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Introduction

In elementary point set topology one has the concept of two manifolds being homeomorphic. Then in
differential geometry/topology there is the concept of two (smooth) manifolds being diffeomorphic. While
the latter is clearly stronger, it is hard to come up with any examples of manifolds homeomorphic but
not diffeomorphic to one another; almost any two homeomorphic smooth manifolds we can think of also
turn out to be diffeomorphic. In fact, it has been proven [Moi77] that any two homeomorphic 1, 2 or 3
dimensional smooth manifolds are also diffeomorphic.

In 1956 John Milnor published a paper showing that there are so-called exotic spheres that are
homeomorphic, but not diffeomorphic to the 7-sphere S7. These exotic spheres provide the first counter
example showing that homeomorphism is not the same as diffeomorphism for smooth manifolds. As is
usual in topology, proving that these exotic spheres are not diffeomorphic to S7 proceeds by introducing
some mathematical objects that are invariant under diffeomorphisms and then show that these invariants
are not the same for the two manifolds in question. We will spend the bulk of this thesis defining so-
called characteristic classes, which will be used to define the promised invariants required for our main
theorem. The entire discussion will furthermore be completely from a differentiable viewpoint. While
most literature on the topic of exotic spheres uses singular cohomology with integer coefficients, we chose
to only use de Rham cohomology. This offers greater geometrical intuition to be used, and simplifies
some of the discussion.

This thesis is divided into four parts. In the first part we will introduce a variety of concepts in cohomology
theory required for the introduction of characteristic classes. In the second part we will use the so-called
Thom class to introduce the Euler class, from which the characteristic classes are defined. In the third
part we will define the Chern and Pontryagin characteristic classes and prove some of their properties.
Finally in the fourth part we will use these characteristic classes to introduce the Hirzebruch signature
theorem, which will be the most important ingredient in the proof of existence of exotic spheres. We
will then go on to introduce the exotic spheres and show that they are indeed homeomorphic but not
diffeomorphic to S7.

We assume the reader is familiar with most basic concepts of differential geometry. In particular,
the reader should be familiar with tangent spaces, differential forms, Stokes’ theorem and de Rham
cohomology. For an excellent introduction to the topic of differential geometry consult [Lee13]. We will
also use elementary results from point-set topology, group theory and ring theory. Some familiarity with
the terminology of algebraic topology will be helpful.
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1 De Rham cohomology

In this first part we will introduce the de Rham cohomology and prove some elementary properties of the
cohomology theory such as the Poincaré lemmas and Poincaré duality. We assume the reader is familiar
with the basic definition of de Rham cohomology, and we will build upon this foundation. If the reader
is already familiar with Poincaré duality, this part can be skipped. Unless stated otherwise the contents
of this part are based on [BT82].

1.1 Preliminary definitions

In this section we will introduce de Rham cohomology and introduce some of its properties. The de Rham
cohomology is the cohomology theory that naturally arises when considering the exterior derivative d on
the space of differential forms Ωq(M) on a differentiable manifold M . For the sake of convenience we
assume any manifold to be both connected and smooth unless stated otherwise . First we define the
(graded) algebra of differential forms:

Definition 1.1.1: Let Ωq(M) be the set of degree q forms on M . We define the graded algebra of
differential forms as Ω∗(M) =

⊕∞
q=0 Ωq(M). N

We know that d : Ωq(M)→ Ωq+1(M) has the property d2 = 0. Hence we can use it to define a cohomology
theory:

Definition 1.1.2: We define the de Rham cohomology H∗(M) of a manifold M as the graded algebra⊕∞
q=0H

q(M) where Hq(M) is given by the quotient

Hq(M) =
ker d : Ωq(M)→ Ωq+1(M)

im d : Ωq−1(M)→ Ωq(M)
.

Alternatively we can say that H∗(M) is the cohomology of the cochain complex Ω∗(M). N

This definition is interesting because it tells us when an element is in the kernel of d. But since any
form in the image of d is trivially also in the kernel, we simply take the quotient of ker d by im d to give
us more information. This quotient turns out to be a finite real vector space under mild conditions. A
closed form ω does not have to be in the image of d, but if we restrict ω to a small enough open set then
we can always write it as a form in the image of d; de Rham cohomology provides us a way of measuring
the obstruction of extending local properties of forms to global ones.

A very useful tool when working with de Rham cohomology is the Mayer-Vietoris sequence. LetM = U ∪
V with U and V open, and let U t V denote the disjoint union of U and V . We get a series of inclusions
U ∩ V iU ,iV−−−→ U t V →M , where iU and iV are the inclusions of U ∩ V into respectively U ⊂ U t V and
V ⊂ U t V . This induces the following exact sequence on forms

0→ Ω∗(M)→ Ω∗(U)⊕ Ω∗(V )
i∗U−i

∗
V−−−−→ Ω∗(U ∩ V )→ 0.

By an elementary construction we can extend this short exact sequence on forms to a long exact sequence
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on cohomology called the Mayer-Vietoris sequence (see for example [Hat01, p. 117]):

· · · // Hq(M) // Hq(U)⊕Hq(V ) // Hq(U ∩ V )

d∗

// Hq+1(M) // Hq+1(U)⊕Hq+1(V ) // Hq+1(U ∩ V ) // · · ·

Proposition 1.1.3: Recall that a partition of unity subordinate to a cover {Ui} ofM is a set of smooth
functions {ρi} such that Supp ρi ⊂ Ui for each i, and furthermore each x ∈ M has a neighborhood in
which only a finite amount of ρi are non-zero, and finally Σiρi = 1 on the whole manifold. It is a standard
result that such a partition of unity exists subordinate to any locally finite open cover of M . N

There is an explicit formula for the coboundary operator obtained through a proof entirely analogous to
that of Lemma 1.1.6 on the next page, therefore we will just cite the result [BT82, p.23].

Lemma 1.1.4: Let {ρU , ρV } be a partition of unity subordinate to the cover {U, V } then we have for
ω ∈ H∗(U ∩ V ) that

d∗ω =

{
−d(ρV )ω on U,
d(ρU )ω on V. N

We will now proceed to define compactly supported de Rham cohomology.

Definition 1.1.5: Let Ω∗c(M) ⊂ Ω∗(M) be the graded algebra of forms on M with compact support,
that is each ω ∈ Ω∗c(M) has support within a compact subset of M . Then with the same definition of
the exterior derivative d as for the globally defined forms we define the compactly supported de Rham
cohomology, or compact cohomology for short, as H∗c (M) =

⊕∞
q=0H

q
c (M) where Hq

c (M) is given by the
quotient

Hq
c (M) =

ker d : Ωqc(M)→ Ωq+1
c (M)

im d : Ωq−1
c (M)→ Ωq(M)

. N

With globally defined forms we were interested in the maps on cohomology induced by pullbacks of maps
between manifolds. In the compact case we consider instead the extension by zero under inclusions of
open sets. Let j : U ↪→ M be an inclusion with U open. This induces a map j∗ : Ω∗c(U) → Ω∗c(M)

given by extending forms ω on U by zero on the complement of U in M . The support of j∗ω is then
still compact. Furthermore j∗ evidently commutes with exterior derivation and hence also induces a
well-defined map on cohomology.

Suppose we have a series of inclusions U ∩ V iU ,iV−−−→ U t V jU ,jV−−−−→ M . Consider the maps δ : ω 7→
(−iU∗ω, iV ∗ω) and σ : (ω, τ) 7→ jU∗ω + jV ∗τ , in other words signed inclusion, and the sum of the
inclusions respectively. With these maps we define the short exact sequence,

0← Ω∗c(M)
σ←− Ω∗c(U)⊕ Ω∗c(V )

δ←− Ω∗c(U ∩ V )← 0.

From this sequence we get a corresponding sequence in cohomology called the Mayer-Vietoris sequence
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for compact cohomology. Note the reversal of arrows compared to the original Mayer-Vietoris sequence:

· · · Hq+1
c (M)oo Hq+1

c (U)⊕Hq+1
c (V )oo Hq+1

c (U ∩ V )oo

Hq
c (M)

d∗

oo

Hq
c (U)⊕Hq

c (V )oo Hq
c (U ∩ V )oo · · ·oo

The action of d∗ is derived in the following lemma:

Lemma 1.1.6: For ω ∈ Hq+1
c (M) we have (−iU∗d∗ω, iV ∗d∗ω) = (d(ρU )ω, d(ρV )ω) where ρ is a partition

of unity subordinate to the cover {U, V }. N

Proof: Consider the following commutative diagram with exact rows:

0 Ω∗c(M)oo

d

��

Ω∗c(U)⊕ Ω∗c(V )
σ

oo

d

��

Ω∗c(U ∩ V )
δ

oo

d

��

0oo

0 Ω∗+1
c (M)oo Ω∗+1

c (U)⊕ Ω∗+1
c (V )

σ
oo Ω∗+1

c (U ∩ V )
δ

oo 0oo

The connecting homomorphism d∗ is defined as follows: Let ω ∈ H∗c (M), then since σ is surjective, there
is a τ such that σ(τ) = ω. Now we have 0 = dω = σ(dτ) and by exactness there is an α such that
δα = dτ . Now we define d∗ω = α. It is a standard result that this makes d∗ well-defined. In this case
we have, σ(ρU , ρV ) = ω with ρ a partition of unity subordinate to U, V . Now δd∗ω = (d(ρU )ω, d(ρV )ω),
proving the result after applying the definition of δ. �

Because it is useful to introduce the notion as soon as possible, we will cover fiber and vector bundles in
the next section.

1.2 Fiber bundles

In this section we will give a concise review of the theory of fiber and vector bundles. We will recall the
formal definition of a fiber bundle and introduce relevant terminology. We will then state the definition
of vector bundle and provide a definition of some of the operations on vector bundles we will use later.

Definition 1.2.1: Let M be a manifold (not necessarily smooth). We call E together with projection
π : E → M a fiber bundle over a base space M with fiber F if M has an open cover {Uα} together
homeomorphisms ϕα : π−1(Uα)→ Uα × F such that for each α the following diagram commutes:

π−1(Uα)

π

��

ϕα // Uα × F

p

zz

Uα ⊂M

where p : Uα × F → Uα is the projection to the first factor. We call the set of all such pairs (Uα, ϕα) a
local trivialization of E. N
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Definition 1.2.2: Let (Uα, ϕα) be a local trivialization of a fiber bundle E. We define the transition
functions gαβ : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F of E by gαβ = ϕαϕ

−1
β . Conversely, given a cover Ui and

a set of transition functions gαβ defined on overlaps Uα ∩ Uβ satisfying the cocycle condition

gαβgβγ = gαγ ,

we can construct a fiber bundle that has gαβ as its transition functions [BT82, p.48]. We call a set of
maps {gαβ} satisfying the cocycle condition a cocycle, and we will sometimes refer to the set of transition
functions as the cocycle of E. N

We can also look at maps between fiber bundles. Of course, these maps should be compatible with the
projection map and preserve the structure of the fiber bundle. This can be made precise as follows:

Definition 1.2.3: Let π : E →M and ρ : F → N be two fiber bundles. Let f : E → F and g : M → N

be continuous maps. We call the pair (f, g) a bundle morphism if the following diagram commutes:

E
f

//

π

��

F

ρ

��

M
g
// N

We also say that f covers the map g. If f : E → F is a map of fiber bundles over the same base space we
typically require that f covers the identity map for it to be a morphism. We also call a bundle morphism
f : E → F covering the identity map a bundle isomorphism if it is a homeomorphism, and we then call
the two bundles E and F isomorphic. N

We say E is a trivial bundle if E is isomorphic to the trivial product bundle M × F .

Definition 1.2.4: (Pullback bundle) Suppose we have a fiber bundle π : E →M and a map f : M → N .
Then f induces a fiber bundle f∗E over N called the pullback bundle of E by f . We define f∗E as a
subset of N × E:

f∗E = {(n, e) ∈ N × E | f(n) = π(e)}.

In other words it is the maximal set that makes the following diagram commutative,

N × E ⊃ f∗E
f̃

//

ρ

��

E

π

��

N
f

// M

where ρ, f̃ are the projections of N × E to respectively N and E. The fiber at y ∈ N is then given by
π−1f(y) and f∗E has ρ as its projection. Since the pullback of a product bundle is clearly a product
bundle, the local trivialization is pulled back to a local trivialization and f∗E is also a fiber bundle.
Furthermore the transition functions gαβ of E induce transition functions f∗gαβ on f∗E. N

Definition 1.2.5: A section s : M → E of a fiber bundle π : E → M is a continuous map such that
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π ◦ s = Id. That is, it assigns to every point in the manifold a specific element of the fiber over that
point. N

We mainly study smooth manifolds, and we will require some extra compatibility with the smooth
structure for our fiber bundles.

Definition 1.2.6: A rank-k smooth vector bundle π : E →M over a smooth manifoldM is a fiber bundle
that is itself a smooth manifold and for which π is smooth and has local trivializations that consist of
diffeomorphisms. We also require the fiber of E to be the vector space Rk and the transition functions
to give linear isomorphisms when restricted to each fiber. A rank-k complex vector bundle has fiber Ck.
Throughout this text we will assume all vector bundles to be smooth. N

Let π : E →M be a rank-k vector bundle with cocycle gαβ . If we restrict gαβ to some point x ∈ Uα ∩Uβ
we obtain an isomorphism Rk → Rk. Therefore we can say that gαβ |x is an element of GL(k,R).
Furthermore we have a map Uα ∩ Uβ → GL(k,R) given by x 7→ gαβ |x.

Definition 1.2.7: The image of this map may very well lie in some subgroup H of GL(k,R) for all α, β.
If this is the case we say that the structure group of E is reduced to H. Furthermore if there exists a
vector bundle E′ isomorphic to E with structure group reduced to some subgroup H of GL(k,R), then
we say that the structure group of E can be reduced to H. Here H does not necessarily have to be the
smallest subgroup with this property. N

Definition 1.2.8: We can always reduce the structure group of a vector bundle to the orthogonal group
O(k) [BT82, p. 55]. We therefore call a rank-k vector bundle orientable if its structure group can be
reduced to the special orthogonal group SO(k). N

Definition 1.2.9: We can restrict a vector bundle π : E → M to a subset of U to get a new vector
bundle E|U defined by E|U = π−1(U) whose fiber at a point p ∈ U is simply the same as that of the
original bundle, i.e. (E|U )p = Ep with the same vector space structure. N

We will now introduce several operations on vector bundles. Most of these are constructed by taking
some operation on vector spaces and applying it fiberwise to the bundles. Refer to [MS74, p. 32] for a
summary of the following definitions as well as a proof that such fiberwise definitions produce well-defined
vector bundles.

Definition 1.2.10: The product bundle π × ρ : E × F → M × N of two vector bundles π : E → M

and ρ : F → N is defined as the fiberwise product of the two vector bundles. That is, its fiber at
(p, q) ∈M ×N is π−1(p)× ρ−1(q). N

Definition 1.2.11: The direct sum bundle E ⊕ F (also referred to as the Whitney sum) of two vector
bundles π : E → M and ρ : F → M over the same base space is defined by taking the direct sum
fiberwise. That is, it has fiber π−1(p)⊕ ρ−1(p). More precisely, if d is the diagonal embedding of M into
M ×M , then E ⊕ F is defined as d∗(E × F ). N

Definition 1.2.12: The tensor product E ⊗ F of two vector bundles π : E → M and ρ : F → M

is defined by fiberwise taking the tensor product (refer to [Lee13, p.305] for a definition of the tensor
product of two vector spaces). It has projection π ⊗ ρ and furthermore if E and F have respectively
transition functions gαβ and fγδ then E ⊗ F has transition functions gαβ ⊗ fγδ. N
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Several other operations on vector bundles will be defined throughout the text when necessary. In the
next section we shall derive an important result for the computation of these cohomology theories.

1.3 The Poincaré lemmas

Suppose we have a manifold with a good cover. That is, a cover for which each element of the cover, as
well as any finite intersection of elements in the cover, is diffeomorphic to Rn. As we will prove in this
section, the cohomology for spaces diffeomorphic to Rn is always that of a point. Suppose we have a space
M that has a good cover with 2 elements, then if we look at the Mayer-Vietoris sequence associated to
this cover we can actually deduce the cohomology of M . Now by applying the Mayer-Vietoris sequence
inductively to the cardinality of a good cover it is possible to obtain the cohomology for any manifold
admitting a good cover given we know what the cohomology is for Rn. This is true for both the global
and the compact supported case. In this section we will therefore compute both H∗c (Rn) and H∗(Rn).
This section is very technical, and understanding of the proofs is not required for understanding later
sections.

Lemma 1.3.1: (Poincaré lemma) The de Rham cohomology of Rn is isomorphic to that of a point for
all n, that is Hq(Rn) = 0 for q > 0 and H0(Rn) = R N

Proof: We will proceed by explicitly constructing the isomorphism. These isomorphisms are based on
considering Rn+1 as a trivial vector bundle π : Rn×R→ Rn over Rn with zero section s. The projection
and section then induce maps on the space of forms as shown in the following diagram:

Rn × R

π

��

Ω∗(Rn × R)

s∗

��

Rn

s

OO

Ω∗(Rn)

π∗

OO

We want to show that the projection and zero section induce inverse isomorphisms in cohomology. Note
that this is not true on the level of forms. While we have that π ◦ s = 1 (and hence s∗ ◦ π∗ = 1), we do
not have s ◦ π = 1 nor π∗ ◦ s∗ = 1, however this identity does hold on cohomology. We want to show
that 1− π∗ ◦ s∗ = ±(dK ±Kd) for some map K : Ωq(Rn × R)→ Ωq−1(Rn × R). This is sufficient since
(dK ±Kd)ω = dKω for closed forms, hence 1− π∗ ◦ s∗ sends closed forms to exact forms and is a trivial
map on cohomology. We call a map K satisfying such a relationship a homotopy operator.

Since π is surjective we can write any form ω ∈ Ω∗(Rn × R) as

ω = (π∗φ)f(x, t) + (π∗θ)g(x, t)dt, (1.1)

where φ and θ are forms on Rn, t is a coordinate function of the fiber R, and f, g are smooth functions
on Rn+1. Using the same notation we then define K by

Kω = π∗θ

∫ 0

t

g(x, t) dt.

That is, we integrate the form over the fiber R. To simplify notation we will occasionally omit function
arguments and use the Einstein summation convention. We will first show 1− π∗ ◦ s∗ = ±(dK ±Kd) for
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forms without the dt term, that is, let ω = (π∗φ)f(x, t). Then,

(1− π∗ ◦ s∗)ω = (1− π∗ ◦ s∗)(π∗φ)f(x, t) = (π∗φ)f(x, t)− (π∗φ)f(x, 0). (1.2)

Whereas on the other side we have

(dK −Kd)ω = −Kdω = −K
[
(dπ∗φ)f + (−1)q(π∗φ)

(
∂f

∂xi
dxi +

∂f

∂t
dt

)]
= (−1)q+1K

(
(π∗φ)

∂f

∂t
dt

)
= (−1)q(π∗φ)

∫ t

0

∂f

∂t
dt = (−1)q(π∗φ)(f(x, t)− f(x, 0)),

where in the step from the first to the second line we omitted the terms without a dt since they get
mapped to 0 by K. The last line is the same as (1.2) up to sign, as required. Now for ω = (π∗θ)g(x, t)dt

we get (1− π∗ ◦ s∗)ω = ω since s∗(dt) = 0. Now on the other side we get:

(dK −Kd)ω = d

[
(π∗θ)

∫
g dt

]
−K

[
(dπ∗θ)g + (−1)q−1(π∗θ)

(
∂g

∂xi
dxidt

)]
= (dπ∗θ)

∫
g dt+ (−1)q−1(π∗θ)

[
dxi

∫
∂g

∂xi
dt+ dt

∫
∂g

∂t
dt

]
−

− (dπ∗θ)

∫
g dt− (−1)q−1(π∗θ)

[
dxi

∫
∂g

∂xi
dt

]
= (−1)q−1(π∗θ)dt

∫
∂g

∂t
dt = ω.

And hence 1−π∗◦s∗ = (−1)q(dK−Kd), from which we conclude that π∗ and s∗ are inverse isomorphisms.
We then get Hq(Rn) = Hq(Rn+1), and since for R0 we have H0(R0) = R and Hq(R0) = 0 for q > 0, we
conclude the Poincaré lemma by induction. �

Note that if {Uα, φα}α∈I is an atlas for M , then {Uα × R, (φα, Id)}α∈I is an atlas for M × R. And
furthermore the definition of the operator K does not depend on the choice of atlas on M , from this we
conclude the following corollary:

Corollary 1.3.2: H∗(M) = H∗(M × R) and hence also H∗(M) = H∗(M × Rn). N

This corollary provides with the tools for a concise proof of the homotopy invariance of de Rham
cohomology. Let F : M × I → N be a smooth homotopy (that is, F is a smooth map and also a
homotopy) between maps f and g such that f = F ◦ s1 and g = F ◦ s0 with st the trivial section sending
x 7→ (x, t). We can extend F to M × R by F (·, t) = f for t > 1 and F (·, t) = g for t < 0. Note that this
does not necessarily give a smooth map, but we can take a different parametrization of I (shown below)
by a smooth map which has derivative 0 at either end of the unit interval to make F smooth again.

