =
m!

(m − k)!
imvm−k0,1 vk1,0 = im

k!

(m − k)!
φm−k.

From this we obtain

(5.16) πm(w)ρm(Y )kφ0 = im
k!

(m − k)!
ρm(Y )m−kφ0,

which will be used later in the proof of Lemma 5.22. Now we consider another explicit
representation of sl(2,C) this time on the exterior algebra of forms on an Hermitian
vector space E. Let E be a fixed Hermitian vector space of complex dimension n
with its algebra of forms ∧F and operators L and L∗ as in Section 2. We will write

Λ ∶= L∗,

B ∶=
2n

∑
p=0

(n − p)Πp,

and we can define a representation α ∶ sl(2,C)→ End(∧F ) by

α(X) = Λ, α(Y ) = L, α(H) = B.
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To see that this is indeed a representation we have to show that the commutation
relations [B,L] = −2L, [B,Λ] = 2Λ and [Λ, L] = B hold. Let v be a k-form then

[B,L]v = (BL −LB)v = B(Ω ∧ v) −L((n − k)v)
= (n − (k + 2))Ω ∧ v − (n − k)Ω ∧ v
= −2Ω ∧ v = −2Lv,

which proves the first commutation relation. For the second commutation relation,
[B,Λ] = 2Λ note that for a k − form v, the operator B only multiplies v with a
number. Furthermore since Λ is the adjoint of L it is a homogeneous operator of
degree −2 so we get

[B,Λ]v = (BΛ −ΛB)v = (n − k + 2)Λv − (n − k)Λv
= 2Λv.

The third commutation relation [Λ, L] = B follows immediately from Proposition
5.3 so α is a representation.

Definition 5.18. A p-form φ ∈ ∧pF is said to be primitive if Λφ = 0.

In the next two theorems we will see that if φ is a primitive p-form then the action of
α generates a subspace Fφ ⊂ ∧F of dimension n − p + 1, on which α acts irreducibly.
The action of α also leaves the real form ∧RF invariant since L,Λ and B are real
operators. Thus we get a decomposition of ∧RF into irreducible components, which
is compatible with the decomposition F = ⊕ ∧p,q F since L,Λ and B are bihomoge-
neous. This decomposition is called the Lefschetz decomposition. Furthermore we
know from Proposition 5.10 that α induces a representation of SL(2,C) on ∧F wich
we will denote by πα. Also we denote (x)+ = max(x,0).

Theorem 5.19 Let E be an Hermitian vector space of complex dimension n.

(1) If φ ∈ ∧pF is a primitive p-form, then Lqφ = 0, q ≥ (n − p + 1)+.
(2) There are no primitive forms of degree p > n.

Proof. Let φ be a primitive p-form and let Fφ be the subspace of ∧F generated
by the action of sl(2,C) on φ by the representation α. Then clearly Fφ is invariant
under the action of sl(2,C) so α acts irreducibly on Fφ. Then using Theorem 5.15
we get that α(H)φ = mφ where m + 1 = dimFφ. Since α(H) = B = ∑(n − p)Πp we
also have α(H)φ = (n − p)φ, so m = n − p. Again by Theorem 5.15 it follows that
α(Y )qφ = Lqφ = 0 for q ≥ (n − p + 1)+. The second part of the theorem is a simple
consequence from the fact that dimFφ = n − p + 1. �

The next theorem states the Lefschetz decomposition for a Hermitian exterior alge-
bra, as mentioned earlier.

Theorem 5.20 Let E be an Hermitian vector space of complex dimension n,
and let φ ∈ ∧pF be a p-form, then

(1) One can write φ uniquely in the form

(5.17) φ = ∑
r≥(p−n)+

Lrφr,
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where each φr is a primitive (p − 2r)-form. Moreover, each φr can be ex-
pressed in the form

(5.18) φr =∑
s

ar,sL
sΛr+sφ, ar,s ∈ Q.

(2) If Lmφ = 0, then the primitive (p− 2r)-forms φr appearing in the decompo-
sition vanish if r ≥ (p − n +m)+, that is,

φ =
(p−n+m)+

∑
r=(p−n)+

Lrφr.

(3) If p ≤ n, and Ln−pφ = 0 then φ = 0.

