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Abstract

In this thesis we study sheaves over a topological spaces and in particular over differentiable
manifolds in order to proof that any sheaf cohomology theory is isomorphic and the existence
of such a theory. A couple of classical cohomologies are discussed and explicitly shown to
be isomorphic to the sheaf cohomology theory. Furthermore we will use this set up to proof
the de Rham theorem and the Hodge theorem. Only some basic knowledge of differential
geometry is assumed.
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1 Introduction

In this thesis we will mostly follow Frank Werner’s Foundation of Differentiable Manifolds and Lie
Groups. This book however uses a definition of sheaves, which is not commonly used anymore.
Therefore the first two chapters will be about the definition of a sheaf and the correspondence
between Frank Werner’s definition and the most commonly used one. Section 4 and 5 will contain
some theorems which will be needed later on and in Chapter 6 we will define what a sheaf co-
homology theory is and proof the isomorphisms between different ones. There will also be a way
to construct such theories, which depend on sheaf resolutions. That these resolutions exist will
become clear in section 7, in which we will discuss classical cohomologies like Čech cohomology,
singular cohomology and the de Rham cohomology for a differentiable manifold. Finally section 8
and 9 will be about the de Rham theorem and the Hodge theorem. We will conclude this section
with the Poincaré duality, which gives another tool on computing cohomology.
The Hodge Theory that we discuss is only for the exterior derivative d on a manifold, and not for
general differential operators.

2 Sheaves

Definition 1.1: presheaf
A presheaf F over a topological space X consists of:

I a set F(U) for each nonempty open set U ⊂ X;

II a restriction homomorphism rUV : F(U)→ F(V ) for each opens V ⊂ U ⊂ X satisfying:

i rUU = IdU

ii for W ⊂ V ⊂ U : rUW = rVW ◦ rUV .

Definition 1.2: sheaf
A presheaf F is called a sheaf if for every collection Ui of open subsets of X with U = ∪iUi the
two axioms (S1) and (S2) are satisfied:

(S1) If s, t ∈ F(U) and ∀i : rUUi(s) = rUUi(t), then s = t;

(S2) If si ∈ F(Ui)∀i such that Ui ∩ Uj 6= ∅ ⇒ rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj), then there exists an

s ∈ F(U) such that for all i: rUUi(s) = si.

Example 1.1: CX,Y
Let X and Y be topological spaces and for U ⊂ X define

CX,Y (U) := {f : U → Y |f is continuous},

with the restriction homomorphism the natural restriction of functions, that is for f ∈ CX,Y (U)
and V ⊂ U we get that rUV (f) = f |V . Note that it is clearly a presheaf. It is a sheaf as well, for it
satisfies (S1) and (S2).
(S1): Let U = ∪iUi, f, g ∈ CX,Y (U) and assume that ∀i : rUUi(f) = rUUi(g), so ∀i : f |Ui = g|Ui . Let
x ∈ U , then there exists i such that x ∈ Ui and thus we get that f(x) = f |Ui(x) = g|Ui(x) = g(x).
We conclude that for each x ∈ U f(x) = g(x), so f = g.

(S2): Let U = ∪iUi and let fi ∈ CX,Y (Ui)∀i, such that Ui ∩ Uj 6= ∅ ⇒ rUiUi∩Uj (fi) = r
Uj
Ui∩Uj (fj).

This condition implies that if x ∈ Ui ∩ Uj , then fi(x) = fj(x). Now define f : U → Y to be the
function such that if x ∈ Ui, then f(x) = fi(x). This function is clearly well defined. Now we
still need that f is continuous, so let V be an open in Y . Then we get that f−1(V ) = ∪if−1

i (V ).
Since fi is continuous for all i we get that f−1

i (V ) is open in U for all i and thus is f−1(V ) open.
We conclude that f is continuous, so that f ∈ CX,Y (U).
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On a sheaf we can have some more structure, than only that of a set. The case we are
interested in is if each F(U) is a K−module where K is a principal ideal domain. In this case
the restriction homomorphisms in the definition of a presheaf need to be homomorphisms of
K−modules. Furthermore we will assume that X is a differentiable manifold, even though this
will not always be needed. It is needed however, when we discuss the de Rham cohomology and
alike.

Example 1.2: CX
Letting Y = R in Example 1 we get the sheaf CX . This is a sheaf of R−modules when we define
(rf)(x) := r · f(x) for each r ∈ R and f ∈ CX(U).

Example 1.3: C∞X
For any U ⊂ X we can define C∞X (U) to be the smooth functions f : U → R with the natural
restriction again. Then for each U ⊂ X we have that C∞(U) is a R−module, when we define
(rf)(x) := r · f(x) for each r ∈ R and f ∈ C∞(U). So C∞ is a presheaf of R−modules. With the
same argument as in example 1.1 we see that it satisfies (S1).

Example 1.4: the p-th de Rham sheaf Ωp

Let X be a differentiable manifold. For each open U ⊂ X we let Ωp(U) to be equal to the set
of differential p−forms on U . For this presheaf, the restriction homomorphisms are the natural
restrictions for maps. This presheaf turns out to be a sheaf of R−modules and is called the p-th
de Rham sheaf.
It is clear that Ωp(U) is a vectorspace over R for each U ⊂ X, by definition of differen-
tial forms. Now let U = ∪Ui. For (S1) we suppose that s, t ∈ Ωp(U) such that for each
i: rUUi(s) = rUUi(t). For each x ∈ U there exists some Ui such that x ∈ Ui and therefore

s(x) = (rUUi(s))(x) = (rUUi(t))(x) = t(x). This means that s = t, so Ωp satisfies (S1).
Furthermore if si ∈ Ωp(Ui) for each i such that for each i, j and x ∈ Ui ∩ Uj si(x) = sj(x) holds,
then we can define s : U →

∧∗
k(X);x 7→ si(x) when x ∈ Ui. Such an i always exist, since {Ui}

covers U . It is clear that s is still a smooth section, since each si is exactly that. So Ωp satisfies
(S2) and is therefore a sheaf.

Definition 1.3: (pre)sheaf morphisms
Let F ,G be (pre)sheaves. Then a (pre)sheaf morphism h : F → G is a collection of homomorphisms
hU : F(U)→ G(U) such that the following diagram commutes:

F(U) G(U)

F(V ) G(V )

hU

rUV rUV
hV

When F and G are (pre)sheaves of K−modules, we will call h is an isomorphism if hU is an
isomorphism of K-modules for each U ⊂ X.

Definition 1.4: sub(pre)sheaf
A (pre)sheaf F is called a sub(pre)sheaf of G if the inclusion map i : F → G is a (pre)sheaf
morphism.

3 Étalé spaces

We will find that we can associate some kind of topological space to each (pre)sheaf. This space
is an étalé space. Furthermore we will see that each étalé space has a canonical associated sheaf,
the sheaf of sections, which will inherit the structure of K−modules. The main goal of this
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section is to show that if the étalé space comes from a sheaf, then the sheaf of sections will be
isomorphic to the original sheaf.
Finally we will look at some more similarities and connections between sheaves and their étalé
spaces.

Definition 2.1: étalé space
An étalé space over a topological space X is a topological space Y together with a continuous
surjective mapping π : Y → X such that π is a local homeomorphism. We will denote such a
space by Y

π−→ X. Further we will call π−1(x) the stalk of the étalé space at x. When each stalk
is a K−module, then Y is called an étalé space of K−modules.

Example 2.1: the constant étalé space
The most simple étalé space is the constant one. Here Y = X ×K, with the discrete topology on
K and the projection sends (x, k) 7→ x. It is obvious that π is continuous, surjective and a local
homeomorphism. Also since π−1(x) = K for all x ∈ X we get that X × K is actually an étalé
space of K−modules. In exactly the same way we define YB = X ×B for a K−module B.

Example 2.2: sheaf of discontinuous sections
Suppose Y

π−→ X is an étalé space of K−modules. Then define the sheaf of discontinuous sections
of Y to be FY (U) = {s : U → Y |s(x) ∈ π−1(x)∀x}. This is clearly a presheaf when we use the
natural restriction maps of functions. It is a sheaf as well, as we will see that it satisfies (S1) and
(S2).
(S1): Suppose s, t ∈ FY (U), U = ∪Ui such that for all i: rUUi(s) = r(Ui)

U (t). Then we have
that for each x ∈ U there exists some i such that x ∈ Ui and this immediately implies that
s(x) = rUUi(s)(x) = r(Ui)

U (t)(x) = t(x). So we can conclude that s = t.
(S2): Let again U = ∪Ui and suppose that there exist si ∈ F(Ui) for all i with

rUiUi∩Uj (si) = r
Uj
Ui∩Uj (sj) whenever Ui ∩ Uj 6= ∅. For x ∈ U there exists again a i such

that x ∈ Ui and now define s : U → Y ; x 7→ si(x). We note that s is indeed an element of F(U)
and that for all i we have that rUUi(s) = si. So (S2) is satisfied as well.

Definition 2.2: homomorphism of étalé spaces of K−modules
Let π :→ X and π′ : Y ′ → X be two étalé spaces of K−modules over X. Then a continuous
function ψ : Y → Y ′ is called a homomorphism if π = π′ ◦ ψ and ψ : π−1(x) → π′−1(x) is a
homomorphism of K−modules.

Definition 2.3: sections of an étalé space
A section of an étalé space Y

π−→ X over an open set U ⊂ X is a continuous map s : U → Y such
that π ◦ s = IdU . The space of all sections over U is denoted by Γ(U, Y ).

Lemma 2.1: The sections of an étalé space Y
π−→ X form a sheaf ΓY over X.

Proof: We note that for each U ⊂ X, ΓY (U) := Γ(U, Y ) ⊂ CX,Y (U) and it is clear that the
following diagram commutes for each V ⊂ U ⊂ X. Here the restriction maps are both the natural
restriction of continuous functions.

Γ(U, Y ) CX,Y (U)

Γ(V, Y ) CX,Y (V )

i

rUV rUV

i

Lemma 2.2: Given an étalé space of K−modules Y
π−→ X, the induced sheaf is a sheaf of

K−modules.
Proof: If s1, s2 ∈ ΓY (U) are sections and k1, k2 ∈ K, then we can define that (k1 · s1)(x) :=
k1 · s1(x) and (s1 + s2)(x) := s1(x) + s2(x). Using that π−1(x) is a K−module we get that
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k1 · s1, s1 + s2 ∈ ΓY (U), so the operations are well defined. They make ΓY (U) into a K−module,
since:

(k1 · (s1 + s2))(x) = k1 · (s1 + s2)(x) = k1 · (s1(x) + s2(x)) = k1 · s1(x) + k1 · s2(x)

= (k1 · s1)(x) + (k2 · s2)(x) = (k1 · s1 + k2 · s2)(x),

((k1 + k2) · (s1))(x) = (k1 + k2) · s1(x) = k1 · s1(x) + k2 · s1(x) = (k1 · s1)(x) + (k2 · s1)(x)

= (k1 · s1 + k2 · s1)(x),

((k1 · k2)(s))(x) = (k1 · k2) · s(x) = k1 · (k2 · s(x)) = k1 · (k2 · s)(x) = (k1 · (k2 · s))(x),

(1K · s)(x) = 1K · s(x) = s(x).

When we have V ⊂ U ⊂ X we get that for x ∈ V it still holds that:

(k1 · s1 + k2 · s2)(x) = k1 · s1(x) + k2 · s2(x).

And since the restriction map is just the natural restriction to the subset V , we get that it is
actually a homomorphism of K−modules. We conclude that ΓY is a sheaf of K−modules.

The sheaf induced by the constant étalé space will be denoted by K. It turns out that
this sheaf will have use in setting up our sheaf cohomology, which is our goal. Similarly, the sheaf
induced by the étalé space YB will be denoted by B.

Definition 2.4: stalk of a sheaf
Let F be a (pre)sheaf over X. We can define the stalk of F at x, Fx, as following: let x ∈ U ∩ V
and f ∈ F(U), g ∈ F(V ) we say that f ∼ g if and only if there exists a neighborhood W of x
such that W ⊂ U ∩ V and rUW (f) = rVW (g) ∈ F(W ). This defines an equivalence relation on⊔
x∈U F(U). Then we define:

Fx :=
⊔
x∈U
F(U)� ∼ .

We will denote the natural projections into this quotient space by rUx : F(U)→ Fx;.

Lemma 2.3: If F is a (pre)sheaf of K−modules, then for each x ∈ X Fx is a K−module and
for each x ∈ X and U ⊂ X rUx is a homomorphisms of the modules.
Proof: Let m,n ∈ Fx and assume that f ∈ F(U) and g ∈ F(V ) are representatives of m and n
respectively. Since x ∈ U ∩ V we can find an open neighborhood W of x such that W ⊂ U ∩ V .
Then we define:

m+ n := rWx (rUW (f) + rVW (g)),

k ·m := rUx (k · f).

(i) These operations are well defined. Let f1 ∈ F(U1), f2 ∈ F(U2), g1 ∈ F(V1) and g2 ∈ F(V2) such
that rU1

x (f1) = rU2
x (f2) and rV1

x (g1) = rV2
x (g2). Furthermore let W1 ⊂ U1 ∩ V1 and W2 ⊂ U2 ∩ V2.

For the addition to be well defined we need to show that:

rW1
x (rU1

W1
(f1) + rV1

W1
(g1)) = rW2

x (rU2

W2
(f2)) + rV2

W2
(g2)) that is,

rU1

W1
(f1) + rV1

W1
(g1) ∼ rU2

W2
(f2) + rV2

W2
(g2).

We already know that f1 ∼ f2, so there exists an open neighborhood Y of x such that Y ⊂ U1∩U2

and rU1

Y (f1) = rU2

Y (f2) and analogously there exists a Z ⊂ V1 ∩ V2 such that rV1

Z (g1) = rV2

Z (g2).
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Now A := Y ∩ Z ∩ W1 ∩ W2 is an open neighborhood of x and on this open we have that
rU1

A (f1) = rYA ◦ r
U1

Y (f1) = rYA ◦ r
U2

Y (f2) = rU2

A (f2) and similarly that rV1

A (g1) = rV2

A (g2). Then we
get that:

rW1

A

(
rU1

W1
(f1) + rV1

W1
(g1)

)
= rW1

A ◦ rU1

W1
(f1) + rW1

A ◦ rV1

W1
(g1) = rU1

A (f1) + rV1

A (g1)

= rU2

A (f2) + rV2

A (g2) = rW2

A ◦ rU2

W2
(f2) + rW2

A ◦ rV2

W2
(g2)

= rW2

A

(
rU2

W2
(f2) + rV2

W2
(g2)

)
,

from which we conclude that rU1

W1
(f1) + rV1

W1
(g1) ∼ rU2

W2
(f2) + rV2

W2
(g2).

For the multiplication by scalar to be well defined we need to show that for any k ∈ K rU1
x (k ·f1) =

rU2
x (k · f2). This is again an easy computation:

rU1

Y (k · f1) = k · rU1

Y (f1) = k · rU2

Y (f2) = rU2

Y (k · f2),

from which we conclude that k · f1 ∼ k · f2 and thus that rU1
x (k · f1) = rU2

x (k · f2).
(ii) Under these operations Fx is a K−module, let m,n, f = f1, g = g1, U = U1, V = V1 and
W = W1 as before. Then by definition of the operations rUW (f)+rVW (g) ∈ F(W ) is a representative
of m+ n, k · f one for k ·m and k · g one for k · n, so:

k · (m+ n) = rWx (k · (rUW (f) + rVW (g))) = rWx (k · rUW (f) + k · rVW (g))

= rWx (rUW (k · f) + rVW (k · g)) = k ·m+ k · n,

(k1 + k2) ·m = rUx ((k1 + k2) · f) = rUx (k1 · f + k2 · f) = k1 ·m+ k2 ·m,

(k1k2) ·m = rUx ((kk1k2) · f) = rUx (k1 · (k2 · f)) = k2 · (k2 ·m),

1K ·m = rUx (1K · f) = rUx (f) = m.

Where we use that F(Z) is a K−module for each Z ⊂ X, and that the restriction maps are
homomorphisms of K−modules.
Finally we note that rUx is a homomorphism for each U ⊂ X. This is easily seen using the
definitions of the operations: if f ∈ F(U) is the representative for m and k ∈ K, then k ·f ∈ F(U)
is a representative for k ·m and furthermore if f, g ∈ F(U), then we can omit the restriction maps
in the formula for the addition of their classes.
Remark: The stalk of F over x is equal to the direct limit:

Fx = lim−−→
x∈U
F(U).

And since F(U) is a K−module for each U ⊂ X we get that Fx is a K−module as a property of
direct limits.

Lemma 2.4: Given a (pre)sheaf F over a topological space X, F := ∪x∈XFx deter-
mines an étalé space of K−modules over X.
Proof: Let π : F → X be the surjective mapping that maps anything in Fx to x. Now it is
enough to give a topology on F , such that π is a local homeomorphism. Therefore we define for
f ∈ F(U), U ⊂ X: Of := {rUy (f) : y ∈ U}. This topology basis induces a topology, which is

the one we will use. To see that it is a topology basis we first note that for any m ∈ F we have
that m ∈ Fx for some unique x ∈ X and therefore we find an representative f ∈ F(U) for some
open U ⊂ X, such that x ∈ U . It is clear that for this f we have that m ∈ Of . Secondly, if
m ∈ Of ∩Og for some f ∈ F(U) and g ∈ F(V ), then we have that rUx (f) = m = rVx (g) and thus
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f ∼ g. By definition we conclude that there exists W ⊂ U ∩ V such that rUW (f) = rVW (g) and
then we have that m ∈ OrUW (f) = OrVW (g) ⊂ Of ∩Og.

The last thing we have to show is that π is a local homeomorphism, so let m ∈ F . Like before
we get x, U, f such that m = rUx (f). This means that m ∈ Of which is open by definition of the
topology. Its image under π is equal to U . π|Of : Of → U is clearly bijective, since ∀y ∈ U we
get that rUy (f) ∈ Of and furthermore we have that if π(rUy1(f)) = π(rUy2(f)), then immediately
y1 = y2. Now let V ⊂ U be open. Then

π−1(V ) = {rUy (f) : y ∈ V } = {rVy (rUV (f)) : y ∈ V } = OrUV (f) = open,

which is to day: π|Of is continuous. The final part is to show that π|Of is an open map as well.
This uses the same argument as for π|Of being continuous, since we only have to check that
π(Og) is open, where g = rUV (f) for some open V ⊂ U . This is consequence of the fact that our
topology is induced by a topology basis.
Remark: In Warner the definition of a sheaf is this étalé space.

With the projection as defined in lemma 2.4 we see that the stalk of F over x is the
same as the stalk of the étalé space F over x, hence the naming.
We conclude from the lemma’s before that when given a sheaf or a presheaf F of K−modules over
X, we can construct an étalé space over X, which is associated to F . We also have already seen
that the sections of a étalé space form a sheaf. When we denote this sheaf by ΓF , so ΓF := ΓF ,
then we get the following lemma and theorem:

Lemma 2.5: ΓF is a sheaf of K−modules.
Proof: Combine lemma 2.4 with lemma 2.2.

Theorem 1: If F is a sheaf, then ΓF is isomorphic to F .
Proof: Let h : F → ΓF be the collection of morphisms hU : F(U)→ ΓF (U) = Γ(U, F̃); f → sf ,
such that sf (x) := rUx (f). Note that π(sf (x)) = π(rUx (f)) = x. Let g ∈ F(V ), then we get that

s−1
f (Og) =

{
x ∈ U |rUx (f) ∈ {rVy (g)|y ∈ V }

}
=

{
∅ if f � g

U ∩ V if f ∼ g
,

so sf is continuous as well. We conclude that sf is indeed a section and hU is therefore a well-
defined map. When we use lemma 2.2 and lemma 2.4 we get that:

(hU (k1 · f + k2 · g))(x) = rUx (k1 · f + k2 · g) = k1 · rUx (f) + k2 · rUx (g)

= k1 · (hU (f))(x) + k2 · (hU (g))(x) = (k1 · hU (f) + k2 · hU (g)) (x),

and so hU is a homomorphism for each U ⊂ X.
If V ⊂ U ⊂ X and x ∈ V , then it is clear that rVx ◦ rUV = rUx , so we conclude that h is a sheaf-
morphism. We only need to show that hU is bijective for each U ⊂ X, and then we have the
wanted isomorphism.
(i) For injectivity it is enough to show that the kernel of hU is trivial. So suppose 0 = (hU (f)) ∈
ΓF (U), then for all x ∈ U :

rUx (0) = 0 = (hU (f))(x) = rUx (f),

which implies that ∀x ∈ U there exists Wx ⊂ U such that x ∈ Wx and rUWx
(0) = rUWx

(f).
Furthermore it is clear that U = ∪x∈UWx. Using property (S1) if the sheaf F we get that 0 = f
(ii) Finally we will proof surjectivity. Let s ∈ Γ(U,F) be any section. Then for each x ∈ U we
have that there exists some Vx ⊂ open and a gx ∈ F(Vx) such that s(x) = rVxx (gx). Since s is
continuous and Ogx = {rVxy (gx) : y ∈ Vx} is open we have that Ux := s−1(Ogx) is open in U . Note
that it is clear that x ∈ Ux and therefore we have that Ux 6= ∅. We have for any y ∈ Ux that

8



s(y) ∈ Ogx , so s(y) = rVxy (fx) = rUxy (rVxUx(gx)). Denote fx := rVxUx(gx), then we have that for any
x ∈ U we can find an open Ux and fx ∈ F(Ux) such that for every y ∈ Ux the following holds:

rUxy (fx) = s(y)

Now for x, y ∈ U we will look at z ∈ Ux∩Uy. For such a z we have that rUxz (fx) = s(z) = r
Uy
z (fy),

which means that there exists a Wz ∈ Ux ∩Uy, with z ∈Wz, such that rUxWz
(fx) = r

Uy
Wz

(fy). From
this we conclude that

r
Ux∩Uy
Wz

(rUxUx∩Uy (fx)) = r
Ux∩Uy
Wz

(r
Uy
Ux∩Uy (fy)).

Since z ∈ Wz for all z ∈ Ux ∩ Uy we get that Ux ∩ Uy = ∪z∈Ux∩UyWz and now property (S1)
implies that

rUxUx∩Uy (fx) = r
Uy
Ux∩Uy (fy).

From this, the fact that x ∈ Ux for all x ∈ U implies that {Ux} covers U and property (S2) of the
sheaf F we conclude that there exists a f ∈ F(U) such that fx = rUxx (f) for all x ∈ U . It is clear
that the image of f under hU and thus is hU surjective.

Example 2.3: the quotient sheaf
Suppose G is a presheaf of the sheaf F of K−modules over X. Then we define the presheaf
(F�G) (U) := F(U)�G(U). This does not, in general, give a sheaf. The quotient sheaf is
therefore defined as ΓF�G , with (F�G)x = Fx�Gx.
Such a quotient sheaf clearly induces a short exact sequence:

0 G F F�G 0
i π

Not only does the étalé space of a sheaf generate the same sheaf, morphism between étalé spaces
are also naturally mapped into morphism between the sheaves and vice versa, as is proven in
the two lemma’s below. From this we conclude that the étalé spaces of sheaves have the same
information in them as the sheaves do.

Lemma 2.6: If F and G are (pre)sheaves over X, and h : F → G a (pre)sheaf mor-
phism, then there exists an induced homomorphism of étalé spaces ψ : F → G.
Proof: Let f ∈ F(U). Then we define ψ(rUx (f)) := rUx (hU (f)). Note that by definition
we now have that πf = πg ◦ ψ. ψ is well defined, for let f ∈ F(U) and g ∈ F(V ) such that
rUx (f) = rVx (g). Then we have W ⊂ U ∩ V such that rUW (f) = rVW (g). Using the commuting
diagrams of homomorphisms hU we get that:

rUW (hU (f)) = hW (rUW (f)) = hW (rVW (g)) = rVW (hV (g)),

so rUx (hU (f)) = rVx (hV (g)), which means that ψ(rUx (f)) = ψ(rVx (g)) and ψ is well-defined.
Secondly we need that ψ is continuous, but since πf and πg are both local homeomorphisms we
get that they are both continuous and open maps. Therefore, for any open U ⊂ G we get that
ψ−1(U) = π−1

f (πg(U)) which is open, so ψ is continuous.
Finally we need to show that ψ is a homomorphism on the stalks. Let again f ∈ F(U) and
g ∈ F(V ) such that f is a representative of m and g of n and let k1, k2 ∈ K. Like before we have
that k1 ·m+ k2 · n = rWx (k1 · rUW (f) + k2 · rVW (g)). So:

ψ(k1 ·m+ k2 · n) = rWx
(
hW (k1 · rUW (f) + k2 · rVW (g))

)
= rWx

(
k1 · hW (rUW (f)) + k2 · hW (rVW (g))

)
= rWx

(
k1 · rUW (hU (f)) + k2 · rVW (hV (g))

)
= k1 · rWx (rUW (hU (f))) + k2 · rWx (rVW (hV (g))) = k1 · ψ(m) + k2 · ψ(n),
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where we needed that the hU and rUx are homomorphisms of K−modules for each U ⊂ X. We
conclude that ψ is indeed a homomorphism of the étalé spaces.

Lemma 2.7: Let Y
π−→ X and Y ′

π′−→ X be two étalé spaces of K−modules over X
and ψ : y → Y ′ a homomorphism between them, then there exists an induced sheaf morphism
h : ΓY → ΓY ′ .
Proof: Let U ⊂ X and define hU : Γ(U, Y )→ Γ(U, Y ′); s 7→ ψ ◦ s. Because ψ is continuous and
it is a map on the stalks, we get that ψ ◦ s is indeed a section, so hU is well-defined. For hU to be
a sheaf morphism we need that it is homomorphism of the K−modules and that the diagram

Γ(U, Y ) Γ(U, Y ′)

Γ(V, Y ) Γ(V, Y ′)

hU

rUV rUV
hV

commutes, where V ⊂ U ⊂ X. The first part is an easy calculation, since for each x ∈ U ,
k1, k2 ∈ K and s1, s2 ∈ Γ(U, Y ) we have that:

(hU (k1 · s2 + k2 · s2))(x) = ψ((k1 · s2 + k2 · s2)(x)) = ψ(k1 · s1(x) + k2 · s2(x))

= k1 · ψ(s1(x)) + k2 · ψ(s2(x)) = k1 · (hU (s1))(x) + k2 · (hU (s2))(x)

= (k1 · hU (s1) + k2 · hU (s2))(x),

where we used that ψ is a homomorphism of K−modules. The second part is also
easily to be seen to be true, since for any s ∈ Γ(U, Y ) and x ∈ V we have that
(rUV (hU (s)))(x) = (hU (s))(x) = ψ(s(x)), while (hV (rUV (s)))(x) = ψ((rUV (s))(x)) = ψ(s(x)).
We conclude that ψ is indeed a sheaf homomorphism.

Remark: Note that if h : F → F ′, h′ : F ′ → F ′′ and h′′ : F → F ′′ are presheaf ho-
momorphisms, such that h′ ◦ h = h′′, that then the induced sheaf homomorphism commute as
well. This is true since for an element rUx (f) ∈ Fx we have that:

ψ′ ◦ ψ(rUx (f)) = ψ′(rUx (h(f))) = rUx (h′ ◦ h(f)) = rUx (h′′(f)) = ψ′′(rUx (f)),

and for an element s ∈ ΓF (U), with some abuse of notation:

(h′U ◦ hU (s))(x) = (h′U (ψ ◦ s))(x) = ψ′ ◦ ψ ◦ s(x) = ψ′′ ◦ s(x) = h′′U (s).

When F and F ′ are sheaves, h : F → F ′ a sheaf homomorphism and U ⊂ X we get the following
commutative diagram:

F(U) F ′(U)

ΓF (U) ΓF ′(U)

hU

hU

' '

Since for f ∈ F(U) we get that:

(hU (sf ))(x) = ψ ◦ sf (x) = ψ(rUx (f)) = rUx (hU (f)) = shU (f)(x).

Not only do we have this correspondence, some useful definitions are defined with help of this
correspondence between sheaves and étalé spaces. For h a homomorphism between sheaves we
denoted the induced homomorphism of the étalé spaces by ψ. From now on we will denote ψ
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restricted to the stalk of x as hx. Then we get the next definition.

Definition 2.5: exact sequence of sheaves
If F ,F ′ and F ′′ are sheaves of K−modules and h : F ′ → F , h′ : F → F ′′ are sheaf morphisms,
then this sequence is exact at F if the induced sequence on the stalks:

F ′x Fx F ′′x
hx gx

is exact at Fx for all x ∈ X. We will call a sequence

0 F ′x Fx F ′′x 0

a short exact sequence if it is everywhere exact.

Definition 2.6: morphism of exact sequences of sheaves

A homomorphism of the short exact sequences of sheaves 0 → F ′ h→ F h′→ F ′′ → 0 and

0 → F̃ ′ h→ F̃ h′→ F̃ ′′ → 0 consists of sheaf homomorphisms g : F → F̃ , g′ : F ′ → F̃ ′ and
g′′ : F ′′ → F̃ ′′ such that the following diagram is commutative:

0 F ′ F F ′′ 0

0 F̃ ′ F̃ F̃ ′′ 0

h h′

h̃ h̃′
g′ g g′′

4 Tensor products and sheaf properties

In this section we will discuss some properties of sheaves and their behavior with respect to tensor
products. Definition 3.1: tensor products of (pre)sheaves
Let F and G be two presheaves of K−modules over X, then their tensor product F ⊗ G is the
presheaf which consists of K−modules (F⊗G)(U) = F(U)⊗G(U) with restriction homomorphism
(rUV )F⊗(rUV )G . When F and G are sheaves, then their tensor product is the sheaf ΓF⊗G associated
to this presheaf. We will still call this sheaf F ⊗ G.
Furthermore if h : F → G and h′ : F ′ → G′ are two sheaf morphisms, then h⊗h′ : F⊗G → F ′⊗G′
will be the sheaf morphism associated to the presheaf morphism, which consists of the module
morphisms hU ⊗ h′U .

