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Introduction

In elementary point set topology one has the concept of two manifolds being homeomorphic. Then in
differential geometry/topology there is the concept of two (smooth) manifolds being diffeomorphic. While
the latter is clearly stronger, it is hard to come up with any examples of manifolds homeomorphic but
not diffeomorphic to one another; almost any two homeomorphic smooth manifolds we can think of also
turn out to be diffeomorphic. In fact, it has been proven [Moi77| that any two homeomorphic 1, 2 or 3

dimensional smooth manifolds are also diffeomorphic.

In 1956 John Milnor published a paper showing that there are so-called exotic spheres that are
homeomorphic, but not diffeomorphic to the 7-sphere S7. These exotic spheres provide the first counter
example showing that homeomorphism is not the same as diffeomorphism for smooth manifolds. As is
usual in topology, proving that these exotic spheres are not diffeomorphic to S7 proceeds by introducing
some mathematical objects that are invariant under diffeomorphisms and then show that these invariants
are not the same for the two manifolds in question. We will spend the bulk of this thesis defining so-
called characteristic classes, which will be used to define the promised invariants required for our main
theorem. The entire discussion will furthermore be completely from a differentiable viewpoint. While
most literature on the topic of exotic spheres uses singular cohomology with integer coefficients, we chose
to only use de Rham cohomology. This offers greater geometrical intuition to be used, and simplifies

some of the discussion.

This thesis is divided into four parts. In the first part we will introduce a variety of concepts in cohomology
theory required for the introduction of characteristic classes. In the second part we will use the so-called
Thom class to introduce the Euler class, from which the characteristic classes are defined. In the third
part we will define the Chern and Pontryagin characteristic classes and prove some of their properties.
Finally in the fourth part we will use these characteristic classes to introduce the Hirzebruch signature
theorem, which will be the most important ingredient in the proof of existence of exotic spheres. We
will then go on to introduce the exotic spheres and show that they are indeed homeomorphic but not

diffeomorphic to S7.

We assume the reader is familiar with most basic concepts of differential geometry. In particular,
the reader should be familiar with tangent spaces, differential forms, Stokes’ theorem and de Rham
cohomology. For an excellent introduction to the topic of differential geometry consult [Leel3]. We will
also use elementary results from point-set topology, group theory and ring theory. Some familiarity with

the terminology of algebraic topology will be helpful.



1 De Rham cohomology

In this first part we will introduce the de Rham cohomology and prove some elementary properties of the
cohomology theory such as the Poincaré lemmas and Poincaré duality. We assume the reader is familiar
with the basic definition of de Rham cohomology, and we will build upon this foundation. If the reader
is already familiar with Poincaré duality, this part can be skipped. Unless stated otherwise the contents
of this part are based on [BT82].

1.1 Preliminary definitions

In this section we will introduce de Rham cohomology and introduce some of its properties. The de Rham
cohomology is the cohomology theory that naturally arises when considering the exterior derivative d on
the space of differential forms Q9(M) on a differentiable manifold M. For the sake of convenience we
assume any manifold to be both connected and smooth unless stated otherwise . First we define the

(graded) algebra of differential forms:

Definition 1.1.1: Let Q9(M) be the set of degree ¢ forms on M. We define the graded algebra of
differential forms as Q*(M) = @,Z, Q4(M). A

We know that d : Q4(M) — Q4+1(M) has the property d?> = 0. Hence we can use it to define a cohomology
theory:

Definition 1.1.2: We define the de Rham cohomology H*(M) of a manifold M as the graded algebra
@D~ HI(M) where HY(M) is given by the quotient

q _ kerd : QM) — QI (M)
HY(M) = imd: Q-1 (M) = Qi(M) "

Alternatively we can say that H*(M) is the cohomology of the cochain complex Q*(M). A

This definition is interesting because it tells us when an element is in the kernel of d. But since any
form in the image of d is trivially also in the kernel, we simply take the quotient of ker d by imd to give
us more information. This quotient turns out to be a finite real vector space under mild conditions. A
closed form w does not have to be in the image of d, but if we restrict w to a small enough open set then
we can always write it as a form in the image of d; de Rham cohomology provides us a way of measuring

the obstruction of extending local properties of forms to global ones.

A very useful tool when working with de Rham cohomology is the Mayer-Vietoris sequence. Let M = U U
V with U and V open, and let U UV denote the disjoint union of U and V. We get a series of inclusions
iU,y

UNV —/——= UUV — M, where iy and iy are the inclusions of U NV into respectively U C U UV and

V c U U V. This induces the following exact sequence on forms
0= Q (M) = Q*(U) @ Q" (V) =% Q*(U N V) - 0.

By an elementary construction we can extend this short exact sequence on forms to a long exact sequence
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on cohomology called the Mayer-Vietoris sequence (see for example [Hat01l, p. 117]):

oo —— HY(M) ———— HY(U) & HY(V) ——— HY(U N V) >
-

<—> HY(M) —— HHY(U) @ HIY (V) —— HHY (U N V) —— -

Proposition 1.1.3: Recall that a partition of unity subordinate to a cover {U;} of M is a set of smooth
functions {p;} such that Suppp; C U; for each i, and furthermore each € M has a neighborhood in
which only a finite amount of p; are non-zero, and finally 3;p; = 1 on the whole manifold. It is a standard

result that such a partition of unity exists subordinate to any locally finite open cover of M. A

There is an explicit formula for the coboundary operator obtained through a proof entirely analogous to
that of Lemma on the next page, therefore we will just cite the result [BT82] p.23].

Lemma 1.1.4: Let {py, pv} be a partition of unity subordinate to the cover {U,V} then we have for
w € H*(UNV) that

i ol
d'w =
d(py)w on V. A

We will now proceed to define compactly supported de Rham cohomology.

Definition 1.1.5: Let Q} (M) C Q*(M) be the graded algebra of forms on M with compact support,
that is each w € Q%(M) has support within a compact subset of M. Then with the same definition of
the exterior derivative d as for the globally defined forms we define the compactly supported de Rham
cohomology, or compact cohomology for short, as HX (M) = @310 HY(M) where HZ(M) is given by the
quotient

~ kerd : QI(M) — QI (M)

HI(M) = - — . A
imd: Q¢ (M) — Q4(M)

With globally defined forms we were interested in the maps on cohomology induced by pullbacks of maps
between manifolds. In the compact case we consider instead the extension by zero under inclusions of
open sets. Let j : U — M be an inclusion with U open. This induces a map j. : Q5(U) — Qi(M)
given by extending forms w on U by zero on the complement of U in M. The support of j.w is then
still compact. Furthermore j, evidently commutes with exterior derivation and hence also induces a

well-defined map on cohomology.
Suppose we have a series of inclusions U NV Y% U UV 222% M. Consider the maps 8 : w
(—iysw,ivew) and o : (w,7T) — Jusw + jy«7, in other words signed inclusion, and the sum of the

inclusions respectively. With these maps we define the short exact sequence,

0+ QM) QU (V) L QUNV) « 0.

From this sequence we get a corresponding sequence in cohomology called the Mayer-Vietoris sequence
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for compact cohomology. Note the reversal of arrows compared to the original Mayer-Vietoris sequence:

s 4—— HITY M) «—— HIPY(U) & HITH (V) +—— HITH(UNV) ﬁ
d.

CHS’(M)<—H3(U)®H3(V) e H(UNV)¢— -

The action of d, is derived in the following lemma:

Lemma 1.1.6: For w € HI™ (M) we have (—ip.diw, iv.d.w) = (d(py)w, d(py )w) where p is a partition
of unity subordinate to the cover {U,V'}. A

PRrROOF: Consider the following commutative diagram with exact rows:

06— QM) +———— Q(U) © (V) ¢+——— QU NV) +——0

| oo

0+— Q:+1(M) — Qz+1(U) ® Qz+1(V) <T QZJrl(U AV)+—0

The connecting homomorphism d, is defined as follows: Let w € H} (M), then since o is surjective, there
is a 7 such that o(7) = w. Now we have 0 = dw = o(dr) and by exactness there is an « such that
da = dr. Now we define d,w = «. It is a standard result that this makes d, well-defined. In this case
we have, o(py, py) = w with p a partition of unity subordinate to U, V. Now dd.w = (d(py)w, d(py)w),
proving the result after applying the definition of é. O

Because it is useful to introduce the notion as soon as possible, we will cover fiber and vector bundles in

the next section.

