M-theory backgrounds with torus actions and
brane—anti-brane systems

Supervisors:
Dr THoMAS GRIMM
DRr GIiL CAVALCANTI

Author:
PARASKEVAS TZITZIMPASIS

June 2020

A thesis submitted to the Departments of Physics and Mathematics
at Utrecht University for the degrees of

Master in Theoretical Physics and Master in Mathematical Sciences

= M = Utrecht University
NS



Abstract

Given an M-theory background, a reduction along the orbits of an isometric circle action must
be performed in order to retrieve Type ITA String Theory. We study M-theory backgrounds with
isometric torus actions. In this case, the choice of a reduction circle is highly non-unique. However,
different reduction circles give rise to dual Type IIA backgrounds. We consider actions on eleven
dimensional backgrounds, allowing for possible fixed points of codimension four. The latter are
interpreted as D6-branes and D6-anti-branes. We then use the torus action to conclude the existence
of special reduction circles that lead to Type IIA on a manifold with boundary. We demonstrate
this phenomenon explicitly for two special backgrounds and we examine some key aspects of their
structure.



Contents

[I.1  Why D-branes?| . . . . . . . . . e
1.2 Superstring theory|l . . . . . . . . . L
[1.3  Type Il supergravities| . . . . . . . . . . . e
LA Duallties] . - - -« v o e e e

[1.4.1 T-duality] . . . . .. .

[1.4.2  S-duality] . . . . . . . .
[L.5 A geometric SL(2,7Z) transformation| . . . . . . . ... ... L
1.6  Brane—anti-brane systems and tachyons| . . . . ... ... .. ... .00 0.

|2 Group actions on

manifolds |

[2.1  General properties of group actions| . . . . . . . . . . ... ... ...
2.2  Metrics on orbit spaces| . . . . . . .. L
Iz,;i E:‘ll!:lg: ;!!:l i!zll:i I ........................................
[2.3.1  Circle actions from Killing vector fields and topological invariants| . . . . . .
[2.3.2  Local structure around fixed points | . . . . . . . . . ... oL
2.4 T2 actions on four-manifolds| . . . . . . . . ... ...
2.5 From group actions to String Theory| . . . . . .. . ... ... ... ... ... ..
[2.5.1  Backgrounds with isometric torus actions| . . . . . . ... ...

|13 Kaluza-Klein branes in String Theory|

3.1 The geometry of solitons | . . . . . . .. . . ... o
3.2 From Kaluza-Klein to String Theory backgrounds|. . . . . . ... ... ... ... ..
821 The D6-branel. . . . . . . . . . .
[3.3 D6-D6 pairs in String Theory |. . . . . . . . . ... ...
3.4 A closer look at the brane—anti-brane system| . . . . . .. ... ... ... ......
[3.4.1  Fixed points of general Kiling fields| . . . .. ... ... ... ... ... ...
[3.4.2  Isotropy representations of difterent Killing fields| . . . . . .. ... ... ...
[3.4.3  Conical singularities and cosmic strings| . . . . .. ... ... .........
3.5 Reduction along special cycles| . . . . . . ... . oo oo
13.5.1 Reduction on the spherical bolt Bo| . . . . . . . .. ... ... ... ......
13.5.2 Reduction on the bolt By |. . . . . . . . . . . ..
4_Flux vacua and S” |
2 D T~ S R
[.2  AdS7 X SH . .
4.2.1  Characterization of the fixed points| . . . . . . .. ... ... ... .. ....
M3 The S*ansatzl. . . . . . . o v v i
4.4 The torus action| . . . . . . . . . L

16
16
24
26

30
31
34
37

40
40
45
45
48
o4
54
56
58
99
99
60



|A- Principal bundles and connections |

75

7T

78



Chapter 1

Introduction

1.1 Why D-branes?

This is a thesis about D-branes. Therefore, it should be appropriate to initiate our discussion with
a quick review regarding their origins and their importance in the development of String Theory.
Branes are objects that appear in the most fundamental form of String Theory which goes under
the name bosonic String Theory. This theory necessarily lives in 26 dimensions [1], often called the
critical dimension. At first sight, this might appear as an unreasonably large number of dimen-
sions. However, since it could in principle be any natural number, it is fairly close to the number
of dimensions in our universe. The necessity for so many dimensions is dictated by a consistency
requirement, the cancellation of a conformal anomaly E It was quickly realized that the introduc-
tion of open strings allowed for Dirichlet boundary conditions so that an open end of the string is
confined to lie on a hypersurface which was later called a D-brane with the "D" standing for Dirichlet.

Even from this vague definition, it is clear that D-branes are objects of arbitrary dimension as long
they do not exceed the dimension of spacetime itself. The dimension of a D-brane is the most
important piece of information that we can have about it. This is why, when we refer to a D-brane
of known dimension equal to p + 1, we call it a Dp-brane. Like particles, branes extend in the
time direction of spacetime. In this sense, a Dp-brane is an object which extends in p spacelike
dimensions and the one time direction. It follows that a DO0-brane is an ordinary particle and a
D1-brane is a one-dimensional object, namely a string. In the same way, a D(-1)-brane is a point
in spacetime and corresponds to an instant of time. For this reason, we call it a D-instanton. A a
pair of D-branes is shown in Figure 1.1

From this premature perspective, a D-brane is nothing but an artifact of the human brain. It
simply helps us visualize the allowed motion of an open string. This was nothing new for physics.
Every physics student has encountered such surfaces arising from constraints, for example in the
study of a space vehicle moving on the surface of a planet. Such constraint surfaces are ubiquitous
and they can be handled quite efficiently in the context of Lagrangian and Hamiltonian mechanics.
However, there is something quite remarkable about D-branes which makes them worth spending
our valuable time on:

D-branes are dynamical objects in String Theory!

If we think about it, such a statement makes sense since in a theory of gravity like String Theory,
what we mean by a hypersurface is ambiguous as long as spacetime itself is dynamical and can

!There are also formulations of String Theory in dimensions different from the critical dimension. Those are
rightfully called non-critical String Theories.



Figure 1.1: Two D-branes and some open strings that can end on them.

fluctuate. Under the light of this revolutionary discovery, String Theory should probably be called
Brane Theory. Indeed, from our current understanding of String Theory, strings are as fundamental
as D-branes. Just as strings have an action, the Polyakov action, which dictates how they evolve in
space and time, D-branes also have their action and can be treated like multi-dimensional particles.

If D-branes are to be promoted to fundamental objects, then we should expect them to have various
traits in common with ordinary particles in field theories. One such feature is the existence of anti-
particles. Particles and anti-particles are identical in their mass and spin but they have opposite
electric charge. The most famous example is the electron whose anti-partner is called anti-electron
or, more commonly, positron. Collectively, we refer to anti-particles as anti-matter. Anti-matter
behaves much the same way as ordinary matter and the dominance of matter over anti-matter in
our universe had been a long standing conundrum for physicists after the discovery of the positron.
Great progress has been made in answering this fundamental question after the discovery of CP
violation in the weak interactions which was first observed in 1964 and later explained theoretically.

In any case, irrespective of whether they are around us or not, anti-particles exists and if String
Theory treats them on equal footing with D-branes, then there should also exist anti-branes. Indeed,
anti-branes exist and they appear naturally as we will see in various instances of this thesis. In
addition, there is a nice way to interpret them as generalized anti-particles. Indeed, recall from
standard field theory that in terms of Feynman diagrams, anti-particles can be thought of as
particles going back in time. In slightly more abstract language, we can say that the world-lines
of particles and anti-particles have opposite orientations. In this way, we can think of anti-branes
as being obtained by a change of orientation of the world-volume of a standard D-brane. For the
anti-particles, the world-volume is one-dimensional so there is only one direction whose orientation
can be switched. However, for general D-branes of higher dimension there are many directions
whose orientations we can change. This is why it would be misleading to say that anti-branes are
branes going backwards in time.

1.2 Superstring theory

Bosonic String Theory was successful in planting the seed for a theory of quantum gravity but
was hampered by the existence of a tachyon in the spectrum of closed strings. This closed string
tachyon still poses a subject of controversy and uncertainty as to what it might imply for bosonic



String Theory itself. Nevertheless, the tachyon is not the only herald of distress since, as its name
accurately indicates, bosonic String Theory is a theory of bosons and only accounts for a world
without fermions. Around the dawn of the seventies, theoretical physicists hit two (or even more)
birds with one stone when they discovered a consistent way to introduce fermions [2] that also
works as a miracle that eliminates the tachyonic mode of closed strings. The theory that emerged
was called Superstring Theory.

The "super" in Superstring is due to the use of supersymmetry, often abbreviated SUSY, which
is the magical ingredient that was missing from bosonic String Theory. Physical theories are in-
variant (at least locally) under the Poincaré group which consists of rotations and translations.
Put a little differently, the Poincaré group is the group of isometries of Minkowski spacetime. The
corresponding Lie algebra, called the Poincaré algebra is given by t x so(1,n — 1) with n being
the dimension of spacetime and t ~ R" corresponding to translations. The use of supersymmetry
extends the Poincaré algebra by adding anti-commuting generators. The resulting algebra is called
super-Poincaré algebra. The new anti-commuting generators act on particle states by changing
their spin by % This is how fermions are introduced in a theory of bosons like bosonic String
Theory. Every bosonic particle has its superpartners which are the set of states that can be reached
by applying supersymmetry generators on the given state.

We can choose the number of supersymmetry generators that we want in our theory. The most
elementary supersymmetric theories have one supersymmetry generator Q® and are called N’ =1
theories. We can add more supersymmetry generators Q% with ¢ = 1,..., N'. Theories with N > 2
are said to have extended supersymmetry. For example in an A/ = 1 theory, a bosonic scalar field
of spin zero can be acted upon by the the generator Q¢ to give a spin—% field. Applying the same
generator twice will simply return zero, since the anti-commutation relations of the supersymmetry
generators imply (Q%)? = 0. In the presence of extended supersymmetry we could act with different
generators to obtain higher spin states all of which will be related with each other by supersymmetry.

With the addition of this invaluable ingredient, Superstring Theory was born. However, due to the
existence of some choices involved in the incorporation of supersymmetry in String Theory, there is
not one but five theories. What they have in common is that contrary to the bosonic theory, those
five Superstring Theories are defined in ten dimensions [3] which already brings us considerably
closer to our phenomenological goal of describing a world of four dimensions. The five superstring
theories are

e Type IIA and Type IIB: Those are N = 2 theories. They will be our main focus throughout
this thesis.

e Heterotic String Theories: Those are N' = 1 theories. There are two types of Heterotic
strings called Heterotic Egx Eg and Heterotic SO(32). As their names suggest, their difference
lies in the gauge groups that appear in those theories.

e Type I: A theory similar to Type II theories but the strings (both open and closed) are
unoriented. This is the only theory with unoriented strings.

Those five theories are in principle different by construction. However, it has been discovered that
they are different sides of the same coin. More precisely, those theories are interrelated by a web of
dualities. We will not try to give a complete account of those dualities since as already proclaimed,
our main tools will be Type II theories. From now on, we will practically forget about the existence
of the Heterotic and Type I strings but it is useful to keep in mind that due to the aforementioned
dualities, the physical results one gets in one superstring theory are universal.



1.3 Type II supergravities

One of the achievements of bosonic String Theory is that at low energies it reproduces the Einstein
equations. We would expect that something similar should hold for Superstring theories. The low
energy limits of the Type ITA and Type IIB Superstring Theories are called Type ITA and Type 1B
supergravities (or SUGRA’s for short). Those are N’ = 2 supersymmetric theories of gravity (thus
the name supergravity). They comprise the standard Einstein gravity together with additional
bosonic and (due to supersymmetry) fermionic fields.

Instead of presenting the ten-dimensional N/ = 2 supergravities, we start with a theory which is
believed to be more fundamental, in a sense that we will shortly explain. This is eleven dimensional
supergravity. It is an /' = 1 theory and is in fact maximal in the sense that we cannot construct
higher dimensional supergravities with Lorentzian signature E| and in that it is the only supergravity
in eleven dimensions. Finally, the reason why it deserves the status of a more fundamental theory
compared to Type II supergravities is that in a sense 11d supergravity contains them. What this
means is that we can derive Type II supergravities by starting with this maximal 11d supergravity.
Let us demonstrate in broad strokes how this is achieved. The bosonic part of the action of the
11d theory reads

Sd:H—2/{1%1/|:R*1—;*F4/\F4—(13F4/\F4/\A3 (1.1)
Here the first term is the standard Einstein-Hilbert term giving rise to pure gravity in eleven di-
mensions, the 3-form Az is an additional bosonic field of the theory and Fy = dAg is its field
strength. There is a U(1) gauge symmetry for which As is the gauge field and it transforms as
A3 — As + dAy for an arbitrary 2-form Ay. The last term in [I.1]is the Chern-Simons term which
under the aforementioned gauge transformation picks up a total derivative. Everything else is
manifestly invariant and the invariance of the action follows. The second term of the action is a
standard kinetic term. The fermionic degrees of freedom, which are absent in the action we wrote
down, comprise a gravitino. Finally, k11 denotes Newton’s constant in eleven dimensions and * is
the Hodge star operator in eleven dimensions.

Having examined some key points of 11d supergravity, we move on to Type IIA. This was known
to be a consistent supergravity theory in ten dimensions but it was later realized that it is in
fact deeply related to 11d SUGRA. The Type ITA SUGRA contains a variety of fields unlike 11d
SUGRA which contains only three. Those are listed below.

e A graviton and a gravitino.
e A dilaton (scalar field) ¢ and a dilatino which is its superpartner.
e A 2-form gauge potential By with field strength Hs = dBs.

e A 1-form and a 3-form C7,C5 which are again gauge fields. We can dualize those fields to
get their "magnetic duals" in a process similar to how one obtains a magnetic field strength
in classical Electromagnetism. We first consider the field strengths Iy = dC} and Fy = dC
and dualize them to get Fy = xF; and Fg = xF5. Those "magnetic" field strengths should
correspond to some potentials such that Fg = dC7 and Fiz = dC5. In this way, one concludes
that the existence of the gauge fields C7, C3 implies the existence of Cs, C7. The argument
can of course be reversed.

2The argument for this is pretty simple. A supersymmetric theory in 12 dimensions could be toroidaly compactified
to 4d and would give rise to a theory with at least A” = 16. This amount of supersymmetry is excluded because it
implies the existence of fields with spin higher than two.



Owing to the way they are derived, the bosonic fields are divided into two categories. The (bosonic)
fields contained in the first three bullets belong to the NS-NS sector and the fields of the last bullet
to the RR-sector. This is why they are often referred to as NS-NS or RR fields respectively. Before
we write down the action of Type ITA SUGRA, it is convenient to define the invariant field strength

F4 = Fy — Cy ANdBsy

The bosonic action of Type ITA SUGRA is the following:

1 1 1 1
Srra :272 |:62¢R * 14 4672¢d¢ A xdp + 5672¢H3 N xHs — iFQ N xFy — §F4 A xFy
K10
1
— 5 B2 A dCs A dcg} (1.2)

This action can be obtained as a low energy effective action of Type ITA String Theory and the
length scale set by k19 can be given in terms of the string length o’ which is the only length scale
in String Theory. Their relation is

1
4
We now set to demonstrate how this Type IIA SUGRA can be obtained as a certain limit of 11d
supergravity [4, [5]. Their relation lies in the heart of this thesis and a complete account of the
underling mathematical ideas will be given later in Section [2.5| However, we will attempt here
a quick take on the subject with particular emphasis on the physics of the story. Intuitively, the
idea is to start with the theory in eleven dimensions and assume that one dimension is circular E|
so that we can perform a dimensional reduction which pictorially amounts to shrinking the circle
so that we get an effective theory in ten dimensions. This is a special case of the more general
compactification which is a fundamental concept in String Theory.

K1g = (477253)4

Under the reduction, different modes of the higher dimensional theory, regroup to form the lower
dimensional degrees of freedom. Denoting the circular dimension with z!!, the eleven dimensional
metric decomposes into the component g11 11 which is a scalar in ten dimensions, the 1-form g, 11
and the symmetric 2-tensor g, with ten dimensional indices. Those comprise the dilaton, RR 1-
form C1 and metric of the Type ITA supergravity. The 3-form A3 decomposes into a 2-form A,,n11
and a 3-form A, in ten dimensions which correspond to the NS-NS 2-form B and the RR 3-form
C3. An expansion of the action [1.1]in terms of the lowest dimensional modes indeed gives the Type
ITA action [I.2] Note that an important assumption in order to transform the eleven dimensional
integral into a ten dimensional one is that the components of the fields do not explicitly depend on
the circular dimension. This will be later explained more rigorously to translate to the requirement
that the circle dimension is an isometric direction. Note that the size of the eleventh direction (the
circle) becomes the dilaton in ten dimensions which is known from String Theory arguments (see
e.g. [6]) to be related to the string coupling constant g, via

gs = e?
Therefore, a small circle implies a small string coupling and consequently an accurate perturbative
ten dimensional Type ITA String Theory. It is natural to ask what happens when the size of the
circle grows large. It is conjectured, and indeed a lot of evidence corroborates this idea, that for

3The precise statement here would be the existence of a circle action which we will define and explore in the
following chapter.



arbitrary circle size the theory is a non-perturbative formulation of String Theory. We do not
know what this theory is but we know that at low energies it must reduce to eleven dimensional
supergravity. This putative non-perturbative formulation of String Theory goes under the name
M-theory. More pictorially we have the following commutative diagram.

\Ltheor circle — 0 . Type IIA
Y String Theory
low energy low energy
11D SUGRA le>0 Type IIA SUGRA

The next important building block for our understanding of the low energy dynamics of String
Theory is Type IIB supergravity, which is the low energy limit of Type IIB String Theory. We will
present it in the same way we did for Type IIA by starting with an overview of its field content
which is

e A graviton and a gravitino.
e A dilaton (scalar) and the dilatino.
e A 2-form gauge field By with Hs = dBs

e A 0-form Cp, a 2-form Cy and a 4-form Cy along with their magnetic duals Cs and Cg (note
that the dual of Cy is itself).

It is worth noting here that the NS-NS sectors of Type ITA and Type IIB supergravities are the
same. We introduce again, as we did for Type IIA, some field redefinitions on the basis of gauge
invariance:

Fg 1:F3—Co/\H3
- 1 1
Fy ::F5—§CQ/\H3+§BQ/\F3

Here we stick to the notation F,, := dC},_1. There is an additional restriction which cannot be
derived from an action but has to be imposed by hand. This is the self-duality of F5 which reads

Fg) = *Fg,

Having defined the necessary fields, we can now express the action of Type IIB supergravity in a
concise form.

1 1 1 1~ ~
SirB :72/ |:€_2¢R*1+4€_2¢d¢/\*d¢— *6_2¢H3/\*H3— —F1 ANxFy — —F3 A\ xF3
22, 2 2 2
1~ ~ 1
—ZF5/\*F5—§C4/\H3/\F3 (13)

Note that it is indeed impossible to impose the self-duality constraint on Fs at the level of the
action since this would imply F5 A *F5 = F5 A F5 = 0. This is why this condition has to be imposed



on top of the equations of motion. Note also the additional factor of 1/2 in front of the F5 A xF}
term which accounts for the fact F5 has twice as many degrees of freedom in the action before the
self-duality condition is imposed.

Now that we have outlined some key features of Type II supergravities, we would like to discuss how
branes fit into this framework. Recall that in bosonic String Theory we had branes of arbitrary
dimension. In principle, this is also true for Type II theories. We can define submanifolds of
arbitrary dimension less or equal than ten. Nevertheless, the dynamical nature of branes raises an
additional question pertaining to their stability. This turns out to be more subtle than in bosonic
strings. Consider a classical particle. It couples to an electromagnetic potential (1-form) A, via

the action
dx*
S ~ A= A,—d
/W /W " ar T

where W is the world-line of the particle parametrized by the proper time 7 as z# = z#(7). As we
have already remarked, from a more abstract point of view, a particle is a D0-brane so we would
expect that analogous properties hold not only for particles but also for higher dimensional objects.
It was known for example since the times of bosonic String Theory that the fundamental string EL
which we denote F1, couples to the Kalb-Ramond 2-form Bs via

Sw/lﬁ
w

with W the world-volume (or world-sheet) of the string. However, before the advent of superstring
theory there seemed to be insufficient fields for the D-branes to couple to. It turns out that a
Dp-brane couples to an RR (p+1)-form field Cp4 via the action

Sw/ Cpa
Dp

with the integral carried on the volume of the Dp-brane. In this sense, Dp-branes are sources of
the RR field Cpy1. This remarkable property of D-branes was first discovered in |7] and although
simple in its core, it has important consequences for the stability of the branes. This is because
a Dp-brane is stable as long as it couples to some field in the theory. Just as it happens with
electrically charged particles, the conservation of charge prohibits the spontaneous annihilation of
the particle itself. On the other hand, Dp-branes whose dimension is not suitable to couple to an
RR potential of the theory are unstable. This leads to the following conclusion regarding the brane
content of the two Type II theories

e Type IIA theory: Since we have the RR-forms C1, Cs, C5, C7 we expect that there are DO,
D2, D4 and D6-branes.

e Type IIB theory: Here we have all the even RR-fields Cy, Cs, Cy, Cg, Cs. The corresponding
branes are the D(-1) (the instanton), D1, D3, D5, D7 and D9-branes.

The branes that couple to dual potentials are often called dual branes. For example, in Type ITA
the DO and D6 couple to the C; and C; which are the magnetic duals of each other. This is why

4The fundamental string is the object that we start with when we study String Theory. It is not the same as
a D1-brane although they have the same dimension. This makes sense since if this was the case, then only Type
IIB theory would have strings. This would apparently be inconsistent since the starting point of all String Theories
(including Superstrings) is the quantization of a one-dimensional object.



Type IIA | F1 NS5 DO D2 D4 D6 D8
Type IIB | F1 NS5 D(-1) DI D3 D5 D7 D9

Table 1.1: Branes in Type II theories

branes come in pairs in each theory just like RR fields come in pairs. We can play the same game
for the NS-NS gauge field By. This is the field to which the fundamental string couples and has
a 3-form strength H3 whose dual is a 7-form coming from a 6-form potential. This should couple
to a six-dimensional brane which should exist in both Type II theories (since the NS-NS 2-form
does). The brane which couples to this potential is called NS5-brane. We could say that Type IIA
contains all odd dimensional branes and Type IIB contains all the even dimensional ones. However
something is still missing since there is no D8-brane in Type ITA. It turns out that such a brane
exists in a version of Type IIA supergravity called massive supergravity or Romans supergravity
which includes a scalar field analogous to a cosmological constant. Associated to this cosmological
constant there is a 9-form to which the D8-brane couples (see e.g. [8]). To recap, we present the
brane content of Type II supergravities in Table

1.4 Dualities

Dualities in String Theory are equivalences between seemingly different theories. In some sense,
they serve as dictionaries that allow us to translate between different formulations of the same
underlying physics. In principle one could propose that we only use one language, namely one
String Theory so that dualities would no longer be useful and our lives would be easier. However,
due to the intricate nature of Sting Theory many aspects of which remain elusive, it is often
imperative to use a certain picture which is well suited for the problem at hand and then use
dualities to compare it with what we know from a different formulation. We have already noted
that the five different Superstring Theories are in fact related by dualities. This holds true for
the Type II theories which are related among themselves and with M-theory via the mechanism
described in the previous section. Here we will attempt a quick overview of the two main dualities.

1.4.1 T-duality

T-duality [9, |10] is a symmetry with a long history since it existed even in the context of bosonic
String Theory where it relates the theory to itself. In Superstring theory, T-duality relates the
two Type II supergravities. In order to perform this duality, we need to pick out a special circular
direction in our ten dimensional spacetime. This is completely analogous to the step required to get
from M-theory to Type ITA String Theory and whose details and implications will be thoroughly
explored in the next chapter. Let us start in Type ITA, call the coordinate in the circular direction
X 10 and suppose that its length scale is R. Then applying T-duality lands us to Type IIB with
a circular direction of length scale inversely proportional to R. More specifically, if ¢; denotes the
string length then under T-duality we have

2

R - s s—
HR g<—>gR

In this sense T-duality relates Type IIA/IIB compactified on a circle of radius R to Type IIB/IIA
compactified on a circle of radius £2/R. T-duality also changes the field content and this is of course
to be expected since Type II theories have different RR fields. Under this duality, the "10" index
(with 210 the circular dimension) is added to the anti-symmetric indices of the field C,, if it was

10



not there (so that it becomes a (p + 1)-form) or the "10" index is deleted if it was already there (so
that we get a (p — 1)-form). By passing to branes and using the correspondence between RR fields
and Dp-branes we find that a Dp-brane becomes a D(p+1)-brane if it did not extend along the x!'°
circle direction or it becomes a D(p -1)-brane if it wrapped the circular direction. This holds for
the branes that are charged under the RR fields. The fundamental string F1 and NS5-brane are
simply mapped to themselves.