Proof. By Proposition 5.11 the representation space V = ∧F decomposes into
a direct sum of irreducible subspaces, that is V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vl. Given a p-form φ it
follows that

φ = ψ1 + ⋅ ⋅ ⋅ + ψl

where ψj ∈ Vj . Using Corollary 5.17 and the fact that each ψj is an eigenvector of
α(H) of weight n − p, we see that

ψj = Lrjχj
where χj is a primitive (p − 2rj)-form and

(5.19) χj = cjΛrjψj , cj ∈ Q.

Collecting primitive forms of the same degree we get a decomposition of φ of the
form

φ = ∑
r≥(n−p)+

Lrφr

where each φr is primitive of degree (p− 2r). Suppose there is another such decom-
position of φ then if we subtract these two we get a decomposition

(5.20) 0 = φ0 +Lφ1 + ⋅ ⋅ ⋅ +Lmφm
where each φj is primitive j = 0, . . . ,m ≥ 1. From Theorem 5.15 we know that

(5.21) ΛkLkφk = ckφk, k = 1, . . . ,m

for 0 ≠ ck ∈ Q. Now applying Λm to Equation 5.20 and using Equation 5.21 we get
the following

0 = Λmφ0 +Λm−1 (ΛL)φ1 + ⋅ ⋅ ⋅ +Λ (Λm−1Lm−1)φm−1 +ΛmLmφm

= Λmφ0 +Λm−1c1φ1 + ⋅ ⋅ ⋅ +Λcm−1φm−1 + cmφm
= cmφm

where we used that all φk are primitive. Since all ck ≠ 0 it follows that φm = 0
contradicting the assumption that φm was primitive. Therefore we conclude that
the decomposition given by Equation 5.17 is unique. To see Equation 5.18 let a
p-form φ have the decomposition

φ = φ0 +Lφ1 + ⋅ ⋅ ⋅ +Lmφm
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where the φj are primitive (p − 2j)-forms. Applying Λm to this equation as before
we get

Λmφ = cmφm
from which it follows that

φm = 1

cm
Λmφ.

Using induction from above, which means starting with m and then doing the case
m − 1 etc., we get formulas as in Equation 5.18 for each φj , j = 0, . . . ,m. The
second and third part of the theorem are consequences of the uniqueness of the
decomposition in Equation 5.17. Namely using the first part of the theorem we have

0 = Lmφ = Lm ∑
r≥(p−n)+

Lrφr = ∑
r≥(p−n)+

Lm+rφr.

From Theorem 5.19 and the primitiveness of φr it follows that  Lqφr = 0 if q ≥
(n − (p − 2r) + 1)+ (recall that each φr is a (p − 2r)-form). This implies, taking
q = r +m, that Lr+mφr = 0 if r +m ≥ (n− p+ 2r + 1)+ or equivalently r < (p−n+m).
So we have

0 = ∑
r≥(p−n+m)+

Lm+rφr = ∑
q≥(p+2m−n)+

Lqφq.

This is a primitive decomposition of the zero form from which it folllows that φq−m =
0 for q ≥ (p+ 2m−n)+ that is, φr = 0 for r ≥ (p−n+m)+, as desired. The third part
of the theorem follows as a special case of the second part. �

We will now prove some relations between the operators ∗,Λ and L. Let E be an
Hermitian vector space with fundamental form

Ω =
n

∑
µ=1

xµ ∧ yµ

as before, where {xµ, yµ} is again an orthonormal basis for E′. We define for any
p-form η ∈ ∧F the operator e(η) given by

e(η) ∶= η ∧ φ.
If η is a real 1-form we have

(5.22) e∗(η) = ∗e(η) ∗ .
To see this let φ ∈ ∧pF and ξ ∈ ∧p+1F then

(e(η)φ, ξ) = ∫ η ∧ φ ∧ ∗̄ξ

= (−1)p∫ φ ∧ ∗̄∗̄−1η ∧ ∗̄ξ

= (−1)p∫ φ ∧ ∗̄ (∗̄wη ∧ ∗̄ξ)

= ∫ φ ∧ ∗̄ (∗η ∧ ∗ξ)

= (φ,∗e(η) ∗ ξ)

where we used that η is real to replace ∗̄ by ∗ and the sign in front of the integral
goes away because η ∧ ∗ξ is a 2n − p form. From this computation it is also clear
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that if η is any 1-form, not necessary real then we have e∗(η) = ∗̄e(η)∗̄. Given an
oriented orthonormal basis {e1, . . . , e2n} of E′ we have