Definition 3.2: partition of unity for a sheaf
Let F be a sheaf over X and {Ui} an open covering of X. Then a partition of unity for F
subordinated to {Ui} is a family of endomorphism {li} of F such that the following holds:

I
∑
i l
i
U (f) = f for all U ⊂ X, open, and f ∈ F(U)

II {x ∈ X|lix 6≡ 0} = X \ {x ∈ X|lix ≡ 0} ⊂ Ui

Definition 3.3: fine sheaf
A sheaf F is called fine if for every locally finite cover {Ui} of X there exists a partition of unity
for F subordinated to {Ui}.

Example 3.1: the sheaf of discontinuous sections
The sheaf F defined in example 2.2 is a fine sheaf. To see this, let {Ui} be a locally finite cover
of X. Using the shrinking lemma 5.17 of [1]. We can pick an open refinement {Vi} such that
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Vi ⊂ Ui for all i. Now for x ∈ X there exists some i such that x ∈ Vi. This i does not have to be
unique, but we can choose one. Now we can define ψi to be the function which is 1 on x if we
have picked i for this x and otherwise we define ψi to be zero. Note that {x ∈ X|ψi(x) 6= 0} ⊂ Vi
and therefore we get that {x ∈ X|ψi(x) 6= 0} ⊂ Ui. Furthermore it is clear that

∑
i ψi(x) = 1 for

all x.
Define liU : F(U) → F(U) to be the map such that (liU (s))(x) = ψi(x)s(x). This is an
endormorphism, since:

(liU (k1 · s1 + k2 · s2))(x) = ψi(x)(k1 · s1 + k2 · s2)(x) = k1 · ψi(x)s1(x) + k2 · ψi(x)s2(x)

= k1 · (liU (s1))(x) + k2 · (liU (s2))(x) = (k1 · (liU (s1)) + k2 · (liU (s2)))(x).

Furthermore we see that:(∑
i

liU (s)

)
(x) =

∑
i

ψi(x)s(x) = s(x),

where we need the locally finiteness of our covers and that ψi(x) = 1 only once. Finally suppose
that x /∈ Vi. Then there exists some open Ṽ such that x ∈ Ṽ ⊂ X \ Vi. For each y ∈ Ṽ we
have that y /∈ Vi and therefore we get that (liU (s))(y) = 0, where s ∈ F(U). For U ⊂ X such
that x ∈ U we define W = U ∩ Ṽ . Then clearly for all y ∈ W we have that (liU (s))(y) = 0, so
rUW (liU (s)) = 0 and therefore we have that rUx (liU (s)) = 0. Since lix sends rUx (s) into rUx (liU (s)) we

conclude that lix ≡ 0. So X \ {x ∈ X|lix ≡ 0} ⊂ Vi ⊂ Ui. We conclude that liU form a partition of
unity for F subordinated to the locally finite cover {Ui}. And therefore we have that F is a fine
sheaf.

Remark: To be able to use the shrinking lemma we need that X is a paracompact
Hausdorff space.

When F and G are sheaves of which F is fine, then F ⊗ G is fine as well. This is easily
seen, since each partition of unity for F can be tensored with the identity on G to form a par-
tition of unity for F⊗G. Fine sheaves have some nice properties as the following lemma’s will show.

Lemma 3.1: If

0 F ′ F F ′′ 0
h h′

is a short exact sequence of sheaves and Z ⊂ X open, then the following sequence is exact:

0 F ′(Z) F(Z) F ′′(Z)
hZ h′Z

Proof: Since the first sequence is exact, we have that for every x ∈ Z that

0 F ′x Fx F ′′x 0
hx h′x

is exact. We will need this repeatedly. The first part of the proof is to show that there is exactness
at F ′(Z), which means that ker(hZ) = {0}. So let f ′ ∈ F ′(Z) such that hZ(f ′) = 0. Then we get
that for every x:

hx
(
rZx (f ′)

)
= rZx

(
hZ(f ′)

)
= rZx (0).

Using the exactness we get that rZx (f ′) = 0 = rZx (0), which implies that there exists Ux ⊂ Z such
that x ∈ Ux and rZUx(f ′) = rxUx(0). Using the fact that Z = ∪x∈ZUx and property (S1) we get
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that f ′ = 0, so the kernel is trivial and hZ is injective for each Z.
The second part is to show exactness at F(Z), which consists of two parts.
(i) First we will see that Im (hZ) ⊂ ker(h′Z). Therefore let f ∈ F(Z) be such that f = hZ(f ′) for
some f ′ ∈ F ′(Z). We now get that for all x ∈ Z:

rZx
(
h′Z(f)

)
= h′x

(
rZx (f)

)
= h′x

(
rZx (hZ(f ′))

)
= h′x

(
hx(rZx (f ′))

)
= 0 = rZx (0),

which implies that for all x there exists some open Ux ⊂ Z such that x ∈ Ux and rZUx(h′Z(f)) =

rZUx(0). Again with property (S1) we get that h′Z(f) = 0, which is what we wanted.
(ii) Finally we need that ker(h′Z) ⊂ Im (hZ). Therefore let f ∈ F(Z) such that h′Z(f) = 0. Then
we get that for each x ∈ Z rZx (f) ∈ ker(h′x), because:

h′x
(
rZx (f)

)
= rZx

(
h′Z(f)

)
= rZx (0) = 0.

Using exactness at Fx we get a Ux ⊂ Z and kx ∈ F ′(Ux) such that x ∈ Ux and hx(rUxx (kx)) =
rZx (f). And since hx(rUxx (kx)) = rUxx (hUx(kx)) we have some Wx ⊂ Ux such that x ∈ Wx and
rZWx

(f) = rUxWx
(hUx(kx)) = hWx(rUxWx

(kx)), where the last equality is just from commutativity of

the homomorphisms. Define f ′x := rUxWx
(kx). Now for each Q := Wx ∩Wy 6= ∅ we get that:

hQ
(
rWx

Q (f ′x)
)

= rWx

Q

(
rZWx

(f)
)

= rZQ(f) = r
Wy

Q

(
rZWy

(f)
)

= hQ
(
r
Wy

Q (f ′y)
)
.

Now, since hQ is injective for Q = Wx ∩ Wy, we get that rWx

Q (f ′x) = r
Wy

Q (f ′y). With (S2) we

conclude that there exists a f ′ ∈ F ′(Z) such that rZWx
(f ′) = f ′x. Furthermore we see that for all

x ∈ Z:

rZWx

(
hZ(f ′)

)
= hWx

(
rZWx

(f ′)
)

= hWx(f ′x) = rZWx
(f),

and using (S1) this implies that hZ(f ′) = f ∈ Im (hZ).

Remark: Note that we have not used the surjectivity of h′x to conclude this.

Lemma 3.2: If, in the above notation, F ′ is a fine sheaf, then h′X is surjective as well,
so we have the short exact sequence:

0 F ′(X) F(X) F ′′(X) 0
hX h′X

Proof: Let ψ′ be as in lemma 2.6, corresponding to h′, and let f ∈ F ′′ and sf ∈ Γ(X, F̃ ′′) be
the (unique) corresponding section. To proof this lemma we will first construct a locally finite
cover {Ui} of X and a section ti : Ui → F such that ψ′(ti) = sf on Ui. Then with help of the
partition of unity we can constuct a global section.

For each x ∈ X we have that y′′ := sf (x) ∈ F ′′ and since π′′ is a local homeomorphism we find
an open V ′′ around y′′ such that π′′ : V ′′ → π′′(V ′′) is a homeomorphism. Since sf is continuous
we get that U ′′ := s−1

f (V ′′) is open in X and note that U ′′ ⊂ π′′(V ′′) and x ∈ U ′′. Furthermore
we have that W ′′ := sf (U ′′) ⊂ V ′′ and thus π′′ is a homeomorphism on W ′′ as well. We conclude
here that W ′′ is open and that on U ′′ we have that sf is the inverse of π′′.
Since h′x is surjective we can find a y ∈ F such that ψ′(y) = y′′. π is a local homeomorphism as
well and just like before we find an open V around y such that π : V → π(V ) is a homeomorphism.
Now define W = V ∩ψ′−1(W ′′). Since ψ′ is continuous we get that W is an open neighborhood of
y. Furthermore we have that π : W → π(W ) is a homeomorphism. Finally define U = U ′′∩π(W ),
which is again a non-empty open since is contains x.
Now for z ∈ U we find a unique element w ∈ W such that π(w) = z and a unique element
w′′ ∈ W ′′ such that sf (z) = w′′. Here uniqueness comes from the homeomorphisms π and π′′

on W and W ′′ respectively. Since w ∈ W we get that h′z(w) ∈ W ′′, so we can conclude that
h′z(w) = w′′. Now define the section t : U → F̃ which sends z to the corresponding w. Since all
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the maps are continuous we can conclude that is is a section and on U it clearly satisfies ψ′◦t = sf .

Since x ∈ U we now have an open cover of X and for each open a section. Assuming X
is paracompact, we can go over to a locally finite subcover {Ui, ti}. When Ui,j := Ui ∩ Uj 6= ∅
we can define the section ti,j := ti − tj . Clearly, for each x ∈ Ui,j we have that ti,j(x) ∈ ker(h′x).

Using the given exactness we know that there exists some y′ ∈ F̃ ′ such that hx(y′) = ti,j(x). This

now gives us a section t′i,j : Ui,j → F
′
. Note that on Ui ∩ Uj ∩ Uk

ti,j + tj,k = ti − tj + t+ j − tk = ti − tk = ti,k,

which gives that

ψ(t′i,j + t′j,k − t′i,k) = ti,j + tj,k − ti,k = 0.

Using injectivity of hx for each x, we get that t′i,j + t′j,k = t′i,k. Since F ′ is fine and our cover

locally finite, we can pick a partition of unity {li} for F ′ subordinated to {Ui, ti}. Using this we
can extend t′i,j to a section lj ◦ t′i,j on Ui by declaring that lj ◦ t′i,j(x) = ljx(t′i,j(x)) on Ui ∩Uj and

0 on Ui \ Uj . This is still continuous, since the support of lj is within Uj . Finally we can define

s′i :=
∑
k l
k ◦ t′i,k, which is still a section of F ′ over Ui. We get that on Ui,j :

s′i − s′j =
∑
k

lk ◦ t′i,k −
∑
k

lk ◦ t′j,k =
∑
k

lk ◦ ti,j = t′i,j .

Using this we and if we set ψh(s′i) = si, then we get that si− sj = ti,j = ti− tj . We conclude that
s : X → F which sends x ∈ Ui to ti(x)− si(x) is a well defined section on whole X. Furthermore
we have that ψ′ ◦ s = sf by construction. Using the correspondence between ΓF (X) and F(X)
we find that h′X is surjective.

Definition 3.4: a torsionless sheaf
A K−module A will be called torsionless if for each a ∈ A we have either a = 0 or there exists
no non-zero element k ∈ K such that ka = 0. Now, let F be a sheaf of K−modules. We will say
that F is torsionless if for all x ∈ X we have that Fx is torsionless.

Lemma 3.3: Let A,A′, B,B′ be K−modules and α : A → A′ and β : B → B′ be sur-
jective homomorphisms. Then α⊗ β : A⊗B → A′ ⊗B′ is surjective as well.
Proof: From definition we know that A′⊗B′ is generated by elements a′⊗ b′ where a′ ∈ A′ and
b′ ∈ B′. Using surjectivity we can find an a ∈ A and b ∈ B for each a′ and b′ such that α(a) = a′

and βb = b′. We now get that a′ ⊗ b′ = α(a)⊗ β(b) = (α ⊗ β)(a⊗ b), which means that A′ ⊗ B′
is generated by (α⊗ β)(a⊗ b) and thus is α⊗ β surjective.

Lemma 3.4: Let α : A → A′ and β : B → B′ be as in lemma 3.3. Then ker(α ⊗ β) is
generated by elements a⊗ b such that a ∈ ker(α) or b ∈ ker(β).
Proof: Let D be the set generated by {a ⊗ b : a ∈ ker(α) or b ∈ ker(β)}. Since for all the
generating elements a ⊗ b of D it holds that (α ⊗ β)(a ⊗ b) = 0 we get that D ⊂ ker(α ⊗ β).
Furthermore it is obvious that D forms a submodule of A ⊗ B and therefore we can look at
C := A⊗ B�D. Let p : A⊗ B → C be the projection. Now define f to be the multi-linear map
f : A′ ×B′ → C; (a′, b′) 7→ p(a⊗ b) where a ∈ A and b ∈ B are such that α(a) = a′ and β(b) = b′.
Note that these a and b always exist, since α, β are surjective. We have to check whether this
map is well defined, so let a1, a2 ∈ α−1(a′) and b1, b2 ∈ β−1(b′). Then f is well defined when
p(a1 ⊗ b1) = p(a2 ⊗ b2), that is when a1 ⊗ b1 − a2 ⊗ b2 ∈ D. A calculation shows us however that:

a1 ⊗ b1 − a2 ⊗ b2 = (a1 ⊗ b1 − a1 ⊗ b2) + (a1 ⊗ b2 − a2 ⊗ b2) = a1 ⊗ (b1 − b2) + (a1 − a2)⊗ b2.

And since α(a1 − a2) = a′ − a′ = 0 and β(b1 − b2) = b′ − b′ = 0 we get that both terms are
elements of the generating set of D and therefore a1 ⊗ b1 − a2 ⊗ b2 ∈ D holds. By the universal
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property of A′ ⊗B′ f induces a homomorphism f̃ : A′ ⊗B′ → C, such that f̃(a′ ⊗ b′) = p(a⊗ b).
From this we conclude that p = f̃ ◦ (α⊗β) and since f̃ is a homomorphism we know that it sends
elements of ker(α ⊗ β) into 0 ∈ C. So these elements lie in D and thus ker(α ⊗ β) ⊂ D holds as
well: ker(α⊗ β) = D.

We will use the two lemma’s above to look at exactness of tensors of K−modules. In the
next lemma we will only proof the first part. The second one needs quite some other technical
lemma’s, which are not really in line with the rest of the text.
Lemma 3.5: Let B be an K−module and let

0 A′ A A′′ 0
α β

be an exact sequence of K−modules. Then

A′ ⊗B A⊗B A′′ ⊗B 0
α⊗ Id β ⊗ Id

is exact. If moreover either A′′ or B is torsionless, then α ⊗ Id : A′ ⊗ B → A ⊗ B is injective as
well.
Proof: From our known exact sequence we get that β is surjective. Clearly Id : B → B is
surjective as well, so lemma 3.3 gives us that β ⊗ Id is surjective. This proves the exactness at
A′′ ⊗B. For exactness at A⊗B we use lemma 3.4. Since β and Id are surjective we get that

ker(β ⊗ Id) = 〈a⊗ b|β(a) = 0 or Id(b) = 0〉 = 〈a⊗ b|β(a) = 0〉.

Using that ker(β) = Im (α), we get that ker(β ⊗ Id) = 〈α(a′) ⊗ b|a′ ∈ A′〉 = Im (α ⊗ Id), which
proves the exactness.

Theorem 2: Let

0 F ′ F F ′′ 0
h g

be an exact sequence of sheaves of K−modules over X. Let G be another sheaf. Then if G or F ′′
is torsionless, then

0 F ′ ⊗ G F ⊗ G F ′′ ⊗ G 0
h⊗ Id g ⊗ Id

is exact. If G or F ′ is fine as well, then the induced sequence

0 (F ′ ⊗ G)(X) (F ⊗ G)(X) (F ′′ ⊗ G)(X) 0
(h⊗ Id)X (g ⊗ Id)X

is exact.
Proof: We will need that for each x (F ⊗ G)x ' Fx ⊗ Gx. Therefore define the map
ψ : (F ⊗ G)x → Fx ⊗ Gx; rUx (f ⊗ g) 7→ rUx (f)⊗ rUx (g). It is enough to check that this map is well
defined, so let f ′ ⊗ g′ ∈ F(V ) ⊗ G(V ) such that rUx (f ⊗ g) = rVx (f ′ ⊗ g′). This means that there
exists some W ⊂ U ∩ V such that rUW (f ⊗ g) = rVW (f ′ ⊗ g′). Now by definition we have that
rUW (f ⊗ g) = rUW (f)⊗ rUW (g), which means that we get that rUW (f) = rVW (f ′) and rUW (g) = rVW (g′).
So clearly we now have that ψ is well defined.
Now using this and lemma 3.5 we get the first exact sequence. The second sequence is a result of
lemma 3.2 and the fact that F ′ ⊗ G is fine when either F ′ or G is, as is discussed before.

We will discuss one more lemma about torsionless sheaves, which will be handy in section
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7.

Lemma 3.6: Let F be a sheaf of K−modules over X such that each F(U) is torsion-
less. Then F is torsionless as well.
Proof: Let x ∈ X. We will show that Fx is torsionless, so let rUx (f) be an element of Fx and
k ∈ K \{0} such that k ·rUx (f) = 0. From this we know that rUx (k ·f) = 0 and thus there exists an
open subset W such that x ∈W ⊂ U and 0 = rUW (k ·f) = k ·rUW (f). F(W ) is torsionless and there-
fore we are allowed to conclude that rUW (f) = 0, so that rUx (f) = rWx (rUW (f)) = rWx (0) = 0.

5 Cochain complexes

Classical cohomology groups are defined as quotient spaces of cochain complexes. This indicates
that cochain complexes will be important for us as well. Therefore we will discuss the notion of
such complexes and some results, which we will use later on again.
Definition 4.1: cochain complex
A cochain complex C∗ consists of a sequence of K−modules {Cq}q∈Z and homomorphisms dq :
Cq → Cq+1 such that Bq(C∗) := Im (dq−1) ⊂ Zq(C∗) := ker(dq) for all q. We will call dq the qth
coboundary operator, elements of Zq will be called qth degree cocycles and elements of Bq will be
called qth degree coboundaries. Finally we will define the quotient of the module Zq by Bq as:

Hq(C∗) := Zq(C∗)�Bq(C∗),

the qth cohomology module.

Definition 4.2: cochain maps
Let C∗ and D∗ be two cochain complexes. Then a cochain map α : C∗ → D∗ is a collection of
K−module homomorphisms αq : Cq → Dq such that the following diagram commutes for all q.

Cq+1 Dq+1

Cq Dq

αq+1

dq dq

αq

(1)

Lemma 4.1: If α is a cohain map between cochain complexes C∗ and D∗, then αq(Bq(C∗)) ⊂
Bq(D∗) and αq(Zq(C∗)) ⊂ Zq(C∗) for all q.
Proof: Suppose that σq ∈ Bq(C∗), then we have σq−1 ∈ Cq−1 such that dq−1(σq−1) = σq. Using
diagram (1) we find that:

αq(σq) = αq(dq−1(σq−1)) = dq−1(αq−1(σq−1)) ∈ Bq(D∗).

Next assume that σq ∈ Zq(C∗), so dq(σq) = 0. Again using (1) we get that
dq(αq(σq)) = αq+1(dq(σq)) = αq+1(0) = 0, where we use that αq+1 is a homomorphism of
K−modules. And thus we have that αq(σq) ∈ Zq(D∗).

Remark: From the above lemma we can conclude that a cochain map α induces a homomor-
phisms αq on the cohomology modules. For we can define αq : Hq(C∗)→ Hq(D∗); [σ] 7→ [αq(σ)],
where the [σ] with σ ∈ Zq(C∗) denotes the class of σ in the quotient. This map is clearly a
homomorphism. so we only need to check whether this map is well defined. Let [σ1] = [σ2], then
there exists ζ ∈ Bq(C∗) such that σ2 = σ1 + ζ. Now we get that

αq([σ2]) = [αq(σ2)] = [αq(σ1 + ζ)] = [αq(σ1) + αq(ζ)] = [αq(σ1) + 0] = [αq(σ1)] = αq([σ1]).
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This induced map of cochain complexes will from now on always be denoted with as α.

Lemma 4.2: When α : C∗ → D∗ and β : D∗ → E∗ are two cochain maps, then we get
that β ◦ α = β ◦ α.
Proof: This is an easy calculation. Let [σ] ∈ Hq(C∗). Then we have that

β
q ◦ αq([σ]) = β

q
([αq(σ)]) = [βq ◦ αq(σ)].

On the other hand we have that

β ◦ αq([σ]) = [(β ◦ α)q(σ)] = [βq ◦ αq(σ)].

Since this is true for each q we conclude that β ◦ α = β ◦ α

Definition 4.3: short exact sequence of cochains
If C∗, D∗ and E∗ are cochain complexes and α : C∗ → D∗ and β : D∗ → E∗ are cochain maps,
then this sequence forms a short exact sequence if for each q:

0 Cq Dq Eq 0
αq βq

is a short exact sequence of K−modules.

Definition 4.4: homomorphism between short exact sequences

If 0 → C∗
α→ D∗

β→ E∗ → 0 and 0 → C̃∗
α̃→ D̃∗

β̃→ Ẽ∗ → 0 are short exact sequences of cochain
complexes, then a homomorphism of the exact sequences of cochain complexes consists of cochain
maps γ1 : C∗ → C̃∗, γ2 : D∗ → D̃∗ and γ3 : E∗ → Ẽ∗ such that the following diagram commutes:

0 C∗ D∗ E∗ 0

0 C̃∗ D̃∗ Ẽ∗ 0

α β

γ1 γ2 γ3

α̃ β̃

Theorem 3: Given the short exact sequence 0→ C∗ → D∗ → E∗ → 0 with cochain maps α and
β, then there exists homomorphisms ∂q : Hq(E∗)→ Hq+1(C∗) such that

... Hq−1(E∗) Hq(C∗) Hq(D∗) Hq(E∗) Hq+1(C∗) ...
∂q−1 αq β

q
∂q (2)

is exact. Moreover if there exists a homomorphism γ to another short exact sequence 0→ C̃∗ →
D̃∗ → Ẽ∗ → 0, then the following diagram commutes:

Hq(E∗) Hq+1(D∗)

Hq(Ẽ∗) Hq+1(C̃∗)

∂q

γq3 γq+1
1

∂̃q

(3)

Proof: Consider the commutative diagram:
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...
...

...

0 Cq+2 Dq+2 Eq+2 0

0 Cq+1 Dq+1 Eq+1 0

0 Cq Dq Eq 0

0 Cq−1 Dq−1 Eq−1 0

...
...

...

(1)(2)

(3)

(4)(5)

αq+2 βq+2

αq+1 βq+1

αq βq

dq−1 dq−1 dq−1

dq

dq+1

dq

dq+1

dq

dq+1

αq−1 βq−1

First we will determine the map ∂. Let σ3 ∈ Zq(E∗), so dq(σ3) = 0. Since each row is a short exact
sequence, we know that βq is surjective and therefore we find a σ2 ∈ Dq such that βq(σ2) = σ3.
Using the commutative square (1) we have that

βq+1(dq(σ2)) = dq(βqσ2) = dq(σ3) = 0,

so dq(σ2) ∈ ker(βq+1) = Im (αq+1). This means that there exists a σ1 ∈ Cq+1 such that
αq+1(σ1) = dq(σ2) and since αq+1 is injective we have that σ1 is unique for each σ2. Further-
more we have that σ1 ∈ Zq+1(C∗), because we can use the commutative square (3) which gives
us that αq+2(dq+1(σ1)) = dq+1(dq(σ2)) = 0. So dq+1(σ1) ∈ ker(αq+2) = {0}, which means that
dq+1(σ1) = 0 and hence we have that σ1 ∈ Zq+1(C∗).
We want to say that ∂q([σ3]) := [σ1], but since βq is only surjective we might find a σ′2 6= σ2

such that βq(σ′2) = βq(σ2) = σ3 and then we would have σ1 6= σ′1 ∈ Cq+1 such that
αq+1(σ1) = dq(σ2) and αq+1(σ′1) = dq(σ′2) and thus we might have two different images for ∂([σ3]).
σ′2 6= σ2 ∈ (βq)−1(σ3) gives us however that βq(σ′2 − σ2) = 0, so σ′2 − σ2 ∈ ker(βq) = Im (αq).
Thus we have some σ4 ∈ Cq such that αq(σ4) = σ′2 − σ2. Using square (2) we find that

αq+1(dq(σ4)) = dq(αq(σ4)) = dq(σ′2 − σ2) = αq+1(σ′1 − σ1).

Now we can use the injectivity of αq+1 again and we get that σ′1−σ1 = dq(σ4) ∈ Bq+1(C∗). From
this it is clear that [σ1] = [σ′1].
The map ∂ we just constructed is actually a map from Zq(E∗)→ Hq+1(E∗). It is a homomorphism
of K−modules, since every map we used in its construction is a homomorphism. To show that
this gives a homomorphism ∂q : Hq(E∗)→ Hq+1(C∗) we need to show that if σ3 ∈ Bq(E∗), then
its image under the just constructed map is 0. That σ is in the image of dq−1 means that we
have a σ5 ∈ Eq−1 such that σ3 = dq−1(σ5). The surjectivity of βq−1 gives a σ6 ∈ Dq−1 such that
βq−1(σ6) = σ5. With square (4) we now have that:

βq(dq−1(σ6)) = dq−1(βq−1(σ6)) = dq−1(σ5) = σ3.

In the discussion above we have seen that it does not matter which element σ2 we take out of the
pre-image of σ3 under βq, so we can take σ2 = dq−1(σ6) ∈ Bq(D∗). Now in ∂ we picked σ1 such
that αq+1(σ1) = dq(σ2), which is now 0, since dq ◦ dq−1 = 0. The injectivity of αq+1 implies that
σ1 = 0 and hence [σ1] = 0, which is what we needed.
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Next part of the proof is to show that ∂ makes (2) into an exact sequence. For this we
need to proof exactness at Hq(C∗), at Hq(D∗) and at Hq(E∗), so in total we need to proof six
inclusions.
(i) First we will see that Im (∂q−1) ⊂ ker(αq). Let [σ1] ∈ Im (∂q−1), then we have a σ3 ∈ Zq−1(E∗)

such that [σ1] = ∂
q−1

(σ3). By construction we thus have a ξ ∈ Cq−1 and σ2 ∈ Dq such that
βq−1(σ2) = σ3 and αq(σ1 + dq−1ξ) = dq−1(σ2). This last one and the commutative square (5)
gives that:

αq(σ1) = αq(σ1 + dq−1(ξ))− αq(dq−1(ξ)) = dq−1(σ2)− dq−1(αq−1(ξ))

= dq−1(σ2 − αq−1(ξ)) ∈ Bq(D∗).

Now of this and because αq([σ1]) = [αq(σ1)] we get that αq([σ1]) = 0, and thus [σ1] ∈ ker(αq).
(ii) To conclude the exactness at Hq(C∗) we will proof that ker(αq) ⊂ Im (∂q−1), so that they
are equal. When 0 = αq([σ1]) = [αq(σ1)] we get that αq(σ1) = dq−1(σ2) for some σ2 ∈ Dq−1.
Furthermore for σ3 := βq−1(σ2) ∈ Eq−1 we have with (4) and the exactness of the rows that

dq−1(σ3) = dq−1(βq−1(σ2)) = βq(dq−1(σ2)) = βq(αq(σ1)) = 0.

From this we conclude that σ3 ∈ Zq−1(E∗) and by construction it is clear that ∂q([σ3]) =

∂
q−1

(σ3) = [σ1].
(iii) For the second exactness we will first proof that Im (αq) ⊂ ker(β

q
), so assume [σ2] ∈ Im (αq).

We then have a σ1 ∈ Zq(C∗) such that αq([σ1]) = [σ2]. But since αq([σ1]) = [αq(σ1)] per definition
we have that there exists a ξ ∈ Dq−1 such that σ2 = αq(σ1) + dq−1ξ. Again using the exactness of
the rows and (4) we get that:

β
q
([σ2]) = [βq(σ2)] = [βq(αq(σ1)) + βq(dq−1(ξ))] = [0 + dq−1(βq−1(ξ))] = 0.

We conclude that [σ2] ∈ ker(β
q
).

(iv) Now let [σ2] ∈ ker(β
q
), then we have that σ ∈ Zq(D∗) and 0 = β

q
([σ2]) = [βq(σ2)]. This

implies that there exists a ξ ∈ Eq−1 such that βq(σ2) = dq−1ξ. Since βq−1 is surjective we find a
σ3 ∈ Dq−1 such that βq−1(σ3) = ξ. Using (4) again we get that:

βq(dq−1(σ3)) = dq−1(βq−1(σ3)) = dq−1(ξ) = βq(σ2),

and therefore σ2 − dq−1(σ3) lies in the kernel of βq. Since the rows are exact we have that it lies
in the image of αq as well and this gives us a σ1 ∈ Cq such that αq(σ1) = σ2 − dq−1(σ3). Now we
need to proof that dq(σ1) = 0, so that we can speak of [σ1]. Here we need (2):

αq−1(dq(σ1)) = dq(αq(σ1)) = dq(σ2 − dq−1(σ3)) = dq(σ2) = 0.

