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Introduction

One of the main topics in mathematics is the study of spaces. The first class of
spaces one encounters are topological spaces; in these one can make sense of two
points being close to each other. However, to model the physics of the space in
which we live, we need notions such as speed and acceleration. Smooth manifolds
are precisely the topological spaces where we have these notions. To address
specific problems one often uses extra data on these manifolds, called geometric
structures. For instance, if one wants to measure distances one needs a Riemannian
metric and if one wants to measure areas, one needs an orientation. We will study
two geometric structures in this thesis; Poisson structures and generalized complex
structures.

Poisson geometry

Poisson geometry can be seen as a combination of three classical mathematical
subjects: foliation theory, symplectic geometry and Lie theory.

A (singular) foliation on a manifold is a “nice” partition into subspaces of
(possibly varying) dimension, called the leaves. The best understood foliations
are the regular ones, which are those for which the leaves all have the same
dimension. The existence of regular foliations is well-studied: for instance, a
compact manifold admits a regular foliation with leaves of codimension-one if
and only if its Euler characteristic is zero.

Symplectic geometry provides the mathematical background for the Lagrangian
formulation of classical mechanics – it provides a framework to understand the
notion of phase space. A Poisson structure can be thought of as a family of
symplectic structures: it defines a singular foliation, together with a symplectic
structure on each of the leaves. The leaves of this foliation are therefore called
the symplectic leaves of the Poisson structure.

Lie algebras are algebraic objects which model (infinitesimal) symmetries of
physical systems. From a Poisson geometric point of view they correspond to
one of the simplest classes of Poisson manifolds, the ones with linear behaviour.

As in any area of mathematics, the question of constructing and classifying
examples of Poisson structures is studied extensively. However, as any manifold
admits the trivial Poisson structure, the question of existence has to be refined to
finding “nice” Poisson structures. What “nice” means depends on the context;
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Introduction

we can look through the lens of each of the three subjects making up Poisson
geometry:

From a foliation theory point of view, the class of nice Poisson structures
consists of regular Poisson structures, which are those for which the underlying
foliation is regular. Examples of these structures are difficult to find. Especially
on closed manifolds there is very little known. For instance, such a Poisson
structure on S5 was only discovered recently [65].

From a symplectic point of view, the class of nice Poisson structures consists of
those which are very close to being non-degenerate. These are Poisson structures
which have a big (open and dense) symplectic leaf and can be interpreted as
symplectic structures with singularities. In the past years an entire zoo of such
structures has been studied. To name a few: Log symplectic [45], scattering
symplectic [53], elliptic symplectic [16] and c-symplectic [64]. The singularities
which can occur are best described using Lie algebroids – objects which behave like
a tangent bundle and capture the singularities of the desired object. A general
framework for these structures was put forth in [52]. These structures seem to
be more abundant than regular Poisson structures, although that still does not
make it easy to construct them. See the above citations, as well as [58, 14].

From a Lie theoretic point of view, the class of nice Poisson structures consists
of those which admit an integrating symplectic groupoid, an object which plays
the same role as a Lie group integrating a Lie algebra. The problem of when a
given Poisson manifold admits such an integration has been completely solved
in [23]. This sparked the quest of finding Poisson manifolds with well-behaved
integrations [25, 27, 26]. Constructing interesting examples of these seems to be
even more difficult than constructing regular Poisson structures, see [59, 81].

Normal forms An important tool in the study of Poisson structures are normal
form theorems. These are results which describe the local behaviour of a Poisson
structure around a submanifold and can be very useful in constructing new
examples via surgery operations. The first normal form for symplectic struc-
tures is Darboux’ theorem which states that all symplectic structures are locally
isomorphic.

General Poisson structures are not all locally isomorphic. However, Wein-
stein’s splitting theorem states that around any point x ∈ M a Poisson manifold
is isomorphic to a product (N, πN )× (S, πS), where πS is a symplectic structure
and πN is a Poisson structure which vanishes at x.

Because of Darboux’ theorem, we are thus left with studying the normal
form of Poisson structures vanishing at a point. Conn’s linearisation theorem [20]
states that, under certain Lie algebraic conditions, a Poisson structure is locally
isomorphic to its linearisation around x. The question of which Poisson structures
are linearisable around zeroes is still open and active, see for instance the recent
thesis of Zeiser [79] and the references therein.

The story for higher dimensional submanifolds becomes more involved. In
symplectic geometry, Weinstein’s Lagrangian neighbourhood theorem [76] provides,
for a Lagrangian submanifold L ⊂ (M,ω), a local model on T ∗L, to which the
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original symplectic structure is isomorphic around L. Similarly, let (M,π) be
a regular Poisson structure with underlying foliation F and L a submanifold
which intersects every symplectic leaf of π in a Lagrangian submanifold. Then
there is a tubular neighbourhood p : U → L and a local model on p∗T ∗(F ∩ L) to
which the original Poisson structure is isomorphic on U .

Many of the above normal form theorems share the same property: The
model spaces are vector spaces or vector bundles and the model structure is
homogeneous with respect to the scalar multiplication. For instance, a multi-vector
field X ∈ Xp(E) on a vector bundle E is said to be homogeneous of degree d
if m∗λX = λd−pX , where mλ : E → E denotes the scalar multiplication on the
fibres. Therefore, it is interesting to study these homogeneous structures on their
own. This is the topic of Chapter 4 of this thesis: We will study homogeneous
multi-vector fields and describe the algebraic structure present on the space of
these. We will then outline a philosophy on how to use this algebraic structure to
better understand the homogeneous objects appearing in normal form results.
The study of this filtered Gerstenhaber structure is interesting on its own and
may very well have applications outside of normal form results. For instance, as
we shall explain in Chapter 4, it allows us to give an explicit description of Lie
algebroid cohomology with values in certain representations up to homotopy.

Generalized complex geometry

Generalized complex structures ([47], [41]) are a simultaneous generalisation of
symplectic and complex structures. Any generalized complex structure induces a
Poisson structure and we can therefore talk about its symplectic leaves. Moreover,
it provides a complex structure on the directions normal to the symplectic leaves.
Most interesting to study are those generalized complex structures for which
the underlying symplectic foliation is non-regular, a phenomenon known as type
change. The simplest type change behaviour happens for stable generalized complex
structures ([16, 38]). These are generalized complex structures which have one
open and dense symplectic leaf and have type change among a codimension-two
embedded submanifold. Although they only display the simplest type-change
behaviour, stable generalized complex manifolds have a rich geometry and there
are several interesting examples, especially in four-dimensions.

The type change behaviour of stable generalized complex structures is so
well-behaved that they are completely determined (up to gauge equivalence)
by the underlying Poisson structure. The class of Poisson structures underlying
stable generalized complex structures is called elliptic symplectic. These can be
described as symplectic structures with singularities, just as the ones discussed
above. The question of existence of stable generalized complex structures thus
becomes a question of existence of certain Poisson structures.

Many stable generalized complex structures were constructed. For instance,
on the manifolds n#CP 2#mCP 2 ([15]), n#(S2 × S2) ([74]) and n#(S2 × S2)#
(S1 × S3) ([39]), under clear conditions on n and m.

Although there exists many examples of stable generalized complex structures
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no Poisson Fano manifold admits a smooth stable generalized complex structure
in real dimension greater than four [44] (including CPn with n > 2). Another
strange feature is that, although many examples are constructed on manifolds
which are connected sums, there is no connected sum procedure for stable
generalized complex structures. This is one of the reasons why we will consider
the larger class of self-crossing stable generalized complex structures. These are
generalized complex structures where the type change locus is now allowed to
intersect itself transversely. This, apparently small, weakening will give us a lot
of flexibility. In particular, it will be immediate that CP 2n admits a self-crossing
stable generalized complex structure. And thus indeed, the space of manifolds
admitting a self-crossing stable generalized complex structure is larger than the
space of manifolds admitting a stable generalized complex structure. At the same
time, we move closer to algebraic geometry and in particular to log structures
[50], where often even no real distinction is made between holomorphic sections
transverse to zero and sections transverse to zero with self-crossings.

On the other hand, the weakening is small enough that much of the original
theory of [16] carries over. In particular, it holds that these generalized complex
structures are completely determined by their underlying Poisson structure
(Theorem 1.3.16). In four dimensions we can actually do much better: Theorem
1.4.12 shows that self-crossing stable generalized complex structures can be
deformed into ones with embedded type change locus. Consequently, to prove
the existence of stable generalized complex structures in four dimensions, it
suffices to construct self-crossing stable generalized structures.

This strategy allows us to use one of the quite remarkable flexibility properties
self-crossing stable generalized complex structures exhibit: they behave well
under taking connected sums (Theorem 1.5.9). This is in stark contrast with
symplectic geometry, in which such a construction cannot exist in dimension
higher than 2. We will use very simple self-crossing stable generalized complex
structures (or slight variations thereof) on CP 2,CP 2, S2 × S2 and S1 × S3 and
then use connected sums to construct many examples (Theorem 1.6.5), including
the ones from [15, 74, 39] appearing above.

Fibrations

A general theme in the world of geometric structures is the interplay between
specific geometric structures and particular types of maps. The simplest example
arises in the context of fibrations, where one studies whether the presence of a
geometric structure on the base and the fibre implies its existence on the total
space. However, not many manifolds admit fibrations and for this reason one
has to consider fibrations with singularities.

Especially in symplectic geometry, this idea has proven to be useful. The maps
of relevance are Lefschetz fibrations, which are surjective submersions outside of
some singular points. While at the singular points the map has a Lefschetz
singularity, that is, there exists complex coordinates (z1, . . . , zn) in which the
fibration takes the form f(z1, . . . , zn) = z2

1 + · · · + z2
n. Using these one can
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prove broad existence results for symplectic structures [29, 35, 36] and similar
techniques have been used in Poisson and related geometries. The study of
(singular) fibrations to understand the topology of, and geometric structures on,
manifolds has proven very successful, see for instance [2, 4, 5, 6, 7, 14, 13, 17, 31,
32, 54]. In these papers, maps with Lefschetz and similar singularities have been
used to prove existence results for several different types of geometric structures.

Another way in which singular fibrations arise is from proper group actions.
These are particularly well studied for (full) torus actions, where the singularities
are so well-behaved that the quotient is a manifold with corners. The singularities
which might occur in the quotient map are build up by taking combinations of
the basic elliptic singularity f(x1, x2) = x2

1 + x2
2. The coupling of torus actions

with geometric structures leads to many fruitful concepts, one of the highlights
being toric geometry.

The Lefschetz and the toric pictures come together in semi-toric geometry
[69], where maps are allowed to have both elliptic and Lefschetz singularities. In
Chapter 2 we will introduce the maps which are hinted at by semi-toric geometry;
self-crossing boundary (Lefschetz) fibrations (Definition 2.1.12).

These maps are precisely the ones we need to construct self-crossing stable
generalized complex structures. Following the general philosophy, Theorem 2.1.23
shows that when a self-crossing boundary Lefschetz fibration admits the correct
geometric structures on its base and fibres, then the total space will admit a
stable generalized complex structure. The correct geometric structures on the
base are self-crossing log symplectic structures which have also appeared in [43, 64].
In this way we will generalise the similar result for stable generalized complex
structures from [13].

Having established such an existence result, it now makes sense to study
self-crossing boundary Lefschetz fibrations on their own. We will show that these
are compatible with taking connected sums (Theorem 2.2.3), which is in sheer
contrast to toric geometry.

On the other hand, we will also introduce a smoothing procedure (Theorem
1.4.12) which will allow us to trade Lefschetz singularities with elliptic–elliptic
singularities. This is precisely the abstract version of the nodal–trade proced-
ure from semi-toric geometry [80, 61, 55], but now without reference to other
geometric structures.

Organisation of the thesis

Below we provide a quick summary of the main results. For a more detailed
description, see the introductions to each of the chapters, which can be read
relatively independently of each other.

Chapter 1 is based on [18] and describes self-crossing stable generalized
complex structures. First, we recall the notions of divisors, which will be used to
describe the singularities we encounter. We use these to define the elliptic tangent
bundle, a Lie algebroid which will describe the singular symplectic structures
which are in one-to-one correspondence with self-crossing stable generalized
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complex structures (Theorem 1.3.16). In Theorem 1.4.12 we show that every self-
crossing stable generalized structure can be deformed into one with embedded
type change locus. Theorem 1.5.9 then provides the connected sum procedure,
which we will use to construct examples of stable generalized complex structures
on n#CP 2#mCP 2#l(S2 × S2)#k(S1 × S3), provided 1 − b1 + b+2 is even and
the Euler characteristic is non-negative (Theorem 1.6.5).

Chapter 2 is based on [19] and describes the fibrations used to construct self-
crossing stable generalized complex structures. After studying their properties
we will prove a Gompf-Thurston theorem for these (Theorem 2.1.23) and show
that they are compatible with connected sums (Theorem 2.2.3). We then explain
the relation with (semi-)toric geometry and exhibit examples of self-crossing
boundary Lefschetz fibrations.

Chapter 3 is based on [78] and describes the Lie algebroid cohomology of
the elliptic tangent bundle. This is of interest to the deformation of elliptic sym-
plectic structures. In Theorem 3.3.1 we show that the cohomology is completely
determined by the topological data of the manifold, the degeneracy locus and its
normal bundle.

In Chapter 4 we study homogeneous multi-vector fields on vector bundles.
We describe these as a higher degree analogue of multi-derivations (Definition
Definition 4.2.3) and study the algebraic structure present (Section 4.2.5). We will
very explicitly show that the space of homogeneous multi-vector fields can be
described as the space of sections of a vector bundle over the base space (Co-
rollary 4.2.51). This statement can be neatly described in terms of the coadjoint
representation up to homotopy of a Lie algebroid (Theorem 4.3.7).

In Chapter 5 we describe the procedure to approximate Poisson structures by
their homogeneous Taylor approximation. We will use this to study linear nor-
mal form results for Lagrangian submanifolds (Theorem 5.1.34), and quadratic
normal form results for log and elliptic symplectic structures.
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Chapter 1

Self-crossing stable
generalized complex structures

In this chapter, which is based on [18] and joint work with Ralph Klaasse and
Gil Cavalcanti, we study a class of generalized complex structures. Generalized
complex structures ([47, 41]) are a simultaneous generalisation of complex and
symplectic structures. Infinitesimally, a generalized complex manifold is equi-
valent to a product of a symplectic and a complex vector space. The number
of complex directions is called the type of the generalized complex structure. It
is an upper-semi continuous function and can jump only with two complex di-
mensions at a time. The simplest type change which can therefore occur is when
the generalized complex structure has type zero almost everywhere and type
two along a submanifold. In this chapter we study such generalized complex
structures.

Any generalized complex structure induces a section of the anticanonical
bundle of the manifold, which is non-zero precisely when the type is zero. Smooth
stable generalized complex structures ([16, 38]) are the generalized complex struc-
tures for which this section vanishes transversely. These structures display
interesting behaviour and many examples, especially in four-dimensions, have
been constructed ([15, 74, 39]).

Yet, smooth stable generalized complex structures have a shortcoming: no
Poisson Fano manifold can be smooth generalized complex in real dimension
greater than four, as follows from the theory in [44]. Also, many of the man-
ifolds constructed in [15, 74, 39] are connected sums, but are not obtained by
performing connected sums. Instead, examples of these structures are construc-
ted using surgery techniques and only the diffeomorphism type is determined
only afterwards.

In this chapter we overcome these shortcomings by introducing a larger class
of generalized complex structures, called self-crossing stable. These are general-
ized complex structures for which the anticanonical section may now vanish
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Chapter 1. Self-crossing stable generalized complex structures

transversely with self-crossings. This is analogous to the move, in real Poisson
geometry, from log-symplectic to log-symplectic with normal self-crossings [43,
64].

On the one hand, this weakening is small enough that most of the original
theory for smooth stable structures still holds, while one the other hand it allows
for flexibility and many more examples. While on the other hand, CP 2n with
n > 2 obtains a self-crossing stable structure in an immediate fashion, it does not
admit a smooth one. Although this notion is a genuine weakening, in dimension
four we have the following:

Theorem 1.4.12. Any four-dimensional self-crossing stable generalized complex struc-
ture can be deformed into a stable generalized complex structure.

Consequently, this allows us to construct examples of smooth stable general-
ized complex structures by first constructing self-crossing ones. We will construct
the latter using symplectic techniques: we will define a Lie algebroid called
the elliptic tangent bundle and we will show that self-crossing stable general-
ized complex structures are in one-to-one correspondence with a subclass of Lie
algebroid symplectic structures on the elliptic tangent bundle (Theorem 1.3.13).

This subclass of Lie algebroid symplectic structures satisfy some combination
of (semi-)global and local conditions. We will also study symplectic structures on
the elliptic tangent bundle which fail to satisfy the local conditions at some points.
This allows us to endow certain manifolds which cannot admit generalized
complex structures (like CP 2 and S4) with such a symplectic structure on this
Lie algebroid.

The existence of such a structure on S4 paves the way for providing a con-
nected sum procedure for these symplectic structures (c.f. Theorem 1.5.9). After
describing some (very simple) examples of these structures we are able to use
this procedure to directly construct examples including those from [15, 74, 39]:

Theorem 1.6.5. The manifolds in the following two families admit stable generalized
complex structures:

1. #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

2. #nCP 2#mCP 2#`(S1 × S3), with n,m, ` ∈ N,

as long as 1− b1 + b+2 is even and the Euler characteristic is non-negative.

Notice that if 1− b1 + b+2 is odd for a four-manifold M , then M does not admit
any generalized complex structure as it is not even almost complex by [46] or [36,
Theorem 1.4.13]. The requirement that the Euler characteristic is positive, on the
other hand, seems to be more a limitation of our methods.

Organisation of the chapter. In Section 1.1 we introduce self-crossing complex
and elliptic divisors: the basic geometric objects that allow us to develop the
theory of stable generalized complex structures. In Section 1.2 we will introduce
the Lie algebroids induced by these divisors. These are the spaces where stable
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1.1. Self-crossing divisors

generalized complex structures become the more amenable symplectic structures.
In Section 1.3 we introduce self-crossing stable generalized complex structures
and show that they are equivalent to a certain class of elliptic symplectic struc-
tures. In Section 1.4 we focus on four-dimensional structures. We prove a normal
form theorem for self-intersection points in the divisor and show that a stable
structure can be deformed into a smooth one (Theorem 1.4.12). In Section 1.5 we
show that one can perform connected sums of stable generalized complex struc-
tures (Theorem 1.5.9) and in Section 1.6 we provide concrete examples obtained
via connected sum and prove Theorem 1.6.5.

1.1 Self-crossing divisors

This section covers the basic definitions and properties of the singularities we will
encounter. We start by recalling the definition of a divisor, before introducing the
complex log divisors we are mostly interested in. After discussing their zero sets
in some detail, we turn to elliptic divisors. These can be induced from complex
log divisors and will play a large role throughout the thesis. Finally we describe
the relation between complex log and elliptic divisors in detail.

1.1.1 Divisors

In this section we define the objects which will govern the singularities of the
geometric structures that are to come.

Definition 1.1.1. A real/complex divisor on M is a locally principal ideal I of
C∞(M ;R) respectively C∞(M ;C) which is locally generated by functions with
nowhere dense zero set. ♦

Divisor can be equivalently described using line bundles with sections:

Proposition 1.1.2. Let I be a real/complex divisor onM . Then there exists a real/complex
line bundle L→M with section σ ∈ Γ(L) such that σ(Γ(L∗)) = I . Conversely, given
any complex line bundle with section with nowhere dense zero set (L, σ), the ideal
Iσ := σ(Γ(L∗)) defines a complex log divisor.

Proof. Because I is locally principal, there exists a cover {Uα} of M such that
I|Uα is generated by a function fα ∈ C∞(Uα). On the overlaps Uα ∩ Uβ we
have fα = gαβfβ , for some nowhere vanishing functions gαβ ∈ C∞(Uαβ). These
functions provide the data of a Čech cocycle defining the desired line bundle L.
The section σ is defined to be given by fα on Uα.

Note that the line bundle L is uniquely determined up to vector bundle
isomorphism (covering the identity), and that the section σ is unique up to
multiplication by a smooth function. Given a pair (L, σ), we denote the associated
divisor by Iσ .

9



Chapter 1. Self-crossing stable generalized complex structures

Definition 1.1.3. Let (M, IM ) and (N, IN ) be manifolds with divisors. A smooth
map ϕ : M → N is a morphism of divisors if ϕ∗IN = IM , where the left-hand
side denotes the ideal generated by all pullbacks. It is called a diffeomorphism
of divisors if ϕ is a diffeomorphism. ♦

Definition 1.1.4. A smooth real/complex log divisor is a real/complex divisor I
locally generated by transverse vanishing functions. ♦

The vanishing locus of a real log divisor has codimension one and is denoted
by Z. The vanishing locus of a complex log divisor has codimension two and is
denoted by D. By locally demanding a divisor to be a product of log divisors we
obtain the following:

Definition 1.1.5. A self-crossing real/complex log divisor on a manifold M is a
divisor I , such that for every point p ∈ M there exists a neighbourhood U of p
such that

Iσ(U) = I1 · . . . · Ij ,

where I1, . . . , Ij are real/complex log divisors with transversely intersecting1

vanishing loci. ♦

A self-crossing real log divisor is determined by its vanishing locus Z, as its
ideal equals the ideal of functions vanishing on Z. In contrast, for a self-crossing
complex log divisor, the subspace D does not determine the divisor.