1.4.2 S-duality

As we saw, T-duality relates the Type II theories. There exists another duality, called S-duality
that was first discovered in the context of heterotic theory |11]. It was subsequently discovered that
S-duality relates Type IIB theory to itself [12]. In contrast to T-duality, it is a non-perturbatve
duality in the sense that it relates theories at strong coupling to theories at weak coupling. In it’s
simplest form S-duality acts on the coupling constant as follows

1
gs ¢ —
gs
Such an exchange begets an exchange in the degrees of freedom of the theory that are excited. For
example, branes are inherently non-perturbative objects. What we mean by this can be understood
if we examine the tension (mass density) of a Dp-brane which can be shown to be given by [7]

27 1

TDP - s (27T€s)p+1

This justifies why one first discovers D-branes as immovable, non-dynamical objects. It is because
the approach that we have to String Theory is purely perturbative meaning that the coupling is
very small so that the tension of a Dp-brane is indeed so large that it practically behaves like a
solid wall. This is frustrating because it reminds us of the limitations that a perturbative approach
entails but at the same time fascinating since every bit of information that we get about D-branes
is a peek to the world of non-perturbative String Theory. Contrary to Dp-branes, the fundamental
string has tension

In =g = o
This is why the fundamental string is a perturbative object as it should be since it serves as the
starting point in the definition of perturbative String Theory. This also clarifies the sense in which
the D1-brane (sometimes called D-string) is different from the fundamental string. Indeed, although
they have the same dimension, they interact with gravity in a different way since they have different
tension. The tension of the D-string is

1

Tp1 = ——
bt 21 gl

This implies that if the coupling becomes very large, it can be the case that the D-string be-
comes lighter than the fundamental string and in this sense it will rightfully claim the title of the
more "fundamental" object. Indeed, this is what happens under S-duality. It is often the case
(especially in the context of supergravity) that non-perturbative configurations are referred to as
solitons, a term which will be more thoroughly explained later. This is why it is frequently said
that S-duality exchanges the elementary (perturbative) excitations of a theory with the solitonic
(non-perturbative) ones and vice versa.

11



Now that we have gotten a feeling of what S-duality is and its significance for uncovering non-
perturbative effects that would otherwise be completely out of reach with our humble perturbative
methods, we will present it in more detail. In fact, we will discuss a much larger symmetry of Type
IIB supergravity which contains S-duality. This global symmetry corresponds to the non-compact
group SL(2,R). As usual, when we want to discover symmetries, the right place to look is the
action of a theory. We will therefore go back to the Type IIB action [I.3] and in order to make the
sought after symmetry manifest, we will perform some redefinitions. We first introduce a vector

(of 2-forms) given by
= (B,

This vector contains the NS-NS and RR form to which the fundamental and D-string couple.
Consider an element A € SL(2,R) given by

(i o)

Under the action of A the 2-forms transform as a doublet and the action is given concisely in terms
of the vector B as follows:

B — AB

with the action on the right-hand side being the standard matrix multiplication. Since the matrix
elements of A do not have any spacetime dependence, by taking the differential of the two sides,
we find that the same transformation law applies to the 3-form field strengths. The next redefined
field we introduce is a complex scalar field called the azio-dilaton field 7 which plays an important
role in String Theory compactifications. As its name suggests, it is formed by combining the field
Co (which is traditionally called the axion field) with the dilaton ¢. In particular we have

T =Co+ie? (1.4)

Recall the relation between the dilaton and the string coupling which implies that the complex
part of 7 is the inverse of the coupling constant. Under the action of the element A as above, the
transformation of the axio-dilaton reads

at +b
ct+d

In order to make our notation even more compact, we can introduce the symmetric SL(2,R) matrix

_ oI —GCo
M=e <—CO 1

This essentially helps to simplify the admittedly complicated transformation law for 7. The trans-
formation of the new object M follows the simpler linear rule

M — (A"HT mMA™!

Finally, the last field that transforms under the action of A is the metric. This is evident if we
look at the action [I.3] where the Einstein-Hilbert term is multiplied by a function of the dilaton.
Since the dilaton transforms non-trivially under the SL(2,R) action, if we want the action to be
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invariant, the metric has to transform as well. In order to overcome this problem, it is useful to
make a field redefinition such that the Einstein-Hilbert term is not multiplied by anything. This
redefinition only needs to involve the metric and the dilaton. We define a new metric given by

gfy — e_¢/2gul/
The new metric gfy is often called Einstein metric and the old one g, is referred to as the string
metric. This redefinition amounts to going from the string frame to the Einstein frame. This
change of frame has the following effect on the first term of the Type IIB action [1.3

1 1 9
— [ d"zy/—ge *R = —/dwx\/— E(R— —0M90 )
2%%0/ g 2%%0 g 2 90ut
In the right hand side, the Ricci scalar is calculated with the Einstein metric. We chose to write
the integral in coordinates and explicitly write the integration measure to stress out the use of a
different metric. Having introduced this new notation we can now proceed to re-express the Type
IIB action as

1 1 - - 1
SiiB = dlox\/g<R — EHT,MV,OMH‘UVp + 4757“(8“/\45“/\/1_1))
10
1

o 82(/FS/\*F5+€ijC4/\H(i)/\H(j))
k1o

Here we used the Einstein metric. In the last term we chose to express the matrix multiplication
in components so that H® denotes the i’th component of the vector H. We can also express I in
a manifestly invariant form as

5 1 ) .
F5 = F5 + iﬁszéz) A\ H:EJ)

Additionally, the Hodge star operator is invariant under a rescaling of the metric like the one that
we used to go from the string to the Einstein frame so that % is also invariant. This shows that
not only the action but also the self-duality condition of Fj is invariant under the SL(2,R) action.
The invariance of all the equations of motion shows that this is a global symmetry. We claimed in
the beginning of this discussion that S-duality is contained in this SL(2,R) symmetry. To see this
take a background with vanishing Cj and pick the SL(2,R) element

= (5)

This acts on the axio-dilaton by 7 — —1/7 so that when Cy = 0 we get the S-duality transforma-
tion g5 — 1/gs.

The discovery of the global SL(2,R) is great news. However, recall that Type IIB supergravity,
for which we proved that the symmetry holds, is only the low-energy limit of Type IIB String
Theory. The natural question then arises whether this is an honest symmetry or just a low-energy
artifact. It turns out that this symmetry is actually broken by quantum effects and it is believed
that the subgroup SL(2,Z) survives as a true symmetry of the full theory. One argument for why
it is imperative to only consider integer coeflicients in the transformation can be given in terms of
the violation of the Dirac quantization condition (see section 18.3 of [13]).
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1.5 A geometric SL(2,Z) transformation

Having established this powerful symmetry for the Type IIB superstring theory, we would like to
address the question of what it begets for the Type ITA theory. To understand that, it is useful to
consider an M-theory with an isometric torus action or in the common physics language M-theory
on a torus. This means that we have two isometric directions on which we can reduce M-theory
to get two Type IIA backgrounds. Those backgrounds are in principle different. Our purpose is to
argue that they are dual. It can be shown |14}, 15| that the SL(2,Z) symmetry of Type IIB super-
gravity is the same as the SL(2,Z) symmetry of the torus on which eleven dimensional supergravity
is compactified on.

To demonstrate explicitly what this means, consider the independent cycles ¢; and ¢y in the isomet-
ric T2 of M-theory and suppose that they are related by an element A € SL(2,7Z) so that Ac; = co
where c1, co are represented as column vectors. The more rigorous way to do that is to consider
c1,co as elements of the homology group Hs(7?) which is indeed a two dimensional vector space
on which the action of SL(2,Z) is standard matrix multiplication. The statement that this action
is the same as the SL(2,7Z) action on Type IIB amounts to the commutativity of the diagram in
Figure [[.2] The dashed arrows denote the duality at the level of Type IIA which geometrically,
when lifted to M-theory, translates to the torus symmetry. This dashed arrow is a type of relates
different Type IIA theories. However, it is crucial that the existence of the diagram heavily relies on
the existence of an isometric circle in the ten dimensional theory [16]. This is why it is important
that we start with a torus isometry in eleven dimensions.

T-duality
along co
Type ITA | < » | Type IIB
4
SL(2,Z)
M-theory ; transformation
\
Type IIA | €« | Type 1IB
T-duality
along ¢y

Figure 1.2: The correspondence between an SL(2,Z) transformation on the torus in M-theory and
an SL(2,Z) transformation of the Type IIB theory.

The commutativity of the diagram can be proved by an explicit application of the various dualities
and transformations (see e.g. section 8.4 of [17]). It turns out that the axio-dilaton 7 on the Type
IIB side corresponds to the complex structure parameter 7 of the torus on the M-theory side. By
this we mean that we think of 72 as the quotient of C by the lattice generated by 1 and 7 € C.
Every different choice of 7 results in a different induced complex structure in the quotient. However
any two complex structure parameters related by an SL(2,Z) transformation are equivalent (they
define the same complex structure). The group SL(2,Z) in this context arises very naturally as the
modular group of the torus.

We have therefore discovered that the non-perturbative SL(2,Z) symmetry of Type IIB superstring

theory admits a purely geometric interpretation in terms of the modular group of the torus that acts
isometrically on an M-theory background. Additionally, we now understand that in the presence of
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an isometric 72 acting on an M-theory background, Type IIA backgrounds related by reductions
along different cycles of the torus should be dual. We thus expect them to exhibit the same kind
of physics. In this thesis, we want to exploit this duality to understand the dynamics between
D6-branes and D6-anti-branes in Type IIA superstring theory. Before we do that we will need to
understand their geometric origin. Indeed, we will soon set out understand the theory of group
actions and why they are important for studying string backgrounds. But before we do that, we
will give a short motivation for why studying brane—anti-brane systems is a cornerstone for the
development of a better understanding of string theory.

1.6 Brane—anti-brane systems and tachyons

We have already mentioned the existence of tachyonic degrees of freedom that plagued bosonic
string theory since the first days of its development. This tachyon was believed to indicate an
instability and its elimination is still considered one of the most important landmarks of superstring
theory. The removal of the closed string tachyon is possible due to the GSO projection [18], which
ensures that the closed string tachyon can be removed from the theory spectrum without violating
some fundamental consistency requirements related to modular invariance. This miracle projection
however cannot alleviate the open string tachyonic modes that arise in brane—anti-brane systems.
Indeed, there are two tachyonic modes arising from open strings stretching from the brane to the
anti-brane and vice-versa. We therefore have the following:

In superstring theory, there are tachyonic modes associated to open

strings stretching between branes and anti-branes.

The cryptic nature of tachyons as carriers of imaginary mass is demystified once a field theoretic
approach is adopted. This can be easily illustrated by considering a scalar field ¢ with potential
V(¢). A perturbation expansion around ¢ = 0 reveals that V”(0) is the quadratic coefficient and
therefore has the interpretation of a mass squared term (ignoring cubic and higher order terms).
From this perspective, a negative mass squared simply means that we are expanding around a
maximum of the theory and the tachyon is the harbinger of the breakdown of perturbation theory.
Put differently, since our theory is unstable under small perturbations around the expanding point
¢ = 0, using perturbation techniques makes no sense. At this point, the sensible thing to do is
perform our perturbation expansion around a minimum of the potential.

The inherent instability of the spaces containing brane—anti-brane pairs will be a guiding principle
for us in the following. The main question that we seek to answer is how the brane—anti-brane
system evolves and how to understand its unstable nature. The methods that we will employ are
inherently geometrical and the field theoretic nature of the tachyonic instability is obscured but we
should not forget that it is our main argument for expecting the system to be unstable in the first
place.
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Chapter 2

Group actions on manifolds

2.1 General properties of group actions

In this chapter we attempt to give a fairly general account of group actions on four-manifolds. In
particular we will focus on circle and torus actions.

Definition 2.1.1. A left action of a group G on a set M is a map

O:GXxM—M
(9,p) = @(g,p) =g -p=ygp
satisfying the following properties
e (g-h)-p=g-(h-p)forallpe M and g,h € G.
e ¢-p=np for all p € M where e is the identity element of G.

The case of interest for us is when M is a smooth manifold and G a Lie group in which case we can
require the map ® to be a smooth map. Such actions are called smooth. A space M acted upon by
a group G is often called a G-space. The natural morphisms between G-spaces are G-equivariant
maps (or simply equivariant maps)

Definition 2.1.2. An equivariant map is a map f : M — N between G-spaces that commutes
with the group action namely

flg-p)=9-flp) VpeM
An equivariant map which is also a diffeomorphism is called an equivalence of G-spaces.
We clarify some common terminology that we will use.
Definition 2.1.3. Let G be a group acting on a manifold M via an action ® : G x M — M
1. Given some point p € M the orbit map is ®, := &(—,p) : G — M.
2. The orbit O, of G through a point p € M is the image of the orbit map ®,,.

3. The fixed point set of a group element g € G is the set
M ={pe Mlg-p=p}

4. The isotropy group or stabilizer of a point p € M is
Gp={9€Glg-p=p}
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5. The group action is called free if all of the stabilizers are trivial.

6. The group action is called effective if M9 = M only for g = e. We introduce the kernel of
an action ker @ := {g € Glg-x =z Va € M}. Then effectiveness is equivalent to ker & = (.

7. The group action is called semi-free if the stabilizers are either trivial or the entire G.
8. The group action is called locally free if all the stabilizers are discrete.

In many cases we want to assume our actions to be effective. This is not very restrictive because
any ineffective action naturally gives rise to an effective one.

Proposition 2.1.1. Let ® : G x M — M be a group action and let N = ker ®. Then there is a
canonically induced effective action ® of G/N on M.

Proof. Let @ : G/N x M — M defined by [g] - = = g - = for [g] € G/N. This is clearly well-defined
and has trivial kernel so we only need to check continuity. We have the commutative diagram

GxM—2 M

=

G/N x M

Then for any open U C M we have ®1(U) = n(xid)(®~(U)) and since the projection 7 : G —
G/N is open the claim follows. O

Example 2.1.1. As a first example of a Lie group action on a manifold we discuss the action of
S on S3. Consider S? as a subset of C? via:

S3 = {(Zl,ZQ) € C? | |Zl‘2 + ‘22’2 = 1}
and S' C C as the unit complex numbers p, g € Z and define the group action
P:S xS — 83
()\, 21, Z2) — ()\pzl, )\qZQ)

This is in fact an action on C? that restricts to an action on S3. In general it is not effective with
ker® ={\Ae S| W =X\ =1} ~ Lged(p,q) Which is empty if and only if p, ¢ are coprime. In any
other case we can divide by the kernel as in Proposition to obtain an effective action. In the
case p = ¢ = 1 the action is called the Hopf action. When p = 1,q = —1 (or vice versa) the
action is called the anti-Hopf action. These are the only two cases in which ® is free.

An interesting case arises when M is a Riemannian manifold endowed with a G-invariant metric.
Initially this might seem to restrict the allowed types of actions but in fact when the group G is
compact (as will be in our considerations) we can always assume this as the following proposition
shows:

Proposition 2.1.2. If GG is a compact Lie group acting smoothly on a smooth manifold M, then
there exists a G-invariant metric on M.

Proof. First note that every smooth manifold M admits a Riemannian metric. Choose a partition
of unity {1} subordinate to an atlas {¢, : Uy — Vo C R™}. On V,, we have the standard metric
induced from R” which we call g{®). Then there is a natural pullback metric ¢*(¢(*) on U, and
by trivially extending the functions v, to be zero outside U, we can define a metric g on 7'M such
that for every X,Y € Vect(M) we have

9(X,Y) = Zwad):u(g(a))(Xv Y)= Z¢ag(a)(D¢aX, DY)
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If the cover {U,} is locally finite, which we can always assume, then this sum is finite at each point
and it is easy to check that the properties of a metric are satisfied. Now let & : G x M — M be
the given group action with G' a compact Lie group. By compactness, G admits a Haar measure
dp which is bi-invariant and is such that G has unit volume with respect to it. Then we can define
a new metric § on M given by

§(X,Y) = [ g(D®LX, DY )duy
where h denotes the integration variable. This metric is G-invariant. Indeed if A’ € G then we have
(B:9)(X.Y) = (D@ X, (DY) = [ g((DB) X, (DOun)Y )
= /Gg((D(I)h’-h)Xa (D®p.p)Y )dpns . = /G 9(DPp X, DOY )dpp, = §(X,Y)

where in the second equality we used the naturality of the pushforward and in the third the
invariance of the Haar measure while in the last equality we changed the integration variable. This
completes the proof. O

We can therefore talk about isometric actions without loss of generality as long as we do not have
any reason to focus on a special metric on a manifold. This will change later, when we consider
physical applications in which the metric is specified as a solution to the Einstein equations but for
the moment the assumption of isometric actions is harmless.

Given a group action ® : G x M — M we often find it useful to consider the quotient space or space
of orbits M /G which comes with the canonical projection = : M — M/G. As a topological space,
M/G is endowed with the quotient topology. This means that a subset U C M/G is open if and
only if 771(U) C M is open. The smooth structure of the quotient space M/G is not evident and
in fact it can easily fail to be a manifold. However the situation becomes simpler when the action
is free and G is compact.

Theorem 2.1.1. Let G be a compact group acting freely on a manifold M. Then there exists a
smooth structure on M /G such that = : M — M/G is a principal G-bundle and in particular a
submersion.

Sketch of the proof. To show the manifold structure on the quotient space we work as follows. By
Proposition there exists a G-invariant metric on M. Therefore we consider the Riemannian
manifold (M, g) such that G acts with isometries. Then for p € M consider the map ®,: G — M.
This map is an injective immersion as we will prove in Theorem and since G is compact it is
also an embedding. Therefore there exists a tubular neighbourhood

Ne(op) = exp(y<€((’)p))

where v<¢(0,) denotes an open neighbourhood of the zero section in the normal bundle of the orbit
O,. This is a G-invariant tubular neighbourhood since the Riemannian exponential map commutes
with isometries. If we let S), := exp(v;(Op) be the image of the an open neighbourhood of 0 in
the normal space at p then 7(S)) is open in M /G since

m (w(Sp) = U exp(1,(0p)) = exp(v=(0,)) = Ne(O,)
peOyp

The situation can be visualized in Figure Then a chart around a point [p] € M /G can be given
by taking some representative p € 7~ 1([p]) and identifying S, with R¥ where k = dim M — dim G
so that we have

RF = v<¢(0,) £ 8, — 7(S,)
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The advantage of those coordinates is that it is easy to see that 7 is a submersion (by the submersion
theorem). Then one can show that these charts give M /G a smooth structure. To show that it has
a principal bundle structure we use the same neighbourhoods 7(.S)) and the local trivializations

t:m(Sp) x G — W_l(ﬂ(sp)) (¢.9) = 9-q

Given two trivializiations (7(Sp,), h1) and (7(Sp,, he) we choose some h € G such that h - p; = ps
and we calculate the transition functions. For this it is useful to write the arbitrary element g € S,
as ¢ = exp(v) and then we calculate

(hy' o h1)(m(q),9) = hy'(g-q) = hy'(g-exp,, (v)) = hy ' (gh™" exp,, (h.v))
= (m(exp,, (hev)), gh™") = (7(q),gh™")

and so the transition function is g — gh™!. O
The following is an immediate consequence.

Corollary 2.1.1. If G is compact and H C G is a closed subgroup then G — G/H is a principal
H-bundle.

Proof. Consider the right action of H on G. This is clearly free and therefore by the above theorem
the result follows. O

Op S

Figure 2.1: An equivariant tubular neighbourhood of an orbit O,

Example 2.1.2. As an example we can again consider the Hopf action which is free. It is not
very hard to show that its quotient space is isomorphic to CP' ~ S§2. Indeed, the obvious map
¢ : S3/S1 — CP! such that [(z1,22)] — [21 : 22] is an isomorphism, with the right hand side
expressed in homogeneous coordinates. We then have a principal bundle structure:

7T253—>(CP1 s (21,22)'—>[212Z2]

We call this bundle the Hopf fibration. The non-triviality of this fibration is evident, for example
by noticing that 7(S%) = 0 while 7(S% x S1) = Z.

Example 2.1.3. As an example of an action which is not free consider the S* action on the sphere
S? given by rotations around some axis. The orbits are clearly circles and there are two fixed points,
the two poles P, Q. The quotient map geometrically collapses the orbits to points as in Figure [2.2]
Note how the fixed points act as boundaries for the disk S?/S'. This is not a coincidence but a
general occurrence as we will see later.

In Example 2.1.2] the action is free and the isotropy groups are all trivial. Additionally, all the
orbits are diffeomorphic to S and this allows for the bundle structure. In general however, this
is not the case as we saw in Example 2.1.3] First note that for any ¢ € G, p € M we have
Gygp = ngg_1 so that isotropy groups along the same orbit are not just isomorphic but conjugate.
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Q

Figure 2.2: The quotient map S% — S2/S*

In order to understand the structure of the set of isotropy groups {G), | p € M} we impose an
equivalence relation declaring two isotropy groups G,, G, € G equivalent if they are conjugate as
subgroups of G. The resulting equivalence classes are called isotropy types. In a similar fashion,
we declare two orbits O, O, to be equivalent if the isotropy subgroups at p and ¢ are conjugate.
Such an equivalence class is called an orbit type. This definition makes sense because the orbit
Op, is determined by the isotropy subgroup G). Indeed, it easily follows from the definitions that
the orbit O, is in bijection with G/G, which makes them complementary to one another. We can
additionally define a partial ordering in the set of isotropy types. If G,, G, are two isotropy groups
with isotropy types [Gyp], [G4] we say that [G)] < [G,] if and only if [G)] is conjugate to a subgroup
of [G4]. This clearly induces a partial ordering in the set of orbit types by reversing the inequality.

Lemma 2.1.1 (Kleiner’s lemma). Let G act isometrically on M via ® : Gx M — M. If ¢: [0,1] —
M is a minimal length curve from O to O then there exists a subgroup H C G such that
Gy = H for t € (0,1) and H is a subgroup of G gy and G1).

Proof. Let H := {g € G| g-¢c(t) = c(t) V¥Vt € [0,1]}. Suppose there exists ty € (0,1) and
g € G, such that g ¢ H. Consider &, := ®(g,—) : M — M. Then D4, ®y(é(to)) # c(to).
Define a piecewise smoth path ¢ : [0, 1] — M by setting ¢&|j1,) = c|(o,4o) @and &|[zy,1] := Pgoc. Then ¢
joins O,(g) and Oy and has the same length as c. This is a contradiction since length minimizing
geodesics are smooth. O

Theorem 2.1.2. Let G be a compact Lie group acting on a Riemannian manifold M. Then there
exists a unique maximal orbit type (equivalently a unique minimal isotropy type).

Proof. Applying Zorn’s lemma we need to show that any decreasing chain
G>Ki>Ky> ..

of isotropy groups stabilizes. Notice that K;,; is conjugate and therefore isomorphic to a sub-
group of K;. Additionally, K; are closed subgroups of G (see Theorem . It follows that
dim(K;11) < dim(K;) and this clearly stabilizes after some sufficiently large 7. This implies the
Lie algebras Lie(K;41) and Lie(K;) are isomorphic. This means that the identity components of
K; and K41 are isomorphic as Lie groups. It could be the case that some K; has infinitely many
components so that the chain does not have to end. However, this is excluded by the compactness
of G and the compactness of K; which are closed in G and therefore compact.

To prove uniqueness suppose there exist two different isotropy groups G\, G4 that are minimal but
not conjugate. By Kleiner’s lemma we can consider a length minimizing geodesic ¢ : [0,1] — M
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and the subgroup H in Kleiner’s lemma will be conjugate to a subgroup of both G, and Gj,.
But since G\, G4 are minimal, H is conjugate to both of them and therefore they are conjugate to
each other proving that [G4] = [G,]. O

We often call the isotropy groups of minimal isotropy type the principal isotropy groups and the
orbits of maximal orbit type principal orbits. Next we wish to understand the local behavior of M
around the orbits. We already have Theorem but we want to be more general.

Definition 2.1.4. Let G be a Lie group with Lie algebra g. Let G act smoothly on M via the
action ® : G x M — M and let ®, : G — M be the orbit map at p. Then for any X € g the
fundamental vector field X% € Vect(M) corresponding to X is

XH(p) = (D) (X) = | @lexp(tX).p)

where exp : g — G is the exponential map of the Lie algebra.