1

0 1
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Since s∗t and π∗ are inverse isomorphisms on cohomology, we have that s∗t induces the same map on
cohomology for all t. Note that smoothness of F is required to have a well-defined map F ∗. Now we have

f∗ = (F ◦ s1)∗ = s∗1 ◦ F ∗ = s∗0 ◦ F ∗ = g∗.

And hence we conclude the homotopy invariance of de Rham cohomology:

Theorem 1.3.3: (Smoothly) homotopic maps induce the same maps on de Rham cohomology. In
particular, smoothly homotopy equivalent spaces have isomorphic de Rham cohomology. N

This also immediately gives another interpretation of the Poincaré lemma. Recall that a space is
contractible if it’s homotopic to a point. Therefore the Poincaré lemma essentially states that the
cohomology of contractible spaces is the same as that of a point.

We will now spend the rest of the section proving the Poincaré lemma counterpart for compactly supported
cohomology. The proof analogously also starts with defining a homotopy operator. The key difference is
that we now want an isomorphism Hq+1

c (Rn × R)→ Hq
c (Rn). Furthermore instead of working with pull

backs we want to work with push-forward maps. Let as before ω ∈ Ω∗c(Rn+1) be of the form

ω = (π∗φ)f(x, t) + (π∗θ)g(x, t)dt,

where we again see π : Rn+1 → Rn as a vector bundle. We define integration along the fiber
π∗ : Ω∗c(M × R)→ Ω∗−1

c (M) by

π∗ω = θ

∫ ∞
−∞

g(x, t)dt.

Proposition 1.3.4: π∗ commutes with d and hence induces a map on cohomology N

We have to prove that π∗d = dπ∗. By linearity of both operators it’s enough to show commutativity for
ω = (π∗φ)f(x, t) and ω = (π∗φ)f(x, t)dt separately. First let ω = (π∗φ)f(x, t). We get

π∗dω = π∗

[
(dπ∗φ)f + (−1)q−1(π∗φ)

(
∂f

∂xi
dxi +

∂f

∂t
dt

)]
= (−1)q−1(π∗φ)dt

(∫ ∞
−∞

∂f

∂t
dt

)
,

which is zero by compact support of f . On the other hand dπ∗ω = 0, so we get commutativity. Now for
ω = (π∗φ)f(x, t)dt we have,

dπ∗ω = d

[
φ

∫
fdt

]
.
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Whereas,

π∗dω = π∗

[
(dπ∗φ)f + (−1)q−1(π∗φ)

(
∂f

∂xi
dxidt

)]
= (dφ)

∫
fdt+ (−1)q−1φdxi

∫
∂f

∂xi
dt

= d

[
φ

∫
fdt

]
.

Which proves commutativity of π∗ and d. �

To show that π∗ is an isomorphism, we will now construct its inverse. Let e = e(t)dt be a compactly
supported 1-form on R with total integral 1. Then let e∗ : Ω∗c(M) → Ω∗+1

c (M × R) be the map defined
by φ 7→ (π∗φ) ∧ e. Since de = 0 we have that e∗ commutes with d and hence e∗ induces a map on
cohomology.

Proposition 1.3.5: e∗ and π∗ are inverse isomorphisms. N

First of all we have that π∗e∗ω = π∗((π
∗ω) ∧ e(t)dt) = ω

∫
e(t)dt = ω. For the inverse relationship we

will show 1− e∗π∗ = (−1)q−1(dK −Kd) for some K. Let again ω be given by

ω = (π∗φ)f(x, t) + (π∗θ)g(x, t)dt.

From this we define K by,

Kω = π∗θ

∫ t

−∞
g(x, t)dt− π∗θA(t)

∫ ∞
−∞

g(x, t)dt,

with A(t) =
∫ t
−∞ e(t)dt.

Lemma 1.3.6: With the definition above we have 1− e∗π∗ = (−1)q−1(dK −Kd). N

Proof: Let first ω = π∗φf(x, t). Then (1− e∗π∗)ω = ω. We have,

(dK −Kd)ω = −Kdω = −K
[
(dπ∗φ)f + (−1)q−1(π∗φ)

(
∂f

∂xi
dxi +

∂f

∂t
dt

)]
= (−1)q−1

[
π∗φ

∫ t

−∞

∂f

∂t
dt− π∗φA(t)

∫ ∞
−∞

∂f

∂t
dt

]
= (−1)q−1π∗φf = (−1)q−1ω.

Assume on the other hand that ω = π∗φf(x, t)dt, we then get,

(1− e∗π∗)ω = ω − e∗φ
∫ ∞
−∞

f(x, t)dt = ω − π∗φ
∫ ∞
−∞

f(x, t)dt ∧ e. (1.3)

Now we will separately calculate Kd and dK. First we get,

Kdω = K

[
(dπ∗φ)f + (−1)q−1(π∗φ)

(
∂f

∂xi
dxidt

)]
= dπ∗φ

∫ t

−∞
fdt− dπ∗φA(t)

∫ ∞
−∞

fdt+ (−1)q−1

[
π∗φ

∫ t

−∞

∂f

∂xi
dxidt− π∗φA(t)

∫ ∞
−∞

∂f

∂xi
dxidt

]
.
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And one the other hand we have

dKω = d

[
π∗φ

∫ t

−∞
fdt− π∗φA(t)

∫ ∞
−∞

fdt

]
= dπ∗φ

∫ t

−∞
fdt+ (−1)q−1π∗φ

∫ t

−∞

∂f

∂xi
dxidt+ (−1)q−1π∗φdt

∫ t

−∞

∂f

∂t
dt−

− dπ∗φA(t)

∫ ∞
−∞

fdt− π∗φdA(t)

∫ ∞
−∞

fdt− (−1)q−1π∗φA(t)

∫ ∞
−∞

∂f

∂xi
dxidt−

− (−1)q−1π∗φA(t)dt

∫ ∞
−∞

∂f

∂t
dt.

Now noting that dA(t) = e and taking the difference we get

(dK −Kd)ω = (−1)q−1

[
π∗fdt− π∗φ

(∫ ∞
−∞

f(x, t)

)
e

]
.

Comparing this to (1.3) we conclude that indeed 1− e∗π∗ = (−1)q−1(dK −Kd). �

With this lemma we have immediately also proven Proposition 1.3.5. We then conclude the Poincaré
lemma for compact cohomology by noting that in dimension zero we have H0

c (R0) = R, and Hq
c (R0) = 0

for q > 0.

Lemma 1.3.7: (Poincaré lemma for compact cohomology) We have that Hq
c (Rn) = 0 for q 6= n and

Hn
c (Rn) = R. N

Remark 1.3.8: By the Poincaré lemma for compact cohomology we clearly see that compact cohomology
is unlike its global counterpart not homotopy invariant. N

1.4 Poincaré duality

We will now go on to prove another important result called Poincaré duality. This gives a relationship
between the compact and the global de Rham cohomology. Normally, e.g. for singular cohomology,
Poincaré duality would give a relationship between cohomology and homology, but since de Rham
cohomology does not have an easily defined corresponding homology, we stick to only using cohomology.
The result is as follows:

Theorem 1.4.1: (Poincaré duality) Let M be an orientable manifold of dimension n. Then Hq(M) '
(Hn−q

c (M))∗, where the asterisk denotes the dual space. N

We already have this result for Rn due to the Poincaré lemmas by noting that Rn is isomorphic to its
own dual. The idea is to use the Mayer-Vietoris sequence of both the compact and global cohomology to
prove this result for any manifold with a finite good cover by induction to the cardinality of the cover.
The result for any smooth manifold then follows by a generalization of the argument we give here [BT82,
p. 46]. We will first construct an explicit isomorphism S : Hq(M)→ (Hn−q

c (M))∗ given by integration:

S : ω 7→
∫
M

ω ∧ · ,

where
∫
M

ω ∧ · : τ 7→
∫
M

ω ∧ τ.
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Note that S(ω) is indeed an element of (Hn−q
c (M))∗ since it sends elements of Hn−q

c (M) to R. By
compact support S(ω)(τ) is always defined, and clearly S is also bilinear.

Lemma 1.4.2: S is an isomorphism H∗(Rn)→ (Hn−∗
c (Rn))∗ for all n. N

Proof: For q 6= 0 we have 0 = Hq(Rn) = Hn−q
c (Rn) = (Hn−q

c (Rn))∗ hence any linear map is an
isomorphism. Therefore let q = 0. We then have 1 = dimH0(Rn) = dimHn

c (Rn) = dim(Hn
c (Rn))∗,

so S is an isomorphism if and only if it is an injection. Let ω = f(x1, . . . , xn) ∈ H0(Rn) and τ =

g(x1, . . . , xn)dx1 ∧ · · · ∧ dxn ∈ Hn
c (Rn), now suppose S(ω) = 0 or equivalently S(ω)(τ) = 0 for all

τ ∈ Hn−q
c (Rn), then we have∫

Rn
f · g dx1 ∧ · · · ∧ dxn = 0, for all compactly supported g.

This means that the set {f 6= 0} has measure zero on all compact sets. By continuity f = 0 on all
compact sets and hence f = 0 on Rn proving S is injective, and hence an isomorphism. �

Now consider the following diagram induced by the Mayer-Vietoris sequences for a good cover {U, V }:

// Hq(U ∪ V ) //

S

��

Hq(U)⊕Hq(V ) //

S

��

Hq(U ∩ V )
d∗ //

S

��
// (Hn−q

c (U ∪ V ))∗ // (Hn−q
c (U))∗ ⊕ (Hn−q

c (V ))∗ // (Hn−q
c (U ∩ V ))∗

(d∗)
∗
//

(1.4)

Here the rows are exact. This is clear for the top row, and exactness of the bottom row follows from the
fact that short exact sequences remain exact when taking duals; only with the directions of the maps
reversed (granted all the relevant groups are freely generated, as is the case since we are working with R,
see [Jac09, p.149]). We wish to show that S is an isomorphism for Hq(U ∪ V ) → (Hn−q

c (U ∪ V ))∗. We
know that the two maps left of Hq(U ∪ V ) are isomorphisms and also the two to the right, since U ∩ V ,
U and V are all diffeomorphic to Rn. This situation calls for the five lemma:

Lemma 1.4.3: (Five lemma) Consider the following commutative diagram of Abelian groups, where the
rows are exact:

A
a //

α

��

B
b //

β

��

C
c //

γ

��

D
d //

δ

��

E

ε

��

F
f
// G

g
// H

h // I
i // J

If α, β, δ, ε are isomorphisms, then so is γ. N

The proof proceeds by straightforward diagram chasing (see [Hat01, p. 129]). This lemma applies precisely
to our situation; we only need to show that the diagram (1.4) is commutative to show that S : Hq(U ∪
V )→ (Hn−q

c (U ∪ V ))∗ is an isomorphism.

Lemma 1.4.4: The diagram (1.4) above is commutative. N
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Proof: In the first square we have

Hq(U ∪ V )
Σ //

S
��

Hq(U)⊕Hq(V )

S
��

(Hn−q
c (U ∪ V ))∗

σ∗ // (Hn−q
c (U))∗ ⊕ (Hn−q

c (V ))∗

here the top horizontal map is restriction of forms, and the bottom horizontal map is the pullback of
summing the two forms. We have that

(σ∗S(ω))(α, β) = S(ω)(α+ β) = S(ω, ω)(α, β) = S(Σ(ω))(α, β).

And hence the square commutes. In the second square we have

Hq(U)⊕Hq(V )
∆ //

S
��

Hq(U ∩ V )

S
��

(Hn−q
c (U))∗ ⊕ (Hn−q

c (V ))∗
δ // (Hn−q

c (U ∩ V ))∗

Where the top map is the difference and the bottom map is the pullback of signed inclusion. Writing
both compositions out we get

δ∗(S(ω, τ))(α) = S(ω, τ)(−α, α) = S(τ)(α)− S(ω)(α) = S(∆(ω, τ))(α),

showing that the second square commutes as well. Now finally we have the square

Hq(U ∩ V )
d∗ //

S
��

Hq+1(U ∪ V )

S
��

(Hn−q
c (U ∩ V ))∗

(d∗)
∗
// (Hn−q+1

c (U ∪ V ))∗

We have to prove that S(d∗(ω))(τ) = (d∗)
∗S(ω)(τ) = S(ω)(d∗τ), in other words:∫

U∩V
ω ∧ d∗τ =

∫
U∪V

d∗ω ∧ τ.

From Lemma’s 1.1.4 and 1.1.6 we know what the maps d∗ and d∗ do, and applying this we obtain∫
U∩V

ω ∧ d∗τ =

∫
U∩V

ω ∧ (dρV )τ = (−1)q
∫
U∩V

(dρV )ω ∧ τ.

Whereas, since d∗ω has support in U ∩ V , we get:∫
U∪V

d∗ω ∧ τ = −
∫
U∩V

(dρV )ω ∧ τ.

Proving commutativity of the diagram up to sign. However we can simply change the sign of either
connecting homomorphism appropriately while retaining exactness. This proves commutativity for a
sign-corrected version of the diagram. �

By applying the five lemma we have proven that S is an isomorphism Hq(U∪V )→ (Hn−q
c (U∪V ))∗. Now

this generalizes to any manifold with a finite good cover by induction; suppose S : H∗(M)→ (Hn−∗
c (M))∗
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is an isomorphism for all orientable manifolds with a good cover of cardinality n. Then suppose M is
orientable and has a good cover {Uk}nk=0 of cardinality n + 1. Now

⋃n
k=1 Uk admits a good cover of

cardinality n and hence S is an isomorphism. Furthermore by goodness of the cover for M we have that
(
⋃n
k=1 Uk) ∩ U0 also admits a good cover of cardinality n, and hence has S acting as an isomorphism.

The proof above of commutativity above still holds for {U, V } = {
⋃n
k=1 Uk, U0} so by the five lemma we

have that S is also an isomorphism for M . Now by induction Poincaré duality holds for any orientable
manifold admitting a finite good cover. �

In addition we also have a certain sense of naturality of the Poincaré isomorphism S.

Corollary 1.4.5: (Naturality of the Poincaré isomorphism) Let M and N be respectively m and n

dimensional manifolds. Suppose we have an embedding f : M ↪→ N , then the following diagram
commutes:

H∗(N)
f∗

//

S

��

H∗(M)

S

��

(Hn−∗
c (N))∗

(f∗)
∗
// (Hm−∗

c (M))∗

(1.5)

That is, for α ∈ H∗c (M) we have∫
M

f∗ω ∧ α =

∫
N

ω ∧ f∗α. (1.6)
N

Proof: From the definition of (f∗)
∗ it follows immediately that the commutativity of the diagram (1.5)

is indeed equivalent with (1.6). Equality of these integrals then follows from the fact that f∗α is given
by extension by zero of α ◦ f−1 to the whole of N . Hence we have,∫

N

ω ∧ f∗α =

∫
f(M)

ω ∧ f∗α.

But since f is a diffeomorphism unto its image we have,∫
f(M)

ω ∧ f∗α =

∫
M

f∗(ω ∧ f∗α).

Now by noting that f∗f∗(α) = α ◦ (f−1f) = α on f(M). We conclude that,∫
M

f∗ω ∧ α =

∫
N

ω ∧ f∗α,

and hence that the diagram is indeed commutative, proving naturality for the Poincaré isomorphism. �

1.5 Leray-Hirsch theorem

Another important theorem we will prove is the Leray-Hirsch theorem. The proof is similar to that of
Poincaré duality.

Theorem 1.5.1: (Leray-Hirsch) Let π : E → M be a fiber bundle with fiber F , such that H∗(F ) is
finite-dimensional. Suppose there are global cohomology classes e1, . . . , ek ∈ H∗(E) whose restriction to
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F freely generate H∗(F ) at every point. Then H∗(E) is a free module over H∗(M) with basis e1, . . . ek.
We write H∗(E) ' H∗(M) ⊗ R{e1, . . . , ek}. That is, any element in H∗(E) can be written as a linear
combination of elements of form ω ∧ ei1 ∧ · · · ∧, eir with {ij} ⊂ {1, . . . , k} some (possibly empty) index
set and ω ∈ H∗(M). N

Proof: As in the proof of Poincaré duality we will construct some isomorphism, which is trivially an
isomorphism for Euclidean spaces, and then use the Mayer-Vietoris sequence and the five lemma to get an
isomorphism for any base manifold admitting a finite good cover. The result is actually also true for the
case without a finite good cover (so long as F still has finite dimensional cohomology). The proof of that
result requires a generalization of the Mayer-Vietoris based argument we use here, but this generalization
requires several pages to introduce (see for example [BT82, p.106-108]).

We define a map ψ : H∗(M)⊗ R{e1, . . . , ek} → H∗(E) by,

ω ⊗ (ei1 · · · eir ) 7→ π∗ω ∧ ei1 ∧ · · · ∧ eir .

Note that ψ is an isomorphism for M = Rn due to the Poincaré lemma as in Corollary 1.3.2. Let {U, V }
be a good cover with two elements and consider the Mayer-Vietoris sequence,

· · · // Hp(U ∪ V ) // Hp(U)⊕Hp(V ) // Hp(U ∩ V ) // · · ·

Let k be a fixed integer. If we tensor the sequence with Rk = R{e1, . . . , ek} at every point we retain
exactness due to the following proposition [Jac09, p. 154]:

Proposition 1.5.2: Let V be a vector space. Let A1 → A2 → A3 → · · · be an exact sequence of
modules. Then the sequence,

A1 ⊗ V → A2 ⊗ V → A3 ⊗ V → · · ·

is also an exact sequence when the maps are tensored with the identity on V at every point. N

By applying this proposition we conclude that the following sequence is also exact:

· · · // Hp(U ∪ V )⊗ Rk //
(
Hp(U)⊗ Rk

)
⊕
(
Hp(V )⊗ Rk

)
// Hp(U ∩ V )⊗ Rk // · · ·

Now summing over p at every step we get the following commutative diagram:

· · · //
⊕n

p=0H
p(U ∪ V )⊗ Rk //

ψ

��

⊕n
p=0

Hp(U)⊗ Rk

⊕Hp(V )⊗ Rk
//

ψ

��

⊕n
p=0H

p(U ∩ V )⊗ Rk d∗⊗Id
//

ψ

��

· · ·

· · · // Hn(E|U∪V ) // Hn(E|U )⊕Hn(E|V ) // Hn(E|U∩V )
d∗ // · · ·

Where the connecting homomorphism is given by d∗ ⊗ Id which maps Hp(U ∩ V ) onto Hp+1(U ∪ V ) for
each p, and acts as the identity on Rk. Showing commutativity is straightforward and we will only show
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commutativity for the non-trivial square:

⊕n
p=0H

p(U ∩ V )⊗ Rk d∗⊗Id
//

ψ

��

⊕n+1
p=0 H

p(U ∪ V )⊗ Rk

ψ

��

Hn(E|U∩V )
d∗ // Hn+1(E|U∪V )

By linearity we only have to check commutativity for elements of form ω⊗φ ∈ Hp(U ∩V )⊗Rk. We get,

ψ(d∗ ⊗ Id(ω ⊗ φ)) = (π∗d∗ω) ∧ φ.

Let {ρU , ρV } be a partition of unity subordinate to {U, V }. Recall from Lemma 1.1.4 that on U ∩ V we
have that d∗ω is given by d(ρUω). Also note that {π∗ρ∗U , π∗ρ∗V } is still a partition of unity. Therefore,

d∗ ψ(ω ∧ φ) = d∗(π∗ω ∧ φ) = d(π∗ρU )π∗ω ∧ φ = π∗(dρUω) ∧ φ = (π∗d∗ω) ∧ φ.

and hence we conclude commutativity. Now by the five-lemma we conclude that ψ is an isomorphism
for the union U ∪ V of two open sets diffeomorphic to Rn. Then by the same argument as in the proof
of Poincaré duality we get by induction on the cardinality of a good cover the required result for any
manifold admitting a good cover. �

Let M ×N be the trivial bundle over M . Then if N has finite dimensional cohomology, there is clearly a
finite set of cohomology classes on M ×N that generate H∗(N). This proves the the Künneth formula:

Theorem 1.5.3: (Künneth formula) The cohomology of a product of two spaces is given by

H∗(M ×N) = H∗(M)⊗H∗(N),

if at least one of the two spaces has a finite cohomology. N

Remark 1.5.4: The fact that the ei’s generate the fiber cohomology is necessary for the Leray-Hirsch
theorem to hold. We don’t in general have H∗(E) = H∗(M)⊗H∗(F ). If we consider ρ : E → F as a fiber
bundle, the most immediate definition of ψ : H∗(M)⊗H∗(F )→ H∗(E) would be ψ : ω⊗φ→ π∗ω⊗ρ∗φ.
But this map is not necessarily injective, since ρ∗φ could easily be exact. For example consider the Hopf
fibration S3 → S2, this is a fiber bundle over S2 with fiber S1. Clearly H∗(S3) 6= H∗(S2)⊗H∗(S1). N

With the Künneth formula and Leray-Hirsch theorem we conclude this introductory part of this thesis.
In the next two parts we will introduce characteristic classes, and with that the bulk of this thesis.
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2 Thom and Euler classes

In this part we shall define the Euler class, which will then be used to define the Chern class in the next
part by applying the Leray-Hirsch theorem. In order to define the Euler class we first need to introduce
the Thom isomorphism and Thom class, which is based on a generalization of the proof of the Poincaré
lemmas. Sections 2.1 and 2.2 are based on [BT82], and section 2.3 is based on [MS74].