1.2 Fiber bundles

In this section we will give a concise review of the theory of fiber and vector bundles. We will recall the
formal definition of a fiber bundle and introduce relevant terminology. We will then state the definition

of vector bundle and provide a definition of some of the operations on vector bundles we will use later.

Definition 1.2.1: Let M be a manifold (not necessarily smooth). We call E together with projection
m: E — M a fiber bundle over a base space M with fiber F if M has an open cover {U,} together

homeomorphisms ¢, : 7~ 1(U,) — U, x F such that for each « the following diagram commutes:

N U,) —2 Uy x F

U, CM

where p : U, X F — U, is the projection to the first factor. We call the set of all such pairs (Uy, pq) &

local trivialization of E. A
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Definition 1.2.2: Let (U,, ¢,) be a local trivialization of a fiber bundle E. We define the transition
functions gag : (U NUg) X F — (Uy NUp) x F of E by gag = @awgl. Conversely, given a cover U; and

a set of transition functions gng defined on overlaps U, N Up satisfying the cocycle condition

9aBd8y = Gary

we can construct a fiber bundle that has g, as its transition functions [BT82), p.48]. We call a set of
maps {gag} satisfying the cocycle condition a cocycle, and we will sometimes refer to the set of transition

functions as the cocycle of E. A

We can also look at maps between fiber bundles. Of course, these maps should be compatible with the

projection map and preserve the structure of the fiber bundle. This can be made precise as follows:

Definition 1.2.3: Let 7: E — M and p: ' — N be two fiber bundles. Let f: FE— Fand g: M — N

be continuous maps. We call the pair (f, g) a bundle morphism if the following diagram commutes:
E F
M N

We also say that f covers the map g. If f: E'— F' is a map of fiber bundles over the same base space we

s

g

typically require that f covers the identity map for it to be a morphism. We also call a bundle morphism
f+ E — F covering the identity map a bundle isomorphism if it is a homeomorphism, and we then call

the two bundles F and F' isomorphic. A
We say E is a trivial bundle if F is isomorphic to the trivial product bundle M x F.

Definition 1.2.4: (Pullback bundle) Suppose we have a fiber bundle 7 : E — M and amap f: M — N.
Then f induces a fiber bundle f*E over N called the pullback bundle of E by f. We define f*E as a
subset of N x E:

ffE={(n,e) € Nx E|f(n)=mn(e)}.

In other words it is the maximal set that makes the following diagram commutative,

NxE->ffE—L L E

N—

where p, f are the projections of N x E to respectively N and E. The fiber at y € N is then given by
7 1f(y) and f*F has p as its projection. Since the pullback of a product bundle is clearly a product
bundle, the local trivialization is pulled back to a local trivialization and f*E is also a fiber bundle.

Furthermore the transition functions g3 of E induce transition functions f*g.g on f*E. A

Definition 1.2.5: A section s : M — E of a fiber bundle 7 : E — M is a continuous map such that
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mos = Id. That is, it assigns to every point in the manifold a specific element of the fiber over that

point. A

We mainly study smooth manifolds, and we will require some extra compatibility with the smooth

structure for our fiber bundles.

Definition 1.2.6: A rank-k smooth vector bundle m : E — M over a smooth manifold M is a fiber bundle
that is itself a smooth manifold and for which 7 is smooth and has local trivializations that consist of
diffeomorphisms. We also require the fiber of E to be the vector space RF and the transition functions
to give linear isomorphisms when restricted to each fiber. A rank-k complex vector bundle has fiber CF.

Throughout this text we will assume all vector bundles to be smooth. A

Let 7 : E — M be a rank-k vector bundle with cocycle gog. If we restrict gog to some point x € U, NUpg
we obtain an isomorphism R¥ — R¥. Therefore we can say that gaple 1s an element of GL(k,R).

Furthermore we have a map U, NUg — GL(k,R) given by  — gag|a-

Definition 1.2.7: The image of this map may very well lie in some subgroup H of GL(k,R) for all «, S.
If this is the case we say that the structure group of E is reduced to H. Furthermore if there exists a
vector bundle E’ isomorphic to E with structure group reduced to some subgroup H of GL(k,R), then
we say that the structure group of E can be reduced to H. Here H does not necessarily have to be the

smallest subgroup with this property. A

Definition 1.2.8: We can always reduce the structure group of a vector bundle to the orthogonal group
O(k) [BT82, p. 55]. We therefore call a rank-k vector bundle orientable if its structure group can be
reduced to the special orthogonal group SO(k). A

Definition 1.2.9: We can restrict a vector bundle 7 : E — M to a subset of U to get a new vector
bundle E|y defined by E|y = 7~ 1(U) whose fiber at a point p € U is simply the same as that of the

original bundle, i.e. (E|y), = E, with the same vector space structure. A

We will now introduce several operations on vector bundles. Most of these are constructed by taking
some operation on vector spaces and applying it fiberwise to the bundles. Refer to [MS74, p. 32| for a
summary of the following definitions as well as a proof that such fiberwise definitions produce well-defined

vector bundles.

Definition 1.2.10: The product bundle m x p: E X F — M x N of two vector bundles 7 : E — M
and p : F — N is defined as the fiberwise product of the two vector bundles. That is, its fiber at
(p.q) € M x Nis 7= 1(p) x p~H(q). A

Definition 1.2.11: The direct sum bundle E @ F (also referred to as the Whitney sum) of two vector
bundles 7 : E — M and p : F — M over the same base space is defined by taking the direct sum
fiberwise. That is, it has fiber 7=1(p) ® p~1(p). More precisely, if d is the diagonal embedding of M into
M x M, then E @ F is defined as d*(E x F). A

Definition 1.2.12: The tensor product E @ F of two vector bundles 7 : E — M and p : F - M
is defined by fiberwise taking the tensor product (refer to [Leel3l p.305] for a definition of the tensor
product of two vector spaces). It has projection ™ ® p and furthermore if E and F have respectively

transition functions g.g and f,s then ¥ ® F' has transition functions gog ® fys- A
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Several other operations on vector bundles will be defined throughout the text when necessary. In the

next section we shall derive an important result for the computation of these cohomology theories.

1.3 The Poincaré lemmas

Suppose we have a manifold with a good cover. That is, a cover for which each element of the cover, as
well as any finite intersection of elements in the cover, is diffeomorphic to R™. As we will prove in this
section, the cohomology for spaces diffeomorphic to R™ is always that of a point. Suppose we have a space
M that has a good cover with 2 elements, then if we look at the Mayer-Vietoris sequence associated to
this cover we can actually deduce the cohomology of M. Now by applying the Mayer-Vietoris sequence
inductively to the cardinality of a good cover it is possible to obtain the cohomology for any manifold
admitting a good cover given we know what the cohomology is for R™. This is true for both the global
and the compact supported case. In this section we will therefore compute both H}(R™) and H*(R™).
This section is very technical, and understanding of the proofs is not required for understanding later

sections.

Lemma 1.3.1: (Poincaré lemma) The de Rham cohomology of R™ is isomorphic to that of a point for
all n, that is H4(R") =0 for ¢ > 0 and H°(R") =R A

PrOOF: We will proceed by explicitly constructing the isomorphism. These isomorphisms are based on
considering R™*! as a trivial vector bundle 7 : R x R — R™ over R™ with zero section s. The projection

and section then induce maps on the space of forms as shown in the following diagram:

R" x R Q*(R" x R)
o
R Q*(R")

We want to show that the projection and zero section induce inverse isomorphisms in cohomology. Note
that this is not true on the level of forms. While we have that m o s = 1 (and hence s* o 7* = 1), we do
not have som = 1 nor 7* o s* = 1, however this identity does hold on cohomology. We want to show
that 1 — 7* 0 s* = +(dK + Kd) for some map K : Q4(R" x R) — Q¢-}(R™ x R). This is sufficient since
(dK £ Kd)w = dKw for closed forms, hence 1 — 7* o s* sends closed forms to exact forms and is a trivial
map on cohomology. We call a map K satisfying such a relationship a homotopy operator.

