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Abstract

Given an M-theory background, a reduction along the orbits of an isometric circle action must
be performed in order to retrieve Type IIA String Theory. We study M-theory backgrounds with
isometric torus actions. In this case, the choice of a reduction circle is highly non-unique. However,
different reduction circles give rise to dual Type IIA backgrounds. We consider actions on eleven
dimensional backgrounds, allowing for possible fixed points of codimension four. The latter are
interpreted as D6-branes and D6-anti-branes. We then use the torus action to conclude the existence
of special reduction circles that lead to Type IIA on a manifold with boundary. We demonstrate
this phenomenon explicitly for two special backgrounds and we examine some key aspects of their
structure.
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Chapter 1

Introduction

1.1 Why D-branes?
This is a thesis about D-branes. Therefore, it should be appropriate to initiate our discussion with
a quick review regarding their origins and their importance in the development of String Theory.
Branes are objects that appear in the most fundamental form of String Theory which goes under
the name bosonic String Theory. This theory necessarily lives in 26 dimensions [1], often called the
critical dimension. At first sight, this might appear as an unreasonably large number of dimen-
sions. However, since it could in principle be any natural number, it is fairly close to the number
of dimensions in our universe. The necessity for so many dimensions is dictated by a consistency
requirement, the cancellation of a conformal anomaly 1. It was quickly realized that the introduc-
tion of open strings allowed for Dirichlet boundary conditions so that an open end of the string is
confined to lie on a hypersurface which was later called a D-brane with the "D" standing for Dirichlet.

Even from this vague definition, it is clear that D-branes are objects of arbitrary dimension as long
they do not exceed the dimension of spacetime itself. The dimension of a D-brane is the most
important piece of information that we can have about it. This is why, when we refer to a D-brane
of known dimension equal to p + 1, we call it a Dp-brane. Like particles, branes extend in the
time direction of spacetime. In this sense, a Dp-brane is an object which extends in p spacelike
dimensions and the one time direction. It follows that a D0-brane is an ordinary particle and a
D1-brane is a one-dimensional object, namely a string. In the same way, a D(-1)-brane is a point
in spacetime and corresponds to an instant of time. For this reason, we call it a D-instanton. A a
pair of D-branes is shown in Figure 1.1.

From this premature perspective, a D-brane is nothing but an artifact of the human brain. It
simply helps us visualize the allowed motion of an open string. This was nothing new for physics.
Every physics student has encountered such surfaces arising from constraints, for example in the
study of a space vehicle moving on the surface of a planet. Such constraint surfaces are ubiquitous
and they can be handled quite efficiently in the context of Lagrangian and Hamiltonian mechanics.
However, there is something quite remarkable about D-branes which makes them worth spending
our valuable time on:

D-branes are dynamical objects in String Theory!

If we think about it, such a statement makes sense since in a theory of gravity like String Theory,
what we mean by a hypersurface is ambiguous as long as spacetime itself is dynamical and can

1There are also formulations of String Theory in dimensions different from the critical dimension. Those are
rightfully called non-critical String Theories.
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Figure 1.1: Two D-branes and some open strings that can end on them.

fluctuate. Under the light of this revolutionary discovery, String Theory should probably be called
Brane Theory. Indeed, from our current understanding of String Theory, strings are as fundamental
as D-branes. Just as strings have an action, the Polyakov action, which dictates how they evolve in
space and time, D-branes also have their action and can be treated like multi-dimensional particles.

If D-branes are to be promoted to fundamental objects, then we should expect them to have various
traits in common with ordinary particles in field theories. One such feature is the existence of anti-
particles. Particles and anti-particles are identical in their mass and spin but they have opposite
electric charge. The most famous example is the electron whose anti-partner is called anti-electron
or, more commonly, positron. Collectively, we refer to anti-particles as anti-matter. Anti-matter
behaves much the same way as ordinary matter and the dominance of matter over anti-matter in
our universe had been a long standing conundrum for physicists after the discovery of the positron.
Great progress has been made in answering this fundamental question after the discovery of CP
violation in the weak interactions which was first observed in 1964 and later explained theoretically.

In any case, irrespective of whether they are around us or not, anti-particles exists and if String
Theory treats them on equal footing with D-branes, then there should also exist anti-branes. Indeed,
anti-branes exist and they appear naturally as we will see in various instances of this thesis. In
addition, there is a nice way to interpret them as generalized anti-particles. Indeed, recall from
standard field theory that in terms of Feynman diagrams, anti-particles can be thought of as
particles going back in time. In slightly more abstract language, we can say that the world-lines
of particles and anti-particles have opposite orientations. In this way, we can think of anti-branes
as being obtained by a change of orientation of the world-volume of a standard D-brane. For the
anti-particles, the world-volume is one-dimensional so there is only one direction whose orientation
can be switched. However, for general D-branes of higher dimension there are many directions
whose orientations we can change. This is why it would be misleading to say that anti-branes are
branes going backwards in time.

1.2 Superstring theory
Bosonic String Theory was successful in planting the seed for a theory of quantum gravity but
was hampered by the existence of a tachyon in the spectrum of closed strings. This closed string
tachyon still poses a subject of controversy and uncertainty as to what it might imply for bosonic
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String Theory itself. Nevertheless, the tachyon is not the only herald of distress since, as its name
accurately indicates, bosonic String Theory is a theory of bosons and only accounts for a world
without fermions. Around the dawn of the seventies, theoretical physicists hit two (or even more)
birds with one stone when they discovered a consistent way to introduce fermions [2] that also
works as a miracle that eliminates the tachyonic mode of closed strings. The theory that emerged
was called Superstring Theory.

The "super" in Superstring is due to the use of supersymmetry, often abbreviated SUSY, which
is the magical ingredient that was missing from bosonic String Theory. Physical theories are in-
variant (at least locally) under the Poincaré group which consists of rotations and translations.
Put a little differently, the Poincaré group is the group of isometries of Minkowski spacetime. The
corresponding Lie algebra, called the Poincaré algebra is given by t o so(1, n − 1) with n being
the dimension of spacetime and t ' Rn corresponding to translations. The use of supersymmetry
extends the Poincaré algebra by adding anti-commuting generators. The resulting algebra is called
super-Poincaré algebra. The new anti-commuting generators act on particle states by changing
their spin by 1

2 . This is how fermions are introduced in a theory of bosons like bosonic String
Theory. Every bosonic particle has its superpartners which are the set of states that can be reached
by applying supersymmetry generators on the given state.

We can choose the number of supersymmetry generators that we want in our theory. The most
elementary supersymmetric theories have one supersymmetry generator Qα and are called N = 1
theories. We can add more supersymmetry generators Qαi with i = 1, ...,N . Theories with N ≥ 2
are said to have extended supersymmetry. For example in an N = 1 theory, a bosonic scalar field
of spin zero can be acted upon by the the generator Qα to give a spin-1

2 field. Applying the same
generator twice will simply return zero, since the anti-commutation relations of the supersymmetry
generators imply (Qα)2 = 0. In the presence of extended supersymmetry we could act with different
generators to obtain higher spin states all of which will be related with each other by supersymmetry.

With the addition of this invaluable ingredient, Superstring Theory was born. However, due to the
existence of some choices involved in the incorporation of supersymmetry in String Theory, there is
not one but five theories. What they have in common is that contrary to the bosonic theory, those
five Superstring Theories are defined in ten dimensions [3] which already brings us considerably
closer to our phenomenological goal of describing a world of four dimensions. The five superstring
theories are

• Type IIA and Type IIB: Those areN = 2 theories. They will be our main focus throughout
this thesis.

• Heterotic String Theories: Those are N = 1 theories. There are two types of Heterotic
strings called Heterotic E8×E8 and Heterotic SO(32). As their names suggest, their difference
lies in the gauge groups that appear in those theories.

• Type I : A theory similar to Type II theories but the strings (both open and closed) are
unoriented. This is the only theory with unoriented strings.

Those five theories are in principle different by construction. However, it has been discovered that
they are different sides of the same coin. More precisely, those theories are interrelated by a web of
dualities. We will not try to give a complete account of those dualities since as already proclaimed,
our main tools will be Type II theories. From now on, we will practically forget about the existence
of the Heterotic and Type I strings but it is useful to keep in mind that due to the aforementioned
dualities, the physical results one gets in one superstring theory are universal.
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1.3 Type II supergravities
One of the achievements of bosonic String Theory is that at low energies it reproduces the Einstein
equations. We would expect that something similar should hold for Superstring theories. The low
energy limits of the Type IIA and Type IIB Superstring Theories are called Type IIA and Type IIB
supergravities (or SUGRA’s for short). Those are N = 2 supersymmetric theories of gravity (thus
the name supergravity). They comprise the standard Einstein gravity together with additional
bosonic and (due to supersymmetry) fermionic fields.

Instead of presenting the ten-dimensional N = 2 supergravities, we start with a theory which is
believed to be more fundamental, in a sense that we will shortly explain. This is eleven dimensional
supergravity. It is an N = 1 theory and is in fact maximal in the sense that we cannot construct
higher dimensional supergravities with Lorentzian signature 2 and in that it is the only supergravity
in eleven dimensions. Finally, the reason why it deserves the status of a more fundamental theory
compared to Type II supergravities is that in a sense 11d supergravity contains them. What this
means is that we can derive Type II supergravities by starting with this maximal 11d supergravity.
Let us demonstrate in broad strokes how this is achieved. The bosonic part of the action of the
11d theory reads

Sd=11 = 1
2κ2

11

∫ [
R ∗ 1− 1

2 ∗ F4 ∧ F4 −
1
6F4 ∧ F4 ∧A3

]
(1.1)

Here the first term is the standard Einstein-Hilbert term giving rise to pure gravity in eleven di-
mensions, the 3-form A3 is an additional bosonic field of the theory and F4 = dA3 is its field
strength. There is a U(1) gauge symmetry for which A3 is the gauge field and it transforms as
A3 → A3 + dΛ2 for an arbitrary 2-form Λ2. The last term in 1.1 is the Chern-Simons term which
under the aforementioned gauge transformation picks up a total derivative. Everything else is
manifestly invariant and the invariance of the action follows. The second term of the action is a
standard kinetic term. The fermionic degrees of freedom, which are absent in the action we wrote
down, comprise a gravitino. Finally, κ11 denotes Newton’s constant in eleven dimensions and * is
the Hodge star operator in eleven dimensions.

Having examined some key points of 11d supergravity, we move on to Type IIA. This was known
to be a consistent supergravity theory in ten dimensions but it was later realized that it is in
fact deeply related to 11d SUGRA. The Type IIA SUGRA contains a variety of fields unlike 11d
SUGRA which contains only three. Those are listed below.

• A graviton and a gravitino.

• A dilaton (scalar field) φ and a dilatino which is its superpartner.

• A 2-form gauge potential B2 with field strength H3 = dB2.

• A 1-form and a 3-form C1, C3 which are again gauge fields. We can dualize those fields to
get their "magnetic duals" in a process similar to how one obtains a magnetic field strength
in classical Electromagnetism. We first consider the field strengths F2 = dC1 and F4 = dC3
and dualize them to get F6 = ∗F4 and F8 = ∗F2. Those "magnetic" field strengths should
correspond to some potentials such that F8 = dC7 and F6 = dC5. In this way, one concludes
that the existence of the gauge fields C1, C3 implies the existence of C5, C7. The argument
can of course be reversed.

2The argument for this is pretty simple. A supersymmetric theory in 12 dimensions could be toroidaly compactified
to 4d and would give rise to a theory with at least N = 16. This amount of supersymmetry is excluded because it
implies the existence of fields with spin higher than two.
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Owing to the way they are derived, the bosonic fields are divided into two categories. The (bosonic)
fields contained in the first three bullets belong to the NS-NS sector and the fields of the last bullet
to the RR-sector. This is why they are often referred to as NS-NS or RR fields respectively. Before
we write down the action of Type IIA SUGRA, it is convenient to define the invariant field strength

F̃4 := F4 − C1 ∧ dB2

The bosonic action of Type IIA SUGRA is the following:

SIIA = 1
2κ2

10

∫ [
e−2φR ∗ 1 + 4e−2φdφ ∧ ∗dφ+ 1

2e
−2φH3 ∧ ∗H3 −

1
2F2 ∧ ∗F2 −

1
2F4 ∧ ∗F4

− 1
2B2 ∧ dC3 ∧ dC3

]
(1.2)

This action can be obtained as a low energy effective action of Type IIA String Theory and the
length scale set by κ10 can be given in terms of the string length α′ which is the only length scale
in String Theory. Their relation is

κ10 = 1
4π (4π2`2s)4

We now set to demonstrate how this Type IIA SUGRA can be obtained as a certain limit of 11d
supergravity [4, 5]. Their relation lies in the heart of this thesis and a complete account of the
underling mathematical ideas will be given later in Section 2.5. However, we will attempt here
a quick take on the subject with particular emphasis on the physics of the story. Intuitively, the
idea is to start with the theory in eleven dimensions and assume that one dimension is circular 3

so that we can perform a dimensional reduction which pictorially amounts to shrinking the circle
so that we get an effective theory in ten dimensions. This is a special case of the more general
compactification which is a fundamental concept in String Theory.

Under the reduction, different modes of the higher dimensional theory, regroup to form the lower
dimensional degrees of freedom. Denoting the circular dimension with x11, the eleven dimensional
metric decomposes into the component g11 11 which is a scalar in ten dimensions, the 1-form gm 11
and the symmetric 2-tensor gmn with ten dimensional indices. Those comprise the dilaton, RR 1-
form C1 and metric of the Type IIA supergravity. The 3-form A3 decomposes into a 2-form Amn11
and a 3-form Amnk in ten dimensions which correspond to the NS-NS 2-form B and the RR 3-form
C3. An expansion of the action 1.1 in terms of the lowest dimensional modes indeed gives the Type
IIA action 1.2. Note that an important assumption in order to transform the eleven dimensional
integral into a ten dimensional one is that the components of the fields do not explicitly depend on
the circular dimension. This will be later explained more rigorously to translate to the requirement
that the circle dimension is an isometric direction. Note that the size of the eleventh direction (the
circle) becomes the dilaton in ten dimensions which is known from String Theory arguments (see
e.g. [6]) to be related to the string coupling constant gs via

gs = eφ

Therefore, a small circle implies a small string coupling and consequently an accurate perturbative
ten dimensional Type IIA String Theory. It is natural to ask what happens when the size of the
circle grows large. It is conjectured, and indeed a lot of evidence corroborates this idea, that for

3The precise statement here would be the existence of a circle action which we will define and explore in the
following chapter.
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arbitrary circle size the theory is a non-perturbative formulation of String Theory. We do not
know what this theory is but we know that at low energies it must reduce to eleven dimensional
supergravity. This putative non-perturbative formulation of String Theory goes under the name
M-theory. More pictorially we have the following commutative diagram.

The next important building block for our understanding of the low energy dynamics of String
Theory is Type IIB supergravity, which is the low energy limit of Type IIB String Theory. We will
present it in the same way we did for Type IIA by starting with an overview of its field content
which is

• A graviton and a gravitino.

• A dilaton (scalar) and the dilatino.

• A 2-form gauge field B2 with H3 = dB2

• A 0-form C0, a 2-form C2 and a 4-form C4 along with their magnetic duals C8 and C6 (note
that the dual of C4 is itself).

It is worth noting here that the NS-NS sectors of Type IIA and Type IIB supergravities are the
same. We introduce again, as we did for Type IIA, some field redefinitions on the basis of gauge
invariance:

F̃3 := F3 − C0 ∧H3

F̃5 := F5 −
1
2C2 ∧H3 + 1

2B2 ∧ F3

Here we stick to the notation Fn := dCn−1. There is an additional restriction which cannot be
derived from an action but has to be imposed by hand. This is the self-duality of F̃5 which reads

F̃5 = ∗F̃5

Having defined the necessary fields, we can now express the action of Type IIB supergravity in a
concise form.

SIIB = 1
2κ2

10

∫ [
e−2φR ∗ 1 + 4e−2φdφ ∧ ∗dφ− 1

2e
−2φH3 ∧ ∗H3 −

1
2F1 ∧ ∗F1 −

1
2 F̃3 ∧ ∗F̃3

− 1
4 F̃5 ∧ ∗F̃5 −

1
2C4 ∧H3 ∧ F3

]
(1.3)

Note that it is indeed impossible to impose the self-duality constraint on F̃5 at the level of the
action since this would imply F̃5∧∗F̃5 = F̃5∧ F̃5 = 0. This is why this condition has to be imposed
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on top of the equations of motion. Note also the additional factor of 1/2 in front of the F̃5 ∧ ∗F̃5
term which accounts for the fact F̃5 has twice as many degrees of freedom in the action before the
self-duality condition is imposed.

Now that we have outlined some key features of Type II supergravities, we would like to discuss how
branes fit into this framework. Recall that in bosonic String Theory we had branes of arbitrary
dimension. In principle, this is also true for Type II theories. We can define submanifolds of
arbitrary dimension less or equal than ten. Nevertheless, the dynamical nature of branes raises an
additional question pertaining to their stability. This turns out to be more subtle than in bosonic
strings. Consider a classical particle. It couples to an electromagnetic potential (1-form) Aµ via
the action

S ∼
∫
W
A =

∫
W
Aµ

dxµ

dτ
dτ

where W is the world-line of the particle parametrized by the proper time τ as xµ = xµ(τ). As we
have already remarked, from a more abstract point of view, a particle is a D0-brane so we would
expect that analogous properties hold not only for particles but also for higher dimensional objects.
It was known for example since the times of bosonic String Theory that the fundamental string 4,
which we denote F1, couples to the Kalb-Ramond 2-form B2 via

S ∼
∫
W
B2

with W the world-volume (or world-sheet) of the string. However, before the advent of superstring
theory there seemed to be insufficient fields for the D-branes to couple to. It turns out that a
Dp-brane couples to an RR (p+1)-form field Cp+1 via the action

S ∼
∫
Dp
Cp+1

with the integral carried on the volume of the Dp-brane. In this sense, Dp-branes are sources of
the RR field Cp+1. This remarkable property of D-branes was first discovered in [7] and although
simple in its core, it has important consequences for the stability of the branes. This is because
a Dp-brane is stable as long as it couples to some field in the theory. Just as it happens with
electrically charged particles, the conservation of charge prohibits the spontaneous annihilation of
the particle itself. On the other hand, Dp-branes whose dimension is not suitable to couple to an
RR potential of the theory are unstable. This leads to the following conclusion regarding the brane
content of the two Type II theories

• Type IIA theory: Since we have the RR-forms C1, C3, C5, C7 we expect that there are D0,
D2, D4 and D6-branes.

• Type IIB theory: Here we have all the even RR-fields C0, C2, C4, C6, C8. The corresponding
branes are the D(-1) (the instanton), D1, D3, D5, D7 and D9-branes.

The branes that couple to dual potentials are often called dual branes. For example, in Type IIA
the D0 and D6 couple to the C1 and C7 which are the magnetic duals of each other. This is why

4The fundamental string is the object that we start with when we study String Theory. It is not the same as
a D1-brane although they have the same dimension. This makes sense since if this was the case, then only Type
IIB theory would have strings. This would apparently be inconsistent since the starting point of all String Theories
(including Superstrings) is the quantization of a one-dimensional object.
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Type IIA F1 NS5 D0 D2 D4 D6 D8
Type IIB F1 NS5 D(-1) D1 D3 D5 D7 D9

Table 1.1: Branes in Type II theories

branes come in pairs in each theory just like RR fields come in pairs. We can play the same game
for the NS-NS gauge field B2. This is the field to which the fundamental string couples and has
a 3-form strength H3 whose dual is a 7-form coming from a 6-form potential. This should couple
to a six-dimensional brane which should exist in both Type II theories (since the NS-NS 2-form
does). The brane which couples to this potential is called NS5-brane. We could say that Type IIA
contains all odd dimensional branes and Type IIB contains all the even dimensional ones. However
something is still missing since there is no D8-brane in Type IIA. It turns out that such a brane
exists in a version of Type IIA supergravity called massive supergravity or Romans supergravity
which includes a scalar field analogous to a cosmological constant. Associated to this cosmological
constant there is a 9-form to which the D8-brane couples (see e.g. [8]). To recap, we present the
brane content of Type II supergravities in Table 1.1.

1.4 Dualities
Dualities in String Theory are equivalences between seemingly different theories. In some sense,
they serve as dictionaries that allow us to translate between different formulations of the same
underlying physics. In principle one could propose that we only use one language, namely one
String Theory so that dualities would no longer be useful and our lives would be easier. However,
due to the intricate nature of Sting Theory many aspects of which remain elusive, it is often
imperative to use a certain picture which is well suited for the problem at hand and then use
dualities to compare it with what we know from a different formulation. We have already noted
that the five different Superstring Theories are in fact related by dualities. This holds true for
the Type II theories which are related among themselves and with M-theory via the mechanism
described in the previous section. Here we will attempt a quick overview of the two main dualities.

1.4.1 T-duality

T-duality [9, 10] is a symmetry with a long history since it existed even in the context of bosonic
String Theory where it relates the theory to itself. In Superstring theory, T-duality relates the
two Type II supergravities. In order to perform this duality, we need to pick out a special circular
direction in our ten dimensional spacetime. This is completely analogous to the step required to get
from M-theory to Type IIA String Theory and whose details and implications will be thoroughly
explored in the next chapter. Let us start in Type IIA, call the coordinate in the circular direction
X10 and suppose that its length scale is R. Then applying T-duality lands us to Type IIB with
a circular direction of length scale inversely proportional to R. More specifically, if `s denotes the
string length then under T-duality we have

R←→ `2s
R

gs ←→ gs
`s
R

In this sense T-duality relates Type IIA/IIB compactified on a circle of radius R to Type IIB/IIA
compactified on a circle of radius `2s/R. T-duality also changes the field content and this is of course
to be expected since Type II theories have different RR fields. Under this duality, the "10" index
(with x10 the circular dimension) is added to the anti-symmetric indices of the field Cp if it was
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not there (so that it becomes a (p+ 1)-form) or the "10" index is deleted if it was already there (so
that we get a (p− 1)-form). By passing to branes and using the correspondence between RR fields
and Dp-branes we find that a Dp-brane becomes a D(p+1)-brane if it did not extend along the x10

circle direction or it becomes a D(p -1)-brane if it wrapped the circular direction. This holds for
the branes that are charged under the RR fields. The fundamental string F1 and NS5-brane are
simply mapped to themselves.

1.4.2 S-duality

As we saw, T-duality relates the Type II theories. There exists another duality, called S-duality
that was first discovered in the context of heterotic theory [11]. It was subsequently discovered that
S-duality relates Type IIB theory to itself [12]. In contrast to T-duality, it is a non-perturbatve
duality in the sense that it relates theories at strong coupling to theories at weak coupling. In it’s
simplest form S-duality acts on the coupling constant as follows

gs ←→
1
gs

Such an exchange begets an exchange in the degrees of freedom of the theory that are excited. For
example, branes are inherently non-perturbative objects. What we mean by this can be understood
if we examine the tension (mass density) of a Dp-brane which can be shown to be given by [7]

TDp = 2π
gs

1
(2π`s)p+1

This justifies why one first discovers D-branes as immovable, non-dynamical objects. It is because
the approach that we have to String Theory is purely perturbative meaning that the coupling is
very small so that the tension of a Dp-brane is indeed so large that it practically behaves like a
solid wall. This is frustrating because it reminds us of the limitations that a perturbative approach
entails but at the same time fascinating since every bit of information that we get about D-branes
is a peek to the world of non-perturbative String Theory. Contrary to Dp-branes, the fundamental
string has tension

TF1 = 1
2πα′ = 1

2π`2s
This is why the fundamental string is a perturbative object as it should be since it serves as the
starting point in the definition of perturbative String Theory. This also clarifies the sense in which
the D1-brane (sometimes called D-string) is different from the fundamental string. Indeed, although
they have the same dimension, they interact with gravity in a different way since they have different
tension. The tension of the D-string is

TD1 = 1
2πgs`2s

This implies that if the coupling becomes very large, it can be the case that the D-string be-
comes lighter than the fundamental string and in this sense it will rightfully claim the title of the
more "fundamental" object. Indeed, this is what happens under S-duality. It is often the case
(especially in the context of supergravity) that non-perturbative configurations are referred to as
solitons, a term which will be more thoroughly explained later. This is why it is frequently said
that S-duality exchanges the elementary (perturbative) excitations of a theory with the solitonic
(non-perturbative) ones and vice versa.
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Now that we have gotten a feeling of what S-duality is and its significance for uncovering non-
perturbative effects that would otherwise be completely out of reach with our humble perturbative
methods, we will present it in more detail. In fact, we will discuss a much larger symmetry of Type
IIB supergravity which contains S-duality. This global symmetry corresponds to the non-compact
group SL(2,R). As usual, when we want to discover symmetries, the right place to look is the
action of a theory. We will therefore go back to the Type IIB action 1.3 and in order to make the
sought after symmetry manifest, we will perform some redefinitions. We first introduce a vector
(of 2-forms) given by

~B =
(
B2
C2

)

This vector contains the NS-NS and RR form to which the fundamental and D-string couple.
Consider an element Λ ∈ SL(2,R) given by

Λ =
(
d c
b a

)

Under the action of Λ the 2-forms transform as a doublet and the action is given concisely in terms
of the vector ~B as follows:

~B −→ Λ ~B

with the action on the right-hand side being the standard matrix multiplication. Since the matrix
elements of Λ do not have any spacetime dependence, by taking the differential of the two sides,
we find that the same transformation law applies to the 3-form field strengths. The next redefined
field we introduce is a complex scalar field called the axio-dilaton field τ which plays an important
role in String Theory compactifications. As its name suggests, it is formed by combining the field
C0 (which is traditionally called the axion field) with the dilaton φ. In particular we have

τ = C0 + ie−φ (1.4)

Recall the relation between the dilaton and the string coupling which implies that the complex
part of τ is the inverse of the coupling constant. Under the action of the element Λ as above, the
transformation of the axio-dilaton reads

τ −→ aτ + b

cτ + d

In order to make our notation even more compact, we can introduce the symmetric SL(2,R) matrix

M = eφ
(
|τ |2 −C0
−C0 1

)

This essentially helps to simplify the admittedly complicated transformation law for τ . The trans-
formation of the new objectM follows the simpler linear rule

M−→ (Λ−1)TMΛ−1

Finally, the last field that transforms under the action of Λ is the metric. This is evident if we
look at the action 1.3 where the Einstein-Hilbert term is multiplied by a function of the dilaton.
Since the dilaton transforms non-trivially under the SL(2,R) action, if we want the action to be
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invariant, the metric has to transform as well. In order to overcome this problem, it is useful to
make a field redefinition such that the Einstein-Hilbert term is not multiplied by anything. This
redefinition only needs to involve the metric and the dilaton. We define a new metric given by

gEµν = e−φ/2gµν

The new metric gEµν is often called Einstein metric and the old one gµν is referred to as the string
metric. This redefinition amounts to going from the string frame to the Einstein frame. This
change of frame has the following effect on the first term of the Type IIB action 1.3

1
2κ2

10

∫
d10x
√
−ge−2φR = 1

2κ2
10

∫
d10x

√
−gE

(
R− 9

2∂
µφ∂µφ

)
In the right hand side, the Ricci scalar is calculated with the Einstein metric. We chose to write
the integral in coordinates and explicitly write the integration measure to stress out the use of a
different metric. Having introduced this new notation we can now proceed to re-express the Type
IIB action as

SIIB = 1
κ2

10

∫
d10x
√
−g
(
R− 1

12
~HTµνρM ~Hµνρ + 1

4 tr
(
∂µM∂µM−1))

− 1
8κ2

10

(∫
F̃5 ∧ ∗F̃5 + εijC4 ∧H(i) ∧H(j)

)
Here we used the Einstein metric. In the last term we chose to express the matrix multiplication
in components so that H(i) denotes the i’th component of the vector ~H. We can also express F̃5 in
a manifestly invariant form as

F̃5 = F5 + 1
2εijB

(i)
2 ∧H

(j)
3

Additionally, the Hodge star operator is invariant under a rescaling of the metric like the one that
we used to go from the string to the Einstein frame so that ∗F̃5 is also invariant. This shows that
not only the action but also the self-duality condition of F̃5 is invariant under the SL(2,R) action.
The invariance of all the equations of motion shows that this is a global symmetry. We claimed in
the beginning of this discussion that S-duality is contained in this SL(2,R) symmetry. To see this
take a background with vanishing C0 and pick the SL(2,R) element

Λ =
(

0 1
−1 0

)

This acts on the axio-dilaton by τ −→ −1/τ so that when C0 = 0 we get the S-duality transforma-
tion gs −→ 1/gs.