Intuitively, fundamental vector fields indicate the direction towards which points on M move by an
"infinitesimal" action of a one-dimensional subspace of G which is the image under the exponential
map of a one-dimensional linear subspace of g spanned by the element X € g. In Example
the fundamental vector field would be tangent to circles of constant latitude and would vanish at
the poles which agrees with the interpretation we just gave, since the poles do not move in any
direction under the group action.

Theorem 2.1.3. |19] Let G be a Lie group acting on a manifold M and let p € M.

e The stabilizer G, is a closed subgroup in G, with Lie algebra h = {X € g| X#(p) = 0} where
X7# is the vector field on M corresponding to X.

e The orbit map G/G, — M is an immersion whose image coincides with O,

Proof. For the first claim it suffices to show that in some neighbourhood U of 1 € G the intersection
U NG, is a submanifold with tangent space T.G,, = h. Then the same will hold around any point
g € G and neighbourhood gU. It can be shown by some elementary differential geometry that
[X,Y]# = [X#,Y?] where the bracket on the left hand side is the Lie algebra bracket and the
bracket on the right hand side the Lie bracket of vector fields on M. Using this we deduce that b
is closed under commutator and therefore a subalgebra of g. Additionally since tX € b, we have
that the path ®(exp(tX),p) in M must be constant since the derivative vanishes everywhere so
that ®(exp(tX),p) = p and therefore exp(tX) € G,,.

Next we choose a vector subspace u C g such that g = h @ u. As before we have D.®, : g — T, M
whose kernel is (by definition) ker(D®,) = h. Since uNh = () the kernel of D@y, : v — T,M
which is now restricted to u must be empty and therefore D.®,|, is an injection. Using the implicit
function theorem this means that the map u — M given by Y — ®(exp(Y'),p) (whose differential
is D.®,) is injective for Y in a sufficiently small neighbourhood of 0 € u so

exp(Y) € G, & ®(exp(Y),p) = p © P(exp(Y),p) = ®(exp(0),p) & Y =0 (2.1)

It follows from the definition of the exponential map (see any textbook in Lie theory) that the
pushforward Dgexp : g — g is the identity. Therefore, using the inverse function theorem we
a neighbourhood V of 0 € g and a neighbourhood U of e € G such that exp : V — U is a
diffeomorphism. Therefore, we can express any g € U as g = exp(X +Y) = exp(Y) exp(X) for
unique X € h and Y € u which are sufficiently close to the zero vector. We then get

geGyeexp(Y)exp(X)eGpeexp(Y)eG,©Y =0
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where in the last step we used We therefore conclude that g € G, < ¢ € exp(h). Since exp(bh)
is a submanifold in a neighbourhood of 0 € g and the exponential map is a local diffeomorphim, it
follows that Gy, is a submanifold in the neighbourhood U of the identity e € G.

The same arguments show that T.(G/G)) ~ g/bh ~ u and injectivity of the map D.®pl, : u — T,M
shows that the map G/G), — M is an immersion. O

This shows that the orbits are images of injective immersions. However, they are not always
submanifolds. This is true however for the case of compact manifolds. The local structure of a
quotient M /G is also well behaved as long as the action is smooth. In order to explain the previous
sentence we would like to investigate the manifold M in the neighbourhood of an orbit O, of some
point p € M. To do this we introduce some terminology. Let p € M and let A C X be a space on
which G, acts. We call a tube about p € M a G-equivariant embedding

0:Gxg, A—> M

onto an open neighbourhood of O, where the twisted product G xg, V := (G x V)/G), is defined
using the free action of G, on the product G x V), by

h-(g,v) = (gh™t h-v) VgeG,veV,heG,

Additionally, if p € S and G,(S) = S then we call S a slice at p if the map G xg, S — M is a
tube about O,. We are interested in the case when the space A (which can now be though of as
a general "slice") is not arbitrary but has a vector space structure. Let V' be a Euclidean space on
which G, acts orthogonally, namely by orthogonal transformations. Then, a linear tube about O,
is a G-equivariant embedding

p:Gxg, VM

onto an open neighbourhood of @,,. In this case the space looks like part of a vector bundle over the
orbit as we show in Proposition Additionally, if S is a slice at p € M then we call it a linear
slice if the canonically associated tube G x¢, S — M is equivalent to a linear tube, that is if the
Gp-space S is equivalent to an orthogonal G-space. The intuitive picture behind this definition is
illustrated in Figure [2.1] If there exists a linear tube around each orbit then we say that the action
is locally smooth. In this case we also call the G-space M locally smooth.

Definition 2.1.5. The action of a Lie group G on a manifold N is called locally smooth if for
every © € N there exists a slice which is a disk on which the action of the stabilizer G, is equivalent
to an orthogonal action.

Recall that in the proof of Theorem [2.1.1] we gave an explicit construction of such equivariant
neighbourhoods for the case of free actions. The orthogonality follows from the action being
isometric. Therefore we have the following

Lemma 2.1.2. A free, smooth action of a compact Lie group G is locally smooth.

Proof. The proof is given in the first part of the proof of Theorem O

We want to extend this result to general smooth actions that are not necessarily free. For this
reason we formalize the construction of Theorem and put it in a more general setting where the
isotropy group is non-trivial. Suppose G, is the isotropy group of p and consider the diffeomorphism
¢g = P(g,—) : M — M for g € Gp. Then p is a fixed point of ¢4 so the pushforward Dp¢p, :
T,M — T,M is an automorphism of T,M. Additionally, the restriction of ¢4 to the orbit O,
is a diffeomorphism ¢¢|o, : Op — O, with an induced pushforward D,(¢¢lo,) : TpOp — T,0p.
Therefore, the pushforward induces a well defined automorphism of the quotient vector space
Vp == T,M/T,0, which can be thought of as the tangent space at p that is normal to the orbit
where "normal" is to be understood with respect to a G-invariant metric. We call this induced
automorphism of V), the isotropy representation.
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Proposition 2.1.3. Let p : G, — GL(V},) be a linear representation. The quotient space G xq, V,
has the structure of a vector bundle over G/G), with projection:
m: Gxa,Vy — G/G,
g, v] — [g]

and fibers isomorphic to V.

Proof. Fix a representative [g] € G/G,, then the map 7~1([g]) — V, given by [g,v] — v is well
defined since in general [g,v1] = [g,v2] implies v1 = v9. This map gives the desired bijection
7~ ([g]) ~ V,. Next we construct a trivialization. Let (U, ¢r/) be a local trivialization for the
principal bundle G — G/G), with U C G/G), open such that

(Z5U : G|U — U x Gp
g+ ([g], Bu(9))

for some map Sy : G — Gp. Then we define the trivialization (U, vy ) given by:

Yy (G xg, Vo)lu — U xV,
[9,v] — ([g], p(Bu(g))v)

The map ¢y is a diffeomorphism with inverse

vt U %V, — (G xg, Vy)lu
(lg,v) — (o5 (lg], €), v]

where e denotes as always the identity element of G. Finally, the restriction of ¢y to the fiber is a
linear isomorphism. O

What we have described so far is essentially G x ¢, V), as an associated vector bundle to the principal
bundle G — G/G), and the isotropy representation p : G, = GL(V},). Then we can view G/G)
as a submanifold of G' x¢g, V} via the zero section s : G/G, — G xg, V, whose image is the set
{lg,0] | g € G}. We can then ask if there exists a map f: G xg, Vj, — M such that the following
diagram commutes

G/Gy, —— G xg, Vp

v(-p)| |#

Op s M

If such a map exists, then it will essentially be an extension of the orbit map ®(—,p) : G/G, — M.
The following theorem, often referred to as the slice theorem, asserts that such a map f can be
found in a neighbourhood of the zero section.

Theorem 2.1.4. (Slice theorem) Let G be a compact Lie group which acts smoothly on M. Then
there exists an equivariant diffeomorphism from an equivariant open neighbourhood of the zero
section in G x g, V), to an open neighbourhood of O, in M which sends the zero section G'/G), onto
the orbit O, by the natural map f. Here the action of G on G' x¢, V}, is defined by h-[g, q] = [hg, q].

Proof. The map [g,v] — g-exp(v) is the desired map f from a neighbourhood of the zero section in
G xg, Vp (this follows from exp being a local diffeomorphism) onto an equivariant neighbourhood
of O,. The G-invariance again follows from the fact that exp commutes with isometries just like in

Theorem 2.1.11 O
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Corollary 2.1.2. If G acts on M with a unique isotropy type then M /G is a smooth manifold.
Proof. The construction of charts is the same as in the proof of Theorem [2.1.1] O

The essence of the above theorem is that smooth actions of compact groups are locally smooth and
therefore locally behave in a well understood way around an orbit.

2.2 Metrics on orbit spaces

Let w : E — B be a submersion. It is often the case that the space B is a Riemannian manifold
(B,g). Our current goal is to develop the necessary tools in order to be able to endow the orbit
space with a metric which is in some sense natural. Firstly, for any x € B the submersion theorem
implies that 7—!(z) is a submanifold that we call the fiber at 2. Then for some u € 7~ !(z) the
tangent space T, F splits in a horizontal and vertical subspace. To do this we define the wvertical
subspace of Ty E to be V, := ker D, . To see that this definition makes sense consider a path which
lies entirely in the fiber ¢ : [0,1] — 7~ !(z) such that ¢(0) = u so that we have

Dw(d(;it)) = Dro Dc(jt) = D(r OC)(;) =0

since 7 o ¢ is constant. Therefore every vector that lies in T, F is also in V, so that T, F C V,
is a linear subspace and because they have the same dimension (by the submersion theorem) we
conclude that V,, = T,,F'. Now suppose that E is endowed with some Riemannian metric g. Then
we define the horizontal subspace H,, at u € E to be the orthogonal complement of V,, in T, E (with
respect to the metric g) such that T, F = V,, & H,. An example is illustrated in Figure It is
clear that H, ~ T, B as vector spaces. In this sense we have constructed a splitting of the space E
into a "fiber component" and a "base component'. Note that without a metric, there would be no
canonical way to perform this splitting. Performing this splitting at every point u € E we obtain
the wvertical and horizontal subbundles V and H of E. Sections of H are called horizontal vector
fields. We are now ready to define what we mean by a "natural" metric on the total space E. The
intuition is that we want a metric g such that when we restrict to horizontal vectors in T,,F , it
agrees with the metric on the base space B.

Definition 2.2.1. A submersion (F,g) — (B, g) is called a Riemannian submersion if at each
point uw € E, D,m preserves the length of horizontal vectors

Gu(X,Y) = Gop(Dum) X, (D,1)Y) VXY €H, (2.2)

An equivalent way of phrasing this is that Dym : T,F — Ty(,) B is a linear isometry when restricted
to Hy.

In the context of the previous section, the submersion we are interested in is the quotient map of a
group action 7 : M — M /G. There is of course no a priori reason for this map to be a submersion.
However, when the group action is smooth and free Theorem ensures that we have a principal
bundle structure. Of course this is in general not true and in fact the actions that will be of central
interest for us are those that have fixed points. We can choose to ignore those and focus on the
regular part of the manifold. Then everything works out fine as shown by the following theorem.

Theorem 2.2.1. Let G be a compact Lie group acting isometrically on a Riemannian manifold

M.

1. The union My of maximal orbits is open and dense in M.
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2. The G-action on M restricts to My and My — My/G is a Riemannian submersion. It is also
a fiber bundle with fiber G/H where H is a minimal isotropy group.

3. The quotient My/G is open dense and connected in M/G.

Proof. For (1) let p € Mg and ¢ : Gxg,V — M an invariant tubular neighbourhood as in Theorem
so that p = ¢([e,0]). Then if ¢ = ¢([g,v]) and h € G so that h - ¢ = ¢ we have

¢(lg,v]) = @([hg, v]) = [g,v] = [hg,v] = [e,v] = [97 " hg, ]

from which we conclude that g~'hg € G, and G, is conjugate to a subgroup of G, so that
[G4] < [Gp]. However by the assumption of maximality we conclude [G4] = [Gp]. Therefore
the orbit O, is also maximal and the set My is open. In order to show that My is dense we pick
an arbitrary point p € M and a length minimizing geodesic ¢ : [0,1] — M connecting the orbit
O, with a principal orbit O,. By Kleiner’s lemma G for t € (1,0) is a subgroup of G.)
and the latter is of minimal type by assumption so that G,y must be of minimal type for all
t € (0,1). This shows that all points in ¢((0,1]) have minimal isotropy groups and those can be
chosen arbitrarily close to p.

For (2) we first note that G - My = My since My consists of entire orbits. From corollary it
follows that Mj/G is a smooth manifold. Since G acts with isometries on the Riemannian manifold
(M, g) where g is some G-invariant metric, we can endow M /G with the quotient metric g defined

by
gw(u)«Duﬂ')Xv (DUT")Y) = gu(X7 Y)

This is well defined because using h - u instead of u clearly leaves the left hand side invariant and
the invariance of the right hand side follows from the isometric action of G. The The quotient map
m: M — M/G is then a Riemannian submersion.

For (3) note that My/G is open and dense by 7w : M — M /G being open and continuous. To show
connectedness we again use Kleiner’s lemma to connect two principal orbits O,, O, by a length
minimizing geodesic ¢ : [0,1] — M. Since the isotropy groups G,, G4 are minimal, the isotropy
groups of all the points in the path ¢ are of minimal type and therefore this path lies in My so its
image under the quotient map is a path in My/G. O

When F is a principal G-bundle and 7 a bundle map then the fiber is F' ~ G and V,, = T,,G ~ g.
The explicit isomorphism between V,, and g is given by assigning to each X € g its fundamental
vector field X# (u) evaluated at u which is clearly vertical from Definition The map X — X#
is an isomorphism when G acts freely.

As usual, we assume that the action of G is effective so that the maximal orbits are isomorphic
to G. What we have proven so far is that given such an action G x M — M we can consider the
union of principal orbits My which is a G-bundle over My/G. Then if M is endowed with a metric
such that G acts with isometries, we can always construct a quotient metric on My/G as in the
proof of Theorem which makes the quotient map a Riemannian submersion (which is unique
by construction).

The reader familiar with the theory of principal bundles might have noticed a striking similar-

ity between the decomposition in terms of horizontal and vertical subbundles and the theory of
connections on principal bundles. This is no coincidence as we explain in Appendix [A]
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Figure 2.3: A submersion £ — B and the horizontal and vertical subspaces.

2.3 Circle actions

The restriction to the class of abelian groups simplifies the above setup. We are mainly concerned
with circle and torus actions and therefore we assume G to be abelian from now on.

Lemma 2.3.1. Effective actions of abelian groups have trivial principal isotropy type.

Proof. Recall that principal isotropy type means minimal isotropy type. Let [G)] be of such minimal
type. Then for every ¢ € M we have [Gp] < [G,] implying that G, = gHg™ ! for a subgroup H of
Gg4. But since G is abelian gHg™' = H and G, is a subgroup of G for every ¢ € M. This implies
that G, C ,epm G but the assumption of effective action is equivalent to (,eps Gg = () and the
claim follows. O

The above lemma implies that maximal orbits are diffeomorphic to G and their union is a G-
bundle over My/G which follows from Theorem From now on in this section we will be only
interested in circle actions G = S!. Since the stabilizers are trivial for a dense subset My of M, let
us explore what can happen in M \ My. We first consider fixed points where the stabilizer is the
whole of S'. Let S! act on an oriented 2n-dimensional manifold M via an action ® : S x M — M
with a discrete set of fixed points and let p € M be a fixed point. Then ®, : M — M induces a
pushforward D®,, : T,M — T,M which makes T, M an S'-module. This is nothing more than the
isotropy representation that we have already encountered but now the isotropy group is the entire
group G and the normal space is identified with the whole tangent space. We can decompose T, M
into irreducible representations as

n
T,M = P L
=1

where the L; are vector spaces isomorphic to C on which the S! action is given as multiplication
by ¢“» where g € S! and w; are non-zero integers called the weights at p € M. In terms of real
representations and under the identification C ~ R? the S'-action is just a direct sum of 2 x 2
rotation matrices. If the dimension of M is odd then

n
T,M =P L dR
i=1

where the action on the R component is just £1. In particular, we focus on the even dimensional
case and everything carries on trivially to the odd case. The sign of each weight depends on whether
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the induced action agrees with the chosen orientation of each plane C or not. However, we can
always change the orientation of individual components L; as long as we preserve the orientation of
T, M induced by the orientation of M. For this reason, it is the sign of the product of the weights
that really matters. We denote this product sign by e(p) = £1 and denote the fized point data at
p by X, = {e(p), w;, .., wy } where we take all the weights wli) to be positive.

2.3.1 Circle actions from Killing vector fields and topological invariants

We now turn to a different description of circle actions. We mainly follow [20, [21]. We first recall
the notion of a fundamental vector field 2.1.4, When we use fundamental vector fields we may
lose a lot of information about the action of the entire group G. In particular we have to pick a
one-dimensional vector subspace hh C g spanned by an element X € g and then the vector field
X# encodes the infinitesimal action of elements arbitrarily close to the identity e € G that lie
"in the direction" of X. The integral curves of X# are then the one-dimensional orbits of the
one-parameter-subgroup exp(h) C G.

Lemma 2.3.2. Let G be a compact Lie group and X € g. Consider the one-parameter-subgroup
¢ : R — G where t — exp(tX). Then if H :=Im(yp) is closed, it is a circle subgroup of G.

Proof. H is an abelian group since exp(t1X) exp(t2X) = exp((t1 + t2)X) = exp(t2X) exp(t1 X). It
is also closed and G is compact, so H is also compact. Connectedness of H follows by the continuity
of the exponential map. Therefore H is a torus and since it is one-dimenensional it is S*. UJ

Conversely, the Lie algebra of every circle subgroup of G is a one-dimensional subspace of g. By
taking a basis vector of this subspace and considering the associated fundamental vector field, we
see that every circle action gives rise to a vector field. If the circle action is isometric, then the vector
field generates an isometry and is therefore a Killing vector field. This is why the term infinitesimal
isometry is sometimes used instead. The above discussion, including the proof of Lemma can
be generalized for a torus subgroup T%. Then Lie(T*) is an abelian Lie subalgebra of g. By passing
to fundamental vector fields, any such subalgebra corresponds to a set of commuting vector fields
which, if the torus action is isometric, are commuting Killing vector fields.

Since the following sections are devoted to torus actions, we will often use this language of Killing
vector fields instead of that of a torus action. Of course the correspondence between torus actions
and commuting Killing fields should be used with caution since it is not a bijection. There can be
commuting sets of Killing fields that do not arise as fundamental vector fields associated to a torus
subgroup of the isometry group. This can happen when the condition for closedness in Lemma
is not satisfied. In the physics language we say that a family of Killing fields integrate to an
isometric torus action. To account for the cases when this fails to be the case, the more general
term local isometry is used to refer to the image of the map ¢ in Lemma[2.3.2] In this sense Killing
fields are in one-to-one correspondence with local isometries. The language of vector fields is very
convenient for applications in physics and also useful in mathematical applications as we will see
below. First, we need to recast some of the notions we have been discussing into this new language.

We begin with fixed points of circle actions. Those are points p € M whose orbit is a point and their
isotropy group is G, = S L If X € Vect(M) is the associated vector field then the orbits of the circle
action are the integral curves of X namely paths v : (0,1) — M such that (Dy,7)(9/0t) = X|,,)
for all ¢, € (0,1). A fixed point p € M is then a point for which the integral curve is the constant
path at p so that X (p) = 0. Such points are called the fized points of a vector field.
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The second important concept is that of the isotropy representation. As we already saw in the
previous section, this is a powerful tool to differentiate between different types of fixed points. If K
is a Killing vector field and V the covariant derivative, then the endomorphism VX : T, M — T,,M
is skew-symmetric with respect to an orthonormal basis in view of the Killing equation. It therefore
admits the canonical form

Under the exponential map we get the induced action of the local isometry

cos(ajt)  sin(ajt)
—sin(ait) cos(ait)

2.3
cos(a,t)  sin(a,t) 23)

—sin(a,t) cos(art)
Lo

This is precisely the decomposition of T,M in terms of irreducible representations of S' that we
saw in the previous section. The numbers a; are the weights. As before, those can be taken to be
positive up an overall sign. Now that we have clarified how we can use Killing fields, we will use
them some important results. The first one indicates that the fixed point set of a circle action has
a nice structure from the point of view of differential geometry.

Theorem 2.3.1. Let M be a Riemannian manifold with dim M = n and X be a Killing vector
field. Let F' be the fixed point set of X and consider the decomposition F' = UN; into connected
components. Then each N; is a totally geodesic closed submanifold of M of even codimension.

Sketch of the proof. Let p € F and consider the isotropy representation of the local isometry
exp(VX) : T,M — T,M as in If n = 2r then p is an isolated point and both of the claims
of the theorem hold trivially. In any other case there is a (n — 2r)-dimensional subspace of T, M
that is left invariant by the action of the local isometry. We call this space W),. Then if U is an
open neighbourhood of the origin in 7}, M and since the exponential map commutes with isometries,
exp(W, NU) is a (n — 2r)-dimensional submanifold of exp(U) and it is invariant under the local
isometry. It is also totally geodesic as the image of the exponential map. O

Theorem 2.3.2. Let M be a compact Riemannian manifold and F' = |J N; be the fixed point set
of a Killing vector field decomposed in connected components. Then

X(M) = 3 (V)
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Proof. Since N; are fixed point loci, for any p € M the isotropy group is G and therefore the
equivariant neighbourhoods of the slice theorem [2.1.4] will be diffeomorphic to G xg V}, ~ V,, where
Vp is the normal space at p. These are open m-disks of dimension m = dimV). Consider an
e-neighbourhood of N; and A; its closure, where we choose € small enough so that every point
of A; can be joined to the nearest point of NV; by a unique geodesic of length < € and so that
A;NA; =0 for i # j. Then each A; is a disk bundle over N;. Let A := U;A; and B := M \ A.
Then AN B = 0A. Now whenever we have a long exact sequence of vector spaces

. — U — Ve — W, — Uy — Wiy — ...
it follows that

Z(_l)k dim Uy, — Z(—l)k dim Vj, + Z(_l)ka —0

k k k

This can be easily shown by applying the rank-nullity theorem at every stage of the long exact
sequence, then taking the appropriate alternating sum and using exactness. We want to use this
formula for the long exact sequence of the pair (M, B) which is given by

... — Hy(B;K) — Hp(M;K) — Hp(M, B;K) — H,_1(B;K) — ...

where the coefficients are taken in some field K. Using the definition of the Euler characteristic as
X(X) =X Hp(X;K) we find that

xX(M) = x(B) + x(M, B) (2.4)
Applying the same formula for the long exact sequence of the pair (4, AN B) we find
X(A)=x(ANB)+ x(A, AN B) (2.5)

Next we observe that int(B) = M \ A and therefore M \int(B) = M\ (M\ A) = A and B\int(B) =
0B = 0A = ANB. We also have that int(B) = B since B is closed so that we can apply the Excision
theorem to deduce that H,, (M, B;K) ~ H, (A, ANB;K) for all n and therefore x (M, B) = x(ANB)
which combined with and gives

X(M) +x(AN B) = x(A) + x(B) (2.6)

Now both AN B and B are free of fixed points and by the Lefschetz fixed point theorem (see for
example [22] ) we conclude that their Euler characteristic vanishes so that gives x(M) = x(A).
As we have already mentioned, A; is a disk a bundle and the disk is contractible so that x(D™) =1
so x(4;) = x(N;)x(D™) = x(V;). From this it follows that

X(M) = 3" x(V)

O

It is interesting that fixed points always appear as submanifolds of even codimension. The intuition
behind Theorem [2.3.1] is quite simple and pertains to the fact that each circle action will rotate a
number of planes.
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2.3.2 Local structure around fixed points

Of particular interest, especially for applications in physics, are circle actions on four-manifolds
which are going to be the backbone of the rest of our discussions. In this situation, fixed point loci
come in dimension zero and two. Those will appear frequently in our discussions and deserve their
own definition.

Definition 2.3.1. Let S! act on a four-manifold M. If P is an isolated fixed point with weights
(e(P), w1, ws) such that w;/we = p/q with p,q co-prime integers, then we call P a (p,q)-nut if
e(P) = +1 or (p,q)-anti-nut if ¢(P) = —1. More specifically, if p = ¢ = 1 we call the fixed point
a nut or anti-nut when ¢(P) = +1 and €(P) = —1 respectively. A two-dimensional submanifold
of fixed points is called a bolt.