2.1 Thom isomorhpism

Recall that in the proof of the Poincaré lemma for compact cohomology we constructed isomorphisms
Hn+1
c (Rn × R) → Hn

c (Rn). In this section we wish to generalize this result to an isomorphism of some
kind of cohomology of a vector bundle E → M to the de Rham cohomology of a lower degree in M .
This isomorphism of interest shall be the Thom isomorphism. First we shall define a generalization of
the compactly supported de Rham cohomology to vector bundles.

Definition 2.1.1: (Compact vertical cohomology) Let π : E → M be a vector bundle over M . We
define Ω∗cv(M) as the set of smooth forms ω which have compact support in the vertical direction. That
is for any K ⊂M compact, π−1(K) ∩ Suppω is compact (see fig. 2.1). The cohomology H∗cv(M) of this
complex is called the compact vertical cohomology. N

K

Suppωπ−1K ∩ Suppω

M

E

Figure 2.1: The support of ω is compact when restricted to a compact subset of the manifold.
Furthermore the restriction to each fiber also has compact support.

Later in this section we will prove the following theorem:

Theorem 2.1.2: (Thom isomorphism). Let π : E →M be an orientable vector bundle of rank n over a
manifold M admitting a finite good cover. Then H∗cv(E) ' H∗−n(M). N

Just like in the proof of the Poincaré lemma for compactly supported cohomology, we are interested in
the map induced on cohomology given by integrating along the fibers.

Definition 2.1.3: Let π : E →M be an orientable vector bundle of rank n with trivializing open cover
{Uα}. For each Uα we have a set of fiber coordinates t1, . . . , tn on E|Uα . We call a form ω ∈ Ω∗−ncv of top
degree on fibers on Uα if the form ωα = ω|π−1Uα can be written as

ωα = (π∗φ)f(x, t)dt1 · · · dtn. (2.1)

For some φ ∈ Ω∗(M) and f ∈ C∞(E|Uα), with x local manifold coordinates and t local fiber coordinates.N
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Just like how we were only interested in integration on forms with a dt term for integration along fibers
of compactly supported forms, in this case we are only interested in integrating forms that are of top
degree on fibers. Note that in any chart we can always split a form in a part that is of lower-than-top
degree on fibers and a part that is of top degree on fibers.

Definition 2.1.4: Let τ ∈ H ∗cv (E) and let {Uα} be a trivializing open cover. Then let ω|Uα = ωα be of
top degree on fibers as in equation (2.1). Then we locally define integration on fibers π∗ : Ω∗cv(E|Uα) →
Ω∗−ncv (Uα) by

(π∗τ)|Uα = π∗ωα = φ

∫
Rn
f(x, t)dt1 · · · dtn. N

Now π∗τ defines a global form
∑
α ραωα on Ω∗cv(E), with {ρα} a partition of unity. This is because on

an overlap Uα ∩ Uβ we have

π∗ωβ = π∗ωα ◦ gαβ = φ

∫
Rn

(det gαβ)f(x, t)dt1 · · · dtn = π∗ωα,

where we have used that gαβ : Uα ∩ Uβ → SO(n), which is asserted by the orientability of E. The
fact that we have det(gαβ) = 1 is precisely why we defined the orientation on E as we did in Definition
1.2.8. As with any map of forms we want π∗ to commute with d so that it induces a well-defined map on
cohomology.

Proposition 2.1.5: Integration on fibers commutes with the exterior derivative; π∗d = dπ∗. N

Proof: Since π∗ is defined locally, we may assume that E = M × Rn without loss of generality. As
before we consider the case where ω ∈ Ω∗cv is of top degree on fibers and the case where it is not, which
is sufficient by linearity. Let ω = (π∗φ)f(x, t)dt1 · · · dtn. Write dt = dt1 · · · dtn then,

π∗dω = π∗

(
(π∗dφ)f dt+ (−1)degφπ∗φ

∂f

∂xi
dxidt

)
= dφ

∫
f dt+ (−1)degφdxiφ

∫
∂f

∂xi
dt.

Whereas,

dπ∗ω = d

(
φ

∫
f dt

)
= dφ

∫
f dt+ (−1)degφdxiφ

∫
∂f

∂xi
dt,

hence π∗dω = dπ∗ω. Now let ω = (π∗φ)f(x, t)ψ with ψ = dti1 · · · dtik for some index set {ij} such that
ψ is not of top degree. We then have dπ∗ω = 0, and furthermore

π∗dω = π∗

(
(π∗dφ)fψ + (−1)degφπ∗φ

[
∂f

∂xi
dxi +

∂f

∂tj
dtj
]
ψ

)
,

which is trivially zero unless dtjψ = ±dt1 · · · dtn for some j. In that case we get,

π∗dω = ±π∗φ
∫

∂f

∂tj
dt = 0

by compact support in the vertical direction. Hence we conclude that π∗ commutes with d. �

Now for the Thom isomorphism we need one more fact:

Lemma 2.1.6: (Projection formula) Let π : E → M be an oriented rank-n vector bundle, τ ∈ Ω∗(M)
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and ω ∈ Ω∗cv(E) then π∗((π∗τ)ω) = τ(π∗ω). N

Proof: Without loss of generality we can assume E = M × Rn and restrict our attention to a single
chart. Unless ω is of top degree on fibers both sides are trivially zero. Therefore assume that ω =

(π∗φ)fdt1 · · · dtn for some φ, f . Then we have,

π∗((π
∗τ)ω) = π∗((π

∗τφ)fdt = τφ

∫
f dt = τπ∗ω,

and hence we get the required result. �

As promised we will now prove the Thom isomorphism:

Theorem 2.1.7: (Thom isomorphism). Let π : E →M be an orientable vector bundle of rank-n over a
manifold M , then

H∗cv(E) ' H∗−n(M)

where the isomorphism is given by π∗. N

Proof: We will only prove this for manifolds with finite good cover, which makes the proof substantially
shorter. The proof for a not necessarily finite good cover proceeds by a generalization of the argument
given here [BT82, p. 131]. We will first prove the result for product bundles, and then use induction on
the cardinality of a good cover together with the Mayer-Vietoris sequence to generalize the result. The
proof for product bundles is the same as that for the Poincaré lemma for compact cohomology only with
a different homotopy operator and inverse homomorphism. Let dt denote dt1 · · · dtn and let e = e(t)dt

be a top degree form on Rn. Then define e∗ : Ω∗cv(M) → Ω∗cv(M × Rn) by e∗ω = ω ∧ e. Now we define
K on forms of top degree on fibers (i.e. ω = (π∗φ)f(x, t)dt) as,

Kω = (π∗φ)

∫ t1

−∞
· · ·
∫ tn

−∞
f(x, t)dt− (π∗φ)A(t)

∫
Rn
f(x, t)dt,

with A(t) =

∫ t1

−∞
· · ·
∫ tn

−∞
e(t)dt

With these definitions the proof of the Poincaré lemma for compact cohomology carries over mutatis
mutandis to show that

H∗cv(M × Rn) ' H∗−n(M).

Now for U, V ⊂M open we have the following exact sequence:

0 // Ω∗cv(E|U∪V ) // Ω∗cv(E|U )⊕ Ω∗cv(E|V ) // Ω∗cv(E|U∩V ) // 0.

This naturally induces a long exact Mayer-Vietoris sequence in vertically compact cohomology. We again
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couple this with the Mayer-Vietoris sequence of M for the same U and V :

· · · // H∗cv(E|U∪V ) //

π∗

��

H∗cv(E|U )⊕H∗cv(E|V ) //

π∗

��

H∗cv(E|U∩V )
d∗ //

π∗

��

H∗+1
cv (E|U∪V ) //

π∗

��

· · ·

· · · // H∗−n(U ∪ V ) // H∗−n(U)⊕H∗−n(V ) // H∗−n(U ∩ V )
d∗ // H∗+1−n(U ∪ V ) // · · ·

Note that for U contractible we have that E|U ' U ×Rn is trivial [BT82, p.59]. Hence π∗ : H∗cv(E|U )→
H∗−n(U) is an isomorphism. If we can show commutativity of this diagram, then by the five lemma we
have that for {U, V } a good cover, π∗ : H∗cv(E|U∪V ) → H∗−n(U ∪ V ) is an isomorphism. Then by the
same induction argument on the cardinality of a good cover as in the proof of Poincaré duality we have
proven the Thom isomorphism for M with a finite good cover.

Now commutativity follows trivially for square on the left and in the middle by writing out the definitions.
We will only show commutativity for the square,

H∗cv(E|U∩V )
d∗ //

π∗

��

H∗+1
cv (E|U∪V )

π∗

��

H∗−n(U ∩ V )
d∗ // H∗+1−n(U ∪ V )

Let [ω] ∈ H∗cv(E|U∩V ). We have,

π∗d
∗ω = π∗((dπ

∗ρU )ω) = (dρU )π∗ω = d∗π∗ω,

where in the first and last step we applied Proposition 1.1.4 for an expression of d∗, and in the middle
step we used the projection formula 2.1.6. This shows commutativity, and by the five lemma we conclude
the Thom isomorphism for a good cover with two elements. By the same induction argument on the
cardinality of a good cover as in the proof of Poincaré duality we conclude the Thom isomorphism for
any manifold admitting a finite good cover. �

Definition 2.1.8: (Thom class) We call the inverse image of π∗ the Thom isomorphism T : H∗(M)→
H∗+ncv (E). Note that H0(M) = R is generated by the constant function 1 on M . We call ΦE = T (1) the
Thom class on the oriented vector bundle E. N

The Thom class determines the Thom isomorphism uniquely, since by the projection formula we have,

π∗(π
∗ω ∧ ΦE) = ω ∧ π∗ΦE = ω ∧ 1 = ω = π∗T (ω),

hence T (ω) = π∗ω∧ΦE . Since π∗ΦE = 1, the Thom class restricts to each fiber as a compactly supported
1-form with total integral 1, which is also a generator for the compact cohomology Hn

c (π−1(x)) on each
fiber. Conversely the class in ΦE ∈ Hk

cv(E) that restricts to the generator of Hn
c (π−1(x)) such that

π∗Φ = 1 is clearly unique. From this we conclude:

Proposition 2.1.9: The Thom class is uniquely characterized as the form in Hk
cv whose restriction to

fibers integrates to 1. N

An important property of the Thom class is that it behaves naturally with respect to pullbacks in the
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following sense:

Proposition 2.1.10: (Naturality of the Thom class) Let M → N be a smooth map and let π : E →M

be a vector bundle as above. Then the Thom class Φf∗E of f∗E is determined by Φf∗E = f̃∗ΦE , where
f̃ is as in Definition 1.2.4. That is, the Thom class of the pullback is the pullback of the Thom class. N

Proof: The Thom class is characterized by the fact that it integrates to 1 on fibers. Therefore we just
have to show that f̃∗ΦE integrates to 1 on f∗E|p. We can identify f∗E|p with π−1(f(p)) via f̃ . By the
diffeomorphism invariance of integration we have,∫

f∗E|p
f̃∗ΦE =

∫
π−1(f(p)

ΦE = 1.

Hence f̃∗ΦE is the Thom class of f∗E and we conclude naturality. �

Then finally there is another property of the Thom class which makes it behave well with operations on
vector bundles. This property will be very important later on to deduce a similar property for the Euler
class.

Proposition 2.1.11: The Thom class of a direct sum bundle E ⊕F is given by ΦE⊕F = π∗EΦE ∧ π∗FΦF

where πE , πF are the projections of E ⊕ F to respectively E and F . N

Proof: This is immediate since π∗1ΦE ∧ π∗2ΦF is a class in Hm+n
cv (E ⊕ F ) which integrates to 1 on the

fibers (where m, n are the respective ranks of the two bundles).

2.2 Poincaré duality and the Thom class

Using an elementary construction we can associate a class in the de Rham cohomology to every closed
submanifold S of our manifoldM . It turns out that this class is the same as the Thom class of a naturally
defined vector bundle over S. This equivalence is very interesting but only a very small amount of this
section is actually used in the rest of this thesis. Therefore this section can be skipped without loss of
continuity.

Let S be a closed oriented submanifold of dimension k and let ω ∈ Hk
c (M) be a k-form with compact

support onM . Then if i : S ↪→M is the inclusion, i∗ω has compact support as well. Now ω 7→
∫
S
i∗ω is a

linear functional and hence an element of (Hk
c (M))∗. But by Poincaré duality we have that (Hk

c (M))∗ '
Hn−k(M), where by the explicit isomorphism used in the proof of Poincaré duality we find that there is
an ηS such that∫

S

i∗ω =

∫
M

ω ∧ ηS .

Definition 2.2.1: With the same notation as above we define ηS ∈ Hn−k(M) the Poincaré dual of the
submanifold S of M . N

In other words the Poincaré dual ηS of a submanifold S is the element in cohomology such that integrating
ω over S leads to the same result as integrating ω∧ ηS over M . We want to relate this to the Thom class
of some vector bundle. The vector bundle of interest turns out to be the normal bundle of S.
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Definition 2.2.2: (Normal bundle) Let S ⊂ M be an oriented closed k-dimensional submanifold of M
where M has dimension n. We can see the tangent space TS of S as a subspace of the tangent space
TM |S of M restricted to S. We now define the rank-(n − k) vector bundle called the normal bundle N
as the subspace of TM |S obtained by taking the pointwise quotient of TM |S by TS ; that is, N is the
pointwise orthogonal complement of TS in TM |S. Or more geometrically it the set of vectors in TM |S
that are normal to the submanifold S. N

Figure 2.2: Visualization of the normal bundle of S1 as a closed submanifold of R2.

Now it turns out the normal bundle is always diffeomorphic to a submanifold T ⊂ M called the tubular
neighborhood of S in M [BT82, p. 66]. In general a tubular neighborhood is a neighborhood of S in M
that is diffeomorphic to a rank-(n − k) vector bundle over S such that S is diffeomorphic to the zero
section of this bundle. In the example above such a tubular neighborhood could be S1 ×R embedded as
an (open) annulus in R2. Or if we see S1 as a submanifold of R3, then its tubular neighborhood could
be the (open) filled torus S1 × R2.

From the definition of the tubular neighborhood T we get the following sequence of maps by the Thom
isomorphism:

H∗(S)
T // H∗+n−kcv (T )

j∗ // H∗+n−k(M).

Where j∗ is the map induced by the inclusion j : T ↪→ M by extending to zero on M \ T . It turns out
that the Thom class ΦN of the normal bundle N of S is precisely the Poincaré dual of S:

Theorem 2.2.3: Let S ⊂ M be an oriented closed k-dimensional submanifold of M where M has
dimension n. The Poincaré dual ηS ∈ Hn−k(M) of S of is then represented by the Thom class ΦN of the
normal bundle of S. That is,

ηS = j∗ΦN . N

Proof: We have to show that j∗ΦN fulfills the condition for being the Poincaré dual of S, that is,∫
M

ω ∧ j∗ΦN =

∫
S

i∗ω

for i : S ↪→M the inclusion. Let h : S ↪→ T be the inclusion of S into its tubular neighborhood T , then∫
S

i∗ω =

∫
S

h∗ω,
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since both maps agree on T . Now if we consider π : T → S the deformation retract of T onto S induced by
the projection map of the normal bundle, we have that i∗ and π∗ are inverse isomorphisms in cohomology
by homotopy invariance of de Rham cohomology. Hence we have that ω = π∗i∗ω + dτ for some τ .
Consequently we get,∫

M

ω ∧ j∗ΦN =

∫
T

ω ∧ ΦN =

∫
T

(π∗i∗ω + dτ) ∧ ΦN =

∫
T

(π∗i∗ω) ∧ ΦN .

Here the last step follows by the fact that ΦN is closed and then applying Stokes’ theorem to
∫
T
d(τ∧ΦN ).

The first step follows by the fact that ΦN has support in T . We consider S as the zero section of the
normal bundle N diffeomorphic to T . In this way we can also first integrate over fibers by applying π∗
and then integrate over S instead:∫

T

(π∗i∗ω) ∧ ΦN =

∫
S

π∗(π
∗i∗ω ∧ ΦN ) =

∫
S

i∗ω ∧ π∗ΦN ,

where in the last step we applied the projection formula 2.1.6. Note that π∗ΦN = 1 per definition, hence∫
M
ω ∧ j∗ΦN =

∫
S
i∗ω and ηS = j∗ΦN as required. �

We can use this theorem to derive a result which will be useful later on. We wish to prove that under
certain conditions if we have two submanifolds R,S ⊂M then,

ηR∩S = ηR ∧ ηS .

Now the condition is that R and S intersect transversally:

Definition 2.2.4: Two submanifolds R,S ⊂ M intersect transversally if for every p ∈ R ∩ S we have
that,

TpR⊕ TpS = TpM,

which can geometrically be interpreted as the spaces being nowhere tangent to each other in the
intersection. N

Proposition 2.2.5: Suppose two submanifolds R,S intersect transversally, then the Poincaré dual of
R ∩ S is given by,

ηR∩S = ηR ∧ ηS ,

where ηR and ηS denote the respective Poincaré duals of R and S. N

Proof: Consider the normal bundle NR∩S of the intersection. Any vector that is normal to TR or TS
is also normal to T (R ∩ S) hence we see that NR ⊕NS ⊆ NR∩S . Now because of transversality we have
that codimR ∩ S = codimR + codimS [GP74, p.30]. Therefore we conclude that NR∩S = NR ⊕ NS .
Now by Proposition 2.1.11 and Theorem 2.2.3 we have,

ηR∩S = Φ(NR∩S) = Φ(NR ⊕NS) = Φ(NR) ∧ Φ(NS) = ηR ∧ ηS

from which we conclude the proposition. �
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2.3 Euler class

Using the Thom isomorphism and Poincaré duality we can introduce an important invariant of vector
bundles called the Euler class. This class will later be used to introduce Chern and subsequently
Pontryagin classes, our most important mathematical objects of study.

We want the Euler class to be a class in cohomology that behaves nicely with operations on vector bundles
such as pullbacks and direct sums. Furthermore we want the Euler class to detect some form of triviality
of the bundle, e.g. the Euler class should be zero for product bundles and bundles admitting global
non-vanishing sections. In this manner it would provide us a tool to measure how ‘twisted’ a vector
bundle is, for example. The following definition has precisely these properties, as we will show during the
remainder of this section.

Definition 2.3.1: (Euler class) Let π : E →M be a rank-k vector bundle. Consider the Thom class ΦE

of E. The Euler class e(E) ∈ Hk(M) is defined to be the pullback s∗ΦE by the zero section of the Thom
class. That is, the Euler class is obtained by restricting the Thom class to the base manifold. N

Proposition 2.3.2: Let E →M be a rank-k vector bundle with k odd, then e(E) = 0. N

Proof: Consider T (e(E)), since e(E) = s∗ΦE this is,

T (e(E)) = (π∗s∗ΦE) ∧ ΦE ,

Since π∗s∗ = 1 on cohomology and π∗T = 1, we get e(E) = π∗(ΦE ∧ ΦE), but if k is odd then
ΦE ∧ ΦE = −ΦE ∧ ΦE and hence e(E) is exact. �

Proposition 2.3.3: The Euler class is natural with respect to pullbacks. That is, let E → M be a
vector bundle and let f : M → N be a smooth map, then e(f∗E) = f∗e(E). N

Proof: Consider the following (commuting) diagram:

N × E ⊃ f∗E
f̃

//

ρ

		

E

π

		

N
f

//

sN

JJ

M

sM

II

where sN , sM are the respective zero sections, and ρ, π the projections. The most important point is
that f̃ ◦ sN = sM ◦ f . This is because both maps send a point x ∈ N to 0 ∈ E|f(x). Hence

e(f∗E) = s∗NΦf∗E = s∗N f̃
∗ΦE = f∗s∗MΦE = f∗e(E),

by naturality of the Thom class. Hence we conclude naturality of the Euler class. �

Recall that two vector bundles π : E → M and ρ : F → M are isomorphic if there exist a bundle
homomorphism f that has an inverse f−1 that is also an homomorphism, i.e. the following diagram
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commutes:

E

f
++

π

��

F

f−1

kk

ρ

��

M

On vector bundles we have that the construction of the pullback bundle is invariant under homotopy by
a result of [Hus93, Theorem 4.7].