Since αq is injective we have that dq(σ1) = 0, so [σ1] exists. Now we get that αq([σ1]) = [αq(σ1)] =
[σ2 − dq−1(σ3)] = [σ2], which is exactly what we need to show that ker(β

q
) ⊂ Im (αq).

(v) We will show that Im (β
q
) ⊂ ker(∂q), so let β

q
([σ2]) = [σ3], with σ2 ∈ Zq(D∗). Since β

q
([σ2]) =

[βq(σ2)] we get that:

∂q([σ3]) = ∂q([βq(σ2)]) = ∂
q
(βq(σ2)).

Now assume that σ1 ∈ ∂
q
(βq(σ2)), then by construction of ∂ there exists a ξ ∈ Cq such that

αq+1(σ1 + dq(ξ)) = dq(σ2) = 0. With the injectivity of αq+1 we conclude that σ1 + dq(ξ) = 0 and
hence ∂q([σ3]) = ∂

q
(βq(σ2)) = [σ1] = 0.

(vi) The final part of the exactness is to show that ker(∂q) ⊂ Im (β
q
). Let us assume therefore

that 0 = ∂q([σ3]) = ∂
q
(σ3). By construction of ∂

q
we find σ2 ∈ Dq and ξ ∈ Cq such that

βq(σ2) = σ3 and αq+1(dq(ξ)) = dq(σ2). Using (2) we know that αq+1(dq(ξ)) = dq(αq(ξ)), so when
we define σ1 := σ2 − αq(ξ) we immediately get that dq(σ1) = 0 so that [σ1] exists. Furthermore
since the rows are exact we also get that βq(σ1) = βq(σ2)−βq(αq(ξ)) = σ3, so that β

q
([σ1]) = [σ3]
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which is what we wanted.

Finally we will show that diagram (3) commutes. Therefore look at the commuting dia-
gram below, we will use its commutative squares extensively.

0

Eq+1 0 0

Dq+1 Eq Ẽq+1 0

Cq+1 Dq D̃q+1 Ẽq

0 Cq C̃q+1 D̃q

0 0 C̃q

0

α
q+

1

β
q+

1

α̃
q

β̃
q

α̃
q+

1

β̃
q+

1

γ q+
11

γ q+
12

γ q+
13

d̃q

d̃q

d̃q

α
q

β
q

dq

γ q
1

dq

γ q
2

dq

γ q
3

Let σ3 ∈ Zq(E∗) and σ̃3 := γq3(σ3) ∈ Zq(Ẽ∗). By construction of ∂ we find σ1 ∈ Cq+1, σ̃1 ∈ C̃q+1,
σ2 ∈ Dq and σ̃2 ∈ D̃q such that the following holds:

αq+1(σ1) = dq(σ2), βq(σ2) = σ3, ∂([σ3]) = [σ1],

α̃q+1(σ̃1) = d̃q(σ̃2), β̃q(σ̃2) = σ̃3, ∂̃([σ̃3]) = [σ̃1].

So to proof that (3) commutes we need to show the second equality in [γq+1
1 (σ1)] = γq+1

1 ([σ1]) =
∂̃([σ̃1]). First note that

β̃q(γq2(σ2)) = γq3(βq(σ2)) = γq3(σ3) = σ̃3 = β̃q(σ̃2),

which implies that γq3(σ2)− σ̃2 ∈ ker(β̃q) = Im (α̃q). Therefore we find ξ ∈ C̃q such that α̃q(ξ) =
γq3(σ2)− σ̃2. Now we compute that:

α̃q+1
(
d̃q (ξ)

)
= d̃q (α̃q (ξ)) = d̃q (γq2 (σ2)− σ̃2) = d̃q (γq2 (σ2))− α̃q+1 (σ̃1)

= γq+1
2 (dq (σ2))− α̃q+1 (σ̃1) = γq+1

2

(
αq+1 (σ1)

)
− α̃q+1 (σ̃1)

= α̃q+1
(
γq+1

1 (σ1)− σ̃1

)
Knowing that αq+1 is injective, we conclude that γq+1

1 (σ1) − σ̃1 = d̃q (ξ), which means that
[γq+1

1 (σ1)] = [σ̃1] holds and therefore diagram (3) commutes.
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6 Axiomatic sheaves

Finally, we are able to set op sheaf cohomology. We will start with the definition of a sheaf
cohomology theory, which is axiomatic. The rest of the section will be used to show that there is
a natural manner in which these theories occur and that any two sheaf cohomology theories are
isomorphic.
Definition 5.1: sheaf cohomology theory
A sheaf cohomology theory H for a manifold X with coefficients in sheaves of K−modules over X
consists of:

I a K−module Hq(X,F) for each sheaf F and integer q,

II a homomorphism hq : Hq(X,F) → Hq(X,F ′) for each homomorphism h : F → F ′ and
integer q,

III a homomorphism ∂q(F ′,F ,F ′′) : Hq(X,F ′′) → Hq+1(X,F ′) for each short exact sequence
0→ F ′ → F → F ′′ → 0 and integer q,

such that

(a) For each sheaf F

1 if q < 0, then Hq(X,F) = 0

2 there exist an isomorphism hF : H0(X,F)→ F(X), such that if h : F → F ′ is a homomor-
phism, then the following diagram commutes:

H0(X,F) F(X)

H0(X,F ′) F ′(X)

hF

h0 hX

hF ′

(b) If F is a fine sheaf, then Hq(X,F) = 0 for all q > 0.

(c) For each short exact sequence 0→ F ′ h→ F h′→ F ′′ → 0, the sequence

...→ Hq(X,F ′)→ Hq(X,F)→ Hq(X,S′′)→ Hq+1(M,F ′)→ ...

is exact.

(d) If h : F → F is equal to the identity, then so is hq for all q.

(e) If

F F ′

F ′′

h

h ′ h′′

commutes, then so does
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Hq(X,F) Hq(X,F ′)

Hq(X,F ′′)

hq

h ′q h′′q

(f) When there exists a homomorphism between two exact short sequences

0 F ′ F F ′′ 0

0 F̃ ′ F̃ F̃ ′′ 0

h h′

h̃ h̃′
g′ g g′′

then for each q we have the following commuting diagram:

Hq(X,F ′′) Hq+1(X,F ′)

Hq(X, F̃ ′′) Hq+1(X, F̃ ′)

∂q

g′′q g′q

∂̃q

Definition 5.2: resolution of a sheaf
A resolution of a sheaf K is an exact sheaf sequence

0 K G0 G1 G2 ...
g0 g1 g2

The resolution will be denoted by G∗. If each Gi are fine, then the resolution is called fine. If each
Gi are torsionless, then so is G∗.

Example 5.1: cochain complex induced by a resolution
Suppose we have the situation as in Definition 5.2. Now let F be another sheaf. We will
form a cochain complex C∗F associated to the sheaf F and the resolution of the sheaf K. First
we note that the homomorphism in the sheaf sequence can be extended to homomorphism
Gi ⊗F → Gi+1 ⊗F , for i ≥ 1, by the tensor product with IdF : F → F . We will not get an exact
sequence, but we do have that for each x the following holds:

Im (gi ⊗ IdF )x ⊂ ker(gi+1 ⊗ IdF )x.

This is nothing more than an easy computation, for we have that (gi ⊗ IdF )x : (Gi ⊗ F)x →
(Gi+1 ⊗F)x; rUx (gi ⊗ f) 7→ rUx (hiU (gi)⊗ f). This means that:

(gi+1 ⊗ IdF )x ◦ (gi ⊗ IdF )x(rUx (gi ⊗ f)) = rUx (gi+1(gi(gi))⊗ f) = rUx (0⊗ f) = 0

By this computation it is also clear that exactness will not hold in general. Another direct
consequence is that we have a sequence of K-modules:

0 (G0 ⊗F)(X) (G1 ⊗F)(X) (G2 ⊗F)(X) ...
(g1 ⊗ IdF )X (g2 ⊗ IdF )X
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with Im (gi ⊗ IdF )X ⊂ ker(gi+1 ⊗ IdF )X . Here we use that in fact (Gi ⊗ F)(X) = Γ(X,Gi ⊗F)

and the computation made above. For a s : X → Gi+1 ⊗F ∈ Im (gi ⊗ IdF )X we have that there

exists a t : X → Gi ⊗F such that s(x) = (gi ⊗ IdF )x(t(x)) for each x and hence:(
(gi+1 ⊗ IdF )X(s)

)
(x) = (gi+1 ⊗ IdF )x(s(x)) = (gi+1 ⊗ IdF )x((gi ⊗ IdF )x(t(x))) = 0

Now we are finally able to set up the cochain complex C∗F . For each q < 0 we define CqF := 0 and
for q ≥ 0 we define CqF := (Gq ⊗ F)(X). The homomorphism dqF : Cq → Cq+1 will be given as
above: dqF = (gq+1 ⊗ IdF )X . The discussion above shows that this is actually a cochain complex,
which depends on the given resolution of K and on the sheaf F . When there is no doubt about K
we will denote this cochain complex by either C∗F or (G∗ ⊗F)(X).
In the same way a sheaf homomorphism h : F → F ′ induces a map, when tensored with the identity
on Gq. This map is a cochain map, since on presheaf level we have the following commutativity:

dq ◦ (Id⊗ h)X(g ⊗ f) = dq(g ⊗ h(f)) = (gq+1(g)⊗ h(f)) = (Id⊗ h)X(gq+1(g)⊗ f)

= (Id⊗ h)X ◦ dq+1(g ⊗ f).

Theorem 4: Let

0 K G0 G1 G2 ...
g0 g1 g2

be a fine torsionless resolution of the constant sheaf K. Then there exists a sheaf cohomology
theory associated to it.
Proof: We have to define the K-modules Hq(X,F) for each q and each sheaf F and homo-
morphism between modules such that (a) till (f) holds. So let Hq(X,F) = Hq((G∗ ⊗ F)(X)).
Furthermore, for each homomorphism h : F → F ′ we get a cochain map α as discussed above,
αq = (Id⊗ h)X . Then we define hq := αq, the associated homomorphism of cohomology modules.
Finally for a short exact sequence

0 F ′ F F ′′ 0
h h′

of sheaves we use Theorem 2 to get a short exact sequence of cochain maps

0 (G∗ ⊗F ′)(X) (G∗ ⊗F)(X) (G∗ ⊗F ′′)(X) 0
(Id⊗ h)X (Id⊗ h′)X

Now Theorem 3 gives maps ∂q : Hq((G∗⊗F ′′)(X))→ Hq((G∗⊗F ′)(X)). This leaves us to check
that these definitions satisfy (a) till (f)
(a) Since Cq = 0 for all q < 0 we immediately get that Hq(X,F) = 0 when q < 0. Now let
Lq = ker(gq+1) ⊂ Gq. Clearly this gives a short exact sequence of sheaves:

0 Lq Gq Lq+1 0
i gq+1

Note that Lq is a subsheaf of Gq and therefore torsionless as well. Using Theorem 2 and Lemma
3.1 we get a short exact sequence and an exact sequence:

0 Lq ⊗F Gq ⊗F Lq+1 ⊗F 0
i⊗ IdF gq+1 ⊗ IdF

23



0 (Lq ⊗F)(X) (Gq ⊗F)(X) (Lq+1 ⊗F)(X)
(i⊗ IdF )X (gq+1 ⊗ IdF )X

This second sequence implies that (i⊗ IdF )X : (Lq ⊗ F)(X)→ (Gq ⊗ F)(X) is injective for each
q. We can now look at the composition:

(Gq ⊗F)(X) (Lq+1 ⊗F)(X) (Gq+1 ⊗F)(X)
(gq+1 ⊗ IdF )X

(gq+1 ⊗ IdF )X

Therefore we conclude that ker((hq ⊗ IdF )X) = (Lq ⊗ F)X for all q > 0. In particular we now
know that:

H0(X,F) = H0((G∗ ⊗F)(X)) = ker((g1 ⊗ IdF )X)�{0} = (L0 ⊗F)(X).

Since we have a resolution of the sheaf K we know that g0 : K → L0 is not only an injection, but
a surjection as well. So g0 is an isomorphism and K ≡ L0. For the sheaf F this now induces an
isomorphism g0⊗IdF : K⊗F → L0⊗F . We can also find an isomorphism k : K⊗F → F , which is
the induced isomorphism of the presheafmap consisting of isomorphisms kU : K ⊗F(U)→ F(U)
and each kU is again induced by the bilinear map kU : K × F(U) → K; (k, f) 7→ kf . This is all
uniquely determined and clearly it induces an isomorphism. Finally we conclude that F ' L0⊗F .
In particular we have the isomorphism between F(X) and (L0 ⊗F)(X).
So al together we get that F(X) ' (L0⊗F)(X) = H0(X,F). This now induces the commutative
diagram, when h : F → F ′ is a homomorphism:

F(X) H0(X,F)

F ′(X) H0(X,F ′)

(g0 ⊗ IdF )X ◦ k−1
X

hX
(g0 ⊗ IdF )X ◦ k′−1

X

(Id⊗ h)X

The commutativity is a consequence of the fact that on presheaf level we have that:

k′X ◦ (Id⊗ h)X(k ⊗ f) = k′X(k ⊗ h(f)) = k · h(f) = h(k · f) = hX ◦ kX(f).

And with this we have shown that our choices satisfy (a).
(b) Here we assume that F is a fine sheaf. From (a) and Theorem 2 we get the following short
exact sequence.

0 (Lq ⊗F)(X) (Gq ⊗F)(X) (Lq+1 ⊗F)(X) 0
(i⊗ IdF )X (gq+1 ⊗ IdF )X

Which means that Im ((gq ⊗ IdF )X) = (Lq ⊗F)(X). Furthermore we get from (a) that:

Hq(X,F) = Hq((G∗⊗F)(X)) = ker((gq+1⊗IdF )X)�Im ((gq⊗IdF )X) = (Lq⊗F)(X)�(Lq⊗F)(X) = 0,

which is what we needed to fulfill (b).
(c) This is a direct consequence of Theorem 3 and the short exact sequence we have constructed
in (III).
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0 (G∗ ⊗F ′)(X) (G∗ ⊗F)(X) (G∗ ⊗F ′′)(X) 0
(Id⊗ h)X (Id⊗ h′)X

(d) On presheaf level we have that αq = (Id⊗ h)X . Now since h is the identity on F we get that
αq is the identity on presheaf level. Clearly, by using lemma 2.6 and 2.7, we get that αq is the
identity. This implies that for σ ∈ Hq((G∗ ⊗F)(X)):

hq([σ]) = αq([σ]) = [αq(σ)] = [σ].

We conclude that hq is the identity as well.
(e) Let h : F → F ′, h′ : F → F ′′ and h′′ : F ′ → F ′′ be homomorphisms such that h′′ ◦ h = h′.
This clearly induces the following commutative diagram at presheaf level:

(Gq ⊗F)(X) (Gq ⊗F ′)(X)

(Gq ⊗F ′′)(X)

(Id⊗ h)X

(Id⊗ h ′)X
(Id⊗ h′′)X

for each q. Now using lemma 4.2 and that Hq(X,F) = Hq((G∗ ⊗ F)(X)), we get the wanted
commutative diagram:

Hq(X,F) Hq(X,F ′)

Hq(X,F ′′)

hq

h ′q h′′q

(f) This is a again a consequence of Theorem 3 and the commutativity of the following diagram,
which is clear on presheaflevel:

0 (Gq ⊗F ′)(X) (Gq ⊗F)(X) (Gq ⊗F ′′)(X) 0

0 (Gq ⊗ F̃ ′)(X) (Gq ⊗ F̃)(X) (Gq ⊗ F̃ ′′)(X) 0

(Id⊗ h)X (Id⊗ h′)X

(Id⊗ h̃)X (Id⊗ h̃′)X
(Id⊗ g′)X (Id⊗ g)X (Id⊗ g′′)X

We conclude that this fine torsionless resolution does indeed induce a sheaf cohomology theory.

Definition 5.3: cohomology theory homomorphisms
Let H and H̃ be two sheaf cohomology theories for X with coefficients in sheaves of K−modules
over M . Suppose furhter that we have a module homomorphism fqF : Hq(X,F) → H̃q(X,F) for
each q and each sheaf F . Then we say that this collection f = {fqF} is a homomorphism of the

cohomology theory H to the theory H̃ if it satisfies the following axioms.

(a) For q = 0 we have for each sheaf F the commutative diagram

H0(X,F) F(X)

H̃0(X,F) F(X)

hF

f0
F Id

h̃F
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(b) When h : F → F ′ is a homomorphism, then for each q we have the commutative diagram

Hq(X,F) Hq(X,F ′)

H̃q(X,F) H̃q(X,F ′)

hq

fqF fqF ′

h̃q

(c) Given a short exact sequence 0→ F ′ → F → F ′′ → 0, we have the commutative diagram

Hq(X,F ′′) Hq+1(X,F ′)

H̃q(X,F ′′) H̃q+1(X,F ′)

∂q

fqF ′′

∂̃q
fq+1
F ′

An isomorphism of cohomology theories is a homomorphism of cohomology theories f = {fqF}
such that each fqF is an isomorphism of K−modules.

Theorem 5: For each cohomology theories H and H̃ there exists an unique homomor-
phism f between them.
Proof: Let F be a sheaf and consider G = FF̃ to be the sheaf of discontinuous sections over F̃ .
From example 3.1 we know that G is fine. Furthermore, since F ' ΓF̃ we get that F is a subsheaf
of G. Now example 2.3 gives the short exact sequence:

0 F G G�F 0
i π

First we will show uniqueness of such a homomorphism.
Since H is a cohomology theory we have the exact sequence

... Hq(X,G) Hq(X,G�F) Hq+1(X,F) Hq+1(X,G) ...
πq ∂q iq+1

(4)

Furthermore since G is fine we know that Hq(X,G) = 0 for all q ≥ 1. The same is true for H̃
as well. Now let f be a homomorphism between H and H̃. First note that f0

F is completely and
uniquely determined by (a) of definition 5.3. Furthermore when combining (4), (a) of definition
5.1 (a) and (c) of definition 5.3 we get that

H0(X,G) H0(X,G�F) H1(X,F) H1(X,G) = 0

G(X) (G�F) (X)

H̃0(X,G) H̃0(X,G�F) H̃1(X,F) H̃1(X,G) = 0

π0 ∂0 i1

π̃0 ∂̃0 ĩ1

hG hG�F

h̃G h̃G�F

f0
G f0

G�F f1
F

πX

(5)

commutes and has exact rows. This means that ∂0 and ∂̃0 are surjective and since hF is an
isomorphism for each sheaf F we get that f1

F is uniquely determined as well. For q ≥ 1 we can
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use (4) and (c) of definition 5.3 to get

0 Hq(X,G�F) Hq+1(X,F) 0

0 H̃q(X,G�F) H̃q+1(X,F) 0

πq ∂q iq+1

π̃q ∂̃q ĩq+1

fqG�F fq+1
F

(6)

This means ∂q and ∂̃q are isomorphisms for q ≥ 1 and therefore each fF is uniquely determined
out of fq−1

G�F . We conclude with induction that f is unique.

The final part is the existence of such a homomorphism between H and H̃. We note that
the above proof of uniqueness precisely gives a map f which satisfies (a) and the case that q = 0
for (b). So we need to show that this f satisfies (b) for q ≥ 1 and (c).
(b) : Let q = 1 and suppose we have a homomorphism h : F → F ′. First we note that h induces a
homomorphism g : G → G′ by letting (gU (s))(x) = hx(s(x)) for x ∈ U . And this homomorphism
induces the commutative square:

H0(X,G) H0(X,G′)

H̃0(X,G) H̃0(X,G′)

h−1
G′ ◦ gX ◦ hG

f0
G
h̃−1
G′ ◦ gX ◦ h̃G

f0
G′

where commutativity follows from (a) of the definition of f .
Furthermore we have an induced map k : G�F → G′�F ′. To define this map we let s be a
continuous map such that s(x) ∈ Gx�Fx for all x ∈ U , that is s(x) = [bx] for some bx ∈ Gx. Then
define (kU (s))(x) = [gx(bx)]. Let k0 := h−1

G′�F ′ ◦ kX ◦ hG�F and k̃0 = h̃−1
G′�F ′ ◦ kX ◦ h̃G�F . Now

consider the following lattice:

0

H1(X,F) 0 0

H0(X,G�F) H̃1(X,F) H1(X,F ′) 0

H0(X,G) H̃0(X,G�F) H0(X,G′�F ′) H̃1(X,F ′)

H̃0(X,G) H0(X,G′) H̃0(X,G′�F ′)

H̃0(X,G′)

π
0

∂
0

π̃
′0

∂̃
′0π

′0

∂
′0

h −1G ′ ◦ g
X ◦ hG

k 0

h 1

f0
G′

f0
G′�F ′

f1
F ′

π̃
0

∂̃
0

f0
G

h̃ −1G ′ ◦ g
X ◦ h̃G

k̃ 0

f0
G�F

f1
F

h̃ 1

(1)(2)

(3) (4)

(5)

(6)
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Here (2) and (4) is a commutative square, since f1
F and f1

F ′ are defined such that (5) commutes.
Commutativity of (3) again follows from the fact that f satisfies (a) in definition 5.3, so we have
that hG�F = h̃G�F ◦ f0

G�F and the same for F ′. This now implies that:

k̃0 ◦ f0
G�F = h̃−1

G′�F ′ ◦ kX ◦ h̃G�F ◦ f
0
G�F = h̃−1

G′�F ′ ◦ kX ◦ hG�F ,

f0
G′�F ′ ◦ k0 = f0

G′�F ′ ◦ h−1
G′�F ′ ◦ kX ◦ hG�F = h̃−1

G′�F ′ ◦ kX ◦ hG�F .

Finally (5) and (6) are commutative as well, which follow from (e) of the definition of H and
H̃. Now in this lattice we want commutativity of square (1), knowing that all the other squares
commute. Let therefore α ∈ H1(X,F). Since the rows are exact, we find a s ∈ H0(X,G�F) such
that ∂0(s) = α. Using this we find:

f1
F ′(h

1(α)) = f1
F ′(h

1(∂0(s))) = f1
F (∂′0(k0(s))) = ∂̃′0(f0

G′�F ′(k
0(s)))

= ∂̃′0(k̃0(f0
G�F (s))) = h̃1(∂̃0(f0

G�F (s))) = h̃1(f1
F (∂0(s))) = h̃1(f1

F (α)).

We conclude that (b) holds for q = 1. For q ≥ 1 we again set up such a lattice:

0

Hq+1(X,F) 0 0

Hq(X,G�F) H̃q+1(X,F) Hq+1(X,F ′) 0

0 H̃q(X,G�F) Hq(X,G′�F ′) H̃q+1(X,F ′)

0 0 H̃q(X,G′�F ′)

0

π
q

∂
q

iq
+1

π̃
′q

∂̃
′q

ĩ′
q+

1

π
′q

∂
′q

i′
q+

1

k q+1

h q+1

fqG′�F ′

fq+1
F ′

π̃
q

∂̃
q

ĩq
+1

fqG�F

k̃ q+1

fq+1
F

h̃ q+1

(1)(2)

(3) (4)

(5)

(6)

Again we check commutativity for the squares (2) till (6), to conclude that (1) commutes. First
note that (3) is by induction a commutative square, (2) and (4) is again by definition of f and
(5) and (6) by definition of H and H̃. Then, for each α ∈ Hq+1(X,F) there exists a unique
s ∈ Hq(X,G�F) such that ∂q(s) = α and this gives that:

fq+1
F ′ (hq+1(α)) = fq+1

F ′ (hq+1(∂q(s))) = fq+1
F ′ (∂′q(kq+1(s))) = ∂̃′q(fqG′�F ′(k

q+1(s)))

= ∂̃′q(k̃q+1(fqG�F (s))) = h̃q+1(∂̃q(fqG�F (s)))

= h̃q+1(fq+1
F (∂q(s))) = h̃q+1(fq+1

F (α))

We conclude that (b) holds for q ≥ 2.
Now we want to proof (c), so let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of sheaves
and define G and G′ and the map g as before. Since F ′x → Fx and Fx → Gx are both injective we
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get the following commutative diagram with exact rows:

0 F ′ F F ′′ 0

0 F ′ G G�F ′ 0

0 F ′ G′ G′�F ′ 0

h h′

i ◦ h π

i′ π′

id

id

i

g

k1

k2

(7)

Where the left squares commute trivially and the other two by construction of ki:

To define k1 we first define ψ1 : F ′′ → G�F ′. Let z ∈ F ′′x . Since h′x is surjective we find a
y ∈ Fx such that h′x(y) = z. Then we define ψ1(z) := πx ◦ ix(y) and k1 the induced sheaf
morphism. We have to check whether ψ1 is well defined, so suppose h′x(y1) = h′x(y2) = z. Then
y1 − y2 ∈ ker(h′x) = Im (hx), so we can find a w ∈ F ′x such that hx(w) = y1 − y2. From this we
conclude that ix(y1 − y2) = ix(hx(w)) ∈ Im (ix ◦ hx) = ker(πx) and thus ψ1 is well defined.
In the same manner we define k2 and ψ2: for each z ∈ G′x�F ′x there exists a y ∈ G′x such that
π′x(y) = z and then ψ(z) := πx ◦ gx(y), and again we let k2 to be the induced sheaf morphism.
Checking whether ψ2 is well defined gives y1 and y2 such that π′x(yi) = z and thus y1 − y2 ∈
ker(π′x) = Im (i′). Again we get y1 − y2 = i′x(w) for some w ∈ F ′, and g(y1 − y2)i ◦ h(w) ∈
Im (ix ◦ hx) = ker(π). We conclude that ψ2 is well defined as well.
Using thatH is a cohomology, so it satisfies (a) (b), (c) and (f) of definition 5.1, we get the following
commutative diagram with exact rows, where we let ∂q1 := ∂q(F ′,F ,F ′′), ∂q2 := ∂q(F ′,G,G�F ′)
and ∂q3 := ∂q(F ′,G′,G′�F ′), to simplify notation. First for q = 0:

... H0(X,F) H0(X,F ′′) H1(X,F ′) ...

... H0(X,G) H0 (X,G�F ′) H1(X,F ′) H1(X,G) = 0

... H0(X,G′) H0 (X,G′�F ′) H1(X,F ′) H1(X,G′) = 0

h0 h′0 ∂0
1 h1

(i ◦ h)0
π0 ∂0

2 (i ◦ h)1

i′0 π′0 ∂0
3 i′1

i0

g0

k0
1

k0
2

Id

Id

Now let z ∈ H0(X,F ′′), we want to see what ∂0
1(z) is. First of all we see that ∂0

1(z) =
∂0

2(k0
1(z)) ∈ H1(X,F ′) = Im (∂0

3). Which means we can find a y ∈ H0(X,G′�F ′) such
that ∂0

3(y) = ∂0
2(k0

1(z)). For any such y we get that ∂0
3(y) = ∂0

2(k0
2(y)) and thus that

k0
1(z) − k0

2(y) ∈ ker(∂0
2) = Im (π0). This means that for some w ∈ H0(X,G): k0

2(y) =
k0

1(z) − π0(w) ∈ [k0
1(z)], which is an element of H0(X,G�F ′)�Im (π0). Further we note that

∂0
3(y1) = ∂0

3(y2) = ∂0
2(k0

1(z)) implies that y1 − y2 ∈ ker(∂0
3) = Im (π′0) and therefore y2 ∈ [y1]

which is an element of H0(X,G′�F ′)�Im (π′0). We conclude that (k0
2)−1 is well defined as

a map (pk0
2)−1 : H0(X,G�F ′)�Im (π0) → H0(X,G′�F ′)�Im (π′0). And since ∂0

3 is con-
stant on classes of H0(X,G′�F ′)�Im (π′0) we get that, when we let p to be the projection
H0(X,G�F ′)→ H0(X,G�F ′)�Im (π0):

∂0
1 = ∂0

3 ◦ (pk0
2)−1 ◦ p ◦ k0

1.

The same we can get for H̃ and this gives us the commutative squares (4) and (5) in the following
diagram:
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H0(X,F ′′) H0(X,G�F ′)�Im (π0) H0(X,G′�F ′)�Im (π′0) H1(X,F ′)

H̃0(X,F ′′) H̃0(X,G�F ′)�Im (π̃0) H̃0(X,G′�F ′)�Im (π̃′0) H̃1(X,F ′)

p ◦ k0
1 (pk0

2)−1 ∂0
3

p̃ ◦ k̃0
1 (p̃k

0

2)−1 ∂̃0
3

f0
F ′′ pf0

G�F ′ pf0
G′�F ′ f1

F ′

∂0
1

∂̃0
1

(1) (2) (3)

(4)

(5)

Here we define pf0
G�F ′ : H0(X,G�F ′)�Im (π0) → H̃0(X,G�F ′)�Im (π̃0) and pf0

G′�F ′ :

H0(X,G′�F ′)�Im (π′0)→ H̃0(X,G′�F ′)�Im (π̃′0) as

pf0
G�F ′(p(α)) := p̃(f0

G�F ′(α)),

pf0
G′�F ′(p

′(α)) := p̃′(f0
G′�F ′(α)),

with p′ the projection into H0(X,G′�F ′)�Im (π′0). This now means that pf0
G�F ′ ◦p = p̃◦f0

G�F ′ .