Let p € M be a fixed point (either isolated or a point on a bolt). Then the normal space is just
Vp = T, M and from the slice theorem it follows that there exists an equivariant neighbourhood of p
diffeomorphic to S* x g1 Vp ~ T, M on which the group action is given by the isotropy representation.
The isotropy representation in this case is the rotation of the two copies of C with a pair of associated
weights (¢(p), w1, ws) and in fact it exactly coincides with the action on C? given in Example
The integers p, ¢ that were introduced there are the weights of the circle action. In particular, when
the weights are +1 the action is the Hopf or anti-Hopf action. This simple observation will prove
crucial in our subsequent discussions and we state it in the form of the following lemma.

Lemma 2.3.3. Let M be a four-manifold with an S' locally smooth action and let p € M be a
fixed point with unit weights. Then there exists an equivariant neighbourhood of p diffeomorphic
to R* on which the action looks like a radial extension of the Hopf or anti-Hopf action.

The closure of this neighbourhood is a four-disk D* whose boundary S is acted upon by a Hopf
or anti-Hopf action giving the standard quotient S — S2. For the more general case, we first note
that S can be identified with the set of lines passing through the origin in R*. Then if the action is
characterized by weights (e(p), w1, ws) the quotient of this S will give a weighted projective space
CPw1w2] - Of course, in the case of unit weights (Hopf or anti-Hopf action) we recover CP! ~ §2
but this is the only case for which the quotient space can be a manifold. For every fixed point
with a non-unit weight this fails to be the case. This is why the Hopf and anti-Hopf actions are so
important.

However, in this work we want to treat general circle actions and not only those that locally look
like the Hopf or anti-Hopf ones. Let us consider the action of S' on C? with weights k,¢ € N and
k, ¢ coprime so that the action is effective (see Example 2.1.1)). We have

et . (21,22) = (eikezl, eiwzQ) (2.7)

In this case the points (z1,0) have non-zero isotropy given by
{6 €(0,27] | €2 = 21} = {0 € (0,27 | kO = 27n , n € Z} ~ 7,

Similarly, the points (0, z2) have isotropy Zy. The points (z1, z2) with 21, zo # 0 have trivial isotropy
due to £ and k being coprime. We have therefore discovered that our circle action has exceptional
orbits, namely orbits with discrete stabilizer. Therefore it cannot be semi-free. In other words, if
we wanted a semi-free action we should only consider actions with unit weights on the fixed points
and in this case the quotient would automatically be smooth.

As already stated, when the circle action is restricted to S C C? the quotient is in general a
weighted projective space. This space is an orbifold namely a manifold with singularities that are
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locally isomorphic to quotient sngularities of the form R"™/T" where n = dim M and T is a finite
subgroup of GL(n,R). The weighted projective space S3/S' = CP¥¥ is indeed an orbifold which
is often called a spindle when k, ¢ # 1 and teardrop orbifold when only one of k, ¢ is different from
one. Those names are justified by their shape which is illustrated in Figure[2:4] The singular points
of those orbifolds are locally of the form R?/I" where I = Zj, for some k € N and Z;, acts diagonally
on R2.

Figure 2.4: The spindle orbifold CP4 (left) has two singular poles P, @ with neighbourhoods
diffeomorphic to R?/Z;, and R? /Z; respectively. The teardrop orbifold CPP! (right) has a singular
pole P, a neighbourhood of which is diffeomorphic to R?/Z, for some p € N.

Q

In the quotient space C2/S*, these singularities become one dimensional and can end on the images
of fixed points. Therefore we can have one singular line (radial extension of the teardrop) or two
singular lines (radial extension of the spindle) emanating from the image of a fixed point. Those
singular points are known as cones and we will see later on, that they deserve some attention from
a physical point of view.

2.4 T? actions on four-manifolds

In this section we focus on torus actions so that all the theorems of the previous sections apply.
We will use M* to denote the quotient space of a torus action. This notation is often used in the
literature. The first thing we want to address is the topology of the orbit space which turns out to
be quite simple. We start with two lemmata whose proofs can be found in [23].

Lemma 2.4.1. Let GG be a compact Lie Group acting locally smoothly on a manifold M with M*
connected. If dim M* < 2 then M* is a manifold (with boundary).

Lemma 2.4.2. If M is an arc-wise connected G-space, with G compact Lie group and if there is
an orbit which is connected or there are fixed points of the G-action then the fundamental group
of M maps onto that of M*. Thus if M is simply connected, then so is M*.

Therefore, for simply connected four-manifolds with 72 actions, we have a concrete description
since the orbit space is a two dimensional simply-connected manifold with possible boundary as
long as the conditions of Lemma [2.4.2] are satisfied. This is in fact always the case because simply
connected manifolds turn out to necessarily have fixed points.

Lemma 2.4.3. Let T? act on a simply connected manifold M. Then the action contains fixed
points.

Proof. Suppose there are no fixed points. Then by Theorem we get x(M) = 0. Since M is
simply connected we have H;(M,Z) = 0. By Poincaré duality and Universal coefficients we get
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Hs(M,Z) = 0 so that
X(M) =2 +rankHy(M,Z) > 2
which is a contradiction. O

We have established that for a simply connected four-manifold M, there are non-principal orbits
and the orbit space is a simply connected manifold. If M is also compact then the orbit space
is also compact (since the quotient map is continuous) and therefore it has to be a topological
disk D?. This will not be the case later, when we consider non-compact manifolds in the context
of String Theory where we will encounter a quotient space that looks like the upper half plane.
Since we understand the very simple topology of the orbit space, we now turn to the question of
what types of orbits there are and how they are allocated. A thorough study of how the torus
can act on closed, orientable four-manifolds was carried out in [24]. Most of the qualitative results
carry on to the case of non-compact manifolds. The possible orbits and their isotropy groups and
representations are depicted in Table [2.I] which we now turn to explain.

Consider T? parametrized by two angles 6, ¢ € [0,27). Consider the following subgroups:
G(m,n) :={(0,¢) € T | m¢ +nbd = 0} (2.8)

When m = n = 0 we identify G(0,0) = T2. Otherwise, we let n # 0 and we have the following
cases:

e When m/n is rational then G(m,n) is a closed subgroup of 72 which can be identified with
the image of an embedding S' — T2 by the closed subgroup theorem for Lie groups. We can
then take m,n to be coprime and all inequivalent such subgroups are labeled by distinct pairs
of coprime integers (m,n).

e When m/n is irrational then G(m,n) never closes back to itself. It is the image of an injective
immersion R — T2 which is dense in 72 and often referred to as the irrational winding of the
torus. Note that this map cannot be an embedding since then its image would have to be
closed and dense and therefore the entire 72. On the other hand, we have seen in Theorem
that isotropy groups are closed Lie subgroups and we conclude that those G(m,n) with
m/n irrational cannot occur as isotropy groups of torus actions.

From now on we use G(m,n) to denote a circle subgroup with m/n rational and we also take m,n
to be coprime. The orbits of the point with isotropy group a circle G(m,n) are circles and this is
why those are often called C' —orbits. The other types of orbits appearing in Table are principal
orbits and fixed points which we have already seen but in addition to them, we see two types of
exceptional orbits where the stabilizer is discrete. The following theorem [24] which is fundamental
in understanding the structure of the orbit space, asserts that the various types of orbits do not
appear randomly but instead have a very specific pattern

Theorem 2.4.1. Let M be a closed, simply-connected, oriented four-manifold with a 72 action.
The orbit space M* is a 2-manifold with boundary. All principal orbits and exceptional orbits are
in the interior and the boundary consists of C-orbits and fixed points.

In practice, we will not deal with exceptional orbits of torus actions from now on. They rarely
occur in practical applications and in fact under mild assumptions it can be shown that they are
completely absent [[] (see [23] section IV3). Therefore, we are left with the last three isotropy types

Note that exceptional orbits will often appear in the circle actions since they are associated with the conical
points of the previous section. However, when we let the entire 72 act on them, their isotropy type becomes S*.
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. . Isotropy . .
Isot bit 1 I f orbit in M*
sotropy group Orbi Slice action on slice mage of orbit in
Ly X € T° D? rotation isolated interior point
isolated interior point
Ly X Ly T2 D? rotation when (n,m)=1
(otherwise not possible)
G(m,n) St D3 rotation boundary point
tation in t
ro al;(;lréslr]; WO | isolated boundary point
T2 fixed point D4 P Y (only possible when
G(ma,n1) and ming —nimg = +1)
G(mQ, 7'L2) 172 1772 —
T2
e (principal D2 rotation interior point
orbit)

Table 2.1: The possible isotropy groups, orbit and slice types (adapted from [24])

of Table Since the fixed points count the Euler characteristic, there can only be a finite number
of them if M is compact (the same conclusion also follows since fixed points are isolated and using
the compactness of M). Therefore we can think of the orbit space as a disk whose boundary OM*
contains a finite number of points { P}, ..., P, } with k& the number of fixed points. The arcs on OM*
joining two consecutive points P;, P11 are orbits of isotropy group G(m,n) and since the stabilizer
of a point cannot change discontinuously (see the slice theorem [2.1.4]) we conclude that the isotropy
group must be constant along the arc. A crucial conclusion made in [24] is that if G(m,n) and
G(m/,n’) are the stabilizers on two adjacent arcs joined at P; then they must satisfy

det <m/ n,) =mn —m/n=+£1
m' n

Geometrically, this is the condition that G(m,n) and G(m’,n’) generate the homology of T? and
intersect transversally at one point. An illustration of how the orbit space looks like is show in

Figure

Now consider the quotient map of the T2 action m : M — M* and let M = M*\ OM* be the
interior of the orbit space consisting of principal points. Then 7~(M{) is the union of principal
orbits in M which we denote with My as in before. This is a principal T?-bundle from Theorem
and since now the base space is an open disk which is contractible, we conclude that the
bundle is trivial, namely My = M{j x T2. By the first assertion of the same Theorem, My is open
and dense and now we see that M \ My = 7~ }(0M?*) is the union of C-orbits and fixed points.
Since its complement is a trivial bundle, 7=1(9M*) can be thought of as an obstruction to the
triviality of the principal bundle. Additionally, there is a nice intuitive picture of what the fixed
point loci look like. Indeed, if 7; is an arc on IM™ of isotropy G(m,n) joining the points P;, P11
then 7 !(+;) is a sphere on which the circle action of G(m, n) looks like that of Example while
the action of a G(m/,n’) with mn/ —m/n = %1 leaves the sphere invariant. In other words, 7~ *(v;)
is a bolt for the circle action of G(m/,n’).

Finally, we close this section with another celebrated result of [24] that concerns the topological
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Figure 2.5: The orbit space of a T2 action on a closed, connected four-manifold. The dots correspond
the fixed points F; and the arcs joining them correspond to C-orbits. The interior of the disk
comprises principal orbits (or exceptional orbits in the more general case).

classification of simply connected four-manifolds with 72 actions EL demonstrating that the existence
of an effective T2-action is highly non-generic and has important topological consequences.

Theorem 2.4.2. Let T? act effectively and smoothly on a closed, oriented, simply connected four-
manifold M. Then M is equivariantly diffeomorphic to one of the following: S*, CP2?, CP2, S? x S?
or an equivariant connected sum of those.

There is in fact more we can say about how the orbit space data determines the total four-manifold
for the case of the four building blocks of Theorem Let Py, ..., P, and 7; be as before and let
G(mj,n;) be the isotropy group on «;. Then we denote

==+1 1=2,3,..k
myg n;
e = |k TR = 1
mi1 ni

When k£ > 2 we also define the determinants for non-consecutive arcs, namely ro = ming — msny
and rs = mang — myne. Then the possible manfiolds for £k = 1,2,3,4 are given in Table
Although legitimate from a mathematical standpoint, CP? and CP2 are of lesser significance in
physics since they are not spin, that is their Stiefel-Whitney class is non-zero. However, those
spaces and their fixed point structure have also been considered in physics [27].

2.5 From group actions to String Theory

We now want to combine the results that we have so far obtained through this arduous mathematical
journey of the previous sections and get some contact with String Theory. As we have already
mentioned, String Theory and in particular Type ITA theory lives in ten dimensions. Additionally,
this theory is conjectured to arise from the eleven dimensional M-theory. The low energy picture of
this correspondence is well understood since it is a correspondence between the eleven dimensional
and Type ITA supergravities. But first, let us properly define what an M-theory background actually
is.

2A similar classification exists for circle actions on four-manifolds |26}, [25].
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Numb(?r of fixed Four-manifold M Additional condition
points k
2 54
5 CP? ereges = —1
CP 2 €1e9€3 — 1
eireq = eses, both ro, r3
4 52 x §2 are even and of them
Zero

Table 2.2: The orbit space data of the simplest compact simply-connected four-manifolds (table
adjusted from [28])

Definition 2.5.1. An M-theory background consists of a triplet (M, g, Fy) where M is an eleven
dimensional spin manifold, g is a metric on M, and F}y is a closed four-form.

Ten dimensional Type ITA String Theory arises as a reduction of M-theory in eleven dimensions.
In the language of Section we first view the M-theory background as a principal S!'-bundle
and subsequently identify the Type IIA background with the base space, or in different terms with
the horizontal distribution with respect to the metric g. Apparently, in order to do that we need a
free circle action. We can phrase this requirement in terms of a Killing field X € Vect(M) which
integrates to a circle action and has non-vanishing norm such that there are no fixed points. How-
ever, since the four-form is also part of our geometric data, additionally to Lxg = 0 (the Killing
equation) we must also require Lx Fy = 0.

As long as those requirements are satisfied, we can start exploring the Type ITA picture. As we
saw in Section there is a natural metric that the base space is endowed with and this is the
unique metric g1g that makes the quotient map a Riemaniann isometry. This is indeed the metric
that is relevant for us. In a sense, this can be taken to be the definition of a Type ITA background
since it has been shown that such a reduction from eleven dimensions encodes all the information
that is needed to define the most general Type ITA supergravity background [29]. The converse is
not true though and this is why eleven dimensional supergravity (M-theory) should be thought of
as the more fundamental theory.

Let us now focus on a coordinate-based algorithm that will allow us to go back and forth between
M-theory and Type ITA backgrounds. We focus on the metric ignoring for the moment Fjy. Given
the Killing vector X, the splitting in terms of a horizontal and vertical subspace can be made
explicit by the induced connection one-form w (see Appendix . In this case since the Lie algebra
of S' is R, w can be regarded as an element of Q'(M). Locally, if = is a coordinate along the orbit
of the Killing field X (therefore a coordinate along the fiber) we can write w = dz + A for some
locally defined one-form A on the base manifold N = M/S!. Then, by the local splitting of M in
terms of horizontal and vertical distributions we can express the eleven dimensional metric as

g =h+|X[*(dz+ A)

This form is often called a connection metric. The norm of the Killing vector | X|? is by assumption
non-zero everywhere and here we denote the ten-dimensional metric on N (and its pullback on M
via the quotient map) with h. It is evident that in this setting, the norm |X| has the geometric
interpretation of the length of the fiber. In String Theory we choose to parametrize |K| = e2¢/3
where ¢ : M — R is called the dilaton. For reasons of convenience and convention, in String
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Theory it is useful to conformally rescale the metric h on N by the factor e=2¥/3 such that the
metric becomes a warped connection metric which is explicitly given by

g=e23p 4 e4¢/3(dx + A)?

We now turn to the reduction of the four-form Fj. First note that the decomposition w = dz + A
implies that the curvature form dw = dA is independent of the fiber direction ¢txdw = dw(X) =0
so that dw is a horizontal 2-form. Additionally, using Cartan’s magic formula we find

Lxdw = dixdw + txd?w =0

This shows that dw is both horizontal and invariant. Such forms are called basic. They are very
important in this context because they are pullbacks of forms on the base manifold /N. In this sense
the curvature form dw is the pullback of a two-form Hs = dA defined on N which we call the RR
two-form (we stick to the physics convention of omitting the pullback when it is obvious). It turns
out after some elementary manipulations (see [30] for an excellent review) that the four-form can
be expressed as

Fy=Hy—dx N Hj (2.9)

where H4 and Hj are basic forms that correspond to the RR two-form and NS-NS three-form of the
Type ITA background. We therefore have the bijection between M-theory with free circle actions
and Type IIA backgrounds given by

{lld with (M, g, Fy) and free Sl—action} — {10d with (N, h, (p,Hg,Hg,H4)}

We have already seen that are topological obstructions (like the Euler characteristic) that force
any circle action to have fixed points. In String Theory the fixed points have a deep physical
meaning. Suppose we start with an eleven dimensional M-theory background of the form C7 x Z,4
with a circle action being trivial on C7 and being effective on Z4. Then the theory of circle actions
on four manifolds that we have developed applies. If there are isolated fixed points of the circle
action (nuts) then we can remove them and consider their complement which is a principal bundle
according to Theorem The action is then free and we can perform the reduction to Type ITA
hoping that we can be cavalier about forgetting those fixed points. Notice that after the dimensional
reduction, the fixed points have codimension three so they appear as 7-dimensional objects in the
ten-dimensional String Theory. These have the right dimension to be D6-branes and we will see a
physical proof later that this is indeed the case. For now we take it as the definition.

Definition 2.5.2. Let (M, g) be an oriented, Riemannian manifold such that dim M = 11 with an
isometric S! action and let F := MS" denote the fixed point locus. Then a connected component
N; of F of codimension four is a D6-brane if its fixed point data has €(p) = 1 and an anti-D6-brane
if e(p) = —1 and all the weights are units.

Since in order to perform the reduction, we excluded the fixed points, we must be careful regarding
the behavior of the reduced space. In general, this process of removing fixed points and reducing is
pretty common in physics and the images of the fixed points in the quotient space are often called
topological defects, a well-deserved name since they encode topological information about the total
space. In general, we can be confident that for most spaces, the metric on the base space will
extend to a smooth metric when we try to include the topological defects. However, even if the
base metric smoothly extends to the fixed points, does the same apply to the RR-forms? Usually
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those questions are addressed for each case separately. For the case of the Hs form however which
as we saw has a very geometric origin, it has been shown [31] that there always exists an extension
on the base manifold N.

The topological defect can be a general geodesic submanifold of even codimension in the total space
and odd codimension after the reduction. In our case, it can be either isolated points or a spherical
bolt. In physics, we like to work with scalar quantities instead of cohomology classes and it is useful
to define the topological charge of a fixed point set (in the reduced space) given by

1
N::i/HQ
47 J»

If the topological defect is a point (nut) then ¥ is a surface surrounding it. If the defect is a bolt,
then the integration is carried on the bolt. It can be shown [32,33] that this integration around a
(p,q) nut gives N = (pq)~'$/4m where 3 is the period of the Killing vector generating the circle
action. Similarly, in the case of the bolt, the result is N = Y 3/4m where Y is the self intersection
of the bolt.

An interesting point can be made when N, admits more than one isometric circle actions. In this
case it is not a priori clear which one is the right one. There can be therefore a variety of Type ITA
backgrounds that lift to the same eleven dimensional M-theory background and therefore they are
all dual in the sense that their physical properties must be the same.

2.5.1 Backgrounds with isometric torus actions

We want to take the discussion one step further and consider M-theory backgrounds with isometric
torus actions. We take M to be a four-manifold with the action ® : 72 x M — M. As explained in
the previous sections, in order to get a Type IIA background we need to choose an isometric circle
action. In this new setting, we have a whole SL(2,R) of choices and in particular we can choose
any G(m,n) subgroup of T2. Additionally, the obtained ten dimensional backgrounds for different
G(m,n) should be dual to each other. We want to understand the qualitative differences between
those backgrounds which will allow us to explore this kind of peculiar duality.

Our main goal is to study backgrounds with both D6 branes and anti-branes. Therefore, the
natural setting is a four-manifold with a circle action of two fixed points, a nut and an anti-nut.
This is why we focus on the simplest toy model, the S*. As we will see later in Chapter 4, there
exist backgrounds of eleven dimensional supergravity of the form C; x S with the metric on $*
being T2-invariant. Therefore, the results that we discuss now can indeed fit in String Theory
models. The structure of the orbit space of S is depicted in Figure We take the C-orbits to
have isotropy G(0,1) and G(1,0). This can always be achieved by an SL(2,R) transformation of 72.

As we have discussed, when we choose a circle action such that the weights of the fixed points are
unit, then the fixed points are interpreted as a D6-D6 pair in the Type IIA background. In this
case the slice theorem ensures the existence of an equivariant neighbourhood of the fixed point
diffeomorphic to R* where the action is a radial extension of the Hopf action. The quotient space
is R? and by performing a one-point compactification (adding the fixed point at infinity and the

corresponding point in the quotient space) we find that for such an action the quotient space is
S4/8t ~ 93,
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P (nut)

Arc ~y, of Arc o of
isotropy (0,1) isotropy (1,0)

Q (anti-nut)

Figure 2.6: The obit space of S*. We take the collapsing cycles at the boundary to be (0,1) and
(1,0).

However, we notice that there are two peculiar choices of reduction circle that we can make, the
two circles that collapse at the boundary of the orbit space. For instance, if we choose the cycle
G(0,1) then the sphere 771(y;) C S* is left invariant under the induced circle action since all the
points are of isotropy G(0,1). Therefore, 771 (71) is a spherical codimension two bolt of this circle
action. The same happens of course for the circle action of the cycle G(1,0) and the bolt 7= 1(73).
On the other hand, if we choose any other cycle G(p,q), none of the spheres 7=1(v1), 7~ 1(v2) is
fixed and the only fixed points are the fixed points of the T2 action P, Q.

The question that we now want to answer is what the base space looks like if we reduce along say
G(0,1). We know in advance that the topological defect will not consist of points but will instead
be a sphere, the image of 771(y;) under the quotient map of the circle action (0,1 : S §4/81,
The discussion of Section applies here identically and therefore around each fixed point of
the bolt, say for instance the "pole" P, we can find using the slice theorem [2.1.4] an equivariant
neighbourhood diffeomorphic to TpM ~ R* on which the S'-action is characterised by the fixed
point data {e(P), w1, ws}. Due to the fixed point locus being a codimension two bolt, one of the
weights wi,wy must be zero. This is easily seen either from the discussion in the beginning of
Section or (for those who prefer Killing vectors over actions) from the expression Assume
that ws = 0 and wy # 0. We can think of the invariant copy of C as the tangent space to the bolt
and the copy on which the action is non-trivial as the normal space. To see what the base space
locally looks like we take the quotient of this neighbourhood C @ C/S! where the circle acts on C
by (¥, z) — €192, By rescaling the generating Killing vector, we can set w; = 1. It is not hard
to see that quotienting the plane by rotations gives C/S! ~ [0, 00) so that C® C/S! ~ C x [0, +00)
which is the upper half of R3. By adding the point at infinity we conclude that S*/S' ~ D? is a
three dimensional ball with an S? boundary as expected. The boundary is identified with the locus
of the topological defect. This locus is spherical since the quotient map is a homeomorphism on
the fixed point locus. We have therefore discovered a type of duality that arises due to the different
choices of reduction cycles and can be summarized as follows

e Reduction of M-theory along a cycle of the torus whose action has two isolated fixed points
of opposite charge. The images of the fixed points are isolated topological defects. In the
case of unit weights, the defects represent D6-branes and anti-branes.

e Reduction of M-theory along a cycle whose action has a codimension two fixed point set
(bolt). The topological defect is a sphere in the reduced space which appears as a spherical
boundary.

In the following chapter we will focus on how those mathematical ideas are applied in String
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Theory and we will delve into the world of brane—anti-brane dynamics. Our main focus in this
thesis is to describe systems consisting of a single D6-D6 pair and therefore S* is the manifold of
special importance for us since it is the natural choice of compact, simply-connected four-manifold
providing a natural candidate for an M-theory background with a brane—anti-brane pair. This
background, as we will see more explicitly in Chapter [4 is realized when the M-theory four-form is
non-zero. In fact, there is a simpler M-theory background which is purely geometric in the sense
that Fy = 0. This manifold has the topology R? x S2? and admits a torus action with two fixed
points. At first sight, one might wonder how such a space is compatible with the classification of
Theorem [2.4.2] The caveat is that Theorem [2.4.2|only concerns compact manifolds. The minimality
of this background will allow us to get some insight in the wild world of brane—anti-brane dynamics.
It will also provide the stage for testing the duality that we just introduced. This space will be the
main subject of the following chapter.
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Chapter 3

Kaluza-Klein branes in String Theory

3.1 The geometry of solitons

The term soliton in physics and specifically in the context of gravity is broad enough to include
general topologically stable solutions of the field equations that describe localized matter. We will
see that D6-branes are among the large variety of objects that fall in this category. In particular,
what we will discover throughout the course of this Chapter is that D6-branes are intimately related
to magnetic monopoles, a certain type of soliton which is mangetically charged.