Remark 1.1.6 (Terminology). Our definition of a smooth complex log divisor
appears in [16] without the prefix smooth attached. For brevity, we will often
write “complex log divisor”, which has to be understood to possibly have self-
crossings. Whenever we deal with a smooth complex log divisor we will explicitly
stress this. ♦

Definition 1.1.7. Let ID be a real/complex log divisor. For a given point p ∈M
and a neighbourhood U of p let nU be the number j as in Definition 1.1.5. The
multiplicity of p is the minimum of nU taken over all neighbourhoods of p. The
pointwise multiplicity of the divisor is the maximum of the multiplicities of its
points. ♦

Example 1.1.8. Let {IDi} for i = 1, . . . , n be a collection of smooth real/complex
log divisors with transversely intersecting vanishing loci, for which there exist
at least one point in the intersection ∩ni=1Di. Then their product ID := ⊗ni=1IDi
defines a real/complex log divisor with pointwise multiplicity n. We call such a
divisor a strict normal crossing divisor. 4

By definition every real/complex log divisor is locally of this form, which
will often be used.

1A collection of submanifolds {Di} is said to intersect transversely at a point x ∈M if

codim(
⋂
i

TxDi) =
∑
i

codim(TxDi).

10



1.1. Self-crossing divisors

Definition 1.1.9. Given a real/complex log divisor ID, we call a choice of local
smooth real/complex log divisors near a point as in Example 1.1.8 a local normal
crossing. ♦

Note that the only choice in a local normal crossing for a given real/complex
log divisor is the ordering of the smooth divisors.

Example 1.1.10. Let O(k) be the holomorphic line bundle on CPn obtained as
the k-fold tensor product of the dual of the tautological line bundle. Recall that
sections of O(k) can be identified with homogeneous polynomials of degree
k in n + 1 variables. Under this identification we can view the polynomial
p := z0 · . . . · zn as a section of O(n+ 1). We conclude that (O(n+ 1), p) defines a
complex log divisor with pointwise multiplicity n on CPn. 4

Example 1.1.11. LetE →M be a complex line bundle. Then Γ((E1,0)∗) ⊂ C∞(E)
generates an ideal I on E. Locally, if U ⊂M is an open neighbourhood on which
E|U is trivialised, there exists a corresponding fibre coordinate z on U which
generates I . We conclude that every complex line bundle carries a canonical
smooth complex log divisor whose vanishing locus is the zero section M ⊂
E. 4

Example 1.1.12. • Let (z1, . . . , zj , x2j+1, . . . , x2j+m) be coordinates on Cj ×
Rm and define smooth complex log divisors IDi := 〈zi〉. Then the ideal
ID = ⊗ji=1IDi is called the standard complex log divisor with pointwise
multiplicity j on Cj × Rm.

• Let (x1, . . . , xj , yi) be coordinates on Rj × Rm and define real log divisors
IZi := 〈xi〉. Then the ideal IZ = ⊗ji=1IZi is called the standard real log
divisor with pointwise multiplicity j on Rj × Rm.

4

Lemma 1.1.13. • If ID is a complex log divisor and p ∈M is a point of multiplicity
j, then ID is locally diffeomorphic to the standard complex log divisor around p.

• If IZ is a real log divisor and p ∈M is a point of multiplicity j, then IZ is locally
diffeomorphic to the standard real log divisor around p.

Proof. Because the representatives f1, . . . , fj of the ideals of a local normal cross-
ing vanish transversely and their zero sets are transverse, they can be completed
to a local coordinate system on an open neighbourhood of p. These coordinates
provide the divisor diffeomorphism.

The vanishing locus of a real/complex log divisor is not an embedded sub-
manifold when its pointwise multiplicity is larger then one, it is however im-
mersed.

Lemma 1.1.14. Let ID be a real/complex log divisor on M and let D be its vanishing
locus. Then the vanishing locus D is an immersed submanifold.

11



Chapter 1. Self-crossing stable generalized complex structures

Proof. As being immersed is a local property, we need to show that every point
in D has a neighbourhood on which D is immersed. By Lemma 1.1.13 it suffices
to show that the vanishing locus of the standard real/complex log divisor is an
immersed submanifold. The obvious map of inclusions of the different coordinate
planes

⋃j
i=1 Cj−1 × Rm → Cj × Rm provides this immersion.

Intuitively, the vanishing locus of a real/complex log divisor is the immersion
of a manifold, D̃, obtained from D by duplicating the intersection locus and
separating the strands whenever self-crossings occur. Here we need to introduce
some subtle language variation to distinguish between different meanings of the
word component a connected component ofD is just that, a connected component
of D as a subspace of M , while an irreducible component of D is the image of a
connected component of D̃.

The degeneracy locus is not only an immersed submanifold but it is also
stratified by embedded smooth submanifolds.

Definition 1.1.15. Let ID be a real/complex log divisor with pointwise multipli-
city n on a manifold M . Given 1 ≤ j ≤ n, the set of points with multiplicity at
least j will be denoted by D(j). These sets induce a filtration on M , namely

M = D(0) ⊃ D = D(1) ⊃ D(2) ⊃ · · · ⊃ D(n).

The strata of this stratification are denoted by

D[i] := D(i)\D(i+ 1),

and consist of the points with multiplicity exactly i. ♦

The following is immediate and will be used without further mention. We
will call this stratification the multiplicity stratification of M induced by ID.

Lemma 1.1.16. Let ID be a real/complex log divisor on a manifold M with pointwise
multiplicity at least i. Then ID|M\D(i+1) is a real/complex log divisor on M\D(i+ 1)

with pointwise multiplicity i.

With this in mind we can verify that the definition of the stratification makes
sense.

Lemma 1.1.17. The filtration from Definition 1.1.15 defines a smooth stratification on
M .

Proof. We first note that the highest codimension stratum D(n) is a smooth
submanifold by the regular value theorem. Next, the subset D[i] = D(i)\D(i+ 1)
is the highest codimension stratum of the restricted divisor to M\D(i+ 1) and is
therefore smooth. Finally the filtration induces a stratification precisely because
we have the local form as described in Lemma 1.1.13.

12



1.1. Self-crossing divisors

1.1.2 Elliptic divisors

We now introduce self-crossing elliptic divisors. These divisors arise as the real
part of complex log divsors, but can be defined independently.

Definition 1.1.18 ([16]). A smooth elliptic divisor is a real divisor I|D| locally
generated by definite Morse–Bott functions with codimension-two critical set
D. ♦

In fact, the existence of a local generating function of I|D| implies that there
exists a global generator f ∈ I|D|. Note that a given codimension-two submani-
fold may carry multiple smooth elliptic divisor structures. To proceed we again
consider divisors which are local normal crossings of smooth elliptic divisors.

Definition 1.1.19. A self-crossing elliptic divisor on a manifold M is a real
divisor I|D| such that for every p ∈M there exists an open neighbourhood U of p
such that

I|D|(U) = I|D1| · . . . · I|Dj |.

Here the I|Di| are smooth elliptic divisors on U whose zero loci Di intersect
transversely. ♦

As discussed in Remark 1.1.6 we will often omit the prefix “self-crossing” and
instead add “smooth” when referring to an elliptic divisor in the sense of [16].

Remark 1.1.20. The condition that the loci of the smooth elliptic divisors are
transverse is equivalent to the following statement: for all local generators fi of
I|Di| we have that

ker Hessp(fi1) ∩ · · · ∩ ker Hessp(fik) for all p ∈ ∩kl=1f
−1
il

({0})

has minimal dimension for all multi-indices (i1, . . . , ik) with distinct elements
and of length smaller or equal than k. ♦

Many of the notions we defined for complex log divisors with self-crossings
can also be defined for elliptic divisors with self-crossings. In particular they
have a multiplicity and an induced stratification, which will be denoted in the
same manner as in the complex log case.

An important class of elliptic divisors arises from complex log divisors:

Example 1.1.21. If ID is a complex log divisor, then ID · ID is invariant under
conjugation. Therefore, there exists a real ideal I|D| such that I|D| ⊗ C = ID · ID.
By definition, locally ID = ID1 · . . . · IDn , where the IDi are smooth complex log
divisors with transverse zero loci. Therefore we see that

I|D|(U)⊗ C = (ID1 · ID1) · . . . · (IDn · IDn),

hence I|D|(U) is given as the product of smooth elliptic divisors with transverse
vanishing loci. We conclude that I|D| is an elliptic divisor and call it the elliptic
divisor induced by a complex log divisor. 4

13



Chapter 1. Self-crossing stable generalized complex structures

The following is analogous to the complex log setting (Example 1.1.8):

Example 1.1.22. Given smooth elliptic divisors I|Di| for which the vanishing loci
Di are transverse, we have that I|D| := ⊗ni=1I|Di| defines an elliptic divisor with
pointwise multiplicity n. We call this a strict normal crossing elliptic divisor. 4

By definition, every elliptic divisor is locally of the above form.

Definition 1.1.23. Given an elliptic divisor I|D|, we call a choice of local smooth
complex divisors near a point as in Definition 1.1.19 a local normal crossing. ♦

Example 1.1.24. Let (x1, y1, . . . , xj , yj , xj+1, . . . , xm) be coordinates on R2j ×Rm
and define smooth elliptic divisors I|Di| = 〈x2

i + y2
i 〉. We call I|D| := ⊗ni=1I|Di|

the standard elliptic divisor of pointwise multiplicity j on R2j × Rm. 4

Using the Morse–Bott lemma we can locally put an elliptic divisor in standard
form.

Lemma 1.1.25. Let I|D| be an elliptic divisor on a manifold M and let p ∈ M have
multiplicity j. Then I|D| is locally diffeomorphic to the standard elliptic divisor of
pointwise multiplicity j on R2j × Rm, where dimM = 2j +m.

Proof. To simplify notation we will consider j = 2 as the proof in the general
case is identical. Let U be an open neighbourhood of a point p of multiplicity
2 and let I|D1|, I|D2| be a local normal crossing. Let f1, f2 be representatives
of I|D1|, I|D2| respectively and apply the Morse–Bott lemma to obtain coordin-
ates (x1, y1, x2, y2, z3, . . .), (x̃1, ỹ1, x̃2, ỹ2, z̃3, . . .) on neighbourhoods U1, U2 of p
respectively such that f1 = x2

1 + y2
1 and f2 = x̃2

2 + ỹ2
2 . Consider

Φ = (x1, y1, x̃2, ỹ2, z3, . . .) : U1 ∩ U2 → Rn,

and
F : Rn → R (x1, . . . , xn) 7→ x2

1 + x2
2 + x2

3 + x2
4.

Then f1 + f2 = F ◦ Φ. Note that the normal Hessian of F is non-degenerate
and that the normal Hessian of f1 + f2 is non-degenerate by the independence
condition in Remark 1.1.20. Because

Hessf1+f2
= HessF ◦Φ = HessF (Φ∗·,Φ∗·),

we conclude that Φ∗ must be injective on N(D1 ∩ D2). Therefore, using the
inverse function theorem and possibly shrinking the domain of definition, we
conclude that (x1, y1, x̃2, ỹ2) provide coordinates in the directions normal to
D1 ∩ D2. Complementing with coordinates on D1 ∩ D2 gives the required
coordinate system.

It follows from this lemma that, just as for complex divisors, the vanishing
locus of an elliptic divisor, I|D|, is an immersed submanifold, D, with transverse
self crossings. Furthermore, if we let (R, q) denote the line bundle with section

14



1.1. Self-crossing divisors

associated to I|D|, since q is a trivialization of R over M\D and D has codimen-
sion two, R is also trivializable and q determines a preferred orientation for R.
Therefore, one can define an elliptic divisor alternatively as the ideal generated
by a function f : M → R+ whose zeros are locally of the form

f(x1, y1, . . . , xk, yk, xk+1, . . . , xn) = (x2
1 + y2

1) . . . (x2
k + y2

k).

Examples A class of examples of elliptic divisors arises from toric geometry.

Example 1.1.26. Let µ : M → Rn be a toric manifold with moment polytope ∆
and let λi ∈ Rn be vectors transverse to its faces, of which we assume it has
k. If we denote fλi : Rn → R, x 7→ 〈x, λi〉, let ci ∈ R be constants such that
I = 〈(fλ1 − c1) · . . . · (fλk − ck)〉, when restricted to ∆, defines the vanishing
ideal of ∂∆. Then the ideal

f∗I := 〈(fλ1
◦ µ− c1) · . . . · (fλk ◦ µ− ck)〉 (1.1.1)

defines an elliptic divisor on M with pointwise multiplicity n and vanishing
locus µ−1(∂∆). Namely, the functions fλi are linear and have the faces of the
moment polytope as zero sets. BecauseM is toric, the components of the moment
map are definite Morse–Bott functions, hence so are the compositions fλi ◦ µ. We
conclude that the ideal I defines an elliptic divisor. 4

An explicit case of the setting in the above example occurs on the manifold
CPn.

Example 1.1.27. Consider CPn with the moment map

µ : CPn → ∆ [z0 : z1 : · · · : zn] 7→ (|z0|2 , |z1|2 , . . . , |zn−1|2)

|z0|2 + |z1|2 + · · ·+ |zn|2
. (1.1.2)

Here ∆ = {(x1, . . . , xn) ∈ Rn≥0 :
∑
i xi ≤ 1} denotes the moment polytope.

Proceeding as in Example 1.1.26 endows CPn with the structure of an elliptic
divisor. Note that this is the elliptic divisor induced by the complex log divisor
of Example 1.1.10. 4

1.1.3 Elliptic versus complex log divisors

As we have seen in Example 1.1.21, a complex log divisor (L, σ) induces an
elliptic divisor. The complex log divisor also induces a complex structure on the
normal bundle of D[1] via the isomorphism2

dνσ|D[1] : ND[1]→ L|D[1] .

If we were to pick another section fσ, for some f ∈ C∞(M), then

dν(fσ)|D[1] = f |C(1) d
ν(σ)|D[1],

2Because σ vanishes transversely on D[1], the normal derivative is an isomorphism.
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Chapter 1. Self-crossing stable generalized complex structures

and thus the complex structure induced using dν(fσ)|D[1] is isomorphic to the
complex structure induced using dν(σ)|D[1]. In particular, the orientation on
ND[1] induced is independent of the choice of section. These two pieces of
information, the elliptic divisor and the co-orientation, completely determine the
complex log divisor. This statement was already mentioned in the smooth case
in [16, Section 1.2], but appeared there without proof.

Proposition 1.1.28. Let M be a manifold. The association

(L, σ) 7→ ((R, q), o)

which sends a complex log divisor on M to its associated elliptic divisor, together with
the induced co-orientation of D[1], induces a bijection of complex log divisors and elliptic
divisors with chosen co-orientation of D[1].

Proof. Let I1, I2 be two complex log divisors. Assume that I1 and I2 both induce
the same elliptic ideal and the same co-orientation on the normal bundle to D[1].
We have to prove that I1 = I2. We will proceed via several steps.

Injectivity for smooth divisors: We first prove injectivity for smooth divisors.
Let z, w be complex coordinates such that I1 = 〈z〉 and I2 = 〈w〉. By assumption
we have I1 ⊗ I1 = I2 ⊗ I2 and thus there exists a nowhere vanishing function
g ∈ C∞(M,R) such that gzz = ww. The fact that I1 and I2 induce the same co-
orientation ensures the existence of some strictly positive function h ∈ C∞(D;R)
such that hdνz ∧ dνz = dνw ∧ dνw.

Claim. We have that h = g|D.

Proof of claim. By taking the derivative of gzz = ww with respect to w, we obtain
that

∂g

∂w
zz + g

∂z

∂w
z + gz

∂z

∂w
= w.

By taking the derivative of this equation with respect to z, we get

∂2g

∂z∂w
zz +

∂g

∂w
z +

∂g

∂z

∂z

∂w
z + g

∂

∂z

∂z

∂w
z +

∂g

∂z
z
∂z

∂w
+ g

∂z

∂w
=
∂w

∂z
.

In particular we find g|D
∂z
∂w

∣∣
D

= ∂w
∂z

∣∣
D

. Noting that

〈dνw ∧ dνw, ∂z ∧ ∂w〉 =
∂w

∂z
= h

∂z

∂w
,

we can combine these facts to conclude that g|D = h.

Continuing our main line of reasoning, in order to show that w ∈ I1 we are
going to invoke Malgrange’s Theorem, [57, Theorem 1.1], which states thatw ∈ I1
if and only if its formal power series with respect to z and z is divisible by z. We
expand w as a power series in z and z:

w = a10z + a01z +
∑
i+j≥2

aijz
izj .
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1.1. Self-crossing divisors

Claim. We have that |a10|2 = |a01|2 + h.

Proof of claim. Using hdνz ∧ dνz = dνw ∧ dνw, we find

〈dνw ∧ dνw, ∂z ∧ ∂z〉 = h,

but also on D we have

〈dνw ∧ dνw, ∂z ∧ ∂z〉 =
∂w

∂z

∂w

∂z
− ∂w

∂z

∂w

∂z

=

∣∣∣∣∂w∂z
∣∣∣∣2 − ∣∣∣∣∂w∂z

∣∣∣∣2
= |a10|2 − |a01|2 ,

from which we conclude the desired expression.

Knowing this, we can express the product ww as

ww = (|a10|2 + |a01|2)zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l,

and because |a10|2 = |a01|2 + h and ww = gzz, we see that

0 = (h− g + 2 |a01|2)zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l.

By expanding h− g as a power series and because g|D = h, we see that h− g =∑
i+j≥1 bijz

izj . In conclusion we have obtained the following equality of power
series:

0 =

 ∑
i+j≥1

bijz
izj + 2 |a01|2

 zz + a10a01z
2 + a10

∑
i+j≥2

aijz
izj+1

+ a01a10z
2 + a01

∑
i+j≥2

aijz
i+1zj + a10

∑
i+j≥2

aijz
izj+1

+ a01

∑
i+j≥2

aijz
i+1zj +

∑
i+j≥2
k+l≥2

aijaklz
i+kzj+l.
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Chapter 1. Self-crossing stable generalized complex structures

Therefore all the coefficients of this power series need to vanish. The term of
degree 1 in z and degree 1 in z is given by 2 |a01| zz, hence we conclude that
a01 = 0. The degree-n term in z is given by a10a0,n−1z

n. Hence we can conclude
that a0,i = 0 for all i ≥ 0. Therefore the formal power series of w is divisible by z
and we conclude that w ∈ 〈z〉. By symmetry we conclude that 〈w〉 = 〈z〉, from
which we conclude that I1 = I2 which finishes this part of the proof.
Injectivity for strict normal crossings: Suppose that I|D| = ⊗iI|Di| is a strict
normal crossing elliptic divisor. Let ID1 and ID2 be two complex log divisors
which induce I|D|, which both need to be strict normal crossing divisors because
I|D| is. Moreover, assume that they induce the same co-orientation on D[1]. This
implies that they induce the same co-orientation on each of the zero loci Di. After
reordering, we may assume that

I|D1
i | = I|Di| = I|D2

i |.

Thus for each i, we have that I|D1
i | and I|D2

i | induce the same smooth elliptic
divisor and the same co-orientation and therefore I|D1

i | = I|D2
i | by the above,

from which the result follows.
Injectivity for general divisors: Because I|D| is locally a normal crossing of
elliptic divisors, around every point x ∈ D we can find an open neighbourhood U
such that I|D|

∣∣
U

is a normal crossing of elliptic divisors. Therefore, if two general
complex log divisors induce the same elliptic ideal and same co-orientation, we
can use the injectivity for strict normal crossing divisors and argue locally to
prove that the complex log divisors must be equal.
Surjectivity for smooth divisors: Let I|D| be a smooth elliptic divisor and o
an orientation of ND. Given a choice of representative f ∈ I|D|, we can view
Hessν f ∈ Γ(S2N∗D) as a metric on N∗D. We use this metric to transport the
orientation of ND to an orientation on N∗D. The orientation together with the
metric induces a complex structure on ND and hence a complex log divisor
structure onND by Example 1.1.11. This complex log divisor induces I|D|, which
proves surjectivity for smooth divisors.
Surjectivity for strict normal crossings: Let I|D| = ⊗I|Di| be a strict normal
crossing elliptic divisor. Because ND[1]|Di\D(2) = NDi|Di\D(2) and D(2) is
codimension two in Di we conclude that each NDi is orientable. Therefore, by
the above, there exist complex log divisors IDi such that I|Di| = IDi ⊗ IDi . We
conclude that

I|D| ⊗ C = ⊗i(IDi ⊗ IDi) = (⊗iIDi)⊗ (⊗iIDi).

Surjectivity for general divisors: Because I|D| is locally a strict normal crossing
of elliptic divisors, for every point x ∈ D we can find an open neighbourhood
U such that I|D|

∣∣
U

is a strict normal crossing. Therefore, by the previous part
there exists a complex log divisor IDU which induces I|D|

∣∣
U

. Let U be an open
cover of M , such that I|D| is a strict normal crossing on each open in the cover
and construct complex log divisors inducing I|D| on each of these opens. Let
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1.2. Lie algebroids associated to self-crossing divisors

U,U ′ ∈ U and let IU and IU ′ be complex log divisors inducing I|D|
∣∣
U

and I|D|
∣∣
U

.
On the overlap U ∩ U ′ both IU ′ |U∩U ′ and IU |U∩U ′ induce the same elliptic ideal,
by the above we therefore have IU |U∩U ′ = IU ′ |U∩U ′ . We conclude that the local
complex log divisors glue to a strict complex log divisor which induces I|D|

∣∣
U

,
which finishes the proof.

Motivated by this result we define the following.