Proposition 2.3.4: Let M, N be manifolds and E be a vector bundle of N . If f, g : N → M are
homotopic maps then f∗E and g∗E are isomorphic vector bundles. N

Proposition 2.3.5: Isomorphic vector bundles have the same Euler class if they have the same
orientation, and differ by a sign if they have reversed orientation. N

Proof: Let f : E → F be an isomorphism of vector bundles over the same base space, and let sE and
sF be the respective zero sections. Then sF = f ◦ sE , hence s∗F = s∗Ef

∗ and we get,

e(F ) = s∗FΦF = s∗Ef
∗ΦF = ±s∗EΦE = ±e(E)

where the step f∗ΦF = ±ΦE follows because f∗ΦF integrates to ±1 on fibers since f acts as a
diffeomorphism Ep → Fp on fibers. �

Proposition 2.3.6: From the definition of the Thom class we see that orientation reversal induces a
sign change in the Thom class, and hence also the Euler class changes sign under orientation reversal. N

Proposition 2.3.7: (Whitney product formula) Consider the direct sum of two bundles E ⊕ F . Then
the Euler class of this direct sum is the product of the two Euler class, i.e. e(E ⊕ F ) = e(E) ∧ e(F ). N

Proof: Let πE , πF be the projections of E ⊕ F on respectively E and F . Recall that ΦE⊕F =

π∗EΦE ∧ π∗FΦF . Now if s is the zero section of E ⊕ F then πE ◦ s and πF ◦ s are the zero sections
of E and F respectively. Hence we get,

e(E ⊕ F ) = s∗ΦE⊕F = s∗(π∗EΦE ∧ π∗FΦF ) = e(E) ∧ e(F ),

as required. �

Definition 2.3.8: The Euler class of a smooth manifold is that of its tangent space, that is e(M) :=

e(TM). N

Earlier we mentioned that the Euler class measures how ‘twisted’ a vector bundle is. We will make this
statement precise:

Proposition 2.3.9: If a vector bundle π : E → M admits a non-vanishing global section s : M → E,
then its Euler class vanishes. N

Proof: Let ξ be the trivial line bundle over M spanned by the the section s. We then have E = ξ⊕ ξ⊥.
Since ξ is of rank one, it has in particular odd rank and hence vanishing Euler class. Now by the Whitney
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product formula,

e(E) = e(ξ) ∧ e(ξ⊥) = 0,

completing the proof. �

Another property of the Euler class that we are interested in is its integral,
∫
M
e(E). Since a

diffeomorphism f : M → N sends e(TM) to f∗e(TN) we see that
∫
M
e(M) is a diffeomorphism invariant.

We call this invariant the Euler number of M . This turns out to be an integer, in fact we have by [BT82,
p. 128] that:

Theorem 2.3.10: The Euler number
∫
M
e(E) is equal to the Euler characteristic

χ(M) =
∑
q

(−1)q dimHq(M). N

An even more important result for us is that the integral over the Euler class is integer for any vector
bundle that admits a section with finitely many zeros. We have by [BT82, p.124] that:

Theorem 2.3.11: Let s be a section of E with finitely many zeros. Then
∫
M
e(E) is the sum of the

local degree of s at its zeros. N

The local degree is defined as follows. Let M be an n-dimensional manifold and let E →M be a rank-n
vector bundle. If the rank of E would not be n then

∫
M
e(E) would vanish. Consider a section s of E

with zero x ∈M . Take a small enough neighborhood U of x such that E|U is diffeomorphic to Rn ×Rn.
Then the map u = s/||s|| induces a map Sn−1 → Sn−1. The local degree of s at x (also known as the
index of s at x) is then defined as the degree of this map u. That is, consider the map induced by u on
homology u∗ : Hn−1(Sn−1;Z) → Hn−1(Sn−1;Z). This map is of form u∗γ = αγ with α ∈ Z the degree
of u. This degree is a homotopy invariant, and this construction is hence well-defined.

Example 2.3.12: We can use the local degree of sections to extend our definition to Euler numbers
of non-orientable bundles. With the definition given in this section orientability is necessary to define
the Euler class. This is because we cannot define the Thom class on non-orientable bundles, since the
construction of the Thom class relies heavily on the integration. Furthermore we can also construct an
Euler number that is non-vanishing for odd rank bundles. Consider for example the Möbius strip M as
a vector bundle over S1 with a section s as shown below. This section has precisely one zero, namely at

S1

M

s

x

Figure 2.3: Example of a section of a Möbius strip seen as a line bundle over S1.

x. Furthermore it should be clear that any section of M with a finite amount of zeros would have an odd
amount of zeros counting multiplicities. In this case consider the behavior of s in a small neighborhood
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of x. Clearly the map s/||s|| : S0 → S0 sends −1 ∈ S0 to 1 ∈ S0 and visa-versa, therefore its degree is
−1. Hence we could say the Euler number of the Möbius strip is −1. Note however that the section −s
would have given us degree +1 at x, therefore from this discussion we can conclude that the sign of the
Euler number of the Möbius strip is not well-defined, but otherwise Theorem 2.3.11 does provide us with
a crude way of computing such a number. This gives us a definition of the Euler number in Z2 which
can still detect the non-triviality of bundles like the Möbius strip. N

As a less trivial example we will consider the canonical line bundle π : γ → CP k which assigns to every
line ` ∈ CP k the complex line in Ck+1 of all the points contained in the line. That is, for ` ∈ CP k we
have π−1(`) = {x ∈ ` |x ∈ Ck+1}. Note that γ is a complex line bundle, but we want to see it as a real
line bundle instead so that we can compute its Euler number. To do this we identify C with R2 fiberwise,
and consequently the fact that γ is a complex vector bundle merely becomes a minor technicality. We
now compute the Euler number of the canonical line bundle over CP 1 specifically.

Proposition 2.3.13: The Euler number
∫
CP 1 e(γ) of the canonical line bundle γ → CP 1 is −1. N

Proof: The proof proceeds by applying Theorem 2.3.11. Thus we first need to find a suitable section of
γ. Let [x0, x1] ∈ CP 1 for (x0, x1) 6= (0, 0) denote the unique complex line in C2 containing (x0, x1). Now
we assume that |x0|2 + |x1|2 = 1, and we define a section s by

s([x0, x1]) = (x0x0, x1x0) .

This is well-defined because if take any other point (λx0, λx1) with unit norm on the line [x0, x1], then
clearly since |λ| = 1 the value of this section doesn’t change. Furthermore we note that this section only
vanishes at the single point [0, 1] ∈ CP 1. Now to compute its Euler number we only need to know the
local degree at this point. The way were are going to compute this degree is by explicitly looking at
what the section looks like in a parametrization around the point [0, 1]. For example we can parametrize
CP 1 \ {[1, 0]} by mapping each u ∈ C to the line [u, 1]. The fiber at [u, 1] is then given by the set
{(λu, λ), λ ∈ C}, therefore in this chart we have trivialized the bundle to a space diffeomorphic to C2.
Now the section s sends a line [u, 1] to

s([u, 1]) =

(
|u|2

1 + |u|2
,

u

1 + |u|2

)
=

u

1 + |u|2
(u, 1).

From this we see that s induces a map C→ C given by u 7→ u/(1+ |u|2). This map has degree −1 since it
would for example take the unit circle in C parametrized counter clockwise to a circle in C parametrized
clockwise. From this we conclude that the section s has local degree −1 at the line [0, 1]. And hence the
Euler number is −1 as well. �

In conclusion we saw that integration on fibers produced a natural isomorphism between H∗(M) and
H∗cv(E), we then looked at the inverse of this isomorphism; the Thom isomorphism. This Thom
isomorphism could then be written as the wedge product with the Thom class in bundle cohomology.
This Thom class then behaved naturally under operations on vector bundles. We then looked at the
Euler class, which arises as a counterpart to the Thom class in the base cohomology. The Euler class
also turned out to be very compatible with operations on vector bundles, and had some other interesting
properties as well. In the next part we will use the Euler class to define some more classes that behave
naturally with respect to vector bundle operations, but give more information about our space.
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3 Chern and Pontryagin classes

In this part we will introduce the Chern and Pontryagin classes of a vector bundle. We will prove a
number of important properties about the Chern classes related to its behavior with respect to vector
bundle operations. Additionally we will provide some results to aid computation of these Chern classes.
After that we will introduce the Pontryagin classes and Pontryagin numbers. These will be used together
with the Hirzebruch signature formula to construct an invariant used to distinguish exotic spheres from
regular spheres. And then finally we will consider a theorem characterizing vector bundles by homotopy
classes of maps into a Grassmannian. But first we will make a short digression on the ring structure of
cohomology. Unless stated otherwise everything in this part is based on [BT82].

3.1 Ring structure of cohomology

Up to this point we always considered H∗(M) as a graded algebra. However the wedge product on forms
provides us with a method of multiplying elements in cohomology. Together with addition provided by
the group structure this makes H∗(M) into a ring. Its multiplication is graded commutative, that is
α ∧ β = (−1)(degα)(degβ)β ∧ α.

The ring structure can be of interest in the following way. Suppose we have some non-trivial α ∈ Hk(M)

for some n-dimensional M (so that Hk(M) = 0 for k > n). Now if k is odd we have α ∧ α = −α ∧ α,
hence α2 = 0. But if k is even this is not necessarily true. However degαm = mk assures that αm = 0 if
mk > n, though there could of course be an m ≤ n/k for which αm = 0. Knowing the ring structure of
H∗(M) will for example tell us exactly when αm = 0 and when it’s not.

Our main example of a space whose cohomology has an interesting ring structure will be the complex
projective space CPn. We will denote with R[x] the ring of polynomials with real coefficients, and with
R[x]/xn+1 the ring generated by the polynomials under the relation xn+1 = 0, in other words the ring
of polynomials with degree ≤ n. This can also be seen as the ring R[x] modulo the ideal generated by
xn+1. We have the following result:

Theorem 3.1.1: The ring structure of H∗(CPn) is given by:

H∗(CPn) =
R[α]

αn+1
,

with α ∈ H2(CPn) a generator of the cohomology in degree 2. N

Proof: Since H2i(CPn) = R for all i, we just have to check that αn ∈ H2n(CPn) is non-trivial, with
α ∈ H2(CPn) a generator. We will prove this by showing

∫
CPn α

n 6= 0 by induction on n.

Note that the inclusion CPn−1 ↪→ CPn induces an isomorphism on cohomology on degree ≤ 2n−2. This
fact is apparent if we for example consider the way CPn is constructed as a CW complex (see for example
[Hat01, p.6]). Suppose αn−1 ∈ H2n−2(CPn−1) is a generator, then because the inclusion distributes with
wedge products we have that αi generates H2i(CP 2n) for all i < n. Let β ∈ H2

c (CPn) be the dual
of αn−1 under Poincaré duality. Since CPn is compact, all forms are compactly supported and hence
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β ∈ H2(CPn). Furthermore we have per definition that,∫
CPn

β ∧ αn−1 = 1.

Now if β = dφ is exact we have by the fact that α is closed that∫
CPn

dφ ∧ αn−1 =

∫
CPn

d(φ ∧ αn−1) = 0.

Hence β is a non-trivial element in H2(CPn) ' R which means there must be some 0 6= λ ∈ R such that
β = λα. Now since β ∧ αn−1 is non-trivial, so is αn. By induction any element in H∗(CPn) can now be
written as a linear combination of αi’s, proving the theorem. �

We can refine this result slightly by finding a canonical generator for which not only
∫
CPn α

n 6= 0 but
actually

∫
CPn α

n = 1. This result is actually only important much later on when we will prove the
Hirzebruch signature theorem.

Proposition 3.1.2: Define α = −e(γ) ∈ H2(CPn), with γ → CPn the canonical line bundle as defined
in Proposition 2.3.13. Then H∗(CPn) ' R[α]/αn+1 and furthermore we have∫

CPn
αn = 1. N

Proof: First let γj be the canonical line bundle over CP j with j < n. We can naturally embed CP j

into CPn via a map i. Then consider the pullback bundle i∗γn over CP j . Its fiber at a point ` ∈ CP j is
simply the set of points in the line ` ⊂ Cj ⊂ Cn+1, therefore we have that i∗γn = γj . By naturality of
the Euler class we then have,

e(γj) = e(i∗γn) = i∗e(γn).

Since i∗ is actually an isomorphism on cohomology, we can naturally identify α ∈ H2(CP j) with α ∈
H2(CPn) for any j, n.

We will proceed by induction on n. For the base step pick α ∈ H2(CP 1) such that
∫
CP 1 α = 1. Then

suppose that
∫
CPn−1 α

n−1 = 1. We will show that α is the same as the the Poincaré dual ηCPn−1 of the
closed submanifold CPn−1 ⊂ CPn. Suppose for a moment that these two classes are indeed the same,
then we would get∫

CPn
αn =

∫
CPn

αn−1 ∧ ηCPn−1 =

∫
CPn−1

αn−1 = 1,

which would complete the induction step. Now since H2(CPn) ' R we have that if two forms integrate
to the same number, then they define the same cohomology class. From Proposition 2.3.13 we know that∫

CP 1

α = 1.

Therefore consider the integral∫
CP 1

ηCPn−1.
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In both cases we see CP 1 as a subset of CPn. To be more precise we can see CP 1 as the complex
projective space spanned by the line [x1, x2, 0, . . . , 0], and we embed CPn−1 as the space spanned by
[x1, 0, x3, . . . , xn]. Consider now the Poincaré dual ηCP 1 . We get,∫

CP 1

ηCPn−1 =

∫
CPn

ηCPn−1 ∧ ηCP 1 .

Now by Proposition 2.2.5 we have that if CP 1 and CPn−1 intersect transversally then,

ηCPn−1 ∧ ηCP 1 = ηCPn−1∩CP 1 = η[1,0,...,0],

where η[1,0,...,0] is the Poincaré dual of the point [1, 0, . . . , 0] ∈ CPn. Thus we would get that,∫
CP 1

ηCPn−1 =

∫
CPn

η[1,0,...,0] =

∫
[1,0,...,0]

1 = 1.

Unfortunately to show that CP 1 and CPn−1 intersect transversally we need some more terminology, and
we will prove this result in Corollary 3.3.8. Now if we assume CP 1 and CPn−1 do intersect transversally,
then we get α = ηCPn−1 and hence

∫
CPn α

n =
∫
CPn−1 α

n−1 = 1 by induction. Furthermore by the proof
of Theorem 3.1.1 we also conclude that H∗(CPn) = R[α]/αn+1, completing the proof. �

3.2 Chern classes

In this section we consider a complex vector bundle ρ : E →M of rank-k, that is, a fiber bundle with fibers
in Ck. Let gαβ : Uα ∩ Uβ → GL(n,C) be its transition functions. Every rank-k complex vector bundle
E has an associated rank-2k real vector bundle ER, called the realification of E, which is determined by
the identification C = R2.

Definition 3.2.1: We define the projectivication π : P (E) → M of the complex vector bundle E to be
the fiber bundle with fibers P (E)|p = P (Ep) the projective space of the fibers of E. That is, we replace
Ck with CP k−1 fiberwise. N

With this definition P (E) has transition functions g̃αβ : Uα ∩Uβ → PGL(n,C) induced from gαβ , where
PGL(n,C) is the projective general linear group. The projective linear group is defined by noting that
scalar matrices λI act trivially on the projective space for λ ∈ C nonzero. Therefore when considering the
action of GL(n,C) on P (Cn) it is sufficient to consider them modulo the scalar matrices: PGL(n,C) =

GL(n,C)/{scalar matrices}.

To P (E) we can associate several fiber bundles. Recall for example π∗E, the pullback bundle over P (E)

whose fiber at `p is π−1(p) = Ep, as in Definition 1.2.4. Furthermore we have the universal subbundle,
which is a generalization of the canonical line bundle.

Definition 3.2.2: The universal subbundle S of P (E) is the fiber bundle obtained as the set

S = {(`p, v) ∈ π−1E | v ∈ `p}.

Then the fiber of S at `p is given by the set of points in `p considered as a line through Ep. N

The constructions of the projectivication and the universal subbundle are visualized in Figure 3.1.
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ρ−1(p) = Cn

ρ

E P (E)

S|π−1(p)

π

p

`p

Figure 3.1: Visualization of the definition of the projectivication P (E) of a complex vector bundle
E and its universal subbundle S. Note that S|π−1(p) is shown as a helicoid, this is based on the
interpretation of RP 2 as a portion of helicoid with top and bottom identified.

Definition 3.2.3: We define the universal quotient bundle Q by the short exact sequence

0 // S // π∗E // Q // 0.

Its fiber at `p is the orthogonal complement `⊥p of the line `p as a subspace of Ck. That is, we have
π∗E = S ⊕Q. The sequence above is often called the tautological sequence of E. N

Now we will start with the construction of Chern classes. We first of all denote x = −e(SR) and note
that x is an element in H2(P (E)) since SR is a vector bundle over P (E). The restriction of x to each
fiber hence defines a class in H2(P (E)`p). Now each fiber of P (E) is a copy of CPn−1, which has as
its cohomology linear combinations of αi for i ≤ n − 1 with α ∈ H2(CPn−1) a generator. Hence the
cohomology classes 1, x, . . . , xn−1 are global forms that freely generate the fiber cohomology, therefore
by the Leray-Hirsch Theorem 1.5.1 we conclude that H∗(P (E)) is a free module over H∗(M) with basis
{1, x, . . . , xn−1};

H∗(P (E)) ' H∗(M)⊗H∗(CPn−1).

Now while xn is trivial restricted to each fiber, it is not necessarily trivial in Hn(P (E)). But by Leray-
Hirsch it can be written as a linear combination of xi’s. In other words there are classes ci(E) ∈ H2i(M)

such that,

xn + π∗c1(E)xn−1 + · · ·+ π∗cn(E) = 0. (3.1)

In other words,

H∗(P (E)) =
R[x]

I
,

with I the ideal generated by xn+π∗c1(E)xn−1+· · ·+π∗cn(E). Note that the π∗ makes sure all the terms
are in H∗(P (E)), but usually for notational brevity we omit the π∗’s and simply write xn + c1(E)xn−1 +

· · · + cn(E) = 0. We define ci(E) to be the i-th Chern class of E and we define the total Chern class
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c(E) as

c(E) = 1 + c1(E) + · · ·+ cn(E).

Proposition 3.2.4: The first Chern class of a complex line bundle L→M is e(LR). N

Proof: We have P (L) = M , since the projectivication of a line is a point. The universal subbundle of
P (L) is then L itself, giving x = −e(LR) and hence that c1(L) = e(LR). �

If we let E = M × Cn be a trivial bundle we have P (E) = M × CPn−1, which means xn = 0 by the
ring structure of CPn−1. Hence all the Chern classes of a trivial bundle are zero. This gives rise to the
interpretation of the Chern classes being a measure of how the bundle is twisted. Now just like the Euler
class the Chern classes behave naturally with respect to smooth maps:

Proposition 3.2.5: (Naturality) Let f : M → N be a map between manifolds and E be a complex
vector bundle over M . Then ci(f∗E) = f∗ci(E) for all i. N

Proof: Note that the projectivication and universal subbundle are defined fiberwise. Then since the
fiber of f∗E at p is simply E|f(p), we see that P (f∗E) = f∗PE and similarly the universal subbundle of
f∗PE is simply f∗S, where S is the universal subbundle of PE. Therefore if we take xE and xf∗E the
generators of the respective fiber cohomology rings we have that

xf∗E = −c1(f∗S) = −e((f∗S)R) = −f∗e(SR) = f∗xE ,

where the fact that (f∗S)R = f∗(SR) follows naturally from the definition of the pullback bundle. Hence
if we apply f∗ to equation (3.1) we get,

xnf∗E + f∗c1(E)xn−1
f∗E + · · ·+ f∗cn(E) = 0.

This means per definition that ci(f∗E) = f∗ci(E). �

Recall from Proposition 2.3.5 that isomorphic vector bundles have up to orientation reversal the same
Euler class. There is a similar result for Chern classes:

Proposition 3.2.6: Let E and F be two isomorphic rank-n orientable complex vector bundles over
M . If E and F have the same orientation then ci(E) = ci(F ), if they have reversed orientations then
ci(E) = (−1)n−ici(F ). N

Proof: Let f : E → F be a bundle isomorphism. This bundle isomorphism then induces a bundle
isomorphism f̃ : SE → SF on the universal subbundles of π : PE → M and ρ : PF → M . Hence we
have that the generators of x ∈ H2(PE) and y ∈ H2(PF ) are related by,

f∗y = −e(f∗(SF )R) = ∓e((SE)R) = ±x.

Here the ± is understood to be +1 for f orientation preserving, and −1 for f orientation reversing. We
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furthermore have that π = ρ ◦ f . Hence

0 = yn + ρ∗c1(F )yn−1 + · · ·+ ρ∗cn(F )

f∗(0) = f∗yn + f∗(ρ∗c1(F )yn−1) + · · ·+ f∗(ρ∗cn(F ))

= xn + π∗c1(F )(±x)n−1 + π∗c2(F )(±x)n−2 + · · ·+ π∗cn(F ).

From which we conclude that ci(E) = (±1)n−ici(F ) as required. �

3.3 The splitting principle

In this section we will give a construction that makes it easier to prove polynomial identities of Chern
classes. Consider for example the Whitney product formula:

c(A⊕B) = c(A)c(B).

The proof of this identity proceeds by finding a bundle F (E)→M together with a map σ : F (E)→M

such that σ∗E is a direct sum of line bundles, and σ∗ : H∗(M)→ H∗(F (E)) is injective. This is useful
because suppose we have such a σ, then

σ∗c(A⊕B) = c(σ∗(A⊕B)) = c(L1 ⊕ · · · ⊕ Ln).

with Li line bundles. Then by injectivity of σ∗ it suffices to show the identity only for direct sums of line
bundles, which may be substantially easier than for the general case.