(5.23) e∗(ej1) (ej1 ∧ ⋅ ⋅ ⋅ ∧ ejk) =
⎧⎪⎪⎨⎪⎪⎩

ej2 ∧ ⋅ ⋅ ⋅ ∧ ejk , if j1 ∈ {j2, . . . , jk}
0 otherwise

Note that

L = e(Ω) =
n

∑
µ=1

e(xµ)e(yµ),

Λ = e∗(Ω) =
n

∑
µ=1

e∗(yµ)e∗(xµ).

Since Ω is a 2-form we have

[L, e(η)] = 0, for any η ∈ ∧F

while

(5.24)
[Λ, e(xµ)] = e∗(yµ)
[Λ, e(yµ)] = −e∗(xµ)

for µ = 1, . . . , n. This can be seen in the following way. To start note that the second
equation follows from the first by reversing the role of xµ and yµ in the definition of
the L operator. To see the first equation we write

(5.25)
=

n

∑
µ=1

e∗(yµ)e∗(eµ)e(xj) − e(xj)
n

∑
µ=1

e∗(yµ)e∗(xµ)

= e∗(yj)e∗(xj)e(xj) − e(xj) − e(xj)e∗(yj)e∗(xj)

because, as we know from Equation 5.23, e(xj) commutes with e∗(xµ) and e∗(yµ)
for j ≠ µ. Now let ψ be a given form then

ψ = ψ1 + xj ∧ ψ2 + yj ∧ ψ3 + xj ∧ yj ∧ ψ4

where the ψ1, ψ2, ψ3 and ψ4 do not contain any xj or yj . Then it is clear that

[Λ, e(xj)]ψ = ψ3 − xj ∧ ψ4

and

e∗(yj)ψ = ψ3 − xj ∧ ψ4

and we are done.
Now let η be a (1,0)-form. Then

(5.26)
[Λ, e(η)] = −ie∗(η̄)
[Λ, e(η̄)] = ie∗(η)

This follows from a simple computation. It suffices to consider the special case
η = xj + iyj and using Equation 5.24 we have

[Λ, e(xj + iyj)] = [Λ, e(xj)] + i[Λ, e(yj)]
= −i (e∗(xj) + ie∗(yj))
= −i (e∗(xj − iyj))
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where in the last step we used e∗(η) = ∗̄e(η)∗̄. The second equation follows in a
similar way. Moreover, if η is a real 1-form, then

(5.27) [Λ, e(η)] = −Je∗(η)J−1.

To see this we use the fact that every real 1-form can be written in the form η = φ+ φ̄
where φ is a (1,0)-form. This follows easily since every 1-form is the sum of a (1,0)
and a (0,1) form and the requirement that φ is real gives that the (1,0) and (0,1)
are each others complex conjugate. Then we have using 5.26

[Λ, e(η)] = −ie∗(φ̄) + ie∗(φ)

but

−i∗(φ̄) = −Je∗(φ̄)J−1

ie∗(φ) = −Je∗(φ)J−1

so the relation follows.
We introduce the following operator on ∧F and proof a Lemma showing the rela-
tionship between ∗ and this operator. Define # = πα(w) = exp(1

2(Λ + L)). The
following two Lemmas show the relationship between the ∗ and # operators (recall
that J = ∑p,q ip−qΠp,q).

Lemma 5.21 Let η be a real 1-form. Then

#e(η)#−1 = −iJe∗(η)J−1.

Proof. We define

et(η) = exp(it(Λ +L)) ⋅ e(η) ⋅ exp(−it(Λ +L))
and note that e 1

2
(η) = #e(η)#−1 and e0(η) = e(η). Now let A and B be operators

then using exp(A) = ∑n An

n! we get

eABe−A = (1 +A + A
2

2
+ . . . )B(1 +A + A

2

2
+ . . . )

= B +AB −BA + 1

2!
(A2B − 2ABA +BA2) + ⋅ ⋅ ⋅ + 1

k!

k

∑
i=0

(k
i
)Ak−iBAi + . . .

= B + [A,B] + 1

2!
[A, [A,B]] + 1

3!
[A, [A, [A,B]]] + . . .