Definition 1.1.29. An elliptic divisor I|D| is co-orientable if D[1] is co-orientable.
♦

1.2 Lie algebroids associated to self-crossing divisors

In this section we introduce the Lie algebroids associated to self-crossing complex
log and elliptic divisors. Much of this section follows along the same lines as
[16]. The Lie algebroids will be defined by imposing that their sections interact
appropriately with the divisors, in that they must preserve the divisor ideals.

1.2.1 Complex log tangent bundle

Lemma 1.2.1. Let ID be a complex log divisor on a manifold M . The complex vector
fields preserving the complex ideal ID are sections of a complex Lie algebroid AD.

Proof. By Lemma 1.1.13, at every point there exist coordinates (z1, . . . , zn, xi) such
that locally ID = 〈z1 · . . . · zn〉. One can readily check that in these coordinates
the vector fields preserving ID are generated by

{z1∂z1 , ∂z1
. . . , zn∂zn , ∂zn , ∂xi}

and therefore form a locally free sheaf which, by the Serre–Swan theorem, corres-
pond to sections of a vector bundle, AD. The Lie bracket of vector fields induces
a bracket on the sections of AD making it into a Lie algebroid.

Definition 1.2.2. The Lie algebroid AD is the complex log tangent bundle
induced by ID. ♦

There is a local description of the complex log tangent bundle, whose proof is
immediate.

Lemma 1.2.3. Let ID be a complex log divisor on a manifold M and let ID1
, . . . , IDn

be a choice of local normal crossing on some open U . Then AD is given by a repeated
fiber product:

AD|U ' AD1
×TCM × · · · ×TCM ADn .

The story for real log divisors is completely similar:

Definition 1.2.4. Let IZ be a real log divisor on M . The real vector fields pre-
serving the ideal IZ are sections of a real Lie algebroid AZ . ♦
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Chapter 1. Self-crossing stable generalized complex structures

We call this Lie algebroid the real log tangent bundlereal log tangent bundle
induced by IZ .

One can prove Darboux-type normal form theorems for symplectic Lie al-
gebroids using a thorough understanding of their Lie algebroid cohomology, by
a straightforward adaptation of the Moser lemma. However, in the above cases
this cohomology is generally locally non-trivial, so that there is no unique local
model. For future reference we remark:

Lemma 1.2.5. Let IZ be a real log divisor on Σ2 and let ω ∈ Ω2(AZ) be a log-symplectic
form. For each point p ∈ Z[2] there are coordinates (x1, x2) centered at p and λ ∈ R>0

such that
ω = λd log x1 ∧ d log x2.

Since in two dimensions every nowhere zero two-form is closed and nonde-
generate we have the following source of examples of log-symplectic manifolds:

Lemma 1.2.6. Let Σ2 be a compact oriented surface with corners. Then (Σ, I∂Σ) admits
a log-symplectic structure.

Proof. The ideal I∂Σ defines a real log divisor. Because Σ is oriented, let h ∈
C∞(M) be a defining function for ∂M , so that I∂Σ = 〈h〉 and let ω ∈ Ω2(Σ) be
a volume form. Then h−1ω ∈ Ω2(A∂M ) is a nondegenerate log two-form that is
closed for dimensional reasons.

1.2.2 Elliptic tangent bundle

There is also a Lie algebroid associated to an elliptic divisor.

Lemma 1.2.7. Let I|D| be an elliptic divisor on a manifold M . The vector fields pre-
serving the ideal I|D| are sections of a Lie algebroid A|D|.

Proof. By Lemma 1.1.25 there exists coordinates (r1, θ1, . . . , rn, θn, xi) such that
locally we have I|D| =

〈
r2
1 · . . . · r2

n

〉
and in which the vector fields preserving

I|D| are generated by

{r1∂r1 , ∂θ1 , . . . , rn∂rn , ∂θn , ∂xi}.

This collection forms a locally free sheaf, hence there exists a Lie algebroid A|D|
whose sections are the vector fields preserving I|D|.

Definition 1.2.8. The Lie algebroidA|D| is the elliptic tangent bundle associated
to I|D|. ♦

Similar to Lemma 1.2.3 we have the following local description of the elliptic
tangent bundle.

Lemma 1.2.9. Let I|D| be an elliptic divisor on a manifold M and let I|D1|, . . . , I|Dn|
be a choice of local normal crossing on some open U . Then A|D| is given by a repeated
fiber product:

A|D|
∣∣
U
' A|D1| ×TM × · · · ×TM A|Dn|.
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1.2. Lie algebroids associated to self-crossing divisors

Above we argued that the ideal I|D| determines the elliptic tangent bundle.
The converse is also true. Namely, suppose we are given any Lie algebroid
L → M whose rank agrees with the dimension of M . The anchor map, ρ,
induces a bundle map detρ : ∧n L→ ∧nTM , which can be regarded as a section
of the real line bundle ∧nL∗ ⊗ ∧nTM . That is, L determines the real divisor
(∧nL∗ ⊗∧nTM, detρ). Given the local expression for generators of A|D| we have:

Lemma 1.2.10. The elliptic tangent bundle determines its underlying ideal.

When an elliptic divisor is induced from a complex log divisor we can relate
the Lie algebroids.

Proposition 1.2.11. Let ID be a complex log divisor and let I|D| be the induced elliptic
divisor. Then

AD ×TCM AD = A|D| ⊗ C.

Proof. Using local coordinates as in Lemma 1.1.13, we see that the intersection
ρ(AD)∩ ρ(AD) has constant rank and hence we can form their fibre product. The
anchor maps, mapping to Γ(TCM), satisfy

ρ(Γ(AD ×TCM AD)) = ρ(Γ(AD)) ∩ ρ(Γ(AD)).

The right-hand side consists of the vector fields preserving ID ⊗ ID = I|D| ⊗ C.
ThereforeAD×TCM AD is isomorphic to the complexification of the Lie algebroid
from Definition 1.2.8.

The forms of the complex log tangent bundle are particularly easy to work
with from the differential geometric point of view, as they relate on forms defined
on the complement.

Lemma 1.2.12. Let ID be a complex log divisor on M , and let α ∈ Ωk(M\D) be a
differential form. Then α extends to a smooth complex log form α̃ ∈ Ωk(AD) if and only
if for any local generator f of ID both fα and fdα extend as smooth forms over D.

The proof is the same as in the holomorphic setting, and thus omitted.
The cohmology of the complex log tangent bundle also relates neatly to the

complement. To compute it we need the following topological result regarding
divisors with normal crossings.

Lemma 1.2.13. If D is the standard normal crossing complex log (or elliptic) divisor
with pointwise multiplicity n, then D[i] is homotopic to the disjoint union of

(
n
i

)
copies

of Tn−i.

Proof. Let ID1 , . . . , IDn be the complex log divisors corresponding to z1, . . . , zn
respectively. Then

D[i] = D(i)\D(i+ 1) =
⊔

(j1,...,ji)⊂(1,...,n)

(Dj1 ∩ · · · ∩Dji)\D(i+ 1).
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Chapter 1. Self-crossing stable generalized complex structures

All the summands in D[i] are diffeomorphic. For notational clarity we will thus
consider the summand corresponding to the ordered multi-index I := (1, 2, . . . , i).
We have

DI := D1 ∩ · · · ∩Di = {0} × · · · × {0}︸ ︷︷ ︸
i−times

×C× · · · × C︸ ︷︷ ︸
(n−i)−times

.

To proceed we consider the intersection of DI with D(i+ 1). To write this down,
for k ∈ N let

0k := {0} × · · · × {0}︸ ︷︷ ︸
k−times

, Ck := C× · · · × C︸ ︷︷ ︸
k−times

.

With this notation in hand, one readily verifies that

DI∩D(i+1) = 0i×{0}×Cn−i−1∪0i×C×{0}×Cn−i−2∪· · ·∪0i×Cn−i−1×{0}.

From this we immediately see that

DI\D(i+ 1) = {0} × · · · × {0}︸ ︷︷ ︸
i−times

×C∗ × · · · × C∗︸ ︷︷ ︸
(n−i)−times

,

which is homotopic to Tn−i. Therefore, all components of D[i] are homotopic to
Tn−i and as there are

(
n
i

)
of these this finishes the proof.

the following result is the self-crossing analogue of [16, Theorem 1.3], and
appears in [40, Theorem 1.2] in the algebraic context.

Theorem 1.2.14. Let D = (L, σ) be a complex log divisor on a manifold M . Then the
inclusion ι : M\D ↪→M induces an isomorphism

Hk(M,AD) ' Hk(M\D,C).

Proof. We give an argument in the same spirit as [40, Theorem 1.2], using that
AD defines a soft sheaf. As is shown there it suffices to show that ι induces an
isomorphism on the level of sheaf cohomology. Below we will implicitly identify
the sheaf Ω•(M\D) with its push-forward ι∗(Ω•(M\D)). Given a point p ∈M\D
and a contractible neighbourhood U of p which is disjoint from D we have that
AD = TD and hence Hk(U,AD) = Hk(U\D). Next, for any j less than or equal
to the pointwise multiplicity of D, let p ∈ D[j]. Let z1, . . . , zj be coordinates
on an open neighbourhood U of p as in Lemma 1.1.13. In these coordinates we
see that H•(U,AD) is the free algebra generated by {1, d log z1, . . . , d log zj}. By
Lemma 1.2.13 we have that U\D is homotopic to Tj . Under these identifications,
the cochain morphism ι∗ takes the generators of H•(U,AD) to the generators of
H•(U\D). Therefore we conclude that ι∗ is a local isomorphism and hence also
globally, which finishes the proof.
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1.2. Lie algebroids associated to self-crossing divisors

1.2.3 Residue maps

Let (I|D|, o) be a co-oriented smooth elliptic divisor on a manifold M . The
restriction of the smooth elliptic tangent bundle to D fits into a sequence of Lie
algebroids

0→ ker ρ|D → A|D|
∣∣
D
→ TD → 0.

In [16] it is explained that this sequence induces a cochain map

Resq : Ω•(A|D|)→ Ω•−2(TD),

called the elliptic residue. In local Morse–Bott coordinates for the divisor, the
elliptic residue map is given by

Resq(α) = ι∗D(ιr∂r ι∂θα), α ∈ Ω•(A|D|).

Definition 1.2.15. Let (I|D|, o) be a co-oriented elliptic divisor and let an elliptic
form α ∈ Ω•(A|D|) be given. Its elliptic residue is defined by

Resq(α) := Resq(ι
∗
M\D(2)α),

where the right-hand side is the elliptic residue for the smooth elliptic divisor
I|D|

∣∣
M\D(2)

. ♦

We will also need the radial residue map, which picks out all the d log ri gen-
erators. We will study its construction in more detail in Section 3.2, for now we
have:

Definition 1.2.16. Let (I|D|, o) be a co-oriented elliptic divisor and let an elliptic
form α ∈ Ω•(A|D|) be given. Its radial residue at p ∈ D[i] is defined by

Resr(α)(p) := ι∗D(ιr1∂r1 · · · ιri∂riα)(p),

where r1, . . . , ri are the radial coordinates in local Morse–Bott coordinates around
p. ♦

The radial residue map takes values in the Lie algebroid forms of some
quotient Lie algebroid. We will describe this Lie algebroid in more detail in
Section 3.2, but as we are interested in the space of forms for which this residue
vanish the precise description does not matter right now.

In later constructions, the cohomology of the complex of forms with vanishing
radial residue will play a role:

Lemma 1.2.17. Let I|D| be a self-crossing elliptic divisor on a manifold M and let
Ω•0,0(A|D|) ⊂ Ω•(A|D|) be the subcomplex defined as the kernel of the map Resr. Then
the inclusion map i : M\D →M of the complement of D induces a quasi-isomorphism
i∗ : Ω•0,0(A|D|)→ Ω•(M\D).
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Chapter 1. Self-crossing stable generalized complex structures

Proof. The argument uses the observation from [40] (and the fact thatA|D| defines
a soft sheaf) that it suffices to show that ι∗ induces an isomorphism on the level of
sheaf cohomology. Below we will implicitly identify the sheaf Ω•(M\D) with its
push-forward ι∗(Ω•(M\D)). For all points p ∈M\D there exists a contractible
open neighbourhood U of p disjoint from D. On this open A|D| = TM and
Resr ≡ 0 and therefore ι∗ is simply the identity. Let j be any integer less than or
equal to the pointwise multiplicity of D, take p ∈ D[j] and let U be a contractible
open around p as in Lemma 1.1.13. In those coordinates, H•0,0(U,A|D|) is the
free algebra generated by {1, dθ1, . . . , dθj}. By an elementary argument U\D is
homotopic to Tj and using this homotopy ι∗ takes the generators ofH•0,0(A|D|) to
the generators of H•(U\D). Therefore we conclude that ι∗ is a local isomorphism
and consequently a global isomorphism.

We will need a couple more residue maps:

Definition 1.2.18. Let (I|D|, o) be a co-oriented elliptic divisor and let an elliptic
two-form ω ∈ Ω2(A|D|) be given. Consider oriented coordinates around a point
p ∈ D(k) with k ≥ 2 as provided by Lemma 1.1.25 and define three types of
residues:

Resrirj ω(p) := ωp(ri∂ri , rj∂rj ), Resriθj ω(p) := ωp(ri∂ri , ∂θj ),

Resθiθj ω(p) := ωp(∂θi , ∂θj ). ♦

These expressions do not depend on the chosen coordinates. They do depend
on the choice of co-orientation and the particular ordering of the divisors, but
only up to signs.

1.3 Self-crossing stable structures

In this section we will start our discussion of generalized complex geometry
and self-crossing stable generalized complex structures in particular. We will
first recall the basics of generalized complex geometry, before defining the (self-
crossing) stable condition, using the divisors of Section 1.1. We then show
how these can be described using symplectic-like forms in the complex log
tangent bundle (Theorem 1.3.13), in analogy with [16]. Next we discuss that
these are in fact symplectic structures in its associated elliptic tangent bundle,
satisfying certain additional cohomological conditions (Theorem 1.3.16). From
that point onwards we can proceed to study self-crossing stable generalized
complex structures using symplectic techniques.

1.3.1 Generalized complex structures

Generalized geometry refers to the study of geometric structures on TM :=
TM ⊕ T ∗M , for a manifold M . We briefly recall the notions from generalized
complex geometry which are needed in this thesis. For a more in depth discussion
see [41].
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1.3. Self-crossing stable structures

Definition 1.3.1. A generalized complex structure on a manifold M is a pair
(J, H), where H ∈ Ω3(M) is a closed three-form and J is an endomorphism of
TM for which J2 = −Id and the +i-eigenbundle L ⊂ (TM) ⊗ C is involutive
with respect to the Dorfman bracket:

[[X+ξ, Y +η]]H := [X,Y ]+LXη− ιY dξ+ ιXιYH, X+ξ, Y +η ∈ Γ(TM). ♦

Two generalized complex structures (J, H) and (J′, H ′) are gauge equivalent
if there exists B ∈ Ω2(M) such that H ′ = H + dB and, using the associated map
B[ : TM → T ∗M , we have

J′ =
(

1 B[

0 1

)
J
(

1 −B[
0 1

)
.

Given an element X + ξ ∈ TM , let (X + ξ) · ρ := ιXρ+ ξ ∧ ρ denote the Clifford
action of TM on elements ρ ∈ ∧•T ∗M , which are called spinors. Moreover,
define transposition of an element in Γ(∧•T ∗M) on decomposable degree k-
forms by

(α1 ∧ · · · ∧ αk)T := αk ∧ · · · ∧ α1, αi ∈ Ω1(M).

The Chevalley pairing on spinors, (·, ·)Ch : ∧• T ∗M × ∧•T ∗M → ∧topT ∗M , is
defined as

(γ, ρ)Ch := (γ ∧ ρT )top, γ, ρ ∈ Γ(∧•T ∗M). (1.3.1)

Generalized complex structures can be equivalently described using the follow-
ing:

Lemma 1.3.2 ([41]). There is a one-to-one correspondence between generalized complex
structures (J, H) and complex line subbundles K ⊂ ∧•T ∗CM , satisfying the following
properties:

• For all x ∈M the vector space Kx is generated over C by spinors of the form(
eB+iω ∧ Ω

)
x
, B, ω ∈ Ω2(M), Ω ∈ Ωk(M),

where Ω is a decomposable form;

• For every nonvanishing local section ρ ∈ Γ(K), there exists u ∈ Γ(TCM) such
that dρ+H ∧ ρ = u · ρ;

• For all non-zero ρx ∈ Kx, we have (ρx, ρx)Ch 6= 0.

The line bundle K is called the canonical line bundle of J. It can be defined
in terms of the generalized complex structure by the relation

L = {u ∈ TCM : u ·K = 0},

where L is the +i-eigenbundle of J. Note here that TCM = TM ⊗ C.

Definition 1.3.3. Let (J, H) be a generalized complex structure and let K be
its canonical line bundle. The map s : K → ∧0T ∗CM = C defined by ρ 7→ ρ0,
sending a spinor to its degree-zero part, defines a section s ∈ Γ(K∗) called the
anticanonical section of J. ♦
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Chapter 1. Self-crossing stable generalized complex structures

Example 1.3.4. Given a complex structure, J , or a symplectic structure, ω, on a
manifold M , we can endow M with a generalized complex structure (for H = 0)
given by

JJ :=

(
−J 0
0 J∗

)
, Jω :=

(
0 −(ω[)−1

ω[ 0

)
.

More interestingly, let (M,J, π) be a holomorphic Poisson manifold with
π = πR + iπI and denote by π]I : T ∗M → TM the map associated to πI . Then

JJ,π :=

(
−J 4π]I
0 J∗

)
is also a generalized complex structure.

The corresponding canonical line bundles and anti-canonical sections are
given by:

Kω =
〈
eiω
〉
, KJ = ∧n,0T ∗M, KJ,π = eπ(∧n,0T ∗M),

sω ≡ 1, sJ ≡ 0, sJ,π = ιπnΩvol. 4

There is an interesting relation between generalized complex geometry and
Poisson geometry obtained in [22]. Given a generalized complex structure J,
denote by π]J : T ∗M → TM the associated bundle map obtained by π]J = prTM ◦
J|T∗M . This map is skew-symmetric and:

Lemma 1.3.5. Let J be a generalized complex structure. Then πJ ∈ X2(M) is a Poisson
structure. Moreover, if J, J′ are gauge-equivalent generalized complex structures, then
πJ = πJ′ .

1.3.2 Stable generalized complex structures

In this section we will extend the notion of stable generalized complex structures
to allow for the degeneracy locus to have self-crossing singularities. The main
reason to allow for normal crossing singularities is that it gives much more flex-
ibility: for example, this class is now closed under taking products. This makes it
easier to provide examples (see Section 1.6) and there are also more constructions
available, such as the connect sum procedure of Section 1.5. Moreover, in four
dimensions these structures can be used to construct smooth stable generalized
complex structures, as explained in Section 1.4.

Definition 1.3.6. A (self-crossing) stable generalized complex structure is a
generalized complex structure such that its anticanonical divisor D = (K∗, s)
defines a complex log divisor. We call it smooth stable when D = (K∗, s) defines
a smooth complex log divisor. ♦

We can immediately see that the class of such structures is closed under
products.
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1.3. Self-crossing stable structures

Example 1.3.7. Let (Li, σi) be two complex log divisors with multiplicities ni
on two manifolds Mi for i = 1, 2. Then the pair (π∗1L1 ⊗ π∗2L2, π

∗
1σ1 ⊗ π∗2σ2) on

the product manifold M = M1 ×M2, with projection maps pi : M → Mi, is a
complex log divisor with pointwise multiplicity n1 + n2. This shows that the
product (M,π∗1H1 + π∗2H2, J1 ⊕ J2) of two stable generalized complex manifolds
(Mi, Hi, Ji) is endowed with a stable generalized complex structure. 4

Stable generalized complex structures can come about via holomorphic Pois-
son structures.

Example 1.3.8. Let π ∈ X2(M2n;C) be a holomorphic Poisson structure such that
the pair (∧n,0TM,∧nπ) is a complex log divisor. Then JJ,π is a stable generalized
complex structure. 4

An important gain from allowing self-crossings is that deformations of higher
dimensional Fano manifolds by holomorphic Poisson bivectors may provide
examples of these structures, but are never smoothly stable [44, Theorem 7.13].

Example 1.3.9. One can readily construct a holomorphic Poisson structure on
CP 2n for which (∧nTM,∧nπ) is a complex log divisor, making CP 2n into a
stable generalized complex manifold. Indeed, using the standard coordinates
(z1, . . . , z2n+1) on C2n+1, let

π̃ := z1z2∂z1 ∧ ∂z2 + · · · z2n−1z2n∂z2n−1 ∧ ∂z2n

be a holomorphic Poisson structure on C2n+1. This bivector is scaling invariant
and therefore descends to a bivector π on CP 2n. By naturality of the Schouten
bracket it follows that π is Poisson,and by direct computation we see that
(∧nTCM,∧nπ) is a complex log divisor. 4

1.3.3 Complex log symplectic structures

The next sections aim to prove that stable generalized complex structures are
equivalent to a certain type of symplectic structures on an associated elliptic
tangent bundle. Before we do so, we first prove, in this section, that they are
equivalent to an auxiliary structure. This will be a symplectic-like structure for
the complex log tangent bundle.

Given a complex log divisor ID and its induced elliptic divisor I|D| we con-
sider the Lie algebroid morphism ι : A|D| ⊗ C→ AD obtained from Proposition
1.2.11. If we compose the pullback ι∗ with taking the imaginary part of a form
we obtain a cochain morphism =∗ : Ω•(AD)→ Ω•(A|D|).