Proposition 3.3.1: (Splitting principle) For a given complex vector bundle ρ : E → M such a σ and
F (E) always exist. The space F (E) is called a split manifold of E. N

Proof: The proof proceeds by induction on the rank of E. If E has rank 1 then the result is trivial.
Suppose E has rank-2 then σ : P (E) → M is a split manifold since there is the tautological exact
sequence:

0 // S(E) // σ∗E // Q(E) // 0, (3.2)

where S(E) and Q(E) are respectively the universal subbundle and the quotient bundle of P (E), and
σ∗E is the pullback bundle. By the splitting Lemma 3.3.2 below we then have that σ∗E = S(E)⊕Q(E).
Note that SE has rank 1 by definition and σ∗E has Ep as fibers and is hence rank 2, hence QE has rank
1 and σ∗E decomposes into line bundles.

In general let E → M be a rank-k complex vector bundle. Then consider again σ : P (E) → M with
tautological short exact sequence (3.2). Then since S(E) has rank 1 and σ∗E has rank k, Q(E) has rank
k − 1. Now consider σ : P (Q(E))→ P (E) with exact sequence

0 // S(Q(E)) // σ∗(Q(E)) // Q2(E) // 0 .
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Since σ∗E = S(E)⊕Q(E) we have,

(σ∗)2E = σ∗(S(E)⊕Q(E)) = Q2(E)⊕ S(Q(E))⊕ σ∗S(E).

Here (σ∗)2E has rank k, Q2(E) has rank k−2 and S(Q(E)) and σ∗S(E) both have rank 1. This procedure
then continues with induction until we hit a Qk−1(E) of rank 1. That is, consider the following diagram:

E

��

Q(E)

��

Q2(E)

��

Qk−2(E)

��

Qk−1(E)

��

M P (E)
σ
oo P (Q(E))

σ
oo · · ·

σ
oo
σ
oo P (Qk−3(E))

σ
oo P (Qk−2(E))

σ
oo

σ∗E

OO

(σ∗)2E

OO

(σ∗)k−3E

OO

(σ∗)k−2E

OO

By the short exact sequence

0 // S(Qp(E)) // σ∗(Qp(E)) // Qp+1(E) // 0,

we have that

σ∗Qp(E) = Qp+1(E)⊕ S(Qp−1(E)).

This inductively leads to,

(σ∗)k−2E = Qk−1(E)

k−2⊕
p=0

(σ∗)pS(Qp(E))

which is a direct sum of line bundles, hence σk : P (Qk−2(E)) → M is a split manifold. The fact that
(σk)∗ : H∗(M)→ H∗(P (Qk−2(E))) is an injection follows immediately from the fact that σ is a projection
map, and we conclude the proof. �

Lemma 3.3.2: (Splitting lemma for vector bundles) Suppose we have a short exact sequence of real or
complex vector bundles of finite rank,

0 // A
i // B

j
// C // 0,

then B ' A⊕ C. N

Proof: It is a standard result that by the existence of partitions of unity we can endow the vector
bundles with a metric (Riemannian or Hermitian). Since we assume the bundles to be of finite rank we
can define the orthogonal complement (im i)⊥ of im i. This gives,

B = im i⊕ (im i)⊥ = im i⊕ (ker j)⊥ = im i⊕ B

ker j
' A⊕ C,

where the second equality follows from exactness and the last equality follows from surjectivity of j and
injectivity of i. �
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As promised we will now go on to prove the Whitney product formula.

Proposition 3.3.3: (Whitney product formula) Let A and B be two complex vector bundles. Then,

c(A⊕B) = c(A)c(B)

In other words, the total Chern class of the direct sum bundle is the product of the total Chern classes.
N

Proof: By Proposition 3.3.1 and the remark at the beginning of this section it suffices to prove the
identity for direct sums of line bundles. Therefore let E = L1 ⊕ · · · ⊕ Ln be a vector bundle over M for
some line bundles Li and consider S(E). For a line bundle Li →M we have P (Li)|p = {`i, p} and hence
S(Li) ' Li, with `i, p a line in Li|p. This way we obtain projections si : S(E)→ Li. Since for every point
in P (E) this gives a map S(E)→ Li we can see each si as a section of Hom(S(E), Li) = S(E)∗⊗L with
S(E)∗ the fiberwise dual bundle of S(E). Define

Ui = {y ∈ P (E)|si(y) 6= 0}.

Then restricted to Ui the bundle S∗⊗Li admits a non-vanishing section, and consequently has a vanishing
Euler class. Since S∗⊗Li is a line bundle, we then have c1(S∗⊗Li) = e(S∗⊗Li) = 0. Also note that all
the si can not be zero at the same time, so {Ui} is actually an open cover of P (E). Now the crux comes
in considering the product

n∏
i=1

c1(S∗ ⊗ Li).

Since at least one c1(S∗ ⊗Li) is exact on each point in P (E) by the fact that {Ui} is a cover, one would
expect the product to become trivial as well. However this is not enough for the product to be exact,
since the product of a closed and exact form is not necessarily exact. Therefore we want c1(S∗ ⊗ Li) to
vanish identically (i.e. on the level of forms) on Vi where {Vi} is an open cover. In that case we do get
that the product is identically zero.

We will make this a bit more precise. We have that c1(S∗ ⊗ Li)|Ui = dωi for some dωi ∈ H2(Ui). Now
we wish to extend dωi to the whole of P (E) so that the difference c1(S∗ ⊗Li)− dωi vanishes on Ui. For
this extension we need the following construction:

Lemma 3.3.4: Let {Ui} be an open cover of a manifold M . Then there exists an open cover {Vi} of M
such that Vi ⊂ Ui for each i, and smooth functions ρi : M → [0, 1] for which Supp ρi ⊂ Ui and ρi|Vi = 1.

N

Proof: The statement about existence of such Vi is exactly the shrinking lemma as proven in [Cra14,
Lemma 5.17]. For the second statement we note that {Ui, M \ Vi} is an open cover for any fixed i.
Let {ρi, ψi} be a partition of unity subordinate to this cover. Then Supp ρi ⊂ Ui and ρi|Vi = 1, since
ρi + ψi = 1 and ψi = 0 on Vi per definition. Hence ρi satisfies the requirements. �

Using these ρi we can take c1(S∗⊗Li)−dρiωi which is the same in cohomology a c1(S∗⊗Li) but vanishes
identically on Vi. Furthermore we have for L1, L2 line bundles, c1(L1 ⊗ L2) = c1(L1) + c1(L2) [Hat09,
p.86]. Hence c1(S∗ ⊗ Li) = c1(S∗) + c1(Li). Since the identity map is a nowhere vanishing section of
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Hom(S, S) = S∗ ⊗ S we have 0 = c1(S∗ ⊗ S) = c1(S∗) + c1(S) and hence c1(S∗) = −c1(S) = x. Finally
since c1(S∗ ⊗ Li)− dρiωi and c1(S∗ ⊗ Li) represent the same form in cohomology we have,

0 =

n∏
i=1

(c1(S∗ ⊗ Li)− dρiωi) =

n∏
i=1

c1(S∗ ⊗ Li) =

n∏
i=1

(c1(S∗) + c1(Li)) =

n∏
i=1

(x+ c1(Li)). (3.3)

The right hand side is now a polynomial of degree n and the coefficients of xi are precisely the Chern
classes ci(E). Furthermore the total Chern class of each Li is per definition 1 + c1(Li) and the total
Chern class c(E) is obtained by taking x 7→ 1 in the polynomial above. Hence we get,

c(E) =

n∏
i=1

(1 + c1(Li)) =

n∏
i=1

c(Li).

Proving the Whitney sum formula for (direct sums of) line bundles, and by the splitting principle also
for arbitrary complex vector bundles. �

Corollary 3.3.5: Each Chern class ci(E) of a rank-k bundle E is a Z-linear combination of wedge
products of Euler classes of line bundles. More specifically, if E = f∗(L1 ⊕ · · · ⊕ Lk), then

ci(E) = σi(e(L1), . . . , e(Ln)).

Where σi is the i-th symmetrical polynomial in n arguments. N

Proof: We have that,

0 =

n∏
i=1

(x+ c1(Li)) =

n∏
i=1

(x+ e(Li)).

which per definition of σi means that the coefficient of xi is precisely given by σi(e(L1), . . . , e(Ln)). �

Corollary 3.3.6: Let E and F be respectively rank-m and n complex vector bundles. If we look at
Equation (3.3) we not only have c(E ⊕ F ) = c(E)c(F ) but we actually have equality in every degree for
the equation:

xm+n+c1(E⊕F )xm+n−1+· · ·+cm+n(E⊕F ) = (xm+c1(E)xm−1+· · ·+cm(E))·(xn+c1(F )xn−1+· · ·+cn(F ))

Hence we obtain

ck(E ⊕ F ) =
∑
i+j=k

ci(E)cj(F ) N

As an important application of the Whitney product formula we will compute the total Chern class of
the projective space.

Proposition 3.3.7: The total Chern class of the complex projective space is given by c(CPn) = (1+x)n+1

with x = −c1(γn), where γn is the canonical line bundle over CPn as defined in Proposition 2.3.13. N

Proof: The most important ingredient in the proof will be to show that the holomorphic tangent bundle
T = TCPn is isomorphic to Q ⊗ γn∗. Here we let Q denote the vector bundle obtained as the quotient
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of Cn+1 by γn, which is analogous to the construction of quotient bundle of a projectivication. We will
proceed to show the identity fiberwise. Let ` ∈ CPn, then γn` = ` ⊂ Cn+1 and Q` = `⊥ ⊂ Cn+1, meaning
Q` ⊗ γn∗` boils down to Hom(`, `⊥) the set of linear maps from ` to its orthogonal complement. To see
that this is the same as the holomorphic tangent space T` at ` we take a closer look at the definition of T`.
Per definition T` is the vector space of derivations of holomorphic functions at `. Let h be a holomorphic
function on CPn, then h induces a holomorphic function on Cn+1 by,

h(x) =

{
0 x = 0,

||x||h(`x) otherwise.

where `x is the line through x and the origin. Now TxCn+1 is simply given by the set of derivations s
that for a given v ∈ Cn+1 send a holomorphic function f to,

s(f) =
d

dt
f(x+ vt)

∣∣∣
t=0

.

Suppose that v ∈ `, then for a holomorphic function f on Cn+1 induced from one on CPn as above we
have,

s(f) =
d

dt
f(x+ vt)

∣∣∣
t=0

=
d

dt
||x+ vt||f(`)

∣∣∣
t=0

= 0.

Hence only the component of v orthogonal to ` determines the action of the derivative. Furthermore any
derivation s ∈ TxCn+1 determines a derivation s̃ in T`x by s̃(h) = s(h) where on the right side we have the
induced function on Cn+1. Now suppose we have a homomorphism L : ` → `⊥, then for each p ∈ ` the
vector L(p) defines a derivation sL(p), and each of these derivations then determine the same derivation
sL in T`. We can see that this correspondence gives an isomorphism Hom(`, `⊥) ' T` as required. From
this we indeed see that Q⊗ γn∗ ' T .

Over CPn we have the following tautological exact sequence,

0 // γn // Cn+1 // Q // 0 .

If we tensor all the elements with γn∗ we get sequence,

0 // γn∗ ⊗ γn // γn∗ ⊗ Cn+1 // γn∗ ⊗Q // 0 ,

which is exact by Proposition 1.5.2. Now γn∗ ⊗ γn admits a section given by the identity map, hence
c(γn∗ ⊗ γn) = 1. Furthermore we have c(γn∗ ⊗ Cn+1) = c(γn∗ ⊗ γn)c(γn∗ ⊗ Q) = c(γn∗ ⊗ Q) by the
Whitney product formula. But γn∗ ⊗ Cn+1 =

⊕n+1
i=1 γ

n∗ and γn∗ has total Chern class 1 + x. If we
combine this we get,

c(CPn) = c(T ) = c(γn∗ ⊗Q) = (1 + x)n+1

giving the required result. �

Using the interpretation of TCPn provided in this proof we can finally prove the transversality of the
intersection of CPn−1 and CP 1 embedded in CPn as was needed in the proof of Proposition 3.1.2.
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Corollary 3.3.8: If we embed CP 1 into CPn as the space spanned by [x1, x2, 0, . . . , 0], and embed CPn−1

into CPn as the space spanned by [x1, 0, x3, x4, . . . , xn], then CP 1 and CPn−1 intersect transversally at
the point [1, 0, . . . , 0]. N

Proof: We have to show that TCP 1 ⊕ TCPn−1|` = TCPn|` with ` = [1, 0, . . . , 0]. We know that the
latter is given by `⊥ ⊗ `∗ = 〈0, x1, x2, . . . , xn〉 ⊗ `∗ by the proof of the previous proposition, where we
use 〈·〉 to denote the span with a bit of abuse of notation. On the other hand TCP 1 has tangent space
〈0, 0, x3, . . . , xn〉 ⊗ `∗ by the same argument. Similarly TCPn−1 has tangent space 〈0, x2, . . . , 0〉 ⊗ `∗. If
we then take the direct sum of TCP 1 and TCPn−1 we get the required result. �

3.4 Pontryagin classes

The Chern classes are useful tools for studying complex vector bundles, but when dealing with (real)
smooth manifolds we may be more interested in real vector bundles and their invariants. For example,
the tangent space of a smooth manifold is a very important real vector bundle. In this section we will
define a real counterpart of Chern classes called the Pontryagin classes pi(E) of a (real) vector bundle
E.

We obtain pi(E) from constructing a complex vector bundle out of E called the complexification EC of
E. The complexification is nothing more than formally extending the scalar multiplication to include
complex numbers. In other words we take,

EC = E ⊗R C.

If E has transition functions gαβ then EC has transition functions gαβ⊗1C and similarly a map f : E → F

induces a map fC : EC → FC given by fC(v ⊗ z) = f(v)⊗ z.

From a complex vector space V we can construct its conjugate vector space V by taking zv 7→ zv, that is,
taking the conjugate of scalar multiplication. With this we really mean that for a basis {ei} and zi ∈ C
we have z1e1 + · · ·+ znen 7→ z1e1 + · · ·+ znen.

If we take the conjugate fiberwise we can naturally construct the conjugate bundle E of E. The transition
functions gαβ on E then become gαβ on E. Introducing a Hermitian structure on a complex vector bundle
E we can reduce its structure group to the group of unitary matrices [BT82, p.267]. For unitary matrices
we have (gtαβ)−1 = gαβ where the left side denotes the inverse of the transpose. Coincidentally the dual
bundle E∗ has transition functions (gtαβ)−1 [BT82, p.56], and we conclude that E ' E∗.

Note that elements of V C = V ⊗R C are of form v1 ⊗ 1 + v2 ⊗ i with vi ∈ V . This gives the natural
isomorphism V C → V C given by

v1 ⊗ 1 + v2 ⊗ i 7→ v1 ⊗ 1− v2 ⊗ i.

In other words V C is isomorphic to its conjugate, and hence also to its dual. This has an important
implication on the Chern classes of a complexified real vector bundle EC. This isomorphism preserves
the transition functions gαβ ⊗ C since gαβ is real. Hence EC is isomorphic to E

C
in an orientation

preserving manner. Recall that c1(S(EC)) = −c1(S((EC)∗)) and hence in the polynomial definition the
Chern classes we get x 7→ −x under conjugation. This then means that ci(EC) = (−1)ici(EC), since this
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isomorphism is orientation preserving we also have ci(EC) = ci(EC), hence ci(EC) = 0 for i odd. This
leads us to make the following definition:

Definition 3.4.1: The i-th Pontryagin class pi(E) ∈ H4i(M) of a real vector bundle E →M is given by

pi(E) = (−1)ic2i(E
C).

That is, the 2i-th Chern class of the complexification of E. The total Pontryagin class is then given by

p(E) = 1 + p1(E) + · · · pn(E) = 1− c2(EC) + c4(EC)− c6(EC) + · · ·+ (−1)nc2n(EC)

The (−1)i is to make some formulas related to the Pontryagin class look simpler, and some authors (like
[BT82]) don’t use this convention. N

Proposition 3.4.2: (Whitney product formula) The Whitney product formula also holds for Pontryagin
classes. That is, for E and F real vector bundles we have

p(E ⊕ F ) = p(E)p(F ). N

Proof: We will follow [MS74, p. 175]. Let E and F be respectively rank-m and n real vector bundles.
Note that (E ⊕F )C = EC ⊕FC. From Corollary 3.3.6 and the fact that all the odd Chern classes vanish
we have that

c2k(EC ⊕ FC) =
∑
i+j=k

c2i(E
C)c2j(F

C).

Now multiplying both sides with (−1)k = (−1)i(−1)j we obtain

(−1)kc2k(EC ⊕ FC) =
∑
i+j=k

(−1)ic2i(E
C) (−1)jc2j(F

C),

which precisely leads to p(E ⊕ F ) = p(E)p(F ). �

We define the Pontryagin class of a manifold M to be that of its tangent bundle. Note that for a given
real manifold M of dimension 4k the tangent bundle is of rank 4k and hence the i-th Pontryagin class
pi(M) is a 4i form. Hence if we have a set of positive integers I = {i1, . . . , ir} with

∑
j ij = k then the

wedge product
∧
j pij (M) defines a form of degree 4k. This leads to the following definition.

Definition 3.4.3: Let I = {i1, . . . , ir} be a set of positive integers with sum
∑
j ij = k. We call I a

partition of k. Given a 4k-dimensional manifold M we call the I-th Pontryagin number pI(M) of M the
real number given by,

pI(M) =

∫
M

pi1(M) ∧ · · · ∧ pir (M). N

Proposition 3.4.4: All the Pontryagin numbers of a manifold M are integer. N

Proof: By Corollary 3.3.5 and the splitting principle we have that each pi(E) can be written as a
Z linear combination of wedge products of Euler classes of line bundles. If M is n-dimensional and



3.4. Pontryagin classes 40

I = {i1, . . . , ir} is a partition of n, then pi1 ∧ · · · ∧ pir is a linear combination of Euler classes of some set
of line bundles Lji :

pi1 ∧ · · · ∧ pir =
∑
j

nje(Lj1) ∧ · · · ∧ e(Ljn) =
∑
j

nje(Lj1 ⊕ · · · ⊕ Ljn),

where nj ∈ Z. The last step follows from the Whitney product formula for Euler classes. Each e(Lj1 ⊕
· · · ⊕ Ljn) then integrates to an integer by Theorem 2.3.11, and hence the Pontryagin number is integer
for each partition of n. �

Remark 3.4.5: We can also define the Pontryagin class of a complex vector bundle E with fiber V . This
is done by first taking the realification VR of the fibers, i.e. by taking the bundle obtained by ‘throwing
away’ the complex structure under the isomorphism C ' R2 sending a basis zi = xi + iyi to a basis
(xi, yi). Then consider the complexification VR ⊗R C of VR. The map given by multiplication by i on V
gives a linear transformation J on VR ⊗R C with J2 = −1. Now J has eigenvalues ±i and decomposes
into a direct sum of of the i-eigenspace and (−i)-eigenspace. Note that the i-eigenspace is contained in
V and the (−i)-eigenspace is contained in the conjugate vector space V . Since VR ⊗R C has twice the
dimension of V we conclude,

VR ⊗R C = V ⊕ V ,

and hence also EC
R = E ⊕ E. N

Example 3.4.6: The n-sphere Sn has trivial Pontryagin classes, i.e. p(Sn) = 1. N

Proof: Embed Sn in Rn+1. We have the following exact sequence of vector bundles

0 // TSn // TRn+1|Sn // N // 0 .

Here N is the normal bundle obtained by taking the orthogonal complement of TSn in TRn+1|Sn . From
geometrical reasons we see N ' Sn×R, whereas TRn+1|Sn is also trivial. Hence these two bundles have
trivial Chern class. By the Whitney product formula we now have

c(TSn,C) = c(N)c(TSn,C) = c(TRn+1|Sn) = 1,

from which we conclude p(Sn) = 1. �

Proposition 3.4.7: The total Pontryagin class of the complex projective space CPn is given by

p(CPn) = (1 + x2)n+1,

where x = −c1(S) is minus the Euler class of the universal subbundle of CPn. N

Proof: By Proposition 3.3.7 we know c(CPn) = c(TCPn) = (1 + x)n+1. We have,

(1− x2)n+1 = c(CPn)c(CPn) = c((CPn)CR) =

n∑
i=0

c2i((CPn)CR) =

n∑
i=0

(−1)ipi(CPn).

Since we get equality in all degrees of cohomology on the left and right side, we can replace all terms ω
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of order 4i in cohomology by (−1)iω and retain equality. Since x2 is of degree 4, and pi(CPn) of degree
4i we get,

(1 + x2)n+1 =

n∑
i=0

pi(CPn) = p(CPn)

as required. �

3.5 Flag manifolds

Next to the projectivication of a vector bundle, another interesting construction we can do on vector
bundles is constructing its flag manifold. In order to define this construction we first need some
preliminary definitions.