Furthermore (b) gives that f0
G�F ′ ◦ k0

1 = k̃1
0 ◦ f0

F ′′ . Combining these two gives the commu-
tativity at (1). For (2) we use the discussion above and (b) again, which gives us for any
p′(α) ∈ H0(X,G′�F ′)�Im (π′0):

p̃k
0

2(pf0
G′�F ′(p

′(α))) = p̃k
0

2(p̃′(f0
G′�F ′(α))) = p̃(k̃0

2(f0
G′�F ′(α)))

(b)
= p̃(f0

G�F ′(k
0
2(α))) = pf0

G�F ′(p(k
0
2(α))) = pf0

G�F ′(pk
0
2(p′(α))),

so (2) commutes. Finally we use (6), in which we have defined f1
F ′ , such that for p′(α) ∈

H0(X,G′�F ′)�Im (π′0):

f1
F ′(∂

0
3(p′(α))) = f1

F ′(∂
0
3(α))

(6)
= ∂̃0

3(f0
G′�F ′(α)) = ∂̃0

3(p̃′(f0
G′�F ′) = ∂̃0

3(pf0
G′�F ′(p

′(α))).

We conclude that (3) commutes as well and from this diagram we get that (c) of definition 5.3 is
fulfilled for q = 0.
Secondly for q ≥ 1 (7) gives, in the same way as before, the commuting diagram (with exact rows):

... Hq(X,F) Hq(X,F ′′) Hq+1(X,F ′) ...

0 = Hq(X,G) Hq (X,G�F ′) Hq+1(X,F ′) Hq+1(X,G) = 0

0 = Hq(X,G′) Hq (X,G′�F ′) Hq+1(X,F ′) Hq+1(X,G′) = 0

hq h′q ∂q1 hq+1

πq ∂q2 (i ◦ h)q+1

π′q ∂q3 i′q+1

kq1

kq2

Id

Id

And again we want to find what ∂q1(z) is for z ∈ Hq(X,F ′′). We continue like before, although
the steps are quite easier: the commutative diagram tells that

∂q1(z) = ∂q2(kq1(z)) ∈ Hq+1(X,F ′) = ker(i′q+1) = Im (∂q3).
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So there exists a y ∈ Hq(X,G′�F ′) such that ∂q3(y) = ∂q2(kq1(z)). This time however, this y
is unique. For let y1 and y2 be such that ∂q3(yi) = ∂q2(kq1(z)). Then ∂q3(y1 − y2) = 0 and so
y1 − y2 ∈ ker(∂q3) = Im (π′q) = {0}, which implies that y1 = y2. Furthermore we have that
∂q2(kq1(z)) = ∂q3(y) = ∂q2(kq2(y)), so kq1(z) − kq2(y) ∈ ker(∂q2) = Im (πq) = {0}. We conclude that
kq1(z) = kq2(y). Since y was unique and actually exists (kq2)−1 is well defined and

∂q1 = ∂3
q ◦ (kq2)−1 ◦ kq1

holds. When considering the same for H̃, we get a diagram:

Hq(X,F ′′) Hq(X,G�F ′) Hq(X,G′�F ′) Hq+1(X,F ′)

H̃q(X,F ′′) H̃q(X,G�F ′) H̃q(X,G′�F ′) H̃q+1(X,F ′)

kq1 (kq2)−1 ∂q3

k̃q1 (k̃q2)−1 ∂̃q3

fqF ′′ fqG�F ′ fqG′�F ′ fq+1
F ′

∂q1

∂̃q1

(1) (2) (3)

(4)

(5)

in which (4) and (5) commute, by the above discussion. Furthermore commutativity of (1) and
(2) are consequences of (b) of definition 5.3, which we have already proven to be true for f ,
and commutativity of (3) follows from (6) in which we have defined fq+1

F ′ . We conclude from
this commuting diagram that (c) holds for q ≥ 1 and therefore f is the unique homomorphism
between H and H̃.

Remark: The uniqueness from the homomorphisms between the cohomology theories im-
plies that the homomorphisms are actually isomorphisms. For let f : H → H̃ and f̃ : H̃ → H be
the unique homomorphisms. Then by uniqueness f ◦ f̃ : H̃ → H̃ and f̃ ◦ f : H → H have to be
the identity homomorphism. So f and f̃ are isomorphisms.

Example 5.2: commutative diagram of resolutions
Let G∗ and G∗ be two fine torsionless resolutions of the constant sheaf K with maps ki? between
them such that the following diagram commutes:

0 K G0 G1 G2 ...

0 K G̃0 G̃1 G̃2 ...

g0 g1 g2

g̃0 g̃1 g̃2

Id k0 k1 k2

And let H be the cohomology theory induced by the first row as in Theorem 4 and H̃ the theory
induced by the second row. Using the same notation as in Example 5.1 we see that the above
diagram implies that k induces a cochain map (kq ⊗ IdF )X : CqF → C̃qF . Now define fqF :=

(kq ⊗ IdF )X . Then f is a homomorphism between H and H̃ and by the last Theorem it is the
only one and it is an isomorphism as well. To proof f satisfies (a) of Definition 5.3 we consider
the diagram:
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F(X) (K ⊗F) (X) (L0 ⊗F) (X) = H0(X,F)

F(X) (K ⊗F) (X)
(
L̃0 ⊗F

)
(X) = H̃0(X,F)

kX
(
g0 ⊗ IdF

)
X

kX
(
g̃0 ⊗ IdF

)
X

Id Id f0
F

hF

h̃F

Here f0
F is, on presheaf level, a map form (L0 ⊗F) (X) into

(
L̃0 ⊗F

)
(X), since if it holds that

l ∈ L0 we know that g̃1(k0(l)) = k1(g1(l)) = k1(0) = 0, so that k0(l) ∈ ker g̃1 = L̃0. When
considering all the spaces on presheaf level and let k ⊗ f ∈ K(X)⊗F(X) we get that:

f0
F ◦ h−1

F ◦ kX(k ⊗ f) = f0
F (g0(k)⊗ f) = k0(g0(k))⊗ f = g̃0(k)⊗ f = h̃−1

F · kX(k ⊗ f).

Note that this implies that h̃F ◦ f0
F = hF and therefore (a) is satisfied. For (b) it is again enough

to show that the following diagram commutes on presheaf level, bacause the wanted commutative
diagram is then a consequence of the fact that this induces commutativity on sheaf level and then
we use that all the used maps are cochain maps to conclude (b) holds.

CqF CqF ′

C̃qF C̃qF ′

(IdGq ⊗ h)X

(IdG̃q ⊗ h)X

(kq ⊗ IdF )X (kq ⊗ IdF ′)X

That this diagram is commutative on presheaf level is quite clear, since then CqF = Gq(X)⊗F(X).

Finally we have to prove (c), given a short exact sequence 0→ F ′ h→ F h′→ F ′′ → 0, we construct
the diagram:

0 C∗F ′ C∗F C∗F ′′ 0

0 C̃∗F ′ C̃∗F C̃∗F ′′ 0

(Id⊗ h)X (Id⊗ h′)X

(kq ⊗ IdF ′)X (kq ⊗ IdF )X (kq ⊗ IdF ′′)X

(Id⊗ h)X (Id⊗ h′)X

Here the rows are exact, because of Theorem 2. Then Theorem 3 gives (c).

The final part in this set up of sheaf cohomology is to look closer at what Hq(X,F) is for
a given sheaf F . Here we will use a fine resolution of F .

Lemma 5.1: Let H be a cohomology theory for X with coefficients in sheaves of K−modules
over X. Suppose we have a sheaf F and a fine resolution G∗ of F ,

0 F G0 G1 G2 ...
g0 g1 g2

(8)

Then there exists isomorphism between Hq(X,F) and Hq(G∗(X)) for all q.
Proof: First of all Lemma 3.1 and the remark after it shows us that we have the exact sequence:
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0 F(X) G0(X) G1(X)
g0
X g1

X

In the cochain complex G∗(X) we have that dq = gq+1
X for q ≥ 0 and d−1 : 0→ G0(X) is just the

trivial map and therefore (8) gives that:

H0(G∗(X)) = ker(d0)�Im (d−1) = ker(g1
X)�{0} = Im (g0

X) = F(X).

So the zeroth isomorphism is just given by hF .
For q ≥ 1 we let Lq := ker(gq+1) ⊂ Gq. This definition gives us the short exact sequence

0 Fq G0 L1 0
g0 g1

The exactness at L1 is because Im (g1) = ker(g2) = L2 from the exactness in (8). Now since H is
a cohomology theory, it satisfies (b) and (c) of Definition 5.1. Combining this with the fact that
G0 is a fine sheaf gives exactness in the following:

... 0 = Hq(X,G0) Hq(X,L1) Hq+1(X,F) Hq+1(X,G0) = 0 ...
g1,q

∂q g0,q+1

This means that for each q ≥ 1 we have the isomorphism ∂q : Hq(X,L1) → Hq+1(X,F). When
q = 0 we do not get that H0(X,G0) = 0, but the long exact sequence does give us that ∂0 is
surjective and hence

∂0 : H0(X,L1)� ker(∂0)→ H1(X,F)

is an isomorphism. Furthermore we know that ker(∂0) = Im (g1,0). So we get:

H1(X,F)
∂0

' H0(X,L1)� ker(∂0) = H0(X,L1)�Im (g1,0)
hL1' L1(X)�Im (g1

X ◦ hG0)

= L1(X)�Im (g1
X) = ker(g2

X)�Im (g1
X) = H1(G∗(X))

Here we have to use (a) of Definition 5.1, with g1 instead of h, for the second isomorphism. In the
equality there after we use that hG0 is an isomorphism as well. This gives the first isomorphism.
With the definition of Lq we also get the following short exact sequences, with q ≥ 1:

0 Lq Gq Lq+1 0
i gq+1

Again we get a long exact sequence of the cohomology theory:

... 0 = Hp(X,Gq) Hp(X,Lq+1) Hp+1(X,Lq) Hp+1(X,Gq) = 0 ...
gq+1,p ∂pq gq+1,p+1

From this we conclude that ∂pq : Hp(X,Lq+1)→ Hp+1(X,Lq) is an isomorphism. Again we do not
have that H0(X,Gq) = 0, but that ∂0

q : H0(X,Lq+1)� ker(∂0
q ) → H1(X,Lq) is an isomorphism.

Using the same calculation as before:

H1(X,Lq)
∂0
q' H0(X,Lq+1)� ker(∂0

q ) = H0(X,Lq+1)�Im (gq+1,0)
hLq+1' Lq+1(X)�Im (gq+1

X ◦ hGq )

= Lq+1(X)�Im (gq+1
X ) = ker(gq+2

X )�Im (gq+1
X ) = Hq+1(G∗(X))

Combining all the above isomorphisms shows the isomorphism for q > 1:

Hq(X,F)
(∂q+1)−1

' Hq−1(X,L1)
∂q−2
1' Hq−2(X,L2)

∂q−3
2' ...

∂1
q−2' H1(X,Lq−1) ' Hq(G∗(X))
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7 The classical cohomology theories

In this section we will discuss some cohomology theories, both classical and as sheaf cohomology
theory. For each of the first three of them we will see that the classical version are isomorphic to
the sheaf cohomology version. For the sheaf versions we already know that they all are isomorphic
and therefore the conclusion of this section is that each of the first three classical theories are
isomorphic. The fourth classical cohomology, will be shown directly that it is a cohomology
theory as in Definition 5.1. Some of the cohomologies, like the de Rham cohomology, are only
defined when X is a differentiable manifold, so we will assume from now on that this is the case.
Every time we have to proof that some defined sheaf sequence is a fine torsionless resolution of
the constant sheaf K and we will see that the ideas of the proofs are almost identical each time,
although the detail can become quite technical.

7.1 Alexander-Spanier

First we will discuss the sheaf cohomology theory. To do this we will define a particular fine
torsionless resolution of K, which gives us cohomology as defined in chapter 5.

Definition 6.1.1: the p-th Alexander-Spanier sheaf Ap

For each open U ⊂ X and p ≥ 0 we define Ap
B(U) := {f : Up+1 → B}, where Up+1 =

p+1 times︷ ︸︸ ︷
U × ...× U

and B is some K−module. We make Ap
B(U) into a K−module by using pointwise addition and

(k · f)(x) := k · f(x). Then Ap
B is a presheaf, when using the natural restriction of functions. The

sheaf ApB associated to this presheaf is the called the sheaf of Alexander-Spanier p-cochains with
coefficients in B.

Lemma 6.1.1: For each open U ⊂ X, A∗(U)B is a cochain complex:

A∗B(U) = ... 0 A0
B(U) A1

B(U) A2
B(U) ...

d0 d1 d2

Proof: Since Ap
B is a presheaf of K−modules for each p, we only need to define presheaf

homomorphisms dp : Ap
B → Ap+1

B such that dp+1 ◦ dp = 0 for each p ≥ 0. So let f ∈ Ap
B(U), then

we need that dp(f) : Up+2 → B, so we define:

(dp(f))(x0, ..., xp+1) :=

p+1∑
i=0

(−1)i · f(x0, ..., xi−1, xi+1, ..., xp+1).

From now on we will denote f(x0, ..., xi−1, xi+1, ..., xp+1) by f(x0, ..., x̂i, ..., xp+1). To check
whether these dp are homomorphisms we let f1, f2 ∈ Ap

B(U) and k1, k2 ∈ K. Then we have
that:

(dp(k1 · f1 + k2 · f2))(x0, ..., xp+1) =

p+1∑
i=0

(−1)i(k1 · f1 + k2 · f2)(x0, ..., x̂i, ..., xp+1)

= k1 ·
p+1∑
i=0

(−1)if1(x0, ..., x̂i, ..., xp+1)

+ k2 ·
p+1∑
i=0

(−1)if2(x0, ..., x̂i, ..., xp+1)

= (k1 · dp(f1) + k2 · dp(f2))(x0, ..., xp+1)
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They clearly commute with the restriction homomorphisms, so dp is a presheaf homomorphism
for each p. And more importantly we get that:

(dp+1(dp(f)))(x0, ..., xp+2) =

p+2∑
i=0

(−1)i · (dp(f))(x0, ..., x̂i, ..., xp+2)

=

p+2∑
i=0

(−1)i
∑
j<i

(−1)j · f(x0, ..., x̂j , ..., x̂i, ..., xp+2)

+

p+2∑
i=0

(−1)i
∑
j>i

(−1)j−1 · f(x0, ..., x̂i, ..., x̂j , ..., xp+2)

= (1− 1) ·
p+2∑
i=0

∑
j<i

(−1)i+j · f(x0, ..., x̂j , ..., x̂i, ..., xp+2) = 0

The homomorphisms dp induce sheaf homomorphisms dp : ApB → Ap+1
B . The following

lemma proves that these sheaves and sheaf homomorphisms give a fine resolution of B, the sheaf
induced by X × B. The second lemma proves that the resolution is torsionless as well, when
B = K. A consequence of these lemmas is therefore the existence of cohomology theories, when
we use Theorem 4.

Lemma 6.1.2: A∗B forms a fine resolution of the constant sheaf B.
Proof: To proof this lemma we need to show that each ApB is fine and that

0 B A0
B A1

B A2
B ...

i d0 d1 d2

is exact.
We will start by showing that ApB is a fine sheaf. Since X is a paracompact Hausdorff space (this
is all we need of X) we have a partition of unity {ψi} subordinated to the cover locally finite cover
{Ui}, for each such cover. We take the partition of unity as in Example 3.1, with a shrinking {Vi}
of {Ui}, and we use this partition to define endomorphisms l̃i : Ap → Ap by setting:

(l̃iU (f))(x0, ..., xp) := ψi(x0) · f(x0, ..., xp).

We have to check whether these maps are really presheaf endomorphisms. First of all we note
that it is clear that they commute with the restriction homomorphisms. Secondly we see that

(l̃iU (k1 · f1 + k2 · f2))(x0, ..., xp) = ψi(x0)(k1 · f1 + k2 · f2)(x0, ..., xp)

= k1 · ψi(x0)f1(x0, ..., xp) + k2 · ψi(x0)f2(x− 0, ..., xp)

= k1 · (l̃iU (f1))(x0, ..., xp) + k2 · (l̃iU (f2))(x0, ..., xp)

= (k1 · (l̃iU (f1)) + k2 · (l̃iU (f2)))(x0, ..., xp),

so l̃iU is indeed an endomorphism. They induce sheaf endomorphisms li : ApB → A
p
B . Now let

s ∈ ApB(U) and x ∈ U . Then s(x) ∈ ApB,x implies that there exists some open V and f ∈ ApB(V )

such that x ∈ V and s(x) = rVx (f). Furthermore for (x0, ..., xp) ∈ V p+1 we have that:

f(x0, ..., xp) =
∑
i

ψi(x0)f(x0, ..., xp) =
∑
i

(l̃iV (f))(x0, ..., xp) =

(∑
i

l̃iV (f)

)
(x0, ..., xp),
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Where the first equality holds since for any x0 ∈ V there is exactly one i such that ψi(x0) 6= 0.
Using this we get that:

s(x) = rVx (f) = rVx (
∑
i

l̃iV (f)) =
∑
i

rVx (l̃iV (f)) =
∑
i

(liU (s))(x) =

(∑
i

liU (s)

)
(x),

so the endomorphisms li satisfy I of Definition 3.2. Secondly of x /∈ Vi, then we find an open W
around x such that W ⊂ X \Vi, since the last one is open. Now any open U around x, f ∈ Ap

B(U)
and (x0, ..., xp) ∈ (W ∩ U)p+1 the following holds:

(rUW∩U (l̃iU (f)))(x0, ..., xp) = ψi(x0) · f(x0, ..., xp) = 0.

Here we use that x0 ∈ W implies that x0 /∈ Vi and therefore it has to be true that ψi(x0) = 0.
The above result implies that 0 = rUx (l̃iU (f)) = lix(rUx (f)). Since U and f were arbitrary we are

allowed to conclude that lix ≡ 0. Therefore {x ∈ X|lix 6≡ 0} ⊂ Vi ⊂ Ui, which is exactly condition
II of Definition 3.2. Therefore the sheaves are fine.

Finally we will show that the sequence is exact. This is a consequence of the exactness at
presheaf level and consists of three parts. Starting with the exactness at Bx, we first look at
the image of ix. Since Bx = B we need to check what the image of b ∈ B is under ix. Since
iU (b) = fb, with fb(x) = b for all x ∈ U , we get that ix(b) = rUx (fb). Hence an element in Im (ix)
is always of the form rUx (fb). Now suppose that ix(b) = 0, so that b ∈ ker(ix). This implies that
rUx (fb) = 0, so we can find a W ⊂ U such that fb(x) = 0 for all x ∈ W . So b = 0 and this gives
that ker(ix) ⊂ {0}. The other inclusion is trivial, so we have exactness at Bx.
Secondly, the sequence is exact at A0

B,x. Let fb be as above, then we have that

(d0(fb))(x0, x1) = fb(x1)− fb(x0) = b− b = 0. Using this we get that

d0
x(rUx (fb)) = rUx (d0(fb)) = rUx (0) = 0.

From which we conclude that Im (ix) ⊂ ker(d0
x). Now supposing that 0 = d0

x(rUx (f)) implies that
0 = rUx (d0(f)) and hence we find a W ⊂ U such that 0 = rUW (d0(f)). This means that for all
(x0, x1) ∈ W ×W : 0 = (d0(f))(x0, x1) = f(x1) − f(x0). So f is constant to some b ∈ B on W
and rWx (f) is therefore the image of b under ix. We conclude that ker(d0

x) ⊂ Im (ix) which implies
equality, so the sequence is exact at A0

B,x as well.

The final part is the exactness at ApB,x, p ≥ 1. Suppose that dp−1
x (rUx (f)) ∈ Im (dp−1

x ). Then

dpx(dp−1
x (rUx (f))) = dpx(rUx (dp−1(f))) = rUx (dp ◦ dp−1(f)) = rUx (0) = 0.

Note that we switch to the presheaf morphism, from which we know that dp ◦ dp−1 = 0 for each p.
From this we conclude that Im (dp−1

x ) ⊂ ker(dpx). To show equality we first look at presheaf level
again. Suppose f ∈ Ap

B(W ) such that dp(f) = 0 and let (x, x0, ..., xp) ∈ W p+2. Then we have
that:

0 = (df)(x, x0, ..., xp+1) = f(x0, ..., xp) +

p∑
i=0

(−1)i+1f(x, x0, ..., x̂i, ..., xp).

Now define g ∈ Ap−1
B (W ) such that g(x0, ..., xp−1) = f(x, x0, ..., xp−1) for a certain chosen x ∈ U .

Now the following calculation shows that dg = f , where we need the result of df = 0 in the final
equal-sign:

(dg)(x0, ..., xp) =

p∑
i=0

(−1)ig(x0, ..., x̂i, ..., xp) =

p∑
i=0

f(x, x0, ..., x̂i, ..., xp)

= f(x0, ..., xp).
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Now on sheaf level we suppose that 0 = dpx(rUx (f)). Since dpx(rUx (f)) = rUx (dp(f)) we find a
W ⊂ U such that 0 = rUW (dp(f)) = dp(rUW (f)). Using the above we find a g ∈ Ap−1

B (W ) such
that dp−1g = rUW (f), which implies that rUx (f) = rWx (rUW (f)) = rWx (dp−1g) = dp−1

x (rWx (g)). And
therefore we have that ker(dqx) ⊂ Im (dq−1

x ) and hence equality. We conclude that the whole
sequence is exact.

Lemma 6.1.3: The above fine resolution of K is torsionless, when B = K.
Proof: We will show that for p ≥ 0 and U an open subset of X, ApK(U) is torsionless so that
by Lemma 3.6 each ApK are torsionless sheaves. Let k ∈ K \ {0} and s ∈ ApK(U) such that
k · s = 0. This implies that for each x ∈ U k · s(x) = 0. By definition of ApK we know that
s(x) ∈ AK,x for all x. So for each x there exists an open Vx and a fx ∈ ApK(Vx) such that x ∈ Vx
and s(x) = rVxx (fx). Now k · s(x) = 0 implies that rVxx (k · f) = 0, so there exists an open Wx ⊂ Vx
such that x ∈ Wx and for each y ∈ Wx we have that k · fx(y) = 0. Since K is a integral domain
and k 6= 0 we conclude that rVxWx

(f) = 0, which implies that s(x) = 0. We have shown this for any
x ∈ U and therefore s = 0 and ApK(U) is torsionless.

The final part about Alexander-Spanier cohomology is defining the classical cohomology
modules and then proving that they are isomorphis to the sheaf-version, as defined above.

Definition 6.1.2: classical Alexander-Spanier cohomology modules
Let Ap

B,0 := {f ∈ ApB(X)|rXx (f) = 0}. Then the classical Alexander-Spanier cohomology modules
for X with coefficients in B are defined as:

Hq
A−S(X;G) := Hq(A∗B(X)�A∗B,0).

Lemma 6.1.4: The above definition is well defined.
Proof: There are two thing to check. First of all we need that Ap

B,0 is a submodule of Ap
B(X) for

each p such that the quotient Ap
B(X)�A∗B,0 is well defined. Secondly we need that A∗B(X)�A∗B,0

form a cochain complex, so the cohomology modules are defined as in Definition 4.1.
We will start with the submodule part, which is just two calculations. Let f, g ∈ Ap

B,0 and k ∈ K.
Then for all x ∈ X

rXx (f + g) = rXx (f) + rXx (g) = 0 + 0 = 0,

rXx (k · f) = k · rXx (f) = k · 0 = 0,

which imply that f + g, k · f ∈ Ap
B,0. So Ap

B,0 is indeed a submodule.
For the second part we look at the chain

... 0 B A0
B(X)�A0

B,0 A1
B(X)�A1

B,0 A2
B(X)�A2

B,0 ...
d0 d1 d2

Here the maps dp are the maps on the quotients, induced by the usual maps dp of lemma 6.1.1.
These map exist when dp(f) ∈ Ap+1

B,0 for each f ∈ Ap
B,0. So let f ∈ Ap

B,0 and x ∈ X. Then

we have that rXx (f) = 0, so we find a W ⊂ X such that x ∈ W and rXW (f) = 0. Since the
restriction homomorphisms are the natural restriction maps of functions we get that this implies
that f(x0, ..., xp) = 0 for each (x0, ..., xp) ∈W p+1. Now we let (x0, ..., xp+1) ∈W p+2. Then:

(dp(f))(x0, ..., xp+1) =

p+1∑
i=0

(−1)i · f(x0, ..., x̂i, ..., xp) =

p+1∑
i=0

(−1)i · 0 = 0,

where we use that (x0, ..., x̂i, ..., xp) ∈ W p+1. From this we conclude that rXW (d(f)) = 0 and so

rXx (d(f)) = 0. Since we can make this computation for all x ∈ X, we get that dp(f) ∈ Ap+1
B,0 holds.
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Finally we check whether dp+1 ◦ dp still holds, so let [f ] ∈ Ap
B,0. Then:

dp+1 ◦ dp([f ]) = dp+1([dp(f)]) = [dp+1 ◦ dp(f)] = [0] = 0.

Clearly this is enough to show that Definition 6.1.2 is well-defined.

Before we can get to the result of Alexander-Spanier cohomology we need one more (tech-
nical) lemma.

Lemma 6.1.5: Let F be a presheaf of K−modules on X, which satisfies (S2). Denote
the associated sheaf of F by ΓF and let F0 be defined as:

F0 := {f ∈ F(X)|rXx (f) = 0∀x ∈ X}.

Furthermore: let g : F(X)→ F ′(X) be the map that sends f ∈ F(X) into sf such that sf (x) =
rXx (f) for all x ∈ X. Then the following is a short exact sequence:

0 F0 F(X) ΓF (X) 0
i g

Proof: Exactness at F0 is clear, since F0 is trivially injected into F(X). Now g is defined as
hX as in Theorem 1; so we have already seen that this definition makes g into a continuous map.
Since (g(f))(x) = rXx (f), it is obvious that f ∈ F0 if and only of g(f) = 0. So exactness at F(X)
holds as well. Finally we will show that the map g in surjective.
Let t ∈ ΓF (X) and x ∈ X. Then there exists some open U and fx ∈ F(U) such that rUx (fx) = t(x).
By definition of the opens in F̄ we know that Ofx = {rYy (fx)|y ∈ U} is an open. Furthermore
we know that t is continuous, so V := t−1(Ofx) is open as well. For any y ∈ V we have that
t(y) ∈ Ofx and therefore t(y) = rUy (fx). Now let Ux = U ∩ V . With this we compute for y ∈ Ux
that (

g
(
rUUx(fx)

))
(y) = srUUx (fx)(y) = rUxy

(
rUUx(fx)

)
= rUy (fx) = t(y),

so that on Ux t = g
(
rUUx(fx)

)
. We now have an open cover of X, since x ∈ Ux for each x. By

paracompactness of X are we able to take a locally finite refinement {Ui} of this cover. Then it
still holds that on Ui: t = g

(
fi
)
, with fi the restriction of some fx to Ux. Since X is Hausdorff as

well we can take a shrinking {Vi} of {Ui}, so {Vi} is a refinement and Vi ⊂ Ui for all i. Let x ∈ X
and denote Ix := {i|x ∈ Vj}. This is a finite set, since {Vi} is locally finite. Now pick an open Wx

for each x such that all Wx satisfy these 3 conditions:

(A) Wx ∩ Vi = ∅ for all i /∈ Ix;

(B) Wx lies in the intersection of all the Ui such that i ∈ Ix;

(C) rUiWx

(
fi
)

= r
Uj
Wx

(
fj
)

whenever i and j are both elements of Ix .

We are actually able to construct such an open Wx for each x. To do this we use the locally
finiteness of {Ui} and start with an open neighborhood Z of x such that Z ∩ Ui is only finitely
many times non-empty. So there are only finitely many i such that Z ∩ Ui 6= ∅ while i /∈ Ix.
Denote this set by Jx and let Z ′ := Z \∪i∈JxVi. Note that this is still an open neighborhood of x,
since we remove only finitely many closed subsets of Z. Now Z ′ satisfies (A). Furthermore when
we let Z ′′ := ∩i∈IxUi ∩Z ′, then Z ′′ is again an open neighborhood of x, and satisfies (A) and (B).
Finally, since Ix is finite, we have only finitely many pairs of (i, j) ∈ Ix × Ix. We will shrink Z ′′

even further such that it satisfies (C). Note that for (i, j) ∈ Ix × Ix we have that:

rZ
′′

x

(
rUiZ′′(fi)

)
= rUix (fi) =

(
g(ti)

)
(x) = t(x) =

(
g(tj)

)
(x) = rUjx (fj) = rZ

′′

x

(
r
Uj
Z′′(fj)

)
.
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This means there exists some Wi, j, which is an open neighborhood of x and a subset of Z ′′

such that rUiWi,j
(fi) = r

Uj
Wi,j

(fj). The intersection of all these opens Wi,j is a nonempty open

neighborhood of x and satisfies (A), (B) and (C). So this is our Wx.
Using (C) we let fx = rUiWx

(fi) ∈ F(Wx) for any i ∈X . For x, y ∈ X such that Wx,y := Wx∩Wy 6= ∅
there exists a z ∈ Wx,y. Since {Vi} is a cover of X there must exist some i such that z ∈ Vi. (A)
clearly implies that i ∈ Ix ∩ Ix, since Wx ∩ Vi 6= ∅ and Wy ∩ Vi 6= ∅. Using this i gives that

rWx

Wx,y
(fx) = rWx

Wx,y

(
rUiWx

(fi)
)

= rUiWx,y
(fi) = r

Wy

Wx,y

(
rUiWy

(fi)
)

= r
Wy

Wx,y
(fy)

Since F satisfies (S2) we are able to conclude that there exists a f ∈ F(X) such that rXWx
(f) = fx

for all x. Finally we get that for all x and some i ∈ Ix

(g(f))(x) = rXx (f) = rWx
x

(
rXWx

(f)
)

= rWx
x (fx) = rWx

x

(
rUiWx

(fi)
)

= rUix (fi) = (g(fi))(x) = t(x),

that is to say, g is surjective.