Since 7 is surjective we can write any form w € Q*(R™ x R) as

w= (m"6) f(a,t) + (x*O)g(x, D, (L1)

where ¢ and 0 are forms on R"”, ¢ is a coordinate function of the fiber R, and f, g are smooth functions

on R"*1, Using the same notation we then define K by

0
Kw:w*ﬁ/ g(z,t) dt.
¢

That is, we integrate the form over the fiber R. To simplify notation we will occasionally omit function

arguments and use the Einstein summation convention. We will first show 1 — 7* 0 s* = £(dK + Kd) for
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forms without the dt term, that is, let w = (7*¢) f(x,t). Then,
(1— 7 05w = (1— " 0 8*) (T @) f 2, 1) = (7" 6) f( ) — (26 f(x,0). (1.2)
Whereas on the other side we have

(dK — Kd)w = —Kdw = —K [(dn*@f + (=1)%(7*¢) (gjid:vi + Z{dt)]

= (-1)7K ((w*q&)%{dt)

= (-11(e9) [ = (1 9) (1(t) ~ F,0)),
0

where in the step from the first to the second line we omitted the terms without a dt since they get
mapped to 0 by K. The last line is the same as (1.2)) up to sign, as required. Now for w = (7*0)g(x, t)dt

we get (1 — 7% o $*)w = w since s*(dt) = 0. Now on the other side we get:
(dK — Kd)w=d [(W*G) /gdt] -K [(dw*&)g + (=1)71(7*0) (ggidxidt)}
i
_ ; [ Og g
_ * _1\¢—1 * i el o
= (dr 0)/gdt+( )47 (7*0) [dx /axidtert/atdt}

—(dw*@)/gdt—(—l)q_l(ﬂ*ﬁ) [da:i gjidt}

_ dg
_1)9—1 *
= (-1 (x G)dt/ Bt dt = w.

And hence 1—7*o0s* = (—1)%(dK — Kd), from which we conclude that 7* and s* are inverse isomorphisms.
We then get HY(R") = H?(R"!), and since for R® we have H°(R?) = R and H?(R°) = 0 for ¢ > 0, we

conclude the Poincaré lemma by induction. O

Note that if {U,, ¢a}acr is an atlas for M, then {U, X R, (dq,Id)}acs is an atlas for M x R. And
furthermore the definition of the operator K does not depend on the choice of atlas on M, from this we

conclude the following corollary:
Corollary 1.3.2: H*(M) = H*(M x R) and hence also H*(M) = H*(M x R™). A

This corollary provides with the tools for a concise proof of the homotopy invariance of de Rham
cohomology. Let FF : M x I — N be a smooth homotopy (that is, F' is a smooth map and also a
homotopy) between maps f and g such that f = Fos; and g = F o sy with s; the trivial section sending
x> (x,t). We can extend F' to M x R by F(-,t) = f for t > 1 and F(-,t) = g for t < 0. Note that this
does not necessarily give a smooth map, but we can take a different parametrization of I (shown below)

by a smooth map which has derivative 0 at either end of the unit interval to make F' smooth again.
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Since sy and 7* are inverse isomorphisms on cohomology, we have that s; induces the same map on

cohomology for all £. Note that smoothness of F' is required to have a well-defined map F*. Now we have
ff=(Fos)" =sioF"=sjoF*=g".

And hence we conclude the homotopy invariance of de Rham cohomology:

Theorem 1.3.3: (Smoothly) homotopic maps induce the same maps on de Rham cohomology. In

particular, smoothly homotopy equivalent spaces have isomorphic de Rham cohomology. A

This also immediately gives another interpretation of the Poincaré lemma. Recall that a space is
contractible if it’s homotopic to a point. Therefore the Poincaré lemma essentially states that the

cohomology of contractible spaces is the same as that of a point.

We will now spend the rest of the section proving the Poincaré lemma counterpart for compactly supported
cohomology. The proof analogously also starts with defining a homotopy operator. The key difference is
that we now want an isomorphism HIT}(R™ x R) — H4(R™). Furthermore instead of working with pull

backs we want to work with push-forward maps. Let as before w € Q%(R"*1) be of the form

w= (") f(a,1) + (x"O)g(x, D,

where we again see 7 : R"*! — R"™ as a vector bundle. We define integration along the fiber
et QH(M x R) — Qi 1(M) by

o0
T = 9/ g(x,t)dt.
—o00
Proposition 1.3.4: 7, commutes with d and hence induces a map on cohomology A

We have to prove that 7.d = dm,. By linearity of both operators it’s enough to show commutativity for
w=(m"¢)f(x,t) and w = (7*¢) f(x, t)dt separately. First let w = (7*¢)f(x,t). We get

oo =, (@ o) + (-0 1) (3ast + )]

—(vtwoy ([~ Har).

which is zero by compact support of f. On the other hand dm,w = 0, so we get commutativity. Now for
w = (1*¢) f(x,t)dt we have,

drw = d {gb / fdt} .
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Whereas,

Todw = m, [(dw*a;)f + (=1)7" Y (7* ) (ggfi d:c%t)]

= d¢)/fdt+(—1)q—1¢dxi/gfidt
=d {d)/fdt}

Which proves commutativity of m, and d. (]

To show that 7, is an isomorphism, we will now construct its inverse. Let e = e(t)dt be a compactly
supported 1-form on R with total integral 1. Then let e, : Q5 (M) — Q:Ft1(M x R) be the map defined
by ¢ — (7*¢) Ae. Since de = 0 we have that e, commutes with d and hence e, induces a map on

cohomology.
Proposition 1.3.5: e, and 7, are inverse isomorphisms. A

First of all we have that m.e.w = 7. ((7*w) A e(t)dt) = w [ e(t)dt = w. For the inverse relationship we

will show 1 — e,m, = (=1)971(dK — Kd) for some K. Let again w be given by

w= (n" ) f(x,1) + (x"6)g(z, t)dt.

From this we define K by,

t o)
Kw= w*ﬂ/ g(z, t)dt — W*HA(t)/ g(z, t)dt,
with A(t) = [ e(t)dt.
Lemma 1.3.6: With the definition above we have 1 — e,m, = (—=1)?"1(dK — Kd). A

PROOF: Let first w = n*¢ f(z,t). Then (1 — e m)w = w. We have,

(dK — Kd)w = —Kdw = —-K {(dﬂ*gb)f + (=) Y (7* ) <§*’id + a{dtﬂ

Lo 0
-1 {w*qﬁ/ —];dt—w*qu(t)/ a{dt}

= (D) ef = (1) w.

Assume on the other hand that w = 7*¢ f(z, t)dt, we then get,

(l—e*w*)w:w—e*qb/oo f(x,t)dt:w—w*qb/oo flz, t)dt Ae. (1.3)

Now we will separately calculate Kd and dK. First we get,
* —1/, = 8f %
Kdw =K |(dn*¢)f + (=) (7" ¢) de dt
:Lnl

—dmz)/ fdt — dn* pA(t) / fdt + (- {d)/ —dxdt qu()/ gg{idzidt}
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And one the other hand we have

dKw =d [w ¢/ fdt — ¢A()/OO fdt}

= dﬂ*gb/ fdt+ (1)1 *¢>/ dridt + (1) " pdt /t aa‘:dtf
—dr*pA(t / fdt — * pdA(t / fdt — (=) n*pA(t / az datdt—
— (=) At dt/ 8tdt
Now noting that dA(t) = e and taking the difference we get
(dK — Kd)w = (-1)77* [w*fdt e (/_OO f(x,t)) e] :
Comparing this to we conclude that indeed 1 — e 7, = (—1)?7"}(dK — Kd). O

With this lemma we have immediately also proven Proposition [I.3.5] We then conclude the Poincaré
lemma for compact cohomology by noting that in dimension zero we have HO(R?) = R, and H¢(R°) =0

for ¢ > 0.