The discovery of the global SL(2,R) is great news. However, recall that Type IIB supergravity,
for which we proved that the symmetry holds, is only the low-energy limit of Type IIB String
Theory. The natural question then arises whether this is an honest symmetry or just a low-energy
artifact. It turns out that this symmetry is actually broken by quantum effects and it is believed
that the subgroup SL(2,Z) survives as a true symmetry of the full theory. One argument for why
it is imperative to only consider integer coefficients in the transformation can be given in terms of
the violation of the Dirac quantization condition (see section 18.3 of [13]).
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1.5 A geometric SL(2,Z) transformation
Having established this powerful symmetry for the Type IIB superstring theory, we would like to
address the question of what it begets for the Type IIA theory. To understand that, it is useful to
consider an M-theory with an isometric torus action or in the common physics language M-theory
on a torus. This means that we have two isometric directions on which we can reduce M-theory
to get two Type IIA backgrounds. Those backgrounds are in principle different. Our purpose is to
argue that they are dual. It can be shown [14, 15] that the SL(2,Z) symmetry of Type IIB super-
gravity is the same as the SL(2,Z) symmetry of the torus on which eleven dimensional supergravity
is compactified on.

To demonstrate explicitly what this means, consider the independent cycles c1 and c2 in the isomet-
ric T 2 of M-theory and suppose that they are related by an element Λ ∈ SL(2,Z) so that Λc1 = c2
where c1, c2 are represented as column vectors. The more rigorous way to do that is to consider
c1, c2 as elements of the homology group H2(T 2) which is indeed a two dimensional vector space
on which the action of SL(2,Z) is standard matrix multiplication. The statement that this action
is the same as the SL(2,Z) action on Type IIB amounts to the commutativity of the diagram in
Figure 1.2. The dashed arrows denote the duality at the level of Type IIA which geometrically,
when lifted to M-theory, translates to the torus symmetry. This dashed arrow is a type of relates
different Type IIA theories. However, it is crucial that the existence of the diagram heavily relies on
the existence of an isometric circle in the ten dimensional theory [16]. This is why it is important
that we start with a torus isometry in eleven dimensions.

Figure 1.2: The correspondence between an SL(2,Z) transformation on the torus in M-theory and
an SL(2,Z) transformation of the Type IIB theory.

The commutativity of the diagram can be proved by an explicit application of the various dualities
and transformations (see e.g. section 8.4 of [17]). It turns out that the axio-dilaton τ on the Type
IIB side corresponds to the complex structure parameter τ of the torus on the M-theory side. By
this we mean that we think of T 2 as the quotient of C by the lattice generated by 1 and τ ∈ C.
Every different choice of τ results in a different induced complex structure in the quotient. However
any two complex structure parameters related by an SL(2,Z) transformation are equivalent (they
define the same complex structure). The group SL(2,Z) in this context arises very naturally as the
modular group of the torus.

We have therefore discovered that the non-perturbative SL(2,Z) symmetry of Type IIB superstring
theory admits a purely geometric interpretation in terms of the modular group of the torus that acts
isometrically on an M-theory background. Additionally, we now understand that in the presence of
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an isometric T 2 acting on an M-theory background, Type IIA backgrounds related by reductions
along different cycles of the torus should be dual. We thus expect them to exhibit the same kind
of physics. In this thesis, we want to exploit this duality to understand the dynamics between
D6-branes and D6-anti-branes in Type IIA superstring theory. Before we do that we will need to
understand their geometric origin. Indeed, we will soon set out understand the theory of group
actions and why they are important for studying string backgrounds. But before we do that, we
will give a short motivation for why studying brane–anti-brane systems is a cornerstone for the
development of a better understanding of string theory.

1.6 Brane–anti-brane systems and tachyons
We have already mentioned the existence of tachyonic degrees of freedom that plagued bosonic
string theory since the first days of its development. This tachyon was believed to indicate an
instability and its elimination is still considered one of the most important landmarks of superstring
theory. The removal of the closed string tachyon is possible due to the GSO projection [18], which
ensures that the closed string tachyon can be removed from the theory spectrum without violating
some fundamental consistency requirements related to modular invariance. This miracle projection
however cannot alleviate the open string tachyonic modes that arise in brane–anti-brane systems.
Indeed, there are two tachyonic modes arising from open strings stretching from the brane to the
anti-brane and vice-versa. We therefore have the following:

In superstring theory, there are tachyonic modes associated to open
strings stretching between branes and anti-branes.

The cryptic nature of tachyons as carriers of imaginary mass is demystified once a field theoretic
approach is adopted. This can be easily illustrated by considering a scalar field φ with potential
V (φ). A perturbation expansion around φ = 0 reveals that V ′′(0) is the quadratic coefficient and
therefore has the interpretation of a mass squared term (ignoring cubic and higher order terms).
From this perspective, a negative mass squared simply means that we are expanding around a
maximum of the theory and the tachyon is the harbinger of the breakdown of perturbation theory.
Put differently, since our theory is unstable under small perturbations around the expanding point
φ = 0, using perturbation techniques makes no sense. At this point, the sensible thing to do is
perform our perturbation expansion around a minimum of the potential.

The inherent instability of the spaces containing brane–anti-brane pairs will be a guiding principle
for us in the following. The main question that we seek to answer is how the brane–anti-brane
system evolves and how to understand its unstable nature. The methods that we will employ are
inherently geometrical and the field theoretic nature of the tachyonic instability is obscured but we
should not forget that it is our main argument for expecting the system to be unstable in the first
place.
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Chapter 2

Group actions on manifolds

2.1 General properties of group actions
In this chapter we attempt to give a fairly general account of group actions on four-manifolds. In
particular we will focus on circle and torus actions.

Definition 2.1.1. A left action of a group G on a set M is a map

Φ : G×M −→M

(g, p) 7→ Φ(g, p) := g · p = gp

satisfying the following properties

• (g · h) · p = g · (h · p) for all p ∈M and g, h ∈ G.

• e · p = p for all p ∈M where e is the identity element of G.

The case of interest for us is when M is a smooth manifold and G a Lie group in which case we can
require the map Φ to be a smooth map. Such actions are called smooth. A space M acted upon by
a group G is often called a G-space. The natural morphisms between G-spaces are G-equivariant
maps (or simply equivariant maps)

Definition 2.1.2. An equivariant map is a map f : M → N between G-spaces that commutes
with the group action namely

f(g · p) = g · f(p) ∀p ∈M

An equivariant map which is also a diffeomorphism is called an equivalence of G-spaces.

We clarify some common terminology that we will use.

Definition 2.1.3. Let G be a group acting on a manifold M via an action Φ : G×M →M

1. Given some point p ∈M the orbit map is Φp := Φ(−, p) : G→M .

2. The orbit Op of G through a point p ∈M is the image of the orbit map Φp.

3. The fixed point set of a group element g ∈ G is the set

Mg = {p ∈M |g · p = p}

4. The isotropy group or stabilizer of a point p ∈M is

Gp = {g ∈ G|g · p = p}
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5. The group action is called free if all of the stabilizers are trivial.

6. The group action is called effective if Mg = M only for g = e. We introduce the kernel of
an action ker Φ := {g ∈ G|g · x = x ∀x ∈M}. Then effectiveness is equivalent to ker Φ = ∅.

7. The group action is called semi-free if the stabilizers are either trivial or the entire G.

8. The group action is called locally free if all the stabilizers are discrete.

In many cases we want to assume our actions to be effective. This is not very restrictive because
any ineffective action naturally gives rise to an effective one.

Proposition 2.1.1. Let Φ : G ×M → M be a group action and let N = ker Φ. Then there is a
canonically induced effective action Φ̃ of G/N on M.

Proof. Let Φ̃ : G/N ×M →M defined by [g] · x = g · x for [g] ∈ G/N . This is clearly well-defined
and has trivial kernel so we only need to check continuity. We have the commutative diagram

G×M M

G/N ×M

π×id

Φ

Φ̃

Then for any open U ⊆ M we have Φ̃−1(U) = π(×id)(Φ−1(U)) and since the projection π : G →
G/N is open the claim follows.

Example 2.1.1. As a first example of a Lie group action on a manifold we discuss the action of
S1 on S3. Consider S3 as a subset of C2 via:

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

and S1 ⊂ C as the unit complex numbers p, q ∈ Z and define the group action

Φ : S1 × S3 −→ S3

(λ, z1, z2) 7→ (λpz1, λ
qz2)

This is in fact an action on C2 that restricts to an action on S3. In general it is not effective with
ker Φ = {λ ∈ S1 | λp = λq = 1} ' Zgcd(p,q) which is empty if and only if p, q are coprime. In any
other case we can divide by the kernel as in Proposition 2.1.1 to obtain an effective action. In the
case p = q = 1 the action is called the Hopf action. When p = 1, q = −1 (or vice versa) the
action is called the anti-Hopf action. These are the only two cases in which Φ is free.

An interesting case arises when M is a Riemannian manifold endowed with a G-invariant metric.
Initially this might seem to restrict the allowed types of actions but in fact when the group G is
compact (as will be in our considerations) we can always assume this as the following proposition
shows:

Proposition 2.1.2. If G is a compact Lie group acting smoothly on a smooth manifold M, then
there exists a G-invariant metric on M.

Proof. First note that every smooth manifold M admits a Riemannian metric. Choose a partition
of unity {ψα} subordinate to an atlas {ϕα : Uα → Vα ⊆ Rn}. On Vα we have the standard metric
induced from Rn which we call g(α). Then there is a natural pullback metric φ∗α(g(α)) on Uα and
by trivially extending the functions ψα to be zero outside Uα we can define a metric g on TM such
that for every X,Y ∈ Vect(M) we have

g(X,Y ) =
∑
α

ψαφ
∗
α(g(α))(X,Y ) =

∑
α

ψαg
(α)(DφαX,DφαY )
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If the cover {Uα} is locally finite, which we can always assume, then this sum is finite at each point
and it is easy to check that the properties of a metric are satisfied. Now let Φ : G ×M → M be
the given group action with G a compact Lie group. By compactness, G admits a Haar measure
dµ which is bi-invariant and is such that G has unit volume with respect to it. Then we can define
a new metric g̃ on M given by

g̃(X,Y ) =
∫
G
g(DΦhX,DΦhY )dµh

where h denotes the integration variable. This metric is G-invariant. Indeed if h′ ∈ G then we have

(Φ∗h′ g̃)(X,Y ) = g̃((DΦh′)X, (DΦh′)Y ) =
∫
G
g((DΦh′·h)X, (DΦh′·h)Y )dµh

=
∫
G
g((DΦh′·h)X, (DΦh′·h)Y )dµh′·h =

∫
G
g(DΦhX,DΦhY )dµh = g̃(X,Y )

where in the second equality we used the naturality of the pushforward and in the third the
invariance of the Haar measure while in the last equality we changed the integration variable. This
completes the proof.

We can therefore talk about isometric actions without loss of generality as long as we do not have
any reason to focus on a special metric on a manifold. This will change later, when we consider
physical applications in which the metric is specified as a solution to the Einstein equations but for
the moment the assumption of isometric actions is harmless.

Given a group action Φ : G×M →M we often find it useful to consider the quotient space or space
of orbits M/G which comes with the canonical projection π : M → M/G. As a topological space,
M/G is endowed with the quotient topology. This means that a subset U ⊆ M/G is open if and
only if π−1(U) ⊂M is open. The smooth structure of the quotient space M/G is not evident and
in fact it can easily fail to be a manifold. However the situation becomes simpler when the action
is free and G is compact.

Theorem 2.1.1. Let G be a compact group acting freely on a manifold M . Then there exists a
smooth structure on M/G such that π : M → M/G is a principal G-bundle and in particular a
submersion.

Sketch of the proof. To show the manifold structure on the quotient space we work as follows. By
Proposition 2.1.2 there exists a G-invariant metric on M. Therefore we consider the Riemannian
manifold (M, g) such that G acts with isometries. Then for p ∈M consider the map Φp : G→M .
This map is an injective immersion as we will prove in Theorem 2.1.3 and since G is compact it is
also an embedding. Therefore there exists a tubular neighbourhood

Nε(Op) = exp(ν<ε(Op))

where ν<ε(Op) denotes an open neighbourhood of the zero section in the normal bundle of the orbit
Op. This is a G-invariant tubular neighbourhood since the Riemannian exponential map commutes
with isometries. If we let Sp := exp(ν<εp (Op) be the image of the an open neighbourhood of 0 in
the normal space at p then π(Sp) is open in M/G since

π−1(π(Sp)) =
⋃
p∈Op

exp(ν<εp (Op)) = exp(ν<ε(Op)) = Nε(Op)

The situation can be visualized in Figure 2.1. Then a chart around a point [p] ∈M/G can be given
by taking some representative p ∈ π−1([p]) and identifying Sp with Rk where k = dimM − dimG
so that we have

Rk → ν<ε(Op)
exp−−→ Sp → π(Sp)
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The advantage of those coordinates is that it is easy to see that π is a submersion (by the submersion
theorem). Then one can show that these charts give M/G a smooth structure. To show that it has
a principal bundle structure we use the same neighbourhoods π(Sp) and the local trivializations

t : π(Sp)×G→ π−1(π(Sp)) (q, g) 7→ g · q

Given two trivializiations (π(Sp1), h1) and (π(Sp2 , h2) we choose some h ∈ G such that h · p1 = p2
and we calculate the transition functions. For this it is useful to write the arbitrary element q ∈ Sp
as q = exp(v) and then we calculate

(h−1
2 ◦ h1)(π(q), g) = h−1

2 (g · q) = h−1
2 (g · expp1(v)) = h−1

2 (gh−1 expp2(h∗v))
= (π(expp2(h∗v)), gh−1) = (π(q), gh−1)

and so the transition function is g 7→ gh−1.

The following is an immediate consequence.

Corollary 2.1.1. If G is compact and H ⊂ G is a closed subgroup then G→ G/H is a principal
H-bundle.

Proof. Consider the right action of H on G. This is clearly free and therefore by the above theorem
the result follows.

Figure 2.1: An equivariant tubular neighbourhood of an orbit Op

Example 2.1.2. As an example we can again consider the Hopf action which is free. It is not
very hard to show that its quotient space is isomorphic to CP1 ' S2. Indeed, the obvious map
φ : S3/S1 → CP1 such that [(z1, z2)] 7→ [z1 : z2] is an isomorphism, with the right hand side
expressed in homogeneous coordinates. We then have a principal bundle structure:

π : S3 → CP 1 , (z1, z2) 7→ [z1 : z2]

We call this bundle the Hopf fibration. The non-triviality of this fibration is evident, for example
by noticing that π(S3) = 0 while π(S2 × S1) = Z.

Example 2.1.3. As an example of an action which is not free consider the S1 action on the sphere
S2 given by rotations around some axis. The orbits are clearly circles and there are two fixed points,
the two poles P,Q. The quotient map geometrically collapses the orbits to points as in Figure 2.2.
Note how the fixed points act as boundaries for the disk S2/S1. This is not a coincidence but a
general occurrence as we will see later.

In Example 2.1.2 the action is free and the isotropy groups are all trivial. Additionally, all the
orbits are diffeomorphic to S1 and this allows for the bundle structure. In general however, this
is not the case as we saw in Example 2.1.3. First note that for any g ∈ G, p ∈ M we have
Gg·p = gGpg

−1 so that isotropy groups along the same orbit are not just isomorphic but conjugate.
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Figure 2.2: The quotient map S2 → S2/S1

In order to understand the structure of the set of isotropy groups {Gp | p ∈ M} we impose an
equivalence relation declaring two isotropy groups Gp, Gq ⊆ G equivalent if they are conjugate as
subgroups of G. The resulting equivalence classes are called isotropy types. In a similar fashion,
we declare two orbits Op,Oq to be equivalent if the isotropy subgroups at p and q are conjugate.
Such an equivalence class is called an orbit type. This definition makes sense because the orbit
Op is determined by the isotropy subgroup Gp. Indeed, it easily follows from the definitions that
the orbit Op is in bijection with G/Gp which makes them complementary to one another. We can
additionally define a partial ordering in the set of isotropy types. If Gp, Gq are two isotropy groups
with isotropy types [Gp], [Gq] we say that [Gp] ≤ [Gq] if and only if [Gp] is conjugate to a subgroup
of [Gq]. This clearly induces a partial ordering in the set of orbit types by reversing the inequality.

Lemma 2.1.1 (Kleiner’s lemma). Let G act isometrically onM via Φ : G×M →M . If c : [0, 1]→
M is a minimal length curve from Oc(0) to Oc(1) then there exists a subgroup H ⊂ G such that
Gc(t) = H for t ∈ (0, 1) and H is a subgroup of Gc(0) and Gc(1).

Proof. Let H := {g ∈ G | g · c(t) = c(t) ∀ t ∈ [0, 1]}. Suppose there exists t0 ∈ (0, 1) and
g ∈ Gc(t0) such that g /∈ H. Consider Φg := Φ(g,−) : M → M . Then Dc(t0)Φg(ċ(t0)) 6= ċ(t0).
Define a piecewise smoth path c̃ : [0, 1]→M by setting c̃|[0,t0] := c|[0,t0] and c̃|[t0,1] := Φg ◦c. Then c̃
joins Oc(0) and Oc(1) and has the same length as c. This is a contradiction since length minimizing
geodesics are smooth.

Theorem 2.1.2. Let G be a compact Lie group acting on a Riemannian manifold M . Then there
exists a unique maximal orbit type (equivalently a unique minimal isotropy type).

Proof. Applying Zorn’s lemma we need to show that any decreasing chain

G ≥ K1 ≥ K2 ≥ ...

of isotropy groups stabilizes. Notice that Ki+1 is conjugate and therefore isomorphic to a sub-
group of Ki. Additionally, Ki are closed subgroups of G (see Theorem 2.1.3). It follows that
dim(Ki+1) ≤ dim(Ki) and this clearly stabilizes after some sufficiently large i. This implies the
Lie algebras Lie(Ki+1) and Lie(Ki) are isomorphic. This means that the identity components of
Ki and Ki+1 are isomorphic as Lie groups. It could be the case that some Ki has infinitely many
components so that the chain does not have to end. However, this is excluded by the compactness
of G and the compactness of Ki which are closed in G and therefore compact.

To prove uniqueness suppose there exist two different isotropy groups Gp, Gq that are minimal but
not conjugate. By Kleiner’s lemma we can consider a length minimizing geodesic c : [0, 1] → M
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and the subgroup H in Kleiner’s lemma 2.1.1 will be conjugate to a subgroup of both Gp and Gq.
But since Gp, Gq are minimal, H is conjugate to both of them and therefore they are conjugate to
each other proving that [Gq] = [Gp].

We often call the isotropy groups of minimal isotropy type the principal isotropy groups and the
orbits of maximal orbit type principal orbits. Next we wish to understand the local behavior of M
around the orbits. We already have Theorem 2.1.2 but we want to be more general.

Definition 2.1.4. Let G be a Lie group with Lie algebra g. Let G act smoothly on M via the
action Φ : G ×M → M and let Φp : G → M be the orbit map at p. Then for any X ∈ g the
fundamental vector field X# ∈ Vect(M) corresponding to X is

X#(p) := (DeΦp)(X) = d

dt

∣∣∣∣
t=0

Φ(exp(tX), p)

where exp : g→ G is the exponential map of the Lie algebra.

Intuitively, fundamental vector fields indicate the direction towards which points on M move by an
"infinitesimal" action of a one-dimensional subspace of G which is the image under the exponential
map of a one-dimensional linear subspace of g spanned by the element X ∈ g. In Example 2.1.3
the fundamental vector field would be tangent to circles of constant latitude and would vanish at
the poles which agrees with the interpretation we just gave, since the poles do not move in any
direction under the group action.

Theorem 2.1.3. [19] Let G be a Lie group acting on a manifold M and let p ∈M .

• The stabilizer Gp is a closed subgroup in G, with Lie algebra h = {X ∈ g| X#(p) = 0} where
X# is the vector field on M corresponding to X.

• The orbit map G/Gp →M is an immersion whose image coincides with Op.

Proof. For the first claim it suffices to show that in some neighbourhood U of 1 ∈ G the intersection
U ∩Gm is a submanifold with tangent space TeGm = h. Then the same will hold around any point
g ∈ G and neighbourhood gU . It can be shown by some elementary differential geometry that
[X,Y ]# = [X#, Y #] where the bracket on the left hand side is the Lie algebra bracket and the
bracket on the right hand side the Lie bracket of vector fields on M . Using this we deduce that h
is closed under commutator and therefore a subalgebra of g. Additionally since tX ∈ h, we have
that the path Φ(exp(tX), p) in M must be constant since the derivative vanishes everywhere so
that Φ(exp(tX), p) = p and therefore exp(tX) ∈ Gp.

Next we choose a vector subspace u ⊂ g such that g = h⊕ u. As before we have DeΦp : g→ TpM
whose kernel is (by definition) ker(DΦp) = h. Since u ∩ h = ∅ the kernel of DeΦp|u : u → TpM
which is now restricted to u must be empty and therefore DeΦp|u is an injection. Using the implicit
function theorem this means that the map u→ M given by Y 7→ Φ(exp(Y ), p) (whose differential
is DeΦp) is injective for Y in a sufficiently small neighbourhood of 0 ∈ u so

exp(Y ) ∈ Gp ⇔ Φ(exp(Y ), p) = p⇔ Φ(exp(Y ), p) = Φ(exp(0), p)⇔ Y = 0 (2.1)

It follows from the definition of the exponential map (see any textbook in Lie theory) that the
pushforward D0 exp : g → g is the identity. Therefore, using the inverse function theorem we
a neighbourhood V of 0 ∈ g and a neighbourhood U of e ∈ G such that exp : V → U is a
diffeomorphism. Therefore, we can express any g ∈ U as g = exp(X + Y ) = exp(Y ) exp(X) for
unique X ∈ h and Y ∈ u which are sufficiently close to the zero vector. We then get

g ∈ Gp ⇔ exp(Y ) exp(X) ∈ Gp ⇔ exp(Y ) ∈ Gp ⇔ Y = 0
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where in the last step we used 2.1. We therefore conclude that g ∈ Gp ⇔ g ∈ exp(h). Since exp(h)
is a submanifold in a neighbourhood of 0 ∈ g and the exponential map is a local diffeomorphim, it
follows that Gp is a submanifold in the neighbourhood U of the identity e ∈ G.
The same arguments show that Te(G/Gp) ' g/h ' u and injectivity of the map DeΦp|u : u→ TpM
shows that the map G/Gp →M is an immersion.