So defining

ad(X)Y = [X,Y ]
for operators X and Y we obtain

(5.28) et(η) =
∞

∑
k=0

1

k!
adk ([it(Λ +L)]) e(η).

We know that ΛL = LΛ + B and ad e(η) = 0. Also since η is of degree 1 we have

ad(−B)e(η) = e(η). Combining this with the fact that adk(Λ + L) is a sum of
monomials in ad(Λ) and ad(L) we see that we get

et(η) =
∞

∑
t=0

ak(t)adk(Λ)e(η)
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with ak(t) real analytic functions in t. Since Λ commutes with J and e∗(η) we see,
using Equation 5.27, that

(5.29) et(η) = a0(t)e(η) + a1(t)ad(Λ)e(η).
Differentiating Equation 5.28 with respect to t we obtain the following differential
equation for et(η)

(5.30)
e′t(η) = i(ad(Λ +L))et(η)
e0(η) = e(η)

which we can solve using Equation 5.29. Namely

e′t(η) = a′0(t)e(η) + a′1(t)ad(Λ)e(η)
and according to the differential equation this must be equal to

i(ad(Λ+L)) [a0(t)e(η) + a1(t)ad(λ)e(η)] = ia0(t)ad(Λ)e(η)+ia1(t)ad(L)ad(Λ)e(η)
where we used the fact that ad2(Λ)e(η) = 0 andad(L)e(η) = 0. However

ad(L)ad(Λ)e(η) = ad([L,Λ]) + ad(Λ)ad(L)e(η)
= ad(−B)e(η) = e(η)

so we obtain

a′0(t)e(η) + a′1(t)ad(Λ)e(η) = ia0(t)ad(Λ)e(η) + ia1(t)e(η)
which implies

a′0(t) = ia1(t),
a′1(t) = ia0(t).

So we let a0(t) = cos(t), a1(t) = i sin(t) and we conclude that

(5.31) et(η) = cos(t)e(η) + i sin(t)ad(Λ)e(η)
is the unique solution to the differential equation. Taking t = π

2 gives

eπ
2
= i[Λ, e(η)]

which proves the Lemma using Equation 5.27
�

Lemma 5.22 Let φ ∈ ∧pF . Then

∗φ = ip2−nJ−1#φ.

Proof. For the ∗-operator we have the following relations when ∗ is acting on
p-forms

(5.32) ∗ 1 = vol = 1

n!
Ln(1),

(5.33) ∗ e(η) = (−1)pe∗(η)∗,
where η is a real 1-form. Relation 5.32 is clear. To see relation 5.33, let φ ∈ ∧pF be
given then,

∗e(η)φ = ∗e(η) ∗w ∗ φ = (−1)2n−pe∗(η) ∗ φ = (−1)pe∗(η) ∗ φ.
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Since any form in ∧F can be obtained by repeated application of e(η) to 1 (for
differen η) we get that ∗ is the only operator satisfying 5.32 and 5.33. We now
define an operator ∗̃ on ∧p by

∗̃ = ip
2−nJ−1#,

and show that it satisfies 5.32 and 5.33 and therefore equals ∗. Using Equation 5.16
we obtain

(5.34) #α(Y )kφ0 = im
k!

(m − k)
α(Y )m−kφ0

where φ0 is primitive of weight m. But φ0 = 1 is a primitive 0-form of weight n so
we get using Equation 5.34 in the case k = 0

#1 = i
n

n!
Ln(1).

Therefore

∗̃1 = i−n i
n

n!
Ln(1) = vol .

Also, for η ∈ ∧1
RF , and φ ∈ ∧pF , we get

∗̃e(η)φ = i(p+1)2−nJ−1#e(η)φ

= ip
2−n(−1)piJ−1#e(η)#−1#φ

= ip
2−n(−1)pe∗(η)J−1#φ

= (−1)pe∗(η)∗̃φ,

from which we conclude that 5.33 also holds for ∗̃. Thus ∗ = ∗̃.
�

4. Differential Operators on a Kähler Manifold

In section 1 we saw that given a Hermitian complex manifold X with an Hermitian
metric h we have an associated fundamental form Ω as in Equation 5.5.

Definition 5.23. A Hermitian metric h on X is called a Kähler metric if the
fundamental form Ω associated with h is closed, that is dΩ = 0.