Definition 1.3.10. A form σ ∈ Ω2(AD) is called complex log symplectic if
dσ = H ∈ Ω3(M ;R) and =∗σ ∈ Ω2(A|D|) is non-degenerate. Two complex log
symplectic forms σ, σ′ ∈ Ω2(AD) are said to be gauge equivalent if there exists a
two-form B ∈ Ω2(M,R) such that σ′ = σ +B. ♦
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Chapter 1. Self-crossing stable generalized complex structures

Since the symplectic structure given by the imaginary part of a complex log
symplectic form clearly contains important information, it is useful to give it a
name as well.

Definition 1.3.11. Let M be a manifold with an elliptic divisor I|D|. A (self-
crossing) elliptic symplectic form is an elliptic two-form ω ∈ Ω2(A|D|) that is
closed and non-degenerate. ♦

Remark 1.3.12. An elliptic symplectic structure ω ∈ Ω2(A|D|) always induces
an orientation because ωn defines a volume form outside a codimension-two
subset. This is in contrast with log symplectic manifolds, which need not be
orientable. ♦

The following theorem is the self-crossing generalisation of [16, Theorem 3.2].

Theorem 1.3.13. Let M be a manifold. There is a one-to-one correspondence between
stable generalized complex structures with self-crossings on M and complex log di-
visors endowed with complex log symplectic forms with self-crossings. Moreover, this
correspondence preserves gauge equivalences.

Explicitly, the correspondence is given by the map

{
(J, H) :

J is a stable GCS

}
→

 (ID, σ) :
ID is a complex log divisor and

σ ∈ Ω(AD) is a complex log-symplectic form.


where ID is the divisor induced by the anticanonical section and σ = ρ2/ρ0 where ρ is
any local spinor for J.

Proof. We will first consider the direct implication. Let ρ ∈ Ω•(M) be a local
pure spinor for the stable generalized complex structure, defined on an open set
U ⊂ M . On U\D the anticanonical section is non-vanishing and therefore we
have that ρ = ceε on U\D for some c ∈ C∞(M ;C) and ε ∈ Ω2(M ;C). Looking at
the degree-zero part of this equation we obtain c = ρ0 and looking at the degree-
two part we obtain ε = ρ2/ρ0. By continuity we conclude that ρ = ρ0e

ρ2/ρ0 on
the entirety of U .

Claim. The two-form σ := ρ2/ρ0 defines a global smooth complex log form, with
dσ = −H .

Proof of claim. Assume that the local form, σ, defined using a local canonical
section is indeed a local complex log form and let σ̃ be another local form obtained
from another local canonical section, ρ̃. Then, from the previous argument we
have ρ̃ = ρ̃0e

ρ̃2/ρ̃0 . In particular we see that as complex log forms we have

eσ =
ρ

ρ0
=

ρ̃

ρ̃0
= eσ̃,
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1.3. Self-crossing stable structures

where the middle equality follows from the fact that ρ
ρ0

and ρ̃
ρ̃0

are sections of the
canonical bundle with the same degree-zero component. Therefore σ is a global
complex log form.

Hence to conclude the result we must prove that σ is a local log form. By
the integrability of the generalized complex structure there exist X + ξ ∈ Γ(TM)
such that

dρ0 = ιXρ2 + ξ ∧ ρ0,

dρ2 = ιXρ4 + ξ ∧ ρ2 − ρ0H.

Because ρ4 = 1
2ρ0

ρ2 ∧ ρ2 on U\D, we find that

dρ2 =
ιX(ρ2 ∧ ρ2)

2ρ0
+ ξ ∧ ρ2 − ρ0H.

On U\D we thus have:

d

(
ρ2

ρ0

)
=
dρ2

ρ0
− ρ2 ∧ dρ0

ρ2
0

=
ιX

ρ2
2

2ρ0
+ ξ ∧ ρ2

ρ0
−H − ρ2 ∧ (ιXρ2 + ξ ∧ ρ0)

ρ2
0

= −H.

Now we can apply Lemma 1.2.12 to σ = ρ2/ρ0 to conclude that σ defines a
well-defined complex log form.

The algebraic condition (ρ, ρ)Ch 6= 0 results in

|ρ0|2 (σ − σ)n 6= 0.

Therefore we conclude that the elliptic form σ− σ is non-degenerate and hence σ
is a complex log symplectic form.

Next we consider the converse implication. Let ID denote the complex log
divisor and let σ ∈ Ω2(AD) be a complex log symplectic form for this ideal. Let
〈eσ〉C ⊂ Ω•(AD) denote the complex line generated by eσ. Then the product
ID ⊗ 〈eσ〉C ⊂ Ω•(AD) is in fact smooth, that is, ID 〈eσ〉C ⊂ Ω•(M). We will
show that this line bundle defines a stable generalized complex structure. In
local coordinates as in Lemma 1.1.13 we have that ρ = z1 · . . . · zkeσ is a local
trivialisation of the line bundle. Now

(ρ, ρ)Ch = z1
2 · . . . · zk2(=∗σ)n,

defines a volume form because =∗σ is a nondegenerate elliptic form with self-
crossings. We are left to prove integrability of ρ. Since integrability is a closed
condition, it is enough check it in M\D, but by construction in this region the
structure is just a B-field transform of a symplectic structure.
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Chapter 1. Self-crossing stable generalized complex structures

1.3.4 Equivalence with elliptic symplectic

As we just saw, a stable generalized complex structures is closely related to an
elliptic symplectic form. Yet, the elliptic tangent bundle, A|D|, which appears in
the context of generalized complex structure arises from a complex log tangent
bundle, AD and the elliptic symplectic form arises as imaginary part of complex
log symplectic form. Therefore our next step is to pinpoint precisely which
elliptic symplectic forms arise in this way. That is we are interested in describing
the image of ‘taking the imaginary part’: =∗ : Ω•(AD)→ Ω•(A|D|).

From now on we denote this image by Ω•=(A|D|) ⊂ Ω•(A|D|). Describing
elements in Ω•=(A|D|) of arbitrary degree for a general complex divisor is a little
involved, so we will focus on our object of interest: two-forms. To describe ele-
ments in Ω2

=(A|D|) we need to use the residue maps for points in D[2] introduced
in Section 1.2.3, such as, Resrirj and Resriθj . Recall that these residues depend on
an ordering of the coordinates and a choice of co-orientation, the kernels of some
combinations of these residues only depends on the co-orientation of the divisor.
To be precise, given a co-oriented elliptic divisor (I|D|, o), the spaces ker(Resq),
ker(Resθirj −Resriθj ) and ker(Resrirj + Resθiθj ) do not depend on the order of
the divisors.

Lemma 1.3.14. Let ID be a complex log divisor and let (I|D|, o) be its associated
co-oriented elliptic divisor. Then

Ω2
=(A|D|) = ker(Resq) ∩ (ker(Resθirj −Resriθj )) ∩ (ker(Resrirj + Resθiθj )).

Proof. Choose local coordinates as in Lemma 1.1.25. For all pairs i, j and β ∈
Ω1(M ;R) we have:

=∗(d log zi ∧ d log zj) = dθi ∧ d log rj + d log ri ∧ dθj ,
=∗(id log zi ∧ d log zj) = d log ri ∧ d log rj − dθi ∧ dθj ,

=∗(d log zi ∧ β) = dθi ∧ β,
=∗(id log zi ∧ β) = d log ri ∧ β.

Therefore we see that Ω2
=(A|D|) lies in the intersection of the kernels. Conversely,

if α is in the intersection of the kernels then locally it must be a linear combin-
ation of the above forms together with smooth forms. Therefore by the above
computation, we see that α ∈ Ω2

=(A|D|) which concludes the proof.

Since =∗ is a map of complexes, Ω•=(A|D|) ⊂ Ω•(A|D|) is a subcomplex and
we can compute its cohomology, as we will do in Section 1.3.6. Next we see that
the imaginary part of a complex two-form determines it up to gauge equivalence:

Proposition 1.3.15. Let M be a manifold with a complex log divisor ID and let (I|D|, o)
be its induced co-oriented elliptic divisor. Then the following sequence of cochain com-
plexes is exact:

0→ Ω•(M ;R)→ Ω•(AD)
=∗→ Ω•=(A|D|)→ 0.
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1.3. Self-crossing stable structures

Proof. We can check exactness of the above sequence by checking exactness of
the corresponding sheaf sequence. By Lemma 1.1.13 we may assume we are
in the setting of Example 1.1.8. The map =∗ is surjective by definition and it
is clear that that Ω•(M ;R) lies in the kernel of =∗. Therefore we are left to
show that if a general complex log form has vanishing imaginary part, then it
must be smooth. Consider coordinates (z1, . . . , zk, z1, . . . , zk, xi, . . . , xl) and for
multi-indices I = (i1, . . . , il) make use of the following shorthand notation:

zI := zi1 · · · zil , (d log z)I := d log zi1 ∧ · · · ∧ d log zil ,

(dz)I := dzi1 ∧ · · · ∧ dzil .

Using these, a general complex log form ρ ∈ Ω•(AD) may be written locally as

ρ =
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K ,

where the αIJK ∈ C∞(M ;C) are smooth and the sum ranges over all multi-
indices. The vanishing of the imaginary part of ρ implies

0 =
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K

−
∑
I,J,K

αIJK(d log z)I ∧ (dz)J ∧ (dx)K ,

which using zI(d log z)I = (dz)I gives:

0 =
∑
I,J,K

zJαIJK(d log z)I ∧ (d log z)J ∧ (dx)K

−
∑
I,J,K

zJαIJK(d log z)I ∧ (d log z)J ∧ (dx)K .

By linear independence, each of the terms involving (d log z)I ∧ (d log z)J and
their conjugates needs to vanish independently. That is, for all multi-indices
I, J,K we have

0 = (zJαIJK(d log z)I ∧ (d log z)J − zIαJIK(d log z)J ∧ (d log z)I) ∧ (dx)K ,

and hence
(zJαIJK − (−1)|I||J|zIαJIK) = 0,

from this we conclude that αIJK is divisible by zI . This proves that ρ is a smooth
form.

Putting Theorem 1.3.13, Proposition 1.1.28 and Proposition 1.3.15 together we
have the following.
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Chapter 1. Self-crossing stable generalized complex structures

Theorem 1.3.16. Let M be a manifold. There is a correspondence between gauge
equivalence classes of stable generalized complex structures with self-crossings on M
and co-oriented elliptic divisors, (I|D|, o), endowed with an elliptic symplectic form
ω ∈ Ω2

=(A|D|).
Explicitly, this equivalence is induced by the map

{
(J, H) :

J is a Stable GCS

}
→

 (I|D|, o, ω) :
(I|D|, o) is a co-oriented elliptic divisor and

ω ∈ Ω=(A|D|) is a symplectic form.


which assigns to each stable generalized complex structure on M the co-oriented elliptic
divisor determined by its anticanonical section and the imaginary part of its correspond-
ing complex log symplectic form.

Remark 1.3.17. Under the equivalence above, [H] = δ[ω], where δ is the connect-
ing morphism coming from Proposition 1.3.15. ♦

1.3.5 Equivalence with nondegenerate elliptic Poisson

A consequence of Theorem 1.3.16 is that nearly all the information of a stable
generalized complex structure is already encoded in its underlying Poisson
structure.

Theorem 1.3.18. The gauge equivalence class of a stable generalized complex structure
(J, H) is fully determined by its underlying Poisson structure.

Proof. In the symplectic locus the Poisson structure is given by ω−1. By smooth
continuation ω−1 on M\D determines ω on A|D|, which in turn determines J up
to gauge equivalence by Theorem 1.3.16. The only point that needs attention in
this argument is that we extended ω−1 from M\D to A|D| but we did not argue
yet that the Poisson structure itself determines A|D|. This is indeed the case, as
shown by Lemma 1.3.19 below.

Lemma 1.3.19. Let I|D| be an elliptic divisor. Given ω ∈ Ω2(A|D|) an elliptic symplectic
form, let π = ρ(ω−1) be its associate Poisson bivector on M , where ρ : A|D| → TM is
the anchor map. Then (∧nTM,∧nπ) defines the elliptic divisor I|D|.

Conversely, if (∧nTM,∧nπ) defines an elliptic divisor I|D|, then π admits a nonde-
generate lift to A|D| and hence defines an elliptic symplectic structure.

Proof. In local coordinates expressing I|D| as a normal crossing, ωn is a volume
form, hence there is a nonvanishing function, f , for which

ωn = fd log r1 ∧ dθ1 ∧ · · · ∧ d log rk ∧ dθk ∧ dx2k+1 ∧ . . . dx2n.

Hence

πn = ρ(ω−n) = f−1r1∂r1 ∧ ∂θ1 ∧ · · · ∧ rk∂rk ∧ ∂θk ∧ ∂x2k+1
∧ . . . ∂x2n ,

which defines the divisor I|D|.
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1.3. Self-crossing stable structures

Conversely, assume that (∧nTM,∧nπ) defines an elliptic divisor I|D|. Due to
[52, Theorem A], to prove that π lifts to to A|D| it suffices to show that A∗|D| is loc-
ally generated by closed one-forms. From the local description in Lemma 1.1.25
this is immediate.

Since, by Lemma 1.2.10, the ideal defined by A|D| is I|D|, the lift above is
non-degenerate, by [52, Theorem A].

1.3.6 Cohomology

Due to Theorem 1.3.16, in order to study stable generalized complex structures,
we can turn our attention to symplectic forms in the associated elliptic tangent
bundle that lie in the subcomplex given by Ω•=(A|D|). Therefore, the cohomology
that is relevant to the study of these symplectic structures is not the elliptic
cohomology but, H2

=(A|D|), the cohomology of the subcomplex Ω•=(A|D|). We
study this cohomology next.

Proposition 1.3.20. Let M be a manifold and let I|D| be a co-oriented elliptic divisor.
Then

Hi
=(A|D|) ' Hi+1(M,M\D)⊕Hi(M\D).

Proof. We have the following morphism of cochain complexes

0 // Ω•(M,R) //

��

Ω•(AD) //

��

Ω•=(A|D|) //

��

0

0 // Ω•(M,R)
ι∗M\D // Ω•(M\D,C) // Ω•(M\D,C)/Ω•(M,R) // 0

where ι∗M\D is the natural inclusion, the middle vertical arrow corresponds
to restriction to M\D and the rightmost vertical arrow restriction composed
with the quotient map. Let C• denote the quotient complex, then we have the
corresponding commutative diagram in cohomology:

H•(M) //

��

H•(AD) //

��

H•=(AD) //

��

H•+1(M) //

��

H•+1(AD)

��

// . . .

H•(M) // H•(M\D,C) // H•(C•) // H•+1(M) // H•+1(M\D,C) // . . .

Here we let C• denote the cohomology of the quotient complex. By Theorem
1.2.14 and the Five Lemma we conclude that H•=(A|D|) ' H•(C•). The quotient
complex splits:

C• = Ω•(M\D,R)/Ω•(M,R)⊕ iΩ•(M\D,R).

Let E• = Ω•(M\D,R)/Ω•(M,R), as we have that H•(C•) ∼= H•(M\D) ⊕
H•(E•). We are left to show that E• computes the relative cohomology, for
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Chapter 1. Self-crossing stable generalized complex structures

which we will make use the relative de Rham cohomology (see for instance [9]).
Let

Ωq(iM\D) = Ωq(M)⊕ Ωq−1(M\D), d(ω, θ) = (dω, ι∗M\Dω − dθ),

this cohomology computes the relative cohomology H•(M,M\D), and fits in
the long exact sequence

· · · → Hk−1(M\D)→ Hk(iM\D)→ Hk(M)
ι∗M\D→ Hk(M\D)→ · · ·

But because E• is defined as a quotient, its cohomology is also part of a long
exact sequence

· · · → Hk(M\D)→ Hk(E•)→ Hk+1(M)
ι∗M\D→ Hk+1(M\D)→ · · · .

Therefore we conclude that Hk(E•) ' Hk+1(M,M\D), which finishes the proof.

1.4 Self-crossing stable structures in dimension four

In the remaining of this chapter we will focus on stable generalized complex
structures in four dimensions. From a practical point of view, dimension four
is special because the way different components of the divisor intersect is very
restricted and at these intersections points the symplectic structure behaves as a
meromorphic volume form. In this dimension it is particularly simple to state
and prove a local normal form for a neighbourhood of a point (Theorem 1.4.3).
Simple as this local form is, it has interesting consequences. Firstly, it can be
used to show that every self-crossing stable generalized complex structure can be
changed into a smooth stable structure (Theorem 1.4.12). Secondly it allows us to
introduce a connected sum operation for stable generalized complex structures
(Theorem 1.5.9).

1.4.1 Normal forms

Having related stable generalized complex structures to symplectic structures
on a Lie algebroid, we have a wealth of symplectic techniques available to deal
with them. One of the most basic tools from symplectic geometry, the Moser
Lemma, carries through to Lie algebroids with some modifications. This allows
us to tackle deformations and corresponding neighbourhood theorems. As for
regular symplectic structures, the (local) deformations are governed by the Lie
algebroid cohomology in degree two. One new feature, however, is that the
local cohomology of the elliptic tangent bundle is non-trivial and hence the local
model must depend on parameters.

The next lemma is a direct adaptation of the Moser lemma.
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1.4. Self-crossing stable structures in dimension four

Lemma 1.4.1. Let I|D| be an elliptic divisor on a manifoldM and let ω1, ω2 ∈ Ω2(A|D|)
be two elliptic symplectic forms defined on a neighbourhood U of a closed irreducible
component of D(i). If [ω1] = [ω2] ∈ H2(A|D|) and tω1 + (1− t)ω2 is non-degenerate
for all t ∈ [0, 1], then there exists neighbourhoods U1, U2 ⊂ U ofD(i) and a Lie algebroid
isomorphism ϕ̃ : A|D|

∣∣
U2
→ A|D|

∣∣
U1

such that ϕ̃∗ω1 = ω2.

Proof. The proof is nearly identical to the usual proof of the Moser Lemma: let
α ∈ Ω1

=(A|D|) be such that ω1 − ω2 = dα and define Xt ∈ Γ(A|D|) by (tω1 +
(1 − t)ω2)(Xt) = α. Then the time-one flow, ϕ̃, of Xt on A|D| (over the flow, ϕ,
of ρ(Xt) on U ) will satisfy ϕ̃∗ω1 = ω2. Since Xt ∈ Γ(A|D|), ρ(Xt) is tangent to
D(i) and hence if we take a possibly smaller neighbourhood U2 of D(i) we have
ϕ(U2) ⊂ U and taking U1 = ϕ(U2) we obtain the result.

A Darboux Theorem for points in D(1), the smooth locus of the divisor, was
already obtained in [16]. In four dimensions the only extra stratum available is
D[2] and we present the version of the Darboux Theorem for those points now.

Proposition 1.4.2. Let (I|D|, o) be a co-oriented elliptic divisor onM4. Let ω ∈ Ω2
=(M)

be an elliptic symplectic form and let p ∈ D[2]. Choose coordinates that express I|D| as
the standard elliptic divisor in a neighbourhood of p and denote its residues by

λ1 = Resr1θ2 ω(p) = Resθ1r2 ω(p), λ2 = Resr1r2 ω(p) = −Resθ1θ2 ω(p).

Then λ2
1 + λ2

2 6= 0 and there exists coordinates (r1, θ1, r2, θ2) on a neighbourhood of p
on which I|D| is the standard elliptic divisor and ω is given by:

λ1(d log r1 ∧ dθ2 + dθ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2).

Proof. Indeed, {d log r1, dθ1, d log r2, dθ2} is a frame for Ω1(A|D|) in a neighbour-
hood of p. Hence we can write ω in terms of wedge products of these generators
with functions as coefficients. At p all these coefficients are residues and due to
Lemma 1.3.14 we have

ω(p) = λ1(d log r1 ∧ dθ2 + dθ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2).

Since ω2(p) 6= 0, we have λ2
1 + λ2

2 6= 0.
Now consider

ω0 = λ1(d log r1∧dθ2+dθ1∧d log r2)+λ2(d log r1∧d log r2−dθ1∧dθ2) ∈ Ω2
=(A|D|).

Since ω(p) = ω0(p), the convex combination tω + (1 − t)ω0 is symplectic in a
neighbourhood of p for all t ∈ [0, 1] and Proposition 1.3.20 implies that [ω] =
[ω0] ∈ H2

=(A|D|). Since {p} is a connected component of D[2], the Moser Lemma
gives us the desired diffeomorphism between ω and ω0.

A direct consequence is a normal form for stable generalized complex struc-
tures.
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Chapter 1. Self-crossing stable generalized complex structures

Theorem 1.4.3. Let M4 be a stable generalized complex manifold. Then for every point
p ∈ D[2] there exists complex coordinates (z1, z2) around p where the complex log
divisor is the standard one and such that a local trivialisation of the canonical line bundle
is given by the pure spinor

ρ = eB(λz1z2 + dz1 ∧ dz2),

for some non-zero λ ∈ C and B ∈ Ω2(M ;R).

Proof. By Theorem 1.3.16, gauge equivalence classes of stable generalized com-
plex structures are in equivalence with elliptic symplectic forms ω ∈ Ω2

=(M). By
Proposition 1.4.2, any such symplectic form is given, in appropriate coordinates,
by

ω = λ1(d log r1 ∧ dθ2 + dθ1 ∧ d log r2) + λ2(d log r1 ∧ d log r2 − dθ1 ∧ dθ2)

= =∗((λ1 + iλ2)(d log r1 + idθ1) ∧ (d log r2 + idθ2)).