This shows that the orbits are images of injective immersions. However, they are not always
submanifolds. This is true however for the case of compact manifolds. The local structure of a
quotientM/G is also well behaved as long as the action is smooth. In order to explain the previous
sentence we would like to investigate the manifold M in the neighbourhood of an orbit Op of some
point p ∈M . To do this we introduce some terminology. Let p ∈M and let A ⊂ X be a space on
which Gp acts. We call a tube about p ∈M a G-equivariant embedding

ϕ : G×Gp A→M

onto an open neighbourhood of Op where the twisted product G×Gp V := (G× V )/Gp is defined
using the free action of Gp on the product G× Vp by

h · (g, v) = (gh−1, h · v) ∀g ∈ G , v ∈ V , h ∈ Gp
Additionally, if p ∈ S and Gp(S) = S then we call S a slice at p if the map G ×Gp S → M is a
tube about Op. We are interested in the case when the space A (which can now be though of as
a general "slice") is not arbitrary but has a vector space structure. Let V be a Euclidean space on
which Gp acts orthogonally, namely by orthogonal transformations. Then, a linear tube about Op
is a G-equivariant embedding

ϕ : G×Gp V →M

onto an open neighbourhood of Op. In this case the space looks like part of a vector bundle over the
orbit as we show in Proposition 2.1.3. Additionally, if S is a slice at p ∈M then we call it a linear
slice if the canonically associated tube G×Gp S →M is equivalent to a linear tube, that is if the
Gp-space S is equivalent to an orthogonal Gp-space. The intuitive picture behind this definition is
illustrated in Figure 2.1. If there exists a linear tube around each orbit then we say that the action
is locally smooth. In this case we also call the G-space M locally smooth.

Definition 2.1.5. The action of a Lie group G on a manifold N is called locally smooth if for
every x ∈ N there exists a slice which is a disk on which the action of the stabilizer Gx is equivalent
to an orthogonal action.

Recall that in the proof of Theorem 2.1.1 we gave an explicit construction of such equivariant
neighbourhoods for the case of free actions. The orthogonality follows from the action being
isometric. Therefore we have the following

Lemma 2.1.2. A free, smooth action of a compact Lie group G is locally smooth.

Proof. The proof is given in the first part of the proof of Theorem 2.1.1.

We want to extend this result to general smooth actions that are not necessarily free. For this
reason we formalize the construction of Theorem 2.1.1 and put it in a more general setting where the
isotropy group is non-trivial. Suppose Gp is the isotropy group of p and consider the diffeomorphism
φg := Φ(g,−) : M → M for g ∈ Gp. Then p is a fixed point of φg so the pushforward Dpφg :
TpM → TpM is an automorphism of TpM . Additionally, the restriction of φg to the orbit Op
is a diffeomorphism φg|Op : Op → Op with an induced pushforward Dp(φg|Op) : TpOp → TpOp.
Therefore, the pushforward induces a well defined automorphism of the quotient vector space
Vp := TpM/TpOp which can be thought of as the tangent space at p that is normal to the orbit
where "normal" is to be understood with respect to a G-invariant metric. We call this induced
automorphism of Vp the isotropy representation.
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Proposition 2.1.3. Let ρ : Gp → GL(Vp) be a linear representation. The quotient space G×Gp Vp
has the structure of a vector bundle over G/Gp with projection:

π : G×Gp Vp −→ G/Gp

[g, v] 7−→ [g]

and fibers isomorphic to Vp.

Proof. Fix a representative [g] ∈ G/Gp then the map π−1([g]) → Vp given by [g, v] 7→ v is well
defined since in general [g, v1] = [g, v2] implies v1 = v2. This map gives the desired bijection
π−1([g]) ' Vp. Next we construct a trivialization. Let (U, φU ) be a local trivialization for the
principal bundle G→ G/Gp with U ⊆ G/Gp open such that

φU : G|U −→ U ×Gp
g 7−→ ([g], βU (g))

for some map βU : G→ Gp. Then we define the trivialization (U,ψU ) given by:

ψU : (G×Gp Vp)|U −→ U × Vp
[g, v] 7−→ ([g], ρ(βU (g))v)

The map ψU is a diffeomorphism with inverse

ψ−1
U : U × Vp −→ (G×Gp Vp)|U

([g], v) 7−→ [φ−1
U ([g], e), v]

where e denotes as always the identity element of G. Finally, the restriction of ψU to the fiber is a
linear isomorphism.

What we have described so far is essentially G×GpVp as an associated vector bundle to the principal
bundle G → G/Gp and the isotropy representation ρ : Gp → GL(Vp). Then we can view G/Gp
as a submanifold of G ×Gp Vp via the zero section s : G/Gp → G ×Gp Vp whose image is the set
{[g, 0] | g ∈ G}. We can then ask if there exists a map f : G×Gp Vp → M such that the following
diagram commutes

G/Gp G×Gp Vp

Op M

Φ(−, p)

s

f

If such a map exists, then it will essentially be an extension of the orbit map Φ(−, p) : G/Gp →M .
The following theorem, often referred to as the slice theorem, asserts that such a map f can be
found in a neighbourhood of the zero section.

Theorem 2.1.4. (Slice theorem) Let G be a compact Lie group which acts smoothly on M . Then
there exists an equivariant diffeomorphism from an equivariant open neighbourhood of the zero
section in G×Gp Vp to an open neighbourhood of Op in M which sends the zero section G/Gp onto
the orbit Op by the natural map f . Here the action of G on G×Gp Vp is defined by h · [g, q] = [hg, q].

Proof. The map [g, v] 7→ g ·exp(v) is the desired map f from a neighbourhood of the zero section in
G×Gp Vp (this follows from exp being a local diffeomorphism) onto an equivariant neighbourhood
of Op. The G-invariance again follows from the fact that exp commutes with isometries just like in
Theorem 2.1.1.
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Corollary 2.1.2. If G acts on M with a unique isotropy type then M/G is a smooth manifold.

Proof. The construction of charts is the same as in the proof of Theorem 2.1.1.

The essence of the above theorem is that smooth actions of compact groups are locally smooth and
therefore locally behave in a well understood way around an orbit.

2.2 Metrics on orbit spaces
Let π : E → B be a submersion. It is often the case that the space B is a Riemannian manifold
(B, g̃). Our current goal is to develop the necessary tools in order to be able to endow the orbit
space with a metric which is in some sense natural. Firstly, for any x ∈ B the submersion theorem
implies that π−1(x) is a submanifold that we call the fiber at x. Then for some u ∈ π−1(x) the
tangent space TuE splits in a horizontal and vertical subspace. To do this we define the vertical
subspace of TuE to be Vu := kerDuπ. To see that this definition makes sense consider a path which
lies entirely in the fiber c : [0, 1]→ π−1(x) such that c(0) = u so that we have

Dπ

(
dc(t)
dt

)
= Dπ ◦Dc

(
d

dt

)
= D(π ◦ c)

(
d

dt

)
= 0

since π ◦ c is constant. Therefore every vector that lies in TuF is also in Vu so that TuF ⊆ Vu
is a linear subspace and because they have the same dimension (by the submersion theorem) we
conclude that Vu = TuF . Now suppose that E is endowed with some Riemannian metric g. Then
we define the horizontal subspace Hu at u ∈ E to be the orthogonal complement of Vu in TuE (with
respect to the metric g) such that TuE = Vu ⊕Hu. An example is illustrated in Figure 2.3. It is
clear that Hu ' TxB as vector spaces. In this sense we have constructed a splitting of the space E
into a "fiber component" and a "base component". Note that without a metric, there would be no
canonical way to perform this splitting. Performing this splitting at every point u ∈ E we obtain
the vertical and horizontal subbundles V and H of E. Sections of H are called horizontal vector
fields. We are now ready to define what we mean by a "natural" metric on the total space E. The
intuition is that we want a metric g such that when we restrict to horizontal vectors in TuE , it
agrees with the metric on the base space B.

Definition 2.2.1. A submersion (E, g)→ (B, g̃) is called a Riemannian submersion if at each
point u ∈ E, Duπ preserves the length of horizontal vectors

gu(X,Y ) = g̃π(u)((Duπ)X, (Duπ)Y ) ∀ X,Y ∈ Hu (2.2)

An equivalent way of phrasing this is that Duπ : TuE → Tπ(u)B is a linear isometry when restricted
to Hu.

In the context of the previous section, the submersion we are interested in is the quotient map of a
group action π : M →M/G. There is of course no a priori reason for this map to be a submersion.
However, when the group action is smooth and free Theorem 2.1.1 ensures that we have a principal
bundle structure. Of course this is in general not true and in fact the actions that will be of central
interest for us are those that have fixed points. We can choose to ignore those and focus on the
regular part of the manifold. Then everything works out fine as shown by the following theorem.

Theorem 2.2.1. Let G be a compact Lie group acting isometrically on a Riemannian manifold
M.

1. The union M0 of maximal orbits is open and dense in M .
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2. The G-action on M restricts to M0 and M0 →M0/G is a Riemannian submersion. It is also
a fiber bundle with fiber G/H where H is a minimal isotropy group.

3. The quotient M0/G is open dense and connected in M/G.

Proof. For (1) let p ∈M0 and ϕ : G×Gp V →M an invariant tubular neighbourhood as in Theorem
2.1.4 so that p = ϕ([e, 0]). Then if q = ϕ([g, v]) and h ∈ Gq so that h · q = q we have

ϕ([g, v]) = ϕ([hg, v])⇒ [g, v] = [hg, v]⇒ [e, v] = [g−1hg, v]

from which we conclude that g−1hg ∈ Gp and Gq is conjugate to a subgroup of Gp so that
[Gq] ≤ [Gp]. However by the assumption of maximality we conclude [Gq] = [Gp]. Therefore
the orbit Oq is also maximal and the set M0 is open. In order to show that M0 is dense we pick
an arbitrary point p ∈ M and a length minimizing geodesic c : [0, 1] → M connecting the orbit
Op with a principal orbit Oq. By Kleiner’s lemma 2.1.1 Gc(t) for t ∈ (1, 0) is a subgroup of Gc(1)
and the latter is of minimal type by assumption so that Gc(t) must be of minimal type for all
t ∈ (0, 1). This shows that all points in c((0, 1]) have minimal isotropy groups and those can be
chosen arbitrarily close to p.

For (2) we first note that G ·M0 = M0 since M0 consists of entire orbits. From corollary 2.1.2 it
follows thatM0/G is a smooth manifold. Since G acts with isometries on the Riemannian manifold
(M, g) where g is some G-invariant metric, we can endow M/G with the quotient metric g̃ defined
by

g̃π(u)((Duπ)X, (Duπ)Y ) = gu(X,Y )

This is well defined because using h · u instead of u clearly leaves the left hand side invariant and
the invariance of the right hand side follows from the isometric action of G. The The quotient map
π : M →M/G is then a Riemannian submersion.

For (3) note that M0/G is open and dense by π : M →M/G being open and continuous. To show
connectedness we again use Kleiner’s lemma to connect two principal orbits Op, Oq by a length
minimizing geodesic c : [0, 1] → M . Since the isotropy groups Gp, Gq are minimal, the isotropy
groups of all the points in the path c are of minimal type and therefore this path lies in M0 so its
image under the quotient map is a path in M0/G.

When E is a principal G-bundle and π a bundle map then the fiber is F ' G and Vu = TuG ' g.
The explicit isomorphism between Vu and g is given by assigning to each X ∈ g its fundamental
vector field X#(u) evaluated at u which is clearly vertical from Definition 2.1.4. The map X 7→ X#

is an isomorphism when G acts freely.

As usual, we assume that the action of G is effective so that the maximal orbits are isomorphic
to G. What we have proven so far is that given such an action G ×M → M we can consider the
union of principal orbits M0 which is a G-bundle over M0/G. Then if M0 is endowed with a metric
such that G acts with isometries, we can always construct a quotient metric on M0/G as in the
proof of Theorem 2.2.1 which makes the quotient map a Riemannian submersion (which is unique
by construction).

The reader familiar with the theory of principal bundles might have noticed a striking similar-
ity between the decomposition in terms of horizontal and vertical subbundles and the theory of
connections on principal bundles. This is no coincidence as we explain in Appendix A.
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Figure 2.3: A submersion E → B and the horizontal and vertical subspaces.

2.3 Circle actions
The restriction to the class of abelian groups simplifies the above setup. We are mainly concerned
with circle and torus actions and therefore we assume G to be abelian from now on.

Lemma 2.3.1. Effective actions of abelian groups have trivial principal isotropy type.

Proof. Recall that principal isotropy type means minimal isotropy type. Let [Gp] be of such minimal
type. Then for every q ∈ M we have [Gp] ≤ [Gq] implying that Gp = gHg−1 for a subgroup H of
Gq. But since G is abelian gHg−1 = H and Gp is a subgroup of Gq for every q ∈M . This implies
that Gp ⊆

⋂
q∈M Gq but the assumption of effective action is equivalent to

⋂
q∈M Gq = ∅ and the

claim follows.

The above lemma implies that maximal orbits are diffeomorphic to G and their union is a G-
bundle over M0/G which follows from Theorem 2.2.1. From now on in this section we will be only
interested in circle actions G = S1. Since the stabilizers are trivial for a dense subset M0 of M , let
us explore what can happen in M \M0. We first consider fixed points where the stabilizer is the
whole of S1. Let S1 act on an oriented 2n-dimensional manifold M via an action Φ : S1×M →M
with a discrete set of fixed points and let p ∈ M be a fixed point. Then Φp : M → M induces a
pushforward DΦp : TpM → TpM which makes TpM an S1-module. This is nothing more than the
isotropy representation that we have already encountered but now the isotropy group is the entire
group G and the normal space is identified with the whole tangent space. We can decompose TpM
into irreducible representations as

TpM =
n⊕
i=1

Li

where the Li are vector spaces isomorphic to C on which the S1 action is given as multiplication
by gwi

p where g ∈ S1 and wip are non-zero integers called the weights at p ∈ M . In terms of real
representations and under the identification C ' R2 the S1-action is just a direct sum of 2 × 2
rotation matrices. If the dimension of M is odd then

TpM =
n⊕
i=1

Li ⊕ R

where the action on the R component is just ±1. In particular, we focus on the even dimensional
case and everything carries on trivially to the odd case. The sign of each weight depends on whether
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the induced action agrees with the chosen orientation of each plane C or not. However, we can
always change the orientation of individual components Li as long as we preserve the orientation of
TpM induced by the orientation of M . For this reason, it is the sign of the product of the weights
that really matters. We denote this product sign by ε(p) = ±1 and denote the fixed point data at
p by Σp = {ε(p), w1

p, ..., w
n
p } where we take all the weights wip to be positive.

2.3.1 Circle actions from Killing vector fields and topological invariants

We now turn to a different description of circle actions. We mainly follow [20, 21]. We first recall
the notion of a fundamental vector field 2.1.4. When we use fundamental vector fields we may
lose a lot of information about the action of the entire group G. In particular we have to pick a
one-dimensional vector subspace h ⊆ g spanned by an element X ∈ g and then the vector field
X# encodes the infinitesimal action of elements arbitrarily close to the identity e ∈ G that lie
"in the direction" of X. The integral curves of X# are then the one-dimensional orbits of the
one-parameter-subgroup exp(h) ⊆ G.

Lemma 2.3.2. Let G be a compact Lie group and X ∈ g. Consider the one-parameter-subgroup
ϕ : R→ G where t 7→ exp(tX). Then if H := Im(ϕ) is closed, it is a circle subgroup of G.

Proof. H is an abelian group since exp(t1X) exp(t2X) = exp((t1 + t2)X) = exp(t2X) exp(t1X). It
is also closed and G is compact, so H is also compact. Connectedness of H follows by the continuity
of the exponential map. Therefore H is a torus and since it is one-dimenensional it is S1.

Conversely, the Lie algebra of every circle subgroup of G is a one-dimensional subspace of g. By
taking a basis vector of this subspace and considering the associated fundamental vector field, we
see that every circle action gives rise to a vector field. If the circle action is isometric, then the vector
field generates an isometry and is therefore a Killing vector field. This is why the term infinitesimal
isometry is sometimes used instead. The above discussion, including the proof of Lemma 2.3.2 can
be generalized for a torus subgroup T k. Then Lie(T k) is an abelian Lie subalgebra of g. By passing
to fundamental vector fields, any such subalgebra corresponds to a set of commuting vector fields
which, if the torus action is isometric, are commuting Killing vector fields.

Since the following sections are devoted to torus actions, we will often use this language of Killing
vector fields instead of that of a torus action. Of course the correspondence between torus actions
and commuting Killing fields should be used with caution since it is not a bijection. There can be
commuting sets of Killing fields that do not arise as fundamental vector fields associated to a torus
subgroup of the isometry group. This can happen when the condition for closedness in Lemma
2.3.2 is not satisfied. In the physics language we say that a family of Killing fields integrate to an
isometric torus action. To account for the cases when this fails to be the case, the more general
term local isometry is used to refer to the image of the map ϕ in Lemma 2.3.2. In this sense Killing
fields are in one-to-one correspondence with local isometries. The language of vector fields is very
convenient for applications in physics and also useful in mathematical applications as we will see
below. First, we need to recast some of the notions we have been discussing into this new language.

We begin with fixed points of circle actions. Those are points p ∈M whose orbit is a point and their
isotropy group is Gp = S1. If X ∈ Vect(M) is the associated vector field then the orbits of the circle
action are the integral curves of X namely paths γ : (0, 1)→ M such that (Dt0γ)(∂/∂t) = X|γ(t0)
for all to ∈ (0, 1). A fixed point p ∈M is then a point for which the integral curve is the constant
path at p so that X(p) = 0. Such points are called the fixed points of a vector field.
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The second important concept is that of the isotropy representation. As we already saw in the
previous section, this is a powerful tool to differentiate between different types of fixed points. If K
is a Killing vector field and ∇ the covariant derivative, then the endomorphism ∇X : TpM → TpM
is skew-symmetric with respect to an orthonormal basis in view of the Killing equation. It therefore
admits the canonical form

(∇X) =



0 a1
−a1 0

. . .
0 ar
−ar 0

0
. . .

0


Under the exponential map we get the induced action of the local isometry



cos(a1t) sin(a1t)
− sin(a1t) cos(a1t)

. . .
cos(art) sin(art)
− sin(art) cos(art)

In−2r


(2.3)

This is precisely the decomposition of TpM in terms of irreducible representations of S1 that we
saw in the previous section. The numbers ai are the weights. As before, those can be taken to be
positive up an overall sign. Now that we have clarified how we can use Killing fields, we will use
them some important results. The first one indicates that the fixed point set of a circle action has
a nice structure from the point of view of differential geometry.

Theorem 2.3.1. Let M be a Riemannian manifold with dimM = n and X be a Killing vector
field. Let F be the fixed point set of X and consider the decomposition F = ∪Ni into connected
components. Then each Ni is a totally geodesic closed submanifold of M of even codimension.

Sketch of the proof. Let p ∈ F and consider the isotropy representation of the local isometry
exp(∇X) : TpM → TpM as in 2.3. If n = 2r then p is an isolated point and both of the claims
of the theorem hold trivially. In any other case there is a (n − 2r)-dimensional subspace of TpM
that is left invariant by the action of the local isometry. We call this space Wp. Then if U is an
open neighbourhood of the origin in TpM and since the exponential map commutes with isometries,
exp(Wp ∩ U) is a (n − 2r)-dimensional submanifold of exp(U) and it is invariant under the local
isometry. It is also totally geodesic as the image of the exponential map.

Theorem 2.3.2. Let M be a compact Riemannian manifold and F =
⋃
Ni be the fixed point set

of a Killing vector field decomposed in connected components. Then

χ(M) =
∑
i

χ(Ni)
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Proof. Since Ni are fixed point loci, for any p ∈ M the isotropy group is G and therefore the
equivariant neighbourhoods of the slice theorem 2.1.4 will be diffeomorphic to G×G Vp ' Vp where
Vp is the normal space at p. These are open m-disks of dimension m = dimVp. Consider an
ε-neighbourhood of Ni and Ai its closure, where we choose ε small enough so that every point
of Ai can be joined to the nearest point of Ni by a unique geodesic of length ≤ ε and so that
Ai ∩ Aj = ∅ for i 6= j. Then each Ai is a disk bundle over Ni. Let A := ∪iAi and B := M \A.
Then A ∩B = ∂A. Now whenever we have a long exact sequence of vector spaces

... −→ Uk −→ Vk −→Wk −→ Uk−1 −→Wk−1 −→ ...

it follows that ∑
k

(−1)k dimUk −
∑
k

(−1)k dimVk +
∑
k

(−1)kWk = 0

This can be easily shown by applying the rank-nullity theorem at every stage of the long exact
sequence, then taking the appropriate alternating sum and using exactness. We want to use this
formula for the long exact sequence of the pair (M,B) which is given by

... −→ Hn(B;K) −→ Hn(M ;K) −→ Hn(M,B;K) −→ Hn−1(B;K) −→ ...

where the coefficients are taken in some field K. Using the definition of the Euler characteristic as
χ(X) :=

∑
kHk(X;K) we find that

χ(M) = χ(B) + χ(M,B) (2.4)

Applying the same formula for the long exact sequence of the pair (A,A ∩B) we find

χ(A) = χ(A ∩B) + χ(A,A ∩B) (2.5)

Next we observe that int(B) = M \A and thereforeM \ int(B) = M \(M \A) = A and B\ int(B) =
∂B = ∂A = A∩B. We also have that int(B) = B since B is closed so that we can apply the Excision
theorem to deduce that Hn(M,B;K) ' Hn(A,A∩B;K) for all n and therefore χ(M,B) = χ(A∩B)
which combined with 2.4 and 2.5 gives

χ(M) + χ(A ∩B) = χ(A) + χ(B) (2.6)

Now both A ∩ B and B are free of fixed points and by the Lefschetz fixed point theorem (see for
example [22] ) we conclude that their Euler characteristic vanishes so that 2.6 gives χ(M) = χ(A).
As we have already mentioned, Ai is a disk a bundle and the disk is contractible so that χ(Dm) = 1
so χ(Ai) = χ(Ni)χ(Dm) = χ(Ni). From this it follows that

χ(M) =
∑
i

χ(Ni)

It is interesting that fixed points always appear as submanifolds of even codimension. The intuition
behind Theorem 2.3.1 is quite simple and pertains to the fact that each circle action will rotate a
number of planes.
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2.3.2 Local structure around fixed points

Of particular interest, especially for applications in physics, are circle actions on four-manifolds
which are going to be the backbone of the rest of our discussions. In this situation, fixed point loci
come in dimension zero and two. Those will appear frequently in our discussions and deserve their
own definition.

Definition 2.3.1. Let S1 act on a four-manifold M . If P is an isolated fixed point with weights
(ε(P ), w1, w2) such that w1/w2 = p/q with p,q co-prime integers, then we call P a (p,q)-nut if
ε(P ) = +1 or (p,q)-anti-nut if ε(P ) = −1. More specifically, if p = q = 1 we call the fixed point
a nut or anti-nut when ε(P ) = +1 and ε(P ) = −1 respectively. A two-dimensional submanifold
of fixed points is called a bolt.

Let p ∈ M be a fixed point (either isolated or a point on a bolt). Then the normal space is just
Vp = TpM and from the slice theorem it follows that there exists an equivariant neighbourhood of p
diffeomorphic to S1×S1Vp ' TpM on which the group action is given by the isotropy representation.
The isotropy representation in this case is the rotation of the two copies of C with a pair of associated
weights (ε(p), w1, w2) and in fact it exactly coincides with the action on C2 given in Example 2.1.1.
The integers p, q that were introduced there are the weights of the circle action. In particular, when
the weights are ±1 the action is the Hopf or anti-Hopf action. This simple observation will prove
crucial in our subsequent discussions and we state it in the form of the following lemma.

Lemma 2.3.3. Let M be a four-manifold with an S1 locally smooth action and let p ∈ M be a
fixed point with unit weights. Then there exists an equivariant neighbourhood of p diffeomorphic
to R4 on which the action looks like a radial extension of the Hopf or anti-Hopf action.

The closure of this neighbourhood is a four-disk D4 whose boundary S3 is acted upon by a Hopf
or anti-Hopf action giving the standard quotient S3 → S2. For the more general case, we first note
that S3 can be identified with the set of lines passing through the origin in R4. Then if the action is
characterized by weights (ε(p), w1, w2) the quotient of this S3 will give a weighted projective space
CP [w1,w2]. Of course, in the case of unit weights (Hopf or anti-Hopf action) we recover CP 1 ' S2

but this is the only case for which the quotient space can be a manifold. For every fixed point
with a non-unit weight this fails to be the case. This is why the Hopf and anti-Hopf actions are so
important.

However, in this work we want to treat general circle actions and not only those that locally look
like the Hopf or anti-Hopf ones. Let us consider the action of S1 on C2 with weights k, ` ∈ N and
k, ` coprime so that the action is effective (see Example 2.1.1). We have

eiθ · (z1, z2) = (eikθz1, e
i`θz2) (2.7)

In this case the points (z1, 0) have non-zero isotropy given by

{θ ∈ (0, 2π] | eikθz1 = z1} = {θ ∈ (0, 2π] | kθ = 2πn , n ∈ Z} ' Zk

Similarly, the points (0, z2) have isotropy Z`. The points (z1, z2) with z1, z2 6= 0 have trivial isotropy
due to ` and k being coprime. We have therefore discovered that our circle action has exceptional
orbits, namely orbits with discrete stabilizer. Therefore it cannot be semi-free. In other words, if
we wanted a semi-free action we should only consider actions with unit weights on the fixed points
and in this case the quotient would automatically be smooth.