In the previous chapter, we exhibited the ideas behind dimensional reduction, the process of con-
structing connection metrics and how we can go back and forth between a principal bundle and
its base space. This was all demonstrated for the particular case of eleven dimensional M-theory
and its reduction to the ten-dimensional Type ITA String Theory. Historically, the idea of reduc-
tion goes way before the introduction of String Theory and was known in physics as Kaluza-Klein
theory. This remarkably beautiful geometric idea aspired to explain gravity and electromagnetism
in our four-dimensional world as the result of reduction of a five-dimensional geometry with pure
gravity. To star with, recall that by gravity in d dimensions we mean a metric on a d-dimensional
manifold extremizing the Einstein-Hilbert action given by

1

_ dz®/—q R
s 167Gy, / . 9 R

In the above, R® is the Ricci scalar in d dimensions. We then make the usual ansatz that the
total space splits in the product My x M, of a four dimensional space M, and an internal space
M,.. More generally, we can consider M_._-bundles over M4. The resulting physics at low energy
scales compared to the compactification scale is gravity coupled to a Yang-Mills theory with the
group of isometries of the internal space, ISO(M,), being the gauge group. In the following we
restrict to d = 5 which is the standard Kaluza-Klein approach. In this case the spectrum of options
for a compact one-dimensional internal manifold is restricted to S'. As a consequence, the four-
dimensional theory will be ordinary gravity with a U(1) gauge theory, namely electromagnetism.
Let us first see how this gauge theory in four dimensions comes about. Consider pure gravity in
five dimensions

1

S = /dx5\/—detg R®) (3.1)

B 167Gk

Then we consider the background R x S! with R3 being Minkowski spacetime. The spirit of
what follows is very similar to the horizontal and vertical splitting of a connection metric in "fiber
directions" and "base directions" as in Section The traditional (for the physics literature)
approach that we consider here is useful because it can be applied in a wide range of internal
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manifolds, not confined to circles and indeed we will have the chance to see its power in Chapter
Next, we expand the only field in our theory, the five dimensional metric, in terms of the Fourier
modes

+o0
gun(a,y) = 3 ghn(at)em/ e

n=0

where 2* denotes the coordinates on R'? and y the circle coordinate. We assume that the five-
dimensional metric does not depend on the circle coordinate so that translation along the circle
generates an isometry. Since nothing in the action [3.1] depends on y, the circle can be integrated
out to obtain the four dimensional effective theory. One then makes without loss of generality the
following parametrization of the five dimensional metric

— ,1/3 gMV+AMAV(p AMSO
dgMN = @ ( Ay o

whose form serves the purpose of isolating the Einstein-Hilbert term in four dimensions so that the
reduced action becomes

1 1 1
S =— e /d4x\/ —detg(zH) {RM) + 67028“(‘06%0 + 4<pF’“’FW] (3.2)

Here, we set G = Gk /2nR and F),, := 0, A, —0, A, is the U(1) field strength, completely analogous
to the the 2-form Hs in Section Recall that such a two-form is well-defined in the base space
which is here four-dimensional. The gauge symmetry associated to this field is generated by the
translation in the circle direction namely y — y + A(z#) in which case the transformation of the
gauge field A, is A, — A, +9J,\ and F},, is manifestly invariant. The gauge field A, is sometimes
called the graviphoton to emphasize its gravitational origin. The original idea of the Kaluza-Klein
theory was to obtain a pure theory of gravity and electromagnetism by setting the scalar ¢ to
be constant. The field equation for ¢ is of the form [y ~ F*F},, which means that ¢ can be
constant only provided that F),, = 0 in which case there is no gauge theory but only gravity in
four dimensions. This was the incurable flaw of the Kaluza-Klein idea that led people to initially
abandon it. However, the fact that it naturally incorporates electromagnetism and gravity renders
it a natural setup to construct gravitational backgrounds of magnetic monopoles. This is what we
do next.

We can start by exploring the simplest type of metrics, namely those that are static. This makes
sense intuitively, since a magnetic monopole system should be time independent. We can express
this as dgap/0t = 0. Another sensible assumption is to take the time direction to be totally flat
namely goa = dpa, with z° denoting the time coordinate. The complete five dimensional equations
of motion Rap = 0 will be trivially satisfied in the time direction and the only non-trivial ones will
be:

Rij = R4yi = Rya =0 (3.3)

Where i, 5 € {1,2,3} and the index 4 is reserved for the circular direction whose coordinate we still
denote by y. These equations imply that the constant time, four dimensional slices will be Ricci
flat. Manifolds satisfying this constraint played a key role in the development of Euclidean quantum
gravity and due to their frequent use, they have been granted the special name gravitational in-
stantons. This general term describes four-manifolds with Riemannian, complete, Ricci flat metrics.

It is worth making a small digression here to stress out the necessity of starting with a five dimen-
sional theory. If we had started with four dimensional gravity then the resulting equation for the
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three dimensional slice R;; = 0 would imply that the manifold is flat, since in three dimensions
the Riemann tensor is completely characterized by the Ricci tensor (they have the same number of
independent components). This is why the simplest solitons are obtained from the My x S! ansatz
instead of, for instance, M3 x S'.

Back to our five dimensional setting, we notice that solutions of R;; = 0 (with the constraint that
one direction is a circle) can be obtained from four-dimensional solutions of (Euclidean) pure grav-
ity. More precisely, if My is a four manifold with a Ricci flat Riemannian metric ds® = g,,, de#dz™
then the manifold R x M, with metric ds® = —dt2 + gudxtdx” is a solution to the five dimensional
Einstein equations [3.3]

The first interesting example of such a Riemannian four-manifold that can arise in this way is the
Taub-NUT instanton. The four-dimensional metric is given by:

ds? =V~ Hdy + Aydp)? + V(dr* + r?dQ?) (3.4)
where
4
Ay = 2m(1 — cos 0) V=1+ Tm (3.5)

The space is topologically R* and the metric is Ricci flat but is not the flat metric on R*. Here r, 0, ¢
are the standard spherical coordinates on R?® and y is a periodic coordinate which parametrizes
a circular direction in our space. A simple computation of the volume of a geodesic ball reveals
that it does not scale with r* as would be the case in flat space but with r3. The period of the
coordinate y is 27 R with R = 8m and m being a free parameter in the metric which is related to
the ADM mass of the solution. The periodicity of y is fixed by the requirement that the metric
is complete. The metric seems to have a singularity at the origin » = 0 so in principle it is only
defined on R*\ 0 but it can be shown that it smoothly extends to a metric on R*. Let us explore
the structure of this metric by considering constant r # 0 slices. The induced metric on the three
spheres is

ds? =V~ Hdy + Aydp)? + Vrd0? (3.6)

where now V is a constant. This nothing else than the Hopf metric on the three sphere, namely
the metric that makes the Hopf map S® — S? a Riemannian subemrsion. In other words the (iso-
metric) circle action corresponding to translations y — y + a is the Hopf action on each S3-shell.
Therefore, the Taub-NUT is a radial extension of the Hopf metric from S to the entire R* \ 0.
We have already remarked that the Hopf action is free on the entire R* \ 0 and therefore it can
be seen as a principal S'-bundle. The Taub-NUT metric is then a connection metric on R*\ 0
(with connection form A,) which also makes the quotient map 7 : R*\ 0 — R3\ 0 a Riemannian
submersion. It is not hard to prove that the metric [3.7)is Ricci-flat. The Taub-NUT metric is also
special because it is hyper-Kahler and has SU(2) holonomy also implying Ricci flatness.

Recall from our discussion in that the radial extension of the Hopf (or anti-Hopf) action in
R* is the natural action in an equivariant neighbourhood of a fixed point with unit weights. The
requirement of unit weights was then natural for the quotient to be a manifold. What we have just
presented is a canonical Ricci-flat metric in the neighbourhood of a nut. Had we chosen —Ay for
the connection, the circle action on S would be an anti-Hopf action and the metric would describe
the equivarant neighbourhood of an anti-nut. Historically, the Taub-NUT metric was discovered
long before the importance of fixed points was realized. This is why the isolated fixed points with
unit weights are called nuts and anti-nuts.
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There exists a natural generalization of the Taub-NUT space called the multi Taub-NUT metric.
This turns out to describe an array of fixed points. The metric is given by:

1 N
dsty, = W(dy +x)? + U(P)di*? (3.7)
where di? = dr? + r2dQ? is the flat metric on R3. The space T'Nj, is again a hyperkéler four-
manifold with the topology of an S'-fibration over R3. The coordinate 7 is a vector in R3. The
function U (7) and the connection form x satisfy:

LS|
> —— . dyx = #x3dU
= |77 — 74l

UF) =1+

S R=s

The latter condition (which is a consequence of the field equations) was satisfied in the case of the
Taub-NUT metric for x = Ay and U(7) = V(r) but in the more general case at hand, it can be
quite non-trivial and therefore we must be careful about those choices. In the above expressions
we interpret 77, as the positions of the (localized) solitons which are points in the space T'Ny. They
correspond to isolated fixed points of the circle action generated by translation along the y direction
and therefore they are the locations of the solitons.

As we have already mentioned, the other topological invariant that is relevant for our discussion
is the Euler characteristic. If we consider an open ball B C R? containing all points 7, then its
boundary S? is the base of a regular S' bundle over S? so that we can use the same arguments as
in the case of the Dirac monopole. It can be shown that x is a well-defined connection form and
the resulting total charge is:

dx = 2nk
52

which, just like in the case of the Dirac monopole, can be reinterpreted as the Chern number of
the bundle being k € Z. This result matches with the additive nature of the magnetic charge.

If in the metric [3.7] instead of dy = *3dU we had taken dx = — %3 dU then we would be describing
objects with opposite magnetic charge which are called anti-monopoles. The corresponding singu-
larities would then be anti-nuts. When considered separately, monopoles and anti-monopoles are
no different in terms of their intrinsic topology (they differ however in terms of their embeddings in
the higher dimensional space). An interesting scenario arises when one wants to consider systems
comprising both of them. It is then natural to ask if there are known solutions for a system of a
monopole and an anti-monopole.

The above question has been answered to the positive in [34]. First note that one way of generating
four dimensional Euclidean solutions is by taking Lorentzian solutions of the standard vacuum field
equations and making the time coordinate periodic and Euclidean, corresponding to the circular
of the Kaluza-Klein anstatz. This makes it relatively simple to generate solitons by employing
already known solutions of general relativity. This is precisely the strategy we will follow. The
way to proceed is to start with the Kerr solution in 1+3 dimensions and use the aforementioned
procedure to get a five dimensional solitonic solution. Doing this, we obtain the following metric
which is often referred to as the Kerr instanton:

1
ds® = — dt? + P R o [A(dT + asin? 0dp)? + sin? ((r* — a*)dp — adT)?]
r?—a
2 2 o [dr? 2
+ (r* — a” cos” 0) A + db (3.8)
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where A = 72 — 2mr — a®. As a reality check, one can verify that the constant ¢ slices correspond
to Euclidean Kerr metrics with periodic, Euclidean time 7. The angular momentum of this space
is imaginary and equal to taM. It is also worth noting that the metric is asymptotically flat
since the rotation parameter a enters in the metric to second order and does not appear in the
asymptotic expansion. Similar to what happened with the Taub-NUT space, in order to ensure
smoothness of the metric at the horizon r = m 4 (m? + a?)"/? where A = 0, we have to impose
the following periodicity condition:

(r,7,0,0) ~ (r, 7+ 27yn1,0, ¢ + 27yQnq + 27n2)  ny,ng € Z
2mr4 O- a _a
(m? + a2)3 i —a? 2mry

where v = (3.9)

Regularity of the metric (and of course constancy of the signature) also requires r > r; so that
A > 0. This also ensures that 2 — a?cos?6 > 0 so we do not have to worry about singularities
coming from this term. A special feature of the Kerr instanton is that it has two Killing vectors
associated to U(1) isometries, the standard 0/07 and the co-rotating Killing vector 0; + €20,.
In the other words, this space can be viewed as a principal bundle in two different ways. The
corresponding perspectives are different although apparently they describe the same space.

e If we choose the U(1) isometry associated to 0, then the fixed points of the isometry are given
by the vanishing of K#K,, = g.r = 0 which is the surface r = m + vm? + a? cos? §. Since we
imposed r > r; the only fixed points correspond to r = r and § = 0, 7. These can be shown
to correspond to a nut and an anti-nut. Note that we assumed that a # 0 since in the case
a = 0 we recover the Schwarzschild limit of the Kerr solution which has a different behavior.

e If we choose the U(1) isometry of the co-rotating Killing vector then a straightforward calcu-
lation shows that there is a fixed surface r = r,. This constitutes a regular spherical bolt of
self intersection Y = 0 and the resulting manifold has the topology of a complex line bundle
over S2.

As a consistency check, note that if we apply the formulas for the Euler characteristic and signature,
both descriptions give the same Euler characteristic and signature. In those formulas, the Chern
number k is zero because the Kerr instanton is asymptotically flat so that it looks like a trivial
S? x S at infinity. This gives x = 2 and 7 = 0 which means that the Kerr instanton solution is not
in the same topological sector as the vacuum. Using further arguments, it was shown in [34] that
the Kerr instanton describes a monopole— anti-monopole system. Note also that there is a physical
interpretation for the parameter a in this solution which can be thought of as the distance between
the monopole and the anti-monopole.

In passing, we mention that the Kerr instanton is in many ways similar to the Bonnor solution [35]
in General Relativity which also describes a magnetic dipole. Their relation can be understood in
the context of Einstein-Maxwell theory coupled to a dilaton with the coupling between the Maxwell
term and the dilaton being arbitrary which leads to the following action

— 4) _ 9gn e~ 2be v
T G/dm —det <R 2010, F FW)

Then, the Bonnor solution is a solution of this theory for b = 1. On the other hand, the Kaluza-
Klein theory fixed this coupling by the requirement that the action comes from pure gravity in
higher dimensions imposing b = /3. Indeed it can be checked by a straightforward computation
that the Kaluza-Klein action reduces to the Einstein-Maxwell-dilaton action after a redefinition
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of the dilaton ¢ +— —4e2Y3%_ The Kerr solution was found to be a solution for this value of the
coupling. There is also a generalized Bonnor solution for arbitrary value of b of which the Kerr
instanton and the Bonnor solution are just special cases.

3.2 From Kaluza-Klein to String Theory backgrounds

In this section we utilize the Kaluza-Klein soliton backrounds that we previously discussed, in
order to make contact with the ten dimensions of String Theory. The route we will take is the
one already announced in Section which amounts to considering products of seven and four
dimensional manifolds to construct M-theory backgrounds and then reduce along isometric cycles
to obtain Type ITA backgrounds. We will first exhibit how the Taub-NUT space gives rise to a
single D6-brane (or anti-brane). In the next section, we will apply the same procedure for the Kerr
instanton and we will discover our first background with a D6—D6 pair.

3.2.1 The D6-brane

We would like to interpret the above solutions as objects living in the ten dimensions of String
Theory. The mechanism that relates solitonic solutions like the ones we obtained to string theory
configurations is relatively well understood. Let us see how it works.

We start with a qualitative description. We have already discussed the relationship between M-
theory and Type ITA String Theory from a mathematical standpoint. Now we want to motivate
this connection in physical terms. The mass of the supergraviton in eleven dimensions is M7 =
—pMpyr = 0. We can dimensionally reduce this on the circle whose radius length scale is R, and
use that the momenta in the circular dimension are quantized p;; = n/R ,n € Z to conclude that
in 10 dimensions we get a tower of massive states with masses M? = (n/R.)?. These massive states
are all BPS F_-I and carry n units of U(1) charge. For n = 1 we can identify this with the D0-brane
obtained in the context of type IIA string theory which also carries a unit charge and has a mass
given by (£sgs)~'. By matching the masses we get that in order for this correspondence to hold we
need:

R, = esgs (310)

which gives an important relation between the string coupling and the radius of the eleventh di-
mension. This relation is also the reason why we can interpret perturbative type IIA string theory
as a weak coupling limit of M-theory, since the limit R, — 0 in which we obtain a legitimate
10-dimensional description is the same as gs — 0. From the above discussion it also becomes clear
that in this limit the tension of the D0O-brane diverges, which renders it a non-perturbative object.
The relevant gauge field corresponding to the U(1) charge is the one coming from the reduction of
the eleven dimensional metric gpsy, namely Cy, = gm11. This charge is precisely what we defined as
topological charge in Section[2.5 where we identified the D6-branes as the natural objects that carry
it. From the new perspective that we just developed, DO-branes also deserve this title. Indeed, DO
and D6 are the duals of each other and they both share the same origin. This is consistent with
the fact that they are the magnetic duals of each other.

Armed with the previous results, we can now try to give a quantitative interpretation of the
gravitational instanton metrics in the context of String Theory. One particularly intriguing aspect
of String Theory is that any Type ITA background can be lifted to M-theory which is the content

!Meaning that they saturate the BPS bound. Although we will not be heavily concerned with this notion, it is
very useful and will be mentioned throughout this thesis. We refer to [36] for more details.
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of Section Let a solution of type IIA be given by the metric g,,, the dilaton ¢ and the
Ramond-Ramond 1-form C,. Then the eleven dimensional metric:

ds®> = e_%wgwdac“dac” + e%&(dmu + C’#d:c“)2 (3.11)

is a solution of the eleven dimensional supergravity. In order to account for the additional massless
bosonic fields in type IIA, we must turn on fluxes. In other words, we have to consider non-trivial
configurations for the four-form of eleven dimensional supergravity. If this form vanishes, we call
the background purely gravitational. Conversely, given a purely gravitational M-theory setup, it is
possible to obtain an associated type ITA solution by dimensional reduction. This was shown in its
generality. In the following we will demonstrate how this mapping works for the specific metrics of
gravitational instantons that we found in the previous section.

Let us first consider the Taub-NUT solution which is obtained as a special case of the multi Taub-
NUT for k=1 with the unique defect sitting at ¥ = 0. Then we can construct an eleven dimensional
metric given by:

10
ds® = —dt* + > (dy™)* + dsty (3.12)

m=>5

Here, ds?p y is shorthand for the Taub-NUT metric The metric is a solution to the eleven-
dimensional Einstein equations. It thus follows that it is a solution to the field equations of eleven
dimensional supergravity with all other fields set to zero. We now want to dimensionally reduce
along the M-theory circle in order to study the underlying String Theory picture. This was first

done in [5]. Comparing with we immediately get

3
-1 _ é¢ ¢ _ R 4
Ur) " =e3?=e? = <1+2r>
This gives the 10-dimensional dilaton. It follows that our dilaton is not constant but depends on
the radial coordinate r. One could raise some objections here. In the derivation of we assumed
a constant radius for the S'-fibration which translates to a constant dilaton. Now that the dilaton
and consequently the fiber radius is varying with respect to the base manifold, has to be
modified. It turns out that is still valid but with R, substituted by the asymptotic radius R of
the Taub-NUT fibration. Having clarified this issue, we can go on and identify the ten dimensional
metric:

10
ds?y = e§¢< —dt? + ) (dy™)? + (1 + R)dfg)

o 2r
RN\
= (1 i 2)

10

R

— dt? ™24 (14 — )di® 1

( —i—Z(dy ) —1—( +2r>dr (3.13)
m=>5

A simple change of coordinates given by # = R/2 + r transforms the ten dimensional metric to a

more easily recognizable form:

dsty = (1—;>;<_dt2+ i(dym)2> i (1_;;)_

m=>5

[N

N|=

3
2
di® + f2(1 — i) Ao (3.14)
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This metric was found in [37] to give the 6-brane solution in the context of 10 dimensional 2A
supergravity which is the low energy limit of Type ITA String Theory. We thus conclude that the
Taub-NUT soliton in M-theory corresponds to a D6-brane in Type IIA. It can also be shown using
the same argumentation, that the multi Taub-NUT background in M-theory reduces to a system
of k D6-branes in type ITA.

To make this argument even more solid we can prove that the energy content of the above eleven
dimensional spacetime agrees with this interpretation as a system of D6-branes. This is done
by considering the energy density of the spacetime but instead of integrating over the entire ten
dimensional spacetime (which would give a mass), we integrate over the the four dimensional space
transverse to the brane (the Taub-NUT space) which gives a quantity with the right dimensions
for a tension:

2
(2ml,)?

1 2«

2 _ —_—— =

T = 2rR | d*zV?V(r) =
167 G11 T / o (T)
This agrees with the value of the tension of a D6-brane in string theory. In this manner we succeeded
in identifying the eleven dimensional background R” x TN with the M-theory lift of a system of a

D6-brane of Type ITA String Theory. We are led to the following:

Proposition 3.2.1. The metric is the M-theory lift of a D6 brane in type ITA string theory.

This proposition and the preceding discussion constitutes the physical proof that we promised in
Section when we identified isolated fixed points in four-manifolds with unit weights (nuts and
anti-nuts) with D6-branes. Since we showed that the Taub-NUT metric is nothing more than the
metric realizing the Hopf (or anti-Hopf) action in an equivariant neighbourhood of a fixed point,
it becomes more than plausible that Definition [2.5.2] is well-motivated from a physical perspective.
Note also that the Taub-NUT space admits two Killing spinors, being hyper-Kahler. This means
that the solution breaks half of the supersymmetry of the M-theory vacuum. This is also
consistent with the status of D6-branes as half-BPS objects.

An almost immediate generalization is that the description of an array of D6-branes in Type ITA
lifts to M-theory on a multi-Taub-NUT space R” x TNj,. The k-1 spheres connecting those k
monopoles (fixed points) look like the sphere in Figure and their image under the quotient
map is a one-dimensional line stretching from one monopole to the other. Therefore, an M2-brane
wrapped around this sphere in the eleven dimensional theory, has the interpretation of an open
string with its ends on two different branes in ten dimensions. If we call S;; the sphere connecting
the it" and j' fixed points then the area of this surface is

/ U—Y2(RUY?(7)dy|dF| = 2w R0 = 16wmd l:= / |dr]
Sij

Here ¢ is the distance between r; and r; in R3 along some arbitrary path that we have chosen. Since
the restriction of the Taub-NUT metric on R? is the flat metric, the geodesics are just straight lines
and the minimal distance is ¢ = |r; — 7;|. Therefore, the minimal sphere S;; has surface area
16mm|r; — r;j|. This looks a lot like the area of a cylinder of length |r; — r;| and radius R = 8m
and this would indeed be the case if the metric was the flat metric on R*. This is therefore another
manifestation of the differences between the Taub-NUT and the flat metrics. If we now wrap an
M2-brane around a sphere S;; then the mass of this membrane will be

m,-j = 167rmTM2|7“Z- - Tj’
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From a ten dimensional perspective, this is exactly the product of the string tension Ts = 167mmT s
times the distance between the branes |r; — 7|, in agreement with the standard formula for the
mass of the open string between D-branes. In particular, the mass of the open string goes to zero
as the monopoles approach and this gives rise to a gauge enhancement from U (1) xU(1) — SU(2).

Another way to see this enhancement is through the intersection form of the four-manifold. In
particular, the k£ — 1 submanifolds S; ;4 with 1 < ¢ < k — 1 generate Hy and it is straightforward
to calculate the intersection form which will be a (k — 1) x (k — 1) matrix. The diagonal elements
are the self-intersections of the spheres, a quantity which in Section [2.5| we identified with the
topological charge carried by it or equivalently carried by the fixed points at the two poles. In
particular, for the case at hand, the fixed points are both nuts so the self intersection of S; ;41 is
2. To compute the off-diagonal elements note that only adjacent spheres intersect and therefore
the only non-zero entries are -1 for the (7,74 1) element since each S; ;41 intersects its neighbor in
exactly one fixed point

2 -1 0 0 0 O

-1 2 -1 0 0 O

0o -1 2 -1 0 O
I =

0 0 0 O 2 -1

0 0 0 O -1 2

This is the Cartan matrix of the A;_; algebra. When the fixed points of the circle action coincide,
this will give rise to an A;_; singularity and a corresponding gauge enhancement U (1)¥ — SU (k).
The signature of this matrix is k-1. This concludes our discussion regarding systems of many D6-
branes.

3.3 D6-D6 pairs in String Theory

Having identified the right geometry for D6-branes (Taub-NUT) and for an array of D6-branes
(multi-Taub-NUT) and their anti-brane analogs, it would now be desirable to know what is the
M-theory description of a D6 — D6 pair. For this we need metrics with actions of fixed points of
both nut and anti-nut type. It is natural to consider the monopole—anti-monopole solution [3.§ as
an obvious candidate for this. It turns out that this is indeed the correct interpretation. The main
arguments for this were made in [38]. We will review the main points made there.