Definition 3.5.1: Let V be a vector space. Then a flag in V is a sequence of (vector) subspaces
A1 ⊂ A2 ⊂ · · · ⊂ An = V where dimAi = i. The flag manifold Fl(V ) of V is then the set of all flags in
V . N

A3 = R3

∪

A2

∪

A1

Figure 3.2: An example of a flag in R3. Note that all the subspaces must also contain the origin.

A flag can be thought of as an ordered basis of our vector space. That is, every Ai is spanned by Ai−1

plus a single vector ei ∈ A⊥i−1, and we see that (e1, . . . , en) is then a basis for V , where dimV = n. Now
the fact that Fl(V ) is a manifold is clear when we consider that we can transform any flag into any other
flag by an element of GL(n,C) (if we assume V = Cn, the real case is entirely analogous). In other words
GL(n,C) acts transitively on Fl(V ). If we fix a flag A in V , we can define the surjective map

GL(n,C)
I // Fl(V ) : ϕ � // ϕ(A).

We now have by the first isomorphism theorem that

Fl(V ) ' Gl(n,C)

ker I
.

Now by [War83, p. 120] the quotient of a Lie group by a closed topological subgroup is a Lie group,
making Fl(V ) in particular into a manifold. The flag bundle of a vector bundle is then obtained by
taking the flag manifold of the fibers.

Proposition 3.5.2: The flag bundle of a complex vector bundle Fl(E) is precisely the split manifold
F (E). N
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Proof: Suppose E is rank-2, then on each fiber we would just have flags `p ⊂ Ep, making P (E) = Fl(E).
But for rank-2 bundles P (E) is precisely the split manifold, as we noted in the proof of Proposition 3.3.1.

Suppose now in general we have a rank-n vector bundle E and note that the projectivication P (E) is
on each fiber precisely the collection of all one-dimensional subspaces `p of Ep. For our two dimensional
subspaces of our flag we look at P (Q(E)). Recall that Q(E) is defined by the tautological exact sequence,

0 // S(E) // σ∗E // Q(E) // 0,

where σ : P (E) → M is the projection. For `1 ∈ P (E)|p, the fiber of S(E) at `1 is the set of points
in `1 seen as a line in Ep. The fiber at `1 in σ∗E is then the whole of Ep ' Cn. Now Q(E)|`1 =

σ∗Ep/S(E)|`p = Cn/`1, in other words Q(E)|`1 is exactly the orthogonal complement of the line `1. Note
that now P (Q(E))|`1 is the set of all the lines orthogonal to `1. Let `2 ∈ P (Q(E))|`1 , then we get the
sequence `1 ⊂ (`1, `2) ⊂ Ep where with (`1, `2) we denote the subspace of Ep spanned by the two lines.
In this way P (Q(E))|`1 defines all the two dimensional subspaces in which `1 is contained, and hence
P (Q(E)) is the set of all such partial flags that end at dimension 2 (i.e. sequences A1 ⊂ A2 ⊂ Ep).

σ∗E|`1

`1

`2

Q(E)|`1

`1 ⊂ (`1, `2) ⊂ Ep

Figure 3.3: The schematic summary of the construction above.

This construction then generalizes easily to P (Qk(E)) for k < n − 1. For all i < k choose some
`i+1 ∈ P (Qi−1(E))|`i so that we get a sequence,

`1 ⊂ (`1, `2) ⊂ · · · ⊂ (`1, . . . , `k) ⊂ Ep.

By the exact sequence

0 // S(Qk−1(E))|`k // σ∗(Qk−1(E))|`k // Qk(E)|`k // 0,

and the fact that S(Qk−1(E))|`k = `k and σ∗(Qk−1(E))|`k = Qk−1(E)|`k we have that Qk(E)|`k is
the orthogonal complement of `k in Qk−1(E)|`k . Therefore if we take some `k+1 ∈ P (Qk(E))|`k we
immediately get that `k+1 is orthogonal to all `i for i ≤ k. Hence we can extend the sequence we got
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above,

`1 ⊂ (`1, `2) ⊂ · · · ⊂ (`1, . . . , `k+1) ⊂ Ep.

It should be clear that P (Qk(E))|`k contains all such `k+1 which would extend the sequence. Hence we
conclude by induction that P (Qk(E)) contains all such partial flags of length k+ 1, and if we extend the
construction we conclude by induction that the flag bundle is the split manifold of E, that is Fl(E) =

P (Qn−2(E)) = F (E). �

3.6 The universal bundle

Recall that under a pullback to the flag bundle a vector bundle becomes a sum of line bundles.
Furthermore if we have ci(E) = 0 then by naturality also ci(f

∗E) = 0 for any f . Furthermore the
pullback of E by a constant map is a trivial bundle. All of these are examples of the idea that taking
pullbacks simplifies or ‘untwists’ the bundle. Recall that in the theory of covering spaces we have under
mild conditions that a universal cover always exists, that is a cover which has the property that any
other cover is covered by the universal cover. By a similar analog we will prove that there is a complex
vector bundle called the universal bundle such that any bundle is the pullback of the universal bundle. To
construct the universal bundle we will first construct a generalization of the projectivication of a vector
bundle called the Grassmannian:

Definition 3.6.1: Let V be a complex vector space of rank n. The Grassmannian Gk(V ) of V is the
set of all (n − k)-dimensional subspaces of V . The Grassmannian Gk(E) of a complex vector bundle is
then taken fiberwise. Note that Gn−1(V ) is the set of one-dimensional subspaces of V , which is exactly
the projectivication P (V ) of V . N

We will use a similar argument as in the construction of Fl(V ) to determine the manifold structure
of Gk(V ). Note that the group U(n) of unitary matrices acts transitively on Gk(V ). Fix an (n − k)-
dimensional subspace A ⊂ V . Any matrix in U(n) that leaves A invariant also fixes A⊥. Furthermore
the subgroup of unitary matrices under which A is fixed is U(n − k), whereas the subgroup that leaves
A⊥ fixed is U(k). Now the same argument as we used for Fl(V ) we have that,

Gk(V ) =
U(n)

U(n− k)× U(k)
.

Hence Gk(V ) is a manifold by the fact that the quotient of a Lie group by a closed subgroup is a manifold
[War83, p.120]. We can also associate a generalization of the universal subbundle S(V ) and universal
quotient bundle Q(V ) to the Grassmannian. The fiber of Sk(V ) → Gk(V ) at a point Λ ∈ Gk(V ) is the
set of points in the (n−k)-dimensional subspace Λ. The universal quotient bundle Qk(V ) is then defined
by the short exact sequence,

0 // Sk(V ) // Gk(V )× V // Qk(V ) // 0.

As a bundle over Gk(V ), the product bundle Gk(V )×V has rank n, hence we see that Sk(V ) has rank n−k
and Qk(V ) has rank k. These notions are then also naturally extended fiberwise to the Grassmannians
of complex vector bundles.
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We will then construct the universal bundle by using the universal quotient bundle. First we need the
following lemma:

Lemma 3.6.2: Let E → M be a rank-k complex vector bundle. If M admits a finite good cover then
there is a finite set of smooth sections which span the fiber of E at every point. N

Proof: Let {Ui} be a finite good cover of M . The restriction E|Ui is trivial by the fact that Ui
is contractible. Hence E|Ui admits sections {si, 1, . . . , si, k} that span the fibers of E|Ui . By Lemma
3.3.4 there exists a good cover Vi with Vi ⊂ Ui and functions fi : M → [0, 1] with Supp f ⊂ Ui and
fi|Vi = 1. Hence {fisi, 1, . . . , fisi, k} are globally defined sections that span the fibers of E|Vi , and
therefore

⋃
i{fisi, 1, . . . , fisi, k} is a set of smooth sections satisfying the requirements of this lemma by

the fact that Vi is a cover. �

Proposition 3.6.3: Let E →M be a rank-k complex vector bundle, and letM admit a finite good cover
and fiber spanning set of sections {s1, . . . , sn}. Then there exists a map f fromM to some Grassmannian
Gk(Cn) such that E is the pullback under f of Qk(Cn), that is, E = f∗Qk(Cn). N

Proof: Let V be the complex vector space spanned by {s1, . . . , sn}. Consider for p ∈M the evaluation
map evp : V → Ep given by evp(si) = si(p). This map is clearly surjective, hence im evp = Ep meaning
ker evp = V/im evp. Furthermore,

Qk(V )|ker evp =
(Gk(V )× V )|ker evp

Sk(V )|ker evp
=

V

ker evp
= Ep.

We define a map f : M → Gk(V ) given by p 7→ ker evp;

E

��

Qk(V )

��

M
f
// Gk(V )

Now this f pulls Qk(V ) back to E since (f∗Qk(V ))p = Qk(V )f(p) = Ep. Hence E = f∗Qk(V ) as required.
Furthermore by the way the sections {s1, . . . , sn} are constructed in Lemma 3.6.2, we can for any rank-k
vector bundle associate the just constructed V with Cn where n = m · k with m the cardinality of the
good cover. Hence we can actually find a map f̃ : M → Gk(Cn) such that f̃∗Qk(Cn) = E, proving the
proposition. �

This result can be used to show that the isomorphism class of a complex vector bundle is completely
determined by its Chern classes. Recall first that the pullbacks of two homotopic maps are isomorphic by
Proposition 2.3.4. The converse statement; that maps whose pullbacks are isomorphic are also homotopic
holds by [Hus75, 7.6], albeit with some restrictions:

Lemma 3.6.4: Let M be a manifold of dimension m. Then for any n ≥ k + m/2 and two maps
f, g : M → Gk(Cn), we have that if f∗Qk(Cn) ' g∗Qk(Cn) then f and g are homotopic. N

We now write Vectk(M, C) for the set of isomorphism classes of rank-k complex vector bundles over M .
We furthermore use [M, Gk(Cn)] to denote the set of homotopy classes of functions M → Gk(Cn). We
then have the following theorem:

Theorem 3.6.5: Let M admit a finite good cover. Then for all k there is an n sufficiently large such



45 3. Chern and Pontryagin classes

that there is a bijective correspondence

Vectk(M, C) ' [M, Gk(Cn)]

between isomorphism classes of rank-k vector bundles and homotopy classes of functions from M into
the complex Grassmannian Gk(Cn). N

Proof: First let n ≥ k + m/2 as in Lemma 3.6.4. Let [f ] ∈ [M, Gk(Cn)] be a homotopy class of
functions. Then we define the map α : [M, Gk(Cn)] → Vectk(M, C) by [f ] 7→ f∗Qk(Cn). This map
is well-defined because for [f ] = [g] we have f∗Qk(Cn) ' g∗Qk(Cn) by Lemma 2.3.4. The map is also
injective for suppose f∗Qk(Cn) = g∗Qk(Cn), then Lemma 3.6.4 asserts that the two maps are homotopic.

For the inverse map β : Vectk(M, C) → [M, Gk(Cn)] we will by Proposition 3.6.3 have for every
[E] ∈ Vectk(M, C) a map f : M → Gk(Cn) such that f∗Qk(Cn) ' E. We then take β[E] = [f ]. This
map is furthermore well-defined because for E ' F we have f∗Qk(Cn) ' F ' E, and if f is homotopic to
g then f∗Qk(Cn) ' g∗Qk(Cn) making the map injective as well. Finally per construction the two maps
are clearly inverse to each other. We hence conclude the theorem. �

We can use this theorem to show that Chern classes characterize the vector bundle in the following sense.
Suppose we have a transformation T : Vectk( · , C) → H∗( · ). Furthermore assume T is natural in the
sense that it respects naturality of both objects, i.e. T (f∗E) = f∗T (E). Clearly taking any polynomial
in Chern classes is such a transformation. In fact, we have the following theorem,

Theorem 3.6.6: Let T be as above, then T : Vectk(M, C) → H∗(M) can be written as the same
polynomial in Chern classes for any M admitting a good cover. N

Proof: Let E be a rank-k complex vector bundle, and let f be such that f∗Qk(Cn) = E for some n.
We have that the cohomology of the Grassmannian is generated by the Chern classes of Qk(Cn) [BT82,
p.293]. We have,

T (E) = T (f∗Qk(Cn)) = f∗T (Qk(Cn)).

But now T (Qk(Cn)) ∈ H∗(Gk(Cn), and hence it is a polynomial in the Chern classes,

T (Qk(Cn)) = PT (c1(Qk(Cn)), . . . , ck(Qk(Cn))).

By naturality we now have,

T (E) = f∗T (Qk(Cn)) = f∗PT (c1(Qk(Cn)), . . . , ck(Qk(Cn))) = PT (c1(E), . . . , ck(E)).

The polynomial PT is clearly independent of E, proving the theorem. �

At the beginning of this part we introduced Chern classes as a somewhat more general object than the
Euler class. We then went on to prove a wealth of properties of Chern classes and introduced the very
useful splitting principle. Then we introduced the Pontryagin classes and numbers, which will turn out
to be very important in the proof of existence of exotic spheres. Although its not required for the next
part, we then finally introduced flag bundles and introduced the universal bundle. These two objects give
a clear demonstration of the power of Chern classes when proving identities related to vector bundles.
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4 Exotic spheres

In this part we will consider an application of the characteristic classes introduced in the previous section.
Namely, we will prove the existence of an ‘exotic’ differential structure on S7. That is, we will construct
a space homeomorphic but not diffeomorphic to S7. For this we first need to introduce some new
formalisms. We will mainly follow Kreck’s exposition of Milnor’s original proof, as well as the proof
provided by Milnor in his original paper (see [Kre10] and [Mil56] respectively). Most of the literature
on this topic uses singular cohomology with Z or Z/2Z coefficients. We have chosen to use de Rham
cohomology, which required some of the proofs to be adjusted.

4.1 Cobordism

In this section we will define a new equivalence relations on manifolds called cobordism. The contents
of this section are mainly based on [MS74]. From Stokes’ theorem we know that a manifold ∂M being
the boundary of another manifold M has important consequences for integrating over ∂M . Namely if we
restrict a on M globally defined form ω to ∂M , then∫

∂M

ω =

∫
M

dω.

If ω is then closed, the integral becomes zero. For this reason and others one can wonder when a manifold
is the boundary of another manifold. This property is characterized by the equivalence class known as
cobordism:

Definition 4.1.1: We call two compact smooth manifolds (without border) M, N cobordant if there
exists a compact smooth manifold with boundary T such that ∂T = M t−N , where −N denotes N with
reversed orientation. We call T the cobordism of M and N . N

T

S1

S1 t S1

Figure 4.1: A cobordism T between S1 and S1 t S1

It is easy to see that cobordism is an equivalence relation. For exampleM is cobordant toM by cobordism
M × [0, 1]. Reflexivity is also trivial, and transitivity can be understood from Figure 4.2, where one can
argue [MS74, p. 201] that the ‘kink’ at the middle ring can be smoothened out.

Note that the compactness requirement is essential, or we should at least require the spaces to be closed
when embedded into Rn relative to the subspace topology, for otherwise the space [0, 1)×M would always
make any manifold M cobordant to the empty set, making cobordism a trivial relation.

Now consider the set Ωn of all cobordism classes. If we take disjoint unions as addition and ∅ as the zero
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Figure 4.2: Diagram showing reflexivity of cobordism with S1 t S1 t S1 ∼ S1 ∼ S1 t S1 as
example.

element, then Ωn becomes an Abelian group. That is, an n-dimensional manifold is null-cobordant if it
is the boundary of some (n + 1)-dimensional smooth manifold with boundary. Disjoint union is a well-
defined group operation because suppose A1, A2 are cobordant to respectively B1, B2 with cobordisms
T1, T2 then A1 tA2 is cobordant to B1 tB2 with cobordism T1 t T2. Furthermore inversion is given by
orientation reversal, since M t −M is the boundary of M × [0, 1].

We can also consider the Cartesian product × : Ωn×Ωm → Ωn+m sendingM,N 7→M×N . IfM,M ′ and
N ′, N are cobordant, thenM×N is cobordant toM×N ′, which is then cobordant toM ′×N ′. Thus the
Cartesian product makes Ω∗ = ⊕iΩi a graded ring (n.b. we don’t require a ring to have a multiplicative
identity). We call the ring Ω∗ the cobordism ring. The orientation on any n-dimensional manifold is
determined by a non-vanishing n-form. Therefore if we have M, N respectively m and n dimensional
with respective orientation forms ω, τ , we can define an orientation on M ×N by ω ∧ τ = (−1)mnτ ∧ ω.
This also means that M × N = (−1)nmN ×M , which makes × a graded commutative product on Ω∗,
just like the wedge product on the space of forms Ω∗(M).

From Figures 4.1 and 4.2 above we can more or less immediately see that any disjoint union of copies
of S1 is cobordant to any other disjoint union of copies of S1. This is actually true because S1 is the
boundary of the disk D2. More generally it turns out that Ω1 = 0, and even Ω2 = Ω3 = 0 [MS74, p. 203].
On the other hand not all cobordism groups are trivial, for example Ω0 = Z, which can be intuitively
understood by noting that a cobordism between a set of one point and a set of two points would have to
look something like the one below, but this is clearly not a smooth manifold with boundary. And since
the set of one point evidently generates Ω0 this shows that Ω0 = Z.

In general we have that Ω4k is cyclic for any k due to the the following theorem. Refer to [MS74, §18]
for a proof.

Theorem 4.1.2: The cobordism ring Ω∗ ⊗ Q (with torsion removed) is independently generated by
CP 2,CP 4,CP 6, . . .. That is set of all the products,

CP 2i1 × · · · × CP 2ir ,

where {i1, . . . , ir} is a partition of k, form a basis for Ω4k. The groups Ωk with k 6= 0 mod 4 are finite
and hence have Ωk ⊗Q = 0. N
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We will now show a connection between cobordism and the Pontryagin numbers as defined in Definition
3.4.3.

Proposition 4.1.3: The Pontryagin numbers are cobordism invariant, i.e. the have the same value
for cobordant manifolds. Furthermore the Pontryagin numbers give for each partition I of k a group
homomorphism Ω4k → R for each k. N

Proof: We first note that the Pontryagin numbers flip sign under orientation reversal. This is because
the Pontryagin classes remain invariant under orientation reversal. The Euler class flips sign under
orientation reversal, but recall from Proposition 3.2.6 that under orientation reversal we have ci(TM) 7→
(−1)n−ici(TM). Since the dimension of our manifold is even, and we only consider the even Chern
classes, we conclude invariance of the Pontryagin classes under orientation reversal. Then under disjoint
union of two manifolds M tN we simply get,

pI(M tN) =

∫
MtN

pi1(M tN) ∧ · · · ∧ pir (M tN)

=

∫
M

pi1(M) ∧ · · · ∧ pir (M) +

∫
N

pi1(N) ∧ · · · ∧ pir (N) = pI(M) + pI(N).

Since pq(M t N)|M = pq(M) by naturality for all q. The cobordism invariance is then a result of
the naturality of Pontryagin classes (which is deduced trivially from naturality of Chern classes). We
will show that pI(∂M) = 0 for any smooth manifold M . Let j be the inclusion ∂M ↪→ M , then
j∗pi(M) = j∗pi(TM) = pi(j

∗TM). Now by the collar neighborhood theorem there is a neighborhood
V ⊂M diffeomorphic to ∂M × [0, 1) [MS74, p. 200]:

Theorem 4.1.4: (Collar neighborhood) Let M be a smooth manifold with boundary. There exists an
open neighborhood V of ∂M in M which is diffeomorphic to ∂M × [0, 1). This neighborhood V is called
the collar neighborhood. This construction is shown in Figure 4.3. N

M

∂M

V

Figure 4.3: Visualization of a collar neighborhood. Here V ⊂M is a neighborhood of ∂M×[0, 1).

Let f be this diffeomorphism. Since clearly the image of j∗ lies in V we have pi(j∗TM) = pi(j
∗TV ) =

pi(j
∗f∗T (∂M × [0, 1)). But T (∂M × [0, 1)) = T (∂M) ⊕ R, hence j∗(pi(TM)) = j∗f∗pi(T∂M) by the

Whitney product formula. Since integration is diffeomorphism invariant up to sign we now get,

0 =

∫
M

∧
k

dpik(TM) =

∫
j(∂M)

∧
k

pik(TM) =

∫
∂M

∧
k

j∗f∗pik(T∂M) = j∗f∗pI(∂M).

Where the first part is due to Stokes’ theorem and the fact that the Pontryagin class is closed, and the∧
is short hand for the multiple wedging of forms. Now since j and f are diffeomorphisms (onto their
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images), we conclude pI(∂M) = 0 and hence the Pontryagin numbers are cobordism invariant. By the
remarks at the beginning of this proof we conclude that the map Ω4k → R induced by M 7→ pI(M) is a
homomorphism. �

4.2 The signature

Consider a 4k-dimensional oriented manifold M . By integrating over forms we get a bilinear pairing
S(M) : H2k

c (M)×H2k
c (M)→ R called the intersection form. It is explicitly given by,

(α, β) 7→
∫
M

α ∧ β.

By the even degree of both forms we have α ∧ β = β ∧ α making S(M) symmetric. Note that reversing
orientation on M changes the sign of the intersection form.