Definition 5.24. A complex manifold X is said to be of Kähler type if it admits
at least one Kähler metric. A complex manifold equipped with a Kähler metric is
called a Kähler manifold.

In our study of Kähler manifolds we will make use of the following Laplacian oper-
ators,

∆ = dd∗ + d∗d,
◻ = ∂∂∗ + ∂∗∂,
◻ = ∂̄∂̄∗ + ∂̄∗∂̄.
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We will also make use of the following operators

dc = J−1dJ = wJdJ,
d∗c = J−1d∗J = wJd∗J.

These are real operators. Let φ be a (p, q)-form then we have

dcφ = wJdJφ
= (−1)p+q+1ip−qJ(∂φ + ∂̄φ)
= (−1)p+q+1ip−q(ip+1−q∂φ + ip−q−1∂̄φ)
= (−1)p+q+1ip−q+p+1−q(∂φ − ∂̄φ)
= (−1)p+q+p−q − i(∂φ − ∂̄φ)
= −i(∂ − ∂̄)φ,

from this it follows immediately that

(5.35) ddc = i∂∂̄ − i∂̄∂ = 2i∂∂̄,

which is a real operator of type (1,1) acting on differential forms in E∗(X).

Theorem 5.25 Let X be a Kähler manifold. Then

(1) [L,d] = 0, [L∗, d∗] = 0.
(2) [L,d∗] = dc, [L∗, d] = −d∗c .

Proof. For part (1) let φ be a p-form then we compute

(Ld − dL)φ = Ω ∧ dφ − d(Ω ∧ φ) = Ω ∧ dφ − dΩ ∧ φ −Ω ∧ dφ,

and since dΩ = 0 by the Kähler assumption, the sum is zero. The second part of
(1) is just the adjoint statement of the first part. Similarly the second statement of
part (2) is the adjoint of the first statement, so we will only show that

L∗d − dL∗ = −J−1d∗J,

from Proposition 5.6 we see that when acting on p-forms,

d∗ = (−1)p+1 ∗ d ∗−1 .

Let φ be a p-form then we get the following two identities from Lemma 5.22

#φ = i−p2+nJ ∗ φ,

#−1φ = ip
2−n ∗−1 J−1φ.

Therefore we see that

(5.36)

#d#−1φ = i−(2n−p+1)2+nip
2−nJ ∗ d ∗−1 J−1φ

= i2p−1J ∗ d ∗−1 J−1φ

= iJ ((−1)p+1 ∗ d∗−1)J−1

= iJd∗J−1φ
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where the last step follows again from Proposition 5.6. Now we repeat the technique
used in the proof of Lemma 5.21. Let

dt = exp [it(Λ +L)] ○ d ○ exp [−it(Λ +L)] ,

then we have again

dt =
∞

∑
k=0

1

k!
adk [it(Λ +L)]d.

Also note that dπ
2
= #d#−1. As before adk(Λ+L) is the sum of monomials in ad(Λ)

and ad(L) but from the Kähler condition (according to theorem 5.25) follows that
ad(L)d = 0 so we get

(5.37) dt =
∞

∑
k=0

ak(t)adk(Λ)d.

From the relation in Lemma 5.22 between ∗ and # it follows that dπ
2
= #d#−1 is

an operator of degree −1. Since there is only one term in Equation 5.37 which has
degree −1 we get that

(5.38) dπ
2
= a1(

π

2
)ad(Λ)d.

Now we can combine 5.36 and 5.38 to conclude that iJd∗J−1 is proportional to
ad(Λ)d, and hence adk Λd = 0 for k ≥ 2 since Λ commutes with d∗ and J . So just as
in the proof of Lemma 5.21 we get

dt = a0(t)d + a1(t)ad(Λ)d,

from which we get

dt = cos(t)d + i sin(t)ad(Λ)d.
Letting t = π

2 and using that Jd∗J−1 = −J−1d∗J concludes the prove.
�

Corollary 5.26 Let X be a Kähler manifold. Then

[L,dc] = 0, [L∗, d∗c ] = 0, [L,d∗c ] = −d, [L∗, dc] = d∗

Proof. From Proposition 5.3 that J commutes with L and L∗. Also it can be
seen directly from the definition that (dc)c = −d and (d∗c )c = −d∗. Then the corollary
follows directly from Theorem 5.25. �

Corollary 5.27 Let X be a Kähler manifold. Then

(5.39)

[L,∂] = [L, ∂̄] = [L∗, ∂∗] = [L∗, ∂̄∗] = 0,

[L,∂∗] = i∂̄, [L, ∂̄∗] = −i∂,
[L∗, ∂] = i∂̄∗, [L∗, ∂̄] = −i∂∗,

(5.40)

d∗dc = −dcd∗ = d∗Ld∗ = −dcL∗dc,
dd∗c = −d∗cd = d∗cLd∗c = −dL∗d,
∂∂̄∗ = −∂̄∗∂ = −i∂̄∗L∂̄∗ = −i∂L∗∂,
∂̄∂∗ = −∂∗∂̄ = i∂∗L∂∗ = i∂̄L∗∂̄.
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Proof. The Equations in 5.39 are a direct result of Theorem 5.25 by using
dc = i(∂̄ − ∂) and comparing bidegrees. The equations 5.40 can all be seen in a
similar way, for example using d∗ = [L∗, dc] we get

d∗dc = L∗dcdc − dcL∗dc = −dcL∗dc,
−dcd∗ = −dcL∗dc + dcdcL∗ = −dcL∗dc.

Using the other commutation relations the relations follow. �

With this result we can prove a very important theorem about the Laplacian oper-
ators we introduced earlier on Kähler manifolds.

Theorem 5.28 Let X be a Kähler manifold. If the differential operators d, d∗, ∂̄, ∂̄∗, ∂, ∂∗,◻,◻
and ∆ are defined with respect to the Kähler metric on X. Then

[∆,∗] = [∆, d] = [∆, L] = 0

and
∆ = 2◻ = 2◻.

In particular,

(1) ◻ and ◻ are real operators.
(2) ∆∣Ep,q ∶ E

p,q → Ep,q.

Proof. To see that [∆, d] = 0 note that

∆d = dd∗d + d∗dd = dd∗d = ddd∗ + dd∗d = d∆.

Using Proposition 5.6 it follows that [∆,∗] = 0. Now we prove that [∆, L] = 0. We
have, using [L,d] = 0 and Theorem 5.25,

∆L −L∆ = dd∗L + d∗dL −Ldd∗ = Ld∗d
= dd∗L + d∗Ld − dLd∗ −Ld∗d
= −d[L,d∗] − [L,d∗]d
= −ddc − dcd.

But from Equation 5.35 it follows that ddc = −dcd and so we conclude [∆, L] = 0.
To see the relations between the Laplacian operators we use Corollary 5.27 to write

∆ = dd∗ + d∗d = d[L∗, dc] + [L∗, dc]d
= dL∗dc − ddcL∗ +L∗dcd − dcL∗d.

Now multiplying from the left with J and from the right with J−1 we obtain

∆c = −dcL∗ + dcdL∗ −L∗ddc + dL∗dc.
But ∆c = ∆ since, as we saw earlier, ddc = −dcd. Note that

d + idc = ∂ + ∂̄ − i2(∂ − ∂̄) = 2∂

from which it follows that

4(∂∂∗ + ∂∗∂) = (d + idc)(d∗ − id∗c ) + (d∗ − id∗c )(d + idc)
= (dd∗ + d∗d) + (dcd∗c + d∗cdc) + i(dcd∗ + d∗dc) − i(dd∗c + d∗cd).
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Now using Corollary 5.27 we get that the last two terms vanish. Also we have

∆ = ∆c = J−1∆J = J−1dd∗J + J−1d∗dJ = dcd∗c + d∗cdc
combining this we conclude

4◻ = ∆ +∆ = 2∆

so 2◻ = ∆. The second relation follows analogously. Since ∆ is a real operator so
are ◻ and ◻ and since ◻ is of bidegree (0,0) so is ∆. This concludes the proof.

�

Corollary 5.29 On a Kähler manifold, the operator ∆ commutes with J,L∗, d, ∂, ∂̄, ∂∗

and d∗.