Hence, up to the action of 2-forms, the stable generalized complex structure is
given by

(λ1 + iλ2)−1z1z2 + dz1dz2,

with zj = rje
iθj and the stated normal form follows.

1.4.2 Locally complex elliptic symplectic structures

Theorem 1.3.16 gives an equivalence between stable generalized complex struc-
tures and certain elliptic symplectic forms together with a co-orientation of the
corresponding elliptic divisor. Of course, the main use of that result is to work on
the symplectic side to conclude properties of the generalized complex structure.
Here there is a minor difficulty: we must co-orient an elliptic divisor in the hopes
of getting the desired residue relations, but there is no preferred way to do that.
That is, if we are interested in constructing a generalized complex structure on a
given manifold M with an elliptic divisor I|D|, we must choose a co-orientation
for D but must also keep in mind that we may have started with the wrong
choice. We find it fruitful to introduce a notion that is independent of the choice
of co-orientation and will allow us to get a better grip on the problem.

Definition 1.4.4. Let I|D| be an elliptic divisor and let ω ∈ Ω2(A|D|) be an
elliptic symplectic form. We say that ω is locally complex if around every
point there exists an open neighbourhood U and a complex log divisor ID on
U inducing the restricted divisor I|D||U together with a complex log symplectic
form σ ∈ Ω2(U ;AD) such that =∗σ = ω. ♦

Concretely, ω is locally complex if and only if its elliptic residue vanishes over
D(1) and over D[2], for a choice of co-orientation of D, one of the following two
possibilities holds:

(Resθirj ω − Resriθj ω = 0 and Resrirj ω + Resθiθj ω = 0), or
(1.4.1)

(Resθirj ω + Resriθj ω = 0 and Resrirj ω − Resθiθj ω = 0), (1.4.2)
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1.4. Self-crossing stable structures in dimension four

with the second possibility indicating that the chosen co-orientation for one of
the components of D is not compatible with ω.

In four dimensions, the existence of a locally complex elliptic symplectic
structure forces the degeneracy locus to be of a very specific form.

Proposition 1.4.5. Let M4 be a four-dimensional compact locally complex elliptic sym-
plectic manifold with respect to a co-orientable elliptic divisor I|D|. Then the connected
components of D are tori, spheres which intersect themselves in one point, or necklaces of
spheres.

Proof. It follows from the normal form from [16], that over D(1) the modular
vector field of the underlying Poisson structure is nowhere-vanishing. In partic-
ular, if a connected component D′ of D is smooth and co-orientable, then it is
orientable and has a nowhere vanishing vector field, hence is diffeomorphic to a
torus.

Assume that a connected component D′ is immersed but not embedded and
let D̃′ → D′ denote the immersion. Because D′\D[2] is a Poisson submanifold,
the modular vector field of the Poisson structure is tangent to D′\D(2) and is
nowhere-vanishing on D′\D(2). Moreover, in local coordinates as in Propos-
ition 1.4.2 the modular vector field takes the form −r1∂r1 − r2∂r2 , which lifts
to a vector field on D̃′ with positive zeros at the pre-image of D(2). Therefore
each irreducible component of D′ is an orientable surface with positive Euler
characteristic (equal to the number of points in D̃′ that map to D(2). That is, each
irreducible component of D′ is a sphere with two points in D(2). Thus either
the irreducible component of D′ intersects itself in one point, or it intersects
another irreducible component(s) at two points. That irreducible component can
in turn intersect the previous irreducible component or some other irreducible
component. By compactness there are only finitely many irreducible components
and thus these spheres have to form a necklace.

Now we address the question of when a locally complex elliptic symplectic
structure is actually induced by a complex log symplectic form. To do so we
introduce the following notion.

Definition 1.4.6. Let M4 be an oriented manifold with a co-oriented elliptic
divisor (I|D|, o). For each p ∈ D[2] let D1, D2 be the corresponding local normal
crossing divisors.

• We say that the intersection index of p is 1 if the isomorphism TpM '
NpD1 ⊕NpD2 is orientation-preserving;

• We say that the intersection index of p is −1 otherwise. ♦

Since ND1 and ND2 are both two-dimensional their choice of ordering does
not effect the orientation of the resulting direct sum ND1 ⊕ND2.

An elliptic symplectic structure always provides a preferred orientation for
M . If the structure is also locally complex, we can verify whether an intersection
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point in D[2] is positive or not by considering the values of the residues at that
point.

Lemma 1.4.7. Let (M4, I|D|, o) be a manifold endowed with a co-oriented elliptic divisor
and let ω be a locally complex elliptic symplectic form. Then p ∈ D[2] is positive with
respect to the orientation induced by ω if and only if (1.4.1) holds.

This can be rephrased in more global terms.

Lemma 1.4.8. Let M4 be a manifold endowed with a co-oriented elliptic divisor (I|D|, o)
and an elliptic symplectic form, ω. The triple (I|D|, o, ω) is in the image of the map in
Theorem 1.3.16 if and only if ω is locally complex and each point in D[2] has positive
index.

Proof. By Lemma 1.3.14, ω ∈ Ω2
=(M) if and only if (1.4.1) holds, which by the

previous Lemma corresponds to all intersection points being positive.

Whenever a locally complex elliptic symplectic structure has a divisor with
a few negative intersection points, we may try to fix this by flipping the co-
orientation of one of the components arriving at that point. The problem with
this is that such a change of co-orientation will also change the sign at ‘the other’
intersection point of that component. Reflecting on this for a moment we see that
the parity of the number of negative points is the relevant piece of data.

Definition 1.4.9. Let (M, I|D|, o) be an oriented four-manifold with co-oriented
elliptic divisor. If we denote by εp the index of p ∈ D[2], the parity of a connected
component D′ of D is given by

εD′ = Πp∈D′[2]εp. ♦

We extend the definition of parity to a smooth irreducible component D′ of
D by declaring εD′ to be +1 if D′ is co-orientable and −1 if not. If D′[2] has n
points, a change of orientation of M changes the parity of D′ by (−1)n.

Lemma 1.4.10. Let (M, I|D|, o) be a four-manifold with co-oriented elliptic divisor
and let ω ∈ Ω2(A|D|) be a locally complex elliptic symplectic form. Orient M by the
orientation induced by ω, then:

• For each connected component D′ of D, the parity, εD′ , does not depend on the
choice of co-orientation;

• We have εD′ = 1 for all connected components D′ of D if and only if there is a
co-orientation o′ of D for which (I|D|, o

′, ω) is in the image of the map in Theorem
1.3.16.

Proof. The proof relies on Proposition 1.4.5, which describes what a connected
component of D looks like. The case when D is smooth and co-orientable was
treated in [16] so we need to consider the cases when D has self-intersections.

If D′ has only one irreducible component which intersects itself in one point,
p if we change the co-orientation of D′ we change the co-orientation of both
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strands arriving at p and hence the index of p does not change. So εD′ = 1 if
and only if the index of p is 1 which, by Lemma 1.4.8, happens if and only if
(I|D|, o, ω) is in the image of the map in Theorem 1.3.16 in a neighbourhood of D′.

In general, since each irreducible component has two intersection points,
changing its co-orientation changes two signs and hence the parity, εD′ , remains
unchanged by this operation. The proof that this is the only relevant invariant can
be done intuitively by breaking the necklace of spheres, D′, at one intersection
point, so that we get an array of spheres and then fixing the co-orientation of
‘the first’ irreducible component, D1, of this array. Then we inductively keep
or change the co-orientations of the next irreducible components one by one
depending on whether the index of the next intersection point is positive or
negative until we get to the last sphere, Dn. Since D′ is a necklace, not an array,
there is one last index to be computed, namely the one between Dn and D1.
Since the parity of the number of negative indexed points is fixed, this last index
is positive if the parity is positive. Hence, again by Lemma 1.4.8, the parity is
positive if and only if (I|D|, o, ω) is in the image of the map in Theorem 1.3.16 in
a neighbourhood of D′.

It is clear that (I|D|, o, ω) is in the image of the map in Theorem 1.3.16 if and
only if for each irreducible component D′ of D, (I|D|, o, ω) is in the image of the
map in Theorem 1.3.16 in a neighbourhood of D′.

1.4.3 Smoothening self-crossing stable structures

In this section we will show that if a four-dimensional manifold admits a stable
generalized complex structure, then it also admits a smooth stable generalized
complex structure.

Given ε > 0 consider the following two stable generalized complex structures
on C2:

ρ0 = λz1z2 + dz1 ∧ dz2, ρ1 = (λz1z2 + ε) + dz1 ∧ dz2, (1.4.3)

which determine, respectively, the complex log divisors:

ID0 = 〈z1z2〉 , ID1 = 〈λz1z2 + ε〉 ,

and corresponding complex log symplectic forms

σ0 =
dz1 ∧ dz2

λz1z2
and σ1 =

dz1 ∧ dz2

λz1z2 + ε
. (1.4.4)

Lemma 1.4.11. Let σ0 and σ1 be the complex log symplectic forms in (1.4.4). Then there
are annuli A0, A1 ⊂ C2 and a diffeomorphism Φ: A0 → A1 ⊂ C2 which is a morphism
of divisors between ID1 and ID0 and satisfies =∗σ0 = Φ∗=∗σ1. Moreover, the map Φ is
ambient isotopic to the natural inclusion ι : A0 → C2\{0}.

Proof. The proof relies on a version of the Moser argument: We will find annuli
A0 and A1 together with a diffeomorphism, ϕ : A0 → A1, with the following
properties
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U1

V1

V1

U2V2 V2

X

A0

Figure 1.1: The divisor associated to ρ0 are the coordinate axes while the divisor
associated to ρ1 is the hyperbola. In the complement of the polydisc of radius
2ε/|λ| both of these lie in U . The vector field X flows the coordinate axes to the
intersection of the hyperbola with A and vanishes in the grey area.

• ϕ is a morphism of divisors between ID1
and ID0

,

• ϕ∗=∗σ1 lies in the same cohomology class of =∗σ0 and

• the line connecting ϕ∗=∗σ1 and =∗σ0 is made of symplectic forms.

Once we have found such a ϕ, it is clear that the result follows from the Moser
argument.

We start by considering A ⊂ C2, the complement of the polydisc of radius
2ε/|λ| on C2, that is

A = {(z1, z2) : |z1| > 2
√
ε/|λ| or |z2| > 2

√
ε/|λ|}.

On A, we let

U = {(z1, z2) ∈ A : |z1| <
√
ε/|λ| or |z2| <

√
ε/|λ|},

V = {(z1, z2) ∈ A : |z1| < 2
√
ε/|λ| or |z2| < 2

√
ε/|λ|}.

Notice that both U and V consist of two components, namely U1, V1, which
are neighbourhoods of {z2 = 0} ∩ A and U2, V2, which are neighbourhoods of
{z1 = 0} ∩A. Also, notice that the zeros of λz1z2 + ε in A also lie inside U , that is
U is also a neighbourhood of the zero locus of the divisor associated to ρ1 (See
Figure 1.1).
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Let ψ : [0,∞)→ [0, 1] be a monotone bump function which is 1 on [0, 3
2

√
ε/|λ|]

and zero on [2
√
ε/|λ|,∞) and consider the following complex vector field:

X :=


−ψ(|z2|)ε

λz1
∂z2 on V1,

−ψ(|z1|)ε
λz2

∂z1 on V2,

0 otherwise.

The time-one flow of the real part of this vector field defines a diffeomorphism
ϕ : A→ A.

Since in U1, X = − ε
λz1

∂z2 , the flow of its real part is the shear transformation

ϕt(z1, z2) = (z1, z2 − t
ε

λz1
) (1.4.5)

as long as the flow remains in U1. Hence the time-one flow satisfies

ϕ∗(λz1z2 + ε) = λz1(z2 −
ε

λz1
) + ε = λz1z2. (1.4.6)

A similar computation holds in U2 and hence ϕ∗ID1
= ID0

.
Since =∗ is a cochain map, to prove that [=∗ϕ∗σ1] = [=∗σ0] it is enough

to prove that [ϕ∗σ1] = [σ0] ∈ H2(AD0
). By Theorem 1.2.14 we have that

H2(A,AD0
) ' H2(A\D0). Because A\D0 deformation retracts onto a torus, for

example, T 2 = {|z1| = R, |z2| = R}with R > 2
√
ε/|λ|, we see that H2(A\D0) '

C and we are left to show that
∫
T 2 σ0 =

∫
T 2 ϕ

∗σ1. This torus is disjoint from V ,
hence ϕ is the identity near T 2 and we compute∫

T 2

ϕ∗σ1 =

∫
|z1|=R

∫
|z2|=R

dz1 ∧ dz2

λz1z2 + ε

=

∫
|z1|=R

∫
|z2|=R

1

λz1

dz1 ∧ dz2

z2 + ε
λz1

= 2πi

∫
|z1|=R

1

λ

dz1

z1
=
−4π2

λ
,

which coincides with the integral of σ0 over the same torus. Therefore we
conclude that indeed [σ0] = [ϕ∗σ1] ∈ H2(A,AD0

) and consequently that [=∗σ0] =
[ϕ∗=∗σ1] ∈ H2(A,A|D0|).

Next we will find a radius r such that on A\Br (the complement of the ball of
radius r) the form σt := tϕ∗σ1 + (1− t)σ0 is complex log symplectic for all values
of t. To find r, we will study separately the behaviour of σt in three regions: U ,
A\V and V \U .

Let us start with the region U . If r > 0 is large enough, the vector field
X becomes small on A\Br and its time-one flow starting at U1 is the shear
transformation (1.4.5), hence we have ϕ∗σ1 = σ0. The same argument holds at
U2 and hence, for r large enough, on U\Br, σt = σ0 is symplectic for all t.
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Next we consider A\V . In this region, ϕ = id and therefore

σt = t
dz1 ∧ dz2

λz1z2 + ε
+ (1− t)dz1 ∧ dz2

λz1z2

=
λz1z2 + (1− t)ε

(λz1z2 + ε)(λz1z2)
dz1 ∧ dz2.

Since in this region |z1| > 2
√
ε/|λ| and |z2| > 2

√
ε/|λ|, the form above does not

vanish and hence its imaginary part is symplectic.
Finally, we deal with V \(U ∪Br). We will focus on V1\U1. Apply the Mean

Value Theorem to the map t 7→ =∗(ϕtX)∗σ1(p), we obtain the estimate

|=∗σ1(p)−=∗ϕ∗σ1(p)| < |=∗LXσ1(p′)|.

for p′ in line segment between p and ϕ(p). Using the explicit forms of X and σ1

we find
|=∗σ1 −=∗ϕ∗σ1| < O(1/r2).

We can also estimate the difference

|=∗σ0 −=∗σ1| =
∣∣∣∣=∗( εdz0dz1

λz0z1(λz0z1 + ε)

)∣∣∣∣ = O(1/r2).

Therefore, on V1\(U1 ∪Br) we can estimate

=∗σt = =∗σ0 + t(=∗ϕ∗σ1 −=∗σ0)

= =∗σ0 − t((=∗ϕ∗σ1 −=∗σ1) + (=∗σ1 −=∗σ0)) = =∗σ0 − tO(1/r2).

Since =∗σ0 = O(1/r) the above is symplectic as long as r is large enough.
Therefore, by picking r as above and R > r we can apply the Moser Lemma

to the annulus A0 = BR\Br to find a diffeomorphism Φ̃ : A0 → Φ̃(A0) such that
Φ̃∗(ϕ∗=∗σ1) = =∗σ0. That is, Φ = ϕ◦ Φ̃ : A0 → (ϕ◦ Φ̃)(A0) is the diffeomorphism
we were looking for. Since Φ is the composition of flows of vector fields it is
ambient isotopic to the inclusion A0 → C2\{0}.

Using this lemma we can now prove that every locally complex elliptic
symplectic structure can be changed into a smooth one by performing a surgery.

Theorem 1.4.12. Let (M4, I|D|) be a manifold endowed with a co-oriented elliptic
divisor and let ω ∈ Ω2(A|D|) be elliptic symplectic. Then:

• If ω is locally complex, then it can be changed into a smooth elliptic symplectic
form with zero elliptic residue ω̃;

• The resulting structure will be induced by a stable generalized complex structure
if and only if the original structure was.
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Proof. Since D[2] has codimension four and is compact, it is a finite collection of
points. Because ω is locally complex, given p ∈ D[2] there is a neighbourhood of
p in which ω is the imaginary part of some complex log symplectic form σ. By
Lemma 1.4.3 there exists complex coordinates (z1, z2) on a ball, B, around p on
which σ is (B-field equivalent) to λd log z1 ∧ d log z2. Note that as σ is scaling-
invariant in both the z1- and z2-direction, we can ensure that this ball is as large
as necessary. Therefore we can apply Lemma 1.4.11 to find an annulus A0 ⊂ B
together with its accompanying diffeomorphism Φ: A0 → A1. We denote by
B′ ⊂ B the inner ball enclosed by A0. Let B̃ ⊂ C2 be the ball enclosed by the
outer boundary of the annulus A1. Because Φ is ambient isotopic to the inclusion
of A0 in D4\{0}, we have M ' M\B′ ∪A,ϕ B̃. If we endow B̃ with the smooth
stable structure ρ1 in Equation (1.4.3), we see by Lemma 1.4.11 that the map
Φ is an elliptic symplectomorphism. We conclude that M obtains an elliptic
symplectic structure with D[2] consisting of one point less. Moreover, as the
surgery is purely local in nature we can ensure that the structure does not change
around the remaining points in D[2]. By performing this procedure for all points
in D[2] we conclude that M admits a smooth elliptic symplectic structure with
zero elliptic residue.

For the second part of the theorem, if ω was induced by a stable structure,
then the local coordinates from Theorem 1.4.3 would be orientation-preserving.
As all maps used in the surgery are orientation-preserving we conclude that the
resulting divisor is co-orientable. We conclude that M admits a smooth stable
generalized complex structure. If ω is not induced by a stable structure, then
there is at least one set of coordinates obtained from Theorem 1.4.3 which is
orientation-reversing. Therefore the resulting divisor will not be co-orientable,
which finishes the proof.

1.5 Connected sums

In this section we will introduce a connected sum operation for elliptic symplectic
structures in four dimensions. To do so we will make use of normal form results
obtained in Section 1.4. The operation will be phrased in terms of locally complex
symplectic forms (Definition 1.4.4) and it will be useful for us to keep track of the
index of points as we perform the connected sum.

1.5.1 Glueing divisors

We will perform connected sums on elliptic symplectic four-manifolds at points
which lie in their respective sets D[2]. In arbitrary dimensions it is possible to
take connected sums of elliptic divisors at points with the same multiplicity.

Lemma 1.5.1. Let (Mn, I|DM |), (Nn, I|DN |) be two oriented manifolds endowed with
elliptic divisors and let p ∈ DM [k] and q ∈ DN [k] for k ∈ N. Then M#p,qN admits
an elliptic divisor I|D|, for which the inclusions M\{p}, N\{q} → (M#p,qN) are
morphisms of divisors.
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Chapter 1. Self-crossing stable generalized complex structures

Proof. Using Lemma 1.1.25 there exist coordinates around p and q such that
both divisors are precisely given by the ideal I =

〈
r2
1 · . . . · r2

k

〉
. To take the

connected sum of M and N at p and q, we need to use an orientation-preserving
diffeomorphism, F , from an annulus around p to an annulus around q, which
reverses the co-orientation of the sphere and for which F ∗I = I . Here we
consider oriented charts defined in neighbourhoods of p and q which map to the
unit ball in Rn and we will use the diffeomorphism given in spherical coordinates
by

F : Rn\{0} → Rn\{0}, (r, ϕ1, . . . , ϕn) 7→ (r−1, ϕ1, . . . ,−ϕn). (1.5.1)

To verify that F ∗I = I we write r2
i = r2ψi(ϕ1, . . . , ϕn), where ψi is a function

which only depends on the angular coordinates and satisfies ψi(ϕ1, . . . ,−ϕn) =
ψi(ϕ1, . . . , ϕn). We have

F ∗(r2
i ) =

1

r2
ψi(ϕ1, . . . , ϕn), and thus r4F ∗(r2

i ) = r2
i .

Hence r4kF ∗(r2
1 · . . . ·r2

k) = r2
1 · . . . ·r2

k and as r2k is a non-zero function on Rn\{0}
we conclude that F ∗I = I .

Similarly we can perform a self-connected sum, which whenMm is connected
corresponds to attaching a 1-handle and hence the diffeomorphism type of the
resulting space is M#(S1 × Sm−1).

Lemma 1.5.2. Let Mm be an oriented connected manifold endowed with an elliptic
divisor I|D| and let p1, p2 ∈ D[k] be distinct points. Then M#(S1 × Sm−1) and
admits an elliptic divisor I|D̃| for which the natural inclusion (M\{p1, p2}, I|D|) →
(M#(S1 × Sm−1), I|D̃|) is a morphism of divisors.

There are a couple of points about this construction that we should stress.