With respect to any basis xi we can see S(M)(xi, xj) as a matrix. Since this matrix is symmetric we
can always diagonalize it by choosing some other basis ei. We see that all S(M)(ei, ei) are non-zero,
for if S(M)(ei, ei) = 0 then for any x we must have S(M)(ei, x) = 0 meaning ei has to be exact by
Poincaré duality. Hence we conclude that S(M) is non-degenerate. Now by Sylvester’s law of inertia
[Syl52] we have that the difference in amount of positive and negative entries is invariant under choice of
diagonalizing basis ei. This leads to the definition of the signature τ(M) of M as

τ(M) =
∑
i

sgn S(M)(ei, ei),

where sgn denotes the sign function (we define sgn(0) = 0). For manifolds with dimension not divisible
by 4 we define τ(M) = 0. Actually we call the signature of any bilinear form the difference in positive
and negative The signature has several properties, most notably that it is cobordism invariant. In fact
we shall prove the following proposition:

Proposition 4.2.1: Let M be a compact smooth manifold, then the map M 7→ τ(M) induces a ring
homomorphism Ω∗ 7→ Z. That is, for any two compact smooth manifolds M,N we have τ(∂M) = 0,
τ(M tN) = τ(M) + τ(N) and τ(M ×N) = τ(M)τ(N). N

We will begin with cobordism invariance, the proof of which is based on [Kre10, p. 148-150]. Most of the
work of the proof lies in the following lemma, which is essentially a result of Poincaré duality generalized
to manifolds with boundary.

Lemma 4.2.2: Let W be a 2k + 1-dimensional compact smooth manifold with boundary. By the collar
neighborhood theorem we have an embedding f : [0, 1) × ∂W → W . This results in an embedding
j : ∂W →

◦
W given by j(x) = f( 1

2 , x). Consider the maps j∗ : Hk(
◦
W )→ Hk(∂W ), and j∗ : Hk

c (∂W )→
Hk
c (
◦
W ). Then we have that ker j∗ = im j∗ under the identification of H∗(M) with H∗c (M) for compact

manifolds M . N

See [Kre10, p. 149] for a proof. By naturality of Poincaré duality (Corollary 1.4.5), we have j∗ = (j∗)
∗

under the identification Hk(W ) = Hk
c (W ). Recall that for any linear map f : V → W we have V '
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ker f ⊕ im f∗. Hence,

dimHk
c (∂W ) = dim(ker j∗ ⊕ im (j∗)

∗) = 2 dim(ker j∗) = 2 dim(im j∗).

We will now need the following linear algebra lemma:

Lemma 4.2.3: Let b : V × V → R be a symmetric non-degenerate bilinear form on a finite-dimensional
vector space V . Suppose there is a subspace U ⊂ V with 2 dimU = dimV such that for all x, y ∈ U we
have b(x, y) = 0, then the signature τ(b) of b is 0. N

Proof: Let {ei} be a basis of U , and let {ji} be a basis for U⊥ such that b(fi, ej) = δij , b(ei, ej) = 0

and b(fi, fj) = 0. Such a basis exists by the non-degeneracy of b [Kre10, p.150]. We then have that
{e1, . . . , en, f1, . . . , fn} forms a basis for V . Now {ei + fi, ei − fi} also forms a basis, and furthermore
b(ei + fi, ej ± fj) = δij ± δij and b(ei − fi, ej ± fj) = −δij ± δij . Now in this basis b is diagonalized, and
clearly has as many positive as negative entries on the diagonals making its signature vanish. �

Proof of Proposition 4.2.1: Recall that the intersection form S(∂M) is symmetric and non-
degenerate. Suppose we take some α, β ∈ im j∗, i.e. let α = j∗α̃, β = j∗β̃ then,

S(∂M)(α, β) =

∫
∂M

j∗α̃ ∧ j∗β̃ =

∫
j(∂M)

α̃ ∧ β̃.

On the other hand α, β ∈ ker j∗ by Lemma 4.2.2 hence,

0 =

∫
j(∂M)

j∗α ∧ j∗β =

∫
j(∂M)

j∗j
∗α̃ ∧ j∗j∗β̃,

but since j is a diffeomorphism onto its image, we have by the definitions of j∗ and j∗ that j∗j∗ = 1 so
that, ∫

j(∂M)

α̃ ∧ β̃ = 0,

making in summary S(∂M)(α, β) = 0. Therefore S is identically zero on a 1/2 dimHk
c (W )-dimensional

subspace, and by Lemma 4.2.3 we conclude that τ(∂M) = 0 for any smooth manifold M .

To prove that τ(M) is a ring homomorphism we first need to check that τ(M tN) = τ(M)t τ(N). This
holds since clearly the signature form satisfies S(M tN)(α, β) = S(M)(α|M , β|M ) +S(N)(α|N , β|N ) and
hence acts separately on bases for Hm/2(M) and Hn/2(N). Hence also the diagonalization can be done
independently, and we get τ(M tN) = τ(M) + τ(N).

Finally we just need to check multiplicativity, i.e. τ(M × N) = τ(M)τ(N). This requires a little bit
more work. We will follow the proof of [Sto68, p. 220-221]. Let P = M ×N , and let these spaces have
respective dimensions p, m, and n. Suppose p 6= 0 mod 4 then at least one of m and n also has to be
non-divisible by 4, meaning τ(M)τ(N) = 0, and multiplicativity holds. Now assume p = m+ n = 4k for
some k. By the Künneth formula we have that,

H2k(P ) =

2k⊕
s=0

Hs(M)⊗H2k−s(N).
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The form S(P ) acts separately on each of these Hs(M) ⊗H2k−s(N). Suppose therefore we have some
ω ∈ Hs(M) ⊗ H2k−s(N) and τ ∈ Ht(M) ⊗ H2k−t(N) for some s, t. We see that ω ∧ τ = 0 if either
s + t > m or (2k − s) + (2k − t) > n. Then by the identity 4k = m + n we have t = m − s. Hence for
s < m/2 the signature acts separately on subspaces of the form

Vs = Hs(M)⊗H2k−s(N)⊕Hm−s(M)⊗H2k+s−m(N).

Whereas for s = m/2 these are of the form,

Vm/2 = Hm/2(M)⊗Hn/2(N).

Let s < m/2 and a choose basis {xi} for Hs(M) and a basis {yj} for Hm−s(N). By Poincaré
duality and compactness we can identify Hm−s(M) with (Hs(M))∗, for which we can choose
a dual basis {x∗i } such that

∫
M
xi ∧ x∗j = δij , and similarly we get a basis

{
y∗j
}

such that∫
N
yi ∧ y∗j = δij . Now

{
xi ⊗ yj , x∗i ⊗ y∗j

}
ij

is a basis for Vs. On this basis we a have non- zero
pairing S(P ) only for S(P )(xi ⊗ yj , x

∗
i ⊗ y∗j ) and S(P )(x∗i ⊗ y∗j , xi ⊗ yj). If we order this basis

as {x1 ⊗ y1, x
∗
1 ⊗ y∗1 , . . . xa ⊗ y1, x

∗
a ⊗ y∗1 , x1 ⊗ y2, x

∗
1 ⊗ y∗2 , . . . , xa ⊗ yb, x∗a ⊗ y∗b} for a = dimHs(M) and

b = dimH2k−s(N) respectively, then the matrix of S(P ) takes the following form:

S(P ) =



0 1

1 0 0
. . .

0 0 1

1 0


Each block of

(
0 1
1 0

)
has eigenvalues 1,−1, therefore there are as many positive eigenvalues as there are

negative eigenvalues, meaning the subspace Hs(M) ⊗ H2k−s(N) has no net effect on the signature of
P . Hence the signature is completely determined by the values of the intersection form on forms of type
ω ∧ τ with ω, τ ∈ Hm/2(M)⊗Hn/2(N). Assume m,n = 0 mod 4 and let {xi} be a basis for Hm/2(M)

that diagonalizes S(M) and let {yj} be a basis that diagonalizes S(N). Then we have,

S(P )(xi ⊗ yj , xu ⊗ yv) = S(M)(xi, xu)S(N)(yj , yv).

We get,

τ(P ) =

a,b∑
i,j=0

sgn [S(M)(xi, xi)S(N)(yj , yj)] = τ(M)τ(N),

where a = dimHm/2(M) adn b = dimHn/2(N). Thus we get multiplicativity for m,n = 0 mod 4. The
only remaining possibility is that both m,n = 2 mod 4. In that case we have that m/2 is odd, meaning
forms ω, τ ∈ Hm/2(M) are of odd degree and we get ω ∧ τ = −τ ∧ ω, hence the intersection forms
S(M) and S(N) are both anti-symmetric. We can similarly see that S(P ) must have a anti-symmetric
matrix representation. Let in any case {xi} be a basis for Hm/2(M) with dual basis {x∗i }, and similarly
{yj} ,

{
y∗j
}
for Hn/2(N). If we order the basis as xi ⊗ yj , x∗i ⊗ yj , xi ⊗ y∗j , x∗i ⊗ y∗j , then for each pair i, j
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we get matrix,
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


This matrix has eigenvalues −1,−1, 1, 1 and hence gives a vanishing signature. This way we see that τ(P )

has to vanish as well. And hence τ(P ) = τ(M)τ(N). We conclude that the signature indeed induces a
ring homomorphism Ω∗ → Z. �

Our most important result in this section will be the Hirzebruch signature theorem. In order to state
this theorem we first need to introduce the L-genus of a manifold, for which in turn we need to make
a short digression on multiplicative sequences. Suppose we have a commutative graded algebra A∗ over
some commutative ring Λ (n.b. A∗ is not skew/graded commutative). Furthermore suppose we are given
a sequence of polynomials,

K1(x1), K2(x1, x2), K3(x1, x2, x3), . . .

such that xi ∈ Ai is of degree i and each Kn is homogeneous of degree n. For the formal sum x = 1 +

x1 + x2 + · · · we then define a new polynomial by,

K(x) = 1 +K1(x1) +K2(x1, x2) + · · ·

Definition 4.2.4: The polynomials Kn form a multiplicative sequence if we have,

K(xy) = K(x)K(y).

for any graded algebra A∗ over a commutative ring Λ and x = 1 + x1 + x2 + · · · , y = 1 + y1 + y2 + · · ·
with xi, yi ∈ Ai of degree i. N

Definition 4.2.5: Suppose we have some formal power series f(t) = 1 + λ1t + λ2t
2 + λ3t

3 + · · · with
constant term equal to 1. Then we can define a multiplicative sequence {Kn} from f(t) by requiring the
following identity to hold:

K(1 + t) = f(t)

for any element t ∈ A1 of degree 1. See [MS74, p.222] for a proof of existence and uniqueness of a
multiplicative sequence satisfying this property. We call the multiplicative sequence {Kn} obtained this
way the multiplicative sequence belonging to the power series f(t). N

Example 4.2.6: The second element K2 of the multiplicative sequence belonging to some power series
f(t) = 1 + λ1t+ · · · is given by,

K2(a, b) = λ2a
2 + (λ2

1 − 2λ2)b. N

Proof: We can expand the product K(1 + x1)K(1 + x2) and only consider terms of degree at most 2.
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On the one hand we get

K(1 + x1)K(1 + x2) = K(1 + x1 + x2 + x1x2) = 1 +K1(x1 + x2) +K2(x1 + x2, x1x2) +O(3),

where O(3) denotes all terms of degree 3 or higher. On the other hand,

K(1 + x1)K(1 + x2) = (1 + λ1x1 + λ2x
2
1 + · · · )(1 + λ1x2 + λ2x

2
2 + · · · )

= 1 + λ1(x1 + x2) + λ2
1x1x2 + λ2(x2

1 + x2
2) +O(3).

Equating terms of degree 2 we get,

K2(x1 + x2, x1x2) = λ2
1x1x2 + λ2(x2

1 + x2
2).

Now defining a = x1 + x2 and b = x1x2 we obtain,

K2(a, b) = λ2
1b+ λ2(a2 − 2b).

By which we conclude the result. �

This procedure can be generalized to compute Kn(x1, . . . , xn) for any power series, see [Hir78, 1.2.2].
Another important construction related to multiplicative sequences is the K-genus:

Definition 4.2.7: Let {Kn} be a multiplicative sequence. The K-genus K[M ] of a manifold M of
dimension m is defined to be 0 if m 6= 0 mod 4 and if m = 4n it is defined by

K[M ] =

∫
M

K(p(M)) =

∫
M

Kn(p1(M), . . . , pn(M)).

Equality of second and last term follows from the fact that Kn is the only term of K of degree 4n, and
hence the only term with non-trivial integral. N

Proposition 4.2.8: The correspondence M 7→ K[M ] gives a ring homomorphism Ω∗ → R. N

Proof: By the cobordism invariance of the Pontryagin numbers, we know that the K-genus is cobordism
invariant. From the definition of the K-genus we also clearly have K[M t N ] = K[M ] + K[N ]. Now
K[M ×N ] = K[M ]K[N ] can be seen as follows. Let M and N have respectively degree m and n. Then
integration over M ×N of forms with degree unequal to m+ n gives 0. Hence we have that

K[M ×N ] =

∫
M×N

K(p(M ×N)).

Since T (M ×N) = TM ⊕ TN [MS74, p.27] we have by the Whitney product formula 3.4.2 that∫
M×N

K(p(M ×N)) =

∫
M×N

K(p(M)p(N)) =

∫
M×N

K(p(M)) ·K(p(N)).

Which is equal to K[M ]K[N ] and we conclude that the correspondence M 7→ K[M ] gives a ring
homomorphism Ω∗ → R. �
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There is one specific K-genus we are most interested in. Consider the power series

f(t) =

√
z

tanh
√
z

=

∞∑
k=0

22kB2kz
k

(2k)!
, (4.1)

with Bi the i-th Bernoulli number. Then let Li be the multiplicative series belonging to f(t). For example
note that L1 = 22B2/2!p1 = 1/3p1 and from (4.2.6) we also have,

L2 =
1

45
(7p2 − p2

1). (4.2)

It turns out that there is a deep relationship between the L-genus and the signature:

Theorem 4.2.9: (Hirzebruch signature theorem) LetM be an oriented compact smooth manifold. Then
the signature τ(M) and the L-genus L[M ] are equal. N

Proof: Since both the signature and the L-genus are ring homomorphisms Ω∗ → R they also immediately
give a ring homomorphism Ω∗ ⊗ Q → R. We hence just have to check that they agree on the set of
generators of Ω∗ ⊗ Q. By Theorem 4.1.2 the generators for Ω4k are given by CP 2,CP 4, . . ., so we have
to check that the theorem holds on CP 2k for all k.

From Theorem 3.1.2 we know that the cohomology H2k(CP 2k) is generated by a single element xk, with
x ∈ H2(CP 2k) given by minus the Euler class of the universal subbundle of CP 2k. And furthermore we
have that

S(CP 2k)(xk, xk) =

∫
CP 2k

xk ∧ xk = 1,

making the signature τ(CP 2k) = 1 as well.

Now we need to prove that the L-genus of CP 2k is also equal to 1. Recall from Proposition 3.4.7 that the
total Pontryagin class of CP 2k is given by (1 + x2)2k+1, with x defined the same as above. Per definition
of L we then have,

L(p(CP 2k)) = (L(1 + x2))2k+1 =

(
x

tanh(x)

)2k+1

. (4.3)

Here we used in the first step the fact that {Li} is a multiplicative sequence. In the second step we
used that L is defined by a power series, where we see x2 as an element of degree 1 over the algebra⊕

iH
4i(CP 2k). We will now compute

∫
CP 2k L[CP 2k](p(CP 2k)). To determine this we need to know the

x2k coefficient a2k in the power series expansion of the expression in Equation (4.3), since this is the only
part of (4.3) that does not have trivial integral. From complex analysis we know that if we take x to
be complex valued variable, the x2k term in the power series is given by dividing by 2πix2k+1 and then
integrating around the origin. In other words,

a2k =
1

2πi

∮
x2k+1

x2k+1(tanh(x))2k+1
=

1

2πi

∮
1

(tanh(x))2k+1
.

Now we introduce the substitution u = tanhx. We have,

du

dx
=

1

cosh2 x
= (1− tanh2 x) = 1− u2,
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hence dx = du/(1− u2) = (1 + u2 + u4 + u6 + · · · )du and we get,

1

2πi

∮
1

(tanh(x))2k+1
dx =

1

2πi

∮
(1 + u2 + u4 + u6 + · · · )

u2k+1
du =

1

2πi

∮
u2k

u2k+1
du = 1

by applying Cauchy’s integral theorem. From this we can conclude that

L[CP 2k](p(CP 2k)) =

∫
CP 2k

x2k = 1.

Showing the signature and L-genus are indeed the same for complex projective spaces, and since
by Theorem 4.1.2 the complex projective spaces generate the cobordism ring, we conclude that the
Hirzebruch signature theorem holds for arbitrary cobordism classes. �

4.3 Milnor manifolds

The exotic 7-spheres we will construct later this section turn out to be part of a class of manifolds we
call Milnor manifolds. These manifolds are constructed as follows. Endow S3 with a multiplicative group
structure by seeing S3 as a subgroup of H generated by the unit vectors in H. We define for k, ` ∈ Z a
map fk, ` : S3 × S3 → S3 × S3 given by,

(x, y) 7→ (x, xkyx`).

Then we define the set of Milnor manifolds Mk, ` by,

Mk, ` = D4 × S3 ∪fk, ` −D4 × S3,

where the minus denotes reversal of orientation and A∪f B is constructed as AtB with the equivalence
relation a ∼ b if a ∈ ∂A, b ∈ ∂B and b = f(a). In other words we use f to glue the boundaries of the
two spaces together. Note that in our case fk, ` is a diffeomorphism since it has inverse f−k,−`. Hence
fk, ` twists one of the boundaries before gluing them together.

D4 S3

fk,`

Figure 4.4: Visualization of the construction of Mk,` out of two copies of D4 × S3.

One can wonder how S7 can be constructed as the union of two copies of D4 × S3. It is easy to show
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that this is possible if we consider S7 as the boundary of D8. We then have,

S7 = ∂(D8) = ∂(D4 ×D4)

= (∂D4 ×D4) ∪ (D4 × ∂D4)

= D4 × S3 ∪D4 × S3.

Therefore we conclude that with the gluing function obtained from the description above we can construct
S7 out of the union of two copies of D4 × S3.

We will now spend the rest of this section computing the cohomology of the Milnor manifolds Mk,`. This
computation is not necessary for subsequent sections, but it may provide the reader with a better intuition
for these spaces. In order to compute the cohomology we will consider the Mayer-Vietoris sequence with
Mk, ` = U ∪ V , where U and V are respectively either of the two copies of D4 × S3 slightly extended
across their boundary (in such a way that the set becomes open and U ∪ V covers Mk, ` while still being
homotopic to the original space). We now wish to know the cohomology H∗(U)⊕H∗(V ) and H∗(U ∩V ).
The first is simply the direct sum of the cohomology of S3 which is R2 in dimension 0, 3 and 0 elsewhere.

Note that U ∩ V is homotopic to S3 × S3, which by the Künneth formula has cohomology,

Hq(S3 × S3) =


R for q = 0, 6

R2 for q = 3

0 elsewhere.

Now the only non-trivial parts in the Mayer-Vietoris sequence are,

0 // H0(Mk, `) // R2 // R // 0 (4.4)

0 // H3(Mk, `)
r∗ // R2

i∗U−i
∗
V // R2 d∗ // H4(Mk, `) // 0 (4.5)

0 // R // H7(Mk, `) // 0 (4.6)

The first gives by the splitting Lemma 3.3.2 that H0(Mk, `) = R, and the third gives immediately
H7(Mk, `) = R. We will now focus on the second non-trivial part. We require the following lemma:

Lemma 4.3.1: The map i∗U − i∗V : H3(U) ⊕H3(V ) → H3(U ∩ V ) has rank 1 if k + ` = 0 and rank 2
otherwise. N

Proof: We first note that this is essentially the same as considering the map,

∆ : H3(D4 × S3)⊕H3(D4 × S3)→ H3(S3 × S3)

induced by the homotopy equivalences of these spaces to U, V and U ∩ V respectively. Note that ∆ is
homotopic to the map ∆(ω, τ) = i∗ω − j∗τ where i and j are the inclusions S3 × S3 ↪→ D4 × S3. Now
by the way the gluing map f∗k,` works we see that i ◦ fk,` = j (or j ◦ fk,` = i)

Now we have ∆(ω, τ) = i∗x−f∗k,`i∗y. Since i∗ is a non trivial linear map R→ R2 it must be of form x 7→
(µx, νx). By a result of Kreck [Kre10, p. 116], we know what the map f∗k,` : H3(S3 × S3)→ H3(S3 × S3)
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does on singular homology. Namely with respect to a certain basis it has matrix,

f∗k,` =

(
1 0

k + ` 1

)

We can translate this result to de Rham cohomology as follows. Consider the de Rham isomorphism
S : H∗dR(M) → H∗s (M) as defined in [Lee13, p.482]. Here the subscripts denote respectively de Rham
cohomology and singular cohomology. Let [σ] ∈ Hs

∗(M) be a chain, and let ω be a form, then we have
for a smooth map f : M → N that:

S(f∗ω)[σ] = S(ω)[f∗σ] = (f∗)
∗S(ω)[σ].