We start by embedding the Kerr instanton in the eleven dimensional space of M-theory just as we
did for the Taub-NUT space. We recall that the nut and anti-nut associated to the Killing vector
Or are located at the poles of the horizon r = r;, namely at 6 = 0, 7. We expect those two points
to signify the location of the D6-D6 in the transverse space. In particular the metric becomes:

6
1
2 _ 2 my2 .2 2 20002 2 2
ds® = —dt —I—mEZI(dy )+ r2—a2cos29[A(dT+asm 0d¢)* + sin” 0((r* — a*)d¢ — adr)?|
2 oo [dr? 2
+ (r* — a” cos” 0) A +db (3.15)

This geometry was discussed in [38]. The main idea is to prove that the local geometry around the
nut and the anti-nut is the monopole geometry [3.12 proving that the metric [3.15] has a monopole
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and an anti-monopole embedded in it. What we mean by local geometry in this context can be
intuitively understood as follows. First of all, consider the geodesic distance between the two fixed
points located at r = r;,0 = 0,7. It is not hard to show that moving along 6 is a geodesic
connecting the two points and therefore the geodesic distance is

E::/ \/ri —a?cos?0 db
0

For a > M we have £ ~ 2a and we can think of a as being a measure of the monopole—anti-monopole
distance. In any case, we have a concrete interpretation for the parameter a. Next, consider the
dimensionless quantity r/a where r is some arbitrary coordinate that measures the distance from
one of the poles. Then a local geometry arises as the limit when r/a — 0 which gives a quantitative
criterion for being close enough to one of the monopoles. There are two ways to do that, either
by keeping r arbitrary and taking a — oo or by keeping a arbitrary and taking r — 0. Those two
limits turn out to give the expected geometry which is of course the Taub-NUT geometry. The
mass parameter of those Taub-NUT geometries is equal to 7/2.

The above arguments serve to convey the content of the local geometry around the monopoles but
fail to give a complete account of the dynamics in this spacetime. In order to achieve that, let us
explore what the ten-dimensional theory looks like. First, we observe that due to the identifications
w which were necessary to make the metric regular (and the space complete) the periods of the
T, ¢ coordinates are intertwined. We introduce a new coordinate

- 1
¢:=¢— Bt B:=Q—-—
v
For this coordinate, using [3.9| we have:
- 1 -
¢~ ¢+ 2mng + 21yQng — (Q - 7> (T + 27yny) = ¢ + 2m(ny + ng) (3.16)

so that ¢ has period 27. The metric in those coordinates reads:

6 2 2 ;2
; dr A+ a”sin“ 6
2 2 i\2 2 2
dsi, = —dt +i:51(dy) —G-Z[A —i—d@}-ﬁ- > dr
2[A — (r? — a?)]asin? 0 ~ sin?f 5 5.9 9 . 9 ~ 9
+ dr(d¢ + Bdr) + [(r* — a®)® + Aa”sin® 0](d¢ + Bdr)~ (3.17)

by

Now we perform a Kaluza-Klein reduction of this metric along the Killing field 0, which in the old
coordinates is the field 0, + Bdy. For now, we forget the specific value of B and we think of it as
an arbitrary parameter. This will help us uncover the many different ten dimensional backgrounds
for reductions along different cycles. The reduction gives [39]

6 2
. d _
dsio = A“Q{ —dt? + (dy')* + % [T + d@ﬂ } + AV2A sin? 0dd?

=1 A
e _ A (3.18)
i 02
As = A SR B0 - @2 A sin? 0] — al(r? - o?) - A}
A ;{[A +a?sin® 6] — 2Basin 0[(r — a%) — A] + Bsin 0[(r> — a?)? + Aa® sin’ 9}}
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where ¢ is the ten dimensional dilaton as usual. Let us now try to understand the dynamics of
the theory if we ignore the brane—anti-brane pair. If we want to have a notion of space in which
the brane—anti-brane lives, we must look at the asymptotic space. The quick way to do this is to
set a = m = 0 and we expect that this is the "background" in which the brane—anti-brane pair is
embedded. Note that we take a,m — 0 only in the metric but we leave the periodicities [3.9| intact
since they remain unchanged in the asymptotic region we are exploring. In this case we get:

6
ds3, = AV/? [ —dt* + Y (dy")? + dr? + r2df?| + A2 sin? 0dg?
i=1
eg‘p =A
Br?sin? 0

5= (3.19)

A
1+ B2r2sin?60

A =1+ B*?sin?6

This however is not flat space which is to say that even if we ignore the presence of the branes,
there is still a non-trivial one-form field A b2 Let us explore this geometry. The space is known as a
fluzbrane and there is a solid way to understand its structure [41} 40, 42] and its subtle relation
to flat space. Consider R? with the flat metric and isometry group ISO(RY) = SO(d) x R%. We
want to consider the possible isometric circle actions which are given by a group homomorphism
S' < SO(d) xRY. More generally we can consider linear embeddings of the Lie algebra Lie(S!) = R
in so(d) x R%. To specify such a map we need only specify an element of the Lie algebra (the image
of 1 € R) which consists of a pair (w,\) with w € so(d) an anti-symmetric matrix and A\ € R? a
translation. The action on elements z € R? is given by

(t,z) — exp(tw) - x + tA teR,zeR?

When w = 0 this action is just a translation and the quotient map R? — R9~! is the map that
collapses the A-direction. In this case the action is clearly free. When A = 0 then we have pure
rotations and there will necessarily be fixed points. In general if we want the induced action to be
free we must require that

Wz A=0 (3.20)

has no solutions (those would be fixed points). A sufficient condition for this is that the rotations
generated by w occur in a hyperplane that is orthogonal to A. This can always be arranged by
redefining the origin by O — O + a for some vector @ € R?. In this case the new action is given
by the pair (w, A +w - a). The rotation part then takes place in the orthogonal R plane and is
characterized by the [(d-1)/2] eigenvalues of w which we denote B;. In order for this action to de-
scend into a circle action we must impose further identifications. This is common when performing
Kaluza-Klein reductions along non-compact directions. Let P € R% and P’ be the point obtained
by moving P by an amount 27 R along the orbit where R is arbitrary but sets the scale of the
circular dimension. In more precise terms, we started with a manifold M admitting an R-action
and by quotienting with a cocompact subgroup I' C R we consider the circle action of R/T" on M/T".
An illustration for R3 can be seen in Figure where the two cases of zero and non-zero rotation
are depicted.

The flat metric can be written in such a way to make the decomposition of R? into [d/2] two-planes

manifest
m

ds? =y _(dp; + p;de7) + dy? + da?
i=1
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(A) (B)

Figure 3.1: (A) The orbit of P when w = 0 (B) The orbit of P when w # 0. In both cases the
points P, P’, P" are identified in order to obtain a circle action.

Here y is the coordinate in the direction of A and (p;, ¢;) are polar coordinates on each two-plane
on which the w action acts as a rotation with parameter B;. The sign of the parameter B; is
related to the orientation of the rotation. The dx? term is absent when the dimension d = 2m + 1
is odd. When d = 2m + 2 is even, x, y span the two-plane on which the w action is trivial. In those
coordinates the identifications we have introduced so far can be summarized by the equivalence
relation:

(biyy) ~ (¢; + 2mn1 B; R + 2mno, y + 2mn1 R) ni,ng € Z

The identifications ¢; — 27no and y — 2wn1 R are of course the standard periodicities that would
be present in a regular or "untwisted" reduction. The new ingredient here is the periodicity ¢; —
¢; + 2mn1B; R when y — y + 2mn1R. Note that this is exactly the type of identifications that
we encountered when we constructed the Kerr instanton Since the angular coordinates ¢; are
identified under two operations, we can freely change B; by a multiple of 1/R and the identifications
remain unchanged (the effect is similar to what we saw in |[3.16]). In other words, inequivalent
spacetimes are obtained only for E|
1 1

—— < B<

o <sp (3.21)

Let us now proceed with the Kaluza-Klein reduction along the orbits of the Killing field. The
Killing field is

q=20y+ Y Bidy, (3.22)
=1

The idea now is to introduce coordinates along the orbits of the action as we always do when we
perform a reduction. The canonical coordinates are ¢; := ¢; — B;y. In the new coordinates the flat

2In fact, this holds if we consider only bosons. If we want to classify backgrounds which differ only in the spin
structure as inequivalent, this argument needs a little more care. For more information on this issue, in the context
of fluxbranes, see [43].
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metric takes the form
1 m 2 m 1 m 2
2 _ 217 2 2 ;72 217 2
ds® = A [dy +3 ; Bip; d@-] + ;(dpi + pidg?) — A(; Bip; d¢i> +dx

A:=14) B}p? (3.23)

=1

It is then straightforward to reduce this using a reduction ansatz. If we consider d = 11 then we
can use [3.17] to obtain:

5

B 1 m ~ 2
dsty = A2 (gt + p2d) - (30 Bk ) |
i=1

i=1

H 1 & 277

Where A denotes the gauge field and ¢ the dilaton. This shows that a gauge field is produced
whenever w acts non-trivially on some two-plane so that B; # 0. Note also that the parameter B;
is related to the field strength by

1 v
BZZ = §FH Fuvlpi=o

When only one of the B; is non-zero, then we call the solution a fluxbrane El In this case there is
field strength in the (p;, gzgz) plane which is thought of as being the plane transverse to the fluxbrane.
Therefore, the fluxbrane is an object that extends along the remaining eight dimensions. In order
to emphasize its dimensionality and its eight dimensional Poincaré invariance, we often refer to this
object as an F'7-brane. When more than one B; are non-zero, then we interpret this configuration
as various intersecting fluxbranes each transverse to some (p;, gz;l) plane. The fluxbbranes are re-
garded as a generalization of the Melvin universe [45] in String Theory.

It is important that due to the form of the dilaton in the fluxbrane background (see either
or the ten-dimensional spacetime asymptotically decompactifies. This indicates a breakdown
of the basic assumption that the compactified dimension can be made "small enough". Therefore,
although we started with a valid M-theory background, the type IIA picture is only adequate at
certain distances p;. This reveals the non-perturbative nature of the spacetime we are considering
here. We can view those backgrounds as an approximation to a constant magnetic field which is
valid when p < 1/|B| so that the geometry looks locally as a circle bundle over R? where the circles
have approximately constant length R and the string coupling is gs = R/ vo/. What is more, the
standard compactification assumption dictates a regime of validity only for length scales larger than
the compactification scale so that p > R. Combining those relations together gives the following
consistency condition:

R|B| < 1 (3.24)

We can always arrange the magnetic field to satisfy this condition by slightly shifting the Killing
vector field on which we reduce from [3.22] to

q =0, + <Z+B>a¢

3We could have chosen the rotation to take place in a plane containing the time direction. This would give rise
to a different object called the nullbrane. Apparently, taking the vector A to be in the time direction would not be
sensible since it would result in compactifying time. For more details on nullbranes see [44]
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This has the effect of shifting the magnetic field by n/R while preserving the periodicity of the
canonical coordinates ¢ = ¢ — (n/R + B)y. It is easy to see then that there is a unique value of
n such that is satisfied. This procedure can be performed for the case when more magnetic
fields B; are present to ensure that [3.24] holds for all of them separately. This result is of great
importance since it picks out a "correct" cycle on which the reduction is to be performed such that
the ten dimensional theory is indeed perturbatively accurate.

Next we observe that [3.19]is precisely this fluxbrane spacetime containing only one fluxbrane orig-
inating from a non-trivial action on the plane with polar coordinates p = rsinf and ¢. In a more
pictorial way, we have shown the commutativity of the diagram of Figure [3.2]

a=0
m=20
R6x Kerr Instanton > Flat R'? x S?
reduction along reduction along
0r + B0, 0- + B0y
a=0
m=20

Fluxbrane spacetime with
brane—anti-brane pair

> | Fluxbrane spacetime

Figure 3.2: An illustration of the relation between the Kerr instanton and the fluxbrane spacetime.

We have argued for the existence of the fluxbrane in the Kerr instanton geometry by reducing and
setting m = a = 0. Since the Killing vector along which we reduced was 0- + (2 — 1/7)04 we see
that at asymptotic infinity the Kerr spacetime will have a magnetic field equal to Q — 1/v. The
compactification radius of our reduction is R = v (the "radius" of 7) and therefore we have

1 a
Y K ! vm? + a?
which for a > m is clearly satisfied. Therefore the reduction along this Killing vector field is
valid if we are interested in the regime a > m which reflects the physical scenario of the brane—
anti-brane being a large distance apart. In this case the magnetic field for a > m is approximated
by
1
B=Q--~_"1
vy 4a?
What is remarkable about this value is that it is precisely the magnetic field required to keep the
brane—anti-brane pair apart [38]. To see this first note that as we have already mentioned, the
mass of each monopole can been identified with the quantity v/2 (a requirement that is derived
by demanding that close to each monopole the metric becomes a Taub-NUT metric). Then in the
regime a > m that we are considering the mass of each brane is given by
v m(m+ va?+m?)

m
Mpe = 5 = —m as — — 0

2 va? + m? a

Next we calculate the magnetic repulsion due to this magnetic field that we found above

m m2

Fmag ~ 2qB ~ 2MD6@ = ﬁ
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Where we used that the D6 are maximal p-branes so that their charge is equal to their mass. For
the same reason their gravitational and magnetic attraction (due to their own fields) will be equal
and given by

M%ﬁ m?

F, = ~
grav r2 4a?

Where the distance was taken to be the geodesic distance of the two monopoles for large a which
was found to be equal to 2a. We see that 2Fgray = Fuag so that the system perfectly balances
under the influence of the magnetic field caused by the fluxbrane.

To recap, we have identified the content of M-theory on a Kerr instanton as being a D6-D6 pair
immersed in a magnetic fluxbrane background where the brane—anti-brane pair balances. This has
been possible due to the twisted identifications that give rise to a magnetic field. It is important
that the twisting is "measured" in the coordinates in which the (asymptotic) metric assumes its
canonical flat form. Indeed, we can always (and we did) introduce untwisted coordinates as in
but then the asymptotic metric will not have the standard flat form since now a magnetic field
exists everywhere.

3.4 A closer look at the brane—anti-brane system

In this section we explore the structure of the Kerr instanton under the torus action. Our aim is
to understand the disparities between different circle actions and the geometric properties of the
bolts and nuts both in the eleven dimensional geometry and after the reduction. Additionally, we
will investigate the issue of the brane—anti-brane stability which so far has been attributed to a
fortuitous conspiracy of the various fields and parameters.

3.4.1 Fixed points of general Kiling fields

In the previous section we discussed various aspects of M-theory on a Kerr instanton and by per-
forming a Kaluza-Klein reduction on a circle we examined the String Theory dynamics in ten
dimensions. However, many crucial points remain nebulous. To begin with, the choice of a Killing
vector along which the reduction takes place seemed ad hoc since there is no preferred element in
the isometry algebra iso(M) or at least we did not argue about it. Another problem along the same
lines is the stability of the brane—anti-brane system which relied on the magnetic field that exactly
canceled the brane—anti-brane attraction. This was a seemingly miraculous intervention, heavily
dependent upon the choice of the Killing vector’s finely tuned magnitude. In this section, we seek
answers to those questions.

To begin with, the isometry group of the Kerr instanton is U (1) x U(1), namely a 2-torus, spanned
by the ¢, 7 coordinates on which the metric does not depend. Therefore, we have an isometric
torus action on the manifold R? x S?. Reducing to ten dimensions requires choosing an embedded
circle G(m,n) < T? for which we unquestionably chose the one whose Lie algebra is spanned by
K =0, + (2 —1/7)04. Let us generalize this by considering an arbitrary linear combination:

K =r0+Xy , m,AER (3.25)

It is straightforward to compute the magnitude of the Killing vector

K'K, = k%g%, + 26Agrg + Azg(zbqj (3.26)
1
= TQ_QZCOSQQ{A(K + Aasin? 0)? + sin? O(ka — \(r? — a2))2} (3.27)
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The fixed points of the corresponding isometry will be given by the vanishing locus of K*K,,. Since
A > 0 we have

Ak + Aasin?0)? = 0 (3.28)
sin? 0(ka — A\(r? —a?))? =0 (3.29)

In order to find all possible solutions, we distinguish the following cases:

e If A=0=7r=r;y =m++vVm?2+a? then [3.28 is satisfied and can be satisfied in two

ways:

— If sinf = 0 = 6 = 0, 7 then the fixed points are two isolated points. This is therefore, a
nut—anti-nut pair. The reduction that we performed in the previous section falls in this
category. In this case there is no constraint on the k, A so these two points are fixed by
any circle subgroup. Those are therefore the fixed points of the torus action.

— If ka — A(r2 — a?) = 0 = A\/k = Q where Q = a/(r2 — a?) as before. In this case the
fixed point locus is the surface r = r.

o If A # 0 then we must demand that x + Aasin? § = 0 so that in order to satisfy we again
have two possibilities

— If sinf = 0 = 6 = 0,7 then x = 0 and the Killing vector is in the direction of Jy4. In
this case the bolt is the disjoint union of the surfaces § = 0 and § = 7. We will have
more to say about those shortly.

— If sinf # 0 (and A # 0) then the equations that we get have no solutions.

Summarizing, there are three types of fixed point loci, two bolts and a nut—anti-nut pair depending
on which circle subgroup of the torus we choose as our eleventh dimension. The nuts are the fixed
points of the torus while the bolts constitute points with isotropy group S' where geometrically
one of two independent torus cycles "collapses'. This is in perfect agreement with our conclusion
regarding fixed points sets in Section However, there is a small difference owing to the non-
compactness of the manifold we are studying here. In our treatment of compact manifolds, the
codimension two fixed point loci (bolts) had to be compact but this is not longer the case. Let us
explore what they look like in more detail:

e The surface » = r4 has induced metric

2 2 2 2 2 sin” ¢ 2 2 ?
ds” = (ri — a” cos” 0)df +ri—a200820 (ri —a®)d¢ — adr

A more appropriate coordinate ¢ 1= ¢ — W & 71 = ¢— Q7 makes the geometry of this surface

1-a?)
more transparent
sin?0(r? —a?)? -,

2= (r2 — a®cos? 0)do?
ds* = (r3 — a*cos? 0)d0* + r2 — a2 cos?

This is a metric on a sphere and therefore r = r, is a spherical bolt. As a reality check, we
can calculate the Euler characteristic (R x S?) = x(S?) = 2 which is indeed correct and
agrees with the existence of two fixed points of the entire torus action which would again give
x(R? x S?) = 2 according to Theorem m
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e The surfaces § = 0,7 both have the same induced metric given by

A dr?
ds® = 7a—2al7'2 + (7‘2 — aQ)%
This is a warped product of the circle (parametrized by 7) and the line (parametrized by r)
with the radius of the circle vanishing at » = r. This therefore has the topology of a disk
D?2. The asymptotic radius of the circle is equal to v (the period of 7). Note that we can use
this bolt to calculate the Euler characteristic y(R? x S?) = x(D?UD?) =1+1=2.

The geometry of those surfaces is illustrated in Figure Note the structure of the orbit space
under the entire torus action. Consider the right picture in Figure [3:3] and quotient out the
azimuthial coordinate ¢. The resulting space is isomorphic to the upper half Euclidean plane
{(z,y) € R? | y > 0} with the boundary being the line # = 0 which is indeed a line after the
quotient is taken. This is an interesting example of the quotient structure of a torus action on a
non-compact manifold, in this case R? x S2. The orbit space is indeed simply connected and has a
boundary in agreement with our treatment in[2.4l What is noteworthy is the existence of this new
type of bolt which is not connected.

0=m

Figure 3.3: The bolt B; (left) which is the disjoint union of two disks and the bolt By (right) which
is a two-sphere.The nut P and the anti-nut Q are located at the intersection of the two bolts. Note
that the two bolts should not be depicted in the same image since the azimuthial coordinate is
different in the two cases.

3.4.2 TIsotropy representations of different Killing fields

Now that we have uncovered the geometry of the fixed points, we move on to investigate the fixed
point data. This is done using the isotropy representation which was introduced in Section As
we mentioned there, the isotropy representation of a circle action that is generated by a Killing
field K € Vect(M) is given by VK whose eigenvalues constitute the fixed point data. One problem
that often arises is that the metrics we are using are adapted to the isometries under consideration
and therefore the coordinate system is singular on the fixed point locus. Those quantities can
be calculated in different coordinates and the result is that the weight associated to 0, + Q0 is
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w; = v~ ! and the weight associated to 0p is wgp = —1. Those are calculated on the bolts By and

Bs respectively.

Since we have the weights for those two fields, we can consider an arbitrary linear combination
K = k0; + A0y which will in general have two fixed points, the points P and @ of Figure The
isotropy representation at P is then found to be:

0 ~1' 0 o0 00 0 O 0 k/y 0 0
-1
| 0 0 0 00 0 0| |-k/yv O 0 0
VElp=rl o o o al™ oo o 1| 0o o 0 KQ—A
0 0 -Q 0 00 +1 0 0 0 —kQ+X 0
From this we deduce that the point P is a (p, ¢)-nut if
wY P (3.30)

KQ—X ¢

Here, p, q are coprime integers. We can ask for example what are the values of x, A such that the
point P corresponds to a fixed point with p = ¢ = 1 which is the requirement for the action to
locally be the Hopf action on a three-sphere surrounding the fixed point as we saw in Solving

with p/q = 1 gives

Mgl (3.31)

K gl
This corresponds precisely to the Killing field K = 9, + (2 — v~ 1)d, that we used in Section
and which was used for the reduction in [38]. The argument that was given in [38] to identify the
system with a D6-D6 relied on a comparison between the Taub-NUT metric and the local geometry
around the fixed point. The proof that we presented here has a topological flavor and depends on
the existence of a Hopf action around the fixed point under consideration. A similar calculation for
the point () shows that when holds, the point @ is indeed an anti-nut with weights {+1, —1}.
We have therefore shown the following

Reduction along the Killing field K = 0; + (Q — ’y*l)(‘)d) corresponds to a D6-D6 pair.

It is also interesting to calculate the nut charge of the branes. The weights of the isotropy repre-
sentation of K = 9, +Q —~y71)9, are {y 71,771} at P and {y~!, —y !} at Q. Therefore following

Section [2.5] the nut charge at P is
1 2y vy
N = F = — = —
47 /52 47 2

This is the mass parameter of the D6-brane that we used in the previous section and which was
derived in [38] by a direct comparison of a local model of the Kerr metric with the Taub-NUT
metric. The charge is reversed at the point () which is an anti-nut.

According to our discussion in after the reduction along K, the quotient space is a smooth
manifold. The quotient space is this case is R? and as we will again verify in the next Section, that
the metric is indeed smooth. Now, consider a general reduction along the Killing field K’ = 0.+ B0
with B left unspecified. The isotropy representation at P is given by:
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0 At 0 0
-1 0 0 0
/ —
VK'|p = 0 0 0 O-B (3.32)
0 0 B-Q 0

Due to the non-unit weights, the rotation in the two planes (which are the tangents to the two
bolts By and Bs) will introduce non-zero isotropy and the space will develop orbifold singularities
as we saw in Let us use 7(B1),m(B3) for the images of the two bolts under the quotient
map. Generally, those are one dimensional and we think of them as such. If we rescale the Killing
field, we can arrange for the orbifold group on either 7(B;) or m(Bs) to be arbitrary. Indeed, by
rescaling the Killing field by kv we find

0 k 0 0
-k 0 0 0
0 0 ky(B—9Q) 0

In this case, Bj is locally acted upon by the upper left block of and 7(B7) has a conical angle
of 2r/k. On the other hand, the compact one-dimensional line 7(Bz) will have a cone singularity
with angle

2w _<1+m2)1/2<1_23m7"+>_127
kv(Q—B) a? a k

We note that when the bolt Bj is fixed by the action of the Killing field, then no singularity appears
on 7(B;) and similarly for Bya. We should also stress out that under a general reduction, the (p, q)
type of the fixed points will change and therefore the charge of the topological defect in the quotient
space will be different. More specifically, the charge will in general be a fraction of the D6-brane
charge /2. Those branes with fractional charges always sit on orbifold singularities as we just saw.