Lemma 1.3.7: (Poincaré lemma for compact cohomology) We have that HZ(R™) = 0 for ¢ # n and
HMR") = R. A

Remark 1.3.8: By the Poincaré lemma for compact cohomology we clearly see that compact cohomology

is unlike its global counterpart not homotopy invariant. A

1.4 Poincaré duality

We will now go on to prove another important result called Poincaré duality. This gives a relationship
between the compact and the global de Rham cohomology. Normally, e.g. for singular cohomology,
Poincaré duality would give a relationship between cohomology and homology, but since de Rham
cohomology does not have an easily defined corresponding homology, we stick to only using cohomology.

The result is as follows:

Theorem 1.4.1: (Poincaré duality) Let M be an orientable manifold of dimension n. Then HZ(M) ~
(HI~9(M))*, where the asterisk denotes the dual space. A

We already have this result for R™ due to the Poincaré lemmas by noting that R™ is isomorphic to its
own dual. The idea is to use the Mayer-Vietoris sequence of both the compact and global cohomology to
prove this result for any manifold with a finite good cover by induction to the cardinality of the cover.
The result for any smooth manifold then follows by a generalization of the argument we give here [BT82]

p. 46]. We will first construct an explicit isomorphism S : HY(M) — (H?~%(M))* given by integration:

S:iwre wA -,
M

where /w/\-:Tl—>/w/\T.
M M
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Note that S(w) is indeed an element of (H?~?(M))* since it sends elements of H?~9(M) to R. By

compact support S(w)(7) is always defined, and clearly S is also bilinear.
Lemma 1.4.2: S is an isomorphism H*(R™) — (HZ~*(R™))* for all n. A

PrROOF: For ¢ # 0 we have 0 = HI(R") = H' 1(R") = (H? 7(R"))* hence any linear map is an
isomorphism. Therefore let ¢ = 0. We then have 1 = dim H°(R") = dim H*(R") = dim(H"(R"))*,
so S is an isomorphism if and only if it is an injection. Let w = f(z',...,2") € H°(R") and 7 =
g(zt,...,x")dz! A -+ Ada™ € HP(R™), now suppose S(w) = 0 or equivalently S(w)(r) = 0 for all
T € H? %(R™), then we have

f-gdxt A---Adz™ =0, for all compactly supported g.
R’n
This means that the set {f # 0} has measure zero on all compact sets. By continuity f = 0 on all

compact sets and hence f =0 on R” proving S is injective, and hence an isomorphism. O

Now consider the following diagram induced by the Mayer-Vietoris sequences for a good cover {U, V'}:

— S HWUUV)——— S HYU) & HI(V) ——— 5 HI(UNV) ——

ls J l (4

—— (H2 (U U V) —— (HE 5 (U)* & (H (V)" — (Hp- U V) 25
Here the rows are exact. This is clear for the top row, and exactness of the bottom row follows from the
fact that short exact sequences remain exact when taking duals; only with the directions of the maps
reversed (granted all the relevant groups are freely generated, as is the case since we are working with R,
see [Jac09, p.149]). We wish to show that S is an isomorphism for H9(U U V) — (H2"1(U UV))*. We
know that the two maps left of H4(U U V') are isomorphisms and also the two to the right, since U NV,

U and V are all diffeomorphic to R™. This situation calls for the five lemma:

Lemma 1.4.3: (Five lemma) Consider the following commutative diagram of Abelian groups, where the

rows are exact:

A—"B C—-D E
R
Ftsc 2 sm- 11,y
If «, B, 6, € are isomorphisms, then so is 7. A

The proof proceeds by straightforward diagram chasing (see [Hat01) p. 129]). This lemma applies precisely
to our situation; we only need to show that the diagram (1.4]) is commutative to show that S : H4(U U
V) — (H}~9(U UV))* is an isomorphism.

Lemma 1.4.4: The diagram (1.4]) above is commutative. A
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PROOF: In the first square we have

HIU UV) —=—— HYU) & HI(V)
ls ls

(H2=9(U U V) 5 (HP9(U))* @ (HE9(V))*

here the top horizontal map is restriction of forms, and the bottom horizontal map is the pullback of

summing the two forms. We have that
(0" S(w)(e, B) = S(w)(a+ p) = S(w,w)(a, f) = S(E(w))(, B).
And hence the square commutes. In the second square we have

HIU)& HI(V) —2— 5 HI(UNV)
Is ls

(H2=9(U))* @ (HP~9(V))* -2 (HP~ (U N V))*

Where the top map is the difference and the bottom map is the pullback of signed inclusion. Writing

both compositions out we get
0" (S(w, 7)) () = S(w, 7) (=, ) = S(7) () = S(w)(a) = S(A(w,7))(a),
showing that the second square commutes as well. Now finally we have the square

HIUNV) —%L 5 g U uv)

Is * Is
(Hr=9(U N V) S (et (U U v))

We have to prove that S(d*(w))(7) = (ds«)*S(w)(7) = S(w)(d«T), in other words:

/ w/\d*T:/ d*w N T.
unv Uuv

From Lemma’s and we know what the maps d, and d* do, and applying this we obtain

/ WA dT = / wA (dpy)T = (fl)q/ (dpy)w A T.
unv unv unv

Whereas, since d*w has support in U NV, we get:

/ d'wAT = —/ (dpy)w A T.
Uuv unv

Proving commutativity of the diagram up to sign. However we can simply change the sign of either
connecting homomorphism appropriately while retaining exactness. This proves commutativity for a

sign-corrected version of the diagram. O

By applying the five lemma we have proven that S is an isomorphism HY(UUV) — (HZ?~4(UUV))*. Now
this generalizes to any manifold with a finite good cover by induction; suppose S : H*(M) — (H?~*(M))*
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is an isomorphism for all orientable manifolds with a good cover of cardinality n. Then suppose M is
orientable and has a good cover {Uy}}_, of cardinality n + 1. Now |J;_, Ui admits a good cover of
cardinality n and hence S is an isomorphism. Furthermore by goodness of the cover for M we have that
(Up—, Ux) N Uy also admits a good cover of cardinality n, and hence has S acting as an isomorphism.
The proof above of commutativity above still holds for {U,V} = {{J;_, Uk, Uo} so by the five lemma we
have that S is also an isomorphism for M. Now by induction Poincaré duality holds for any orientable

manifold admitting a finite good cover. O
In addition we also have a certain sense of naturality of the Poincaré isomorphism S.

Corollary 1.4.5: (Naturality of the Poincaré isomorphism) Let M and N be respectively m and n
dimensional manifolds. Suppose we have an embedding f : M < N, then the following diagram

commutes:

H(N)— L B (M)

Sl . ls (1.5)

(HZT*(N))* —— (H" (M)

C

That is, for « € H¥(M) we have

f*w/\ozz/ wA fea. (1.6)
M N N

PROOF: From the definition of (f,)* it follows immediately that the commutativity of the diagram (1.5
is indeed equivalent with ([1.6). Equality of these integrals then follows from the fact that f.« is given

by extension by zero of o f~! to the whole of N. Hence we have,

/w/\f*a:/ wA fea.
N f(M)

But since f is a diffeomorphism unto its image we have,

/f(M)w A fua = /M @ A fua).

Now by noting that f*f.(a) = ao (f~1f) =« on f(M). We conclude that,

/Mf*w/\OéZ/Nw/\f*a,

and hence that the diagram is indeed commutative, proving naturality for the Poincaré isomorphism. [J

1.5 Leray-Hirsch theorem

Another important theorem we will prove is the Leray-Hirsch theorem. The proof is similar to that of

Poincaré duality.