Where we see S(ω) ∈ H∗s (M) as a functional Hs
∗(M) → R. From this we conclude that in our specific

case we have that the map f∗k,` : H3(S3 × S3)→ H3(S3 × S3) induced by fk,` is given by,

f∗k,` = S−1fT∗k`S,

where S is an isomorphism and fT∗k,` is the adjoint of f∗k,`. Now in summary if we apply this to ∆ we
get

∆(x, y) = i∗x− f∗k,`i∗y =

(
µx

νx

)
− f∗k,`

(
µy

νy

)
.

Now since f∗k,` = S−1fT∗k,`S and since by linearity S(µy, νy) = (µ̃y, ν̃y) for some µ̃, ν̃, we get

∆(x, y) = S−1(Si∗x− fT∗ Si∗y) = S−1

[(
µ̃ −µ̃− (k + `)ν̃

ν̃ −ν̃

)(
x

y

)]

The matrix between the square brackets has rank 1 if k + ` = 0 and rank 2 otherwise. Since S−1 is an
isomorphism, we conclude that ∆ has the same rank, and hence so does i∗U − i∗V . �

Consider again the following part of the Mayer-Vietoris sequence:

0 // H3(Mk, `)
r∗ // R2

i∗U−i
∗
V // R2 d∗ // H4(Mk, `) // 0.

Suppose k + ` 6= 0, then by exactness and the lemma above we have im i∗U − i∗V = R2 = ker d∗, hence
im d∗ = 0. However by exactness d∗ is surjective and hence H4(Mk,`) = 0. By the splitting Lemma 3.3.2
we have H4(Mk,`) = R for k + ` = 0, but this result is not important since our main interest will be in
the case k + ` 6= 0. Similarly we have 0 = ker i∗U − i∗V = im r∗, but by exactness r∗ is injective and hence
H3(Mk,`) = 0. This discussion can be summarized in the following proposition.

Proposition 4.3.2: The cohomology of Mk,` is given by,

Hq(Mk,`) =

{
R for q = 0, 7

0 otherwise.

that is, the cohomology of Mk,` is isomorphic to that of S7. N
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Since the cohomologies of S7 and Mk,` are isomorphic one could wonder whether the two spaces are also
homotopic to each other, or even homeomorphic or diffeomorphic. By the generalized Poincaré conjecture
[Sma61] we at least know that if Mk,` is homotopic to S7, it is also homeomorphic. It turns out that for
specific values of k and ` we can directly show that the Milnor manifold Mk,` is indeed homeomorphic
to S7, but not diffeomorphic. In the next section we will prove it is not always diffeomorphic to S7, and
then in the section after that we will show it is homeomorphic to S7.

4.4 Milnor manifolds are not all diffeomorphic to the 7-sphere

Since integration is diffeomorphism invariant up to sign, we see that the signature is invariant under
orientation preserving diffeomorphisms. By naturality of the Pontryagin classes we also see that the
Pontryagin numbers are invariant under orientation preserving diffeomorphisms. Furthermore both the
signature and Pontryagin numbers evidently change sign under orientation reversing diffeomorphisms.
The idea is then to use these invariants to show that Mk,` cannot be diffeomorphic to S7. To this end
we first introduce another invariant. Because the cobordism group Ω7 is trivial [MS74, p. 203] we can
for any 7-manifold find an 8-manifold that bounds it.

Lemma 4.4.1: (Milnor’s invariant) Let B be any 8-manifold with ∂B = M a 7-manifold. Define

q(B) =

∫
B

p1(B) ∧ p1(B),

and let τ(B) be the signature of B. Then λ(M) = 2q(B)− τ(B) is mod 7 independent of choice of B. N

The idea is then to show that λ(Mk,`) 6= λ(S7) = 0 for some k, ` and with some reasoning conclude that
the spaces cannot be diffeomorphic. Note that for the construction of λ(Mk,`) we need the characteristic
classes and signature of a manifold with boundary, and so far we have only introduced these for manifolds
without boundary. The definitions and related theorems are however very much analogous, and we will
refrain from going into detail about this. Consult [Kre10] for an exposition of how to define these objects
for manifolds with boundary.

Proof of Lemma 4.4.1: Let B and B′ be two 8-manifolds with boundary M . Let C = B tM −B′ be
the manifold obtained by gluing B to B′ by identifying their common boundary. We will compute the
signature of C. Applying the signature theorem to 8-manifolds we get by equation 4.2 that

τ(C) =

∫
C

1

45
(7p2(C)− p2

1(C)).

Then we have,

45τ(C) + q(C) =

∫
C

7p2(C)− p2
1(C) + p2

1(C) =

∫
C

7p2(C) = 0 mod 7,

since
∫
C
p2(C) ∈ Z due to Proposition 3.4.4. Now we have,

0 = 90τ(C) + 2q(C) = 2q(C)− τ(C) mod 7

Let ω ∈ H8(C), and let j be the inclusion M ↪→ C and i1, i2 the inclusions B,B′ ↪→ C respectively. Note
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that i2 is orientation reversing. We have,∫
C

ω =

∫
i1(B)∪i2(B′)

ω =

∫
i1(B)

ω +

∫
i2(B′)

ω −
∫
i1(B)∩i2(B′)

ω =

∫
B

i∗1ω −
∫
B′
i∗2ω −

∫
M

j∗ω.

Note that the last term vanishes by applying Stokes’ theorem. By naturality of the Pontryagin class we
get q(C) = q(B)−q(B′) and by also applying the signature theorem we similarly get τ(C) = τ(B)−τ(B′)

and hence we conclude,

2q(B)− τ(B) = 2q(B′)− τ(B′) = 0 mod 7,

proving the mod 7 invariance of λ(M) under choice of bounding manifold B. �

Corollary 4.4.2: If λ(M) 6= 0 then M is not diffeomorphic to S7. N

Proof: Clearly if we reverse the orientation onM then we get λ(−M) = −λ(M). Now supposeM admits
an orientation reversing diffeomorphism f : M → M , and let M = ∂B. Then f induces an orientation
preserving diffeomorphism M → ∂(−B), and hence we can identify M with ∂(−B). We conclude that
if M admits an orientation reversing diffeomorphism, then λ(M) = λ(−M) = 0. Note that S7 admits
an orientation reversing diffeomorphism, and by composition so does any manifold diffeomorphic to it.
Therefore if λ(M) 6= 0, then M is not diffeomorphic to S7. �

Recall that we constructed the Milnor manifolds Mk,` by taking D4 × S3 t −D4 × S3 and gluing the
boundaries together using some fk,`, where we see S3 as the unit vector sphere in H. We can see each
half as an S3 fiber bundle over D4. By the gluing we then obtain an S3 bundle Mk,` → S4. By extending
the gluing map to the unit ball D4 ⊂ H we can construct an analogous D4 bundle π : Ek,` → S4 over
S4. This way we have ∂Ek,` = Mk,`, and we can use Ek,` as bounding manifold to compute λ(Mk,`).

For the computation of λ(Mk,`) we need to know both q(Ek,`) and τ(Ek,`). To compute the former we
need a description of the tangent bundle TEk,`. By [Mil56, p.403] we have,

TEk,` = TS4 ⊕ π∗(Mk,`).

Since p1(TS4) = 0 we see by the Whitney product formula that p1(TEk,`) = π∗p1(Mk,`), where we take
the Pontryagin class of Mk,` seen as a sphere bundle. Now we only defined Pontryagin classes for vector
bundles, and there is a way to define characteristic classes for sphere bundles. However to avoid this
discussion we note that in this case we can find a rank-4 complex vector bundle Lk,` → S4 such that
taking the fiber wise unit sphere (that is replace C4 with S3) we obtain Mk,`. Then the characteristic
classes of Mk,` are defined as those of Lk,`. To compute p1(Mk,`) we will prove the following lemma:

Lemma 4.4.3: The map (k, `) 7→
∫
S4 p1(Mk,`) is a group homomorphism. In other words∫

S4

p1(Mk+k′,`+`′) =

∫
S4

p1(Mk,`) +

∫
S4

p1(Mk′,`′),

and (0, 0) 7→ 0. N

Proof: The proof proceeds by an analogous construction to [Kre10, p.157]. Consider the manifold M
given by D5 with two copies of D5 removed as shown below. We will slice M into three pieces M1, M2

and M3. We have ∂M = S4
3 − S4

1 − S4
2 if we orient S4

i as in the diagram below.
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M1

M2

M3

S4
3

S4
2S4

1

Consider now the following fiber bundle E over M . On Mi we define it to be Mi × S3 and we will glue
it together by using fk,` and fk′,`′ that is:

E = M1 × S3 ∪fk,` M2 × S3 ∪fk′,`′ M3 × S3,

where as before with ∪fk,` we mean taking disjoint union and using fk,` as gluing map along the bound-
aries. Note thatM1∩S4

1 andM2∩S4
1 are both homeomorphic to D4. Hence E|S4

1
= D4×S3∪fk,`D4×S3.

We consequently see that E|S4
1

= Mk,`, and similarly E|S4
2

= Mk′,`′ and E|S4
3

= Mk+k′,`+`′ , since
fk,` ◦ fk′,`′ = fk+k′,`+`′ . That is, on S4

3 we get contribution of both twisting at the M1-M2 border and
at the M2-M3 border. Let ij be the inclusion S4

j ↪→ ∂M , then

0 =

∫
M

dp1(E) =

∫
∂M

p1(E) =

∫
S4
3

i∗3p1(E)−
∫
S4
2

i∗2p1(E)−
∫
S4
1

i∗1p1(E).

Applying naturality and rearranging the terms we get,∫
S4
3

p1(Mk+k′,`+`′) =

∫
S4
1

p1(Mk,`) +

∫
S4
2

p1(Mk′,`′),

as required. Now for k = ` = 0 we just get the union of two copies of D4×S3 identified at the boundary.
Such gluing leaves S3 unchanged, but the boundary of the two D4’s get identified, making an S4, hence
M0,0 = S4 × S3. By Example 3.4.6 we know that the first Pontryagin class of Sn vanishes, and by the
fact that T (S3 × S4) = TS3 ⊕ TS4 [MS74, p.27] we then have

p(S3 × S4) = p(S3)p(S4) = 1,

making p1(M0,0) = 0. Hence we conclude that (k, `) 7→
∫
S4 p1(Mk,`) is a group homomorphism,

completing the proof. �

Consider the map R : Mk,` → M−`,−k given on fibers by (x, z) 7→ (x, z−1), in other words taking the
fiberwise multiplicative inverse. Evidently this map is an orientation reversing bundle isomorphism,
giving Mk,` = −M−`,−k (NB: k, ` not only flip sign but also order). To see R is indeed a well-defined
map Mk,` →M−`,−k we consider the gluing map fk,` and note

R(fk,`(x, z)) = R(x, xkzx`) = (x, x−`z−1x−k) = f−`,−k(R(x, z)).
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And hence it preserves the gluing on the boundaries used to defineMk,`. Now let H4(S4) be generated by
some α with

∫
S4 α = 1. Then since (k, `) 7→

∫
S4 p1(Mk,`) is a homomorphism we must have p1(Mk,`) =

(ak+b`)α for some coefficients a, b. But by applying the isomorphismR we obtain p1(Mk,`) = p1(M−`,−k).
Hence ak + b` = −a`− bk, meaning we actually have for some c ∈ Z:

p1(Mk,`) = c(k − `)α.

Since Mk,` is a complex bundle, we have

p(Mk,`) = c(Mk,` ⊕Mk,`) = c1(Mk,`)
2 − 2c2(Mk,`) = −2c2(Mk,`),

where the last step follows because c1(Mk,`) ∈ H2(S4) = 0. The top Chern class is the same as the Euler
class [BT82, p. 278], that is c2(Mk,`) = e(Mk,`). By [Kre10, p. 159] we then have∫

S4

e(M1,0) = −1 = −
∫
S4

α.

From which we conclude that p1(Mk,`) = 2(k − `)α. Now finally since p(S4) = 1 and TEk,` = TS4 ⊕
π∗(Mk,`) we get,

p1(Ek,`) = 2(k − `)π∗(α).

From [Mil56, p. 403] we then have that,∫
Ek,`

π∗(α)2 = 1.

This gives τ(Ek,`) = 1. Similarly we have

q(Ek,`) =

∫
Ek,`

p1(Ek,`) ∧ p1(Ek,`) =

∫
Ek,`

4(k − `)2π∗(α)2 = 4(k − `)2,

and therefore,

λ(Mk,`) = 2q(Ek,`)− τ(Ek,`) = 8(k − `)2 − 1 = (k − `)2 − 1 mod 7.

By Corollary 4.4.2 we now conclude the following theorem:

Theorem 4.4.4: Mk,` is not diffeomorphic to S7 if (k − `)2 − 1 6= 0 mod 7. N

4.5 Milnor manifolds are homeomorphic to the 7-sphere

In this section we will prove that the Milnor manifolds Mk,` defined in Section 4.3 are for certain values
of k and ` homeomorphic S7. In the previous section we have shown that they are not diffeomorphic to
S7 for certain values of k and `, therefore combining the results will give us a set of manifolds which are
homeomorphic but not diffeomorphic to S7. To prove Mk,` is homeomorphic to S7 we need the following
theorem:
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Theorem 4.5.1: (Reeb) Let M be a compact n-manifold. Suppose there is a smooth function f : M →
[0, 1] with exactly two critical points. Then M is homeomorphic to Sn. N

Recall that the critical point of a function f are the points p such that df(p) = 0, i.e. the differential of
the map is not surjective.

Proof: We will follow the proof presented in [Mil64]. Consider first the following diagram visualizing
the situation. We can always normalize f so that f(x0) = 0, f(x1) = 1, with x0, x1 the critical points.

f−1(a)

gradf

x1

x0

We will show that M − x1 is diffeomorphic to Rn. Then M would be the one-point compactification
of Rn, making it homeomorphic to Sn, since any two one-point compactifications of the same space are
homeomorphic [Cra14, p. 80]. We require the following lemma [Mil64, p. 168]:

Lemma 4.5.2: (Brown, Stallings). Let M be a smooth manifold such that every compact subset of M
is contained in a space diffeomorphic to Rn. Then M is itself diffeomorphic to Rn. N

First of all x0 has a neighborhood U diffeomorphic to Rn. By continuity, there must be an ε such that
f−1[0, ε] is contained in U . Now let K be a compact subset of M − x1. Again by continuity there
must be an ε′ such that K ⊂ f−1[0, 1 − ε′]. The idea is to now show that there is a diffeomorphism
M − x1 →M − x1 sending f−1[0, ε] to f−1[0, 1− ε′]. This diffeomorphism then sends U to an open set
diffeomorphic to Rn that covers K. Then by Lemma 4.5.2 we would conclude that M is diffeomorphic
to Rn.

Equip M with a Riemannian metric 〈·〉. We will for p ∈M consider the vector field,

X = ρ(p)
gradf

〈gradf, gradf〉

where ρ(p) is a smooth function that is 1 on f−1[ε, 1− ε′] and vanishes outside a compact neighborhood
of f−1[ε, 1− ε′]. Recall that gradf =

∑
i ∂if∂i where {∂i} is a local basis for the tangent space. Now let

θt : M−x1 →M−x1 be the flow ofX. We will show that this flow θt ‘stretches’ f−1[0, ε] diffeomorphically
to f−1[0, ε+ t]. Consider the derivative,

df(θt(p))

dt

∣∣∣∣
t=T

= (∂if) ·
(
θt(p)

dt

)i
= 〈gradf,X〉 = ρ(p).

Since θ0 is the identity we have for any f(p) = x and t > 0 that f(θr(p)) = x + ρ(p) · t by integrating
df(θt)/dt over t. Hence θ1−ε′−ε sends f−1[0, ε] diffeomorphically to f−1[0, 1 − ε′]. Then θ1−ε′−ε also
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sends U diffeomorphically to some subset ofM−x1 that contains K. Hence by Lemma 4.5.2 we conclude
that M − x1 is diffeomorphic to Rn. This makes M a one-point compactification of Rn and we finally
conclude that M is homeomorphic to Sn. �

We will now prove Lemma 4.5.2, but first we require the following lemma (see [Pal60] for a proof):

Lemma 4.5.3: (Palais and Cerf) Let φ and ψ be two smooth orientation preserving embeddings of Dn

into the interior of some connected manifold M . Then there exists a diffeomorphism F : M → M such
that ψ = F ◦ φ. That is, we can extend the natural diffeomorphism of φ(Dn)→ ψ(Dn) to a function on
the entire manifold. N

Proof of Lemma 4.5.2: We know that any paracompact manifold admits a sequence

W1 ⊂W2 ⊂W3 ⊂ · · · ⊂M

of submanifolds with boundary such that each Wi is diffeomorphic to a disk Dn
i , each Wi is contained

in the interior of Wi+1 and
⋃
iWi = M [Mil64, p. 168]. For each Wi we have some diffeomorphism to a

disk Dn
i . Now consider the sequence of inclusions,

Dn
1 ⊂ Dn

2 ⊂ Dn
3 ⊂ · · · ⊂ Rn,

and suppose we have a diffeomorphism f1 : Dn
1 → Wn

1 . This diffeomorphism can be extended into a
map f2 : Dn

2 → Wn
2 as follows. Let g be an orientation preserving diffeomorphism Dn

2 → Wn
2 . Now f1

and g are both orientation preserving diffeomorphisms of Dn into the interior of M . Therefore there is
a diffeomorphism F such that f1 = F ◦ g on W1. Let f2 = F ◦ g, then if we apply the same procedure
inductively to extend any diffeomorphism fi : Dn

i →Wi to some fi+1 : Dn
i+1 →Wi+1, we get in the limit

i→∞ a diffeomorphism f : Rn →M , completing the proof. �

Proposition 4.5.4: If k+ ` = 1 then Mk,` admits a function with exactly two critical points. Hence by
Reebs theorem Mk,1−k is for any k ∈ Z homeomorphic to S7. N

Proof: Recall that Mk,` is constructed out of two copies of D4 × S3. We get a homeomorphic space by
taking two copies of H× S3 where outside H× S3 \ {0} we identify the two spaces by (u, v) ∼ (u′, v′) if

(u′, v′) =

(
u

||u||2
,
ukvu`

||u||

)
.

We then define our required function by

g(u, v) =
<(v)√

1 + ||u||2

on one half and by

g(u′, v′) =
<(u′′)√

1 + ||u′′||2

on the other half, where u′′ = u′(v′)−1. In both cases < denotes the projection to the real part. We
assume the reader to be familiar with quaternion arithmetic. We will first of all show that these functions
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agree on overlaps. First of all since ||v|| = 1 we have,

||v′|| = ||u
kvu`||
||u||

= ||u||k+`−1.

We require ||v′|| = 1, giving the restriction k + ` = 1. That is, let ` = 1− k. We get,

1√
1 + ||u′′||2

=
1√

1 + 1
||u||2

=
||u||√

1 + ||u||2
.

Hence the second definition of g becomes,

g(u, v) =
<(u′′)||u||√

1 + ||u||2
.

This means we just have to show <(u′′)||u|| = <(v). For any a ∈ H we have the identity 2<(a) = a+ a∗

with a∗ = a−1||a||2 the conjugate. Hence,

2<(u′′) = u′′ + ||u′′||2(u′′)−1 = u′(v′)−1 +
1

||u||2
(u′(v′)−1)−1

=
ukv−1u−k

||u||
+
u−kvuk

||u||
since ||u−kvuk|| = 1,

=
2<(u−kvuk)

||u||
=

2<(v)

||u||
.

where the last step follows from the fact that conjugation leaves the real part invariant. It is now
straightforward to show that the gradient of both local expressions of g only vanishes at the origin
[Bog11, p. 15-17]. From this we conclude that g has exactly two critical points. Which by Theorem 4.5.1
implies that Mk,1−k is homeomorphic to S7. �

Theorem 4.4.4 asserts that Mk,1−k cannot be diffeomorphic to S7 if

λ(Mk,1−l) = (2k − 1)2 − 1 6= 0 mod 7.

Expanding the square we get,

4k(k − 1) 6= 0 mod 7.

Since Z/7Z is a field, it has no zero divisors and hence we conclude the main theorem of this thesis:

Theorem 4.5.5: (Existence of exotic spheres)Mk,1−k is for any value of k homeomorphic to S7, however
if k 6= 0, 1 mod 7 then Mk,1−k is not diffeomorphic to S7. This shows that for smooth manifolds
diffeomorphism of spaces is different from homeomorphism between spaces. N

For the entirety of the thesis we have only used de Rham cohomology and worked completely from a
differential point of view. Yet many of the proofs especially in this last part have strong topological
consequences. The characteristic classes we introduced in part 3 can actually also be defined using
singular cohomology with integer coefficients, and are therefore not at all unique to smooth manifolds.
The fact that all the classes we defined integrate to integer values perhaps already hinted that something
more general was going on. Yet despite sticking to the less general differentiable viewpoint we were
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able to derive non-trivial results, which shows the power of the differential topological methods we used.
Perhaps the strength of differentiable viewpoints lies in the fact that it appeals more to our intuition.
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