As already stated, when the circle action is restricted to S3 ⊂ C2 the quotient is in general a
weighted projective space. This space is an orbifold namely a manifold with singularities that are
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locally isomorphic to quotient sngularities of the form Rn/Γ where n = dimM and Γ is a finite
subgroup of GL(n,R). The weighted projective space S3/S1 = CP [k,`] is indeed an orbifold which
is often called a spindle when k, ` 6= 1 and teardrop orbifold when only one of k, ` is different from
one. Those names are justified by their shape which is illustrated in Figure 2.4. The singular points
of those orbifolds are locally of the form R2/Γ where Γ = Zk for some k ∈ N and Zk acts diagonally
on R2.

Figure 2.4: The spindle orbifold CP [k,`] (left) has two singular poles P,Q with neighbourhoods
diffeomorphic to R2/Zk and R2/Z` respectively. The teardrop orbifold CP [p,1] (right) has a singular
pole P, a neighbourhood of which is diffeomorphic to R2/Zp for some p ∈ N.

In the quotient space C2/S1, these singularities become one dimensional and can end on the images
of fixed points. Therefore we can have one singular line (radial extension of the teardrop) or two
singular lines (radial extension of the spindle) emanating from the image of a fixed point. Those
singular points are known as cones and we will see later on, that they deserve some attention from
a physical point of view.

2.4 T 2 actions on four-manifolds
In this section we focus on torus actions so that all the theorems of the previous sections apply.
We will use M∗ to denote the quotient space of a torus action. This notation is often used in the
literature. The first thing we want to address is the topology of the orbit space which turns out to
be quite simple. We start with two lemmata whose proofs can be found in [23].

Lemma 2.4.1. Let G be a compact Lie Group acting locally smoothly on a manifold M with M∗
connected. If dimM∗ ≤ 2 then M∗ is a manifold (with boundary).

Lemma 2.4.2. If M is an arc-wise connected G-space, with G compact Lie group and if there is
an orbit which is connected or there are fixed points of the G-action then the fundamental group
of M maps onto that of M∗. Thus if M is simply connected, then so is M∗.

Therefore, for simply connected four-manifolds with T 2 actions, we have a concrete description
since the orbit space is a two dimensional simply-connected manifold with possible boundary as
long as the conditions of Lemma 2.4.2 are satisfied. This is in fact always the case because simply
connected manifolds turn out to necessarily have fixed points.

Lemma 2.4.3. Let T 2 act on a simply connected manifold M . Then the action contains fixed
points.

Proof. Suppose there are no fixed points. Then by Theorem 2.3.2 we get χ(M) = 0. Since M is
simply connected we have H1(M,Z) = 0. By Poincaré duality and Universal coefficients we get
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H3(M,Z) = 0 so that

χ(M) = 2 + rankH2(M,Z) ≥ 2

which is a contradiction.

We have established that for a simply connected four-manifold M , there are non-principal orbits
and the orbit space is a simply connected manifold. If M is also compact then the orbit space
is also compact (since the quotient map is continuous) and therefore it has to be a topological
disk D2. This will not be the case later, when we consider non-compact manifolds in the context
of String Theory where we will encounter a quotient space that looks like the upper half plane.
Since we understand the very simple topology of the orbit space, we now turn to the question of
what types of orbits there are and how they are allocated. A thorough study of how the torus
can act on closed, orientable four-manifolds was carried out in [24]. Most of the qualitative results
carry on to the case of non-compact manifolds. The possible orbits and their isotropy groups and
representations are depicted in Table 2.1 which we now turn to explain.

Consider T 2 parametrized by two angles θ, φ ∈ [0, 2π). Consider the following subgroups:

G(m,n) := {(θ, φ) ∈ T 2 | mφ+ nθ = 0} (2.8)

When m = n = 0 we identify G(0, 0) = T 2. Otherwise, we let n 6= 0 and we have the following
cases:

• When m/n is rational then G(m,n) is a closed subgroup of T 2 which can be identified with
the image of an embedding S1 → T 2 by the closed subgroup theorem for Lie groups. We can
then take m,n to be coprime and all inequivalent such subgroups are labeled by distinct pairs
of coprime integers (m,n).

• When m/n is irrational then G(m,n) never closes back to itself. It is the image of an injective
immersion R→ T 2 which is dense in T 2 and often referred to as the irrational winding of the
torus. Note that this map cannot be an embedding since then its image would have to be
closed and dense and therefore the entire T 2. On the other hand, we have seen in Theorem
2.1.3 that isotropy groups are closed Lie subgroups and we conclude that those G(m,n) with
m/n irrational cannot occur as isotropy groups of torus actions.

From now on we use G(m,n) to denote a circle subgroup with m/n rational and we also take m,n
to be coprime. The orbits of the point with isotropy group a circle G(m,n) are circles and this is
why those are often called C−orbits. The other types of orbits appearing in Table 2.1 are principal
orbits and fixed points which we have already seen but in addition to them, we see two types of
exceptional orbits where the stabilizer is discrete. The following theorem [24] which is fundamental
in understanding the structure of the orbit space, asserts that the various types of orbits do not
appear randomly but instead have a very specific pattern

Theorem 2.4.1. Let M be a closed, simply-connected, oriented four-manifold with a T 2 action.
The orbit space M∗ is a 2-manifold with boundary. All principal orbits and exceptional orbits are
in the interior and the boundary consists of C-orbits and fixed points.

In practice, we will not deal with exceptional orbits of torus actions from now on. They rarely
occur in practical applications and in fact under mild assumptions it can be shown that they are
completely absent 1 (see [23] section IV3). Therefore, we are left with the last three isotropy types

1Note that exceptional orbits will often appear in the circle actions since they are associated with the conical
points of the previous section. However, when we let the entire T 2 act on them, their isotropy type becomes S1.
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Isotropy group Orbit Slice Isotropy
action on slice Image of orbit in M∗

Zn × e T 2 D2 rotation isolated interior point

Zn × Zm T 2 D2 rotation
isolated interior point

when (n,m)=1
(otherwise not possible)

G(m,n) S1 D3 rotation boundary point

T 2 fixed point D4

rotation in two
planes by

G(m1, n1) and
G(m2, n2)

isolated boundary point
(only possible when
m1n2 − n1m2 = ±1 )

e
T 2

(principal
orbit)

D2 rotation interior point

Table 2.1: The possible isotropy groups, orbit and slice types (adapted from [24])

of Table 2.1. Since the fixed points count the Euler characteristic, there can only be a finite number
of them if M is compact (the same conclusion also follows since fixed points are isolated and using
the compactness of M). Therefore we can think of the orbit space as a disk whose boundary ∂M∗
contains a finite number of points {P1, ..., Pk} with k the number of fixed points. The arcs on ∂M∗
joining two consecutive points Pi, Pi+1 are orbits of isotropy group G(m,n) and since the stabilizer
of a point cannot change discontinuously (see the slice theorem 2.1.4) we conclude that the isotropy
group must be constant along the arc. A crucial conclusion made in [24] is that if G(m,n) and
G(m′, n′) are the stabilizers on two adjacent arcs joined at Pi then they must satisfy

det
(
m n
m′ n′

)
= mn′ −m′n = ±1

Geometrically, this is the condition that G(m,n) and G(m′, n′) generate the homology of T 2 and
intersect transversally at one point. An illustration of how the orbit space looks like is show in
Figure 2.5.

Now consider the quotient map of the T 2 action π : M → M∗ and let M∗0 = M∗ \ ∂M∗ be the
interior of the orbit space consisting of principal points. Then π−1(M∗0 ) is the union of principal
orbits in M which we denote with M0 as in before. This is a principal T 2-bundle from Theorem
2.2.1 and since now the base space is an open disk which is contractible, we conclude that the
bundle is trivial, namely M0 = M∗0 × T 2. By the first assertion of the same Theorem, M0 is open
and dense and now we see that M \M0 = π−1(∂M∗) is the union of C-orbits and fixed points.
Since its complement is a trivial bundle, π−1(∂M∗) can be thought of as an obstruction to the
triviality of the principal bundle. Additionally, there is a nice intuitive picture of what the fixed
point loci look like. Indeed, if γi is an arc on ∂M∗ of isotropy G(m,n) joining the points Pi, Pi+1
then π−1(γi) is a sphere on which the circle action of G(m,n) looks like that of Example 2.1.3 while
the action of a G(m′, n′) with mn′−m′n = ±1 leaves the sphere invariant. In other words, π−1(γi)
is a bolt for the circle action of G(m′, n′).

Finally, we close this section with another celebrated result of [24] that concerns the topological
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Figure 2.5: The orbit space of a T 2 action on a closed, connected four-manifold. The dots correspond
the fixed points Pi and the arcs joining them correspond to C-orbits. The interior of the disk
comprises principal orbits (or exceptional orbits in the more general case).

classification of simply connected four-manifolds with T 2 actions 2, demonstrating that the existence
of an effective T 2-action is highly non-generic and has important topological consequences.

Theorem 2.4.2. Let T 2 act effectively and smoothly on a closed, oriented, simply connected four-
manifoldM . ThenM is equivariantly diffeomorphic to one of the following: S4, CP 2, CP 2, S2×S2

or an equivariant connected sum of those.

There is in fact more we can say about how the orbit space data determines the total four-manifold
for the case of the four building blocks of Theorem 2.4.2. Let P1, ..., Pk and γi be as before and let
G(mi, ni) be the isotropy group on γi. Then we denote

ei :=
∣∣∣∣∣mi−1 ni−1
mi ni

∣∣∣∣∣ = ±1 i = 2, 3, ...k

e1 :=
∣∣∣∣∣mk nk
m1 n1

∣∣∣∣∣ = ±1

When k > 2 we also define the determinants for non-consecutive arcs, namely r2 = m1n3 −m3n1
and r3 = m2n4 − m4n2. Then the possible manfiolds for k = 1, 2, 3, 4 are given in Table 2.2.
Although legitimate from a mathematical standpoint, CP 2 and CP 2 are of lesser significance in
physics since they are not spin, that is their Stiefel-Whitney class is non-zero. However, those
spaces and their fixed point structure have also been considered in physics [27].

2.5 From group actions to String Theory
We now want to combine the results that we have so far obtained through this arduous mathematical
journey of the previous sections and get some contact with String Theory. As we have already
mentioned, String Theory and in particular Type IIA theory lives in ten dimensions. Additionally,
this theory is conjectured to arise from the eleven dimensional M-theory. The low energy picture of
this correspondence is well understood since it is a correspondence between the eleven dimensional
and Type IIA supergravities. But first, let us properly define what an M-theory background actually
is.

2A similar classification exists for circle actions on four-manifolds [26, 25].
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Number of fixed
points k Four-manifold M Additional condition

2 S4

3
CP 2 e1e2e3 = −1

CP 2 e1e2e3 = 1

4 S2 × S2
e1e4 = e2e3, both r2, r3
are even and of them

zero

Table 2.2: The orbit space data of the simplest compact simply-connected four-manifolds (table
adjusted from [28])

Definition 2.5.1. AnM-theory background consists of a triplet (M, g, F4) whereM is an eleven
dimensional spin manifold, g is a metric on M , and F4 is a closed four-form.

Ten dimensional Type IIA String Theory arises as a reduction of M-theory in eleven dimensions.
In the language of Section 2.2, we first view the M-theory background as a principal S1-bundle
and subsequently identify the Type IIA background with the base space, or in different terms with
the horizontal distribution with respect to the metric g. Apparently, in order to do that we need a
free circle action. We can phrase this requirement in terms of a Killing field X ∈ Vect(M) which
integrates to a circle action and has non-vanishing norm such that there are no fixed points. How-
ever, since the four-form is also part of our geometric data, additionally to LXg = 0 (the Killing
equation) we must also require LXF4 = 0.

As long as those requirements are satisfied, we can start exploring the Type IIA picture. As we
saw in Section 2.2 there is a natural metric that the base space is endowed with and this is the
unique metric g10 that makes the quotient map a Riemaniann isometry. This is indeed the metric
that is relevant for us. In a sense, this can be taken to be the definition of a Type IIA background
since it has been shown that such a reduction from eleven dimensions encodes all the information
that is needed to define the most general Type IIA supergravity background [29]. The converse is
not true though and this is why eleven dimensional supergravity (M-theory) should be thought of
as the more fundamental theory.

Let us now focus on a coordinate-based algorithm that will allow us to go back and forth between
M-theory and Type IIA backgrounds. We focus on the metric ignoring for the moment F4. Given
the Killing vector X, the splitting in terms of a horizontal and vertical subspace can be made
explicit by the induced connection one-form ω (see Appendix A). In this case since the Lie algebra
of S1 is R, ω can be regarded as an element of Ω1(M). Locally, if x is a coordinate along the orbit
of the Killing field X (therefore a coordinate along the fiber) we can write ω = dx + A for some
locally defined one-form A on the base manifold N = M/S1. Then, by the local splitting of M in
terms of horizontal and vertical distributions we can express the eleven dimensional metric as

g = h+ |X|2(dx+A)2

This form is often called a connection metric. The norm of the Killing vector |X|2 is by assumption
non-zero everywhere and here we denote the ten-dimensional metric on N (and its pullback on M
via the quotient map) with h. It is evident that in this setting, the norm |X| has the geometric
interpretation of the length of the fiber. In String Theory we choose to parametrize |K| = e2ϕ/3

where ϕ : M → R is called the dilaton. For reasons of convenience and convention, in String
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Theory it is useful to conformally rescale the metric h on N by the factor e−2ϕ/3 such that the
metric becomes a warped connection metric which is explicitly given by

g = e−2ϕ/3h+ e4ϕ/3(dx+A)2

We now turn to the reduction of the four-form F4. First note that the decomposition ω = dx+ A
implies that the curvature form dω = dA is independent of the fiber direction ιXdω = dω(X) = 0
so that dω is a horizontal 2-form. Additionally, using Cartan’s magic formula we find

LXdω = dιXdω + ιXd
2ω = 0

This shows that dω is both horizontal and invariant. Such forms are called basic. They are very
important in this context because they are pullbacks of forms on the base manifold N . In this sense
the curvature form dω is the pullback of a two-form H2 = dA defined on N which we call the RR
two-form (we stick to the physics convention of omitting the pullback when it is obvious). It turns
out after some elementary manipulations (see [30] for an excellent review) that the four-form can
be expressed as

F4 = H4 − dx ∧H3 (2.9)

where H4 and H3 are basic forms that correspond to the RR two-form and NS-NS three-form of the
Type IIA background. We therefore have the bijection between M-theory with free circle actions
and Type IIA backgrounds given by

{
11d with (M, g, F4) and free S1-action

}
←→

{
10d with (N,h, ϕ,H2, H3, H4)

}
We have already seen that are topological obstructions (like the Euler characteristic) that force
any circle action to have fixed points. In String Theory the fixed points have a deep physical
meaning. Suppose we start with an eleven dimensional M-theory background of the form C7 × Z4
with a circle action being trivial on C7 and being effective on Z4. Then the theory of circle actions
on four manifolds that we have developed applies. If there are isolated fixed points of the circle
action (nuts) then we can remove them and consider their complement which is a principal bundle
according to Theorem 2.2.1. The action is then free and we can perform the reduction to Type IIA
hoping that we can be cavalier about forgetting those fixed points. Notice that after the dimensional
reduction, the fixed points have codimension three so they appear as 7-dimensional objects in the
ten-dimensional String Theory. These have the right dimension to be D6-branes and we will see a
physical proof later that this is indeed the case. For now we take it as the definition.

Definition 2.5.2. Let (M, g) be an oriented, Riemannian manifold such that dimM = 11 with an
isometric S1 action and let F := MS1 denote the fixed point locus. Then a connected component
Ni of F of codimension four is a D6-brane if its fixed point data has ε(p) = 1 and an anti-D6-brane
if ε(p) = −1 and all the weights are units.

Since in order to perform the reduction, we excluded the fixed points, we must be careful regarding
the behavior of the reduced space. In general, this process of removing fixed points and reducing is
pretty common in physics and the images of the fixed points in the quotient space are often called
topological defects, a well-deserved name since they encode topological information about the total
space. In general, we can be confident that for most spaces, the metric on the base space will
extend to a smooth metric when we try to include the topological defects. However, even if the
base metric smoothly extends to the fixed points, does the same apply to the RR-forms? Usually
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those questions are addressed for each case separately. For the case of the H2 form however which
as we saw has a very geometric origin, it has been shown [31] that there always exists an extension
on the base manifold N .

The topological defect can be a general geodesic submanifold of even codimension in the total space
and odd codimension after the reduction. In our case, it can be either isolated points or a spherical
bolt. In physics, we like to work with scalar quantities instead of cohomology classes and it is useful
to define the topological charge of a fixed point set (in the reduced space) given by

N := 1
4π

∫
Σ
H2

If the topological defect is a point (nut) then Σ is a surface surrounding it. If the defect is a bolt,
then the integration is carried on the bolt. It can be shown [32, 33] that this integration around a
(p, q) nut gives N = (pq)−1β/4π where β is the period of the Killing vector generating the circle
action. Similarly, in the case of the bolt, the result is N = Y β/4π where Y is the self intersection
of the bolt.

An interesting point can be made when N4 admits more than one isometric circle actions. In this
case it is not a priori clear which one is the right one. There can be therefore a variety of Type IIA
backgrounds that lift to the same eleven dimensional M-theory background and therefore they are
all dual in the sense that their physical properties must be the same.

2.5.1 Backgrounds with isometric torus actions

We want to take the discussion one step further and consider M-theory backgrounds with isometric
torus actions. We take M to be a four-manifold with the action Φ : T 2×M →M . As explained in
the previous sections, in order to get a Type IIA background we need to choose an isometric circle
action. In this new setting, we have a whole SL(2,R) of choices and in particular we can choose
any G(m,n) subgroup of T 2. Additionally, the obtained ten dimensional backgrounds for different
G(m,n) should be dual to each other. We want to understand the qualitative differences between
those backgrounds which will allow us to explore this kind of peculiar duality.

Our main goal is to study backgrounds with both D6 branes and anti-branes. Therefore, the
natural setting is a four-manifold with a circle action of two fixed points, a nut and an anti-nut.
This is why we focus on the simplest toy model, the S4. As we will see later in Chapter 4, there
exist backgrounds of eleven dimensional supergravity of the form C7 × S4 with the metric on S4

being T 2-invariant. Therefore, the results that we discuss now can indeed fit in String Theory
models. The structure of the orbit space of S4 is depicted in Figure 2.6. We take the C-orbits to
have isotropy G(0, 1) and G(1, 0). This can always be achieved by an SL(2,R) transformation of T 2.

As we have discussed, when we choose a circle action such that the weights of the fixed points are
unit, then the fixed points are interpreted as a D6-D6 pair in the Type IIA background. In this
case the slice theorem ensures the existence of an equivariant neighbourhood of the fixed point
diffeomorphic to R4 where the action is a radial extension of the Hopf action. The quotient space
is R3 and by performing a one-point compactification (adding the fixed point at infinity and the
corresponding point in the quotient space) we find that for such an action the quotient space is
S4/S1 ' S3.
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Figure 2.6: The obit space of S4. We take the collapsing cycles at the boundary to be (0,1) and
(1,0).

However, we notice that there are two peculiar choices of reduction circle that we can make, the
two circles that collapse at the boundary of the orbit space. For instance, if we choose the cycle
G(0, 1) then the sphere π−1(γ1) ⊂ S4 is left invariant under the induced circle action since all the
points are of isotropy G(0, 1). Therefore, π−1(γ1) is a spherical codimension two bolt of this circle
action. The same happens of course for the circle action of the cycle G(1, 0) and the bolt π−1(γ2).
On the other hand, if we choose any other cycle G(p, q), none of the spheres π−1(γ1), π−1(γ2) is
fixed and the only fixed points are the fixed points of the T 2 action P,Q.

The question that we now want to answer is what the base space looks like if we reduce along say
G(0, 1). We know in advance that the topological defect will not consist of points but will instead
be a sphere, the image of π−1(γ1) under the quotient map of the circle action π(0,1) : S4 → S4/S1.
The discussion of Section 2.3 applies here identically and therefore around each fixed point of
the bolt, say for instance the "pole" P , we can find using the slice theorem 2.1.4 an equivariant
neighbourhood diffeomorphic to TPM ' R4 on which the S1-action is characterised by the fixed
point data {ε(P ), w1, w2}. Due to the fixed point locus being a codimension two bolt, one of the
weights w1, w2 must be zero. This is easily seen either from the discussion in the beginning of
Section 2.3 or (for those who prefer Killing vectors over actions) from the expression 2.3. Assume
that w2 = 0 and w1 6= 0. We can think of the invariant copy of C as the tangent space to the bolt
and the copy on which the action is non-trivial as the normal space. To see what the base space
locally looks like we take the quotient of this neighbourhood C⊕ C/S1 where the circle acts on C
by (eiθ, z) 7→ eiw1θz. By rescaling the generating Killing vector, we can set w1 = 1. It is not hard
to see that quotienting the plane by rotations gives C/S1 ' [0,∞) so that C⊕C/S1 ' C× [0,+∞)
which is the upper half of R3. By adding the point at infinity we conclude that S4/S1 ' D3 is a
three dimensional ball with an S2 boundary as expected. The boundary is identified with the locus
of the topological defect. This locus is spherical since the quotient map is a homeomorphism on
the fixed point locus. We have therefore discovered a type of duality that arises due to the different
choices of reduction cycles and can be summarized as follows

• Reduction of M-theory along a cycle of the torus whose action has two isolated fixed points
of opposite charge. The images of the fixed points are isolated topological defects. In the
case of unit weights, the defects represent D6-branes and anti-branes.

• Reduction of M-theory along a cycle whose action has a codimension two fixed point set
(bolt). The topological defect is a sphere in the reduced space which appears as a spherical
boundary.

In the following chapter we will focus on how those mathematical ideas are applied in String
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Theory and we will delve into the world of brane–anti-brane dynamics. Our main focus in this
thesis is to describe systems consisting of a single D6-D6 pair and therefore S4 is the manifold of
special importance for us since it is the natural choice of compact, simply-connected four-manifold
providing a natural candidate for an M-theory background with a brane–anti-brane pair. This
background, as we will see more explicitly in Chapter 4 is realized when the M-theory four-form is
non-zero. In fact, there is a simpler M-theory background which is purely geometric in the sense
that F4 = 0. This manifold has the topology R2 × S2 and admits a torus action with two fixed
points. At first sight, one might wonder how such a space is compatible with the classification of
Theorem 2.4.2. The caveat is that Theorem 2.4.2 only concerns compact manifolds. The minimality
of this background will allow us to get some insight in the wild world of brane–anti-brane dynamics.
It will also provide the stage for testing the duality that we just introduced. This space will be the
main subject of the following chapter.

39



Chapter 3

Kaluza-Klein branes in String Theory

3.1 The geometry of solitons
The term soliton in physics and specifically in the context of gravity is broad enough to include
general topologically stable solutions of the field equations that describe localized matter. We will
see that D6-branes are among the large variety of objects that fall in this category. In particular,
what we will discover throughout the course of this Chapter is that D6-branes are intimately related
to magnetic monopoles, a certain type of soliton which is mangetically charged.

In the previous chapter, we exhibited the ideas behind dimensional reduction, the process of con-
structing connection metrics and how we can go back and forth between a principal bundle and
its base space. This was all demonstrated for the particular case of eleven dimensional M-theory
and its reduction to the ten-dimensional Type IIA String Theory. Historically, the idea of reduc-
tion goes way before the introduction of String Theory and was known in physics as Kaluza-Klein
theory. This remarkably beautiful geometric idea aspired to explain gravity and electromagnetism
in our four-dimensional world as the result of reduction of a five-dimensional geometry with pure
gravity. To star with, recall that by gravity in d dimensions we mean a metric on a d-dimensional
manifold extremizing the Einstein-Hilbert action given by

S = − 1
16πGk

∫
dxd
√
−g R(d)

In the above, R(d) is the Ricci scalar in d dimensions. We then make the usual ansatz that the
total space splits in the product M4 ×Mc of a four dimensional space M4 and an internal space
Mc. More generally, we can consider Mc-bundles over M4. The resulting physics at low energy
scales compared to the compactification scale is gravity coupled to a Yang-Mills theory with the
group of isometries of the internal space, ISO(Mc), being the gauge group. In the following we
restrict to d = 5 which is the standard Kaluza-Klein approach. In this case the spectrum of options
for a compact one-dimensional internal manifold is restricted to S1. As a consequence, the four-
dimensional theory will be ordinary gravity with a U(1) gauge theory, namely electromagnetism.
Let us first see how this gauge theory in four dimensions comes about. Consider pure gravity in
five dimensions

S = − 1
16πGK

∫
dx5√−detg R(5) (3.1)

Then we consider the background R1,3 × S1 with R1,3 being Minkowski spacetime. The spirit of
what follows is very similar to the horizontal and vertical splitting of a connection metric in "fiber
directions" and "base directions" as in Section 2.2. The traditional (for the physics literature)
approach that we consider here is useful because it can be applied in a wide range of internal
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manifolds, not confined to circles and indeed we will have the chance to see its power in Chapter 4.
Next, we expand the only field in our theory, the five dimensional metric, in terms of the Fourier
modes

gMN (xµ, y) =
+∞∑
n=0

gnMN (xµ)einy/R

where xµ denotes the coordinates on R1,3 and y the circle coordinate. We assume that the five-
dimensional metric does not depend on the circle coordinate so that translation along the circle
generates an isometry. Since nothing in the action 3.1 depends on y, the circle can be integrated
out to obtain the four dimensional effective theory. One then makes without loss of generality the
following parametrization of the five dimensional metric

gMN = ϕ−1/3
(
gµν +AµAνϕ Aµϕ

Aνϕ ϕ

)

whose form serves the purpose of isolating the Einstein-Hilbert term in four dimensions so that the
reduced action becomes

S = − 1
16πG

∫
d4x

√
−detg(xµ)

[
R(4) + 1

6ϕ2∂µϕ∂
µϕ+ 1

4ϕF
µνFµν

]
(3.2)

Here, we set G = GK/2πR and Fµν := ∂µAν−∂νAµ is the U(1) field strength, completely analogous
to the the 2-form H2 in Section 2.5. Recall that such a two-form is well-defined in the base space
which is here four-dimensional. The gauge symmetry associated to this field is generated by the
translation in the circle direction namely y → y + λ(xµ) in which case the transformation of the
gauge field Aµ is Aµ → Aµ + ∂µλ and Fµν is manifestly invariant. The gauge field Aµ is sometimes
called the graviphoton to emphasize its gravitational origin. The original idea of the Kaluza-Klein
theory was to obtain a pure theory of gravity and electromagnetism by setting the scalar ϕ to
be constant. The field equation for ϕ is of the form �ϕ ∼ FµνFµν which means that ϕ can be
constant only provided that Fµν = 0 in which case there is no gauge theory but only gravity in
four dimensions. This was the incurable flaw of the Kaluza-Klein idea that led people to initially
abandon it. However, the fact that it naturally incorporates electromagnetism and gravity renders
it a natural setup to construct gravitational backgrounds of magnetic monopoles. This is what we
do next.