Theorem 6.1: The classical Alexander-Spanier cohomology modules with coefficients in
B, Hq

A−S(X;B), are isomorphic to the cohomology modules of the cohomology theory induced
by the p-cochain sheaves of Alexander-Spanier.
Proof: First we will proof that the presheaf Ap

B satisfies condition (S2) of Definition 1.2. So let

U = ∪Ui and fi : Up+1
i → B such that if ~x := (x0, ..., xp) ∈ (Ui ∩ Uj)p+1 for some i 6= j, then

fi(~x) = fj(~x). Now define f : Up+1 → B as f(~x) := fi(~x) when xk ∈ Ui for all 0 ≤ k ≤ p and
f(~x) = 0 if such a i does not exist. This is clearly well defined, since if there exist i and j such
that xk ∈ Ui ∩ Uj then by assumption fi(~x) = fj(~x). We conclude that Ap

B satisfies (S2).
Lemma 6.1.5 now implies that the following is exact:

0 Ap
B,0 Ap

B(X) ApB(X) 0
i αp

Then βp : Ap
B(X)�Ap

B,0 → A
p
B(X); [f ] 7→ αp(f) is not only surjective, but injective as well. So it

is an isomorphism. Furthermore β = {βp} is a cochain map, because for [f ] ∈ Ap(X)�Ap
B,0:

(dp(βp([f ])))(x) = (dp(αp(f)))(x) = (dp(sf ))(x) = rXx (dp(f)) = (αp+1(dp(f)))(x)

= (βp+1([dp(f)]))(x) = (βp+1(dp([f ])))(x),

so the following diagram commutes.

Ap+1(X)�Ap+1
B,0 Ap+1

B

Ap(X)�Ap
B,0 ApB

βp+1

dq dq

βp

Therefore A∗B(X)�A∗B,0 is isomorphic to A∗B(X), which implies that Hq(A∗B(X)�A∗B,0) '
Hq(A∗B(X)) for each q. Lemma 5.1 and Lemma 6.1.2 together show that Hq(X,B) is isomor-
phic to Hq(A∗B(X)). We conclude that:

Hq
A−S(X;B) = Hq(A∗B(X)�A∗B,0) ' Hq(A∗B(X)) ' Hq(X,B)
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7.2 De Rham

The set-up of this section is the same as the section before: we first define a fine torsionless
resolution, from which we abstract a cohomology theory, and then we compare it with the
classical de Rham cohomology modules. This time however we pick K to be equal to R and here
it is important that X is a differentiable manifold. Otherwise the classical version is not defined
and the sheaves we will use will also not be defined.

Definitie 6.2.1: the p-th de Rham sheaf Ωp

Like in Example 1.4 we let Ωp(U) to be equal to the module of p−forms over the open U .

Lemma 6.2.1: Ω∗ is a fine torsionless resolution of the constant sheaf R, where the exte-
rior derivative dp is the map between Ωp and Ωp+1.
Proof: First note that dp is a sheaf homomorphism, which is clear in local coordinates. We
need to show that:

0 R Ω0 Ω1 Ω2 ...
i d0 d1 d2

is exact, that each Ωp(U) is torsionless and that each Ωp is fine.
We start with the exactness at Rx = R. Since Ω0(U) ' {f : U → R} we get that for each r ∈ R
there exists a fr ∈ Ω0(U) such that fr(x) = r for all x ∈ U . So the natural injection i makes sure
that ix sends r into rXx (fr). Supposing that ix(r) = 0 means that we find an open W ⊂ X such
that x ∈W and fr(x) = 0 for all x ∈W . We conclude that r = 0 and therefore we have exactness
at Rx.
For exactness at Ω0

x we use that d0(fr) = 0, since fr is just the constant map. Since rUx (f) ∈ Im (ix)
means that rUx (f) = rXx (fr) for some r ∈ R we now have that it lies in the kernel of d0

x as
well, since d0

x(rXx (f)) = rXx (d0(fr)) = rXx (0) = 0 holds. So: Im (ix) ⊂ ker(d0
x). Moreover,

when d0(f) = 0 for some f : X → R, we know that f has to be constant. So 0 = d0
x(rUx (f))

implies that rUx (d0(f)) = 0 and hence there must exist some W ⊂ U such that x ∈ W and
0 = rUW (d0(f)) = d0(rXW (f)). Now we can conclude that rUW (f) = fr for some r ∈ R and this
implies that rUx (f) = rWx (rUW (f)) = rWx (fr) ∈ Im (ix). Therefore the sequence is exact at Ω0

x.
For p ≥ 1 we look at

Ωp−1
x Ωpx Ωp+1

x

dp−1
x dpx

The first inclusion is trivial:

dpx(dp−1
x (rUx (α))) = dpx(rUx (dp−1(α))) = rUx (dp ◦ dp−1(α)) = rUx (0) = 0,

for all U and p− 1 forms α over U . This calculation implies that Im (dp−1
x ) ⊂ ker(dpx) for all p ≥ 1

and x ∈ X. Next assume that rUx (α) ∈ ker(dpx). Then we know that 0 = dpx(rUx (α)) = rUx (dp(α)),
which means that there exists an open W ⊂ U such that 0 = rUW (dp(α)) = dp(rUW (α)). We can
assume that W is homeomorphic to an open ball in Rn for some n, since X is a differentiable
manifold. If this is not the case, we shrink W such that it lies completely in one of the charts of
X. Using Poincaré lemma we get that rUW (α) = dp−1(β) for some β ∈ Ωp−1(W ). So we get that:

rUx (α) = rWx (rUW (α)) = rWx (dp−1(β)) = dp−1
x (rWx (β)) ∈ Im (dp−1

x ).

From this we can conclude that the sequence is exact at Ωp for p ≥ 1, so it is a resolution.

To prove that Ωp(U) is torsionless, we pick any α ∈ Ωp(U) and r ∈ R \ {0} and we as-
sume that r · α = 0. Since α is a p−form, this implies that 0 = r · α(x) ∈

∧p
T ∗x (U) for each

x. Using that T ∗x (U) is a vectorspace over R and that r 6= 0 we get that α(x) = 0 for each x.
Therefore α = 0 and Ωp(U) is torsionless and thus is Ωp a torsionless sheaf for each p, by Lemma
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3.6.

Finally we will show that Ωp is fine for each p. Let {Ui} be a locally finite cover of X.
Since X is a differentiable manifold, we can pick a partition of unity subordinated to it. For this
partition ψi, we define liU : Ωp(U) → Ωp(U) in the following way: for α ∈ Ωp(U) we let liU (α) to
be the section which sends x ∈ U to ψi(x) · α(x). We still have to proof that these maps form a
partition of unity for Ωp. First of all liU is a endomorphism of Ωp(U), since for α1, α2 ∈ Ωp(U)
and r1, r2 ∈ R we have:

(liU (r1 · α1 + r2 · α2))(x) = ψi(x) · (r1 · α1 + r2 · α2)(x) = r1 · ψi(x) · α1(x) + r2 · ψi(x) · α2(x)

= r1 · liU (α1)(x) + r2 · liU (α2)(x) = (r1 · liU (α1) + r2 · liU (α2))(x).

To see that li is really an endomorphism of the sheaf Ωp, we need that the following is commutative
for any open U, V such that V ⊂ U :

Ωp(U) Ωp(V )

Ωp(V ) Ωp(V )

liU

rUV rUV
liV

This is however obvious, since the restriction maps are the normal restriction of maps on X. Now
let α ∈ Ωp(U) for some open U . Then for x ∈ U :(∑

i

liU (α)

)
(x) =

∑
i

(
liU (α)

)
(x) =

∑
i

ψi(x) · α(x) = α(x) ·
∑
i

ψi(x) = α(x),

where we need to use that only a finite number of ψi(x) is not zero, which is a consequence of
{Ui} being locally finite. We conclude that liU satisfies the first condition of Definition 3.2.
To prove the second condition we let x /∈ support(ψi). Since support(ψi) is closed, we can find a
open V around x such that V ⊂ X \ support(ψi). For any α ∈ Ωp(U), with U an open containing
x, and y ∈ U ∩ V we have that (liU∩V (rUU∩V (α)))(y) = ψi(y) · α(y) = 0 · α(y) = 0. This implies
that 0 = liU∩V (rUU∩V (α)) = rUU∩V (liU (α)), so clearly lix(rUx (α)) = 0 and therefore that:

{x ∈ X|lix 6≡ 0} ⊂ support(ψi) ⊂ Ui.

This allows us to conclude that liU is indeed a partition of unity of Ωp subordinated to {Ui}, and
thus is Ωp a fine sheaf.

Since any fine torsionless resolution of R defines a cohomology theory we now have a co-
homology theory Hq(X,F) = Hq((Ω∗ ⊗F)(X)) over X with coefficients in sheaves or real vector
spaces F . Now we will define the classical de Rham cohomology groups to show that we have an
isomorphism between the sheaf version and the classical one.

Definition 6.2.2: classical de Rham cohomology modules
Let Ωp be the p-th de Rham sheaf. Then the classical de Rham cohomology modules for X are
defined as:

Hq
deR(X) := Hq(Ω∗(X)).

Remark: Note that this defintion is allowed, since we already know that dp+1 ◦ dp = 0.

Theorem 6.2: The classical de Rham cohomology modules Hq
deR are isomorphic to the
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cohomology modules of the cohomology theory induced by the p-th de Rham sheaves with
coefficients in R.
Proof: First of all we have that X is connected, so R(X) = R. This implies that
φp : Ωp(X) ⊗ R(X) → Ωp(X);α ⊗ r 7→ r · α is well defined. Letting r = 1 proves that this
homomorphism is surjective. Now suppose

∑
i αi ⊗ ri is in the kernel of φp, then 0 =

∑
i ri · αi.

Since
∑
i αi ⊗ ri =

∑
i ri · αi ⊗ 1 = 0 ⊗ 1 = 0, we conclude that φ is injective as well. Now the

induced sheaf map φ is an isomorphism as well. φ commutes with the coboundary operators,
since again on presheaf level we have the following commutative diagram:

Ωp−1(X)⊗ R Ωp−1(X)

Ωp(X)⊗ R Ωp(X)

φp−1

dp−1 ⊗ Id dp−1

φp

The commutativity is because of this calculation:

φp(dp−1 ⊗ Id(α⊗ r)) = φp(dp−1(α)⊗ r) = r · dp−1(α) = dp−1(r · α) = dp−1(φ(α⊗ r)).

This commutativity on presheaf level implies the commutativity on sheaf level. Using this, we get
that

φq : Hq((Ω∗ ⊗R)(X))→ Hq((Ω∗)(X))

is an isomorphism as well. Since Hq(X,R) := Hq((Ω∗ ⊗R)(X)) we have found the isomorphism:

Hq(X,R) ' Hq
deR(X)

7.3 Singular

For this section we let K to be any principal ideal and X a differentiable manifold of dimension m.

Definition 6.3.1: simplices
For p ≥ 1 we define the standard p-simplex ∆p as follows:

∆p := {(x1, ..., xp) ∈ Rp|
∑
i

xi ≤ 1, xj ≥ 0 ∀j}

and the standard 0-simplex is defined as {0}. Furhtermore for a open U ⊂ C a singular p-simplex
in U is a continuous map σ : ∆p → U . For p ≥ 1 we will call the singular p-simplex σ differentiable
if it can be extended to a smooth map of a open neighbourhood of ∆p into U . Furhtermore, each
singular p−simplex σ has p+ 1 facets σi for 0 ≤ i ≤ p, which are defined as:

σi = σ ◦ ρp−1
i ,

with:

ρpi (x1, ..., xp) =


1 when p = 0, i = 0;

0 when p = 0, i = 1;

(1−
∑
i xi, x1, ..., xp) when p ≥ 1, i = 0;

(x1, ..., xi−1, 0, xi, ..., xp) when p ≥ 1, 1 ≤ i ≤ p+ 1.
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Finally the boundary operators are the operators ∂p which send a singular p−simplex σ into∑p
i=0(−1)iσi. The image of σ under ∂p is called its boundary.

Definition 6.3.2: singular p-(co)chains
For each open U ⊂ X, we let Sp(U) := 〈σ|σ a singular p−simplex〉; the free
abelian group generated by singular p-simplices with coefficients in Z and Sp,∞ :=
〈σ|σ a differentiable singular p−simplex〉. We will use Sp,(∞) when we mean any of both.
Elements of Sp,(∞)(U) are called (differentiable) singular p-chains with integer coefficients on U
and we can extend the boundary operators ∂p into maps ∂p : Sp,(∞) → Sp−1,(∞). Furthermore we
let SpB,(∞)(U) := {f : Sp,(∞)(U)→ B|f linear} for any K−module B. This is a K−module when

we use pointwise addition. Elements of SpB,(∞)(U) are called (differentiable) singular p−cochains

on U with coefficients in B. Clearly SpB,(∞) is a presheaf, with rUV the natural restriction to

simplices which lie in V .

Lemma 6.3.1: The coboundary operator dp(∞) : SpB,(∞) → Sp+1
B,(∞) defined by

dp(∞)(f) : σ 7→ f(∂p+1(σ)) induces a cochain complex S∗B,(∞)(U) for each open U :

... 0 S0
(∞)(U) S1

(∞)(U) S2
(∞)(U) ...

d0
(∞) d1

(∞) d2
(∞)

Proof: Let f1, f2 ∈ SpB,(∞)(U) and k1, k2 ∈ K. Then:

(dp(∞)(k1 · f1 + k2 · f2))(σ) = (k1 · f1 + k2 · f2)(∂p+1(σ)) = k1 · f1(∂p+1(σ)) + k2 · f2(∂p+1(σ))

= k1 · (dp(∞)(f1))(σ) + k2 · (dp(∞)(f2))(σ) = k1 · dp(∞)(f1) + k2 · dp(∞)(f2)(σ),

so dp(∞) is a homomorphism. Secondly we want that dp+1
(∞) ◦ d

p
(∞) = 0 for each p. To proof that, we

only need to proof that (dp+1
(∞)(d

p
(∞)(f)))(σ) = 0 for a f ∈ SpB,(∞)(U) and a p−simplex σ, which

lies in U . Then by linearity we have the aimed result. We note that:

(dp+1
(∞)(d

p
(∞)(f)))(σ) = (dp(∞)(f))(∂p+2(σ)) = f(∂p+1(∂p+2(σ))).

Clearly it is enough to show that ∂p+1(∂p+2(σ)) = 0 for all (p+ 2)−simplices σ, since f is linear.
For this we first need the following identity, where i ≤ j and p ≥ 0:

ρp+1
i ◦ ρpj = ρp+1

j+1 ◦ ρ
p
i (9)

When p = 0 there are only three cases:

ρ1
0(ρ0

0(0)) = ρ1
0(1) = (1− 1, 1) = (0, 1) = ρ1

1(1) = ρ1
1(ρ0

0(0)) for j = 0 = i;

ρ1
0(ρ0

1(0)) = ρ1
0(0) = (1− 0, 0) = (1, 0) = ρ1

2(1) = ρ1
2(ρ0

0(0)) for j = 1, i = 0;

ρ1
1(ρ0

1(0)) = ρ1
1(0) = (0, 0) = ρ1

2(0) = ρ1
2(ρ0

1(0)) for j = 1 = i.

For p ≥ 1 we can divide the our problem into four cases, namely 1 ≤ i < j, 1 ≤ i = j, 0 = i < j
and 0 = i = j.

1 : ρp+1
i (ρpj (x1, ..., xp)) = ρp+1

i (x1, ..., xj−1, 0, xj , ..., xp) = (x1, ..., xi−1, 0, xi, ..., xj−1, 0, xj , ..., xp)

ρp+1
j+1(ρpi (x1, ..., xp)) = ρp+1

j+1(x1, ..., xi−1, 0, xi, ..., xp) = (x1, ..., xi−1, 0, xi, ..., xj−1, 0, xj , ..., xp);

2 : ρp+1
i (ρpj (x1, ..., xp)) = ρp+1

i (x1, ..., xj−1, 0, xj , ..., xp) = (x1, ..., xj−1, 0, 0, xj , ..., xp)

ρp+1
j+1(ρpi (x1, ..., xp)) = ρp+1

j+1(x1..., xi−1, 0, xi, ..., xp) = (x1, ..., xi−1, 0, 0, xi, ..., xp);
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3 : ρp+1
0 (ρpj (x1, ..., xp)) = ρp+1

0 (x1, ..., xj−1, 0, xj , ..., xp) = (1−
∑
k

xk − 0, x1, ..., xj−1, 0, xj , ..., xp)

ρp+1
j+1(ρp0(x1, ..., xp)) = ρp+1

j+1(1−
∑
k

xk, x1, ..., xp) = (1−
∑
k

xk, x1, ..., xj−1, 0, xj , ..., xp);

4 : ρp+1
0 (ρp0(x1, ..., xp)) = ρp+1

0 (1−
∑

xk, x1, ..., xp) = (1− (1−
∑
k

xk +
∑
n

xn), 1−
∑
k

xk, x1, ..., xp)

ρp+1
1 (ρp0(x1, ..., xp)) = ρp+1

1 (1−
∑
k

xk, x1, ..., xp) = (0, 1−
∑
k

xk, x1, ..., xj−1, 0, xj , ..., xp);

So (9) holds for all the four cases when p ≥ 1 and it holds separately for p = 0. Using (9) we see
that for any (p+ 2)−simplex σ:

∂p+1(∂p+2(σ)) =

p+2∑
i=0

(−1)i∂p+1(σ ◦ ρp+1
i ) =

p+2∑
i=0

p+1∑
j=0

(−1)i+jσ ◦ ρp+1
i ◦ ρpj

=

p+2∑
i=1

∑
j<i

(−1)i+jσ ◦ ρp+1
i ◦ ρpj +

p+1∑
i=0

(−1)i+iσ ◦ ρp+1
i ◦ ρpi

+

p∑
i=0

∑
j>i

(−1)i+jσ ◦ ρp+1
i ◦ ρpj

(9)
=

p+2∑
j=1

∑
j>i

(−1)i+jσ ◦ ρp+1
j ◦ ρpi

+

p+1∑
i=0

σ ◦ ρp+1
i+1 ◦ ρ

p
i +

p∑
i=0

∑
j>i

(−a)i+jσ ◦ ρp+1
j+1 ◦ ρ

p
i

=

p+1∑
i=0

∑
j>i

(−1)i+jσ ◦ ρp+1
j ◦ ρpi +

p∑
i=0

∑
j>i+1

(−1)i+j−1σ ◦ ρp+1
j ◦ ρpi

+

p∑
i=0

σ ◦ ρp+1
i+1 ◦ ρ

p
i + σ ◦ ρp+1

p+2 ◦ ρ
p
p+1

=

p∑
i=0

∑
j>i

(−1)i+jσ ◦ ρp+1
j ◦ ρpi + (−1)i+j−1σ ◦ ρp+1

j ◦ ρpi

+ (−1)p+1+p+2σ ◦ ρp+1
p+2 ◦ ρ

p
p+1 + σ ◦ ρp+1

p+2 ◦ ρ
p
p+1 = 0.

The coboundary operators dp(∞) do not only satisfy dp+1
(∞) ◦ d

p
(∞) = 0, but the commute

with the restriction homomorphisms of SpB,(∞) as well, since for V ⊂ U :

(rUV (dp(∞)(f)))(σ = (dp(∞)(f))(σ) = f(∂p+1(σ)) = (rUV (f))(∂p+1(σ)) = (dp(∞)(r
U
V (f)))(σ),

where we use that if σ : ∆p → U , then σi : ∆p−1 → U for each U . So dp(∞) is a presheaf morphism

for each p. From now on we will denote the sheaf induced by SpB,(∞) as SpB,(∞) and the induced

sheaf morphisms by dp(∞). Like before we now claim that these sheaves with these homomorphisms

induce a fine resolution of B, which is torsionless when B = K, so that it induces a homology theory.

Lemma 6.3.2: The following sequence is a fine resolution of B:

0 B S0
B,(∞) S1

B,(∞) S2
B,(∞) ...

i d0
(∞) d1

(∞) d2
(∞)
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with i induced by ix : B → S0
B,(∞),x; b 7→ rXx (fb) where fb(x) = b for all x ∈ X.

Proof: We will start with showing that the sheaves SpB,(∞) are fine for each p and B. For

each locally finite cover {Ui} we can take a shrinking {Vj} and a partition of unity {ψi} for

X subordinated to {Ui} as in Example 3.1. Exactly like in Lemma 6.1.2 we let (l̃iU (f))(σ) =

ψi(σ(~0)) · f(σ) and we denote the induced sheaf morphisms by liU . We are able to do this when

the defined l̃i is indeed a presheaf homomorphism. We first check linearity:(
l̃iU (k1 · f1 + k2 · f2)

)
(σ) = ψi(σ(~0)) · (k1 · f1 + k2 · f2) (σ) = k1 · ψi(σ(~0)) · f1(σ)

+ k2 · ψi(σ(~0)) · f2(σ) = k1 · (l̃iU (f1))(σ) + k2 · (l̃iU (f2))(σ)

= (k1 · l̃iU (f1) + k2 · l̃iU (f2))(σ).

The following square is clearly commutative, where V ⊂ U :

SpB,(∞)(U) SpB,(∞)(U)

SpB,(∞)(V ) SpB,(∞)(V )

l̃iU

rUV rUV
l̃iV

So the l̃i form indeed a presheaf morphism for each i.
For I of Definition 3.1 we let s : U → S

p

B,(∞) be an element of SpB,(∞)(U) for some open U and

let x ∈ U . We then know that s(x) ∈ SpB,x,(∞) so it has to be equal to rVx (f) for some open V

containing x and a f ∈ SpB,(∞)(V ). For f and any singular p-simplex σ we have that:

f(σ) =
∑
i

ψi(σ(~0)) · f(σ) =
∑
i

(l̃iV (f))(σ) =

(∑
i

l̃iV (f)

)
(σ),

which implies that f =
∑
i l̃
i
V (f). Note that we use that σ(~0) ∈ X, so that there exists exactly

one i such that ψ(σ(~0)) 6= 0 and in this case ψ(σ(~0)) = 1. Using this we get the following equality:

s(x) = rVx (f) = rVx

(∑
i

l̃iV (f)

)
=
∑
i

rVx (l̃iV (f)) =
∑
i

(liU (s))(x) =

(∑
i

liU (s)

)
(x).

This computation can be made for each x ∈ U and therefore we conclude that s =
∑
i l
i
U (s). s

was arbitrary as well and we are therefore allowed to conclude that li satisfy I for each i.
For II of Definition 3.2 we assume that x /∈ Vj and since X \ Vj is open there exists some open
neighborhood W of x such that W ⊂ X \ Vj . We want to proof that lix(rUx (f)) = 0 for any open

U containing x and f ∈ SpB,(∞)(U), because this implies that {x ∈ X|lix 6≡ 0} ⊂ Vj and the latter

is a subset of Ui, so this proves II. Given such a U and f , it is obvious that if σ ∈ SpB,(∞)(U ∩W ),

then (rUU∩W (l̃iU (f)))(σ) = (l̃iU∩W (f))(σ) = ψi(σ(~0)) · f(σ) = 0. This holds since σ(~0) ∈W implies

that σ(~0) /∈ Vj , so ψi(σ(~0)) = 0. We conclude that lix(rUx (f)) = rUx (l̃iU (f)) = 0. With this we have
shown that li satisfy I and II of Definition 3.2, so the sheaves SpB,(∞) are fine.

Secondly we show exactness of the sequence, so that it is a resolution. Again we divide it
in three problems, the first is exactness at Bx, the second is exactness at S0

x,B,(∞) and the final

one exactness at Spx,B,(∞) with p ≥ 1. This one is the most difficult and we will need to be very

careful for the differentiable case.
But first we let b ker(ix). Then 0 = ix(b) = rXx (fb). By definition there has to exist some open U
such that x ∈ U and rXU (fb) = 0. We know however that 0 = fb(x) = b, so b lies in the image of
the zero map. This proves exactness at Bx.
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When σ is a singular 1−simplex, then it is just a map σ : [0, 1] → X and with the
definition of ∂1 we get that ∂1(σ) = σ(1) − σ(0). So when f ∈ S0

B,(∞)(X), then

(d0
(∞)(f))(σ) = f(∂1(σ)) = f(σ(1)) − f(σ(0)) = 0, where the final equality holds for every

σ when f = fb. Now let b ∈ B. Then:

d0
x,(∞)(ix(b)) = d0

x,(∞)(r
X
x (fb)) = rXx (d0

(∞)(fb)) = rXx (0) = 0.

We conclude that Im (ix) ⊂ ker(d0
x,(∞)). For the other inclusion we have to remember that any

manifold is locally path connected. This implies that if a subset of X is connected, then it is path
connected as well. Now assume that rUx (f) ∈ ker(d0

x,(∞)). This implies that 0 = d0
x,(∞)(r

U
x (f)) =

rUx (d0
(∞)(f)). This implies that we can find an open V ⊂ U around x such that 0 = rUV (d0

(∞)(f)).
If V is not connected we can take the connected component in which x lies, so assume that V is
connected and therefore path connected. Now for any two point v1, v2 in V we can find a smooth
path σ : [0, 1] → V such that σ(0) = v1 and σ(1) = v2, see ......?. Note that these σ are all
elements of S1,(∞). And therefore 0 = (d0

(∞)(f))(σ) = f(∂1(σ)) = f(v2)− f(v1). So f is constant

to some b ∈ B on V : rUV (f) = rXV (fb). Finally see conclude that:

rUx (f) = rVx (rUV (f)) = rVx (rXV (fb)) = rXx (fb) = ix(b) ∈ Im (ix),

so we can conclude that ker(d0
x,(∞)) ⊂ Im (ix) and that the sequence is exact at S0

B,x,(∞).

The final part is to show exactness in the following sequence:

Sp−1
B,x,(∞) SpB,x,(∞) Sp+1

B,x,(∞)

dp−1
x,(∞) dpx,(∞)

Like always, the first inclusion is trivial: for any f ∈ Sp−1
B,(∞)(U) we have:

dpx(dp−1
x (rUx (f))) = dpx(rUx (dp−1

(∞)(f))) = rUx (dp(∞)(d
p−1
(∞)(f))) = rUx (0) = 0,

where we use that dp+1
(∞)◦d

p
(∞) = 0 for all p, which we have proven in Lemma 6.3.1. This calculation

shows that Im (dp−1
x ) ⊂ ker(dpx).

To prove the other inclusion we let rUx (f) ∈ SpB,x,(∞) and we assume that rUx (f) ∈ ker(dpx,(∞)),

so: 0 = dpx,(∞)(r
U
x (f)) = rUx (dp(∞)(f)). This now implies that there exists an open neighborhood

V ⊂ U of x such that 0 = rUV (dp(∞)(f)) = dp(∞)(r
U
V (f)). We can assume that V is connected

and small enough to be homeomorphic to the open unit ball B1(0) around 0 in Rm. The first
assumption is allowed, because we can restrict ourself to the connected component of V which
contains x and the second one is allowed because X is a manifold and therefore locally Euclidean.
So f sends maps σ : ∆p → B1(0) into elements in B. Denote rUV (f) as fV , then we want to find a

g ∈ Sp−1(V ) such that dp−1
(∞)(g) = fV .

To find this g we will define so called homotopy operators hp : SpB,(∞)(B1(0))→ Sp−1
B,(∞)(B1(0)) in

the same fashion as dp(∞): we first define hp : Sp,(∞)(B1(0)) → Sp+1,(∞)(B1(0)) and then we let

(hp(f))(σ) := f(hp−1(σ)). First we let ψ to be the following smoothing function:

ψ : R→ [0, 1]; t 7→


0 when t < 0;

e−
1
t

e−
1
t +e

− 1
1−t

when 0 ≤ t ≤ 1;

1 when 1 < t.

Here we define ψ(0) and ψ(1) as the limit of t going to 0 and 1 respectively. So ψ(0) = 0 and
ψ(1) = 1 and ψ itself is a smooth function. Now we let

(hp(σ))(x1, ..., xp+1) := ψ

(
p+1∑
i=1

xi

)
· σ

(
x2/

p+1∑
i=1

xi, ..., xp+1/

p+1∑
i=1

xi

)
.
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Since Im (ψ) ⊂ [0, 1] we get that hp(σ) is a map into B1(0) as well. If we do not use the smoothing
operator we will in general only get a continuous singular (p + 1)−complex, since at 0 there
may be some differentiability issues. So using ψ guarantees that our approach will work for
both cases: continuous and differentiable. To see that hp(σ) is actually a differentiable singular
(p + 1)−simplex we need to extend σ to a differentiable map on whole Rp such that σ and all
its derivatives are bounded. Then we can extend hp(σ) to whole Rp+1 with the same definition,
when we let (hp(σ))(x1, ..., xp+1) = 0 whenever

∑
xi = 0. Finally we can conclude that hp(σ)

is differentiable, since ψ and its derivatives vanish fast enough around 0 and since ψ and all its
derivatives are bounded. Moreover we have that for a singular p−simplex σ, x1, ..., xp ∈ ∆p and
x :=

∑p
i=1 xi the following two identities:

(hp−1(∂p(σ)))(x1, ..., xp) = ψ(x) · (∂p(σ))(x2/x, ..., xp/x) = ψ(x) ·
p∑
k=0

(−1)kσ(ρp−1
k (x2/x, ..., xp/x))

= ψ(x) · (−1)0σ(1− (x2 + ...+ xp)/x, x2/x, ..., xp/x)

+ ψ(x) ·
p∑
k=1

(−1)kσ(x2/x, ..., xk/x, 0, xk+1/x, ..., xp/x)

= ψ(x) · σ(x1/x, ..., xp/x) + ψ(x) ·
p∑
k=1

σ(x2/x, ..., xk/x, 0, xk+1/x, ..., xp/x),

(∂p+1(hp(σ)))(x1, ..., xp) =

p+1∑
j=0

(hp(σ))(ρpj (x1, ..., xp)) = (−1)0(hp(σ))(1− x, x1, ..., xp)

+ (−1)1(hp(σ))(0, x1, ..., xp) +

p∑
k=1

(−1)k+1(hp(σ))(x1, ..., xk, 0, xk+1, ..., xp)

∗
= ψ(1) · σ(x1, ..., xp) +

p∑
k=1

(−1)k+1ψ(x) · ψ(x2/x, ..., xk/x, 0, xk+1/x, ..., xp/x)

− ψ(x) · σ(x1/x, ..., xp/x).