Remark 1.5.3. There is some freedom in the glueing of elliptic divisors. Given
a choice of local coordinates (z1, . . . , zm) around p and q we can furthermore
compose the map F by a permutation of the first k coordinates. Note that this
does not change M#p,qN , but it could change the topology of the zero locus
of the divisor. Because of this ambiguity in ordering, there are potentially k!
different topological types for the vanishing locus of the divisor on the connected
sum M#p,qN . ♦

Remark 1.5.4 (Connected components). Although there is some freedom in the
choices we can still distinguish the number of connected components on the
divisor on the connected sum:

1. When p1 and p2 lie in different connected components of the divisor, be
that either in the connected sum of two manifolds or in a self-connected
sum, the connected components containing p1 and p2 will combine into a
single connected component of D̃.
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2. When p1 and p2 are in the same connected component, D, a case that can
only happen in a self-connected sum, the resulting divisor, D̃ ⊂M#(S1 ×
Sm−1), may have one or two connected components originating from
D. ♦

Remark 1.5.5. The reason for flipping the sign of ϕn in the map in (1.5.1) is that
we assumed that the coordinates we chose are compatible with the orientations of
M and N . If for some reason only one of the chosen coordinates was compatible
with the orientations of M and N , we should not flip the sign of ϕn. ♦

1.5.2 Glueing symplectic structures

We will introduce a connected sum operation for elliptic symplectic structures
in dimension four. The existence of such an operation contrasts starkly with
ordinary symplectic geometry, where connected sums are not possible above
dimension two. We first note that F introduced in (1.5.1) is a local symplecto-
morphism for a specific order of the coordinates.

Lemma 1.5.6. Let (z1, z2) be complex coordinates on M = C2\{0} and consider the
elliptic symplectic structure on M given by

ω = =∗(i d log z1 ∧ d log z2).

Using polar coordinates

(z1, z2) = (r cosϕ1 + ir sinϕ1 cosϕ2, r sinϕ1 sinϕ2 cosϕ3 + ir sinϕ1 sinϕ2 sinϕ3),

the map defined in (1.5.1) satisfies

F ∗ω = −ω.

Proof. The proof is a direct computation using that we can express F in complex
coordinates as

F (z1, z2) =
1

r2
(z1, z2).

Definition 1.5.7. Let ω ∈ Ω2(A|D|) be a locally complex elliptic symplectic form.
We say that ω has imaginary parameter at a point p ∈ D[2] if

Resr1θ2 ω(p) = Resr2θ1 ω(p) = 0. ♦

Note that this definition does not depend on a choice of co-orientation.

Remark 1.5.8. By Proposition 1.4.2, an elliptic symplectic form with imaginary
parameter ω is locally isomorphic to

λ=∗(id log z1 ∧ d log z2), (1.5.2)
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Chapter 1. Self-crossing stable generalized complex structures

for an appropriate choice of complex coordinates, where λ = Resr1r2(ω). This
justifies the terminology. It is also immediate that these complex coordinates are
compatible with the orientation defined by the complex structure.

Notice however that if the divisor is co-oriented, the complex coordinates
above may not be compatible with the co-orientations. If we require compatibility
between co-orientation and complex coordinates, ω will be isomorphic to either
the form above or

λ=∗(id log z1 ∧ d log z2).

In the latter case, the complex coordinates and symplectic structure induce
opposite orientations. ♦

We can now turn to the main result of this section, namely the connected sum
operation in dimension four for elliptic symplectic structures with imaginary
parameter at points in D(2) whose imaginary parameters match in absolute
value.

Theorem 1.5.9. Let (M, I|DM |) and (N, I|DN |) be four-manifolds with elliptic divisors.
Let ω1, ω2 be locally complex elliptic symplectic forms with imaginary parameters at
p ∈ DM (2) and q ∈ DN (2) and denote by D′M and D′N the connected components of
the divisor containing p and q. If |Resr1r2 ω1(p)| = |Resr1r2 ω2(q)|, then:

• The connected sum M#p,qN admits a locally complex elliptic symplectic form, ω,
for which the inclusions (M\{p}, ω1), (N\{q}, ω2) ↪→ (M#p,qN,ω) are elliptic
symplectic maps.

• If either D′M (2) or D′N (2) has more than one point, the parity of D′M#N is given
by

εD′M#N
= −εD′M εD′N .

• If D′M (2) = {p} and DN (2) = {q}, then D′M#N is co-orientable if and only if p
and q have opposite parities.

Proof. We will prove the claims of the theorem in turn. The tools needed are
the normal form for locally complex elliptic symplectic structures with ima-
ginary parameter from Remark 1.5.8 and the local symplectomorphisms from
Lemma 1.5.6.

To prove the first claim we choose complex coordinates in a neighbourhood
of p which render the symplectic structure in the form (1.5.2) and do the same
for q, but reverse their order so that Resr1r2 ω1(p) = −Resr1r2 ω2(q).

For this choice of coordinates, if we use F to perform the connected sum,
Lemma 1.5.6 implies that the structures on M\{p} and N\{q} agree on their
overlap on M#p,qN which therefore inherits an elliptic symplectic structure.

Now we move to the second claim. Choose co-orientations for D′M and D′N .
If p and q have the same index and, say, D′M (2) has more than one point, we can
change the choice of co-orientation of one of the irreducible components arriving
at p which causes the index of p to change sign. So we may assume without
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loss of generality that the indices of p and q are opposite. We assume that p has
negative index and q has positive index as the other case is analogous.

In this case, the complex coordinates used in a neighbourhood of p in the first
claim only give the correct co-orientation of one of the irreducible components of
D′M passing through p, say, the one given by [z2 = 0]. That is the co-orientation
of [z1 = 0] is determined by dz2 and the co-orientation of [z2 = 0] by dz1. Since
q has positive index, we may assume that the complex coordinates chosen for
q are compatible with co-orientations. Finally we observe that the map F from
Lemma 1.5.6 sends the line dz1 over [z2 = 0] to itself and sends the line dz2 over
[z1 = 0] to dz2. Therefore, the co-orientations of D′M and D′N are mapped to each
other under F and hence D′M#N inherits a natural co-orientation from those of
D′M and D′N and we can compute its index:

εD′M#N
= Πr∈D′M (2),r 6=pεrΠs∈D′N (2),s6=qεs

= −εpεqΠr∈D′M (2),r 6=pεrΠs∈D′N (2),s6=qεs = −εD′M εD′N .

Finally we prove the last claim. If the indices of p and q are opposite, the previous
argument shows that a choice of co-orientation for D′M (2) and D′N (2) induces a
co-orientation for D′M#N , which is therefore co-orientable. If the indices of p and
q agree, then the argument above shows that map F matches co-orientations of
one of the strands arriving at p and q and reverses the other. Since D′M and D′N
are both connected, this implies that D′M#N is not co-orientable.

Instead of performing connected sums of two manifolds we can also perform
a connected sum of a manifold with itself (self-connected sum), that is we can
glue neighbourhoods of points p and q ∈M by an inversion on the annulus. In
this case, if M is connected, this operation corresponds to attaching a 1-handle
and hence the diffeomorphism type of the resulting space is alwaysM#(S1×S3).
In this context, Theorem 1.5.9 becomes:

Corollary 1.5.10. Let (M4, I|D|) be a four-manifold with an elliptic divisor and let ω
be a locally complex elliptic symplectic form with imaginary parameters at {p, q} ∈ D[2]
with p 6= q. Denote by D′p and D′q the connected components of the divisor containing p
and q, respectively. If |Resr1r2 ω(p)| = |Resr1r2 ω(q)|, then:

• M4#(S1 × S3) admits a locally complex elliptic symplectic structure for which
the inclusion M4\{p, q} ↪→ (M4#(S1 × S3)) is an elliptic symplectic map.

• If D′p 6= D′q , then the corresponding connected component D̃′ of D̃ satisfies:

εD̃′ = −εD′pεD′q ;

• If D′p = D′q , then the corresponding connected components D̃′p, D̃′q of D̃ satisfy:

εD̃′p
εD̃′q

= −εD′pεD′q .
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Remark 1.5.11. It might be more desirable to arrive at the conclusion of this
corollary by producing a stable generalized complex structure on S1 × S3 for
which D[2] 6= ∅ and then using Theorem 1.5.9 to perform the connected sum.
Unfortunately, presently we do not know if S1 × S3 has such a structure. ♦

1.6 Examples

In this section we will use the connected sum procedure of Theorem 1.5.9 to create
several examples of elliptic symplectic structures and stable generalized complex
structures. In order to do so we will start by constructing several building blocks,
which are then combined via connect sum. Throughout, we will visualise the
examples making use of certain singular torus fibrations. These fibrations and
their relation to stable generalized complex structures is studied in more detail
in the next chapter.

1.6.1 Simple examples

As we showed in Example 1.3.9, CP 2 admits a stable generalized complex struc-
ture whose divisor is given by three lines. The next few examples show that
S2 × S2 has such a structure as well, while CP 2 and S4 do not, but do have
locally complex elliptic symplectic structures.

Example 1.6.1 (CP 2). Let CP 2 denote the oriented manifold which is CP 2 en-
dowed with the orientation opposite to the one coming from the complex struc-
ture. In this example we construct an elliptic symplectic form with imaginary
parameter on CP 2 for the elliptic divisor induced by (O(3), z0z1z2). This elliptic
divisor cannot be the imaginary part of a complex log symplectic form, since
CP 2 does not admit generalized complex structures. Indeed, any generalized
complex manifold is almost complex and CP 2 does not admit an almost complex
structure compatible with the orientation.

Let O(1)→ CP 2 be the dual of the tautological line bundle and for i = 0, 1, 2
let zi ∈ Γ(O(1)) be the section induced by the homogeneous polynomial zi
on C3. Consider the three smooth complex log divisors, Di = (O(1), zi), let
D = (O(3), z0z1z2) be their product and let |D| be the corresponding elliptic
divisor. Using the underlying affine coordinates,

u1 =
z1

z0
, u2 =

z2

z0
, v0 =

z0

z1
, v2 =

z2

z1
, w0 =

z0

z2
, w1 =

z1

z2
,

we define the following global elliptic two-form

ω :=


=∗(id log u1 ∧ d log u2) if z0 6= 0,

=∗(−id log v0 ∧ d log v2) if z1 6= 0,

=∗(−id logw1 ∧ d logw0) if z2 6= 0.

48



1.6. Examples

It is immediate from the expression above that ω is locally complex with imagin-
ary parameter. Moreover we see that it induces the orientation opposite from the
usual complex structure on CP 2, hence it is a locally complex elliptic symplectic
structure with imaginary parameter for every point in D[2] on CP 2.

Finally, if we consider the co-orientation of the elliptic divisors induced by
the complex log divisor in Example 1.1.10 we have that the points D0 ∩D2 and
D0 ∩D1 have positive index, while the point in D1 ∩D2 has negative index. By
Lemma 1.4.10 we conclude that ω cannot be the imaginary part of a complex
log symplectic form. Further, we observe that if we were to choose the opposite
co-orientation for D0, all intersection indices would be −1.

We can provide a simple picture to illustrate this and all the other examples
in this section. Recall that CP 2 admits a singular torus fibration whose fibers are
the orbits of the standard torus action on CP 2. The quotient space CP 2/T 2 is a
triangle and the elliptic symplectic structure constructed above is invariant under
this action (with symplectic fibers). The zero locus of the divisor is the pre-image
of the edges of the triangle and points in D[2] are the pre-images of the vertices.
With this in mind, we use a triangle to represent CP 2 (or CP 2) and decorate each
vertex of the triangle with the intersection index of the corresponding point in
D[2] (see Figure 1.2). 4

+1

+1

−1
Figure 1.2: We visualise CP 2 as its image under the moment map and each vertex
in the triangle corresponds to a point in D[2]. We label the vertices with ±1

according to the intersection index of the corresponding point in CP 2.

Example 1.6.2 (S2 × S2). The manifold S2 × S2 admits a complex log symplectic
structure σ for which D[2] consists of four points. The imaginary part of σ is an
elliptic symplectic form with imaginary parameter. Indeed, identifying S2 with
the extended complex plane, the vector field z∂z vanishes transversely at 0 and
∞ and hence in S2 × S2 (with complex coordinates z and w), the bivector field
π = −izw∂z∂w is Poisson and determines a complex log divisor. Therefore we
can use π to deform the complex structure of S2 × S2 into a stable generalized
complex structure (as in Example 1.3.8). A direct check shows that this structure
has imaginary parameter at all points in D[2]. Since this stable generalized
complex structure is obtained from a holomorphic Poisson structure, the natural
co-orientation of each irreducible component of the divisor (induced by the
complex structure) makes all intersection indices positive. Yet, by changing co-
orientations, we can arrange that any pair or all four points in D[2] have negative
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index.
Just as for CP 2, we can provide an illustration for this structure using the

toric description of S2 × S2 (see Figure 1.3). 4

+1

+1

+1

+1

Figure 1.3: We visualise S2 × S2 as the image under the map given by the two
height functions. We label the vertices with ±1 according to the intersection
index of the corresponding points in S2 × S2. Different choices of co-orientations
yield different sign combinations at the vertices.

Example 1.6.3 (S4). The manifold S4 admits an elliptic symplectic form with
imaginary parameter with divisor consisting of two copies of S2 intersecting
each other at the north and south pole.

Consider two copies of D4 and endow one copy with the two-form ω :=
=∗(id log z1∧d log z2) and the other copy with−ω. Using the map F , as in Lemma
1.5.6, we can glue an annulus in one of the disks to an annulus in the other disk
while preserving the elliptic symplectic structures. The resulting manifold is
diffeomorphic to S4 and the divisors intersect at the points (z1, z2) = (0, 0) in
both copies of D4, which correspond to the north and south pole of the sphere.
Because F involves a complex conjugation, a choice of co-orientations for which
one point inD[2] has positive index causes the other point to have negative index.
As in the previous examples, S4 admits a natural torus action which rotates each
complex coordinate in D4 for which the hyperplanes [zi = 0] have S1 isotropy
and the north and south poles are fixed points. This allows us to produce a
two-dimensional illustration of this structure (see Figure 1.4). 4

+1

−1

Figure 1.4: We visualise S4 as its quotient by the standard torus action: the edges
correspond to the hyperplanes [zi = 0] and the corners to the north and south
poles.

Example 1.6.4. Because S4 admits an elliptic symplectic form with imaginary
parameter, by Example 1.6.3, we can use Theorem 1.4.12 to obtain a smooth
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elliptic symplectic structure on S4. However the degeneracy locus is non co-
orientable, because the smoothing process did not preserve co-orientations. Be-
cause S4 is orientable, we conclude that the degeneracy locus has to be non-
orientable. Since the modular vector field is tangent to the degeneracy locus
and nowhere zero, we see that the degeneracy locus is diffeomorphic to a Klein
bottle. 4

1.6.2 Main class of examples

In this section we will combine all of our four-dimensional results to create new
examples of elliptic symplectic and stable generalized complex structures on a
large class of four-manifolds exhibited as connected sums.

Theorem 1.6.5. The manifolds in the following two families admit stable generalized
complex structures:

1. Xn,` := #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

2. X̂n,m,` := #nCP 2#mCP 2#`(S1 × S3), with n,m, ` ∈ N,

as long as 1− b1 + b+2 is even and the Euler characteristic is non-negative.

Notice that if 1− b1 + b+2 is odd for a four-manifold M , then M does not admit
any generalized complex structure as it is not even almost complex by [46] or [36,
Theorem 1.4.13]. The requirement that the Euler characteristic is positive, on the
other hand, seems to be more of a limitation of our methods.

Proof. We will first prove that the manifolds in the list above admit elliptic sym-
plectic structures with imaginary parameters as long as the Euler characteristic is
non-negative and then show that these elliptic symplectic structures come from
a generalized complex one if 1− b1 + b+2 is even.

In Examples 1.3.9, 1.6.1 and 1.6.2 we produced elliptic symplectic structures
on CP 2, CP 2 and S2 × S2 with 3, 3 and 4 points in D[2] respectively. These are
all locally complex with imaginary parameter, so that by applying Theorem 1.5.9
inductively we obtain elliptic symplectic structures on Xn,0 and X̂n,m,0 for all
values of n, m, including the case n = m = 0 by Example 1.6.3. The number
of points in D[2] in these manifolds is, respectively, n + m + 2 and 2n + 2.
By Corollary 1.5.10 we can self-connect sum these spaces up to bn+m+2

2 c and
n+ 1 times, respectively, to obtain elliptic symplectic structures with imaginary
parameters on the spaces of the list with non-negative Euler characteristic.

To prove that the elliptic symplectic structures constructed above are induced
by stable generalized complex structures, it suffices to show that the parity is 1,
by Lemma 1.4.10. Due to Theorem 1.5.9 and Corollary 1.5.10, the parity of the
symplectic structure for both families is (−1)n−1+`, which is positive if and only
if n− 1 + ` is even, that is, 1− b1 + b+2 is even.
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Remark 1.6.6. Several of the manifolds in Theorem 1.6.5, although not all, have
already appeared before. The family X̂n,m,0 with n > 0 and m ≥ 0 can be found
in [15]. The manifolds Xn,0, Xn,1 and X̂n,m,1) appeared in [74]. The examples
with ` > 1 have not appeared before. The main advantage of our approach
is that it is direct. We construct geometric structures on manifolds which are
connected sums by showing that the connected sum operation is compatible with
the structures in question. This is in contrast with those references, which instead
construct manifolds with the desired structure via surgeries and then determine
the resulting diffeomorphism type at a later stage. ♦

Remark 1.6.7. The manifolds in both families in Theorem 1.6.5 do not admit
complex or symplectic structures if n > 1. Indeed, for n > 1, the manifolds are
connected sums of manifolds with b+2 > 0 and by results from Seiberg–Witten
theory due to Taubes (see [72]) no such manifold admits a symplectic structure.

To prove the non-existence of complex structures requires a slightly longer
argument. For ` even, if the manifolds admitted complex structures they would
be Kähler and hence also symplectic, but we ruled out this possibility already.
The argument for ` odd comes from a paper by Belgun [8] and goes as follows. It
follows from the Kodaira classification of surfaces that if one of these manifolds
were complex, call it X , then its Kodaira dimension would be 1 and X would be
an elliptic surface, possibly with multiple fibers, X → B. But in this case there
is a finite cover, X̃ of X , corresponding to a branched cover B̃ of B which is a
genuine fibration: X̃ → B̃. By a result of Mehara [56], any such X̃ is a quotient
of C2 by a discrete group. In particular, we conclude that X̃ and (hence also X)
would be aspherical, which is not the case for our manifolds. We are thankful to
Ornea and Vuletescu for pointing us towards this argument. ♦
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Chapter 2

Fibrations in semi-toric and
generalized complex geometry

In this chapter, which is based on [19] and joint work with Ralph Klaasse and
Gil Cavalcanti, we study a class of singular fibrations related to both semi-toric
geometry and generalized complex geometry.

We define the class of singular fibrations called self-crossing boundary (Lefschetz)
fibrations. These are maps of pairs f : (M,D)→ (N,Z), whereD is a codimension
two and Z a codimension one immersed submanifold with normal self-crossings
such that f is an honest fibration away from Z and degenerates in a quadratic
fashion along D.

Consider a self-crossing boundary Lefschetz fibration f : (M,D) → (N,Z).
The map f has singularities precisely such that it induces an elliptic divisor I|D|,
as in Definition 1.1.19, and a Lie algebroid morphism

(ϕ, f) : (A|D|,M)→ (AZ , N),

between the elliptic tangent bundle (Definition 1.2.8) and the real log tangent
bundle (Definition 1.2.4). Moreover, ϕ is a Lie algebroid version of a Lefschetz
fibration. We will use these fibrations to construct self-crossing elliptic symplectic
structures ω ∈ Ω2(A|D|) on their total space. The relevant geometric structure
on the base of this fibration is a symplectic structure on AZ , also known as a
self-crossing log-symplectic structure ([43, 64]).

Following the strategy of constructing symplectic structures out of fibrations,
we prove a Gompf–Thurston theorem for self-crossing stable generalized com-
plex structures. This result is the generalisation of a similar result for stable
generalized complex structures with embedded type-change locus appearing in
[13], but to apply it in our setting we require several adaptations of that argument.
We say that a map f is homologically essential if its generic fibre is non-trivial in
homology.
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Theorem 2.1.23. Let f : (M4, D2)→ (N2, ∂N) be a self-crossing boundary Lefschetz
fibration. If f is homologically essential then M4 admits an elliptic symplectic structure,
which induces a self-crossing stable generalized complex structure if the locus D is
co-orientable and its index is equal to 1.

Construction Having established that boundary Lefschetz fibrations supply
self-crossing stable generalized complex structures, we decouple the map from
the geometric structure and study them separately. Seeing that in Chapter 1 we
have proven that one can take connected sums of stable generalized complex
structures, we expect the same to hold for the boundary Lefschetz fibrations:

Theorem 2.2.3. Let fi : (M4
i , D

2
i ) → (N2

i , ∂Ni) for i = 1, 2 be boundary Lefschetz
fibrations and let pi ∈Mi be such that qi = fi(pi) are corners of the manifolds Ni. Then
there exists a boundary Lefschetz fibration on their connected sum

f1#f2 : (M1#p1,p2
M2, D1#D2)→ (N1#q1,q2N2, ∂(N1#N2)),

which is compatible with the inclusion Mi\{pi} ↪→M1#M2. Moreover, the map f1#f2

is homologically essential if and only if f1 and f2 are.

This result is in sheer contrast with the situation in toric geometry. There is no
symplectic connected sum procedure and most of the manifolds obtained using
the above proposition will have no toric structure. This difference in rigidity
between the generalized complex and toric worlds is already apparent on the
base of these fibrations. Namely, for generalized complex structures the base
carries a self-crossing log-symplectic structure, which is quite flexible. On the
other hand, in toric geometry the base carries an integral affine structure, which
is very rigid. In other words, although toric manifolds do not behave well with
respect to connected sums, the underlying torus actions and abstract quotient
maps do.