We can start by exploring the simplest type of metrics, namely those that are static. This makes
sense intuitively, since a magnetic monopole system should be time independent. We can express
this as ∂gAB/∂t = 0. Another sensible assumption is to take the time direction to be totally flat
namely g0A = δ0A, with x0 denoting the time coordinate. The complete five dimensional equations
of motion RAB = 0 will be trivially satisfied in the time direction and the only non-trivial ones will
be:

Rij = R4i = R44 = 0 (3.3)

Where i, j ∈ {1, 2, 3} and the index 4 is reserved for the circular direction whose coordinate we still
denote by y. These equations imply that the constant time, four dimensional slices will be Ricci
flat. Manifolds satisfying this constraint played a key role in the development of Euclidean quantum
gravity and due to their frequent use, they have been granted the special name gravitational in-
stantons. This general term describes four-manifolds with Riemannian, complete, Ricci flat metrics.

It is worth making a small digression here to stress out the necessity of starting with a five dimen-
sional theory. If we had started with four dimensional gravity then the resulting equation for the

41



three dimensional slice Rij = 0 would imply that the manifold is flat, since in three dimensions
the Riemann tensor is completely characterized by the Ricci tensor (they have the same number of
independent components). This is why the simplest solitons are obtained from the M4×S1 ansatz
instead of, for instance, M3 × S1.

Back to our five dimensional setting, we notice that solutions of Rij = 0 (with the constraint that
one direction is a circle) can be obtained from four-dimensional solutions of (Euclidean) pure grav-
ity. More precisely, if M4 is a four manifold with a Ricci flat Riemannian metric ds2 = gµνdx

µdxnu

then the manifold R×M4 with metric ds2 = −dt2 +gµνdx
µdxν is a solution to the five dimensional

Einstein equations 3.3.

The first interesting example of such a Riemannian four-manifold that can arise in this way is the
Taub-NUT instanton. The four-dimensional metric is given by:

ds2 = V −1(dy +Aφdφ)2 + V (dr2 + r2dΩ2) (3.4)

where

Aφ = 2m(1− cos θ) V = 1 + 4m
r

(3.5)

The space is topologically R4 and the metric is Ricci flat but is not the flat metric on R4. Here r, θ, φ
are the standard spherical coordinates on R3 and y is a periodic coordinate which parametrizes
a circular direction in our space. A simple computation of the volume of a geodesic ball reveals
that it does not scale with r4 as would be the case in flat space but with r3. The period of the
coordinate y is 2πR with R = 8m and m being a free parameter in the metric which is related to
the ADM mass of the solution. The periodicity of y is fixed by the requirement that the metric
is complete. The metric seems to have a singularity at the origin r = 0 so in principle it is only
defined on R4 \ 0 but it can be shown that it smoothly extends to a metric on R4. Let us explore
the structure of this metric by considering constant r 6= 0 slices. The induced metric on the three
spheres is

ds2 = V −1(dy +Aφdφ)2 + V r2dΩ2 (3.6)

where now V is a constant. This nothing else than the Hopf metric on the three sphere, namely
the metric that makes the Hopf map S3 → S2 a Riemannian subemrsion. In other words the (iso-
metric) circle action corresponding to translations y → y + a is the Hopf action on each S3-shell.
Therefore, the Taub-NUT is a radial extension of the Hopf metric from S3 to the entire R4 \ 0.
We have already remarked that the Hopf action is free on the entire R4 \ 0 and therefore it can
be seen as a principal S1-bundle. The Taub-NUT metric is then a connection metric on R4 \ 0
(with connection form Aφ) which also makes the quotient map π : R4 \ 0 → R3 \ 0 a Riemannian
submersion. It is not hard to prove that the metric 3.7 is Ricci-flat. The Taub-NUT metric is also
special because it is hyper-Kahler and has SU(2) holonomy also implying Ricci flatness.

Recall from our discussion in 2.3.2 that the radial extension of the Hopf (or anti-Hopf) action in
R4 is the natural action in an equivariant neighbourhood of a fixed point with unit weights. The
requirement of unit weights was then natural for the quotient to be a manifold. What we have just
presented is a canonical Ricci-flat metric in the neighbourhood of a nut. Had we chosen −Aφ for
the connection, the circle action on S3 would be an anti-Hopf action and the metric would describe
the equivarant neighbourhood of an anti-nut. Historically, the Taub-NUT metric was discovered
long before the importance of fixed points was realized. This is why the isolated fixed points with
unit weights are called nuts and anti-nuts.
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There exists a natural generalization of the Taub-NUT space called the multi Taub-NUT metric.
This turns out to describe an array of fixed points. The metric is given by:

ds2
TNk

= 1
U(~r)(dy + χ)2 + U(~r)d~r2 (3.7)

where d~r2 = dr2 + r2dΩ2 is the flat metric on R3. The space TNk is again a hyperkäler four-
manifold with the topology of an S1-fibration over R3. The coordinate ~r is a vector in R3. The
function U(~r) and the connection form χ satisfy:

U(~r) = 1 + R

2

k∑
a=1

1
|~r − ~ra|

, dχ = ∗3dU

The latter condition (which is a consequence of the field equations) was satisfied in the case of the
Taub-NUT metric for χ = Aφ and U(~r) = V (r) but in the more general case at hand, it can be
quite non-trivial and therefore we must be careful about those choices. In the above expressions
we interpret ~ra as the positions of the (localized) solitons which are points in the space TNk. They
correspond to isolated fixed points of the circle action generated by translation along the y direction
and therefore they are the locations of the solitons.

As we have already mentioned, the other topological invariant that is relevant for our discussion
is the Euler characteristic. If we consider an open ball B ⊂ R3 containing all points ~ra then its
boundary S2 is the base of a regular S1 bundle over S2 so that we can use the same arguments as
in the case of the Dirac monopole. It can be shown that χ is a well-defined connection form and
the resulting total charge is: ∫

S2
dχ = 2πk

which, just like in the case of the Dirac monopole, can be reinterpreted as the Chern number of
the bundle being k ∈ Z. This result matches with the additive nature of the magnetic charge.
If in the metric 3.7 instead of dχ = ∗3dU we had taken dχ = − ∗3 dU then we would be describing
objects with opposite magnetic charge which are called anti-monopoles. The corresponding singu-
larities would then be anti-nuts. When considered separately, monopoles and anti-monopoles are
no different in terms of their intrinsic topology (they differ however in terms of their embeddings in
the higher dimensional space). An interesting scenario arises when one wants to consider systems
comprising both of them. It is then natural to ask if there are known solutions for a system of a
monopole and an anti-monopole.

The above question has been answered to the positive in [34]. First note that one way of generating
four dimensional Euclidean solutions is by taking Lorentzian solutions of the standard vacuum field
equations and making the time coordinate periodic and Euclidean, corresponding to the circular
of the Kaluza-Klein anstatz. This makes it relatively simple to generate solitons by employing
already known solutions of general relativity. This is precisely the strategy we will follow. The
way to proceed is to start with the Kerr solution in 1+3 dimensions and use the aforementioned
procedure to get a five dimensional solitonic solution. Doing this, we obtain the following metric
which is often referred to as the Kerr instanton:

ds2 =− dt2 + 1
r2 − a2 cos2 θ

[
∆(dτ + a sin2 θdφ)2 + sin2 θ((r2 − a2)dφ− adτ)2]

+ (r2 − a2 cos2 θ)
[
dr2

∆ + dθ2
]

(3.8)
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where ∆ = r2 − 2mr − a2. As a reality check, one can verify that the constant t slices correspond
to Euclidean Kerr metrics with periodic, Euclidean time τ . The angular momentum of this space
is imaginary and equal to iaM . It is also worth noting that the metric 3.8 is asymptotically flat
since the rotation parameter a enters in the metric to second order and does not appear in the
asymptotic expansion. Similar to what happened with the Taub-NUT space, in order to ensure
smoothness of the metric at the horizon r+ = m + (m2 + a2)1/2 where ∆ = 0, we have to impose
the following periodicity condition:

(r, τ, θ, φ) ∼ (r, τ + 2πγn1, θ, φ+ 2πγΩn1 + 2πn2) n1, n2 ∈ Z

where γ = 2mr+

(m2 + a2)
1
2
, Ω = a

r2
+ − a2 = a

2mr+
(3.9)

Regularity of the metric (and of course constancy of the signature) also requires r > r+ so that
∆ > 0. This also ensures that r2 − a2 cos2 θ > 0 so we do not have to worry about singularities
coming from this term. A special feature of the Kerr instanton is that it has two Killing vectors
associated to U(1) isometries, the standard ∂/∂τ and the co-rotating Killing vector ∂τ + Ω∂φ.
In the other words, this space can be viewed as a principal bundle in two different ways. The
corresponding perspectives are different although apparently they describe the same space.

• If we choose the U(1) isometry associated to ∂τ then the fixed points of the isometry are given
by the vanishing of KµKµ = gττ = 0 which is the surface r = m+

√
m2 + a2 cos2 θ. Since we

imposed r ≥ r+ the only fixed points correspond to r = r+ and θ = 0, π. These can be shown
to correspond to a nut and an anti-nut. Note that we assumed that a 6= 0 since in the case
a = 0 we recover the Schwarzschild limit of the Kerr solution which has a different behavior.

• If we choose the U(1) isometry of the co-rotating Killing vector then a straightforward calcu-
lation shows that there is a fixed surface r = r+. This constitutes a regular spherical bolt of
self intersection Y = 0 and the resulting manifold has the topology of a complex line bundle
over S2.

As a consistency check, note that if we apply the formulas for the Euler characteristic and signature,
both descriptions give the same Euler characteristic and signature. In those formulas, the Chern
number k is zero because the Kerr instanton is asymptotically flat so that it looks like a trivial
S2×S1 at infinity. This gives χ = 2 and τ = 0 which means that the Kerr instanton solution is not
in the same topological sector as the vacuum. Using further arguments, it was shown in [34] that
the Kerr instanton describes a monopole– anti-monopole system. Note also that there is a physical
interpretation for the parameter a in this solution which can be thought of as the distance between
the monopole and the anti-monopole.

In passing, we mention that the Kerr instanton is in many ways similar to the Bonnor solution [35]
in General Relativity which also describes a magnetic dipole. Their relation can be understood in
the context of Einstein-Maxwell theory coupled to a dilaton with the coupling between the Maxwell
term and the dilaton being arbitrary which leads to the following action

S = − 1
16πG

∫
dx4√−det g

(
R(4) − 2∂µϕ∂µϕ− e−2bϕFµνFµν

)
Then, the Bonnor solution is a solution of this theory for b = 1. On the other hand, the Kaluza-
Klein theory fixed this coupling by the requirement that the action comes from pure gravity in
higher dimensions imposing b =

√
3. Indeed it can be checked by a straightforward computation

that the Kaluza-Klein action 3.2 reduces to the Einstein-Maxwell-dilaton action after a redefinition

44



of the dilaton ϕ 7→ −4e−2
√

3ϕ. The Kerr solution was found to be a solution for this value of the
coupling. There is also a generalized Bonnor solution for arbitrary value of b of which the Kerr
instanton and the Bonnor solution are just special cases.

3.2 From Kaluza-Klein to String Theory backgrounds
In this section we utilize the Kaluza-Klein soliton backrounds that we previously discussed, in
order to make contact with the ten dimensions of String Theory. The route we will take is the
one already announced in Section 2.5 which amounts to considering products of seven and four
dimensional manifolds to construct M-theory backgrounds and then reduce along isometric cycles
to obtain Type IIA backgrounds. We will first exhibit how the Taub-NUT space gives rise to a
single D6-brane (or anti-brane). In the next section, we will apply the same procedure for the Kerr
instanton and we will discover our first background with a D6−D6 pair.

3.2.1 The D6-brane

We would like to interpret the above solutions as objects living in the ten dimensions of String
Theory. The mechanism that relates solitonic solutions like the ones we obtained to string theory
configurations is relatively well understood. Let us see how it works.

We start with a qualitative description. We have already discussed the relationship between M-
theory and Type IIA String Theory from a mathematical standpoint. Now we want to motivate
this connection in physical terms. The mass of the supergraviton in eleven dimensions is M2

11 =
−pMpM = 0. We can dimensionally reduce this on the circle whose radius length scale is Rc and
use that the momenta in the circular dimension are quantized p11 = n/R , n ∈ Z to conclude that
in 10 dimensions we get a tower of massive states with massesM2

n = (n/Rc)2. These massive states
are all BPS 1 and carry n units of U(1) charge. For n = 1 we can identify this with the D0-brane
obtained in the context of type IIA string theory which also carries a unit charge and has a mass
given by (`sgs)−1. By matching the masses we get that in order for this correspondence to hold we
need:

Rc = `sgs (3.10)

which gives an important relation between the string coupling and the radius of the eleventh di-
mension. This relation is also the reason why we can interpret perturbative type IIA string theory
as a weak coupling limit of M-theory, since the limit Rc → 0 in which we obtain a legitimate
10-dimensional description is the same as gs → 0. From the above discussion it also becomes clear
that in this limit the tension of the D0-brane diverges, which renders it a non-perturbative object.
The relevant gauge field corresponding to the U(1) charge is the one coming from the reduction of
the eleven dimensional metric gMN , namely Cm = gm11. This charge is precisely what we defined as
topological charge in Section 2.5 where we identified the D6-branes as the natural objects that carry
it. From the new perspective that we just developed, D0-branes also deserve this title. Indeed, D0
and D6 are the duals of each other and they both share the same origin. This is consistent with
the fact that they are the magnetic duals of each other.

Armed with the previous results, we can now try to give a quantitative interpretation of the
gravitational instanton metrics in the context of String Theory. One particularly intriguing aspect
of String Theory is that any Type IIA background can be lifted to M-theory which is the content

1Meaning that they saturate the BPS bound. Although we will not be heavily concerned with this notion, it is
very useful and will be mentioned throughout this thesis. We refer to [36] for more details.

45



of Section 2.5. Let a solution of type IIA be given by the metric gµν , the dilaton ϕ and the
Ramond-Ramond 1-form Cµ. Then the eleven dimensional metric:

ds2 = e−
2ϕ
3 gµνdx

µdxν + e
4ϕ
3 (dx11 + Cµdx

µ)2 (3.11)

is a solution of the eleven dimensional supergravity. In order to account for the additional massless
bosonic fields in type IIA, we must turn on fluxes. In other words, we have to consider non-trivial
configurations for the four-form of eleven dimensional supergravity. If this form vanishes, we call
the background purely gravitational. Conversely, given a purely gravitational M-theory setup, it is
possible to obtain an associated type IIA solution by dimensional reduction. This was shown in its
generality. In the following we will demonstrate how this mapping works for the specific metrics of
gravitational instantons that we found in the previous section.

Let us first consider the Taub-NUT solution which is obtained as a special case of the multi Taub-
NUT for k=1 with the unique defect sitting at ~r = 0. Then we can construct an eleven dimensional
metric given by:

ds2 = −dt2 +
10∑
m=5

(dym)2 + ds2
TN (3.12)

Here, ds2
TN is shorthand for the Taub-NUT metric 3.7. The metric 3.12 is a solution to the eleven-

dimensional Einstein equations. It thus follows that it is a solution to the field equations of eleven
dimensional supergravity with all other fields set to zero. We now want to dimensionally reduce
along the M-theory circle in order to study the underlying String Theory picture. This was first
done in [5]. Comparing 3.12 with 3.11 we immediately get

U(r)−1 = e
4
3φ ⇒ eφ =

(
1 + R

2r

)− 3
4

This gives the 10-dimensional dilaton. It follows that our dilaton is not constant but depends on
the radial coordinate r. One could raise some objections here. In the derivation of 3.10 we assumed
a constant radius for the S1-fibration which translates to a constant dilaton. Now that the dilaton
and consequently the fiber radius is varying with respect to the base manifold, 3.10 has to be
modified. It turns out that 3.10 is still valid but with Rc substituted by the asymptotic radius R of
the Taub-NUT fibration. Having clarified this issue, we can go on and identify the ten dimensional
metric:

ds2
10 = e

2
3φ
(
− dt2 +

10∑
m=5

(dym)2 +
(

1 + R

2r

)
d~r2
)

=
(

1 + R

2r

)− 1
2
(
− dt2 +

10∑
m=5

(dym)2 +
(

1 + R

2r

)
d~r2
)

(3.13)

A simple change of coordinates given by r̃ = R/2 + r transforms the ten dimensional metric to a
more easily recognizable form:

ds2
10 =

(
1− R

2r̃

) 1
2
(
− dt2 +

10∑
m=5

(dym)2
)

+
(

1− R

2r̃

)− 1
2
dr̃2 + r̃2

(
1− R

2r̃

) 3
2
dΩ2

2 (3.14)
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This metric was found in [37] to give the 6-brane solution in the context of 10 dimensional 2A
supergravity which is the low energy limit of Type IIA String Theory. We thus conclude that the
Taub-NUT soliton in M-theory corresponds to a D6-brane in Type IIA. It can also be shown using
the same argumentation, that the multi Taub-NUT background in M-theory reduces to a system
of k D6-branes in type IIA.

To make this argument even more solid we can prove that the energy content of the above eleven
dimensional spacetime agrees with this interpretation as a system of D6-branes. This is done
by considering the energy density of the spacetime but instead of integrating over the entire ten
dimensional spacetime (which would give a mass), we integrate over the the four dimensional space
transverse to the brane (the Taub-NUT space) which gives a quantity with the right dimensions
for a tension:

T = 1
16πG11

2πR
∫
d3x∇2V (r) = 2π

(2π`p)9 (2πR)2 = 1
gs

2π
(2π`s)7 = TD6

This agrees with the value of the tension of a D6-brane in string theory. In this manner we succeeded
in identifying the eleven dimensional background R7 × TN with the M-theory lift of a system of a
D6-brane of Type IIA String Theory. We are led to the following:

Proposition 3.2.1. The metric 3.12 is the M-theory lift of a D6 brane in type IIA string theory.

This proposition and the preceding discussion constitutes the physical proof that we promised in
Section 2.5 when we identified isolated fixed points in four-manifolds with unit weights (nuts and
anti-nuts) with D6-branes. Since we showed that the Taub-NUT metric is nothing more than the
metric realizing the Hopf (or anti-Hopf) action in an equivariant neighbourhood of a fixed point,
it becomes more than plausible that Definition 2.5.2 is well-motivated from a physical perspective.
Note also that the Taub-NUT space admits two Killing spinors, being hyper-Kahler. This means
that the solution 3.14 breaks half of the supersymmetry of the M-theory vacuum. This is also
consistent with the status of D6-branes as half-BPS objects.

An almost immediate generalization is that the description of an array of D6-branes in Type IIA
lifts to M-theory on a multi-Taub-NUT space R7 × TNk. The k-1 spheres connecting those k
monopoles (fixed points) look like the sphere in Figure 2.2 and their image under the quotient
map is a one-dimensional line stretching from one monopole to the other. Therefore, an M2-brane
wrapped around this sphere in the eleven dimensional theory, has the interpretation of an open
string with its ends on two different branes in ten dimensions. If we call Sij the sphere connecting
the ith and jth fixed points then the area of this surface is

∫
Sij

U−1/2(~r)U1/2(~r)dy|d~r| = 2πR` = 16πm` ` :=
∫
|d~r|

Here ` is the distance between ri and rj in R3 along some arbitrary path that we have chosen. Since
the restriction of the Taub-NUT metric on R3 is the flat metric, the geodesics are just straight lines
and the minimal distance is ` = |ri − rj |. Therefore, the minimal sphere Sij has surface area
16πm|ri − rj |. This looks a lot like the area of a cylinder of length |ri − rj | and radius R = 8m
and this would indeed be the case if the metric was the flat metric on R4. This is therefore another
manifestation of the differences between the Taub-NUT and the flat metrics. If we now wrap an
M2-brane around a sphere Sij then the mass of this membrane will be

mij = 16πmTM2|ri − rj |
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From a ten dimensional perspective, this is exactly the product of the string tension Ts = 16πmTM2
times the distance between the branes |ri − rj |, in agreement with the standard formula for the
mass of the open string between D-branes. In particular, the mass of the open string goes to zero
as the monopoles approach and this gives rise to a gauge enhancement from U(1)×U(1) −→ SU(2).

Another way to see this enhancement is through the intersection form of the four-manifold. In
particular, the k − 1 submanifolds Si,i+ with 1 ≤ i ≤ k − 1 generate H2 and it is straightforward
to calculate the intersection form which will be a (k − 1)× (k − 1) matrix. The diagonal elements
are the self-intersections of the spheres, a quantity which in Section 2.5 we identified with the
topological charge carried by it or equivalently carried by the fixed points at the two poles. In
particular, for the case at hand, the fixed points are both nuts so the self intersection of Si,i+1 is
2. To compute the off-diagonal elements note that only adjacent spheres intersect and therefore
the only non-zero entries are -1 for the (i, i+ 1) element since each Si,i+1 intersects its neighbor in
exactly one fixed point

I =



2 −1 0 0 ... 0 0
−1 2 −1 0 ... 0 0
0 −1 2 −1 ... 0 0
. . . . ... . .
. . . . ... . .
0 0 0 0 ... 2 −1
0 0 0 0 ... −1 2


This is the Cartan matrix of the Ak−1 algebra. When the fixed points of the circle action coincide,
this will give rise to an Ak−1 singularity and a corresponding gauge enhancement U(1)k −→ SU(k).
The signature of this matrix is k-1. This concludes our discussion regarding systems of many D6-
branes.

3.3 D6-D6 pairs in String Theory
Having identified the right geometry for D6-branes (Taub-NUT) and for an array of D6-branes
(multi-Taub-NUT) and their anti-brane analogs, it would now be desirable to know what is the
M-theory description of a D6 − D6 pair. For this we need metrics with actions of fixed points of
both nut and anti-nut type. It is natural to consider the monopole–anti-monopole solution 3.8 as
an obvious candidate for this. It turns out that this is indeed the correct interpretation. The main
arguments for this were made in [38]. We will review the main points made there.

We start by embedding the Kerr instanton in the eleven dimensional space of M-theory just as we
did for the Taub-NUT space. We recall that the nut and anti-nut associated to the Killing vector
∂τ are located at the poles of the horizon r = r+, namely at θ = 0, π. We expect those two points
to signify the location of the D6-D6 in the transverse space. In particular the metric becomes:

ds2 =− dt2 +
6∑

m=1
(dym)2 + 1

r2 − a2 cos2 θ

[
∆(dτ + a sin2 θdφ)2 + sin2 θ((r2 − a2)dφ− adτ)2]

+ (r2 − a2 cos2 θ)
[
dr2

∆ + dθ2
]

(3.15)

This geometry was discussed in [38]. The main idea is to prove that the local geometry around the
nut and the anti-nut is the monopole geometry 3.12, proving that the metric 3.15 has a monopole
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and an anti-monopole embedded in it. What we mean by local geometry in this context can be
intuitively understood as follows. First of all, consider the geodesic distance between the two fixed
points located at r = r+, θ = 0, π. It is not hard to show that moving along θ is a geodesic
connecting the two points and therefore the geodesic distance is

` :=
∫ π

0

√
r2

+ − a2 cos2 θ dθ

For a�M we have ` ' 2a and we can think of a as being a measure of the monopole–anti-monopole
distance. In any case, we have a concrete interpretation for the parameter a. Next, consider the
dimensionless quantity r/a where r is some arbitrary coordinate that measures the distance from
one of the poles. Then a local geometry arises as the limit when r/a→ 0 which gives a quantitative
criterion for being close enough to one of the monopoles. There are two ways to do that, either
by keeping r arbitrary and taking a→∞ or by keeping a arbitrary and taking r → 0. Those two
limits turn out to give the expected geometry which is of course the Taub-NUT geometry. The
mass parameter of those Taub-NUT geometries is equal to γ/2.