Theorem 1.5.1: (Leray-Hirsch) Let 7 : E — M be a fiber bundle with fiber F', such that H*(F) is

finite-dimensional. Suppose there are global cohomology classes eq, ..., e € H*(E) whose restriction to
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F freely generate H*(F') at every point. Then H*(E) is a free module over H*(M) with basis ey, .. . ex.
We write H*(E) ~ H*(M) ® R{ey, ..., ex}. That is, any element in H*(FE) can be written as a linear
combination of elements of form w A e;; A---A,e;, with {i;} C {1,...,k} some (possibly empty) index
set and w € H*(M). A

PROOF: As in the proof of Poincaré duality we will construct some isomorphism, which is trivially an
isomorphism for Euclidean spaces, and then use the Mayer-Vietoris sequence and the five lemma to get an
isomorphism for any base manifold admitting a finite good cover. The result is actually also true for the
case without a finite good cover (so long as F' still has finite dimensional cohomology). The proof of that
result requires a generalization of the Mayer-Vietoris based argument we use here, but this generalization

requires several pages to introduce (see for example [BT82, p.106-108]).

We define a map ¢ : H*(M) @ R{ey, ..., ex} = H*(E) by,
w® (e e ) > T wAe, Ao Aej .

Note that 1 is an isomorphism for M = R" due to the Poincaré lemma as in Corollary Let {U, V}

be a good cover with two elements and consider the Mayer-Vietoris sequence,
o —— HP(UUV) —— HP(U)® H?(V) — H?(UNV) —— - -

Let k be a fixed integer. If we tensor the sequence with R¥ = R{ey,..., e} at every point we retain

exactness due to the following proposition [Jac09l p. 154]:

Proposition 1.5.2: Let V be a vector space. Let Ay — As — A3 — --- be an exact sequence of

modules. Then the sequence,
ARV - A0V - A3V — ---

is also an exact sequence when the maps are tensored with the identity on V' at every point. A

By applying this proposition we conclude that the following sequence is also exact:
o — HP(UUV)®RY — (HP(U) @ R*) @ (HP(V) @ R*) — HP(UNV) @ RF — -

Now summing over p at every step we get the following commutative diagram:

HP(U) ® R* d*®ld
o —— @I _JHP(UUV) @R —— 7 —— @ HUNV)RF —— ...
@pfo ( ) @pfo @HP(V) ®Rk @pfo ( )
d*

o B (Elyoy) ———— H*(Ely) ® H"(Ely) ——— H"(Blyny) ——— -

Where the connecting homomorphism is given by d* ® Id which maps H?(U NV) onto HP™1(U U V) for

each p, and acts as the identity on R*. Showing commutativity is straightforward and we will only show
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commutativity for the non-trivial square:

@, H(UNV) @R —L2 L @l (U V) @ R

% k

H"(Elynv) H" Y (Elyuv)

By linearity we only have to check commutativity for elements of form w® ¢ € HP(UNV) @ R*. We get,
Bl @ 1w ® §)) = (7*d"w) A 6.

Let {pu, pv} be a partition of unity subordinate to {U, V'}. Recall from Lemma that on UNV we
have that d*w is given by d(pyw). Also note that {7*pj;, 7*p}, } is still a partition of unity. Therefore,

d*YwAe)=d"(mT*"w A @) =d(n*py) T*w A ¢ = 7" (dpyw) A ¢ = (7*d*w) A ¢.

and hence we conclude commutativity. Now by the five-lemma we conclude that ¢ is an isomorphism
for the union U UV of two open sets diffeomorphic to R™. Then by the same argument as in the proof
of Poincaré duality we get by induction on the cardinality of a good cover the required result for any

manifold admitting a good cover. O

Let M x N be the trivial bundle over M. Then if N has finite dimensional cohomology, there is clearly a
finite set of cohomology classes on M x N that generate H*(NN). This proves the the Kiinneth formula:

Theorem 1.5.3: (Kiinneth formula) The cohomology of a product of two spaces is given by
H*(M x N)=H*(M)® H*(N),

if at least one of the two spaces has a finite cohomology. A

Remark 1.5.4: The fact that the e;’s generate the fiber cohomology is necessary for the Leray-Hirsch
theorem to hold. We don’t in general have H*(E) = H*(M) @ H*(F'). If we consider p : E — F as a fiber
bundle, the most immediate definition of ¢ : H*(M)®@ H*(F') — H*(E) would be ¢ : w® ¢ — 1w p*¢.
But this map is not necessarily injective, since p*¢ could easily be exact. For example consider the Hopf
fibration S® — S2, this is a fiber bundle over S? with fiber S*. Clearly H*(S3) # H*(S?) @ H*(S'). A

With the Kiinneth formula and Leray-Hirsch theorem we conclude this introductory part of this thesis.

In the next two parts we will introduce characteristic classes, and with that the bulk of this thesis.
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2 Thom and Euler classes

In this part we shall define the Euler class, which will then be used to define the Chern class in the next
part by applying the Leray-Hirsch theorem. In order to define the Euler class we first need to introduce
the Thom isomorphism and Thom class, which is based on a generalization of the proof of the Poincaré
lemmas. Sections 2.1 and 2.2 are based on [BT82], and section 2.3 is based on [MST74].

2.1 Thom isomorhpism

Recall that in the proof of the Poincaré lemma for compact cohomology we constructed isomorphisms
HI Y R™ x R) — H?(R™). In this section we wish to generalize this result to an isomorphism of some
kind of cohomology of a vector bundle E — M to the de Rham cohomology of a lower degree in M.
This isomorphism of interest shall be the Thom isomorphism. First we shall define a generalization of

the compactly supported de Rham cohomology to vector bundles.

Definition 2.1.1: (Compact vertical cohomology) Let 7 : E — M be a vector bundle over M. We
define Q7 (M) as the set of smooth forms w which have compact support in the vertical direction. That
is for any K C M compact, 7' (K) N Suppw is compact (see fig. [2.1). The cohomology H}, (M) of this

complex is called the compact vertical cohomology. A

7 'K N Suppw Supp w

Figure 2.1: The support of w is compact when restricted to a compact subset of the manifold.
Furthermore the restriction to each fiber also has compact support.

Later in this section we will prove the following theorem:

Theorem 2.1.2: (Thom isomorphism). Let 7 : E — M be an orientable vector bundle of rank n over a
manifold M admitting a finite good cover. Then H} (E) ~ H* " (M). A

Just like in the proof of the Poincaré lemma for compactly supported cohomology, we are interested in

the map induced on cohomology given by integrating along the fibers.

Definition 2.1.3: Let 7 : E — M be an orientable vector bundle of rank n with trivializing open cover

{Uq4}. For each U, we have a set of fiber coordinates t1,...,t, on E|y, . We call a form w € Q™ of top

degree on fibers on U, if the form wy, = w|,-1y, can be written as
wo = (7%@) f(x,t)dty - - - dty,. (2.1)

For some ¢ € Q*(M) and f € C*°(E|y, ), with  local manifold coordinates and ¢ local fiber coordinates. A
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Just like how we were only interested in integration on forms with a dt term for integration along fibers
of compactly supported forms, in this case we are only interested in integrating forms that are of top
degree on fibers. Note that in any chart we can always split a form in a part that is of lower-than-top

degree on fibers and a part that is of top degree on fibers.