At ∗ we use that 1− x+ x = 1. When we add these two together, we get that (hp−1 ◦ ∂p + ∂p+1 ◦
hp)(σ) = ψ(1) · σ = σ. Using this identity gives us the same identity for hp and dp(∞):(

(hp+1 ◦ dp(∞) + dp−1
(∞) ◦ h

p)(f)
)

(σ) = (dp(∞)(f))(hp(σ)) + (hp(f))(∂p(σ))

= f(∂p+1(hp(σ))) + f(hp−1(∂p(σ))) = f((∂p+1 ◦ hp + hp−1 ◦ ∂p)(σ))

= f(σ).

Finally using fV gives us that:

fV = (hp+1 ◦ dp(∞) + dp−1
(∞) ◦ h

p)(fV ) = hp+1(dp(∞)(fV )) + dp−1
(∞)(h

p(fV )) = dp−1
(∞)(h

p(fV )).

So we choose the wanted g to be equal to hp(fV ) and this implies that:

rUx (f) = rVx (fV ) = rVx (dp−1
(∞)(g)) = dp−1

x,(∞)(r
V
x (g)) ∈ Im (dp−1

x,(∞)).

With this we have shown that ker(dpx) ⊂ Im (dp−1
x,(∞)) and we are therefore allowed to conclude

that the sequence is exact at Spx,B,(∞) for each p ≥ 1 as well.

Lemma 6.3.3: The above fine resolution is torsionless, when B = K.
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Proof: We will show that SpK,(∞)(U) is torsionless for each open U ⊂ X and p. Let s

be an element of SpK,(∞)(U), so s : U → SpK,(∞) such that s(x) ∈ SpK,(∞),x for each p ∈ U .

Now for any k ∈ K \ {0} we get that 0 = k · s implies that for each x ∈ U : 0 = k · s(x).
s(x) ∈ SpK,(∞),x implies that there exists an open V and an element f ∈ SpK,(∞)(V ) such that

x ∈ V and rVx (f) = s(x). So we get that 0 = k · s(x) = k · rVx (f) = rVx (k · f). Therefore there
exists a open W ⊂ V such that x ∈ W and 0 = rVW (k · f), that is: for each σ ∈ Sp,(∞)(W )
we have that 0 = (k · f)(σ) = k · f(σ). Because f(σ) ∈ K and K is integral domain, we
are allowed to conclude that f(σ) = 0 for each σ. This implies that rVW (f) = 0. Finally
we can conclude that s(x) = 0, since s(x) = rVx (f) = rWx (rVW (f)) = rWx (0) = 0. We can
do this for all x ∈ U and therefore s has to be the zero-section. With this we have proven
that SpK,(∞)(U) is torsionless and with Lemma 3.6 we see that all the sheaves SpK,(∞) are torsionless.

Like always we will now define the classical versions. After this definition there will be a
technical lemma. Then the final part of this section consists of Theorem 6.3, in which we will
make use of this lemma to conclude that the classical and the sheaf cohomologies are indeed
isomorphic.

Definition 6.3.3: classical (differentiable) singular cohomology modules
Since dp+1

(∞) ◦ d
p
(∞) = 0 we have the cochain complex S∗B,(∞)(X), for each K−module B. The

classical (differentiable) singular cohomology modules for X with coefficients in B are then defined
as:

Hq
∆,(∞)(X;B) := Hq(S∗B,(∞)(X)).

Definition 6.3.4: singular chains on a cover
Let {Ui} be an open cover of X. Then we will call a (differentiable) singular p−simplex σ a
(differentiable) singular p−simplex on {Ui} if there exists an i such that Im (σ) ⊂ Ui. Then
we define S̃p,(∞) := 〈σ|σ a (differentiable) singular p−simplex on {Ui}〉 and analogously as in

Definition 6.3.2 we let S̃pB,(∞) contain all the linear maps f : S̃p,(∞) → B. Elements of S̃pB,(∞) are

called (differentiable) singular p−cochains on {Ui} with coefficients in B.

Lemma 6.3.4: Let {Ui} be an open cover of X and let S̃pB,(∞) be as in the above defi-

nition. Finally let jp : SpB,(∞)(X) → S̃pB,(∞) be the natural restriction homomorphism. Then j

induces an isomorphism j
q

: Hq
∆,(∞) → Hq(S̃∗B,(∞)).

Proof: First we note that jp maps f into f̃ such that f̃(σ) = f(σ) for each σ ∈ S̃pB,(∞). Secondly

it is obvious that j
q

is well defined, since it commutes with the coboundary operators, and sends
[f ] into [f̃ ]. We now will define new homotopy operators hp : SpB,(∞)(X) → Sp−1

B,(∞)(X) and a

cochain map k : S̃∗B,(∞) → S∗B,(∞)(X) such that for all p:

jp ◦ kp = Id : S̃∗B,(∞) → S̃∗B,(∞). (10)

And furthermore that

hp+1 ◦ dp + dp−1
(∞) ◦ h

p = Id− kp ◦ jp. (11)

First we define linear p−simplices (v0, ..., vp) : ∆p → ∆q in ∆q, with q ≥ 1, and v0, ..., vp ∈ ∆q,
such that:

(v0, ..., vp) : (x1, ..., xp) 7→

(
1−

∑
i

xi

)
v0 + x1v1 + ...+ xpvp.

Note that (0, e1, ..., ep), with ei the standard basis in Rp induces the identity map on ∆p, which
we will denote by ιp. Let Lqp be the free abelian group generated by such elements (v0, ..., vp) and
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let b(v0, ..., vp) :=
∑
i vi

p+1 = v̄
p+1 and w · (v0, .., vp) := (w, v0, ..., vp). We note that

∂(v0, ..., vp) =

p∑
i=0

(−1)i(v0, ..., v̂i, ..., vp)

holds and therefore we get that

∂(w ·(v0, ..., vp)) = (v0, ..., vp)+

p∑
i=0

(−1)i+1(w, v0, ..., v̂i, ..., vp) = (v0, .., vp)−w ·∂(v0, ..., vp). (12)

The diameter of a linear simplex is defined as r(v0, ..., vp) := max i, j|vi − vj | and for each u, v ∈
Im (v0, ..., vp) we have that |u − v| ≤ d(v0, ..., vp). Before we can construct k and hp we need to

define two more maps T̃p : Lqp → Lqp and R̃p : Lqp → Lqp+1, which we will extend later on to maps
on Sp,B,(∞). We demand the maps to be linear and for a linear p−simplex σ = (v0, ..., vp) we
define:

T̃p(σ) :=

{
b(σ) · T̃p−1(∂(σ)) when p ≥ 1;

σ when p = 0.

R̃p(σ) :=

{
b(σ) · (σ − T̃p(σ)− R̃p−1(∂(σ))) when p ≥ 1;

0 when p = 0.

So T̃ divides a linear simplex in multiple simplices. We can determine the first few to see this
happen. It is given that T̃0(v0) = (v0). For σ = (v0, v1) we have that

T̃1(σ) =
v̄

2
· T̃0(∂(σ)) =

v̄

2
· ((v1)− (v0)) =

( v̄
2
, v1

)
−
( v̄

2
, v0

)
.

And for a 2−simplex σ = (v0, v1, v2) we have that

T̃2(σ) =
v̄

2
· T̃1(∂(σ)) =

v̄

2
· T̃1((v1, v2)− (v0, v2) + (v0, v1))

=
( v̄

3
,
v1 + v2

2
, v2

)
−
( v̄

3
,
v1 + v2

2
, v1

)
+
( v̄

3
,
v0 + v2

2
, v0

)
−
( v̄

3
,
v0 + v2

2
, v2

)
+
( v̄

3
,
v0 + v1

2
, v1

)
−
( v̄

3
,
v0 + v1

2
, v0

)
If σ is a linear 0−simplex we have trivially that ∂(T̃0(σ)) = T̃−1(∂(σ)). With the inductionstep at
∗ we get this identity for all p, since:

∂(T̃p(σ)) = ∂(b(σ) · T̃p−1(∂(σ)))
(12)
= T̃p−1(∂(σ))− b(σ) · ∂(T̃p−1(∂(σ)))

= T̃p−1(∂(σ))− b(σ) ·
p∑
i=0

(
(−1)i∂(T̃p−1(σi))

)
∗
= T̃p−1(∂(σ))− b(σ) ·

p∑
i=0

(
(−1)iT̃p−2(∂(σi))

)
= T̃p−1(∂(σ))− b(σ) · T̃p−2(∂2(σ)) = T̃p−1(∂(σ))

For a linear 0−simplex we also have that

∂(R̃0(σ)) + R̃−1(∂(σ)) = ∂(R̃0(σ)) = ∂
(
b(σ) · (σ)− T̃0(σ)− R̃−1(∂(σ))

)
(12)
= σ − T̃0(σ)− b(σ) · ∂(σ − T̃0(σ)) = σ − T̃0(σ).
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Using induction again, at ∗ gives this identity for all p:

∂(R̃p(σ)) + R̃p−1(∂(σ)) = ∂
(
b(σ) · (σ − (̃σ)− R̃p−1(∂(σ)))

)
+ R̃p−1(∂(σ))

(12)
= σ − T̃p(σ)− R̃p−1(∂(σ))− b(σ) ·

(
∂(σ − T̃p(σ)− R̃p−1(∂(σ)))

)
+ R̃p−1(∂(σ))

= σ − T̃p(σ)− b(σ) · (∂(σ)− T̃p−1(∂(σ))) + b(σ) · ∂(R̃p−1(∂(σ)))
∗
= σ − T̃p(σ)− b(σ) · (∂(R̃p−1(∂(σ))) + R̃p−2(∂2(σ))) + b(σ) · ∂(R̃p−1(∂(σ)))

= σ − T̃p(σ)

Now define Tp : Sp,(∞)(U)→ Sp,(∞)(U) and Rp : Sp,(∞)(U)→ Sp+1,(∞)(U) as:

Tp(σ) := σ ◦ T̃p(ιp), Rp(σ) := σ ◦ R̃p(ιp).

With these definitions it is clear that ∂ ◦ Tp = Tp−1 ◦ ∂ and ∂ ◦ Rp + Rp−1 ◦ ∂ = ID − Tp. Let

σ = (v0, ..., vp) be a linear p−simplex and let τ be one of the simplices of T̃p(σ). We want to

determine the diameter of τ given the diameter of σ. By construction of T̃p we know that given

two vertices of τ , at least one is is of the form
vi0+...+vik

k+1 . This implies that

∣∣∣∣vi0 + ...+ vik
k + 1

− vn
∣∣∣∣ ≤ 1

k + 1

k∑
j=0

|vij − vn| ≤
1

k + 1

k∑
j=0

max
n,m
|vm − vn| =

k

k + 1
r(σ) ≤ p

p+ 1
r(σ),

from which we conclude that r(τ) ≤ p
p+1r(σ) < r(σ). This implies that we are able to cut our

simplex into smaller ones. Now we will define kp and hp and check that the chosen definitions
satisfy (10) and (11). Let σ be a (differentiable) singular p−simplex. Then we get an open cover
{σ−1(Ui)} of ∆p which in compact in Rp. By Lebesgue’s number lemma there exists a positive
number δ such that every subset of ∆p with diameter less or equal to δ lies inside an element of
our cover. This implies that for these subsets, their image under σ lies inside Ui for a unique i.
Since T̃p shrinks the diameter strictly and since T̃p(ιp) consists of a finite amount of simplices, the

smallest positive real number s(σ), such that each simplex of T̃
s(σ)
p (ιp) lies in exactly one σ−1(Ui)

must exist. This implies that T
s(σ)
p (σ) ∈ Ui for exactly one Ui. Therefore we can define kp and hp

as following:

(kp(f))(σ) := f

T s(σ)
p (σ) +

p∑
j=0

(−1)jRp−1

 s(σ)−1∑
1=s(σj)

T ip−1(σj)

 ,

(hp(f))(σ) := f

Rp−1

s(σ)−1∑
i=0

T ip−1(σ)

 .
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Finally we will proof (11):

((hp+1 ◦ dp(∞) + dp−1
(∞) ◦ h

p)(f))(σ) = (dp(∞)(f))

(
Rp

( s(σ)−1∑
i=0

T i(σ)

))
+ (hp(f))(∂p(σ))

= f

(
∂p+1 ◦Rp

( s(σ)−1∑
i=0

T i(σ)

)
+

p∑
j=0

(−1)jRp−1

( s(σj)−1∑
i=0

T i(σj)

))

= f

( s(σ)−1∑
i=0

∂p+1 ◦Rp(T i(σ)) +

s(σ)−1∑
i=0

Rp−1

(
T i
( p∑
j=0

(−1)jσj
)))

− f
( p∑
j=0

(−1)j
s(σ)−1∑
i=s(σi)

Rp−1(T i(σj))

)

= f

(
(∂ ◦Rp +Rp−1 ◦ ∂)

( s(σ)−1∑
i=0

T i(σ)

)
−

p∑
j=0

(−1)j
s(σ)−1∑
i=s(σi)

Rp−1(T i(σj))

)

= f

(
(Id− T )

( s(σ)−1∑
i=0

T i(σ)

)
−
∑
j=0p

(−1)j
s(σ)−1∑
i=s(σi)

Rp−1(T i(σj))

)

= f(T 0(σ))− f
(
T s(σ)(σ) +

p∑
j=0

(−1)jRp−1

( s(σ)−1∑
i=s(σj)

T i(σj)

))
= f(σ)− (kp(f))(σ).

(10) follows trivially as well, since for any f ∈ S̃pB,(∞) and a (differentiable) singular p−simplex σ

on {Ui} we have that:

((j ◦ k)(f))(σ) = (k(f))(σ) = f

(
T s(σ)
p (σ) +

p∑
j=0

(−1)jRp−1

( s(σ)−1∑
i=s(σj)

T ip−1(σj)

))
(s(σ)=0)

= f(σ) + f

( p∑
j=1

(−1)jRp−1(0)

)
= f(σ).

The final part we had to proof about the map k is that it is indeed a cochain map, so it has to
commute with d. Since kp ◦ jp = Id for each p, we get that

dp(∞) ◦ k
p ◦ jp = dp(∞) = kp+1 ◦ jp+1 ◦ dp(∞) = kp+1 ◦ dp(∞) ◦ j

p,

where the final equality is due to j being a cochain map. Furthermore we have that jp is clearly
surjective for each p and thus we conclude that k is a cochain map as well.
At last we use the constructed maps k and hp to proof that j

p
is an isomorphism. Let [f ] ∈

Hp(S̃∗B,(∞)) be arbitrary. From (10) we get that:

[f ] = [ Id(f)] = Id([f ]) = jp ◦ kp([f ]) = j
p
([kp(f)]),

so j
p

is surjective. Injectivity follows from (11) since it gives that:

[f ]− kp ◦ jp([f ]) = h
p+1

([dp(∞)(f)]) + [dp−1
(∞)(h

p(f))] = [hp−1(0)] + 0 = 0,

which implies that [f ] = kp ◦ jp([f ]). So if [f ] and [g] are such that j
p
([f ]) = j

p
([g]), then we get

that [f ] = k
p
(j
p
([f ])) = k

p
(j
p
([g])) = [g]
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Theorem 6.3: The classical singular cohomology modules with coefficients in B, Hq
∆,(∞)(X;B),

are isomorphic to the cohomology modules of the cohomology theory induced by the singular
p-cochain sheaves.
Proof: Let Sp0,B,(∞) be defined as {f ∈ SpB,(∞)(X)|rXx (f) = 0 ∀x ∈ X}. We start with realizing

that SpB,(∞) is a presheaf, which satisfies (S2). This is true, since for each open cover {Ui} of

an open U and elements fi ∈ SpB,(∞)(Ui) such that rUiUi∩Uj (fi) = r
Uj
Ui∩Uj (fj) for all i, j, we can

construct f in the following way: for a σ : ∆p → U we let

f(σ) =

{
fi(σ) if Im (σ) ⊂ Ui;
0 if there exists no i such that Im (σ) ⊂ Ui.

Then f is well defined when we extend it linearly to a map from Sp,(∞) and clearly satisfies
the condition that rUUi(f) = fi. Furthermore for p = 0 we have that S0

B,(∞) satisfies condition

(S1) as well and is therefore a sheaf. To proof this we let U = ∪Ui and f, g ∈ S0
B,(∞)(U)

such that for each i: rUUi(f) = rUUi(g). When σ ∈ S0,(∞)(U) then it assign a single point
x ∈ U . There exists an i such that x ∈ Ui since {Ui} is an open cover. So this means that
f(σ) = (rUUi(f))(σ) = (rUUi(g))(σ) = g(σ). We conclude that f = g.

The modules Sp0,B,(∞) form a cochain complex with cochain map d, since rXx (dp(∞)(f)) =

dpx(rXx (f)) = dpx(0) = 0 for every p and f ∈ Sp0,B,(∞). Let f ∈ S0
0,B,(∞). Then for each x ∈ X

rXx (f) = 0, which implies that for each x there exists an open Ux which contains x such that
rUUx(f) = 0. Since X = ∪Ux and S0

B,(∞) is a sheaf we get that f = 0. So the cochain complex is
as follows.

... 0 0 = S0
0,B,(∞) S1

0,B,(∞) S2
0,B,(∞) ...

d0
(∞) d1

(∞) d2
(∞)

So we have that Hq(S∗0,B,(∞)) = 0 for q ≤ 0. We will proof that the other cohomology modules are

0 as well, so let p ≥ 1 and f ∈ Sp0,B,(∞) such that dp(∞)(f) = 0. For each x we have that rXx (f) = 0,

so let Ux be as above. These opens form an open cover of X, so we get a surjective map j as in
Lemma 6.3.4. Let LpB,(∞) ⊂ SpB,(∞)(X) be the kernel of jp. L∗B,(∞) is a cochain complex, since j

commutes with d. This implies that we have the short exact sequences

0 LpB,(∞) SpB,(∞)(X) S̃pB,(∞) 0
i αp

Theorem 3 implies exactness of the associated long sequence

... Hq(L∗B,(∞)) Hq(S∗B,(∞)(X)) Hq(S̃∗B,(∞)) Hq+1(L∗B,(∞)) ...
iq j

q
∂q

In Lemma 6.3.4 we were able to conclude that j
q

is an isomorphism for each q and therefore

Hq(L∗B,(∞)) has to be 0. This is proven in two steps. First of all ker(∂q−1) = Im (j
q−1

) =

Hq−1(S̃∗B,(∞)), which implies that {0} = Im (∂q−1) = ker(iq). Secondly Im (iq) = ker(j
q
) = {0}.

So Hq(L∗B,(∞)) = 0.

Because we have chosen our open cover nicely, we know that f ∈ LpB,(∞). We already knew that

0 = dp(∞)(f) ∈ Lp+1
B,(∞), so the cohomology being 0 implies that there exists an g ∈ Lp−1

B,(∞) such

that dp−1
(∞)(g) = f . Since Lp−1

B,(∞) ⊂ Sp−1
B,(∞)(X) we get that g ∈ Sp−1

0,B,(∞) and dp−1
(∞)(g) = f . We

conclude that the cohomologies Hq(S∗0,B,(∞)) for q ≥ 1 are zero as well.
The final steps of the proof are quite short: Lemma 6.1.5 implies that for each p we have a short
exact sequence:
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0 Sp0,B,(∞) SpB,(∞)(X) SpB,(∞)(X) 0
ip αp

Theorem 3 implies that we have the long exact sequence:

... 0 = Hq(S∗0,B,(∞)) Hq(S∗B,(∞)(X)) Hq(S∗B,(∞)(X)) Hq+1(S∗0,B,(∞)) = 0 ...
i
q

αq ∂q

So α̃q is actually an isomorphism Hq(S∗B,(∞)(X)) ' Hq(S∗B,(∞)(X)). Finally we use Lemma 5.1
and Lemma 6.3.2 to conclude that:

Hq
∆,(∞)(X;B) = Hq(S∗B,(∞)(X)) ' Hq(S∗B,(∞)(X)) ' Hq(X,B)

7.4 Čech

The final example of cohomology is the Čech cohomology on a paracompact Hausdorff space X.
This cohomology will not appear associated to a fine torsionless resolution of the constant sheaf.
We will proof that our definition indeed is a cohomology theory directly, so with Definition 5.1.
We start with a definition which is rather unfortunate, but standard.

Definition 6.4.1: simplices and cochains
Given an open cover {Ui}i∈I of X, an ordered collection of q + 1 opens σ = (U0, ..., Uq) of the
cover is called a q-simplex of {Ui} when |σ| := U0 ∩ ... ∩ Uq 6= ∅. In this case |σ| is called the

support of σ. Each q−simplex has q + 1 facets σi := (U0, ..., Ûi, ..., Uq) for 0 ≤ i ≤ q. Denote the

set of q−simplices as C̃q{Ui}. For a sheaf of K−modules F we define Cq{Ui},F as

Cq{Ui},F := {f : C̃q{Ui} → F | f(σ) ∈ F(|σ|)∀σ}

and elements of Cq{Ui},F are called q−cochains. Finally we define a coboundary homomorphism

dq{Ui},F = dq : Cq({Ui},F) → Cq+1({Ui},F) as the map such that for f ∈: Cq({Ui},F) and

σ ∈ C̃q+1
{Ui}:

(dq(f))(σ) :=

q+1∑
i=0

(−1)ir
|σi|
|σ| (f(σi))

Lemma 6.4.1: C∗{Ui},F together with the coboundary homomorphisms form a cochain complex

for each open cover {Ui} and sheaf F .
Proof: First of all Cq{Ui},F is a K−module for each q when we let (f + g)(σ) := f(σ) + g(σ) and

(k · f)(σ) := k · f(σ). These operations are well defined, since f(σ), g(σ) ∈ F(|σ|), which is a
K−module itself. Secondly we have to check whether dq+1 ◦ dq = 0. To simplify the notation in

the calculation we let σi,j :=
(
σi
)j

. This notation implies that when σ = (U0, ..., Uq), then:

σi,j =

{
(U0, ..., Ûi, ..., Ûj+1, ..., Uq) = σj+1,i if j ≥ i;
(U0, ..., Ûj , ..., Ûi, ..., Uq) = σj,i−1 if j < i.
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Now let σ be a (q + 2)−simplex and f ∈ Cq{Ui},F . Then:

(dq+1 ◦ dq(f))(σ) =

q+2∑
i=0

(−1)i
(
r
|σi|
|σ| (dq(f))

)
(σ) =

q+2∑
i=0

(−1)ir
|σi|
|σ|

( q+1∑
j=0

(−1)jr
|σi,j |
|σi| (f(σi,j))

)

=

q+2∑
i=0

∑
j≥i

(−1)i+jr
|σi,j |
|σ| (f(σi,j)) +

q+2∑
i=0

∑
j<i

(−1)i+jr
|σi,j |
|σ| (f(σi,j))

=

q+2∑
i=0

∑
j≥i

r
|σi,j |
|σ| (f(σj+1,i)) +

q+2∑
i=0

∑
j<i

(−1)i+jr
|σi,j |
|σ| (f(σi,j))

=

q+2∑
j=0

∑
i>j

(−1)i+j−1r
|σi,j |
|σ| +

q+2∑
i=0

∑
j<i

(−1)i+jr
|σi,j |
|σ| (f(σi,j))

=

q+2∑
i=0

∑
j<i

(−1 + 1) · (−1)i+jr
|σi,j |
|σ| = 0,

where we have only renamed our summation constants and have switched the order of summa-
tion.

So each cover gives us a cochain complex. We can look at the cohomology modules asso-
ciated to this cochain complex, but this will still depend on the chosen cover. We will start with
this and out of these cohomology modules we will extract a ”global” cohomology. We will finish
with the theorem that states that these final cohomology modules form a cohomology theory, so
that it is isomorphic to all the other (sheaf)cohomology theories.

Definition 6.4.2: Čech cohomology modules associated to {Ui}
For each sheaf F and open cover {Ui} we define the q−th Čech cohomology module of X associated
to {Ui} with coefficients in F

Ȟq
{Ui}(X,F) := Hq(C∗{Ui},F )

Its elements will be denoted by [f ]{Ui} for f ∈ Cq{Ui},F .

Lemma 6.4.2: Let {Vj} be an open refinement of the open cover {Ui}. Then there exist

canonical maps fq{Ui},{Vj},F : Ȟq
{Ui}(X,F)→ Ȟq+1

{Vj}(X,F).

Proof: Since {Vj} is a refinement of {Ui} we can pick an ij for each j such that
Vj ⊂ Uij . Let µ : {Vj} → {Ui} be that map, which sends Vj 7→ Uij . This µ induces

maps µq : Cq{Ui},F → Cq{Vj},F ; (µq(f))(σ) when we define for f ∈ Cq{Ui},F and σ ∈ C̃q+1
{Ui}

(µq(f))(σ) := r
|µ(σ)|
|σ| (f(µ(σ))).

These maps are a cochain map when they commute with the coboundary d, so that the following
diagram commutes:

Cq{Ui},F Cq{Vj},F

Cq+1
{Ui},F Cq+1

{Vj},F

µq

µq+1

dq{Ui} dq{Vj}

First we start with σ ∈ C̃q+1
{Ui} and we note that

µ(σi) = µ((V0, ..., V̂i, ..., Vq+1)) = (U0, ..., Ûi, ..., Uq+1) = (U0, ..., Uq+1)i = µ(σ)i. (13)
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So let f ∈ Cq{Ui},F . We will compute dq{Vj}(µ
q(f)) and µq+1(dq{Ui}(f)) to check whether they are

equal:(
dq{Vj} (µq(f))

)
(σ) =

q+1∑
i=0

(−1)ir
|σi|
|σ|

(
(µq(f))(σi)

)
=

q+1∑
i=0

(−1)ir
|σi|
|σ|

(
r
|µ(σi)|
|σi|

(
f(µ(σi))

))

=

q+1∑
i=0

(−1)ir
|µ(σi)|
|σ|

(
f(µ(σi))

)
,

(
µq+1

(
dq{Ui}(f)

))
(σ) = r

|µ(σ)|
|σ|

(
(dq{Ui}(f))(µ(σ))

)
= r
|µ(σ)|
|σ|

( q+1∑
i=0

(−1)ir
|µ(σ)i|
|µ(σ)|

(
f(µ(σ)i)

))

=

q+1∑
i=0

(−1)ir
|µ(σ)i|
|σ|

(
f(µ(σ)i)

)
.

With (13) we conclude that the above diagram is indeed commutative.
Let µq : Ȟq

{Ui}(X,F) → Ȟq+1
{Vj}(X,F) be as in Chapter 4. We want to define fq{Ui},{Vj},F = µq,

but we do not know whether µ is the unique map with the chosen properties. So let τ be another
map such that Vj ⊂ τ(Vj) for all j, and we will check whether µq = τ q. To do this we define for a

q−simplex σ = (V0, ..., Vq) ∈ C̃q{Vj}:

σj := (µ(V0), ..., µ(Vj), τ(Vj), ..., τ(Vq)) ∈ C̃q+1
{Ui}.

This implies that:

(σi)j =

{
(µ(V0), ..., µ(Vj), τ(Vj), ..., τ̂(Vi), ..., τ(Vq)) = (σj)

i+1 if j < i;

(µ(V0), ..., µ̂(Vi), ..., µ(Vj+1), τ(Vj+1), ..., τ(Vq)) = (σj+1)i if j ≥ i.

Furthermore we note that

(σi−1)i = (µ(V0), ..., µ(Vi−1), τ(Vi), ..., τ(Vq)) = (σi)
i,

(σ0)0 = τ(σ) and that (σq)
q+1 = µ(σ). With this we are able to define new homotopy operators

hq : Cq{Ui},F → Cq−1
{Vj},F such that

(hq(f))(σ) :=

q−1∑
j=0

(−1)jr
|σj |
|σ| f(σj),

for a f ∈ Cq{Ui},F and σ ∈ C̃q−1
{Vj}. Now let us determine dq−1 ◦ hq, with the above identities for

(σi)j :

(dq−1 ◦ hq(f))(σ) =

q∑
i=0

q−1∑
j=0

(−1)i+jr
|(σi)j |
|σ| f((σi)j)

= −
q+1∑
i=0

i−2∑
j=0

(−1)i+jr
|(σj)i|
|σ| f((σj)

i)−
q+1∑
i=0

q∑
j=i+1

(−1)i+jr
|(σj)i|
|σ| f((σj)

i).