3.4.3 Conical singularities and cosmic strings

We now investigate the singular structure from the point of view of the metric which corresponds
to a more traditional approach in the physics language. The concept of conical singularities is a
rather common theme encountered in various physical systems. We say that a manifold M has a
conical singularity if there is a region in which the metric admits the following form:

ds* = dr* + r*dQ3_,

where dQ2_, is the metric of an (n — 1)-dimensinal manifold N. In this case, the metric is smooth
only if N is the (n—1)-sphere S~ and d2_, is the round metric. For four dimensional manifolds,
if N is S3/T" with I' € SU(2) a finite subgroup then the singularity is of ADE type. When the
dimension of N is two, then we can measure how much it deviates from the flat plane geometry
by defining the deficit angle 5. Given an origin O in the plane, let C' denote the proper length of
the circumference of the circles centered at O and r denote the radial coordinate. Then the deficit
angle ¢ is defined by the relation

dC

— =2r—94
dr r=0 "
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In some sense, the deficit angle is a measure of how "conical" a singularity is. The appearance of
such deficit angles is a herald of instabilities. In the solution that we have been discussing, the Kerr
instanton, the eleven dimensional metric is of course smooth, since by construction the periodicities
were chosen so. However, the reduced metric can still possess conical suingularities. The locations
of such conical singularities have been investigated in |46} 47] and they coincide with our findings
in which indicate that they can only appear on the images of the bolts m(By),w(Bz). If A¢
denotes the periodicity of some angular coordinate ¢ in the reduced metric then the deficit angles
are found to be given by

Ao d. /G5 -
Su(py) = 27 — 29 2955 =21 — Ad (3.34)
Vgee A oo -
T d o= 21 1/2 -1
Or(By) = 2 — \/Agﬂ vdiabqb =27 — (1 + 7;) (1 — 232’”*) Ad (3.35)
rr 9=0,7

Those are precisely the same values that we calculated in the previous section using isotropy
representations. The only difference is that in the previous section we calculated periodicities
instead of deficit angles. Again, we can easily verify that the only way to get rid of those deficit
angles is to require

Ao =27
_a—vVm?24a? 1
N 2mry B Y

After this observation, one might wonder what is the physical interpretation of deficit angles and
why their existence is so tightly related to the stability of the brane-anti-brane system. The answer
is that such deficit angles correspond to cosmic strings [39] with tension T, related to the deficit
angle by 87T = § (see e.g. [48]). When there is non-vanishing deficit angle on 7(Bj) (two infinite
lines stretching to infinity) then the ten dimensional interpretation is that of two cosmic strings
pulling the brane—anti-brane pair apart against the attractive forces of their gravity and RR fields.
On the other hand, a non-vanishing deficit angle on 7(Bz2) (a compact line starting on the nut and
ending on the anti-nut) is interpreted as a strut pushing the nut—anti-nut pair away (see Figure.

The existence of a magnetic field in which the brane—anti-brane system balances was seen as a
random artifact but under this new perspective, it can be attributed to the delicate cancellation
of the deficit angles, leaving all the burden of the suspension of the brane—anti-brane pair to the
magnetic field (since the cosmic strings are absent).

3.5 Reduction along special cycles

In this section want to consider reductions along different cycles in the isometrically acting torus
parametrized by the (7,¢) coordinates in the Kerr instanton. Since there is nothing particularly
special about the Killing vector K = 0; 4 (2—1/v)0, (other than eliminating the conical singulari-
ties) we can perform an SL(2,R) transformation to generate different ten dimensional backgrounds.
In particular, as we have already argued in Chapter [2] choosing to reduce along circle actions with
fixed point bolts will result in ten dimensional backgrounds with boundaries. We explore the
geometry of those backgrounds and make some comments on their stability.

3.5.1 Reduction on the spherical bolt B,

Having understood the structure of reductions along various different cycles, it is now time to further
investigate some of them. First, as we have noted before, requiring that the ten dimensional string
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coupling does not diverge due to the existence of the fluxbrane background led us to the condition
We know that equivalent backgrounds arise when B = Q + n/v for some integer n € Z and
for those the angular coordinate has period 27 so that no conical singularity exists on the bolt
Bj. In this case the only possible deficit angle can occur on the bolt Bs. We have seen that Bs is
non-singular when we pick B = Q — 1/ but we have already pointed out that this leads to a valid
perturbative picture only when the D6-D6 pair is far apart. For this more general B the condition

[3.24] becomes:

n a
R‘B|:’7(Q+7> :m+n<<l
When a ~ m we expect that the brane—anti-brane pair has come close to the critical distance in
which the open string stretching between them becomes tachyonic. In this case if a/m ~ 1 we get
R|B| ~ 0.7 + n so that there is no integer n which ensures R|B| < 1. This regime is therefore
manifestly non-perturbative. On the other hand, when the brane—anti-brane pair coincide we have
a/m ~ 0 and n = 0 gives the required perturbative background. In this case the Killing vector is
K = 0- 4+ Q0, and the fixed point locus is the bolt By. Reduction along the orbits of this vector

gives the ten dimensional solution

6 , 2 ~
ds2, = A1/2{ —d? + ) (dy')? + % [dg + dﬂ } + A7Y2Asin? 0dg?

i=1

e%‘P =A
.92
A5 = Aol - 2+ ad?sin? 0] + ol — o) - A}
. 1 . 92 M9 2 . 9 (T2_a2)2
A= E{A(l—i—ﬂasm 0) + a*sin“ 6 l—m

We have obtained a Type IIA geometry with no D6-D6 but with a spherical bolt where the string
coupling vanishes. This bolt is a spherical boundary so that 9Ny = R” x S2. The boundary does
not carry any topological charge. In other words, the self-intersection of the bolt vanishes. This
follows from charge conservation. As we just argued, this background corresponds to the more
accurate perturbative picture in the limit when the brane—anti-brane coincide. The reduced space
is free of conical singularities.

3.5.2 Reduction on the bolt By

The last qualitatively different option we have is to reduce along the Killing vector field K = 0.
The two connected components of the bolt B; are boundaries of the ten dimensional space and the
metric on the reduced space becomes

6 2
; dr A
ds? :A1/2{—dt2 dy')? 2{ dg* dQH
510 + ;( y')" + A + + (7= a2 + A s’ 0 T
e5% = A
A Aasin? 0 — sin? fa(r? — a?) Aa — a(r? — a?)

™~ Aasin? 0 + sin? 0(r? — a?)? ~ Aasin?0 + (r2 —a?)?

A= % (Aa2 sin? 6 4 sin” O(r2 — a2)2)

Indeed, now 8 = 0,7 is a weak coupling locus. The self intersection of those bolts in the four
dimensional space R? x S2 is zero which follows from the vanishing signature of the space R? x S?
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[32]. Therefore, the boundaries do not carry any topological charge in the sense of Section and
do not attract each other.

Concluding this section we have demonstrated the existence of different ten dimensional back-
grounds corresponding to the same eleven dimensional geometry. We have been concerned with the
reduction on the Kerr instanton R? x S? which has the same fixed point structure as the S*. This
could have been expected since we can write the decomposition S* = D? x S2 UD? x S where the
two manifolds are glued along their common boundary S? x S'. This shows that the Kerr instanton
differs from S* by a manifold which admits a free circle action.

The non-compactness of R? x S? allows for a greater freedom in the types of bolts and indeed we
discovered both a compact and a non-compact bolt. In total we can have three different topologies
in the reduced space. Reducing along a generic circle with two isolated fixed points gives R3. On the
other hand, reducing along the special circles gives, as expected, quotient spaces with boundaries.
For the case of the non-compact bolt B; the quotient space is {(z,y,z) € R3|z € [~1,1]} which
has two infinite walls at the two ends. For the bolt By the quotient space was R3 \ D? namely R3
with a hole. In both cases the boundaries are not charged due to their vanishing self-intersections
(in four dimensions).

Finally, we mention that a similar approach to brane-anti-brane systems has been considered in
[49]. A class of supergravity solutions with ISO(1,p) x SO(9 — p) and RR fields were found in [50]
and later interpreted in [51] as coincident brane—anti-brane pairs in type II theories. Subsequently,
[49] considered the purely geometric M-theory lift of those backgrounds (for p = 6) and investigated
the reduction along different circles. In this work, they considered orbifold singularities in the eleven
dimensional space (before the reduction). These orbifolds have localized closed string tachyons and
were discussed in [52].
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Chapter 4

Flux vacua and S

4.1 Fluxes

In constructing string vacua it is useful to consider fluzes. Those correspond to non trivial p-forms
F that can be integrated over closed p-cycles 3 to give terms of the form [y, F'. In eleven dimensions
the only possibility is the four-form flux. We have already seen in Section that the inclusion
of a non-trivial four-form Fj in an eleven dimensional supergravity background induces different
non-zero forms in the reduced Type IIA background. When we further compactify on a manifold
X of dimension dim X = d, the inclusion of such terms can be shown [53] to generate a potential
for the moduli fields of the form

m2
VF = Vig/ \/gng“'gnsFm...nFr..-S
x /X

Although those are great news since we seem to have overcome the moduli stabilization problem,
there is still a small implication. Since our metric is not fixed (it has its own moduli) we can
consider a one parameter family of metrics given by g, = r2g%,,, where g¥ . is some fiducial metric
which is chosen such that the volume is unit Vol(g,,) = 1. Then the corresponding potential from
all the possible p-forms and the additional contribution from the Einstein-Hilbert term would give

Vi Cop 9
= d/X\/g%nFﬁ\o—r ? d/X V9" R (4.1)
p

P

If the Ricci scalar is negative then the potential acquires its minimum as r — oo which signifies an
instability. Therefore, we necessarily assume from now on that the internal manifold X has positive
Ricci curvature. In the case when the fluxes are absent, only the second term in contributes
so r — 0 which indicates that the internal manifold collapses to zero size. This is why we need
non-zero fluxes to support the manifold and acquire a minimum of Vz for an intermediate value of
r. It is important to note that the behavior of the potential near » — oo is dictated by the "least
negative' power so that when Fy = F} = 0 the curvature term dominates. On the other hand when
only F} # 0, both terms scale in the same way so that the potential has no extrema. Finally when
Fy # 0 the p-form term dominates at r — oo.

4.2 AdS; x S§*

Among the various solutions of eleven dimensional supergravity AdS7 x S* and its dual AdSy x S”
are of special interest. The first reason is their crucial role in the AdS /CFT correspondence. The
second reason is that spontaneous compactification induced by bosonic fields of eleven dimensional
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supergravity can only happen when the internal space is of dimension seven or four. It is then clear
why in this context the maximally symmetric solutions AdS; x S* and AdSy x S7 are significant.
The latter one has received more attention owing to the parallelizability of S7 which facilitates
many calculations and of course because of its relevance to four dimensional physics. However,
in the context of our work, we are interested in four dimensional internal manifolds and therefore
AdS; x S% is the one we will investigate.

Our starting point is the eleven dimensional supergravity whose bosonic sector is described by the
Lagrangian

1 1
EH:R*l_i*G4/\G4_6G4AG4AA3 (4.2)

where G4 = dAg is the four form field strength and * denotes the eleven dimensional Hodge star.
The corresponding equations of motion read

1 1
Ryn = I (GMRSTGNRST = RGRSTLGRSTLQMN> (4.3)

3.3
\V/ GMNRS NRSMiN1R1S1MaNa RS>
M T a2

Gy N Ry S G MaNo Ry S, = 0 (4.4)

It is worth explaining how the aforementioned solution comes about. Consider the eleven dimen-
sional background M7 x N4 in M-theory. If no fluxes are present, supersymmetry forces N4 to be
a Calabi-Yau and our only possibilities are K3 or T%. We can also turn on the fluxes. In M-theory
the only option is the G4 flux. As before, we usually want the isometries of M7 to be preserved
which translates to a G4 living entirely in N4. Those flux compactifications fall into the class of
Freund-Rubin compactifications where only the top dimensional fluxes of the internal space are
non-zero (or their lowest dimensional duals). Those compactifications are very constrained because
the above requirements imply the existence of a Killing spinor in N4. This has the non-trivial
consequence that the cone C(Ny) over Ny admits a covariantly constant spinor and can only be
of the type R*/T" x R where T is a subgroup of SU(2) with its natural action on R* ~ C2. In the
simplest case where I is trivial, we have C'(N,) = R5 which gives that Ny = S%.

Since our internal manifold has positive curvature, we expect that My will be negatively curved.
For a maximally symmetric space this has to be AdS;. This is indeed the case and the total
background solution is AdS7 x S%. Let us see why this is a valid supergravity solution [54]. We
endow S* with the round metric which we call R%g3,, where R denotes the radius of the S* and
g5, is the round metric on the unit four-sphere. We use Latin indices for the internal space S*,
Greek indices for AdS7 and uppercase Latin indices for the total eleven dimensional space. For
AdS7 we use the metric:

L2
(du2 + T]Wdfy“d’y"“)

2
dspgs, = 2

so that our total eleven dimensional metric becomes

L2
ds* = 2 (du2 + nw,d’y“d’y"“> + R?g?, da™dz" (4.5)

with 7,,, the Minkowski metric. The flux G4 being a top-dimensional form in S% can be expressed
as G4 = hvolgs with (volgs),wpe = v/G%€uvpo the volume form on the unit S* with g* := det(gs,,,)
and h € C*(S*). However this is not the complete picture and in fact h has to be a constant. To
see this we need to look at the corresponding equation of motion [£:4] Since the flux G4 is required
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to be non-zero only along the four components of the internal space, the second term vanishes.
What is left, just like in ordinary Maxwell theory coupled to gravity, is the conservation equation:

1
/gS
So that the solution is of the form G™""® = he™""/,/g° but now with h € R. Lowering the indices

and remembering the tensorial nature of the object € /,/¢% (but not of the Levi-Civita symbol
alone) we also find Gpnrs = hyv/g°€mnrs = hvolga. Then we use the quantization of flux to get:

am (\/EG’H’LTLT&) — vamnrs — O

82 6T N 3m(f11)3
T Gy = 27N = Typ,hR*— = 27N = h = =
Me /54 L Mo g = A TaR8r2 ~ RI

N (4.6)

with Ty, = (27r)*2€1_13 the M2-brane tension which plays the role of the elementary charge, ¢1; the
eleven dimensional planck length and N € Z. In the above we also used the volume of S* which is
given by vol(S*) = 872R*/3. The remaining eleven dimensional supergravity equations of motion
are satisfied by the ansatz [£.5] provided that:

L2216
4 G2
Therefore, the fluxes fix the length scales R, L. This is consistent with our general discussion about

fluxes. In particular, using[4.6| we find that the length scales are related to the quantization number
N by

R? where G2 := GprsG™S = B2 - 4l (4.7)

L
R=3 = (TN)3 0y,
In particular we notice that when N = 0, the radius R of the internal manifold goes to zero corre-
sponding to the expected collapsing behavior in the absence of flux. Another important remark is
the relation between the scale of the sphere R and the AdS scale L which are of the same order.

This is a typical hierarchy problem in flux compactifications.

At this point we have a valid M-theory background. According to our previous discussion the
natural thing to do is to dimensionally reduce it to obtain the corresponding type IIA picture. The
four-sphere S with its round metric admits a circle fibration with base space S? and one singularity
sitting at each pole. The flat metric on S* can be conveniently expressed as the spherical suspension
of §3 and is given by

ds%s = R?gS,,dz"dz" = R? (da2 + sinQ(a)dS?gg)
In the above, a € [0, ] is the suspension parameter. The metric on S? is the Hopf metric, namely
the metric that makes the Hopf fibration S — S? a submersion of Riemannian manifolds when
the metric on the base S? is the round metric. In local coordinates this can be expressed as

1 1
dsgs = Edsgﬂ + (dy + C1)*  with dCy = 5 Vols2 (4.8)

where ds?g2 is the standard round metric on S?. The total metric then becomes:

L? R?%sin?(a)

ds® = ﬁ(dﬁ + Nudytdy”) + R%da® + T (d6* + sin*(0)d¢?) + R?sin?(a)(dy + C1)?

(4.9)
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The connection form Cj is often taken to be of the Wu-Yang form
m_ 1 s _ 1
)y’ = —i(l—cosﬂ)dgb cy’ = 5(1+cos€)d¢

where C’fn) and C%s) are the connection forms around the north (6 = 0) and south (f = 7) pole
respectively. In this setting, y is the coordinate along the fiber S' and also the direction of the
M-theory circle on which we perform the dimensional reduction. In the language of section 1, we
view S3 as a circle fibration using the U(1) isometry corresponding to the Killing vector field Oy.

If we want the U(1) reduction to preserve some supersymmetry then we must require that the action
of the U(1) isometry on the spin bundle leaves at least one spinor invariant. Since ISO(S%)= SO(5)
every isometry is characterized by two angles that appear in the canonical form of the associated
element in s0(5) which are antisymmetric matrices. The existence of invariant spinors then forces
those two angles that we call a1, as to either be equal or opposite namely a; = +ay [55]. In other
words the supersymmetry preserving isometries have a canonical form

0 ar O 0 O cos(ar) sin(ar) 0 0 0
—ar 0 0 0 O —sin(ar) cos(ar) 0 0 0
exp[ 0O 0 0 ZHar Of = 0 0 cos(ar) +sin(ar) 0 (4.10)
0 0 Far 0 0 0 0 Fsin(ar) cos(at) O
0 0 0 0 0 0 0 0 0 1

where 7 is the parameter of the U(1) isometry. Does 0, generate such an isometry? To answer this
we must identify the isometry and then carefully investigate how it acts on the S* in appropriate
coordinates. The isometry generated by 0, is clearly the translation in the y-direction by some
constant 7. To find its canonical form and compare it towe embedd S* in R®. We take z® to be
the coordinate along the suspension axis, namely the line connecting the points a = 0 and o = 7.
Due to the suspension construction, the z° will be unaffected by a shift in the y-coordinate. The
rest of the coordinates x' can be thought of as the coordinates in R* in which an S? is embedded.
It is very convenient to work in the coordinates y, 0, ¢ as in where 6, ¢ parametrize the S? as
usual. These coordinates are often called Hopf coordinates because they make the Hopf structure
manifest. They are related to the ambient space coordinates by:

o sin(«) cos (g) sin(y) 2% = sin(«) cos (g) cos(y) 2% = sin(«) sin (Z) sin(¢ +y)

z* = sin(a) sin <Z) cos(p+y) x° = cos(a)

It is now a matter of straightforward algebra to verify that under the isometry transformation
y — y + 7 the coordinates 2* of R% transform as

x! cos(7)  sin(r) 0 0 0\ [zt
z? —sin(7) cos(7) 0 0 0f |2
w3 — 0 0 cos(t) sin(r) 0] |23
xt 0 0 —sin(r) cos(r) O] | 2*
P 0 0 0 0 1) \a®

which shows that the isometry generated by 0, does indeed have an invariant spinor. We go on to
perform the reduction as in [55] by using the string-frame ansatz ds?; = e‘gd’ds%o + 6§¢(dy +C1)2.
Comparing this antsatz to our eleven dimensional background and using 4.7 we get:

¢3¢ = R2 sin?(a) = 3% = Rsin(«) (4.11)

4 1
dsty = R*sin(a) —2(du2 + udytdy”) + da® + 1 sin(a) ds? (4.12)
u
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We therefore see that the ten dimensional space is a warped product of AdS7 and S3. Note that we
had established from purely topological considerations in Section that the quotient space must
be an S? in the absence of a boundary. This agrees with the three dimensional part of which
is a spherical suspension of S? showning that this is indeed a metric on S. The next thing to do
is compute the fluxes associated to this ten dimensional solution. The result is [55] that there are
non-trivial F» and NS H-fluxes given by:

1
Fy = _§VOIS2 H= —ZR:)’ sin3(a)da A volg2 (4.13)

Note that there is a difference in the definition of our R which differs by a factor of 2 from the radius
R in [55]. The four-from flux H4 vanishes in this background as is evident from since now the
eleven dimensional four-form has no component that is independent of the reduction coordinate.
We can easily integrate the H-flux to get the B-field

B cos?(a)

3
By = 4R3(cos(a) >V0152 +b (4.14)
where b is a closed two-form. In the above integration process we implicitly used that the volume
form of a closed manifold like S? cannot be exact. If it was, a straightforward application of Stoke’s
theorem would imply a zero volume. Therefore, is the most general form of a primitive for H.

4.2.1 Characterization of the fixed points

In Chapter [2| we have given a prescription for characterizing the type of a fixed points in terms of
the isotropy representation. Here we show that the two fixed points we found in S* are indeed of
the expected type. In particular, we will show that the point at &« = 0 is a nut and the point at
a = 7 is an anti-nut.

Let us call the stationary points of the circle action P (for « = 0) and Q (for a = 7). First, we
focus on the point P. Remember from Section [2.3] that what we are interested in is the matrix form
of the endomorphism ¢p : TpM — TpM from which we can read off the (p,q) nut type. The
point P is an extremum of the coordinate o and therefore the infinitesimal displacements around
P do not change a and consequently x°. This means that TpM is spanned by {9,1,0,2,0,3, 0y}
which we take to be an oriented basis of Tp M agreeing with the orientation induced on the plane
2® = 1 by the ambient space R°. For this reason we can identify TpM with the plane 2° = R. The
action of the chosen U(1) isometry on TpM will then be given by restricted on the first four
coordinates so that the matrix form of the endomorphism ¢p becomes

cos(7(')) Sil’l((T)) 0 0

—sin(7) cos(t 0 0

(oP)ab = 0 0 cos(t)  sin(T)
0 0 —sin(7) cos(7)

which verifies that P is a (1,1) nut singularity. Now we turn to the point Q. Here we cannot apply
the same logic since by choosing an orientation for TpM we have picked an orientation for S4.
The question now is whether {0,1,0,2,0,3,0,4} is an oriented basis of TgM in which case ToM
is identified with the plane 2° = —1. If this is true, then the point Q becomes a (1,1) nut as well.
Otherwise, if the orientation is reversed, then we can take {9,1,0,2,0,4,0,3} as an oriented basis
in which case the second block of the matrix in is inverted and the induced action of the U(1)
isometry on Ty M given by the matrix form of the endomorphism ¢g : To M — Ty M becomes
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cos(7)  sin(7) 0 0

| —sin(7) cos(7) 0 0
(0Q)ab = 0 0  cos(r) —sin(7)
0 0 sin(t)  cos(T)

which means that the point Q is a (1,-1) anti-nut. This is indeed what happens and in total we
have a nut and an anti-nut. Before giving a general proof, it is instructive to understand geomet-
rically why this holds by turning to some lower dimensional examples. Consider the more familiar
case of the unit circle S' embedded in R2. There are two orientations for S*, the "clockwise" and
"counter-clockwise" corresponding to the two generators of Ho(S!) = Z. As shown in Figure
the point P has a tangent space which can be identified with the plane xo = 1. Their orientations
agree if we choose the "clockwise" orientation since 0, is an oriented basis for both. However, at
the antipodal point Q the element 0,, which is an oriented basis for the plane z = —1 has the
wrong orientation on S! since it corresponds to the "counter-clockwise" orientation.

The same holds true for S? as shown in Figure It is clear that if we choose the "outward"
orientation of the sphere, then {0,,,0,,} is an oriented basis for TpM but not for TgM where the
orientation has to be reversed. Therefore, we must take {0,,,0:, } as an oriented basis there.

. A
A TpM
» ) TpM
Q O ToM
(a) (b)

Figure 4.1: (a) The tangent spaces of two antipodal points of S'. (b) The antipodal tangent spaces
for S2.

Now that we have made it clear that this holds for S', we want to prove the same for any sphere S™
including the S* that we are mainly interested in. In order to formalize our intuitive picture and
turn it into a rigorous statement, some definitions are in order. First, we introduce the reflection
map

fm ST = 8™ (b, 2%, .., 2™ s (222, —a™ T

where 2’ are the coordinates of the R™ in which S™ is embedded. We take the two poles P,Q
to be the intersection points of the x,,41 axis with S™. Let the orientation of S™ be such that
{0,1,0,2,...,0;m} is an oriented basis at P. Since f,,, only affects the last coordinate x™*! the
induced pushforward (fp,)« : TpS™ — TS™ sends the oriented basis {0,1, 0,2, ...,0,m } to itself.
The map f,, is smooth and bijective and its image is S™. If f,, preserves the orientation of S™ then
{041,0,2, ...,0,m } is an oriented basis at Q. Of course this certainly cannot be true for m=1 since it
would contradict our geometric picture for S! so we already know that fi is orientation-reversing.
We prove here that this holds for every m.
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Proposition 4.2.1. The map f,,, : S™ — S™ is orientation-reversing for every m > 1.