Definition 2.1.4: Let 7 € H *., (E) and let {U,} be a trivializing open cover. Then let w|y, = w, be of
top degree on fibers as in equation (2.1). Then we locally define integration on fibers . : Q% (E|v.,) —
Q" (Ua) by

(mr)lo, = maon =6 [ fla )ity -t R
Rn

Now 7,7 defines a global form )" pawa on QF (E), with {p,} a partition of unity. This is because on

an overlap U, N Ug we have

TaWg = MyWa O Jag = @ (det gag) f(z, t)dty - - - dty, = Tuwq,
RTL

where we have used that g.s : Uy N Us — SO(n), which is asserted by the orientability of E. The
fact that we have det(gog) = 1 is precisely why we defined the orientation on E as we did in Definition
As with any map of forms we want 7, to commute with d so that it induces a well-defined map on

cohomology.
Proposition 2.1.5: Integration on fibers commutes with the exterior derivative; m.d = dm,. A

PROOF: Since m, is defined locally, we may assume that £ = M x R™ without loss of generality. As
before we consider the case where w € €2, is of top degree on fibers and the case where it is not, which
is sufficient by linearity. Let w = (7*¢) f(x,t)dty - - - dt,,. Write dt = dt; - - - dt,, then,

Todw =, <(7r*d¢>)f dt + (—1)deg¢w*¢§f

rt

dmidt> = d¢/fdt+ (—1)deg¢dxi¢/%dt‘
lrt
Whereas,

drww =d (qb/fdt) = d¢/fdt+ (—1)deg¢dxi¢/ aaji dt,

hence m.dw = dm,w. Now let w = (7*¢) f(x,t)y with ¢ = dt;, - - - dt;, for some index set {i;} such that

1 is not of top degree. We then have dm,w = 0, and furthermore

Tedw = T, ((ﬁ*dqi))fd) +(—1)de0rrg {gg{;dﬂ + (gtédtj] d)) ’

which is trivially zero unless dt;v = £dt; - - - dt,, for some j. In that case we get,
of
«dw = £7* —dt=0
T dw TP / o,

by compact support in the vertical direction. Hence we conclude that 7, commutes with d. O
Now for the Thom isomorphism we need one more fact:

Lemma 2.1.6: (Projection formula) Let w : E — M be an oriented rank-n vector bundle, 7 € Q*(M)
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and w € Q% (E) then m,((7*7)w) = 7(m.w). A

Proor: Without loss of generality we can assume F = M x R™ and restrict our attention to a single
chart. Unless w is of top degree on fibers both sides are trivially zero. Therefore assume that w =
(m*@) fdty - - - dt,, for some ¢, f. Then we have,

(7" T)w) = T (7 7) fdt = T¢ /f dt = Tmw,

and hence we get the required result. O
As promised we will now prove the Thom isomorphism:

Theorem 2.1.7: (Thom isomorphism). Let 7 : E — M be an orientable vector bundle of rank-n over a
manifold M, then

He, (E) =~ H™ (M)

where the isomorphism is given by 7. A

PRrROOF: We will only prove this for manifolds with finite good cover, which makes the proof substantially
shorter. The proof for a not necessarily finite good cover proceeds by a generalization of the argument
given here [BT82l p. 131]. We will first prove the result for product bundles, and then use induction on
the cardinality of a good cover together with the Mayer-Vietoris sequence to generalize the result. The
proof for product bundles is the same as that for the Poincaré lemma for compact cohomology only with
a different homotopy operator and inverse homomorphism. Let dt denote dt; - - - dt,, and let e = e(t)dt
be a top degree form on R™. Then define e, : Qf, (M) — QF, (M x R™) by e.w = w A e. Now we define
K on forms of top degree on fibers (i.e. w = (7*¢) f(x,t)dt) as,

Kw = (1) / o / " fledt — () AW) | fle b,

R‘VL
t1 tn
with  A(t) = / / e(t)dt

With these definitions the proof of the Poincaré lemma for compact cohomology carries over mutatis

mutandis to show that
H: (M xR") ~ H"™(M).
Now for U, V' C M open we have the following exact sequence:
0— Q2 (Eluoy) — 2 (Blo) ® Qi (Ely) — Qi (Bluny) — 0.

This naturally induces a long exact Mayer-Vietoris sequence in vertically compact cohomology. We again



2.1. Thom isomorhpism 20

couple this with the Mayer-Vietoris sequence of M for the same U and V:

o —— HY (Eloov) — He(Elv) ® He (Blv) — He (Eluay) —— HiP (Elooy) — -

S H (U UV) — H 2 (U) & H* (V) — H* (U N V) -5 H+ (T U V) — - -

Note that for U contractible we have that F|y ~ U x R™ is trivial [BT82, p.59|. Hence 7, : H* (F|y) —
H*~™(U) is an isomorphism. If we can show commutativity of this diagram, then by the five lemma we
have that for {U,V} a good cover, m, : HY (E|yuv) — H* ™(U UV) is an isomorphism. Then by the
same induction argument on the cardinality of a good cover as in the proof of Poincaré duality we have

proven the Thom isomorphism for M with a finite good cover.

Now commutativity follows trivially for square on the left and in the middle by writing out the definitions.

We will only show commutativity for the square,

* d” *
H,(Elunv) — H: P (Eluuy)

H="(UNV) -5 H+1-"U UuV)
Let [w] € H}, (Eluny). We have,
med*w = T, ((dr* py)w) = (dpy)mew = d* Tow,

where in the first and last step we applied Proposition for an expression of d*, and in the middle
step we used the projection formula This shows commutativity, and by the five lemma we conclude
the Thom isomorphism for a good cover with two elements. By the same induction argument on the
cardinality of a good cover as in the proof of Poincaré duality we conclude the Thom isomorphism for

any manifold admitting a finite good cover. O

Definition 2.1.8: (Thom class) We call the inverse image of 7, the Thom isomorphism .7 : H*(M) —
H:(E). Note that HO(M) = R is generated by the constant function 1 on M. We call @5 = 7 (1) the

Thom class on the oriented vector bundle F. A

The Thom class determines the Thom isomorphism uniquely, since by the projection formula we have,
T (MW APE) =wAmPg =wAl =w=m.T(w),

hence 7 (w) = 7*wWA®g. Since 7,.Pg = 1, the Thom class restricts to each fiber as a compactly supported
1-form with total integral 1, which is also a generator for the compact cohomology H” (7w~ !(z)) on each
fiber. Conversely the class in @z € HY (E) that restricts to the generator of H"(7~!(x)) such that

m.® =1 is clearly unique. From this we conclude:

Proposition 2.1.9: The Thom class is uniquely characterized as the form in H% whose restriction to

fibers integrates to 1. A

An important property of the Thom class is that it behaves naturally with respect to pullbacks in the
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following sense:

Proposition 2.1.10: (Naturality of the Thom class) Let M — N be a smooth map and let 7 : E — M
be a vector bundle as above. Then the Thom class ®y-g of f*E is determined by ®;-g = f*q)E, where
f is as in Definition m That is, the Thom class of the pullback is the pullback of the Thom class. A

PRrROOF: The Thom class is characterized by the fact that it integrates to 1 on fibers. Therefore we just
have to show that f*® integrates to 1 on f*E|,. We can identify f*E|, with 7=(f(p)) via f. By the

diffeomorphism invariance of integration we have,

/ o= / by =1.
FEl, 7=1(f(p)

Hence f *®p is the Thom class of f*F and we conclude naturality. O

Then finally there is another property of the Thom class which makes it behave well with operations on
vector bundles. This property will be very important later on to deduce a similar property for the Euler

class.

Proposition 2.1.11: The Thom class of a direct sum bundle £ ® F' is given by ®Prgr = 7P A5 ®F

where g, mp are the projections of £ @ F' to respectively F and F. A

PRrROOF: This is immediate since 7i®p A 75Pp is a class in H?T"(E @ F) which integrates to 1 on the

fibers (where m, n are the respective ranks of the two bundles).

2.2 Poincaré duality and the Thom class

Using an elementary construction we can associate a class in the de Rham cohomology to every closed
submanifold S of our manifold M. It turns out that this class is the same as the Thom class of a naturally
defined vector bundle over S. This equivalence is very interesting but only a very small amount of this
section is actually used in the rest of this thesis. Therefore this section can be skipped without loss of

continuity.

Let S be a closed oriented submanifold of dimension k and let w € H¥(M) be a k-form with compact
support on M. Then if i : S < M is the inclusion, i*w has compact support as well. Now w — fS *wis a
linear functional and hence an element of (H¥(M))*. But by Poincaré duality we have that (H¥(M))* ~
H"%(M), where by the explicit isomorphism used in the proof of Poincaré duality we find that there is
an 7ng such that

/i*w:/ wAns.
s M

Definition 2.2.1: With the same notation as above we define ns € H"~*(M) the Poincaré dual of the
submanifold S of M. A

In other words the Poincaré dual ng of a submanifold S is the element in cohomology such that integrating
w over S leads to the same result as integrating w Ang over M. We want to relate this to the Thom class

of some vector bundle. The vector bundle of interest turns out to be the normal bundle of S.
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Definition 2.2.2: (Normal bundle) Let S C M be an oriented closed k-dimensional submanifold of M
where M has dimension n. We can see the tangent space T of S as a subspace of the tangent space
Thrr|s of M restricted to S. We now define the rank-(n — k) vector bundle called the normal bundle N
as the subspace of Ty|s obtained by taking the pointwise quotient of Ths|s by Ts; that is, N is the
pointwise orthogonal complement of T in Th|S. Or more geometrically it the set of vectors in Th|s

that are normal to the submanifold S. A

Figure 2.2: Visualization of the normal bundle of S* as a closed submanifold of R2.