The above arguments serve to convey the content of the local geometry around the monopoles but
fail to give a complete account of the dynamics in this spacetime. In order to achieve that, let us
explore what the ten-dimensional theory looks like. First, we observe that due to the identifications
3.9 which were necessary to make the metric regular (and the space complete) the periods of the
τ, φ coordinates are intertwined. We introduce a new coordinate

φ̃ := φ−Bτ B := Ω− 1
γ

For this coordinate, using 3.9 we have:

φ̃ ∼ φ+ 2πn2 + 2πγΩn1 −
(

Ω− 1
γ

)
(τ + 2πγn1) = φ̃+ 2π(n1 + n2) (3.16)

so that φ̃ has period 2π. The metric in those coordinates reads:

ds2
11 = −dt2 +

6∑
i=1

(dyi)2 + Σ
[
dr2

∆ + dθ2
]

+ ∆ + a2 sin2 θ

Σ dτ2

+ 2[∆− (r2 − a2)]a sin2 θ

Σ dτ(dφ̃+Bdτ) + sin2 θ

Σ [(r2 − a2)2 + ∆a2 sin2 θ](dφ̃+Bdτ)2 (3.17)

Now we perform a Kaluza-Klein reduction of this metric along the Killing field ∂τ which in the old
coordinates is the field ∂τ + B∂φ. For now, we forget the specific value of B and we think of it as
an arbitrary parameter. This will help us uncover the many different ten dimensional backgrounds
for reductions along different cycles. The reduction gives [39]

ds2
10 = Λ1/2

{
− dt2 +

6∑
i=1

(dyi)2 + Σ
[
dr2

∆ + dθ2
]}

+ Λ−1/2∆ sin2 θdφ̃2

e
4
3ϕ = Λ (3.18)

Aφ̃ = Λ−1 sin2 θ

Σ

{
B[(r2 − a2)2 + ∆a2 sin2 θ]− a[(r2 − a2)−∆]

}
Λ := 1

Σ

{
[∆ + a2 sin2 θ]− 2Ba sin2 θ[(r2 − a2)−∆] +B2 sin2 θ[(r2 − a2)2 + ∆a2 sin2 θ]

}
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where ϕ is the ten dimensional dilaton as usual. Let us now try to understand the dynamics of
the theory if we ignore the brane–anti-brane pair. If we want to have a notion of space in which
the brane–anti-brane lives, we must look at the asymptotic space. The quick way to do this is to
set a = m = 0 and we expect that this is the "background" in which the brane–anti-brane pair is
embedded. Note that we take a,m→ 0 only in the metric but we leave the periodicities 3.9 intact
since they remain unchanged in the asymptotic region we are exploring. In this case we get:

ds2
10 = Λ1/2

[
− dt2 +

6∑
i=1

(dyi)2 + dr2 + r2dθ2
]

+ Λ−1/2r2 sin2 θdφ̃2

e
4
3ϕ = Λ

Aφ̃ = Br2 sin2 θ

1 +B2r2 sin2 θ
(3.19)

Λ = 1 +B2r2 sin2 θ

This however is not flat space which is to say that even if we ignore the presence of the branes,
there is still a non-trivial one-form field Aφ̃. Let us explore this geometry. The space is known as a
fluxbrane and there is a solid way to understand its structure [41, 40, 42] and its subtle relation
to flat space. Consider Rd with the flat metric and isometry group ISO(Rd) = SO(d) n Rd. We
want to consider the possible isometric circle actions which are given by a group homomorphism
S1 ↪→ SO(d)nRd. More generally we can consider linear embeddings of the Lie algebra Lie(S1) = R
in so(d)nRd. To specify such a map we need only specify an element of the Lie algebra (the image
of 1 ∈ R) which consists of a pair (ω, λ) with ω ∈ so(d) an anti-symmetric matrix and λ ∈ Rd a
translation. The action on elements x ∈ Rd is given by

(t, x) 7→ exp(tω) · x+ tλ t ∈ R, x ∈ Rd

When ω = 0 this action is just a translation and the quotient map Rd → Rd−1 is the map that
collapses the λ-direction. In this case the action is clearly free. When λ = 0 then we have pure
rotations and there will necessarily be fixed points. In general if we want the induced action to be
free we must require that

ω · x+ λ = 0 (3.20)

has no solutions (those would be fixed points). A sufficient condition for this is that the rotations
generated by ω occur in a hyperplane that is orthogonal to λ. This can always be arranged by
redefining the origin by O 7→ O + a for some vector a ∈ Rd. In this case the new action is given
by the pair (ω, λ+ ω · a). The rotation part then takes place in the orthogonal Rd−1 plane and is
characterized by the [(d-1)/2] eigenvalues of ω which we denote Bi. In order for this action to de-
scend into a circle action we must impose further identifications. This is common when performing
Kaluza-Klein reductions along non-compact directions. Let P ∈ Rd and P ′ be the point obtained
by moving P by an amount 2πR along the orbit where R is arbitrary but sets the scale of the
circular dimension. In more precise terms, we started with a manifold M admitting an R-action
and by quotienting with a cocompact subgroup Γ ⊂ R we consider the circle action of R/Γ onM/Γ.
An illustration for R3 can be seen in Figure 3.1 where the two cases of zero and non-zero rotation
are depicted.

The flat metric can be written in such a way to make the decomposition of Rd into [d/2] two-planes
manifest

ds2 =
m∑
i=1

(dρ2
i + ρ2

i dφ
2
i ) + dy2 + dx2
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Figure 3.1: (A) The orbit of P when ω = 0 (B) The orbit of P when ω 6= 0. In both cases the
points P, P ′, P ′′ are identified in order to obtain a circle action.

Here y is the coordinate in the direction of λ and (ρi, φi) are polar coordinates on each two-plane
on which the ω action acts as a rotation with parameter Bi. The sign of the parameter Bi is
related to the orientation of the rotation. The dx2 term is absent when the dimension d = 2m+ 1
is odd. When d = 2m+ 2 is even, x, y span the two-plane on which the ω action is trivial. In those
coordinates the identifications we have introduced so far can be summarized by the equivalence
relation:

(φi, y) ∼ (φi + 2πn1BiR+ 2πn2, y + 2πn1R) n1, n2 ∈ Z

The identifications φi → 2πn2 and y → 2πn1R are of course the standard periodicities that would
be present in a regular or "untwisted" reduction. The new ingredient here is the periodicity φi →
φi + 2πn1BiR when y → y + 2πn1R. Note that this is exactly the type of identifications that
we encountered when we constructed the Kerr instanton 3.9. Since the angular coordinates φi are
identified under two operations, we can freely change Bi by a multiple of 1/R and the identifications
remain unchanged (the effect is similar to what we saw in 3.16). In other words, inequivalent
spacetimes are obtained only for 2

− 1
2R < B ≤ 1

2R (3.21)

Let us now proceed with the Kaluza-Klein reduction along the orbits of the Killing field. The
Killing field is

q = ∂y +
m∑
i=1

Bi∂φi
(3.22)

The idea now is to introduce coordinates along the orbits of the action as we always do when we
perform a reduction. The canonical coordinates are φ̃i := φi−Biy. In the new coordinates the flat

2In fact, this holds if we consider only bosons. If we want to classify backgrounds which differ only in the spin
structure as inequivalent, this argument needs a little more care. For more information on this issue, in the context
of fluxbranes, see [43].
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metric takes the form

ds2 = Λ
[
dy + 1

Λ

m∑
i=1

Biρ
2
i dφ̃i

]2
+

m∑
i=1

(dρ2
i + ρ2

i dφ̃
2
i )−

1
Λ

( m∑
i=1

Biρ
2
i dφ̃i

)2
+ dx2

Λ := 1 +
m∑
i=1

B2
i ρ

2
i (3.23)

It is then straightforward to reduce this using a reduction ansatz. If we consider d = 11 then we
can use 3.11 to obtain:

ds2
10 = Λ1/2

[ 5∑
i=1

(dρ2
i + ρ2

i dφ̃
2
i )−

1
Λ

( m∑
i=1

Biρ
2
i dφ̃i

)2]

e
4
3ϕ = Λ A = 1

Λ

m∑
i=1

Biρ
2
i dφ̃i

Where A denotes the gauge field and ϕ the dilaton. This shows that a gauge field is produced
whenever ω acts non-trivially on some two-plane so that Bi 6= 0. Note also that the parameter Bi
is related to the field strength by

B2
i = 1

2F
µνFµν |ρi=0

When only one of the Bi is non-zero, then we call the solution a fluxbrane 3. In this case there is
field strength in the (ρi, φ̃i) plane which is thought of as being the plane transverse to the fluxbrane.
Therefore, the fluxbrane is an object that extends along the remaining eight dimensions. In order
to emphasize its dimensionality and its eight dimensional Poincaré invariance, we often refer to this
object as an F7-brane. When more than one Bi are non-zero, then we interpret this configuration
as various intersecting fluxbranes each transverse to some (ρi, φ̃i) plane. The fluxbbranes are re-
garded as a generalization of the Melvin universe [45] in String Theory.

It is important that due to the form of the dilaton in the fluxbrane background (see either 3.19
or 3.23) the ten-dimensional spacetime asymptotically decompactifies. This indicates a breakdown
of the basic assumption that the compactified dimension can be made "small enough". Therefore,
although we started with a valid M-theory background, the type IIA picture is only adequate at
certain distances ρi. This reveals the non-perturbative nature of the spacetime we are considering
here. We can view those backgrounds as an approximation to a constant magnetic field which is
valid when ρ� 1/|B| so that the geometry looks locally as a circle bundle over R3 where the circles
have approximately constant length R and the string coupling is gs = R/

√
α′. What is more, the

standard compactification assumption dictates a regime of validity only for length scales larger than
the compactification scale so that ρ � R. Combining those relations together gives the following
consistency condition:

R |B| � 1 (3.24)

We can always arrange the magnetic field to satisfy this condition by slightly shifting the Killing
vector field on which we reduce from 3.22 to

q′ = ∂y +
(
n

R
+B

)
∂φ

3We could have chosen the rotation to take place in a plane containing the time direction. This would give rise
to a different object called the nullbrane. Apparently, taking the vector λ to be in the time direction would not be
sensible since it would result in compactifying time. For more details on nullbranes see [44]
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This has the effect of shifting the magnetic field by n/R while preserving the periodicity of the
canonical coordinates φ̃ = φ − (n/R + B)y. It is easy to see then that there is a unique value of
n such that 3.24 is satisfied. This procedure can be performed for the case when more magnetic
fields Bi are present to ensure that 3.24 holds for all of them separately. This result is of great
importance since it picks out a "correct" cycle on which the reduction is to be performed such that
the ten dimensional theory is indeed perturbatively accurate.

Next we observe that 3.19 is precisely this fluxbrane spacetime containing only one fluxbrane orig-
inating from a non-trivial action on the plane with polar coordinates ρ = r sin θ and φ. In a more
pictorial way, we have shown the commutativity of the diagram of Figure 3.2

Figure 3.2: An illustration of the relation between the Kerr instanton and the fluxbrane spacetime.

We have argued for the existence of the fluxbrane in the Kerr instanton geometry by reducing and
setting m = a = 0. Since the Killing vector along which we reduced was ∂τ + (Ω − 1/γ)∂φ we see
that at asymptotic infinity the Kerr spacetime will have a magnetic field equal to Ω − 1/γ. The
compactification radius of our reduction is R = γ (the "radius" of τ) and therefore we have

BR =
(

Ω− 1
γ

)
γ = Ωγ − 1 = a√

m2 + a2
− 1

which for a� m 3.24 is clearly satisfied. Therefore the reduction along this Killing vector field is
valid if we are interested in the regime a � m which reflects the physical scenario of the brane–
anti-brane being a large distance apart. In this case the magnetic field for a� m is approximated
by

B = Ω− 1
γ
' − m

4a2

What is remarkable about this value is that it is precisely the magnetic field required to keep the
brane–anti-brane pair apart [38]. To see this first note that as we have already mentioned, the
mass of each monopole can been identified with the quantity γ/2 (a requirement that is derived
by demanding that close to each monopole the metric becomes a Taub-NUT metric). Then in the
regime a� m that we are considering the mass of each brane is given by

MD6 = γ

2 = m(m+
√
a2 +m2)√

a2 +m2
−→ m as m

a
→ 0

Next we calculate the magnetic repulsion due to this magnetic field that we found above

Fmag ' 2qB ' 2MD6
m

4a2 = m2

2a2
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Where we used that the D6 are maximal p-branes so that their charge is equal to their mass. For
the same reason their gravitational and magnetic attraction (due to their own fields) will be equal
and given by

Fgrav = M2
D6
r2 ' m2

4a2

Where the distance was taken to be the geodesic distance of the two monopoles for large a which
was found to be equal to 2a. We see that 2Fgrav = Fmag so that the system perfectly balances
under the influence of the magnetic field caused by the fluxbrane.

To recap, we have identified the content of M-theory on a Kerr instanton as being a D6-D6 pair
immersed in a magnetic fluxbrane background where the brane–anti-brane pair balances. This has
been possible due to the twisted identifications 3.9 that give rise to a magnetic field. It is important
that the twisting is "measured" in the coordinates in which the (asymptotic) metric assumes its
canonical flat form. Indeed, we can always (and we did) introduce untwisted coordinates as in 3.16
but then the asymptotic metric will not have the standard flat form since now a magnetic field
exists everywhere.

3.4 A closer look at the brane–anti-brane system
In this section we explore the structure of the Kerr instanton under the torus action. Our aim is
to understand the disparities between different circle actions and the geometric properties of the
bolts and nuts both in the eleven dimensional geometry and after the reduction. Additionally, we
will investigate the issue of the brane–anti-brane stability which so far has been attributed to a
fortuitous conspiracy of the various fields and parameters.

3.4.1 Fixed points of general Kiling fields

In the previous section we discussed various aspects of M-theory on a Kerr instanton and by per-
forming a Kaluza-Klein reduction on a circle we examined the String Theory dynamics in ten
dimensions. However, many crucial points remain nebulous. To begin with, the choice of a Killing
vector along which the reduction takes place seemed ad hoc since there is no preferred element in
the isometry algebra iso(M) or at least we did not argue about it. Another problem along the same
lines is the stability of the brane–anti-brane system which relied on the magnetic field that exactly
canceled the brane–anti-brane attraction. This was a seemingly miraculous intervention, heavily
dependent upon the choice of the Killing vector’s finely tuned magnitude. In this section, we seek
answers to those questions.

To begin with, the isometry group of the Kerr instanton is U(1)×U(1), namely a 2-torus, spanned
by the φ, τ coordinates on which the metric 3.8 does not depend. Therefore, we have an isometric
torus action on the manifold R2 × S2. Reducing to ten dimensions requires choosing an embedded
circle G(m,n) ↪→ T 2 for which we unquestionably chose the one whose Lie algebra is spanned by
K = ∂τ + (Ω− 1/γ)∂φ. Let us generalize this by considering an arbitrary linear combination:

K = κ∂τ + λ∂φ , κ, λ ∈ R (3.25)

It is straightforward to compute the magnitude of the Killing vector

KµKµ = κ2g2
ττ + 2κλgτφ + λ2g2

φφ (3.26)

= 1
r2 − a2 cos2 θ

{
∆(κ+ λa sin2 θ)2 + sin2 θ(κa− λ(r2 − a2))2

}
(3.27)
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The fixed points of the corresponding isometry will be given by the vanishing locus of KµKµ. Since
∆ ≥ 0 we have

∆(κ+ λa sin2 θ)2 = 0 (3.28)
sin2 θ(κa− λ(r2 − a2))2 = 0 (3.29)

In order to find all possible solutions, we distinguish the following cases:

• If ∆ = 0 ⇒ r = r+ = m +
√
m2 + a2 then 3.28 is satisfied and 3.29 can be satisfied in two

ways:

– If sin θ = 0⇒ θ = 0, π then the fixed points are two isolated points. This is therefore, a
nut–anti-nut pair. The reduction that we performed in the previous section falls in this
category. In this case there is no constraint on the κ, λ so these two points are fixed by
any circle subgroup. Those are therefore the fixed points of the torus action.

– If κa − λ(r2
+ − a2) = 0 ⇒ λ/κ = Ω where Ω = a/(r2

+ − a2) as before. In this case the
fixed point locus is the surface r = r+.

• If ∆ 6= 0 then we must demand that κ+λa sin2 θ = 0 so that in order to satisfy 3.29 we again
have two possibilities

– If sin θ = 0 ⇒ θ = 0, π then κ = 0 and the Killing vector is in the direction of ∂φ. In
this case the bolt is the disjoint union of the surfaces θ = 0 and θ = π. We will have
more to say about those shortly.

– If sin θ 6= 0 (and ∆ 6= 0) then the equations that we get have no solutions.

Summarizing, there are three types of fixed point loci, two bolts and a nut–anti-nut pair depending
on which circle subgroup of the torus we choose as our eleventh dimension. The nuts are the fixed
points of the torus while the bolts constitute points with isotropy group S1 where geometrically
one of two independent torus cycles "collapses". This is in perfect agreement with our conclusion
regarding fixed points sets in Section 2.5. However, there is a small difference owing to the non-
compactness of the manifold we are studying here. In our treatment of compact manifolds, the
codimension two fixed point loci (bolts) had to be compact but this is not longer the case. Let us
explore what they look like in more detail:

• The surface r = r+ has induced metric

ds2 = (r2
+ − a2 cos2 θ)dθ2 + sin2 θ

r2
+ − a2 cos2 θ

[
(r2

+ − a2)dφ− adτ
]2

A more appropriate coordinate φ̃ := φ− a
(r2

+−a2)τ = φ−Ωτ makes the geometry of this surface
more transparent

ds2 = (r2
+ − a2 cos2 θ)dθ2 +

sin2 θ(r2
+ − a2)2

r2
+ − a2 cos2 θ

dφ̃2

This is a metric on a sphere and therefore r = r+ is a spherical bolt. As a reality check, we
can calculate the Euler characteristic χ(R × S2) = χ(S2) = 2 which is indeed correct and
agrees with the existence of two fixed points of the entire torus action which would again give
χ(R2 × S2) = 2 according to Theorem 2.3.2.
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• The surfaces θ = 0, π both have the same induced metric given by

ds2 = ∆
r2dτ

2 + (r2 − a2)dr
2

∆

This is a warped product of the circle (parametrized by τ) and the line (parametrized by r)
with the radius of the circle vanishing at r = r+. This therefore has the topology of a disk
D2. The asymptotic radius of the circle is equal to γ (the period of τ). Note that we can use
this bolt to calculate the Euler characteristic χ(R2 × S2) = χ(D2 t D2) = 1 + 1 = 2.

The geometry of those surfaces is illustrated in Figure 3.3. Note the structure of the orbit space
under the entire torus action. Consider the right picture in Figure 3.3 and quotient out the
azimuthial coordinate φ̃. The resulting space is isomorphic to the upper half Euclidean plane
{(x, y) ∈ R2 | y ≥ 0} with the boundary being the line θ = 0 which is indeed a line after the
quotient is taken. This is an interesting example of the quotient structure of a torus action on a
non-compact manifold, in this case R2× S2. The orbit space is indeed simply connected and has a
boundary in agreement with our treatment in 2.4. What is noteworthy is the existence of this new
type of bolt which is not connected.

Figure 3.3: The bolt B1 (left) which is the disjoint union of two disks and the bolt B2 (right) which
is a two-sphere.The nut P and the anti-nut Q are located at the intersection of the two bolts. Note
that the two bolts should not be depicted in the same image since the azimuthial coordinate is
different in the two cases.

3.4.2 Isotropy representations of different Killing fields

Now that we have uncovered the geometry of the fixed points, we move on to investigate the fixed
point data. This is done using the isotropy representation which was introduced in Section 2.3. As
we mentioned there, the isotropy representation of a circle action that is generated by a Killing
field K ∈ Vect(M) is given by ∇K whose eigenvalues constitute the fixed point data. One problem
that often arises is that the metrics we are using are adapted to the isometries under consideration
and therefore the coordinate system is singular on the fixed point locus. Those quantities can
be calculated in different coordinates and the result is that the weight associated to ∂τ + Ω∂φ is
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w1 = γ−1 and the weight associated to ∂φ is w2 = −1. Those are calculated on the bolts B1 and
B2 respectively.

Since we have the weights for those two fields, we can consider an arbitrary linear combination
K = κ∂τ + λ∂φ which will in general have two fixed points, the points P and Q of Figure 3.3. The
isotropy representation at P is then found to be:

∇K|P = κ


0 γ−1 0 0
−γ−1 0 0 0

0 0 0 Ω
0 0 −Ω 0

+ λ


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 +1 0

 =


0 κ/γ 0 0
−κ/γ 0 0 0

0 0 0 κΩ− λ
0 0 −κΩ + λ 0


From this we deduce that the point P is a (p, q)-nut if

κ/γ

κΩ− λ = p

q
(3.30)

Here, p, q are coprime integers. We can ask for example what are the values of κ, λ such that the
point P corresponds to a fixed point with p = q = 1 which is the requirement for the action to
locally be the Hopf action on a three-sphere surrounding the fixed point as we saw in 2.3.2. Solving
3.30 with p/q = 1 gives

λ

κ
= Ω− 1

γ
(3.31)

This corresponds precisely to the Killing field K = ∂τ + (Ω − γ−1)∂φ that we used in Section 3.3
and which was used for the reduction in [38]. The argument that was given in [38] to identify the
system with a D6-D6 relied on a comparison between the Taub-NUT metric and the local geometry
around the fixed point. The proof that we presented here has a topological flavor and depends on
the existence of a Hopf action around the fixed point under consideration. A similar calculation for
the point Q shows that when 3.31 holds, the point Q is indeed an anti-nut with weights {+1,−1}.
We have therefore shown the following

Reduction along the Killing field K = ∂τ + (Ω− γ−1)∂φ corresponds to a D6-D6 pair.

It is also interesting to calculate the nut charge of the branes. The weights of the isotropy repre-
sentation of K = ∂τ + Ω− γ−1)∂φ are {γ−1, γ−1} at P and {γ−1,−γ−1} at Q. Therefore following
Section 2.5, the nut charge at P is

N = 1
4π

∫
S2
F = 2πγ

4π = γ

2

This is the mass parameter of the D6-brane that we used in the previous section and which was
derived in [38] by a direct comparison of a local model of the Kerr metric with the Taub-NUT
metric. The charge is reversed at the point Q which is an anti-nut.

According to our discussion in 2.3.2, after the reduction along K, the quotient space is a smooth
manifold. The quotient space is this case is R3 and as we will again verify in the next Section, that
the metric is indeed smooth. Now, consider a general reduction along the Killing fieldK ′ = ∂τ+B∂φ
with B left unspecified. The isotropy representation at P is given by:
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∇K ′|P =


0 γ−1 0 0
−γ−1 0 0 0

0 0 0 Ω−B
0 0 B − Ω 0

 (3.32)

Due to the non-unit weights, the rotation in the two planes (which are the tangents to the two
bolts B1 and B2) will introduce non-zero isotropy and the space will develop orbifold singularities
as we saw in 2.3.2. Let us use π(B1), π(B2) for the images of the two bolts under the quotient
map. Generally, those are one dimensional and we think of them as such. If we rescale the Killing
field, we can arrange for the orbifold group on either π(B1) or π(B2) to be arbitrary. Indeed, by
rescaling the Killing field by kγ we find

∇(kγK ′)|P =


0 k 0 0
−k 0 0 0
0 0 0 kγ(Ω−B)
0 0 kγ(B − Ω) 0

 (3.33)

In this case, B1 is locally acted upon by the upper left block of 3.33 and π(B1) has a conical angle
of 2π/k. On the other hand, the compact one-dimensional line π(B2) will have a cone singularity
with angle

2π
kγ(Ω−B) =

(
1 + m2

a2

)1/2(
1− 2Bmr+

a

)−1 2π
k

We note that when the bolt B1 is fixed by the action of the Killing field, then no singularity appears
on π(B1) and similarly for B2. We should also stress out that under a general reduction, the (p, q)
type of the fixed points will change and therefore the charge of the topological defect in the quotient
space will be different. More specifically, the charge will in general be a fraction of the D6-brane
charge γ/2. Those branes with fractional charges always sit on orbifold singularities as we just saw.

3.4.3 Conical singularities and cosmic strings

We now investigate the singular structure from the point of view of the metric which corresponds
to a more traditional approach in the physics language. The concept of conical singularities is a
rather common theme encountered in various physical systems. We say that a manifold M has a
conical singularity if there is a region in which the metric admits the following form:

ds2 = dr2 + r2dΩ2
n−1

where dΩ2
n−1 is the metric of an (n− 1)-dimensinal manifold N . In this case, the metric is smooth

only if N is the (n−1)-sphere Sn−1 and dΩ2
n−1 is the round metric. For four dimensional manifolds,

if N is S3/Γ with Γ ⊂ SU(2) a finite subgroup then the singularity is of ADE type. When the
dimension of N is two, then we can measure how much it deviates from the flat plane geometry
by defining the deficit angle δ. Given an origin O in the plane, let C denote the proper length of
the circumference of the circles centered at O and r denote the radial coordinate. Then the deficit
angle δ is defined by the relation

dC

dr

∣∣∣∣
r=0

= 2π − δ
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In some sense, the deficit angle is a measure of how "conical" a singularity is. The appearance of
such deficit angles is a herald of instabilities. In the solution that we have been discussing, the Kerr
instanton, the eleven dimensional metric is of course smooth, since by construction the periodicities
were chosen so. However, the reduced metric can still possess conical suingularities. The locations
of such conical singularities have been investigated in [46, 47] and they coincide with our findings
in 2.3.2 which indicate that they can only appear on the images of the bolts π(B1), π(B2). If ∆φ̃
denotes the periodicity of some angular coordinate φ̃ in the reduced metric then the deficit angles
are found to be given by

δπ(B1) = 2π − ∆φ̃
√
gθθ

d√gφ̃φ̃
dθ

∣∣∣∣
θ=0,π

= 2π −∆φ̃ (3.34)

δπ(B2) = 2π − ∆φ̃
√
grr

d√gφ̃φ̃
dr

∣∣∣∣
θ=0,π

= 2π −
(

1 + m2

a2

)1/2(
1− 2Bmr+

a

)−1
∆φ̃ (3.35)

Those are precisely the same values that we calculated in the previous section using isotropy
representations. The only difference is that in the previous section we calculated periodicities
instead of deficit angles. Again, we can easily verify that the only way to get rid of those deficit
angles is to require

∆φ = 2π

B = a−
√
m2 + a2

2mr+
= Ω− 1

γ

After this observation, one might wonder what is the physical interpretation of deficit angles and
why their existence is so tightly related to the stability of the brane-anti-brane system. The answer
is that such deficit angles correspond to cosmic strings [39] with tension T , related to the deficit
angle by 8πT = δ (see e.g. [48]). When there is non-vanishing deficit angle on π(B1) (two infinite
lines stretching to infinity) then the ten dimensional interpretation is that of two cosmic strings
pulling the brane–anti-brane pair apart against the attractive forces of their gravity and RR fields.
On the other hand, a non-vanishing deficit angle on π(B2) (a compact line starting on the nut and
ending on the anti-nut) is interpreted as a strut pushing the nut–anti-nut pair away (see Figure 3.3).