While on the other hand we have that

(dq−1 ◦ hq(f))(σ) =

q+1∑
i=0

q∑
j=0

(−1)i+jr
|(σj)i|
|σ| f((σj)

i) =

q+1∑
i=0

i∑
k=i−1

(−1)i+jr
|(σj)i|
|σ| f((σj)

i)

+

q+1∑
i=0

i−2∑
j=0

(−1)i+jr
|(σj)i|
|σ| f((σj)

i) +

q+1∑
i=0

q∑
j=i+1

(−1)i+jr
|(σj)i|
|σ| f((σj)

i).
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Adding these two gives that

((hq+1 ◦ dq + dq−1 ◦ hq)(f))(σ) = (τ q(f))(σ)− (µq(f))(σ) +

q∑
i=1

(r
|(σi−1)i|
|σ| f((σi−1)i)− r|(σi)

i|
|σ| f((σi)

i))

= (τ q(f))(σ)− (µq(f))(σ).

Finally we are able to conclude that τ and µ induce the same map fq{Ui},{Vj},F , since for a

[f ]{Ui} ∈ Ȟ
q
{Ui}(X,F) we have that:

τ q([f ]{Ui})− µ
q([f ]{Ui}) = [(τ q − µq)(f)]{Ui} = [(hq+1 ◦ dq + dq−1 ◦ hq)(f)]{Ui}

= h
q+1

[dq(f)]{Ui} + [dq−1(hq(f))]{Ui} = 0.

Definition 6.4.3: Čech cohomology modules
For each sheaf F of K−modules we define an equivalence relation on the disjoint union⊔
{Ui} Ȟ

q
{Ui}(X,F) of the Čech cohomology modules associated to the open covers {Ui} of

X. Just like in Definition 2.4 we say that [f ]{Ui} ∼ [g]{Vj} for a [f ]{Ui} ∈ Ȟq
{Ui}(X,F) and

[g]{Vj} ∈ Ȟ
q
{Vj}(X,F) if there exists an open cover {Wk} which is a refinement of both {Ui} and

{Vj} such that

fq{Ui},{Wk},F [f ]{Ui} = fq{Vj},{Wk},F [g]{Vj}.

Then the q-th Čech cohomology module Ȟq(X,F) for X with coefficients in the sheaf F is defined
as

Ȟq(X,F) =
⊔
{Ui}

Ȟq
{Ui}(X,F)� ∼ .

Its elements will be denoted by
[
[f ]{Ui}

]
for [f ]{Ui} ∈ Ȟ

q
{Ui}(X,F).

Theorem 6.4: The Čech cohomology modules form a cohomology theory H.
Proof: We will use Definition 5.1 to proof this, so we start with defining maps hq for a sheaf
homomorphism h and ∂q for a short exact sequence of sheaves. After that we check (a)-(f).
When h : F → F ′ is a sheaf homomorphism, we get a map ξ{Ui} : C∗{Ui},F → C∗{Ui},F ′ by
composition with h. It is a cochain map, since it commutes with the coboundary operator:

(dq ◦ ξq{Ui}(f))(σ) =

q+1∑
i=0

(−1)ir
|σi|
|σ| ((ξq{Ui}(f))(σi)) =

q+1∑
i=0

(−1)ir
|σi|
|σ| (h|σi|(f(σi)))

= h|σ|

( q+1∑
i=0

(−1)ir
|σi|
|σ| (f(σi))

)
= ξq+1
{Ui}((d

q(f))(σ)) = (ξq+1
{Ui} ◦ d

q(f))(σ).

Like always we now have maps ξ
q

{Ui} : Ȟ{Ui}(X,F) → Ȟ{Ui}(X,F ′). Furthermore we have that
for a refinement {Vj} with maps µq as in Lemma 6.4.2

(ξq{Vj} ◦ µ
q(f))(σ) = h|σ|((µ

q(f))(σ)) = h|σ|(r
|µ(σ)|
|σ| (f(µ(σ))))

= r
|µ(σ)|
|σ| (h|µ(σ)|(f(µ(σ)))) = r

|µ(σ)|
|σ| ((ξq{Ui}(f))(µ(σ))) = (µq ◦ ξq{Ui}(f))(σ),

which implies that ξ
q

{Vj} ◦ f
q
{Ui},{Vj},F = fq{Ui},{Vj},F ′ ◦ ξ

q

{Ui}. So once more we get an induced

map on the quotient, and we let hq to be this map.

Next we will construct the maps ∂q for each short exact sheaf sequence 0→ F ′ h→ F h′→ F ′′ → 0.
We first start with looking at the following sequence and proof that it is exact.
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0 Cq{Ui},F ′ Cq{Ui},F Cq{Ui},F ′′

ξq{Ui} ξ′q{Ui}

Let f ′ ∈ Cq{Ui},F ′ . Then ξq{Ui}(f) = 0 implies that for all q−simplices σ: 0 = (ξq{Ui}(f))(σ) =

h|σ|(f(σ)). When we let Z = |σ| in Lemma 3.1 we get that f(σ) = 0 and thus we conclude that f =
and the sequence is exact at Cq{Ui},F ′ . Exactness at Cq{Ui},F uses the same lemma, since we have

that (ξ′q(ξq{Ui}(f
′)))(σ) = h′|σ|(h|σ|(f

′(σ))) = 0 for all σ and thus Im (ξq{Ui}) ⊂ ker(ξ′q{Ui}). The

other way around, when f ∈ ker(ξ′q{Ui}), then we get for all σ that 0 = (ξ′q{Ui}(f))(σ) = h′|σ|(f(σ)).

So we find an f ′σ ∈ F ′ such that = h|σ|(f
′
σ) = f(σ). Letting f ′(σ) := f ′σ implies that ξq{Ui}(f

′) = f ,

so that we have exactness at Cq{Ui},F as well.

The above exact sequence gives us a short exact sequence of cochain complexes, when we let
C̄q{Ui},F ′′ := Im (ξ′q{Ui}) ⊂ Cq{Ui},F ′′

0 C∗{Ui},F ′ C∗{Ui},F C̄∗{Ui},F ′′ 0
ξ{Ui} ξ′{Ui}

We have already seen that µ commutes with d and with ξ and ξ′ for a refinement {Vj} with
refinement map µ. This implies that µ is a homomorphism of the short exact sequences of cochain
complexes:

0 C∗{Ui},F ′ C∗{Ui},F C̄∗{Ui},F ′′ 0

0 C∗{Vj},F ′ C∗{Vj},F C̄∗{Vj},F ′′ 0

ξ{Ui} ξ′{Ui}

ξ{Vj} ξ′{Vj}

µ µ µ

Theorem 3 gives maps ∂̂q{Ui} and another commutative diagram with exact rows:

... Ȟq
{Ui}(X,F

′) Ȟq
{Ui}(X,F) H̄q

{Ui}(X,F
′′) Ȟq+1

{Ui}(X,F
′) ...

... Ȟq
{Vj}(X,F

′) Ȟq
{Vj}(X,F) H̄q

{Vj}(X,F
′′) Ȟq+1

{Vj}(X,F
′) ...

∂̂q{Ui}ξ̄q{Ui} ξ̄′q{Ui}

∂̂q−1
{Vj}ξ̄q{Vj} ξ̄′q{Vj}

µq µq µq µq+1(1)

where H̄q
{Ui}(X,F

′′) = Hq(barC∗{Ui},F ′′) and commutativity of (1) is a consequence of the theorem

and the commutativity of the other squares is already shown above. Since (1) is commutative, we

get an induced map ∂̂′q : H̄q(X,F ′′) → Ȟq+1(X,F). Al together gives another exact sequence,
where the exactness is a direct consequence of the exactness in the diagram above:

... Ȟq(X,F ′) Ȟq(X,F) H̄q(X,F ′′) Ȟq+1(X,F ′) ...
hq h′q ∂̂′q

(14)

Let i : C̄q{Ui},F ′′ → Cq{Ui},F ′′ be the inclusion map and consider the K−modules C̃q{Ui} :=

Cq{Ui},F ′′�C̄q{Ui},F ′′ , which form a cochain complex C̃∗{Ui} in the obvious way. Moreover in gives

a short exact sequence of cochains:

0 C̄∗{Ui},F ′′ C∗{Ui},F ′′ C̃∗{Ui} 0
i π

Theorem 3 gives us a long exact sequence again
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... H̄q
{Ui}(X,F

′′) Ȟq
{Ui}(X,F

′′) H̃q
{Ui}(X,F

′′) H̄q+1
{Ui}(X,F

′′) ...
i
q

π′q ∂̃q

We will look at H̃q
{Ui}(X,F

′′) := Hq(C̃∗{Ui}) a bit more. We start with noting that the restriction

maps f{Ui},{Vj},F ′′ induces restriction maps for H̃q
{Ui}(X,F

′′) as well, since for f ∈ Cq{Ui},F we

have that µq(ξ′q{Ui}(f)) = ξ′q{Vj}(µ
q(f)) ∈ C̄q{Ui},F ′′ . This means we can define H̃(X,F ′′) in exactly

the same way as the other modules. Furthermore exactly like before we get the long exact sequence

... H̃q−1(X,F ′′) H̄q(X,F ′′) Ȟq(X,F ′′) H̃q(X,F ′′) ...
∂̃′q−1 i

′q
π′q

(15)

We will now proof that H̃q(X,F ′′) = 0 for all q. Let {Ui} be a locally finite cover, {Vi} a
shrinking of this cover and f ∈ Cq{Ui},F ′′ . Then pick for each x ∈ X an open Wx such that these

four conditions hold:

(A) Wx ⊂ Vi for some i;

(B) Wx ∩ Vi 6= ∅ implies that Wx ⊂ Ui;

(C) Wx lies in the intersection of all the Ui which contain x;

(D) When σ = (U0, ..., Uq) is a q−simplex of the cover {Ui} and p ∈ |σ| then there exists an

element sx,σ ∈ F(Wx) such that r
|σ|
WX

(f(σ)) = h′Wx
(sx,σ).

It is indeed possible to achieve this. We can start with the open neighborhood Z of x which
intersects only with finitely many of opens of {Vi}. This is possible, since {Vi} is locally finite as
well. Now take the intersection with Vi for an i such that x ∈ Vi and with Ui for all the other i
which satisfy x ∈ Vi. Then the resulting Z ′ already satisfies (A) and (C). Secondly we shrink Z ′

even further by removing the Vi for which x /∈ Vi and Vi∪Z 6= ∅. Since this is just a finite amount
of closed sets, we get that the new set Z ′′ is still an open neighborhood of x and it satisfies (B).
Finally we note that there only finitely many Ui which contain x and therefore only finitely many
q−simplices σ such that x ∈ |σ|. Since F ′,F and F ′′ form an exact sequence of sheaves we have
that for every σ there exists an open neighborhood Zσ of x and an element rZσx (sx,σ)) such that :

rZσx (sx,σ) = rZ
′′

x

(
r
|σ|
Z′′

(
f(σ)

))
.

This now implies that we find an even smaller subset Z ′σ of Zσ ∩ Z ′′ such that

rZσZ′σ (sx,σ) = rZ
′′

Z′σ

(
r
|σ|
Z′′

(
f(σ)

))
.

There are only finitely many such Z ′σ and thus we can let Wx := Z ′′ ∩σ Z ′σ.

These opens Wx form a refinement of {Ui} and we are able to pick an Vx and Ux for each
x such that Wx ⊂ Vx ⊂ Ux by (A). We let µ be the refinement map, which sends Wx into Ux. We
let σ = (Wx0 , ...,Wxq ) be a q−simplex of our refinement. We then clearly have that Wx0 ∩ Vxj for
0 ≤ j ≤ q, so (B) implies that Wx0

⊂ Uxj for all j. This now implies that Wx0
⊂ |µ(σ)| and (D)

now implies that

(µq(f))(σ) = r
|µ(σ)|
|σ|

(
f(µ(σ))

)
= r

Wx0

|σ|

(
r
|µ(σ)|
Wx0

(
f(Ux0

, ..., Uxp)
))

= r
Wx0

|σ|
(
h′Wx0

(sx0,µ(σ))
)

= h′|σ|
(
r
Wx0

|σ| (sx0,µ(σ))
)
.

There clearly exists a f ′ ∈ Cq{Wx},F such that f ′(σ) = r
Wx0

|σ| (sx0,µ(σ)), since this is just an element

of F(|σ|). Moreover, we have that

(ξ′q(f ′))(σ) = h′|σ|
(
f ′(σ)

)
= h′|σ|

(
r
Wx0

|σ| (sx0,µ(σ))
)
.
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We conclude that µq(f) ∈ C̄q{Wx},F ′′ . This means that the class of µq(f) is zero in C̃q{Wx}.

Therefore for H̃q(X,F ′′) we get that[
[f ]{Ui}

]
=
[
µq[f ]{Ui}

]
=
[
[µq(f)]{Ui}

]
= 0.

We are finally able to see that H̃q(X,F ′′) = 0 for all q, since any open cover of X has a locally
finite refinement {Ui}. The long exact sequence (15) changes in exact sequences:

0 H̄q(X,F ′′) Ȟq(X,F ′′) 0
i
′q

and hence i
′q

are isomorphisms of the modules. Now we are able to define ∂q : Ȟq(X,F ′′) →
Ȟq+1(X,F ′):

∂q := ∂̂′q ◦ (i
′q

)−1.

Now we will check (a) till (f):
(a) Let F be a sheaf. Since C̃q = ∅ whenever q < 0 we get that Cq{Ui},F = 0 for q < 0, which

implies that Ȟq
{Ui}(X,F) and finally Ȟq(X,F) are zero when q < 0. Secondly Ȟ0

{Ui}(X,F) =

ker(d0)�Im (d−1) = ker(d0), so when f ∈ C0
{Ui},F such that d0(f) = 0, then [f ]{Ui} = {f}.

Furthermore we get that for all i, j:

0 = (d0(f))(Ui, Uj) = r
Uj
Ui∩Uj (fj)− r

Ui
Ui∩Uj (fi),

with fi := f
(
(Ui)

)
. F is a sheaf and therefore (S2) implies that there exists a f̃ ∈ F(X) such

that rXUi(f̃) = fi and (S1) implies that this f̃ is unique. The other way around we see that for

each f̃ ∈ F(X) there exists a f ∈ ker(d0) which is defined as f
(
(Ui)

)
:= rXUi(f̃). This map

αF{Ui} : Ȟ0
{Ui}(X,F) → F(X); [f ]{Ui} 7→ f̃ is an isomorphism of the K−modules. The above

discussion shows that it is bijective and for [f ]{Ui}, [g]{Ui} ∈ Ȟ0
{Ui}(X,F) and k ∈ K we have for

every i that:

rXUi
(
αF{Ui}([f ]{Ui} + [g]{Ui})

)
= (f + g)

(
(Ui)

)
= f

(
(Ui)

)
+ g
(
(Ui)

)
= rXUi

(
αF{Ui}([f ]{Ui})

)
+ rXUi

(
αF{Ui}([g]{Ui})

)
= rXUi

(
αF{Ui}([f ]{Ui}) + αF{Ui}([g]{Ui})

)
rXUi
(
αF{Ui}(k · [f ]{Ui})

)
= (k · f)

(
(Ui)

)
= k · f

(
(Ui)

)
= k · rXUi

(
αF{Ui}([f ]{Ui})

)
= rXUi

(
k · αF{Ui}([f ]{Ui})

)
.

Since ∪Ui = X and F satisfies (S1) we can conclude that αF{Ui}([f ]{Ui}+[g]{Ui}) = αF{Ui}([f ]{Ui})+

αF{Ui}([g]{Ui}) and αF{Ui}(k · [f ]{Ui}) = k ·αF{Ui}([f ]{Ui}), which is to say: αF{Ui} is a homomorphism

as well. We also see that for the usual refinement(map):(
rXVj
(
αF{Vj} ◦ f{Ui},{Vj},F

))(
[f ]{Ui}

)
=
(
µq(f)

)(
(Vj)

)
= r

µ(Vj)
Vj

(
f
(
(µ(Vj))

))
= r

µ(Vj)
Vj

(
rXµ(Vj)

(
αF{Ui}

(
[f ]{Ui}

)))
= rXVj

(
αF{Ui}

)(
[f ]{Ui}

)
.

The same argument as before allows us to conclude that αF{Vj} ◦f{Ui},{Vj},F = αF{Ui}. This implies

that we have an induced map hF : Ȟ0(X,F) → F(X). To proof (a) we need to show that for a
sheaf morphism h : F → F ′ the defined maps satisfy hX ◦hF = hF ′ ◦h0. Let [f ]{Ui} ∈ Ȟ0

{Ui}(X,F)

for an open cover {Ui}. Then we have that:

rXUi

(
hX ◦ hF

([
[f ]{Ui}

]))
= hUi

(
rXUi
(
αF{Ui}([f ]{Ui})

))
= hUi

(
f
(
(Ui)

))
,
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rXUi
(
hF ′
(
h0
([

[f ]{Ui}
])))

= rXUi
(
hF ′
([

[ξ0
{Ui}(f)]{Ui}

]))
= (ξ0

{Ui}(f))
(
(Ui)

)
= hUi

(
f
(
(Ui)

))
.

From this we conclude that (a) holds.

(b) Here we suppose that F is a fine sheaf and throughout this part we assume that q ≥ 1. Let
{Vj} be a locally finite cover of X and {lj} a partition of unity for F subordinated to it. For

σ = (V0, ..., Vq−1) and f ∈ Cq{Vj},F we get that the support of the section ljVj∩|σ|(f(Vj , V0, ..., Vp−1))

is equal to {x ∈ X : ljx 6≡ 0} ∩ Vj ∩ |σ| ⊂ Vj ∩ |σ|. And so we can extend it to a continuous section
over |σ| by letting it be 0 in σ \ Vj . We will denote this extended section by ljσ(f(Vj , V0, ..., Vp−1))

and we define homotopy-like operators hq : Cq{Vj},F → Cq−1
{Vj},F as

(
hp(f)

)(
(V0, ..., Vq−1)

)
:=
∑
j

ljσ(f(Vj , V0, ..., Vq−1)).

With this definition we get for f the following computations, where σ = (V0, ..., Vq):

(
dq−1 ◦ hq(f)

)
(σ) =

q∑
i=0

(−1)ir
|σi|
|σ|

((
hq(f)

)
(σi)

)
=

q∑
i=0

∑
j

(−1)ir
|σi|
|σ|

(
ljσi
(
f(Vj , V0, ..., V̂i, ..., Vq)

))
,

(
hq+1 ◦ dq(f)

)
(σ) =

∑
j

ljσ

((
dq(f)

)
(Vj , V0, ..., Vq)

)
=
∑
j

ljσ

(
−

q∑
i=0

(−1)ir
Vj∩|σi|
Vi∩|σ|

(
f(Vj , V0, ..., V̂i, ..., Vq)

)
+ r
|σ|
Vj∩|σ|

(
f(σ))

)
=
∑
j

ljσ(f)−
∑
j

q∑
i=0

(−1)ir
|σi|
|σ|

(
ljσi
(
f(Vj , V0, ..., V̂i, ..., Vq)

))
.

Adding these two gives and using that
∑
j(l

j(f(σ))) = f(σ) we get the identity

dq−1 ◦ hq + hq+1 ◦ dq = Id. (16)

We will use this to show that Ȟq(X,F) = 0. So let [f ]{Ui} ∈ Ȟ
q
{Ui}(X,F) for some open cover

{Ui} and consider
[
[f ]{Ui}

]
∈ Ȟq(X,F). Since X is paracompact we can take a locally finite

refinement {Vj}, with refinement map µ. µq(f) is still an element of ker(dq), so with (16) we find
that µq(f) = dq−1

(
hq(µq(f))

)
∈ Im (dq−1). This implies that [µq(f)]{Vj} = 0 and therefore we

have that[
[f ]{Ui}

]
=
[
f{Ui},{Vj},F

(
[f ]{Ui}

)]
=
[
[µq(f)]{Vj}

]
= [0] = 0.

All the choices were made arbitrary, so we can conclude that Ȟq(X,F) = 0, for the fine sheaf F
and q ≥ 1.

(c) This is a consequence of the exactness of (14) and the fact that i
′q

is an isomorphism

(d) Let h : F → F be the identity. For any q we get that hq = Id, since for any f ∈ Cq{Ui},F and

σ a q−simplex we have that
(
ξq{Ui}(f)

)
(σ) = h|σ|(f(σ)) = f(σ), which implies that:

hq
([

[f ]{Ui}
])

=
[
ξ
q

{Ui}([f ]{Ui})
]

=
[
[ξq{Ui}(f)]{Ui}

]
=
[
[f ]{Ui}

]
.

(e) Suppose that
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F F ′

F ′′

h

h ′ h′′

commutes. Then for any open cover {Ui} and any f ∈ Cq{Ui},F and σ a q−simplex we get that

(
ξ′′q{Ui} ◦ ξ

q
{Ui}(f)

)
(σ) = h′′|σ|

((
ξq{Ui}(f)

)
(σ)

)
= h′′|σ| ◦ h|σ|(f(σ)) = h′|σ|(f(σ)) =

(
ξ′q{Ui}(f)

)
(σ).

With this is will be easy to show that (e) is fulfilled:

h′′q ◦ hq
([

[f ]{Ui}
])

= h′′q
([

[ξq{Ui}(f)]{Ui}
])

=
[
[ξ′′q{Ui} ◦ ξ

q
{Ui}(f)]{Ui}

]
=
[
[ξ′q{Ui}(f)]{Ui}

]
= h′q

([
[f)]{Ui}

])
.

(f) The homomorphism of the short exact sequences of sheaves clearly induces commutativity in

0 C∗{Ui},F ′ C∗{Ui},F C̄∗{Ui},F̃ ′′
0

0 C∗{Ui},F̃ ′
C∗{Ui},F̃

C̄∗{Ui},F̃ ′′
0

ξ{Ui} ξ′{Ui}

ξ̃{Ui} ξ̃′{Ui}

ξg′,{Ui} ξg,{Ui} ξg′′,{Ui}

Now Theorem 3 implies that

H̄q
{Ui}(X,F

′′) Ȟq+1
{Ui}(X,F

′)

H̄q
{Ui}(X, F̃

′′) Ȟq+1
{Ui}(X, F̃

′)

∂̂{Ui},F

∂̂{Ui},F̃

ξg′′,{Ui} ξg′,{Ui}

is commutative. Using the isomorphism i
′q

we get that

g′q+1 ◦ ∂q
([

[f ]{Ui}
]
F

)
= g′q+1

([
∂̂q{Ui}

(
[f ]{Ui}

)]
F

)
=
[
ξ
q+1

g′ ◦ ∂̂
q
{Ui}

(
[f ]{Ui}

)]
F̃

=
[
∂̂q{Ui} ◦ ξ

q

g′′
(
[f ]{Ui}

)]
F̃ = ∂q

([(
ξ
q

g′′ [f ]{Ui}
)]
F̃

)
= ∂q ◦ g′′q

([
[f ]{Ui}

]
F

)
and with this we have proven (f) as well. We conclude that the Čech cohomology modules indeed
form a cohomology theory

8 The de Rham theorem

In the last few sections we have shown that there exists a cohomology theory for a para-
compact, Hausdorff space X. Furthermore we have shown that when X is a differentiable
manifold the de Rham cohomology is isomorphic to the differentiable singular cohomology:
Hq
deR(X) ' Hp(X,R) ' Hq

∆,∞(X;R). In this section we will realize this de Rham isomorphism .
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Lemma 7.1: Let kpU : Ωq(U)→ SpR,(∞)(U) be the map such that

(kpX(ω))(σ) =

∫
σ

ω,

for a p-form ω over the open U and a differentiable singular p−chain ω in U . Then kU is a cochain
map.
Proof: We have to show commutativity in the following diagram:

Ωp(X) SpR,(∞)(X)

Ωp+1(X) Sp+1
R,(∞)(X)

kp

dq dq∞

kp+1

So we have to show that∫
σ

dq(ω) =

∫
∂p+1(σ)

ω.

For each ω and σ. This is however true by Stokes’ theorem.

Definition 7.1: de Rham homomorphism
Let kX be as in Lemma 7.1. Then the induced maps on the cohomology modules
k
q

X : Hq
deR(X)→ Hq

∆,∞(X;R) form the so-called de Rham homomorphism.

Theorem 7: de Rham theorem The de Rham homomorphism is the canonical iso-
morphism between H∗deR(X) and H∗∆,∞(X;R).
Proof: Lemma 7.1 implies that we have a commutative diagram

0 R Ω0 Ω1 ω2 ...

0 R S0
R,∞ S1

R,∞ S2
R,∞ ...

i d0 d1 d2

i d0
∞ d1

∞ d2
∞

Id k0 k1 k2

We will use this diagram together with Example 5.2, but we first consider the diagram

0 Ω∗(X) Ω∗(X) 0

0 S0,R∗,∞ S∗(X) S∗R,∞(X) 0
i α

kX g

Id

Here α is as in Theorem 6.3 and g is induced by k so that

(gp(ω))(x) = rXx
(
kpX(x)

)
= (αp(kpX(ω)))(x).

Hence the diagram is commutative and furthermore by Lemma 6.1.5 has it exact rows. When
going over to the cohomologies of the cochain complexes we get the following diagram:
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H∗
(
(Ω∗ ⊗R)(X)

)

0 H∗deR(X) H∗deR(X) 0

0 H∗∆,∞(X;R) H∗
(
S∗R,∞(X)

)
0

H∗
(
(S∗R,∞ ⊗R)(X)

)

Id

α

φ1

φ2

f∗Rk̄X ḡ(1)

with φ1 the isomorphism constructed in section 7.2, φ2 the isomorphism given by Lemma 5.1 and
fR by Example 5.2. Since g is a homomorphism, we have that g is one as well. This implies
that φ1 ◦ h ◦ φ2 is a homomorphism from H∗

(
(Ω∗ ⊗R)(X)

)
into H∗

(
(S∗R,∞ ⊗R)(X)

)
. We have

shown in Theorem 5 and the remark there after that there only exists one unique homomorphism
between them and fR is already such an isomorphism. Therefore we have that φ1 ◦ g ◦ φ2 = fR.
Furthermore we still have commutativity in (1), since:

gp
(
[ω]
)

= [gp(ω)] = [αp(kpX(ω))] = αp
(
[kpX(ω)]

)
= αp ◦ kX

p(
[ω]
)
.

Finally we note that by construction the canonical isomorphism between the de Rham and is
given by (α)−1 ◦ (φ2)−1 ◦fR ◦ (φ1)−1. Using the above identities gives therefore that the canonical
isomorphism is the same as:

(α)−1 ◦ (φ2)−1 ◦ fR ◦ (φ1)−1 = (α)−1 ◦ g = kX .

9 The Hodge theorem

Throughout this section we let X to be a compact oriented Riemannian manifold X of dimension
n. For X we will proof the Hodge theorem and use this to proof the Poincaré duality for the
de Rham cohomology. In this section we will assume two propositions to be true. These can be
proven with help of Sobolev spaces and require quite some analysis.

Definition 8.1: Hodge star operator on a inner product space
First we will define the Hodge star operator ? for a n−dimensional real inner product space V .
We will pick an orientation on V by picking one of the two connected components of

∧n
V − {0}

and declare this to be positive. Then for each orthonormal basis {ei} of V we let

? (1) = ±e1 ∧ ... ∧ en, ?(e1 ∧ ... ∧ en) = ±1,

? (e1 ∧ ... ∧ ep) = ±ep+1 ∧ ... ∧ en.

Here we use a +1 whenever e1 ∧ ... ∧ en lies in the positive component and −1 otherwise. Then
we extend this operator to whole

∧
V such that it is linear.

Definition 8.2: Inner product on
∧
V

Let V be as before. We can extend the inner product on V to an inner product (, ) on
∧
V .

When v = v1 ∧ ...∧ vp and w = w1 ∧ ...∧wp are two decomposable elements of
∧p

V , then we set:

(v, w) := det

((
(vi, wj)

))
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and we extend this linear. When the elements are not of the same degree, then we let (v, w) = 0.

Lemma 8.1: (, ) on
∧
V is an inner product.

Proof: We have to proof three things: linearity, symmetry and positive-definiteness.
1: Linearity holds by definition.
2: Our original inner product is symmetric. So for the decomposable elements v and w we get
symmetry as well:

(v, w) = det

((
(vi, wj)

))
= det

((
(wj , vi)

))
= det

((
(wi, vj)

))
= (w, v).

And with the linearity we get symmetry in general.
3: Pick an orthonormal basis {ei}. Then any element in

∧p
V can be written as

∑
|I|=p cIeI ,

where I is an ordered subset of {1, ..., n} and eI =
∧
i∈I ei with respect to the ordering. Suppose

that k ∈ I and k /∈ J . Then (ej , ek) = 0 for all k ∈ K. Which implies that there is an row with
only zeroes in de matrix

(
(ei, ej)

)
i∈I,j∈J . From this we conclude that (eI , eJ) = 0 whenever J 6= I.

Furthermore when I = J we get that the matrix has only zeroes except on the diagonal. And on
the diagonal there is a one in each entry. So:( ∑

|I|=p

cIeI ,
∑
|I|=p

cIeI

)
=
∑
I

∑
J

cI · cJ(eI , eJ) =
∑
I

cI · cI(eI , eI) =
∑
I

(cI)
2.

So it holds that (v, v) ≥ 0 for all v ∈
∧
V . Furthermore, from the above calculation we can

conclude that it is only zero when all the cI are zero and hence only when v = 0.

Lemma 8.2: The Hodge star satisfies the following identities for v, w ∈
∧p

V :

(A) : ? ? (v) = (−1)p(n−p)v, (B) : w ∧ ?(v) = v ∧ ?(w),

(C) : ?(w ∧ ?(v)) = (v, w).