From Theorem 5.28 we see that on a Kähler manifold ∆-harmonic differential forms
are the same as ◻-harmonic and ◻-harmonic forms. We will call these harmonic
forms on X and denote them by Hr(X) and Hp,q(X). The primitive harmonic
r-forms shall be denoted by Hr

0(X) = kerL∗ ∶ Hr(X) → Hr−2(X) and the prim-
itive harmonic (p,q)-forms shall be denoted by H

p,q
0 (X) = kerL∗ ∶ Hp,q(X) →

Hp−1,q−1(X). Note that these maps are well defined since ∆ commutes with L∗.

Corollary 5.30 On a compact Kähler manifold X there are direct sum decom-
positions:

Hr(X) = ∑
s≥(r−n)+

LsHr−2s
0 (X),

Hp,q(X) = ∑
s≥(p+q−n)+

LsHp−s,q−s
0 .

Proof. Let φ ∈Hr(X) then we know from Theorem 5.20 that

φ = ∑
s≥(r−n)+

Lsφs

where for each s ≥ (r − n)+, φs is a primitive (r − 2s)-form. Since ∆ commutes with
L and L∗ it follows from Equation 5.18 that

∆φs =∑
k

ak,sL
kL∗k + s∆φ = 0

since φ ∈ Hr(X) but this implies that φs ∈ Hr−2s and it is in Hr−2s
0 since φ is

primitive. Since φ was arbitrary we conclude

Hr(X) = ∑
s≥(r−n)+

LsHr−2s
0 (X).

The second statement is proven similarly. �

Corollary 5.31 Let X be a compact Kähler manifold, then

Ln−p = e(Ω)n−p ∶Hp(X,C)→H2n−p(X,C)

is an iromorphism, where Ω is the Kähler form on X.

Proof. We represent the cohomology groups by harmonic forms. It follows
from Corollary 5.30 that Ln−p is surjective and from Theorem 5.20 that Ln−p is
injective. �
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5. The Hodge Decomposition Theorem on Compact Kähler Manifolds

We are now in the position to prove the central theorem of this thesis, the Hodge
Decomposition Theorem. The proof will be surprisingly short but it is important to
realize how much work we have done in order to be able to present such an elegant
proof. Let X be a compact complex manifold. We then have the de Rham groups
on X, represented by d-closed forms, and which we will denote here by Hr(X,C).
We also have the the Dolbeault groups on X, represented by ∂̄-closed forms, which
we will denote here by Hp,q(X). In general it does not have to be the case that
d-closed forms are ∂̄ closed or vice versa, however on Kähler manifolds we have that
this is indeed the case, as is stated in the following theorem.

Theorem 5.32 Let X be a compact complex manifold of Kähler type. Then
there is a direct sum decomposition

(5.41) Hr(X,C) = ∑
p+q=r

Hp,q(X)

and, moreover,

(5.42) H̄p,q(X) =Hq,p(X).

Proof. Since we can represent cohomology by Harmonic forms it is enough to
show

Hr(X) = ∑
p+q=r

Hp,q(X).

To see this, let φ ∈Hr(X). This implies that ∆φ = 0 but since ∆ = 2◻ we get ◻φ = 0.
Writing out φ in bihomogeneous terms we get

◻φ = ◻φr,0 + ⋅ ⋅ ⋅ + ◻φ0,r.

Since ◻ preserves bidegree it follows that ◻φr,0 = ⋅ ⋅ ⋅ = ◻φ0,r = 0. Thus we have a
map

τ ∶Hr(X)→ ∑
p+q=r

Hp,q(X),

defined by
φ↦ (φr,0, . . . , φ0,r).

It is easy to see that this map is injective. To see it is surjective let φ ∈ Hp,q(X)
then ◻φ = 1

2∆φ = 0 which implies that φ ∈ Hp+q(X) and so τ is surjective. The
second statement of the Theorem follows from the fact that ◻ is a real operator and
complex conjugation is an isomorphism from Ep,q to Eq,p. �

Now we have proved our most important theorem we conclude with some direct
consequences. Recall the definitions of the Betti numbers br(X) = dimCH

r(X,C)
and the Hodge numbers hp,q(X) = dimCH

p,q(X). We get the following Corollary
from the Hodge Decomposition Theorem.

Corollary 5.33 Let X be a compact Kähler manifold. Then

(1) br(X) = ∑p+q=r hp,q(X).
(2) hp,q(X) = hq,p(X).
(3) bq(X) is even when q is odd.
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