Now it turns out the normal bundle is always diffeomorphic to a submanifold T' C M called the tubular
neighborhood of S in M |[BT82] p. 66]. In general a tubular neighborhood is a neighborhood of S in M
that is diffeomorphic to a rank-(n — k) vector bundle over S such that S is diffeomorphic to the zero
section of this bundle. In the example above such a tubular neighborhood could be S' x R embedded as
an (open) annulus in R%. Or if we see S! as a submanifold of R?, then its tubular neighborhood could
be the (open) filled torus S x R2.

From the definition of the tubular neighborhood T" we get the following sequence of maps by the Thom

isomorphism:
H*(S) —Z— Hxn=k(T) —2 s fetn=k(pr),

Where j, is the map induced by the inclusion j : T' < M by extending to zero on M \ T'. It turns out
that the Thom class @ of the normal bundle N of S is precisely the Poincaré dual of S:

Theorem 2.2.3: Let S C M be an oriented closed k-dimensional submanifold of M where M has
dimension n. The Poincaré dual ng € H"~*(M) of S of is then represented by the Thom class ® of the
normal bundle of S. That is,

s = j+Pn. A

PrOOF: We have to show that j,®y fulfills the condition for being the Poincaré dual of S, that is,

/ wAj*q>N:/i*w
M s

for i : S < M the inclusion. Let h : S < T be the inclusion of S into its tubular neighborhood T, then

/i*w:/h*w,
s s
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since both maps agree on T'. Now if we consider 7 : T'— S the deformation retract of T onto S induced by
the projection map of the normal bundle, we have that ¢* and 7* are inverse isomorphisms in cohomology
by homotopy invariance of de Rham cohomology. Hence we have that w = 7*i*w + dr for some 7.

Consequently we get,

/ w/\j*qDN:/w/\@Nz/(w*i*w—l—dT)/\@N:/(ﬂ'*i*w)/\@N.
M T T T

Here the last step follows by the fact that @ is closed and then applying Stokes’ theorem to fT d(TADp).
The first step follows by the fact that ®n has support in T. We consider S as the zero section of the
normal bundle N diffeomorphic to 7'. In this way we can also first integrate over fibers by applying .

and then integrate over S instead:

/(W*i*w)/\@]\;:/7T>.<(7T*i*u)/\<I>N):/i*w/\W*(I)]\[7
T S

S

where in the last step we applied the projection formula[2.1.6] Note that 7,®x = 1 per definition, hence
[y wAju®n = [gi*w and ng = j. Py as required. O

We can use this theorem to derive a result which will be useful later on. We wish to prove that under

certain conditions if we have two submanifolds R, S C M then,

NRrRnS = MR A 1s.
Now the condition is that R and S intersect transversally:

Definition 2.2.4: Two submanifolds R, S C M intersect transversally if for every p € RN S we have
that,

T,R®T,S =T, M,

which can geometrically be interpreted as the spaces being nowhere tangent to each other in the

intersection. A

Proposition 2.2.5: Suppose two submanifolds R, S intersect transversally, then the Poincaré dual of

RN S is given by,

NRNS = MR A 1Ns,

where nr and ng denote the respective Poincaré duals of R and S. A

PrOOF: Consider the normal bundle Ngng of the intersection. Any vector that is normal to TR or T'S
is also normal to T (RN S) hence we see that Ng & Ng C Nrns. Now because of transversality we have
that codim RN S = codim R + codim S [GPT4, p.30]. Therefore we conclude that Ngns = Ng & Ng.
Now by Proposition |2.1.11] and Theorem [2.2.3| we have,

Nrns = ®(Nrns) = (N ® Ng) = ®(Ng) A ®(Ns) = nr A1s

from which we conclude the proposition. O



2.3. Euler class 24

2.3 Euler class

Using the Thom isomorphism and Poincaré duality we can introduce an important invariant of vector
bundles called the Euler class. This class will later be used to introduce Chern and subsequently

Pontryagin classes, our most important mathematical objects of study.

We want the Euler class to be a class in cohomology that behaves nicely with operations on vector bundles
such as pullbacks and direct sums. Furthermore we want the Euler class to detect some form of triviality
of the bundle, e.g. the Euler class should be zero for product bundles and bundles admitting global
non-vanishing sections. In this manner it would provide us a tool to measure how ‘twisted’ a vector
bundle is, for example. The following definition has precisely these properties, as we will show during the

remainder of this section.

Definition 2.3.1: (Euler class) Let 7 : E — M be a rank-k vector bundle. Consider the Thom class ®g
of E. The Euler class e(E) € H*(M) is defined to be the pullback s*®g by the zero section of the Thom

class. That is, the Euler class is obtained by restricting the Thom class to the base manifold. A
Proposition 2.3.2: Let E — M be a rank-k vector bundle with k& odd, then e(E) = 0. A
PRrROOF: Consider 7 (e(FE)), since e(E) = s*®g this is,

T (e(E)) = (n*s"Pg) A Dp,

Since 7*s* = 1 on cohomology and 7.7 = 1, we get e(E) = m.(Pg A ®Pg), but if k is odd then
Op NP =—Pp A Pg and hence e(E) is exact. O

Proposition 2.3.3: The Euler class is natural with respect to pullbacks. That is, let £ — M be a
vector bundle and let f: M — N be a smooth map, then e(f*E) = f*e(E). A

PROOF: Consider the following (commuting) diagram:

NxE->fE—' L E
SN P SM ™
N—' o m

where sy, sy are the respective zero sections, and p, m the projections. The most important point is

that fo sy = sy o f. This is because both maps send a point £ € N to 0 € E|f(z). Hence
o(fE) = syPpp = s\ [ Pp =[5} Pp = [*e(E),
by naturality of the Thom class. Hence we conclude naturality of the Euler class. O

Recall that two vector bundles 7 : £ — M and p : F — M are isomorphic if there exist a bundle

homomorphism f that has an inverse f~—! that is also an homomorphism, i.e. the following diagram
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commutes:

On vector bundles we have that the construction of the pullback bundle is invariant under homotopy by
a result of [Hus93l Theorem 4.7].

Proposition 2.3.4: Let M, N be manifolds and E be a vector bundle of N. If f, g : N — M are

homotopic maps then f*E and ¢g*F are isomorphic vector bundles. A

Proposition 2.3.5: Isomorphic vector bundles have the same Euler class if they have the same

orientation, and differ by a sign if they have reversed orientation. A
PROOF: Let f: E — F be an isomorphism of vector bundles over the same base space, and let sg and
sr be the respective zero sections. Then sp = f o sg, hence s}, = s3, f* and we get,

e(F)=sp®p =spf " ®p =+spPr = te(E)
where the step f*®p = +£®p follows because f*®p integrates to =1 on fibers since f acts as a
diffeomorphism FE, — F, on fibers. (]

Proposition 2.3.6: From the definition of the Thom class we see that orientation reversal induces a

sign change in the Thom class, and hence also the Euler class changes sign under orientation reversal. A

Proposition 2.3.7: (Whitney product formula) Consider the direct sum of two bundles £ & F. Then
the Euler class of this direct sum is the product of the two Euler class, i.e. e(E @ F) =e(E)Ae(F). A

PrOOF: Let 7mg, mr be the projections of £ @& F' on respectively £ and F. Recall that ®pgr =
m5Pr AN1E®r. Now if s is the zero section of E @ F then mp o s and mp o s are the zero sections

of E and F respectively. Hence we get,
e(E®F)=80pgr =" (5P A7pPr) =e(F) Ne(F),

as required. O

Definition 2.3.8: The Euler class of a smooth manifold is that of its tangent space, that is e(M) :=
e(TM). A