Proof: Let v = e1 ∧ ... ∧ ep for an orthonormal basis {ei}. Then:

ep+1 ∧ ... ∧ en ∧ e1 ∧ ...∧p = (−1)n−pe1 ∧ ep+1 ∧ ... ∧ en ∧ e2 ∧ ...∧p = ...

= (−1)p(n−p)e1 ∧ ... ∧ en.

From this we conclude that if (−1)p(n−p) is positive, then lies ep+1∧ ...∧en∧e1∧ ...∧p in the same
component as e1 ∧ ... ∧ en, and otherwise it lies in the other component. This implies that:

? ? (e1 ∧ ... ∧ ep) = ± ? (ep+1 ∧ ... ∧ en) = (±1) · (±1) · (−1)p(n−p)e1 ∧ ... ∧ ep
= (−1)p(n−p)e1 ∧ ... ∧ ep.

We know that {eI}|I|=p is a basis of
∧p

V , whenever {ei} is a basis of V . Since the above made
computation holds for any re-ordening of our orthonormal basis, we conclude with linearity of the
Hodge star that (A) holds for any v ∈

∧p
V .

Let {ei} and v be as before and suppose that w is decomposable in this basis. When ej ∧ w 6= 0
for some 1 ≤ j ≤ p, then ej ∧ ?(w) = 0, so v ∧ ?(w) = 0. At the same time we get that there must
exist a k > p such that w = ek ∧ w̃. This is due to {ei} being an orthonormal basis. Furthermore
it is clear that ek ∧ ?(v) = 0 so that w ∧ ?(v) = 0. In this case (B) holds. Now assume w is still
decomposable, but that ej ∧w = 0 for all 1 ≤ j ≤ p. So w is up to a constant the same as v. Due
to linearity we have that v ∧ ?(cv) = (cv) ∧ ?(v) and so in this case (B) holds as well. Since our
orthonormal basis was arbitrary, we get that (B) holds for any re-ordening of a fixed basis. So
letting v, w be arbitrary, that is v =

∑
|I|=p cIeI and w =

∑
|J|=p cJeJ , gives that:

v ∧ ?(w) =
(∑

I

cIeI

)
∧ ?
(∑

J

cJeJ

)
=
∑
I

∑
J

cI · cJeI ∧ ?(eJ)

=
∑
I

∑
J

cI · cJeJ ∧ ?(eI) =
(∑

J

·cJeJ
)
∧ ?
(∑

I

cIeI

)
.
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so (B) holds in general.
For (C) we repeat the above strategy: for eI and eJ with I 6= J we get that (eI , eJ) = 0 = ?(0) =
?(eI ∧?(eJ)). Furthermore for eI we get that ?(eI ∧?(eI)) = ±?(eI ∧eIc) = (±1)21 = 1 = (eI , eI).
So C holds for elements eI and eJ . These elements formed a basis. Now we will use linearity again
to see that:(∑

I

cIeI ,
∑
J

cJeJ

)
=
∑
I

∑
J

cI · cJ(eI , eJ) =
∑

cI · cJ ?
(
eI ∧ ?(eJ)

)
= ?
(∑

I

cIeI ∧ ?
(∑

J

cJeJ
))
.

Hence (C) holds in general.

Definition 8.3: Hodge star operator on a manifold
Since our manifolds are Riemannian and oriented we can define a Hodge star operator ?x on the
tangent space of X at x for each x ∈ X. We define the Hodge star operator ? on the space of
forms Ω(X) such that (?(α))(x) = ?x(α(x)).

Lemma 8.3: The Hodge star operator on a manifold is well-defined and it satisfies (A)
and (B) of Lemma 8.1.
Proof: We need to show that ? takes smooth forms into smooth forms. Pick coordinates, then
α is represented by

∑
I fIdxI with fI smooth functions. Then by definition ?(α) =

∑
I ±fIdxI is

a smooth form over our open U . It is even a smooth form over whole X, since the orientation of
the tangent spaces is smoothly, which implies that the signs change smoothly as well.
First, for (A) we get that:(

? ?(α)
)
(x) = ?x

(
(?(α))(x)

)
?x ?x(α(x)) = (−1)p(n−p)α(x).

And for (B) we have that:(
α ∧ ?(β)

)
(x) = α(x) ∧ (?(β))(x) = α(x) ∧ ?x(β(x)) = β(x) ∧ ?x(α(x))

= β(x) ∧ (?(α))(x) =
(
β ∧ ?(α)

)
(x).

Definition 8.4: δ operator and the Laplacian
We define the p−th δ−operator δp : Ωp(X)→ Ωp−1(X) such that for a p−form α on X we let

δp(α) =

{
(−1)m(p+1)+1 ?n−p+1 dn−p ?p (α) when p ≥ 1;

0 when p = 0,

where composition is understood. The p−th Laplacian ∆p : Ωp(X) → ΩP (X) is then defined as
∆p = δp+1dp + dp−1δp. From now one we will omit the indices p for all the operators, so that
d(α) = dp(α) whenever α is a p−form.

Lemma 8.4: The Laplacian commutes with the Hodge star operator.
Proof: Let α be a p−form for 1 ≤ p ≤ n− 1. Then we want that

dδ ? (α) + δd ? (α) = ∆n−p ? (α) = ?∆p(α) = ?dδ(α) + ?δdp(α).

Note that modulo 2 we have that n ≡ n2 and −n ≡ n for all n ∈ Z. We will use this in the
following computations. The left hand side is equal to:

∆n−p ? (α) = (−1)n(n−p+1)+1d ? d ? ?(α) + (−1)n(n−p+2)+1 ? d ? d ? (α)

= (−1)n(n−p+1)+1 · (−1)p(n−p)d ? d(α) + (−1)n(n−p+2)+1 ? d ? d ? (α)

= (−1)p+1d ? d(α) + (−1)n+np+1 ? d ? d ? (α).
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The right hand side is equal to:

?∆p(α) = (−1)n(p+1)+1 ? d ? d ? (α) + (−1)n(p+2)+1 ? ?d ? d(α)

= (−1)n(p+1)+1 ? d ? d ? (α) + (−1)n(p+2)+1 · (−1)(n−p)pd ? d(α)

= (−1)n+np+1 ? d ? d ? (α) + (−1)p+1d ? d(α),

and hence we have equality of ?∆p with ∆n−p? for 1 ≤ p ≤ n− 1. For p = 0 and p = n we have
that ∆0 = ∂1d0 and ∆n = dn−1∂n. This means that:

∆n ? (α) = dn−1δn ? (α) = −d ? d ? ?(α) = −d ? d(α) = − ? ?d ? d(α) = ?δ1d0(α) = ?∆0(α),

∆0 ? (α) = δ1d0 ? (α) = − ? d ? d ? (α) = ?dn−1δn(α) = ?∆n(α).

So the Laplacian commutes with the Hodge star for every p.

Definition 8.5: inner product on
∑
p Ωp(X)

We are able to define a p−th inner product associated to the Hodge star 〈, 〉 on Ωp(X) by setting

〈α, β〉 :=

∫
X

α ∧ ?(β).

We are able to extend this to an inner product on
∑
p Ωp(X), when we say that 〈α, β〉 = 0

whenever α and β are not both elements of Ωp(X) for some p. The induced norm is denoted by
||.||.
Lemma 8.5: The above introduced inner product is indeed an inner product.
Proof: We will need to proof three things: linearity, symmetry and positive-definiteness.
1: Linearity is obvious, since integrals are always linear in their integrands.
2: This is an easy computation with help of Lemma 8.3:

〈α, β〉 =

∫
X

α ∧ ?(β) =

∫
X

β ∧ ?(α) = 〈β, α〉.

3: Lemma 8.2 tells us that for each x ∈ X and all forms α: (α(x), α(x)) = (?(α ∧ ?(α)))(x) and
therefore:

(α ∧ ?(α))(x) = (−1)0(α ∧ ?(α))(x) = ? ? (α ∧ ?(α))(x) = ?((α(x), α(x))).

Since X is orientable, there exists a volume form ω over X, such that
∫
X
ω ≥ 1 and ?(1) = ω.

Using this form gives us that:

〈α, α〉 =

∫
X

α ∧ ?(α) =

∫
X

(α(x), α(x))ω ≥ 0.

Here we have used (, ) is positive-definite. Clearly the above computation shows that 〈α, α〉 = 0
if and only if α(x) = 0 for each x and thus only when α = 0. We conclude that the 〈, 〉 is
positive-definite.

From now on we will mean this inner product whenever we mention an inner product.

Lemma 8.6: δ is the adjoint of d and the Laplacian is self-adjoint.
Let α be a p − 1 form and β a pform. Since d is an anti-derivation, we have that
d(α ∧ ?(β)) = d(α) ∧ ?(β) + (−1)p−1α ∧ d ? (β). Therefore we get that:

〈d(α), β〉 =

∫
X

d(α) ∧ ?(β) =

∫
X

d(α ∧ ?(β)) + (−1)p
∫
X

α ∧ d ? (β)

=

∫
∂(X)

α ∧ ?(β) + (−1)p
∫
X

α ∧ (−1)(n−p+1)(p−1) ? ?d ? (β)

= 0 +

∫
X

α ∧ ?(−1)n(p+1)+1 ? d ? (β) =

∫
X

α ∧ ?δ(β) = 〈α, δ(β)〉.
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Because the inner product is symmetric we indeed have that δ is the adjoint of d. Furthermore
we have that

〈∆(α), β〉 = 〈δd(α), β〉+ 〈dδ(α), β〉 = 〈d(α), d(β)〉+ 〈δ(α), δ(β)〉
= 〈α, δd(β)〉+ 〈α, dδ(β)〉 = 〈α,∆(β)〉.

So ∆ is self-adjoint.

Definition 8.6: closed and harmonic forms
A p−form α is called closed when d(α) = 0 and co-closed when δ(α) = 0. When ∆(α) = 0 we
will call it harmonic. The space of all harmonic p−forms will be denoted by Hp.

Lemma 8.7: A form is harmonic if and only if it is closed and co-closed.
Proof: The first part is trivial: when d(α) = 0 and δ(α) = 0 we get that
∆(α) = δd(α) + dδ(α) = 0 + 0 = 0. Now suppose that ∆(α) = 0. Then:

0 = 〈0, α〉 = 〈∆(α), α〉 = 〈dδ(α), α〉+ 〈δd(α), α〉 = 〈δ(α), δ(α)〉+ 〈d(α), d(α)〉.

Since 〈, 〉 is an inner product, we conclude that d(α) = 0 = δ(α). So α is closed and co-closed.

Definition 8.7: weak solutions of ∆(ω) = α
Given an α ∈ Ωp(X), we say that a bounded linear functional l : Ωp(X) → R is a weak solution
of ∆(ω) = α when for all β ∈ Ωp(X) the following holds:

l(∆(β)) = 〈α, β〉.

The definition for a general partial differential operator L is slightly different. Then we will have
to look for a solution l such that l(L∗(β)) = 〈α, β〉, with L∗ the formal adjoint of L. However
∆∗ = ∆ so this definition implies Definition 8.5. The first proposition we will assume is about
this weak solutions. The second one is about Cauchy sequences in Ωp(X) with respect to the
norm ||.||. These two proposition will be then used in the Hodge Theorem.

Proposition 8.1: Let α ∈ Ωp(X) and suppose that l is a weak solution of ∆(ω) = α.
Then there exists an ω ∈ Ωp(X) such that l(β) = 〈ω, β〉 for all β ∈ Ωp(X). This ω is then a
solution of ∆(ω) = α, since for all β:

〈∆(ω)− α, β〉 = 〈ω,∆(β)〉 − 〈α, β〉 = l(∆(β))− 〈α, β〉 = 0.

Proposition 8.2: Let (αn)n be a sequence of forms in Ωp(X) such that there exists a constant
c > 0 for which the following holds for all n:

||αn|| ≤ c, ||∆(αn)|| ≤ c.

Then there exists a subsequence of (αn)n which is Cauchy.

Lemma 8.8: There exists a constant c > 0 such that for all β ∈ (Hp)⊥ the following
inequality holds:

||β|| ≤ ||∆(β)||.

Proof: We will proof this by contradiction. Suppose that for all c > 0 there exists a β ∈ (Hp)⊥

such that ||β|| > c||∆(β)|| holds. Let βn be the normalized form, corresponding to c = 1
n . This

gives us a sequence (βn)n such that ||βn|| = 1 for all n and ||∆(βn)|| → 0. Proposition 8.2 gives
us a subsequence of (βn)n which is Cauchy. Denote this subsequence with (βn)n as well. Now

67



let ψ ∈ Ωp(X). Then the sequence 〈βn, ψ〉 is Cauchy, since for large enough n,m we get with
Cauchy-Schwarz that:

|〈βn, ψ〉 − 〈βm, ψ〉| = |〈βn − βm, ψ〉|
C.S.
≤ ||βn − βm|| · ||ψ|| < ε.

R is complete and we get that limn〈βn, ψ〉 exists. Now we are able to define l : Ωp(X) → R by
setting l(ψ) = limn〈βn, ψ〉. l is clearly linear, and bounded as well, since:

||l|| = sup
||ψ||=1

|l(ψ)| = sup
||ψ||=1

| lim
n
〈βn, ψ〉| ≤ sup

||ψ||=1

lim
n
|〈βn, ψ〉|

C.S.
≤ sup
||ψ||=1

lim
n
||βn|| · ||ψ|| = 1.

Furthermore:

l(∆(ψ)) = lim
n
〈βn,∆(ψ)〉 = lim

n
〈∆(βn), ψ〉

C.S.
≤ lim

n
||∆(βn)|| · ||ψ|| = 0.

Clearly this implies that l is a weak solution of ∆(ω) = 0 and with Proposition 8.1 we have a
β ∈ Ωp(X) such that l(ψ) = 〈β, ψ〉. So

0 = lim
n
〈βn, ψ〉 − 〈β, ψ〉 = 〈lim

n
βn − β, ψ〉,

for all ψ. We conclude that limn βn = β. Since ||βn|| = 1 for all n we have that ||β|| = 1 and since
βn ∈ (Hp)⊥ for all n we have that β ∈ (Hp)⊥. Proposition 8.1 implies however that β ∈ Hp.
This is a contradiction, since ||β|| = 1 implies that β 6= 0. We conclude that there exists a c > 0
such that ||β|| ≤ ||∆(β)|| for all β ∈ (Hp)⊥.

Theorem 8: Hodge decomposition theorem For each p the space of harmonic forms
Hp is finite dimensional. Furthermore we have that an orthogonal direct sum decomposition of
Ωp(X):

Ωp(X) = ∆(Ωp)⊕Hp

= dδ(Ωp)⊕ δd(Ωp)⊕Hp

= d(Ωp−1)⊕ δ(Ωp+1)⊕Hp.

Proof: Assume that the space of harmonic forms in not finite dimensional. Then we can find a
sequence (αn) of forms with length one, which are all orthogonal to each other. Each elements αn
and αm with n 6= m give us that:

||αn − αm||2 = 〈αn − αm, αn − αm〉 = 〈αn, αn〉+ 〈αm, αm〉 − 2〈αn, αm〉 = 2.

Clearly no subsequence can be Cauchy and Hp being infinite dimensional is therefore in contra-
diction with Proposition 8.2.
Now pick an orthonormal basis {ωi}1≤i≤r of Hp. Then an arbitrary p−form α can be written as:

α =
(
α−

r∑
i=1

〈α, ωi〉ωi
)

+

r∑
i=1

〈α, ωi〉ωi.

Note that (α−
∑r
i=1〈α, ωi〉ωi) is an element of (Hp)⊥. This is true since for all ωj we have that:

〈
(
α−

r∑
i=1

〈α, ωi〉ωi
)
, ωj〉 = 〈α, ωj〉 −

r∑
i=1

〈α, ωi〉〈ωi, ωj〉 = 〈α, ωj〉 − 〈α, ωj〉 = 0.

So we get the decomposition Ωp(X) = (Hp)⊥ ⊕ Hp. We will show that ∆(Ωp) = (Hp)⊥, which
proves the first decomposition. The first part is trivial: for each α ∈ Hp and β ∈ Ωp(X) the
following holds:

〈∆(β), α〉 = 〈β,∆(α)〉 = 〈β, 0〉 = 0,
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so that ∆(Ω) ⊂ (Hp)⊥. For the other inclusion we let α ∈ (Hp)⊥. Furthermore, let l : ∆(Ωp)→ R
be defined as l(∆(β)) := 〈α, β〉 for each β ∈ Ωp(X). l is linear since ∆ and the inner product are.
It is well defined since ∆(β) = ∆(φ) gives us that β − φ ∈ Hp and therefore 0 = 〈α, β − φ〉 =
l(∆(β))− l(∆(φ)). Finally we will use Lemma 8.8 to show that l is bounded. Let β ∈ Ωp(X). Let
ξ = β − ψ, with ψ the harmonic part of β. Note that ∆(ξ) = ∆(β) −∆(ψ) = ∆(β). So we get
that:

|l(∆(β)) = |l(∆(ξ))| = |〈α, ξ〉|
C.S.
≤ ||α|| · ||ξ|| ≤ c||α|| · ||∆(ξ)|| = c||α|| · ||∆(β)||,

from which we conclude that ||l|| ≤ c||α|| and is thus bounded. The Hahn-Banach theorem
assures us that we can extend l unto whole Ωp(X) and this is extension is therefore a weak
solution of ∆(ω) = α. Proposition 8.1 implies that such an ω exists and we conclude that α ∈
∆(Ωp). Therefore the second inclusion holds as well and ∆(Ωp) = (Hp)⊥. We now have the first
decomposition that we had to proof.
For the second decomposition we use that ∆ = dδ + δd. We note that dδ(Ωp) and δd(Ωp) are
orthogonal, since for each α, β ∈ Ωp(X) Lemma 8.6 gives us that:

〈dδ(α), δd(β)〉 = 〈d2δ(α), d(β)〉 = 0.

So the second decomposition holds. The third decomposition is then a direct consequence of
Lemma 8.7.

Definition 8.8: Green’s operator
Let H : Ωp(X) → Hp be the orthogonal projection onto the harmonic forms. Then the Green’s
operator G : Ωp(X)→ (Hp)⊥ is the map which sends a p−form α into ωα, which is a solution of
∆(ωα) = α−H(α) such that ωα ∈ ∆(Ωp).
Lemma 8.9: The Green’s operator is a well-defined bounded self-adjoint operator and it takes
bounded sequences into sequences which have a Cauchy subsequence.
Proof: By Theorem 8 we find a unique ∆(ω) ∈ ∆(Ωp) such that ∆(ω) = α−H(α). Whenever
∆(ω̃) is another solution, then 0 = ∆(ω)−∆(ω̃) = ∆(ω− ω̃), and hence ω− ω̃ ∈ Hp. Again with
Theorem 8 we get that ω = ∆(ξ) −H(ω) for some unique ∆(ξ) ∈ ∆(Ωp) and we let ωα = ∆(ξ)
for this ξ. So the map G is unique. Furthermore H is a projection and therefore linear. Using
this gives us that G(α+ β) is the unique solution of:

∆(ωα+β) = (α+ β)−H(α+ β) = α−H(α) + β −H(β) = ∆(ωα) + ∆(ωβ) = ∆(ωα + ωβ).

Since ωα + ωβ ∈ ∆(Ωp) and uniqueness of ωα+β we conclude that ωα+β = ωα + ωβ and that G
therefore linear is. We will use Lemma 8.8 and the orthonormal basis {ωi}ri=1 of Hp to proof that
G is bounded. We find that:

||G|| = sup
||α||=1

||G(α)|| ≤ sup
||α||=1

c · ||∆(ωα)|| = sup
||α||=1

c · ||α−H(α)|| ≤ sup
||α||=1

c(||α||+ ||H(α)||)

= sup
||α||=1

c
(

1 +
∣∣∣∣ r∑
j=1

〈α, ωj〉ωj
∣∣∣∣) ≤ sup

||α||=1

c
(

1 +

r∑
j=1

|〈α, ωj〉|
) C.S.
≤ sup
||α||=1

c
(

1 +

r∑
j=1

||α|| · ||ωj ||
)

= c · (r + 1).

So G is indeed bounded. The next thing we will check is whether G self-adjoint is. First of all we
note that G(α) ∈ (Hp)⊥ and is therefore orthogonal to anything in the image of H. We compute
that:

〈G(α), β〉 = 〈ωα,∆(ωβ) +H(β)〉 = 〈∆(ωα), ωβ〉+ 0 = 〈α, ωβ〉 − 〈H(α), ωβ〉 = 〈α,G(β)〉.

For the final part of this lemma we let (αn)n be a bounded sequence of forms, bounded by the
constant M . Denote the image of αn under G by ωn. Like before: for each αn we have that:

||H(αn)|| =
∣∣∣∣∣∣ r∑
j=1

〈αn, ωj〉ωj
∣∣∣∣∣∣ ≤ r∑

j=1

|〈αn, ωi〉| · ||ωj ||
C.S.
≤

r∑
j=1

||αn|| · ||ωj || ≤ r ·M.

69



Combine this with Lemma 8.8 and we get that

||ωn|| ≤ c · ||∆(ωn)|| = c · ||αn −H(αn)|| ≤ c · ||αn||+ c · ||H(αn)|| ≤ c ·M + c · r ·M.

All these constant are independent of n and therefore are we allowed to use Proposition 8.2,
which tells us that the image of (αn)n has indeed a subsequence which is Cauchy.

Theorem 9: Hodge Theorem The following identities hold:

(A) HG = GH = H∆ = ∆H = 0;

(B) Id = H + ∆G = H +G∆;

(C) ∆d = d∆ and δ∆ = ∆δ;

(D) dG = Gd and δG = Gδ and ∆G = G∆,

and there exists a unique harmonic form for each de Rham cohomology class.
Proof: We will start with proving that not only G but H is self-adjoint as well. Using the
orthonormal basis {ωi} for Hp gives us that for arbitrary p−forms α and β:

〈H(α), β〉 = 〈
r∑
j=1

〈α, ωi〉ωi, β〉 =

r∑
j=1

〈α, ωi〉 · 〈ωi, β〉 = 〈α,
r∑
j=1

〈β, ωi〉ωi〉 = 〈α,H(β)〉.

Using that G(α) ∈ (Hp)⊥ and H(α) ∈ Hp for all α gives that for a fixed α and an arbitrary β:

〈HG(α), β〉 = 〈G(α), H(β)〉 = 0, 〈GH(α), β〉 = 〈H(α), G(β)〉 = 0.

This holds for all β, so we are allowed to conclude that HG = GH = 0. In exactly the same
manner we compute that:

〈H∆(α), β〉 = 〈∆(α), H(β)〉 = 0, 〈∆H(α), β〉 = 〈H(α),∆(β)〉 = 0,

since ∆(α) ∈ (Hp)⊥ as well. So again H∆ = ∆H = 0 and we have proven (A).
The first equality of (B) is by construction of G. From this equality and (A) we conclude that
∆(α) = H∆(α) + ∆ω∆(α) = ∆(ω∆(α)). Therefore we get that α − ω∆(α) ∈ Hp. By construction

we have that ω∆(α) ∈ (Hp)⊥ and therefore there must exist some ξ ∈ Hp such that α = ω∆(α) + ξ.
By Theorem 8 we have that ξ has to be equal to H(α), because of the orthogonal decomposition.
With this we have proven the second equality of (B) as well.
δ2 is up to a sign equal to ?d ? ?d?, which is op to a sign equal to ?d2? because of Lemma 8.3. So
we get that d2 = 0 = δ2. So d∆ = d2δ + dδd = dδd = dδd + δd2 = ∆d and δ∆ = δ2d + δdδ =
δdδ = δdδ + dδ2 = ∆δ. So (C) is easily shown to hold.
Let ∂ ∈ {d, δ}. Using the last decomposition of Ωp(X) of Theorem 8 we get that for a fixed α and
an arbitrary β:

〈H∂(α), β〉 = 〈∂(α), H(β)〉 = 0, 〈∂H(α), β〉 = 〈H(α), ∂∗(β)〉 = 0.

from which we conclude that H∂ = 0 = ∂H. This means with (B) and (C) that

∆∂G(α) = ∂∆(ωα) = ∂(α−H(α)) = ∂(α)− ∂H(α) = ∂(α) = ∂(α)−H∂(α) = ∆G∂(α),

for any α. Therefore G∂(α) − ∂G(α) ∈ Hp. However by construction of G we get that G∂(α) ∈
(Hp)⊥ and ∂G(α) ∈ (Hp)⊥ is a consequence of Theorem 8. So ∂G(α)−G∂(α) ∈ Hp∩(Hp)⊥ = {0}.
With this we have proven the first two identities of (D). The third one is a direct consequence of
these two:

∆G = dδG+ δdG = dGδ + δGd = Gdδ +Gδd = G∆.
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Finally we will show that there exists a unique harmonic form in each de Rham class. We start
with existence. Let α be a closed p−form. Then:

α
(B)
= H(α) + ∆G(α) = H(α) + dδG(α) + δdG(α)

(D)
= H(α) + dδG(α) + δGd(α)

= H(α) + dδG(α).

This implies that the harmonic form H(α) lies in the same de Rham class as α and thus has
each class a harmonic representative. Now we will check uniqueness. Suppose α and β are both
harmonic and in the same de Rham class. Then β = α+ dγ for some (p− 1)−form γ. Rewriting
gives that 0 = dγ + (α− β). Lemma 8.6 together with Lemma 8.7 has a nice consequence now:

〈dγ, α− β〉 = 〈γ, δ(α− β)〉 = 〈γ, 0〉 = 0,

so dγ is orthogonal to α − β. we conclude that for 0 = dγ + (α − β) to hold, that both dγ and
α− β have to be zero and therefore is the harmonic representative unique.

With this we have proven Hodge Theory for the Laplacian. The rest of this section are
some consequence of this theorem.

Consequence 8.1: The cohomology modules of a compact, orientable, differentiable
manifold are all finite dimensional.
Proof: First of all we can pick a metric on each differentiable manifold, by using the standard
one on each chart. Then by this Theorem 9 there exists a bijection between the de Rham
cohomology groups and the harmonic forms. By Theorem 8, each cohomology group is finite
dimensional, since Hp is. Finally we use section 7 to see that each cohomology theory is
isomorphic to de Rham cohomology and therefore finitely dimensional.

Consequence 8.2: Poincaré duality The function f : Hp
deR(X) × Hn−p

deR (X) for a com-
pact orientable, differentiable manifold of dimension n, which is defined as

f([α], [β]) :=

∫
X

α ∧ β

is well-defined and bilinear. Furthermore it is a non-singular pairing and determines isomorphisms
of Hp

deR(X) with the dual space of Hn−p
deR (X).

Proof: To prove that f is well-defined we need to check whether the integral depends on which
forms of the classes we take. We will use Stokes’ theorem to prove that it does not depend on this
choice. Remember that for a p−form α we have that d(α ∧ γ) = d(α) ∧ γ + (−1)pα ∧ d(γ). Now:∫

X

α ∧ (β + d(γ)) =

∫
X

α ∧ β +

∫
X

α ∧ d(γ) =

∫
X

α ∧ β + (−1)p
∫
X

d(α ∧ γ)− (−1)p
∫
X

d(α) ∧ γ

=

∫
X

α ∧ β + (−1)p
∫
∂(X)

α ∧ γ − (−1)p
∫
X

0 ∧ γ =

∫
X

α ∧ β,

∫
X

(α+ d(γ)) ∧ β =

∫
X

α ∧ β +

∫
X

d(γ) ∧ β =

∫
X

α ∧ β +

∫
X

d(γ ∧ β)− (−1)p−1

∫
X

γ ∧ d(β)

=

∫
X

α ∧ β +

∫
∂(X)

γ ∧ β − (−1)p−1

∫
X

γ ∧ 0 =

∫
X

α ∧ β.

Bilinearity of f is obvious from the fact that the wedge product is bilinear and integral are linear
as well. To prove that f is a non-singular pairing, we need to find a class [β] in Hn−p

deR (X) for each
non-zero class [α] in Hp

deR(X) such that f([α], [β]) 6= 0, and the other way around. So let [α] be
any class. We can assume that α is harmonic by Theorem 9. And α 6= 0, since [α] 6= 0. Because
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of Lemma 8.4 we get that ?(α) is harmonic as well, and it represents a class in Hn−p
deR (X) because

of Lemma 8.7. Furthermore:

f([α], [?(α)]) =

∫
X

α ∧ ?(α) = ||α||2 6= 0.

The other way around is obvious now: we let [α] := [?(β)]. The isomorphism ψ that f induces is
the map which sends [α] 7→ f([α], .). We still need to proof that ψ is an isomorphism, but it is
clearly injective. The map ψ̃ : Hn−p

deR (X) → (Hp
deR)∗ is injective as well. Since Consequence 8.1

holds, we get that Dim(Hp
deR(X)) ≤ Dim(Hn−p

deR (X)) ≤ Dim(Hp
deR(X)), where I use a standard

fact of linear algebra, which states that finite dimensional vector spaces are isomorphic to its
dual. SO ψ is an injective linear map between same-dimensional vector spaces. We conclude that
ψ is indeed an isomorphism.

Consequence 8.3: If X is a compact, orientable, differentiable manifold of dimension
n, then Hn

deR(X) ' R.
Proof: Zero-forms are smooth maps from X into R and only the constant maps are closed.
Since there exist no −1-forms, we see that H0

deR(X) ' R. The above consequence and the algebra
fact stated in the proof of it imply that Hn

deR(X) ' R.
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