Singularity trades The nodal trade procedure in semi-toric geometry exchanges
elliptic–elliptic singularities of the moment map for focus–focus singularities
[80, 61] and vice versa [55]. These procedures rely heavily on the existence of
a singular integral affine structure on the base. Following our general strategy,
decoupling the geometric structure from the maps allows us to prove an abstract
statement for boundary Lefschetz fibrations:

Theorem 2.3.3. Let f : (M4, D2)→ (N2, ∂N) be a boundary Lefschetz fibration and
let p ∈ M be an elliptic–elliptic singularity. Then there exists a boundary Lefschetz
fibration

f̃ : (M, D̃)→ (Ñ , ∂Ñ),

agreeing with f outside a neighbourhood of p and such that the elliptic–elliptic singularity
is traded for a Lefschetz singularity. The map f̃ is homologically essential if and only if f
is.
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Figure 2.1: The picture on the left presents CP 2 using the usual moment map,
which is the prototypical example of a self-crossing boundary fibration. Theorem
2.3.3 tells us that we can slightly modify this fibration to obtain a boundary
Lefschetz fibration, with three Lefschetz singularities.

The proof of this result, and its converse, Theorem 2.3.4, relies on the connec-
ted sum procedure and the existence of a particular boundary Lefschetz fibration
on S4.

Examples Using simple manifolds as building blocks, the connected sum pro-
cedure allows us to construct many examples of boundary Lefschetz fibrations.
For instance, we can show that the stable generalized complex manifolds from
Theorem 1.6.5 admit boundary Lefschetz fibrations:

Theorem 2.4.12. The manifolds in the following two families

• Xn,` := #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

• Yn,m,` := #nCP 2#mCP 2
#`(S1 × S3), with n,m, ` ∈ N,

admit homologically essential boundary fibrations whenever their Euler characteristic is
non-negative.

Combining this result with Theorem 2.3.3 we conclude that the above mani-
folds also admit boundary Lefschetz fibrations with embedded degeneracy locus.

Organisation of the chapter

This chapter is organised as follows. In Section 2.1 we extend the notion of bound-
ary (Lefshetz) fibration from [13] to allow for self-crossing of the degeneracy
locus. Moreover, we prove a Gompf–Thurston result, Theorem 2.1.23. In Sec-
tion 2.2 we show that taking connected sums is allowed fo boundary Lefschetz
fibrations and prove Theorem 2.2.3. In Section 2.3 we prove the singularity trade
results, namely Theorem 2.3.3 and Theorem 2.3.4. Finally in Section 2.4 we show
that torus actions give rise to boundary fibrations and exhibit several examples,
including Theorem 2.4.12.
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Chapter 2. Fibrations in semi-toric and generalized complex geometry

2.1 Boundary maps and Lefschetz fibrations

We will single out a class of maps that admits enough singularities to make them
interesting, while also giving us enough control on the singular behaviour so that
we can use these maps to perform geometric constructions. The main point of
this section is to extend the notion of boundary Lefschetz fibration defined in [13]
for manifolds with smooth divisors to manifolds with self-crossing divisors. This
extension allows for maps to have one extra type of singularity: elliptic–elliptic
type. This change allows us to get a much better grasp on many generalized
complex manifolds as those can be easily described as fibrations with elliptic–
elliptic singularities.

2.1.1 Boundary maps

Our first step is to single out a very general class of maps which is compatible
with the Lie algebroids introduced in Section 1.2. These are the boundary maps
which already illustrate how singular behaviour of maps can be coupled with
Lie algebroids.

We start with some basic terminology. A pair, (M,D), is a manifold M
together with a (possibly) immersed submanifold D ⊆ M . A map of pairs
f : (M,D) → (N,Z) is a map f : M → N such that f(D) ⊆ Z. A strong map
of pairs furthermore satisfies f−1(Z) = D. Finally, (N,Z) is a log pair if the
vanishing ideal IZ is a log divisor ideal on N .

Definition 2.1.1. Let f : (M,D) → (N,Z) be a strong map of pairs onto a real
log pair. Then f is a boundary map if I|D| := f∗IZ defines an elliptic divisor
ideal. ♦

Example 2.1.2. The basic example to have in mind for boundary map is

f1 : (C2, D)→ (R2, Z), f1(z1, z2) = (|z1|2, |z2|2),

where D ⊂ C2 and Z ⊂ R2 are the two coordinate axes.
There are other examples of boundary maps that we will eventually exclude

by imposing further requirements, but which are also interesting to keep in mind
for now:

f2 : (C2, D)→ (R, {0}), f2(z1, z2) = |z1|2|z2|2,

where D ⊂ C2 is again the two coordinate axes and

f3 : (S2, {pN , pS})→ (S1, {−1}), f3(x, y, z) = exp(πiz),

where pN , pS are the north and south poles of the unit sphere and we regard S1

as the complex numbers of length 1. 4

Notice that in the first two examples above, the image of the maps considered
are manifolds with corners, and for all intents and purposes we could have
considered them as maps into their image with the divisor being determined
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2.1. Boundary maps and Lefschetz fibrations

by the boundary. This is in line with the original idea behind log geometry
(also known as b-geometry) developed by Mazzeo and Melrose [63]. The third
map shows that sometimes the image may be a genuine manifold (without
boundary). Note that f3 factors through the height map f̃3 : (S2, {pN , pS}) →
(I, ∂I), f̃3(x, y, z) = z,

(I, ∂I)

(S2, {pN , pS}) (S1, {−1}),

exp (πi ·)

f3

f̃3

which has image a manifold with boundary, and boundary as divisor. This is
a specific example of a more general construction, namely that we can “cut N
open along Z”. Next we will describe this procedure, which justifies the name
boundary map.

Lemma 2.1.3. Let (N,Z) be a real log pair with N a manifold without boundary. Then
there is a manifold with corners Ñ and a map p : (Ñ , ∂Ñ)→ (N,Z) such that

• p is a map of divisors,

• p : Ñ\∂Ñ → N\Z is a bijection,

• every point x ∈ Ñ has a neighbourhood U such that p : U → p(U) is a diffeo-
morphism.

Further, if p′ : (N ′, ∂N ′)→ (N,Z) is another manifold and map satisfying the properties
above then there is a unique diffeomorphism Ψ: (N ′, ∂N ′) → (Ñ , ∂Ñ) for which
p′ = p ◦Ψ.

Proof. We start with a local construction. Denoting by Rn` the manifold Rn with
divisor given by the hyperplanes determined by the equation x1 · · ·x` = 0, we
let R̃n` be given by

R̃n` =

•⋃
K∈{−1,1}`

{(x1, . . . , xn) ∈ Rn : kixi ≥ 0, where K = (k1, . . . k`)},

and we let p : R̃n` → Rn` be the natural inclusion: p(x) = x. Figure 2.2 shows this
construction for R2 with the two coordinate axes as its real log divisor. We call
each connected component of R̃n` defined above a quadrant.

Notice that p : R̃n` → Rn` is a map of divisors, and if a smooth map f : M → Rn

has its image in a quadrant, then it admits a smooth lift to R̃n` . Further, if M
is connected and the image of f has points which are not in the hyperplanes
determined by x1 · · ·x` = 0, then this lift is unique.

For the global construction, we observe that charts in N provide a way to
glue the local construction above to produce a manifold with corners. Indeed,
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p

R̃2
2 R2

2

Figure 2.2: Boundarification of R2 with two coordinate axes.

given two charts that render the divisor in standard form, in their overlap the
change of coordinates gives a diffeomorphism Φ: Rn` → Rn` , for some `. Since the
charts are adapted to the divisor, Φ also induces a diffeomorphism of quadrants,
that is, it lifts to a diffeomorphism Φ̃ : (R̃n` , ∂R̃n` )→ (R̃n` , ∂R̃n` ).

Since the changes of coordinates arising from an atlas for N give rise to a
Čech cocycle of diffeomorphisms, the same holds for their lifts, so the procedure
can be used to produce a manifold with corners Ñ . Further, the natural local
maps ,“p”, defined in coordinate charts above patch together to give a global
map of divisors p : (Ñ , ∂Ñ) → (N,Z). By construction, p : Ñ\∂Ñ → N\Z is a
bijection away from the divisors and a local diffeomorphism onto its local image.

Finally, if p′ : (N ′, ∂N ′)→ (N,Z) is a map of divisors with the two properties
above then we show that p′ has a unique lift Ψ: (N ′, ∂N ′)→ (Ñ , ∂Ñ):

(Ñ , ∂Ñ)

(N ′, ∂N ′) (N,Z).

p

p′

Ψ

Indeed, in this case, p−1 ◦ p′ : N ′\∂N ′ → Ñ\∂Ñ is a diffeomorphism and by
the third property any point x ∈ ∂N ′ has a connected neighbourhood U ⊂ N ′

that maps diffeomorphically onto its image. Hence, taking U small enough,
since U is connected, p′(U) lies in a quadrant for a coordinate chart in N and
hence p′ has a unique (local) lift to Ñ . Patching these local lifts together we
obtain the map Ψ. Since Ψ is a diffeomorphism in the interior of N ′ and by
construction also a local diffeomorphism for points in the boundary of N ′ it is a
global diffeomorphism.

Definition 2.1.4. The boundarification of a manifold without boundary together
with a real divisor, (N,Z), is a manifold with corners (Ñ , ∂Ñ) together with a
map p : (Ñ , ∂Ñ)→ (N,Z) satisfying the properties of Lemma 2.1.3. ♦

Example 2.1.5. If we take N to be the two-dimensional torus and Z to be an em-
bedded circle which represents a primitive homology class, the boundarification
of N is a cylinder and the map p identifies the two ends of the cylinder. If we take
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2.1. Boundary maps and Lefschetz fibrations

Z to be a pair of embedded circles intersecting transversely and which represent
a basis for the homology of the torus, then the boundarification is a rectangle and
the quotient map identifies opposite sides in the usual fashion. 4

Proposition 2.1.6. Let f : (M,D) → (N,Z) be a boundary map onto a manifold
without boundary equipped with a real log divisor. Then there exists a unique boundary
map f̃ : (M,D)→ (Ñ , ∂Ñ) to its boundarification that is a lift of f , i.e. which satisfies
f = p ◦ f̃ for p : (Ñ , ∂Ñ)→ (N,Z).

Proof. All we need to prove is that every point x ∈ M has a neighbourhood U

such that f |U : U → N admits a unique lift f̃ |U : U → Ñ . Indeed, if this is the
case, then any two such local lifts will agree in their overlap by uniqueness and
hence the local lifts patch together to give a unique global map.

Because D has codimension two in M every point x ∈ M has a neighbour-
hood U such that U\D is connected, it follows that f(U\D) lies in a connected
component of N\Z. By taking U small enough, we have that f(U\D) lies in a
connected component of the complement of Z in a coordinate patch V ⊂ N , that
is, f(U\D) lies in a quadrant and, by continuity, so does f(U). As such there is a
unique lift to a map f̃ : U → Ñ .

We intend to use boundary maps to construct geometric structures on their
total space. Thus we can, without loss of generality, assume that the target of
a boundary map is (N, ∂N), a manifold with corners whose real log divisor
is determined by its boundary. This also explains the terminology “boundary
map”.

2.1.2 Boundary Lefschetz fibrations

The notion of a boundary map f is still too general to give us enough information
about the singularities of the map. To get a good grasp on f we need to ensure
that its singularities are well controlled and this is what we do next. There are two
ways to constrain the singularities of f : we can either impose that they display
a specific behaviour with respect to the ideals (and Lie algebroids) present, or
we can impose that singularities disjoint from the vanishing loci of those ideals
acquire a specific normal form. We will follow both routes here.

Note that a boundary map is by definition a map of pairs, so that it satisfies
f(D) ⊆ Z. The first restriction we impose is that the map moreover respects the
stratifications present on both D and Z.

Definition 2.1.7. A fibrating boundary map is a boundary map f : (M,D) →
(N,Z) such that for each k ≥ 1 we have that:

• f : (M,D[k])→ (N,Z[k]) is a strong map of pairs;

• each restriction f |D[k] : D[k]→ Z[k] is a submersion. ♦
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In Example 2.1.2, f1 and f3 are fibrating boundary maps, while f2 is not as it
does not satisfy the first condition.

For a fibrating boundary map, f , we can use the ideals on M and N to control
the singular behaviour of f in a neighbourhood of their corresponding divisors.
Concretely, we have a pointwise normal form for the map.

Lemma 2.1.8. Let f : (Mn, Dn−2)→ (Nm, Zm−1) be a fibrating boundary map and
let x ∈ D[k]. Then there exist coordinates (x1, . . . , xn) around x and (z1, . . . , zk, yi)
around f(x) such that

• Z is the standard log divisor with pointwise multiplicity k on Rk × Rm−k

• D is the standard elliptic divisor with pointwise multiplicity k on R2k × Rn−2k,
and

• in these coordinates, the map f takes the form

f(x1, . . . , xn) = (x2
1 + x2

2, . . . , x
2
2k−1 + x2

2k, xn−m+k, . . . , xn).

Conversely, if for every point in D the map f is given in standard coordinates for the
divisors by the expression above, then it is a fibrating boundary map.

Proof. Choose a tubular neighbourhood V ofZ[k] and denote by prZ[k] : NZ[k]→
Z[k] the projection. Let V ′ ⊂ V be an open neighbourhood of f(x) on which Z[k]
is the standard log divisor and write V ′ ∩ Z[k] = {z1 · . . . · zk = 0}. Choose a
coordinate system (yk+1, . . . , ym) on V ′ ∩ Z[k], so that the set

{z1, . . . , zk,pr∗Z[k]yk+1, . . . ,pr∗Z[k]ym}

forms a coordinate system on V ′ which is possible because prZ[k] is a submersion.
Because f is a morphism of divisors, f∗(z1 · . . . · zk) generates an elliptic divisor
ideal on U := f−1(V ′) ⊆ M . Using that f is fibrating, after possibly shrinking
U around x, let (x1, . . . , xn) be coordinates on U in which this is the standard
elliptic divisor, and such that f∗(zj) = x2

2j−1 + x2
2j . Because the restriction f |Z[k]

is a submersion we see that

{x1, . . . , x2k, f
∗pr∗Z[k]yk+1, . . . , f

∗pr∗Z[k]ym}

forms a functionally independent set. We can complete this to a coordinate
system on M and relabel these as (x1, . . . , xn). If we use the coordinate system
(z1, . . . , zk,pr∗Z[k]yk+1, . . . ,pr∗Z[k]ym) on N and the above coordinates on M , then
f takes the required form.

The converse follows immediately from the local expression for f .

Remark 2.1.9. Even if M and N are oriented manifolds and we require the use
of coordinate charts compatible with orientations, we can still arrange that the
local expression for f is given by the expression in Lemma 2.1.8. Indeed, using
complex conjugation on the domain and permutation of the coordinates on both
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domain and codomain we can change a coordinate chart which is not compatible
with the given orientations into one that is.

In four dimensions, if D[2] is nonempty, Lemma 2.1.8 implies that N is two-
dimensional. Moreover, in a neighbourhood of a point p ∈ D[2], orientations of
M and N in fact dictate which one is “the first” strand of D arriving at p and
which one is “the second”, as this information is determined by the orientation
of N . ♦

Lemma 2.1.10. Let f : (M,D) → (N,Z = ∂N) be a fibrating boundary map whose
fibres near D are connected. Then the fibres of f |D[k] : D[k]→ Z[k] are connected for
all k ≥ 1.

Proof. The proof goes by induction over the strata. Note that Z[k + 1] is a
hypersurface in Z[k], and therefore

f |D[k] : (D[k], D[k + 1])→ (Z[k], Z[k + 1])

is a fibrating boundary map for all k ≥ 0. Applying [13, Proposition 5.25] to
f |M\D(2) tells us that the fibres of f |D[1] are connected. Thus we can apply
the same result to f |D[1] to conclude that the fibres of f |D[2] are connected.
Continuing inductively we arrive at the desired result.

The conditions imposed on the maps have, up to this point, been on behaviour
near D. Next we impose the conditions away from D:

Definition 2.1.11. A boundary fibration is a fibrating boundary map

f : (M,D)→ (N,Z)

such that f |M\D : M\D → N\Z is a surjective submersion. ♦

Definition 2.1.12. A boundary Lefschetz fibration is a fibrating boundary map
f : (M2n, D)→ (Σ2, Z) between oriented manifolds such that f |M\D : M\D →
Σ\Z is a Lefschetz fibration. That is, the map f : M → N is proper, f |M\D
is injective on critical points and for each critical point p ∈ M\D there exist
orientation-preserving complex coordinate charts centered at p and f(p) in which
f takes the form

f : Cn → C, f(z1, . . . , zn) = z2
1 + . . .+ z2

n. ♦

If M is four dimensional, the definition above allows for three different types
of singularities. It is worth giving them names:

Definition 2.1.13. Let f : M4 → Σ2 be a smooth map.

• An elliptic singularity of f is a point p for which f has the local expression

f(x1, x2, x3, x4) = (x2
1 + x2

2, x4), xi ∈ R;
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• An elliptic–elliptic singularity of f is a point p for which f has the local
expression

f(x1, x2, x3, x4) = (x2
1 + x2

2, x
2
3 + x2

4), xi ∈ R;

• A Lefschetz singularity of f is a point p for which f has the local expression

f(z1, z2) = z2
1 + z2

2 , zi ∈ C. ♦

The level sets associated to these singularities are, respectively, an elliptic,
elliptic–elliptic and Lefschetz fibre.

The first two singularities above happen at the different strata of the divisor
whereas the Lefschetz singularities do not interact with the divisor. In dimension
four the geometry of these fibrations can be understood.

Proposition 2.1.14. Let f : (M4, D2) → (Σ2, Z) be a boundary Lefschetz fibration
with connected fibres, and let D′ be a connected component of D. Then

• The generic fibres of f near D are tori;

• When D′[2] has k ≥ 1 points, then D′ is a union of k pairwise transversely
intersecting spheres.

In particular, if D′[2] 6= ∅, then D′ is co-orientable.

Proof. The first point follows immediately from [13, Corollary 5.18].
For the second, assume that D′[2] has at least one point. Then f |D[1] : D[1]→

Z[1] is a surjective submersion by assumption, which by Lemma 2.1.10 has
connected fibres. The corresponding locus Z ′[1] is a disjoint union of k open
intervals, and as the fibres of f |D[1] are connected they must be circles. Therefore
D′[1] has to be a disjoint union of cylinders. The immersed submanifold D′ is
obtained from D′[1] by replacing the boundary circles by points and pairwise
glueing these points, which implies it is as described above.

Finally, because each component of D′ is an immersed sphere and thus
automatically co-orientable, each component of D′[1] is also co-orientable.

To construct stable generalized complex structures using Lemma 1.4.10, the
condition of co-orientability of D is satisfied as long as D′[2] is nonempty for
every component D′ of D. For smooth components D′ of D however, i.e. when
D′[2] = ∅, co-orientability is not guaranteed.

2.1.3 Boundary maps and Lie algebroids

Given that the ideals IZ and I|D| of a boundary map determine Lie algebroids,
one should expect that boundary maps (and their further specializations) are
compatible with them. This is indeed the case.
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Lemma 2.1.15. Let f : (M,D) → (N,Z) be a boundary map. Then there is a Lie
algebroid morphism (ϕ, f) : A|D| → AZ such that ϕ ≡ df on sections.

Proof. To prove that df induces a Lie algebroid morphism ϕ, by [13, Proposition
3.14] it suffices to show that f∗ extends to an algebra morphism ϕ∗ : Ω•(AZ)→
Ω•(A|D|). This can be done locally, so given p ∈ D and f(p) ∈ Z consider
coordinates adapted to the divisors as in Example 1.1.22:

(X1, Y1, . . . , Xs, Ys, X2s+1, . . . , Xn) around p,
(x1, . . . , xj , yj+1, . . . , ym) around f(p).

In these coordinates we have

Ω•(A|D|) = 〈d log r1, dθ1, . . . , d log rs, dθs, dX2s+1, . . . , dXn〉 ,
Ω•(AZ) = 〈d log x1, . . . , d log xj , dyj+1, . . . , dym〉 .

We must verify that f∗(d log xi) defines an elliptic form. Because f is a morphism
of divisors and the ideals are locally principal, it sends generators to generators
thus there must exist a nowhere-vanishing function g such that f∗(x1 · . . . · xj) =
gr2

1 · . . . · r2
s . Consequently, by functional indivisibility of the r2

i we conclude
that f∗(xi) = hr2

i1
· . . . · r2

i`
for some nowhere vanishing function h and (possibly

empty) subset {i1, . . . , i`} ⊆ {1, . . . , s}. We find that

f∗(d log xi) = d log f∗(xi) = d log h+ 2d log ri1 + . . .+ 2d log ril ,

which is an elliptic form as desired, so that ϕ is a Lie algebroid morphism.

The conditions imposed on boundary maps have a direct counterpart in Lie
algebroid language. Given a Lie algebroid ρA : A → M , let MA be the open
subset where the anchor map is an isomorphism.

Definition 2.1.16 ([13]). A Lie algebroid morphism (ϕ, f) : (A,M)→ (A′, N) is
said to be a:

• Lie algebroid fibration if the induced morphism ϕ! : A → f∗A′ is surject-
ive;

• Lie algebroid Lefschetz fibration if MA is dense, f−1(NA′) = MA and
there exists a discrete set ∆ ⊂MA such that

– f |MA : MA → NA′ is a Lefschetz fibration with Crit(f |MA) = ∆;

– (ϕ, f) : (A,M\f−1(f(∆))) → (A′, N\f(∆)) is a Lie algebroid fibra-
tion.