Proof. First we note that f,,, induces a group homomorphism on homology groups (fi )« : Hp(S™) —
H,,,(S™). Since Hy,,(S™) = Z for m > 1, any such group homomorphism is of the form (fy,)«(a) =
k - a for some k € Z and for every a € Z. The integer k is called the degree of the map f,, and is
denoted by deg(f,,) = k. Since our map f,, is bijective, the induced map (f,)« is an isomorphism
of abelian groups and the only possiblities are deg(f,,,) = +1. Clearly, if deg(f,) = 1, the map
fm is orientation preserving, otherwise it is orientation-reversing. This is immediate if one takes
the fundamental class as the definition of orientation. In this language we want to prove that

deg(fm) = —1.

We proceed by induction on m. For m=1 we have f; : S! — S! acting as {1, 22} +— {21, —22}
and as we have already seen geometrically, this map reverses orientation. To be more precise we
can introduce a coordinate 6 = arctan(x;/z2) in terms of which the map f; acts as § — —6. This
has the effect of reversing the orientation of the S! proving that f; has deg(f;) = —1.

We now let D™ = {(x!,...,2™"1) € S™|x! < 0} be the southern hemisphere in S™ and view S™~!
as the boundary of D™ or, in other words, the equator of S. Then if we restrict f,, on the equator
we get fm|gm-1 = fm_1. Using the naturality of the long exact sequence of the pair (D™, S™~1)
we get a commutative square

Hp(S™) —=— H, (D™, 8™ 1) — H,_ (5™ 1)

(m){ [t

Hm(Sm) é Hm(Dm,Sm_l) % Hm_l(Sm_l)

where 0 denotes the corresponding connecting homomorphisms of the long exact sequence which are
in this case isomorphisms. From the commutativity of the diagram we get deg(f,,) = deg(fm-1)-
O

This concludes the proof that S* has a nut-anti-nut pair of singularities with respect to the isom-
etry generated by the Killing vector field d,. This is in accordance with the requirement that on
a compact manifold like S* the total nut charge must be zero. It is also worth noting how super-
symmetry restricts the allowed types of singularities. Indeed, as already mentioned the existence
of invariant spinors implies the action on the ambient space and we have shown how this is
related to the action of the isometry on the tangent spaces of two antipodal points. In particular,
it follows that one always gets precisely one (1,1) and one (1,-1) singularity for any isometry that
preserves supersymmetry, not just for the one we picked. We therefore have the following statement

Every U(1) reduction of M-theory on S* which preserves some supersymmetry

must contain a D6-D6 pair.

The appearance of a brane—anti-brane pair in a supersymmetric background might at first glance
be surprising since we know that D-branes introduced in a supersymmetric background break half
of the supersymmetries and anti-branes break exactly the other half (see section 18.5 of [13]).
However, this reasoning only applies to flat space. In our case the supersymmetry parameters
change from the south to the north pole so that both the D6 and the D6 can be BPS [55].

4.3 The S* ansatz

We will now consider the compactification of eleven dimensional supergravity on S*. We have
already discussed the existence of a background of the form AdS; x S* which is a solution to the
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eleven dimensional supergravity equations of motion. The next thing we want to do is perform a
Kaluza-Klein reduction on this background. This means that we want to go back to the eleven
dimensional supergravity and expand all the fields around this background AdS7 x §*. We illustrate
how this works with the simplest example, a free scalar field in five dimensions with the action

So = —;/d% O pdM (4.15)

Recall from Section that the idea behind Kaluza-Klein theory is to assume that the five dimen-
sional background can be split as a metric product Ms = My x S* with M, being Minkowski space.
If we use the coordinates x* on My and the coordinate y on the circle then the equation of motion
can be written as

Op=0= 0"dup+ 0o =0

The field ¢ can then be expanded in Fourier modes as

1 n=00

p(z,y) = oI > enlat)em/

The choice of Fourier expansion is because it corresponds to an expansion in terms of eigenfunctions
of the Laplacian on S' which are the familiar exponentials ¢”™/% (with a normalization factor)
where R is the radius of the circle. Substituting the Fourier expansion in the equation of motion
and using that the eigenfunctions of the Laplacian are independent we obatain:

2

0"0upn — =0

n
R2¥m
This shows that the fields ¢,, are massive modes from the point of view of the lower dimensional
theory and their masses are inversely proportional to the radius of the internal circle. An obvious
problem is that now we have a theory in four dimensions but the price we had to pay is the intro-
duction of an infinitude of fields ¢,,. The compactification ansatz corresponds to taking the limit
R — 0 in which case we can neglect all the massive fields ,, and keep only zero mode g. This is
called a truncation.

In general we can apply the above procedure for an arbitrary theory specified by an action and
an arbitrary compactification on a background M x N with metric ¢ = ¢™ @ ¢’V where N is the
compact manifold on which we compactify. Since this is a metric product, the Laplacian splits as
Apnxn = Ay + An and we expand all the fields of the given theory in terms of the eigenvalues of
Apn which we denote by Y, and we have

AnY(y) = —mg¥y(y)

where y collectively denote the coordinates on N. Therefore, a scalar field in M x N will be
expanded as ¢(z,y) = >, ¢p(7)Yy(y). We could repeat the above procedure step by step. It is
true that the eqigenvalues of the Laplacian m, will be inversely proportional to the volume of N so
taking the limit vol(N) — 0 should be enough to justify why we need to keep only the zero mode
@o(z*). However, this is not quite right. To see why, consider a ¢3 theory on M x N. Then the
expanded action will contain terms of the form

[ am\Jaetgigy @)@ x [ dyy/detg ¥V, ()i )
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which will contribute to the equation of motion for the field ¢, with terms of the form

(O —m2)pqg(z) = ()05 + ...

What we observe now is that keeping only the zero mode but putting ¢, = 0 contradicts the
equations of motion. When this does not happen and our truncated fields are in accordance with
the equations of the higher dimensional theory, we say that we have a consistent truncation. In
the above example, the truncation to the zeroth mode could be consistent if it happens that
[ dy+/detgVY,(y)Yo(y)? = 0. This term only depends on the properties of our compactification
manifold V. It turns out that compactifications on tori of arbitrary dimension are always consistent
with a truncation to the zeroth mode. However, for general spaces, this is far from common. If we
realize that the zero mode truncation is inconsistent then one thing we could try to circumvent the
problem is to make a non-linear ansatz in which case the fields ¢(x,y) are expanded non-linearly
in terms of the Y (y).

In the context of string theory, consistency is an important requirement when performing a com-
pactification since only then can the solutions of the lower dimensional theory also be solutions of
the initial theory (M-theory in our case). It is important to realize however, that there can be many
inequivalent consistent truncations. Recall for example our discussion in Section regarding the
Kaluza-Klein reduction from five dimensional gravity to four dimensional gravity with a U(1) gauge
field A,, coupled to a scalar ¢. Although we did not explicitly mention it there, we saw two different
consistent truncations. The one retained the full isometry group ISO(S') = U(1) which appeared
as a gauge field in the reduced action

1 4 () 1 1
= — o L v
S Tite /d xy/ —detg(x ){R + 622 2(‘3“908 ©w+ 7490]1 Fu

However, we also mentioned a further truncation in which the scalar ¢ is constant and F,, = 0 in
which case we obtain the action of pure gravity in four dimensions. This is also consistent with
the equations of motion. The important lesson to get from this story is that when we compactify
on a background M x N with N compact, consistency does not necessarily imply that we have to
keep all the fields of the ISO(N) gauge group but we can have gauge groups G that are subgroups
of ISO(N). In the Kaluza-Klein example above, the second truncation with ¢ = constant retains
the trivial subgroup of U(1) and this physically means that all the information about the higher
dimensional theory is lost. Therefore, although the solutions of the lower dimensional theory sat-
isfy the higher dimensional equations of motion, not all of the higher dimensional solutions can be
realized in this way.

Our goal now is to reduce the eleven dimensional supergravity on the AdS;7 x S* background which
as we already discussed is a valid solution. Note that the S* has four Killing spinors 1’ satisfying

Dun' = %iml
This means that after compactification from eleven to seven dimensions, we get a maximally su-
persymmetric N/ = 4 theory. We want this reduction to be consistent. However, for general
n-dimensional spheres S™, consistent truncations containing all the gauge fields of the gauge group
ISO(S™) = SO(n + 1) cannot be obtained. Nevertheless, it has been shown that it is possible
for reduction of eleven dimensional supergravity on S and S*. The result that concerns the S4
was obtained in [57, [56] where it was proved that such a reduction is indeed possible and leads to
maximal N = 4 gauged supergravity in seven dimensions, a result which had been expected [5§]
but hard to prove. The term gauged is used to distinguish this compactification from the one of
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the same theory on a torus in which case the the lower dimensional theory is called ungauged. The
complete ansatz for the bosonic part of the metric and the four-form is [59)

1 ) .
ds?, = AV3ds? + ?A*Z/?’TZEIDYZDYJ (4.16)
1 1 —2v1 7 % 4 —2mim Ny, my/n %, %
Fay =65 | ~ ?UA YADY®2 A ... ADY' +EA THMDT2"Y MY DY A .. A DY
+ ;Angg;‘Z ADY"™ ADYUT™YT | — Ty Sy Y7 + ;S(g) A DY? (4.17)
with
U :=2T;;TiY'Y* — AT}, A =T, Y'Y
F3) :=dBj, + 9By A B(j) DY':=dY'+gB )Y’
DT;j := dT;j + ng"f)Tkj + gB* Ty, Yivi=1 (4.18)

In the above expressions, Y are the embedding coordinates of S*. The symmetric matrix T;; has
unit determinant and parametrizes the scalar coset SL(6,R)/SO(6). It can be expressed as Tj; =
Hi_lAHj_anAB with II; 1 being a type of vielbein for the scalar coset manifold SL(5,R)/SO(5),
A, B being gauge indices and the metric n4p being the SO(5) metric which is simply dap. For
later convenience it also useful to introduce the object T4B := Hi_lAHi_ 1B The szl) denote SO(5)
gauge fields, the S(i3) are three-forms, ¢ is the gauge coupling and A plays the role of a warp factor.

The above ansatz is admittedly complicated. For this reason it is useful that we make ourselves
familiar with a simpler version of it. For the sake of simplicity we want to work with a reduction
ansatz in which the SO(5) fields are further truncated. It is known that there exists a consistent
truncation of the N = 4 theory to N/ = 2 seven dimensional supergravity which consists of the
metric, a 2-form potential, three vectors and a dilaton, coupled to a vector multiplet which consists
of a vector and three scalars. This considerably simplifies the setup but we can do even better. A
further truncation was introduced in |60, 61] in which only two U(1) gauge fields and two scalars
survive. The reduction anstatz for the eleven dimensional metric and the four-form field strength
of this model is given by

2
dsiy =APds} + g2 A (Xo_ldug + XN + pd (e + gAh))2)> (4.19)
=1

2 2
~ - 1 L
*Fly) =29 ) (Xiui - AXa)em +9AXo ey + o 3 X R A d(2)
a=0 a=0
1 & . .
T3 ; X2d(p) A (s 9 Aly) A FETy (4.20)

In this ansatz, p; are coordinates satisfying u2 + p? + u3 = 1 and together with the 17,5 they
constitute the set of coordinates on S*. The parameters X1, X» are the scalar fields that parametrize
the metric with X = (X1X3) 2. Together with the two gauge fields AZ@) they constitute the allowed

deformations of the background (round) metric on S*. The gauge fields AZ@) form a basis of the

Cartan subalgebra u(1) x u(1) of so(5). There is also a warping factor A = Y°2_ X,u2. We can
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then notice that if we set X; =1 and Al@) =0 then A = 1 and the metric becomes

2
ds}) =ds? 4+ g* {duﬁ > (dp; + pid; )}
=1

The expression in squared brackets is a round metric on the unit S*. Therefore, this is our back-
ground metric around which we expand. In this case, we can also identify the gauge coupling
parameter g with the inverse of the radius of the S%. Concluding the explanation of the various
terms in we note that x is the Hodge star in eleven dimensions, ¥ the Hodge star in S4, €(7) 18
the Volume form in seven dimensions and F 1 is the field strength associated to the gauge

fields A( 1) This ansatz can be obtained from E 7| by the following relations between the old
and new variables:

Yo = o
Y= pising; Y%= pycosip (4.21)
Y3 = pgsingdy Y = pgcos iy

The condition Y'Y = 1 translates to p3 + % + 3 = 1 as required and the remaining relations
between the scalars and gauge fields are

Tap = diag(X1, X1, X2, X2, Xo) (4.22)
1 _ 12 34 12 34
Ay =-Bi)— By Ay =B — BY) (4.23)

It is convenient to parametrize the scalars X; by two dilaton fields that can be written as a vector
F = (¢1,p2) in the following way

N\»—‘
“G

X =e N (_l'z . c_ij = 451']' — (4.24)
where the normalization of the a; can be fixed by choosing @; = (v/2, \/g ) and @y = (—v/2, \/> In
order to proceed, one should now substitute [£.19) and [£.20] in the eleven d1men81onal supergravity
equations of motion and then try to construct the effective Lagrangian in seven dimensions which
reproduces those equations. This is explicitly done in [60] where the Lagrangian is found to be

L 1 13
—————=R— (09 =V — =) M ?(F},)? 4.25
Varr A 1 it P DL (425)
with the scalar potential V' given by
1
V= 92< —4X 1 Xo - 2X7 1 X2 - 2Xo X 4 2(X1X2)_4) (4.26)

It is straightforward to check that the potential V has two stationary points one of which is a
maximum at X; = X3 = 1 and the other one being a saddle point at X; = X, = 2-1/5,

4.4 The torus action

Having explained the physical origin of the S* ansatz in the supergravity context, we now set to
put it in under the microscope of torus actions. A quick inspection of the truncated background
[4.19|[4:20] reveals that there is an obvious isometric torus action corresponding to translation of the
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ignorable variables v1,12. The corresponding Killing fields are K; = 0y,. The four-form is also
independent of the two coordinates so that

£K1F4 = £K2F4 =0

Since the tori are parametrized by 1, %o the coordinates g, p41, p2 are the coordinates on the base
space. As we saw, those are coordinates in R? satisfying p3 + u3 + p3 = 1. From their definition
4.21| it turns out that since Y; € [—1,1] we must have ug € [—1,1] and pi, p2 € [0,1] so that in
total they do not parametrize a sphere but rather a quarter of a sphere. This is consistent with
the conclusions of Section 2.4l To further explore the orbit space structure, we consider the fixed
points of the action. The norm of the Killing fields is given by

Kil> = g 2ABX ? i=1,2

which vanishes precisely when p; = 0. In the orbit space, these are indeed the two edges forming
the boundary. Their intersection comprises the fixed points of the entire torus action and they
are given by pu; = pe = 0 or pyg = £1. The Killing fields Ki, Ko are therefore the infinitesimal
generators of the only two embedded cycles in T2 whose restricted action on S* has a bolt as fixed
point locus. To verify this, we consider an arbitrary linear combination K’ = kK7 + AK5 with norm

|I{/|2 = ’{291#17,!)1 + 2"{)‘g¢1¢2 + )‘29¢2w2 = g_2A_2/3(’Q2Xf1M% + A2X51M%)

Indeed, the vanishing locus is given by p; = po = 0 for K\ # 0 showing that a generic circle in T2
has two fixed points P, Q). The circle actions induced by the Killing fields K7 and K5 have weights
equal to £1. This is easily deduced from the definitions The translation 1 — ¥ + 8 only
rotates the plane Y'' — Y2 with the rotation matrix being

y! cosfB sinfp\ (Y!
<Y2> ~ <— sinB cosB) \Y? (4.27)
Similarly, the rotation vy — 19 + 3 rotates the Y3 — Y4 plane in the same way. The structure of
the orbit space is shown in Figure

Figure 4.2: The quarter sphere as the orbit space of the torus action on S*. The blue edge denotes
the locus 1 = 0 and the green edge denotes the locus pg = 0. They are loci of isotropy (0, 1) and
(1,0) respectively. The points P, @ are the fixed points of the torus given by ug = +1.

Performing the reduction along 11 of the metric we obtain the ten dimensional background
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A9/3 = g2 A23 xR
st = 2003 A2 4 g2 A0 X a4 X+ X 0+ X+ 9A®)F)]
A = gAEl) (RR 1-form) (4.28)

In order to see what the three dimensional space is, we can set the moduli fields to zero. The three
dimensional part of the metric then becomes (up to a conformal factor):

ds3 = d + dpi + dp3 + p3dys

The first three terms are simply the round metric on the quarter sphere as in Figure [1.2] The last
term is a warped metric on a circle with the size of the circle vanishing at ps = 0 (green line in
Figure . This is indeed a metric on D? which according to our discussion in Section is the
space that we should obtain when the fixed point locus is a bolt.

Note that the RR 1-form in does not depend on the coordinates of the three dimensional
reduced space. Therefore, the pullback of the field strength on the three dimensional space S*/S! ~
D? is zero. This is consistent with the fact that our spherical bolt (which is now the boundary of
D?) does not carry any topological charge as it was defined in Section Note that this agrees
with the interpretation that there are no D6-branes or anti-branes in this reduced spacetime to act
as sources for the RR-form.
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Chapter 5

Conclusion

We have developed a range of techniques to study eleven dimensional M-theory backgrounds with
isometric torus actions. The interest in this direction of research was ignited, as we saw in Chapter
by the existence of the SL(2,Z) duality in Type IIA theory which ensures that reductions on
different circles S' < T2 give rise to equivalent backgrounds. This immediately brought up the
question of whether this duality has some non-trivial implications on the dynamics of the various
theories that it relates with each other.

The curious duality led us to investigate how groups can act on manifolds with special focus on
circles and tori acting on four-manifolds. The prominent position of four-manifolds in this dis-
cussion was dictated by the interpretation of codimension four fixed point surfaces as D6-branes
and D6-anti-branes in the reduced ten dimensional theory (where they become codimension three
objects). Therefore, it was natural from this point of view to adopt the assumption that our eleven
dimensional background is a product of a seven dimensional manifold which we think as the brane
worldvolume and a four-manifold which we interpret as the space transverse to the branes. In this
intuitive picture, isolated fixed points of the four manifold correspond to branes and anti-branes.

The structure of torus actions on four-manifolds revealed that the quotient space can look very
different depending on the circle subgroup of the torus that we choose to quotient out. In physics
terms, this translates to the existence of various Type IIA backgrounds which are dual despite their
apparent disparities. In particular, we were interested in torus actions with two fixed points since
our initial endeavor revolved around the investigation of brane—anti-brane systems. We found that
in this situation a generic circle subgroup of the torus has two isolated fixed points corresponding
to the brane and the anti-brane. However, we also discovered that there are two special circles
whose fixed point locus consists of a codimension two surface, a bolt. The slice theorem also al-
lowed us to conclude that the quotient space under those special circle actions will have a boundary.

Armed with a solid understanding of the geometry behind torus actions, we moved on to investigate
certain backgrounds in String Theory. After a brief detour to the world of Kauza-Klein theory, we
demonstrated a physical argument that identifies fixed points with D6-branes from the perspective
of supergravity. We then proceeded to the Kerr instanton, a space which combined the simplicity
of a purely geometric background with the intricacy of the brane—anti-brane dynamics. We found
out that the D6-D6 pair can balance in the presence of a finely tuned magnetic field. By inspecting
different reduction circles, we discovered conical singularities and of course the sought after special
boundary inducing circle actions. The bolts of those two actions were found to be of two different
types. One of them is a sphere and the other is the disjoint union of two planes. We discussed
some of the implications for the lower dimensional theory.
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While discussing the dynamics of the D6-D6 pair, we introduced the notion of a fluxbrane which
provided the necessary force for the brane—anti-brane to balance. The existence of the fluxbrane
provided further evidence for the non-perturbative nature of the Type IIA background. This is
due to the uncontrollably large values of the string coupling away from the fluxbrane axis. This,
in turn, led to a criterion ensuring that there exists a region where the perturbative picture is
reliable. Applying this criterion picks out a preferred reduction circle. We found that in the limit
of coincident brane—anti-brane the reliable background is indeed the one with a spherical boundary
and no branes. This seems to suggest that when the branes get close to each other, there is no
notion of branes and anti-branes.

Finally, we turned our attention to backgrounds with fluxes and in particular, the AdS; x S* so-
lution of eleven dimensional supergravity. Our interest in this example is also supported by the
existence of a full non-linear ansatz for the S* compactification of eleven dimensional supergravity.
We demonstrated that by performing a certain consistent truncation, we obtain an infinite family of
eleven dimensional solutions which admit an isometric torus action. The four-sphere had also been
a prime example of a manifold with a torus action from a purely mathematical perspective. Using
the slice theorem and the isotropy representation in Chapter [2] we had already deduced that the
quotient of S* should give rise to either S3 or D? which possesses the S? boundary. We confirmed
that these findings are reproduced by our supergravity solutions and we discussed the geometry of
the reduced space.

Our overall exposition has revealed an intriguing prospect regarding the end state of a D6-D6
pair. However, the ultimate fate of those spacetimes with boundaries remains elusive. What is
more, although we have established that spacetimes with boundaries do exist and have to be taken
into account, the mechanism that induces the topological transition is unclear. We have argued
in Section that when the D6-brane and anti-brane come together, the perturbative picture is
highly non-reliable and non-perturbative effects are believed to take control. It would be highly
desirable to obtain a better understanding of the processes that take place in this non-perturbative
regime and to possibly shed light on the issue of the topology change.
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Appendices
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Appendix A

Principal bundles and connections

Definition A.0.1. Let G be a Lie group and let
G—— P
M

be a fiber bundle with fiber G and a smooth action G x P — P. Then P is a principal G-bundle
if

1. The action of G preserves the fibers of 7 and is simply transitive on them, i.e. the action
restricts to

Gx P, — P,
and the orbit map
G — P,
g—g-p
is a bijection for all z € M, p € P,.

2. There exists a bundle atlas of G-equivariant bundle charts ¢; : Py, — G x U; satisfying

#i(g-p) =9 9ilp) Yp€ Py, g€CG

where on the right hand side G acts on (a,z) € G x U; via
g-(a,z)— (g-a,z)

The group G is called the structure group of the principal bundle P.

We first recall that if ® : G x E — E is the free group action then ¢4 := ®(9,—) : £ = E is a
fiber preserving diffeomorphism and D,¢, : T\, FF — T4, F is an isomorphism that preserves the
vertical subspace V,. If we then choose a horizontal space H,, we can ask whether (D, ¢q)H,, is also
a horizontal space at ¢g - u. There is no canonical choice of horizontal subspaces unless we specify
some additional structure (like a metric). The concept of a connection is precisely the additional
structure required to make this non-canonical choice.

Definition A.0.2. Let E — B be a principal G-bundle. A connection (or Ehresmann connection)
on F is a distribution H of horizontal subspaces satisfying the following property

(Du¢g)Hu = d1gu (Al)
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The definining condition is called left-invariance (or right-invariance if we choose a right action).
Sometimes it is useful to consider connections that are not invariant. In this context, invariant
connections are also called principal connections. This definition, albeit intuitive, is not tailored
for practical applications. For this reason, we introduce the following related concept.

Definition A.0.3. Let E — B be a principal G-bundle. A connection one-form w € Q'(P, g) :=
g ® T*P is a projection of T, P onto the vertical component V,, P ~ g. The projection property is
summarized by the following requirements

o W(X#)=Xforall X € g
® pyw = Adyw for all g € G.

A connection one-form is also called a gauge field. The choice of a connection form is equivalent to
the choice of an Ehresmann connection as shown in the following theorem.

Theorem A.0.1. There is a bijective correspondence between Ehresmann connections on a prin-
cipal G-bundle F — B and connection 1-forms given as follows:

e Let H be an Ehresmann connection on P. Then every element Y € T,,E splitsas Y = X# +Y#
with Y € #,, a horizontal vector and X# a vertical vector which can be uniquely written

as the fundamental vector of some X € g. We then define a connection one-form w such that
wu(Y)=X €g.

e Conversely, let w € Q'(E, g) be a conenction one-form. Then #, := kerw defines an Ehres-
mann connection.

A proof can be found in any introductory textbook on gauge theory like [62] to which we refer
for further reading. Locally the connection one-form can be given as follows. Let {U;} be an
open cover of the base B and s; : U; — E be local sections that trivialize the bundle. Then
A; = stw € geQ(U;) are called local gauge potentials. On an overlap U;NUj if welet g;5 : Ujj = G
be the transition function then the local gauge fields transform as

.Aj = Adg”Az + gigl Clgl'j

Conversely, a collection of such local gauge fields transforming in this way define a unique global
connection one-form. This local way of expressing connections is used in physics and we will
explicitly use it in all of our applications.
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