Earlier we mentioned that the Euler class measures how ‘twisted’ a vector bundle is. We will make this

statement precise:

Proposition 2.3.9: If a vector bundle 7 : E — M admits a non-vanishing global section s : M — F,

then its Euler class vanishes. A

PROOF: Let ¢ be the trivial line bundle over M spanned by the the section s. We then have E = ¢ @ ¢4,

Since € is of rank one, it has in particular odd rank and hence vanishing Euler class. Now by the Whitney
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product formula,

e(E) = e(§) Ne(€h) =0,

completing the proof. |

Another property of the Euler class that we are interested in is its integral, [, e(E). Since a
diffeomorphism f : M — N sends e(T'M) to f*e(TN) we see that [, e(M) is a diffeomorphism invariant.
We call this invariant the Euler number of M. This turns out to be an integer, in fact we have by [BT82,
p. 128] that:

Theorem 2.3.10: The Euler number | 1 €(E) is equal to the Euler characteristic

X(M) = (~1)dim H(M). A

An even more important result for us is that the integral over the Euler class is integer for any vector
bundle that admits a section with finitely many zeros. We have by [BT82] p.124] that:

Theorem 2.3.11: Let s be a section of E with finitely many zeros. Then [, e(E) is the sum of the

local degree of s at its zeros. A

The local degree is defined as follows. Let M be an n-dimensional manifold and let £ — M be a rank-n
vector bundle. If the rank of E would not be n then [, e(E) would vanish. Consider a section s of E
with zero © € M. Take a small enough neighborhood U of x such that E|y is diffeomorphic to R™ x R™.
Then the map u = s/||s|| induces a map S"~! — S"~!. The local degree of s at z (also known as the
index of s at x) is then defined as the degree of this map u. That is, consider the map induced by u on
homology u. : H,,_1(S""*;Z) — H,_1(S" % Z). This map is of form u.y = ay with a € Z the degree

of u. This degree is a homotopy invariant, and this construction is hence well-defined.

Example 2.3.12: We can use the local degree of sections to extend our definition to Euler numbers
of non-orientable bundles. With the definition given in this section orientability is necessary to define
the Euler class. This is because we cannot define the Thom class on non-orientable bundles, since the
construction of the Thom class relies heavily on the integration. Furthermore we can also construct an
Euler number that is non-vanishing for odd rank bundles. Consider for example the M&bius strip M as

a vector bundle over S' with a section s as shown below. This section has precisely one zero, namely at

Figure 2.3: Example of a section of a M&bius strip seen as a line bundle over S*.

z. Furthermore it should be clear that any section of M with a finite amount of zeros would have an odd

amount of zeros counting multiplicities. In this case consider the behavior of s in a small neighborhood
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of x. Clearly the map s/||s|| : S — SY sends —1 € S° to 1 € S° and visa-versa, therefore its degree is
—1. Hence we could say the Euler number of the Mdébius strip is —1. Note however that the section —s
would have given us degree +1 at x, therefore from this discussion we can conclude that the sign of the
Euler number of the Md&bius strip is not well-defined, but otherwise Theorem does provide us with
a crude way of computing such a number. This gives us a definition of the Euler number in Zs which

can still detect the non-triviality of bundles like the Md&bius strip. A

As a less trivial example we will consider the canonical line bundle 7 : v — CP* which assigns to every
line £ € CP* the complex line in C**1! of all the points contained in the line. That is, for £ € CP* we
have 7=1(¢) = {x € |z € C**1}. Note that v is a complex line bundle, but we want to see it as a real
line bundle instead so that we can compute its Euler number. To do this we identify C with R? fiberwise,
and consequently the fact that v is a complex vector bundle merely becomes a minor technicality. We

now compute the Euler number of the canonical line bundle over CP! specifically.
Proposition 2.3.13: The Euler number [, e(y) of the canonical line bundle v — CP* is —1. A

PROOF: The proof proceeds by applying Theorem [2.3.11} Thus we first need to find a suitable section of
7. Let [zg, 1] € CP! for (zg,21) # (0,0) denote the unique complex line in C? containing (xg,z1). Now

we assume that |zo|? + |71]? = 1, and we define a section s by
s([zo, z1]) = (200, 7170) -

This is well-defined because if take any other point (Azg, Az1) with unit norm on the line [zg, 1], then
clearly since |A| = 1 the value of this section doesn’t change. Furthermore we note that this section only
vanishes at the single point [0,1] € CP'. Now to compute its Euler number we only need to know the
local degree at this point. The way were are going to compute this degree is by explicitly looking at
what the section looks like in a parametrization around the point [0, 1]. For example we can parametrize
CP' \ {[1,0]} by mapping each u € C to the line [u,1]. The fiber at [u,1] is then given by the set
{(Au,A), A € C}, therefore in this chart we have trivialized the bundle to a space diffeomorphic to C2.

Now the section s sends a line [u, 1] to

st = (o s ) = )

T+ [u2 T+ [u2) ~ 1+ |u?

From this we see that s induces a map C — C given by u + u/(1+|u|?). This map has degree —1 since it
would for example take the unit circle in C parametrized counter clockwise to a circle in C parametrized
clockwise. From this we conclude that the section s has local degree —1 at the line [0,1]. And hence the

Euler number is —1 as well. O

In conclusion we saw that integration on fibers produced a natural isomorphism between H*(M) and
H? (FE), we then looked at the inverse of this isomorphism; the Thom isomorphism. This Thom
isomorphism could then be written as the wedge product with the Thom class in bundle cohomology.
This Thom class then behaved naturally under operations on vector bundles. We then looked at the
Euler class, which arises as a counterpart to the Thom class in the base cohomology. The Euler class
also turned out to be very compatible with operations on vector bundles, and had some other interesting
properties as well. In the next part we will use the Euler class to define some more classes that behave

naturally with respect to vector bundle operations, but give more information about our space.
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3 Chern and Pontryagin classes

In this part we will introduce the Chern and Pontryagin classes of a vector bundle. We will prove a
number of important properties about the Chern classes related to its behavior with respect to vector
bundle operations. Additionally we will provide some results to aid computation of these Chern classes.
After that we will introduce the Pontryagin classes and Pontryagin numbers. These will be used together
with the Hirzebruch signature formula to construct an invariant used to distinguish exotic spheres from
regular spheres. And then finally we will consider a theorem characterizing vector bundles by homotopy
classes of maps into a Grassmannian. But first we will make a short digression on the ring structure of

cohomology. Unless stated otherwise everything in this part is based on [BT82].

3.1 Ring structure of cohomology

Up to this point we always considered H*(M) as a graded algebra. However the wedge product on forms
provides us with a method of multiplying elements in cohomology. Together with addition provided by
the group structure this makes H*(M) into a ring. Its multiplication is graded commutative, that is
aApB=(—1)deg)degB) g A

The ring structure can be of interest in the following way. Suppose we have some non-trivial o € H*(M)
for some n-dimensional M (so that H*(M) = 0 for k > n). Now if k is odd we have a A o = —a' A a,
hence a? = 0. But if k is even this is not necessarily true. However deg a™ = mk assures that o™ = 0 if
mk > n, though there could of course be an m < n/k for which o = 0. Knowing the ring structure of

H*(M) will for example tell us exactly when o = 0 and when it’s not.

Our main example of a space whose cohomology has an interesting ring structure will be the complex
projective space CP™. We will denote with R[z] the ring of polynomials with real coefficients, and with
R[z] /2" the ring generated by the polynomials under the relation z"*! = 0, in other words the ring
of polynomials with degree < n. This can also be seen as the ring R[z] modulo the ideal generated by

2"t We have the following result:

Theorem 3.1.1: The ring structure of H*(CP") is given by:

«cpny _ Rla]
(e = -5,
with a € H?(CP") a generator of the cohomology in degree 2. A

PROOF: Since H*(CP™) = R for all i, we just have to check that o™ € H?"(CP") is non-trivial, with
a € H?(CP") a generator. We will prove this by showing fCPn a™ # 0 by induction on n.

Note that the inclusion