The existence of a magnetic field in which the brane–anti-brane system balances was seen as a
random artifact but under this new perspective, it can be attributed to the delicate cancellation
of the deficit angles, leaving all the burden of the suspension of the brane–anti-brane pair to the
magnetic field (since the cosmic strings are absent).

3.5 Reduction along special cycles
In this section want to consider reductions along different cycles in the isometrically acting torus
parametrized by the (τ, φ) coordinates in the Kerr instanton. Since there is nothing particularly
special about the Killing vector K = ∂τ +(Ω−1/γ)∂φ (other than eliminating the conical singulari-
ties) we can perform an SL(2,R) transformation to generate different ten dimensional backgrounds.
In particular, as we have already argued in Chapter 2 choosing to reduce along circle actions with
fixed point bolts will result in ten dimensional backgrounds with boundaries. We explore the
geometry of those backgrounds and make some comments on their stability.

3.5.1 Reduction on the spherical bolt B2

Having understood the structure of reductions along various different cycles, it is now time to further
investigate some of them. First, as we have noted before, requiring that the ten dimensional string
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coupling does not diverge due to the existence of the fluxbrane background led us to the condition
3.24. We know that equivalent backgrounds arise when B = Ω + n/γ for some integer n ∈ Z and
for those the angular coordinate has period 2π so that no conical singularity exists on the bolt
B1. In this case the only possible deficit angle can occur on the bolt B2. We have seen that B2 is
non-singular when we pick B = Ω− 1/γ but we have already pointed out that this leads to a valid
perturbative picture only when the D6-D6 pair is far apart. For this more general B the condition
3.24 becomes:

R |B| = γ

(
Ω + n

γ

)
= a

(m2 + a2)1/2 + n� 1

When a ∼ m we expect that the brane–anti-brane pair has come close to the critical distance in
which the open string stretching between them becomes tachyonic. In this case if a/m ∼ 1 we get
R|B| ' 0.7 + n so that there is no integer n which ensures R|B| � 1. This regime is therefore
manifestly non-perturbative. On the other hand, when the brane–anti-brane pair coincide we have
a/m ∼ 0 and n = 0 gives the required perturbative background. In this case the Killing vector is
K = ∂τ + Ω∂φ and the fixed point locus is the bolt B2. Reduction along the orbits of this vector
gives the ten dimensional solution

ds2
10 = Λ1/2

{
− dt2 +

6∑
i=1

(dyi)2 + Σ
[
dr2

∆ + dθ2
]}

+ Λ−1/2∆ sin2 θdφ̃2

e
4
3ϕ = Λ

Aφ̃ = Λ−1 sin2 θ

Σ

{
Ω[(r2 − a2)2 + ∆a2 sin2 θ] + a[(r2 − a2)−∆]

}
Λ := 1

Σ

{
∆(1 + Ωa sin2 θ)2 + a2 sin2 θ

(
1− (r2 − a2)2

(r2
+ − a2)2

)}
We have obtained a Type IIA geometry with no D6-D6 but with a spherical bolt where the string
coupling vanishes. This bolt is a spherical boundary so that ∂N10 = R7 × S2. The boundary does
not carry any topological charge. In other words, the self-intersection of the bolt vanishes. This
follows from charge conservation. As we just argued, this background corresponds to the more
accurate perturbative picture in the limit when the brane–anti-brane coincide. The reduced space
is free of conical singularities.

3.5.2 Reduction on the bolt B1

The last qualitatively different option we have is to reduce along the Killing vector field K = ∂φ.
The two connected components of the bolt B1 are boundaries of the ten dimensional space and the
metric on the reduced space becomes

ds2
10 = Λ1/2

{
− dt2 +

6∑
i=1

(dyi)2 + Σ
[
dr2

∆ + dθ2 + ∆
(r2 − a2)2 + a2∆ sin2 θ

dτ2
]}

e
4
3ϕ = Λ

Aτ = ∆a sin2 θ − sin2 θa(r2 − a2)
∆a sin4 θ + sin2 θ(r2 − a2)2 = ∆a− a(r2 − a2)

∆a sin2 θ + (r2 − a2)2

Λ := 1
Σ

(
∆a2 sin4 θ + sin2 θ(r2 − a2)2

)
Indeed, now θ = 0, π is a weak coupling locus. The self intersection of those bolts in the four
dimensional space R2 × S2 is zero which follows from the vanishing signature of the space R2 × S2
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[32]. Therefore, the boundaries do not carry any topological charge in the sense of Section 2.5 and
do not attract each other.

Concluding this section we have demonstrated the existence of different ten dimensional back-
grounds corresponding to the same eleven dimensional geometry. We have been concerned with the
reduction on the Kerr instanton R2 × S2 which has the same fixed point structure as the S4. This
could have been expected since we can write the decomposition S4 = D2 × S2 tD3 × S1 where the
two manifolds are glued along their common boundary S2×S1. This shows that the Kerr instanton
differs from S4 by a manifold which admits a free circle action.

The non-compactness of R2 × S2 allows for a greater freedom in the types of bolts and indeed we
discovered both a compact and a non-compact bolt. In total we can have three different topologies
in the reduced space. Reducing along a generic circle with two isolated fixed points gives R3. On the
other hand, reducing along the special circles gives, as expected, quotient spaces with boundaries.
For the case of the non-compact bolt B1 the quotient space is {(x, y, z) ∈ R3|z ∈ [−1, 1]} which
has two infinite walls at the two ends. For the bolt B2 the quotient space was R3 \ D3 namely R3

with a hole. In both cases the boundaries are not charged due to their vanishing self-intersections
(in four dimensions).

Finally, we mention that a similar approach to brane–anti-brane systems has been considered in
[49]. A class of supergravity solutions with ISO(1, p)× SO(9− p) and RR fields were found in [50]
and later interpreted in [51] as coincident brane–anti-brane pairs in type II theories. Subsequently,
[49] considered the purely geometric M-theory lift of those backgrounds (for p = 6) and investigated
the reduction along different circles. In this work, they considered orbifold singularities in the eleven
dimensional space (before the reduction). These orbifolds have localized closed string tachyons and
were discussed in [52].
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Chapter 4

Flux vacua and S4

4.1 Fluxes
In constructing string vacua it is useful to consider fluxes. Those correspond to non trivial p-forms
F that can be integrated over closed p-cycles Σ to give terms of the form

∫
Σ F . In eleven dimensions

the only possibility is the four-form flux. We have already seen in Section 2.5 that the inclusion
of a non-trivial four-form F4 in an eleven dimensional supergravity background induces different
non-zero forms in the reduced Type IIA background. When we further compactify on a manifold
X of dimension dimX = d, the inclusion of such terms can be shown [53] to generate a potential
for the moduli fields of the form

VF =
m2
p

V 2
X

∫
X

√
ggmr...gnsFm...nFr...s

Although those are great news since we seem to have overcome the moduli stabilization problem,
there is still a small implication. Since our metric is not fixed (it has its own moduli) we can
consider a one parameter family of metrics given by gmn = r2g0

mn where g0
mn is some fiducial metric

which is chosen such that the volume is unit Vol(g0
mn) = 1. Then the corresponding potential from

all the possible p-forms and the additional contribution from the Einstein-Hilbert term would give

VF
m4
p

=
∑
p

r−2p−d
∫
X

√
g0
mnF

2
p |0 − r−2−d

∫
X

√
g0R0 (4.1)

If the Ricci scalar is negative then the potential acquires its minimum as r →∞ which signifies an
instability. Therefore, we necessarily assume from now on that the internal manifold X has positive
Ricci curvature. In the case when the fluxes are absent, only the second term in 4.1 contributes
so r → 0 which indicates that the internal manifold collapses to zero size. This is why we need
non-zero fluxes to support the manifold and acquire a minimum of VF for an intermediate value of
r. It is important to note that the behavior of the potential near r → ∞ is dictated by the "least
negative" power so that when F0 = F1 = 0 the curvature term dominates. On the other hand when
only F1 6= 0, both terms scale in the same way so that the potential has no extrema. Finally when
F0 6= 0 the p-form term dominates at r →∞.

4.2 AdS7 × S4

Among the various solutions of eleven dimensional supergravity AdS7×S4 and its dual AdS4×S7

are of special interest. The first reason is their crucial role in the AdS /CFT correspondence. The
second reason is that spontaneous compactification induced by bosonic fields of eleven dimensional
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supergravity can only happen when the internal space is of dimension seven or four. It is then clear
why in this context the maximally symmetric solutions AdS7 × S4 and AdS4 × S7 are significant.
The latter one has received more attention owing to the parallelizability of S7 which facilitates
many calculations and of course because of its relevance to four dimensional physics. However,
in the context of our work, we are interested in four dimensional internal manifolds and therefore
AdS7 × S4 is the one we will investigate.

Our starting point is the eleven dimensional supergravity whose bosonic sector is described by the
Lagrangian

L11 = R ∗ 1− 1
2 ∗G4 ∧G4 −

1
6G4 ∧G4 ∧A3 (4.2)

where G4 = dA3 is the four form field strength and ∗ denotes the eleven dimensional Hodge star.
The corresponding equations of motion read

RMN = 1
12

(
GMRSTG

RST
N − 1

12GRSTLG
RSTLgMN

)
(4.3)

∇MGMNRS + 3 · 3!
(144)2 ε

NRSM1N1R1S1M2N2R2S2GM1N1R1S1GM2N2R2S2 = 0 (4.4)

It is worth explaining how the aforementioned solution comes about. Consider the eleven dimen-
sional background M7 ×N4 in M-theory. If no fluxes are present, supersymmetry forces N4 to be
a Calabi-Yau and our only possibilities are K3 or T4. We can also turn on the fluxes. In M-theory
the only option is the G4 flux. As before, we usually want the isometries of M7 to be preserved
which translates to a G4 living entirely in N4. Those flux compactifications fall into the class of
Freund-Rubin compactifications where only the top dimensional fluxes of the internal space are
non-zero (or their lowest dimensional duals). Those compactifications are very constrained because
the above requirements imply the existence of a Killing spinor in N4. This has the non-trivial
consequence that the cone C(N4) over N4 admits a covariantly constant spinor and can only be
of the type R4/Γ × R where Γ is a subgroup of SU(2) with its natural action on R4 ' C2. In the
simplest case where Γ is trivial, we have C(N4) = R5 which gives that N4 = S4.

Since our internal manifold has positive curvature, we expect that M7 will be negatively curved.
For a maximally symmetric space this has to be AdS7. This is indeed the case and the total
background solution is AdS7 × S4. Let us see why this is a valid supergravity solution [54]. We
endow S4 with the round metric which we call R2gsmn where R denotes the radius of the S4 and
gsmn is the round metric on the unit four-sphere. We use Latin indices for the internal space S4,
Greek indices for AdS7 and uppercase Latin indices for the total eleven dimensional space. For
AdS7 we use the metric:

ds2
AdS7 = L2

u2

(
du2 + ηµνdγ

µdγnu
)

so that our total eleven dimensional metric becomes

ds2 = L2

u2

(
du2 + ηµνdγ

µdγnu
)

+R2gsmndx
mdxn (4.5)

with ηµν the Minkowski metric. The flux G4 being a top-dimensional form in S4 can be expressed
as G4 = hvolS4 with (volS4)µνρσ =

√
gsεµνρσ the volume form on the unit S4 with gs := det(gsmn)

and h ∈ C∞(S4). However this is not the complete picture and in fact h has to be a constant. To
see this we need to look at the corresponding equation of motion 4.4. Since the flux G4 is required
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to be non-zero only along the four components of the internal space, the second term vanishes.
What is left, just like in ordinary Maxwell theory coupled to gravity, is the conservation equation:

1√
gs
∂m

(√
gsGmnrs

)
= ∇mGmnrs = 0

So that the solution is of the form Gmnrs = hεmnrs/
√
gs but now with h ∈ R. Lowering the indices

and remembering the tensorial nature of the object εmnrs/
√
gs (but not of the Levi-Civita symbol

alone) we also find Gmnrs = h
√
gsεmnrs = hvolS4 . Then we use the quantization of flux to get:

TM2

∫
S4
G4 = 2πN ⇒ TM2hR

4 8π2

3 = 2πN ⇒ h = 6πN
TM2R

48π2 = 3π(`11)3

R4 N (4.6)

with TM2 = (2π)−2`−3
11 the M2-brane tension which plays the role of the elementary charge, `11 the

eleven dimensional planck length and N ∈ Z. In the above we also used the volume of S4 which is
given by vol(S4) = 8π2R4/3. The remaining eleven dimensional supergravity equations of motion
are satisfied by the ansatz 4.5 provided that:

R2 = L2

4 = 216
G2 where G2 := GmnrsG

mnrs = h2 · 4! (4.7)

Therefore, the fluxes fix the length scales R,L. This is consistent with our general discussion about
fluxes. In particular, using 4.6 we find that the length scales are related to the quantization number
N by

R = L

2 = (πN)
1
3 `11

In particular we notice that when N = 0, the radius R of the internal manifold goes to zero corre-
sponding to the expected collapsing behavior in the absence of flux. Another important remark is
the relation between the scale of the sphere R and the AdS scale L which are of the same order.
This is a typical hierarchy problem in flux compactifications.

At this point we have a valid M-theory background. According to our previous discussion the
natural thing to do is to dimensionally reduce it to obtain the corresponding type IIA picture. The
four-sphere S4 with its round metric admits a circle fibration with base space S3 and one singularity
sitting at each pole. The flat metric on S4 can be conveniently expressed as the spherical suspension
of S3 and is given by

ds2
S4 = R2gsmndx

mdxn = R2
(
dα2 + sin2(α)ds2

S3

)
In the above, α ∈ [0, π] is the suspension parameter. The metric on S3 is the Hopf metric, namely
the metric that makes the Hopf fibration S3 → S2 a submersion of Riemannian manifolds when
the metric on the base S2 is the round metric. In local coordinates this can be expressed as

ds2
S3 = 1

4ds
2
S2 + (dy + C1)2 with dC1 = 1

2volS2 (4.8)

where ds2
S2 is the standard round metric on S2. The total metric then becomes:

ds2 = L2

u2 (du2 + ηµνdγ
µdγν) +R2dα2 + R2 sin2(α)

4 (dθ2 + sin2(θ)dφ2) +R2 sin2(α)(dy + C1)2

(4.9)
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The connection form C1 is often taken to be of the Wu-Yang form

C
(n)
1 = −1

2(1− cos θ)dφ C
(s)
1 = 1

2(1 + cos θ)dφ

where C(n)
1 and C

(s)
1 are the connection forms around the north (θ = 0) and south (θ = π) pole

respectively. In this setting, y is the coordinate along the fiber S1 and also the direction of the
M-theory circle on which we perform the dimensional reduction. In the language of section 1, we
view S3 as a circle fibration using the U(1) isometry corresponding to the Killing vector field ∂y.

If we want the U(1) reduction to preserve some supersymmetry then we must require that the action
of the U(1) isometry on the spin bundle leaves at least one spinor invariant. Since ISO(S4)= SO(5)
every isometry is characterized by two angles that appear in the canonical form of the associated
element in so(5) which are antisymmetric matrices. The existence of invariant spinors then forces
those two angles that we call a1, a2 to either be equal or opposite namely a1 = ±a2 [55]. In other
words the supersymmetry preserving isometries have a canonical form

exp


0 aτ 0 0 0
−aτ 0 0 0 0

0 0 0 ±aτ 0
0 0 ∓aτ 0 0
0 0 0 0 0

 =


cos(aτ) sin(aτ) 0 0 0
− sin(aτ) cos(aτ) 0 0 0

0 0 cos(aτ) ± sin(aτ) 0
0 0 ∓ sin(aτ) cos(aτ) 0
0 0 0 0 1

 (4.10)

where τ is the parameter of the U(1) isometry. Does ∂y generate such an isometry? To answer this
we must identify the isometry and then carefully investigate how it acts on the S4 in appropriate
coordinates. The isometry generated by ∂y is clearly the translation in the y-direction by some
constant τ . To find its canonical form and compare it to 4.10 we embedd S4 in R5. We take x5 to be
the coordinate along the suspension axis, namely the line connecting the points α = 0 and α = π.
Due to the suspension construction, the x5 will be unaffected by a shift in the y-coordinate. The
rest of the coordinates xi can be thought of as the coordinates in R4 in which an S3 is embedded.
It is very convenient to work in the coordinates y, θ, φ as in 4.8 where θ, φ parametrize the S2 as
usual. These coordinates are often called Hopf coordinates because they make the Hopf structure
manifest. They are related to the ambient space coordinates by:

x1 = sin(α) cos
(
θ

2

)
sin(y) x2 = sin(α) cos

(
θ

2

)
cos(y) x3 = sin(α) sin

(
θ

2

)
sin(φ+ y)

x4 = sin(α) sin
(
θ

2

)
cos(φ+ y) x5 = cos(α)

It is now a matter of straightforward algebra to verify that under the isometry transformation
y → y + τ the coordinates xi of R5 transform as

x1

x2

x3

x4

x5

→


cos(τ) sin(τ) 0 0 0
− sin(τ) cos(τ) 0 0 0

0 0 cos(τ) sin(τ) 0
0 0 − sin(τ) cos(τ) 0
0 0 0 0 1




x1

x2

x3

x4

x5


which shows that the isometry generated by ∂y does indeed have an invariant spinor. We go on to
perform the reduction as in [55] by using the string-frame ansatz ds2

11 = e−
2
3φds2

10 + e
4
3φ(dy+C1)2.

Comparing this antsatz to our eleven dimensional background 4.5 and using 4.7 we get:

e
4
3φ = R2 sin2(α)⇒ e

2
3φ = R sin(α) (4.11)

ds2
10 = R3 sin(α)

[ 4
u2 (du2 + ηµνdγ

µdγν) + dα2 + 1
4 sin2(α) ds2

s2

]
(4.12)
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We therefore see that the ten dimensional space is a warped product of AdS7 and S3. Note that we
had established from purely topological considerations in Section 2.5 that the quotient space must
be an S3 in the absence of a boundary. This agrees with the three dimensional part of 4.12 which
is a spherical suspension of S2 showning that this is indeed a metric on S3. The next thing to do
is compute the fluxes associated to this ten dimensional solution. The result is [55] that there are
non-trivial F2 and NS H-fluxes given by:

F2 = −1
2volS2 H = −3

4R
3 sin3(α)dα ∧ volS2 (4.13)

Note that there is a difference in the definition of our R which differs by a factor of 2 from the radius
R in [55]. The four-from flux H4 vanishes in this background as is evident from 2.9 since now the
eleven dimensional four-form has no component that is independent of the reduction coordinate.
We can easily integrate the H-flux to get the B-field

B2 = 3
4R

3
(

cos(α)− cos3(α)
3

)
volS2 + b (4.14)

where b is a closed two-form. In the above integration process we implicitly used that the volume
form of a closed manifold like S2 cannot be exact. If it was, a straightforward application of Stoke’s
theorem would imply a zero volume. Therefore, 4.14 is the most general form of a primitive for H.

4.2.1 Characterization of the fixed points

In Chapter 2 we have given a prescription for characterizing the type of a fixed points in terms of
the isotropy representation. Here we show that the two fixed points we found in S4 are indeed of
the expected type. In particular, we will show that the point at α = 0 is a nut and the point at
α = π is an anti-nut.

Let us call the stationary points of the circle action P (for α = 0) and Q (for α = π). First, we
focus on the point P. Remember from Section 2.3 that what we are interested in is the matrix form
of the endomorphism φP : TPM → TPM from which we can read off the (p,q) nut type. The
point P is an extremum of the coordinate α and therefore the infinitesimal displacements around
P do not change α and consequently x5. This means that TPM is spanned by {∂x1 , ∂x2 , ∂x3 , ∂x4}
which we take to be an oriented basis of TPM agreeing with the orientation induced on the plane
x5 = 1 by the ambient space R5. For this reason we can identify TPM with the plane x5 = R. The
action of the chosen U(1) isometry on TPM will then be given by 4.11 restricted on the first four
coordinates so that the matrix form of the endomorphism φP becomes

(φP )ab =


cos(τ) sin(τ) 0 0
− sin(τ) cos(τ) 0 0

0 0 cos(τ) sin(τ)
0 0 − sin(τ) cos(τ)


which verifies that P is a (1,1) nut singularity. Now we turn to the point Q. Here we cannot apply
the same logic since by choosing an orientation for TPM we have picked an orientation for S4.
The question now is whether {∂x1 , ∂x2 , ∂x3 , ∂x4} is an oriented basis of TQM in which case TQM
is identified with the plane x5 = −1. If this is true, then the point Q becomes a (1,1) nut as well.
Otherwise, if the orientation is reversed, then we can take {∂x1 , ∂x2 , ∂x4 , ∂x3} as an oriented basis
in which case the second block of the matrix in 4.11 is inverted and the induced action of the U(1)
isometry on TQM given by the matrix form of the endomorphism φQ : TQM → TQM becomes
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(φQ)ab =


cos(τ) sin(τ) 0 0
− sin(τ) cos(τ) 0 0

0 0 cos(τ) − sin(τ)
0 0 sin(τ) cos(τ)


which means that the point Q is a (1,-1) anti-nut. This is indeed what happens and in total we
have a nut and an anti-nut. Before giving a general proof, it is instructive to understand geomet-
rically why this holds by turning to some lower dimensional examples. Consider the more familiar
case of the unit circle S1 embedded in R2. There are two orientations for S1, the "clockwise" and
"counter-clockwise" corresponding to the two generators of H2(S1) = Z. As shown in Figure 4.1
the point P has a tangent space which can be identified with the plane x2 = 1. Their orientations
agree if we choose the "clockwise" orientation since ∂x1 is an oriented basis for both. However, at
the antipodal point Q the element ∂x1 which is an oriented basis for the plane z = −1 has the
wrong orientation on S1 since it corresponds to the "counter-clockwise" orientation.

The same holds true for S2 as shown in Figure 4.1. It is clear that if we choose the "outward"
orientation of the sphere, then {∂x1 , ∂x2} is an oriented basis for TPM but not for TQM where the
orientation has to be reversed. Therefore, we must take {∂x2 , ∂x1} as an oriented basis there.

Figure 4.1: (a) The tangent spaces of two antipodal points of S1. (b) The antipodal tangent spaces
for S2.

Now that we have made it clear that this holds for S1, we want to prove the same for any sphere Sm
including the S4 that we are mainly interested in. In order to formalize our intuitive picture and
turn it into a rigorous statement, some definitions are in order. First, we introduce the reflection
map

fm : Sm → Sm , (x1, x2, ..., xm+1) 7→ (x1, x2, ...,−xm+1)

where xi are the coordinates of the Rm in which Sm is embedded. We take the two poles P,Q
to be the intersection points of the xm+1 axis with Sm. Let the orientation of Sm be such that
{∂x1 , ∂x2 , ..., ∂xm} is an oriented basis at P. Since fm only affects the last coordinate xm+1, the
induced pushforward (fm)∗ : TPSm → TQS

m sends the oriented basis {∂x1 , ∂x2 , ..., ∂xm} to itself.
The map fm is smooth and bijective and its image is Sm. If fm preserves the orientation of Sm then
{∂x1 , ∂x2 , ..., ∂xm} is an oriented basis at Q. Of course this certainly cannot be true for m=1 since it
would contradict our geometric picture for S1 so we already know that f1 is orientation-reversing.
We prove here that this holds for every m.
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Proposition 4.2.1. The map fm : Sm → Sm is orientation-reversing for every m ≥ 1.

Proof. First we note that fm induces a group homomorphism on homology groups (fm)∗ : Hm(Sm)→
Hm(Sm). Since Hm(Sm) = Z for m ≥ 1, any such group homomorphism is of the form (fm)∗(a) =
k · a for some k ∈ Z and for every a ∈ Z. The integer k is called the degree of the map fm and is
denoted by deg(fm) = k. Since our map fm is bijective, the induced map (fm)∗ is an isomorphism
of abelian groups and the only possiblities are deg(fm) = ±1. Clearly, if deg(fm) = 1, the map
fm is orientation preserving, otherwise it is orientation-reversing. This is immediate if one takes
the fundamental class as the definition of orientation. In this language we want to prove that
deg(fm) = −1.

We proceed by induction on m. For m=1 we have f1 : S1 → S1 acting as {x1, x2} 7→ {x1,−x2}
and as we have already seen geometrically, this map reverses orientation. To be more precise we
can introduce a coordinate θ = arctan(x1/x2) in terms of which the map f1 acts as θ 7→ −θ. This
has the effect of reversing the orientation of the S1 proving that f1 has deg(f1) = −1.

We now let Dm = {(x1, ..., xm+1) ∈ Sm|x1 ≤ 0} be the southern hemisphere in Sm and view Sm−1

as the boundary of Dm or, in other words, the equator of Sm. Then if we restrict fm on the equator
we get fm|Sm−1 = fm−1. Using the naturality of the long exact sequence of the pair (Dm, Sm−1)
we get a commutative square

Hm(Sm) Hm(Dm, Sm−1) Hm−1(Sm−1)

Hm(Sm) Hm(Dm, Sm−1) Hm−1(Sm−1)

'

(fm)∗

δ

(fm−1)∗

' δ

where δ denotes the corresponding connecting homomorphisms of the long exact sequence which are
in this case isomorphisms. From the commutativity of the diagram we get deg(fm) = deg(fm−1).

This concludes the proof that S4 has a nut–anti-nut pair of singularities with respect to the isom-
etry generated by the Killing vector field ∂y. This is in accordance with the requirement that on
a compact manifold like S4 the total nut charge must be zero. It is also worth noting how super-
symmetry restricts the allowed types of singularities. Indeed, as already mentioned the existence
of invariant spinors implies the action 4.10 on the ambient space and we have shown how this is
related to the action of the isometry on the tangent spaces of two antipodal points. In particular,
it follows that one always gets precisely one (1,1) and one (1,-1) singularity for any isometry that
preserves supersymmetry, not just for the one we picked. We therefore have the following statement

Every U(1) reduction of M-theory on S4 which preserves some supersymmetry
must contain a D6-D6 pair.

The appearance of a brane–anti-brane pair in a supersymmetric background might at first glance
be surprising since we know that D-branes introduced in a supersymmetric background break half
of the supersymmetries and anti-branes break exactly the other half (see section 18.5 of [13]).
However, this reasoning only applies to flat space. In our case the supersymmetry parameters
change from the south to the north pole so that both the D6 and the D6 can be BPS [55].

4.3 The S4 ansatz
We will now consider the compactification of eleven dimensional supergravity on S4. We have
already discussed the existence of a background of the form AdS7 × S4 which is a solution to the
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eleven dimensional supergravity equations of motion. The next thing we want to do is perform a
Kaluza-Klein reduction on this background. This means that we want to go back to the eleven
dimensional supergravity and expand all the fields around this background AdS7×S4. We illustrate
how this works with the simplest example, a free scalar field in five dimensions with the action

S0 = −1
2

∫
d5x ∂Mϕ∂

Mϕ (4.15)

Recall from Section 3.1 that the idea behind Kaluza-Klein theory is to assume that the five dimen-
sional background can be split as a metric product M5 = M4×S1 with M4 being Minkowski space.
If we use the coordinates xµ on M4 and the coordinate y on the circle then the equation of motion
can be written as

�ϕ = 0⇒ ∂µ∂µϕ+ ∂2
yϕ = 0

The field ϕ can then be expanded in Fourier modes as

ϕ(x, y) = 1√
2πR

n=∞∑
n=−∞

ϕn(xµ)einy/R

The choice of Fourier expansion is because it corresponds to an expansion in terms of eigenfunctions
of the Laplacian on S1 which are the familiar exponentials eimy/R (with a normalization factor)
where R is the radius of the circle. Substituting the Fourier expansion in the equation of motion
and using that the eigenfunctions of the Laplacian are independent we obatain:

∂µ∂µϕn −
n2

R2ϕn = 0

This shows that the fields ϕn are massive modes from the point of view of the lower dimensional
theory and their masses are inversely proportional to the radius of the internal circle. An obvious
problem is that now we have a theory in four dimensions but the price we had to pay is the intro-
duction of an infinitude of fields ϕn. The compactification ansatz corresponds to taking the limit
R→ 0 in which case we can neglect all the massive fields ϕn and keep only zero mode ϕ0. This is
called a truncation.

In general we can apply the above procedure for an arbitrary theory specified by an action and
an arbitrary compactification on a background M × N with metric g = gM ⊕ gN where N is the
compact manifold on which we compactify. Since this is a metric product, the Laplacian splits as
∆M×N = ∆M + ∆N and we expand all the fields of the given theory in terms of the eigenvalues of
∆N which we denote by Yq and we have

∆NYq(y) = −m2
qYq(y)

where y collectively denote the coordinates on N . Therefore, a scalar field in M × N will be
expanded as ϕ(x, y) =

∑
q ϕp(x)Yq(y). We could repeat the above procedure step by step. It is

true that the eqigenvalues of the Laplacian mq will be inversely proportional to the volume of N so
taking the limit vol(N)→ 0 should be enough to justify why we need to keep only the zero mode
ϕ0(xµ). However, this is not quite right. To see why, consider a ϕ3 theory on M × N . Then the
expanded action will contain terms of the form∫

dm
√
detgMϕq(x)ϕ2

0(x)×
∫
dny

√
detgNYq(y)Y 2

0 (y)
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which will contribute to the equation of motion for the field φq with terms of the form

(�−m2
q)ϕq(x) = (...)ϕ2

0 + ...

What we observe now is that keeping only the zero mode but putting ϕq = 0 contradicts the
equations of motion. When this does not happen and our truncated fields are in accordance with
the equations of the higher dimensional theory, we say that we have a consistent truncation. In
the above example, the truncation to the zeroth mode could be consistent if it happens that∫
dny

√
detgNYq(y)Y0(y)2 = 0. This term only depends on the properties of our compactification

manifold N . It turns out that compactifications on tori of arbitrary dimension are always consistent
with a truncation to the zeroth mode. However, for general spaces, this is far from common. If we
realize that the zero mode truncation is inconsistent then one thing we could try to circumvent the
problem is to make a non-linear ansatz in which case the fields ϕ(x, y) are expanded non-linearly
in terms of the Yq(y).

In the context of string theory, consistency is an important requirement when performing a com-
pactification since only then can the solutions of the lower dimensional theory also be solutions of
the initial theory (M-theory in our case). It is important to realize however, that there can be many
inequivalent consistent truncations. Recall for example our discussion in Section 3.1 regarding the
Kaluza-Klein reduction from five dimensional gravity to four dimensional gravity with a U(1) gauge
field Aµ coupled to a scalar ϕ. Although we did not explicitly mention it there, we saw two different
consistent truncations. The one retained the full isometry group ISO(S1) = U(1) which appeared
as a gauge field in the reduced action

S = − 1
16πG

∫
d4x

√
−detg(xµ)

[
R(4) + 1

6ϕ2∂µϕ∂
µϕ+ 1

4ϕF
µνFµν

]
However, we also mentioned a further truncation in which the scalar ϕ is constant and Fµν = 0 in
which case we obtain the action of pure gravity in four dimensions. This is also consistent with
the equations of motion. The important lesson to get from this story is that when we compactify
on a background M ×N with N compact, consistency does not necessarily imply that we have to
keep all the fields of the ISO(N) gauge group but we can have gauge groups G that are subgroups
of ISO(N). In the Kaluza-Klein example above, the second truncation with ϕ = constant retains
the trivial subgroup of U(1) and this physically means that all the information about the higher
dimensional theory is lost. Therefore, although the solutions of the lower dimensional theory sat-
isfy the higher dimensional equations of motion, not all of the higher dimensional solutions can be
realized in this way.

Our goal now is to reduce the eleven dimensional supergravity on the AdS7×S4 background which
as we already discussed is a valid solution. Note that the S4 has four Killing spinors ηI satisfying

Dµη
I = 1

2 iγµη
I

This means that after compactification from eleven to seven dimensions, we get a maximally su-
persymmetric N = 4 theory. We want this reduction to be consistent. However, for general
n-dimensional spheres Sn, consistent truncations containing all the gauge fields of the gauge group
ISO(Sn) = SO(n + 1) cannot be obtained. Nevertheless, it has been shown that it is possible
for reduction of eleven dimensional supergravity on S7 and S4. The result that concerns the S4

was obtained in [57, 56] where it was proved that such a reduction is indeed possible and leads to
maximal N = 4 gauged supergravity in seven dimensions, a result which had been expected [58]
but hard to prove. The term gauged is used to distinguish this compactification from the one of
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the same theory on a torus in which case the the lower dimensional theory is called ungauged. The
complete ansatz for the bosonic part of the metric and the four-form is [59]

ds2
11 = ∆1/3ds2

7 + 1
g2 ∆−2/3T−1

ij DY
iDY j (4.16)

F(4) = 1
4!εi1...i5

[
− 1
g3U∆−2Y i1DY i2 ∧ ... ∧DY i5 + 4

g3 ∆−2T i1mDT i2nY mY nDY i3 ∧ ... ∧DY i5

+ 6
g2 ∆−1F i1i2(2) ∧DY

i3 ∧DY i4T i5jY j
]
− Tij ∗ Si(3)Y

j + 1
g
Si(3) ∧DY

i (4.17)

with

U := 2TijTjkY iY k −∆Tii ∆ := TijY
iY j

F ij(2) := dBij
(1) + gBik

(1) ∧B
kj
(1) DY i := dY i + gBij

(1)Y
j

DTij := dTij + gBik
(1)Tkj + gBjkTik Y iY i = 1 (4.18)

In the above expressions, Y i are the embedding coordinates of S4. The symmetric matrix Tij has
unit determinant and parametrizes the scalar coset SL(6,R)/SO(6). It can be expressed as Tij =
Π−1A
i Π−1B

j ηAB with Π−1A
i being a type of vielbein for the scalar coset manifold SL(5,R)/SO(5),

A,B being gauge indices and the metric ηAB being the SO(5) metric which is simply δAB. For
later convenience it also useful to introduce the object TAB := Π−1A

i Π−1B
i . The Bij

(1) denote SO(5)
gauge fields, the Si(3) are three-forms, g is the gauge coupling and ∆ plays the role of a warp factor.

The above ansatz is admittedly complicated. For this reason it is useful that we make ourselves
familiar with a simpler version of it. For the sake of simplicity we want to work with a reduction
ansatz in which the SO(5) fields are further truncated. It is known that there exists a consistent
truncation of the N = 4 theory to N = 2 seven dimensional supergravity which consists of the
metric, a 2-form potential, three vectors and a dilaton, coupled to a vector multiplet which consists
of a vector and three scalars. This considerably simplifies the setup but we can do even better. A
further truncation was introduced in [60, 61] in which only two U(1) gauge fields and two scalars
survive. The reduction anstatz for the eleven dimensional metric and the four-form field strength
of this model is given by

ds2
11 =∆̃1/3ds2

7 + g−2∆̃−2/3
(
X−1

0 dµ2
0 +

2∑
i=1

X−1
i (dµ2

i + µ2
i (dψi + gAi(1))

2)
)

(4.19)

∗F(4) =2g
2∑

α=0

(
X2
αµ

2
α − ∆̃Xα

)
ε(7) + g∆̃X0 ε(7) + 1

2g

2∑
α=0

X−1
α ∗dXα ∧ d(µ2

a)

+ 1
2g2

2∑
i=1

X−2
i d(µ2

i ) ∧ (dψi + gAi(1)) ∧ ∗F
i
(2) (4.20)

In this ansatz, µi are coordinates satisfying µ2
0 + µ2

1 + µ2
2 = 1 and together with the ψ1, ψ2 they

constitute the set of coordinates on S4. The parametersX1, X2 are the scalar fields that parametrize
the metric withX0 = (X1X2)−2. Together with the two gauge fields Ai(1) they constitute the allowed
deformations of the background (round) metric on S4. The gauge fields Ai(1) form a basis of the
Cartan subalgebra u(1) × u(1) of so(5). There is also a warping factor ∆̃ =

∑2
α=0Xαµ

2
α. We can
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then notice that if we set Xi = 1 and Ai(1) = 0 then ∆̃ = 1 and the metric becomes

ds2
11 = ds2

7 + g−2
[
dµ2

0 +
2∑
i=1

(dµ2
i + µ2

i dψ
2
i )
]

The expression in squared brackets is a round metric on the unit S4. Therefore, this is our back-
ground metric around which we expand. In this case, we can also identify the gauge coupling
parameter g with the inverse of the radius of the S4. Concluding the explanation of the various
terms in 4.20 we note that ∗ is the Hodge star in eleven dimensions, ∗ the Hodge star in S4, ε(7) is
the volume form in seven dimensions and F i(2) = dAi(1) is the field strength associated to the gauge
fields Ai(1). This ansatz can be obtained from 4.16 4.17 by the following relations between the old
and new variables:

Y 5 = µ0

Y 1 = µ1 sinψ1 Y 2 = µ1 cosψ1 (4.21)
Y 3 = µ2 sinψ2 Y 4 = µ2 cosψ2

The condition Y iY i = 1 translates to µ2
0 + µ2

1 + µ2
2 = 1 as required and the remaining relations

between the scalars and gauge fields are

TAB = diag(X1, X1, X2, X2, X0) (4.22)
A1

(1) = −B12
(1) −B

34
(1) A1

(2) = B12
(1) −B

34
(1) (4.23)

It is convenient to parametrize the scalars Xi by two dilaton fields that can be written as a vector
~ϕ = (ϕ1, ϕ2) in the following way

Xi = e−
1
2~ai·~ϕ , ~ai · ~aj = 4δij −

8
5 (4.24)

where the normalization of the ~ai can be fixed by choosing ~a1 = (
√

2,
√

2
5) and ~a2 = (−

√
2,
√

2
5). In

order to proceed, one should now substitute 4.19 and 4.20 in the eleven dimensional supergravity
equations of motion and then try to construct the effective Lagrangian in seven dimensions which
reproduces those equations. This is explicitly done in [60] where the Lagrangian is found to be

L√
−det g

= R− 1
2(∂~ϕ)2 − V − 1

4

2∑
i=1

e~ai·~ϕ(F i(2))
2 (4.25)

with the scalar potential V given by

V = g2
(
− 4X1X2 − 2X−1

1 X−2
2 − 2X−1

2 X−2
1 + 1

2(X1X2)−4
)

(4.26)

It is straightforward to check that the potential V has two stationary points one of which is a
maximum at X1 = X2 = 1 and the other one being a saddle point at X1 = X2 = 2−1/5.

4.4 The torus action
Having explained the physical origin of the S4 ansatz in the supergravity context, we now set to
put it in under the microscope of torus actions. A quick inspection of the truncated background
4.19 4.20 reveals that there is an obvious isometric torus action corresponding to translation of the
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ignorable variables ψ1, ψ2. The corresponding Killing fields are Ki = ∂ψi
. The four-form is also

independent of the two coordinates so that

LK1F4 = LK2F4 = 0

Since the tori are parametrized by ψ1, ψ2 the coordinates µ0, µ1, µ2 are the coordinates on the base
space. As we saw, those are coordinates in R3 satisfying µ2

0 + µ2
1 + µ2

2 = 1. From their definition
4.21 it turns out that since Yi ∈ [−1, 1] we must have µ0 ∈ [−1, 1] and µ1, µ2 ∈ [0, 1] so that in
total they do not parametrize a sphere but rather a quarter of a sphere. This is consistent with
the conclusions of Section 2.4. To further explore the orbit space structure, we consider the fixed
points of the action. The norm of the Killing fields is given by

|Ki|2 = g−2∆̃−2/3X−1
i µ2

i , i = 1, 2

which vanishes precisely when µi = 0. In the orbit space, these are indeed the two edges forming
the boundary. Their intersection comprises the fixed points of the entire torus action and they
are given by µ1 = µ2 = 0 or µ0 = ±1. The Killing fields K1,K2 are therefore the infinitesimal
generators of the only two embedded cycles in T 2 whose restricted action on S4 has a bolt as fixed
point locus. To verify this, we consider an arbitrary linear combination K ′ = κK1 +λK2 with norm

|K ′|2 = κ2gψ1ψ1 + 2κλgψ1ψ2 + λ2gψ2ψ2 = g−2∆̃−2/3(κ2X−1
1 µ2

1 + λ2X−1
2 µ2

2)

Indeed, the vanishing locus is given by µ1 = µ2 = 0 for κλ 6= 0 showing that a generic circle in T 2

has two fixed points P,Q. The circle actions induced by the Killing fields K1 and K2 have weights
equal to ±1. This is easily deduced from the definitions 4.21. The translation ψ1 7→ ψ + β only
rotates the plane Y 1 − Y 2 with the rotation matrix being

(
Y 1

Y 2

)
7→
(

cosβ sin β
− sin β cosβ

)(
Y 1

Y 2

)
(4.27)

Similarly, the rotation ψ2 7→ ψ2 + β rotates the Y 3 − Y 4 plane in the same way. The structure of
the orbit space is shown in Figure 4.2.

Figure 4.2: The quarter sphere as the orbit space of the torus action on S4. The blue edge denotes
the locus µ1 = 0 and the green edge denotes the locus µ2 = 0. They are loci of isotropy (0, 1) and
(1, 0) respectively. The points P,Q are the fixed points of the torus given by µ0 = ±1.

Performing the reduction along ψ1 of the metric 4.19 we obtain the ten dimensional background
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e4ϕ/3 = g−2∆̃−2/3X−1
1 µ2

1

ds2
10 = e2ϕ/3

[
∆̃1/3ds2

7 + g−2∆̃−2/3
(
X−1

0 dµ2
0 +X−1

1 dµ2
1 +X−1

2 dµ2
2 +X−1

2 µ2
2(dψ2 + gA(2))2

)]
Ai = gA

(1)
i (RR 1-form) (4.28)

In order to see what the three dimensional space is, we can set the moduli fields to zero. The three
dimensional part of the metric then becomes (up to a conformal factor):

ds2
3 = dµ2

0 + dµ2
1 + dµ2

2 + µ2
2dψ

2
2

The first three terms are simply the round metric on the quarter sphere as in Figure 4.2. The last
term is a warped metric on a circle with the size of the circle vanishing at µ2 = 0 (green line in
Figure 4.2). This is indeed a metric on D3 which according to our discussion in Section 2.5 is the
space that we should obtain when the fixed point locus is a bolt.

Note that the RR 1-form in 4.28 does not depend on the coordinates of the three dimensional
reduced space. Therefore, the pullback of the field strength on the three dimensional space S4/S1 '
D3 is zero. This is consistent with the fact that our spherical bolt (which is now the boundary of
D3) does not carry any topological charge as it was defined in Section 2.5. Note that this agrees
with the interpretation that there are no D6-branes or anti-branes in this reduced spacetime to act
as sources for the RR-form.
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Chapter 5

Conclusion

We have developed a range of techniques to study eleven dimensional M-theory backgrounds with
isometric torus actions. The interest in this direction of research was ignited, as we saw in Chapter
1, by the existence of the SL(2,Z) duality in Type IIA theory which ensures that reductions on
different circles S1 ↪→ T 2 give rise to equivalent backgrounds. This immediately brought up the
question of whether this duality has some non-trivial implications on the dynamics of the various
theories that it relates with each other.

The curious duality led us to investigate how groups can act on manifolds with special focus on
circles and tori acting on four-manifolds. The prominent position of four-manifolds in this dis-
cussion was dictated by the interpretation of codimension four fixed point surfaces as D6-branes
and D6-anti-branes in the reduced ten dimensional theory (where they become codimension three
objects). Therefore, it was natural from this point of view to adopt the assumption that our eleven
dimensional background is a product of a seven dimensional manifold which we think as the brane
worldvolume and a four-manifold which we interpret as the space transverse to the branes. In this
intuitive picture, isolated fixed points of the four manifold correspond to branes and anti-branes.

The structure of torus actions on four-manifolds revealed that the quotient space can look very
different depending on the circle subgroup of the torus that we choose to quotient out. In physics
terms, this translates to the existence of various Type IIA backgrounds which are dual despite their
apparent disparities. In particular, we were interested in torus actions with two fixed points since
our initial endeavor revolved around the investigation of brane–anti-brane systems. We found that
in this situation a generic circle subgroup of the torus has two isolated fixed points corresponding
to the brane and the anti-brane. However, we also discovered that there are two special circles
whose fixed point locus consists of a codimension two surface, a bolt. The slice theorem also al-
lowed us to conclude that the quotient space under those special circle actions will have a boundary.

Armed with a solid understanding of the geometry behind torus actions, we moved on to investigate
certain backgrounds in String Theory. After a brief detour to the world of Kauza-Klein theory, we
demonstrated a physical argument that identifies fixed points with D6-branes from the perspective
of supergravity. We then proceeded to the Kerr instanton, a space which combined the simplicity
of a purely geometric background with the intricacy of the brane–anti-brane dynamics. We found
out that the D6-D6 pair can balance in the presence of a finely tuned magnetic field. By inspecting
different reduction circles, we discovered conical singularities and of course the sought after special
boundary inducing circle actions. The bolts of those two actions were found to be of two different
types. One of them is a sphere and the other is the disjoint union of two planes. We discussed
some of the implications for the lower dimensional theory.
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While discussing the dynamics of the D6-D6 pair, we introduced the notion of a fluxbrane which
provided the necessary force for the brane–anti-brane to balance. The existence of the fluxbrane
provided further evidence for the non-perturbative nature of the Type IIA background. This is
due to the uncontrollably large values of the string coupling away from the fluxbrane axis. This,
in turn, led to a criterion 3.24 ensuring that there exists a region where the perturbative picture is
reliable. Applying this criterion picks out a preferred reduction circle. We found that in the limit
of coincident brane–anti-brane the reliable background is indeed the one with a spherical boundary
and no branes. This seems to suggest that when the branes get close to each other, there is no
notion of branes and anti-branes.

Finally, we turned our attention to backgrounds with fluxes and in particular, the AdS7 × S4 so-
lution of eleven dimensional supergravity. Our interest in this example is also supported by the
existence of a full non-linear ansatz for the S4 compactification of eleven dimensional supergravity.
We demonstrated that by performing a certain consistent truncation, we obtain an infinite family of
eleven dimensional solutions which admit an isometric torus action. The four-sphere had also been
a prime example of a manifold with a torus action from a purely mathematical perspective. Using
the slice theorem and the isotropy representation in Chapter 2 we had already deduced that the
quotient of S4 should give rise to either S3 or D3 which possesses the S2 boundary. We confirmed
that these findings are reproduced by our supergravity solutions and we discussed the geometry of
the reduced space.

Our overall exposition has revealed an intriguing prospect regarding the end state of a D6-D6
pair. However, the ultimate fate of those spacetimes with boundaries remains elusive. What is
more, although we have established that spacetimes with boundaries do exist and have to be taken
into account, the mechanism that induces the topological transition is unclear. We have argued
in Section 3.5 that when the D6-brane and anti-brane come together, the perturbative picture is
highly non-reliable and non-perturbative effects are believed to take control. It would be highly
desirable to obtain a better understanding of the processes that take place in this non-perturbative
regime and to possibly shed light on the issue of the topology change.
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Appendix A

Principal bundles and connections

Definition A.0.1. Let G be a Lie group and let

G P

M

π

be a fiber bundle with fiber G and a smooth action G×P → P . Then P is a principal G-bundle
if

1. The action of G preserves the fibers of π and is simply transitive on them, i.e. the action
restricts to

G× Px → Px

and the orbit map

G→ Px

g 7→ g · p

is a bijection for all x ∈M , p ∈ Px.

2. There exists a bundle atlas of G-equivariant bundle charts φi : PUi → G× Ui satisfying

φi(g · p) = g · φi(p) ∀p ∈ PUi , g ∈ G

where on the right hand side G acts on (a, x) ∈ G× Ui via

g · (a, x) 7→ (g · a, x)

The group G is called the structure group of the principal bundle P .

We first recall that if Φ : G × E → E is the free group action then φg := Φ(g,−) : E → E is a
fiber preserving diffeomorphism and Duφg : TuE → Tg·uE is an isomorphism that preserves the
vertical subspace Vu. If we then choose a horizontal space Hu we can ask whether (Duφg)Hu is also
a horizontal space at g · u. There is no canonical choice of horizontal subspaces unless we specify
some additional structure (like a metric). The concept of a connection is precisely the additional
structure required to make this non-canonical choice.

Definition A.0.2. Let E → B be a principal G-bundle. A connection (or Ehresmann connection)
on E is a distribution H of horizontal subspaces satisfying the following property

(Duφg)Hu = Hg·u (A.1)
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The definining condition A.1 is called left-invariance (or right-invariance if we choose a right action).
Sometimes it is useful to consider connections that are not invariant. In this context, invariant
connections are also called principal connections. This definition, albeit intuitive, is not tailored
for practical applications. For this reason, we introduce the following related concept.

Definition A.0.3. Let E → B be a principal G-bundle. A connection one-form ω ∈ Ω1(P, g) :=
g ⊗ T ∗P is a projection of TuP onto the vertical component VuP ' g. The projection property is
summarized by the following requirements

• ω(X#) = X for all X ∈ g

• φ∗gω = Adgω for all g ∈ G.

A connection one-form is also called a gauge field. The choice of a connection form is equivalent to
the choice of an Ehresmann connection as shown in the following theorem.

Theorem A.0.1. There is a bijective correspondence between Ehresmann connections on a prin-
cipal G-bundle E → B and connection 1-forms given as follows:

• LetH be an Ehresmann connection on P. Then every element Y ∈ TuE splits as Y = X#+Y H

with Y H ∈ Hu a horizontal vector and X# a vertical vector which can be uniquely written
as the fundamental vector of some X ∈ g. We then define a connection one-form ω such that
ωu(Y ) = X ∈ g.

• Conversely, let ω ∈ Ω1(E, g) be a conenction one-form. Then Hu := kerω defines an Ehres-
mann connection.

A proof can be found in any introductory textbook on gauge theory like [62] to which we refer
for further reading. Locally the connection one-form can be given as follows. Let {Ui} be an
open cover of the base B and si : Ui → E be local sections that trivialize the bundle. Then
Ai := s∗iω ∈ g⊗Ω1(Ui) are called local gauge potentials. On an overlap Ui∩Uj if we let gij : Uij → G
be the transition function then the local gauge fields transform as

Aj = AdgijAi + g−1
ij dgij

Conversely, a collection of such local gauge fields transforming in this way define a unique global
connection one-form. This local way of expressing connections is used in physics and we will
explicitly use it in all of our applications.
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