Note that the Lefschetz condition forces that rank(A) = 2n and rank(A′) =
2. ♦

The following lemmas follow immediately from the definition, combined
with Lemma 2.1.15.
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Lemma 2.1.17. Let f : (M,D)→ (N,Z) be a boundary fibration. Then there is a Lie
algebroid fibration (ϕ, f) : (A|D|,M)→ (AZ , N) such that ϕ ≡ df on sections.

Lemma 2.1.18. Let f : (M4, D2)→ (N2, Z1) be a boundary Lefschetz fibration. Then
there is a Lie algebroid Lefschetz fibration (ϕ, f) : (A|D|,M4) → (AZ , N2) such that
ϕ ≡ df on sections.

We summarise these statements and the relationship between the different
concepts in the table below:

Boundary (Lefschetz) ⇒ Lie algebroid (Lefschetz)
fibration fibration
⇓ ⇓

Fibrating boundary ⇒ Lie algebroid map submersive
map over the singular locus
⇓ ⇓

Boundary map ⇒ Lie algebroid map

2.1.4 Construction of self-crossing stable generalized complex
structures

With the desired notion of boundary Lefschetz fibration in hand, we are set to
prove our first result relating them to stable generalized complex structures.

From now on we will adopt the following convention: given a boundary
Lefschetz fibration f : (M,D)→ (N,Z), we will orient the fibres of f : M\D →
N\Z by declaring that the orientation of the fibre together with the orientation
of the base yield the orientation of M , so that each fibre determines a homology
class on M\D. With this convention, integration over the fibre is a well-defined
operation which induces the natural pairing between homology and cohomology.

Definition 2.1.19. A boundary Lefschetz fibration, f : (M4, D) → (N2, Z), is
homologically essential if the homology class [F ] of a fibre of f : M\D → N\Z
is non-trivial in H2(M\D;R) or, equivalently, if there is a class c ∈ H2(M\D;R)
such that 〈c, [F ]〉 6= 0. ♦

Definition 2.1.20. A boundary Lefschetz fibration, f : (M4, D)→ (N2, Z), and
an elliptic symplectic form ω ∈ Ω2(A|D|) are compatible if kerϕ ⊆ A|D| consists
of symplectic vector spaces, where ϕ : A|D| → AZ is the induced map of Lie
algebroids. ♦

In what follows we will have two ongoing simplifying assumptions:

1. We will assume that the target manifold is (N, ∂N). This is not a restriction
since by Proposition 2.1.6 we can lift f to a boundary Lefschetz fibration
over the boundarification of (N,Z);
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2.1. Boundary maps and Lefschetz fibrations

2. We will assume that the level sets of f are connected. This also is not
restriction since by [13, Proposition 5.24] we may assume that the generic
fibres of f are connected and Lemma 2.1.10 then implies that the level sets
over Z[1] and Z[2] are connected as well.

Before we continue it is worth to stop and take stock of where we stand and place
our quest into context. The case when the elliptic divisor is smooth was already
treated in [13]. Even though there the authors only dealt with the compact case,
the following is an immediate generalisation for a proper map:

Theorem 2.1.21 ([13], Theorem 7.1). Let (M4, I|D|) be an oriented manifold with a
smooth elliptic divisor and let f : (M,D)→ (N2, Z, ωN ) be a homologically essential,
proper, Lefschetz fibration with connected fibres over a possibly open log-symplectic sur-
face. Denote by ϕ : A|D| → AZ the induced map of Lie algebroids. Let c ∈ H2(M\D) =
H2

0,0(M,A|D|) be a cohomology class such that 〈c, [F ]〉 > 0, where F is a regular fibre
of f . Then there exists a closed two-form η ∈ Ω2

0,0(M,A|D|) with [η] = c and a positive
function ρ0 ∈ C∞(N) such that:

• η is fibrewise nondegenerate, that is, for every p ∈ M , η is nondegenerate in
ker(ϕp),

• The form ω = η + f∗(ρωΣ) is symplectic with zero elliptic residue on A|D| for
every ρ ∈ C∞(N) as long as ρ ≥ ρ0.

Apart from the theorem above, [13] also includes a general Gompf–Thurston
result for Lie algebroid Lefschetz fibrations: under similar conditions on a Lie
algebroid Lefschetz fibration one can construct a Lie algebroid symplectic form
on the domain by adding a form which is symplectic on the fibres to a large
multiple of the pull back of a symplectic form on the base.

Neither result can be directly applied to our case: Theorem 2.1.21 does not
work because our divisor is not smooth, while the failure of the general result
on Lie algebroid fibrations to yield stable generalized complex structures can
already be seen in the simplest example.

Example 2.1.22. Consider the boundary fibration:

f1 : (C2, D)→ (R2, Z), f1(z1, z2) = (|z1|2, |z2|2),

where D and Z are the coodinate axes on C2 and R2 respectively, as in Ex-
ample 2.1.2.

We can endow R2 with the log-symplectic structure d log x1 ∧ d log x2, and
consider on C2 the closed elliptic form

η = −dθ1 ∧ dθ2 + d log r1 ∧ dθ2 + d log r2 ∧ dθ1,

which is non-degenerate on the fibres of f1. The Gompf–Thurston theorem then
provides us with a 1-parameter family of forms

ωt = η + tf∗(d log x1 ∧ d log x2),
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which is symplectic for t > 1. This poses a problem: although this defines a
legitimate elliptic symplectic form, there is no value of t for which it corresponds
to a stable generalized complex structure, since |Resr1r2 ωt| 6= |Resθ1θ2 ωt| for
t > 1. We conclude that the process of scaling up the symplectic structure on the
base to achieve nondegeneracy is incompatible with the residue conditions. 4

What we do next is to adapt Theorem 2.1.21 for the self-crossing case.

Theorem 2.1.23. Let f : (M4, D2) → (N2, Z = ∂N) be a homologically essential
boundary Lefschetz fibration with connected fibres between compact connected oriented
manifolds. Denote by ϕ : A|D| → AZ the induced map of Lie algebroids. Then (M, I|D|)
admits an elliptic symplectic structure with zero elliptic residue and imaginary parameter
which is compatible with f .

If D is co-orientable and the index of each connected component of D is 1 this elliptic
symplectic structure induces a stable generalized complex structure.

Proof. Fix a log-symplectic structure ωN ∈ Ω2(N,AZ). First we consider the
map f : M\D[2]→ N\Z[2]. This is a homologically essential, proper, boundary
Lefschetz fibration with smooth elliptic divisor, hence, by Theorem 2.1.21, there
is a form η ∈ Ω2

0,0(M\D[2]; log |D\D[2]|) and a function ρ0 ∈ Ω0(N\Z[2]) (recall,
Lemma 1.2.17) such that ω = η + f∗(ρωN ) is a zero elliptic residue symplectic
form for any function ρ ∈ Ω0(N\Z[2]) with ρ ≥ ρ0.

Now we show how to change this construction so that the form it yields ex-
tends overD[2], is elliptic symplectic with zero elliptic residue, and has imaginary
parameter.

For each point p ∈ D[2], fix open neighbouhoods U1 b U2 b U3 and oriented
coordinates charts defined on U3 and f(U3) in which f has the form

f(z1, z2) = (|z1|2, |z2|2).

As usual, we express the complex coordinates in U3 in polar form, zi = rie
iθi ,

and denote by (x1, x2) the coordinates on the base, so f∗xi = r2
i .

The strategy will be to change the symplectic form ω described above in a
very precise way:

• in the complement ofU3, ω remains unchanged except for a further constant
scaling of the symplectic form ωN ,

• in U3\U2 we change η into a multiple of dθ2 ∧ dθ1 and we preserve nonde-
generacy by rescaling the symplectic form ωN by a constant,

• in U2\U1 we interpolate the possibly large f∗ωN to f∗(d log x1 ∧ d log x2)
and observe that this interpolation does not spoil the symplectic condition,

• in U1 we extend the symplectic form as dθ2 ∧ dθ1 + d log r1 ∧ d log r2, which
clearly has the desired properties at p.
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Now we carry out his plan explicitly. Fix ρ ≥ ρ0. On U3 we have by Lemma
1.2.17 that

[η] ∈ H2
0,0(U3\D[2],A|D\D[2]|) ∼= H2(U3\D) = R,

and the generator of this cohomology pairs nonzero with the torus given in
coordinates by F = f−1(r1, r2), where r1 and r2 are any two small positive
numbers. Let λ =

∫
F
η where integration is with respect to the fibre orientation of

F , hence λ > 0. OnU3 consider the elliptic form η̃ = λ
4π2 dθ2∧dθ1. Then η̃ is closed

in U3 and also integrates to λ over F . Therefore [η] = [η̃] ∈ H2(U3\{p},AD\{p})
and there is a one-form α ∈ Ω1(U3\{p},A|D\{p}|) such that η̃ = η + dα.

Let k ≥ 1, let ψ1 and ψ2 be positive functions on f(U3) such that ψ1 is equal
to 1 in neighbourhood of f(U1) and has support in f(U2) and ψ2 is equal to 1 in
neighbourhood of f(U2) and has support in f(U3). Then consider the form

ω̃ :=


λ

4π2 (dθ2 ∧ dθ1 + d log r1 ∧ d log r2) in U1,

η̃ + f∗((1− ψ1)kρωN + ψ1
λ

4π2 d log x1 ∧ d log x2) in U2\U1,

η + d((f∗ψ2)α) + f∗(kρωN ) in U3\U2,

η + f∗(kρωN ) in M\U3.

Because of our choice of bump functions, this form is smooth. Also, it is clearly
closed. Since k ≥ 1, we have kρ ≥ ρ ≥ ρ0 and hence ω̃ is symplectic in M\U3 for
all possible values of k.

On U3\U2 we observe that the form η + d((f∗ψ)α) is fibrewise symplectic.
Indeed, its restriction to each fibre it is given by

η + (f∗ψ2)dα = (f∗ψ2)(η + dα) + (1− (f∗ψ2))η = (f∗ψ2)η̃ + (1− (f∗ψ2))η,

hence it is a convex combination of η and η̃ and these are both symplectic and
determine the same orientation on each fibre. Since η+d((f∗ψ)α) is fibrewise sym-
plectic and ρωN is symplectic on N , the combination η + d((f∗ψ)α) + f∗(kρωN )

is symplectic on the compact set U3\U2 as long as k is large enough.
On U2\U1, the form η̃ is given by λ

4π2 dθ2 ∧ dθ1, while the summand f∗((1−
ψ1)kρωN + ψ1d log x1 ∧ d log x2) is a convex combination of two log-symplectic
structures on N which determine the same orientation, that is

f∗((1− ψ1)kρωN + ψ1
λ

4π2
d log x1 ∧ d log x2) = f∗(κd log x1 ∧ d log x2),

for some positive function κ and hence on U2\U1

ω̃ =
λ

4π2
dθ2 ∧ dθ1 + (f∗κ)d log r1 ∧ d log r2,

which is clearly (zero residue) elliptic symplectic.
Finally, on U1 we have ω = Im(i λ

4π2 d log z1 ∧ d log z2), showing that it has the
desired properties.
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2.2 Connected sums of boundary Lefschetz fibrations

In this section we describe a connected sum procedure for boundary Lefschetz
fibrations along zero-dimensional strata of their elliptic divisors. This procedure
will allow us to construct elaborate examples out of basic ones. For simplicity,
we immediately restrict ourselves to dimension four, but we note that since the
connected sum takes place at points of the divisor, this procedure can also be
carried out for boundary fibrations in higher dimensions.

Before we start taking connected sums of boundary Lefschetz fibrations,
first recall from Lemma 1.5.1 that if (Mn, I|DM |) and (Nn, I|DN |) are manifolds
endowed with elliptic divisors, then for p ∈ DM [k] and q ∈ DN [k] we have that
M#p,qN inherits an elliptic divisors, for which the inclusions of M\{p} and
N\{q} are morphisms of divisors.

Similarly, by Lemma 1.5.2 we have that if p1, p2 ∈ D[k] are distinct we can
perform a self-connected sum resulting in an elliptic divisor on Mn#(S1×Sn−1).

We also refer back to the discussions in Remarks 1.5.3 and 1.5.4 that a priori
there are multiple options for the connected sum procedure, which all result
in diffeomorphic total spaces but for which the zero loci of the divisors have
different topological types. Next we show that the connected sum operation
is also compatible with boundary (Lefschetz) fibrations. To describe how the
connected sum procedure interacts with the base of the fibration we first consider
what happens in the local model:

Lemma 2.2.1. Let ∆r ⊆ R2 be the triangle bounded by the axes and the line x+ y = r,
and let (x, y) be oriented coordinates on ∆r and (z1, z2) be complex coordinates on D4

r ,
the disc of radius r. Consider the following maps:

• p : (D4
2\D4

1/2)→ (∆2\∆1/2), given by (z1, z2) 7→ (|z1|2 , |z2|2);

• Φ: (D4
2\D4

1/2)→ (D4
2\D4

1/2), given by (z1, z2) 7→ 1
|z1|2+|z2|2

(z2, z1);

• Ψ: (∆2\∆1/2)→ (∆2\∆1/2) given by (x, y) 7→ (y,x)
(x+y)2 .

Then the following diagram commutes:

(D4
2\D4

1/2) (D4
2\D4

1/2)

(∆2\∆1/2) (∆2\∆1/2).

Φ

p p

Ψ

The proof of this lemma is a simple verification. Just as we used the map Φ to
perform a connected sum compatible with elliptic divisors, we want to use the
map Ψ to define a sort of connected sum operation of the base:

Definition 2.2.2. Let Σ1,Σ2 be oriented surfaces with corners, and let q1, q2 be
corners of Σ1,Σ2 respectively. The oriented corner connected sum of Σ1 and
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Σ2 is defined by identifying a trapezoid neighbourhood of q1 to a trapezoid
neighbourhood of q2 via Ψ. The oriented corner connected sum is an oriented
surface with corners denoted by Σ1#q1,q2Σ2 (see Figure 2.3). ♦

x1

y1x2

y2

Oriented corner sum

Orientation reversing
 corner sum

x1

x1

y1

y1

x2

x2

y2

y2

Figure 2.3: Local oriented and orientation-reversing corner connected sums.

The oriented corner connected sum is naturally oriented and does not depend
on the neighbourhoods chosen. Together with the local normal form for fibrating
boundary maps, we can now prove the following:

Theorem 2.2.3. Let fi : (M4
i , Di)→ (N2

i , ∂Ni) be boundary (Lefschetz) fibrations with
connected fibres between oriented manifolds for i = 1, 2, let pi ∈ Di[2] and qi = f(pi).
Then there exists a boundary (Lefschetz) fibration on one of the two possible connected
sums M1#p1,p2

M2 whose base is the oriented corner sum N1#q1,q2N2:

(f1#f2) : (M1#p1,p2
M2, D̃)→ (N1#f(p1),f(p2)N2, ∂N1#q1,q2∂N2),

which is compatible with the (orientation-preserving) inclusions Mi\{pi} ↪→M1#M2.
Furthermore let D′1, D′2 denote the connected components of the zero locus of the

divisor D containing p1, p2 respectively. Then the parities satisfy:

εD̃ = −εD′1εD′2 .

Finally f1#f2 is homologically essential if and only if f1 and f2 are.

Proof. By Lemma 2.1.8 there exists neighbourhoods U1, U2 of f(p1), f(p2) respect-
ively which provide coordinates as in the setting of Lemma 2.2.1. We perform the
connected sum procedure using the maps described there. Because these maps
are compatible with the fibrations on M1 and M2 we conclude that M1#p1,p2

M2

admits a boundary fibration. The computation of the parity is already given in
Theorem 1.5.9.
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Recall from Remark 1.5.3 that there are a priori two possible topological
types for the elliptic divisor, depending on the ordering of the local coordinates.
However, when we are presented with fibrations between oriented manifolds
f : (Mi, Di)→ (Ni, ∂Ni) the orientation on the base determines an order for the
strands ofD for every point pi ∈ Di[2] (c.f. Remark 2.1.9). The gluing of fibrations
which is compatible with orientations on Mi and Ni is the one that flips the first
and second strands arriving the points where the sum is performed. In particular,
from the possible divisors discussed in Remark 1.5.4, (2), only the one with two
connected components occurs.

Remark 2.2.4 (Non-orientable case). If we were to allow the map Ψ used in the
corner sum to be orientation reversing, we would still be able to define a corner
connected sum and obtain a boundary fibration. When taking the connected
sum of two manifolds this does not cause a qualitative change in the outcome.
However, if we use the orientation-reversing corner sum on the base for a self-
connected sum, we see that the resulting base manifold is not orientable as a
Möbius band appears. ♦

Now that we understand precisely what happens to the connected compon-
ents of the divisor on the self-connected sum, we can state the following:

Corollary 2.2.5. Let f : (M4, D2) → (N2, ∂N) be a boundary (Lefschetz) fibration
with connected fibres between oriented manifolds, and let p1, p2 ∈ D[2] be distinct. Then
M#(S1 × S3) admits a boundary (Lefschetz) fibration f̃ which is compatible with the
inclusion M\{p1, p2} ↪→M#p1,p2(S1 × S3), and for which D̃[2] = D[2]\{p1, p2}.

Moreover let D′p1
, D′p2

denote the connected components of D containing p1, p2

respectively.

• If pi ∈ D′pi [2] and D′p1
6= D′p2

, then the corresponding connected component D̃′

of D̃ satisfies:

εD̃′ = −εD′1εD′2 ;

• If pi ∈ D′pi [2] and D′p1
= D′p2

, then the corresponding connected components
D̃′1, D̃

′
2 of D̃ satisfy:

εD̃′1
εD̃′2

= −εD′p1
εD′p2

.

Finally f̃ is homologically essential if and only if f is.

2.3 Singularity trades

The goal of this section is to prove two theorems which allow one to trade
Lefschetz for elliptic–elliptic singularities and vice-versa. To formulate these
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results, we need to recall the notion of vanishing cycle for both Lefschetz and
elliptic singularities.

Given a boundary Lefschetz fibration f : (M4, D2)→ (N2, ∂N) and an elliptic
or a Lefschetz singularity p1 ∈M , let q1 = f(p1) be the corresponding singular
value. We fix q ∈ N , a reference regular point of f and γ : [0, 1] → N , a simple
path connecting q to q1 which goes through no critical values of f except for
q1 at time 1. We can consider Fq = f−1(q), Fγ = f−1(γ([0, 1])) and the natural
inclusion ι : Fq → Fγ . Then Fq is a two-torus and H1(Fγ) is one-dimensional:

• In the case of a Lefschetz singularity the inclusion H1(Fq) → H1(Fγ) has
kernel given by the Lefschetz vanishing cycle, which corresponds to the
boundary of a Lefschetz thimble emanating from the singularity.

• In the case of an elliptic singularity Fγ is the product of circle and a solid
torus with Fq as boundary, hence ι∗ : H1(Fq) → H1(Fγ) also has one-
dimensional kernel given by the cycle in Fq which becomes a boundary in
Fγ .

In both cases the kernel of ι∗ is generated by one primitive element in H1(Fq;Z)
which depends only on the homotopy class of γ in N\Crit(f).

Definition 2.3.1. In the situation above, the vanishing cycle associated to the
singular value q1 and the homotopy class of the path γ is either of the primitive
elements in H1(Fq;Z) which generates the kernel of H1(Fq;Z)→ H1(Fγ ;Z). ♦

Definition 2.3.2. Let f : (M4, D2)→ (N2, ∂N) be a boundary Lefschetz fibration,
let Fq0 and Fq1 be Lefschetz or elliptic fibres. We say that the vanishing cycles at
Fq0 and Fq1 are a dual pair if there is a simple path γ : [0, 1]→ N such that:

• γ(0) = q0 and γ(1) = q1,

• γ((0, 1)) only contains regular values of f ,

• the vanishing cycles on both ends of γ together generate the integral homo-
logy of the regular torus fibre, say Fγ(1/2). ♦

With these notions at hand, we can give the precise statements of our singu-
larity trade theorems.

Theorem 2.3.3 (Elliptic–elliptic trade). Let f : (M4, D)→ (N2, ∂N) be a boundary
Lefschetz fibration with connected fibres, and let p ∈ D[2]. Then M admits a boundary
Lefschetz fibration f̃ : (M4, D̃)→ (Ñ2, ∂Ñ) such that:

• Ñ is obtained from N by smoothing out the corner f(p),

• f̃ and D̃ agree with f and D outside a small ball centered at p,

• D̃[2] = D[2]\{p}, i.e. f̃ has one elliptic–elliptic singularity less than f ,

• D̃ and D have the same parity,
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• f̃ has one Lefschetz singularity more than f ,

• f̃ has an elliptic singularity whose vanishing cycle forms a dual pair with the new
Lefschetz vanishing cycle,

• f̃ is homologically essential if and only if f is.

By induction, any manifold which admits a boundary Lefschetz fibration admits one with
a smooth embedded divisor.

The converse trade is given by the next theorem.

Theorem 2.3.4 (Lefschetz trade). Let f̃ : (M̃4, D̃) → (Ñ2, ∂Ñ) be a boundary Lef-
schetz fibration with connected fibres, and assume that the vanishing cycles at a Lefschetz
fibre, Fq0 , and at an elliptic fibre, Fq1 form a dual pair. Then there is a boundary Lefschetz
fibration, f : (M4, D)→ (N2, ∂N), such that:

• N is obtained from Ñ by adding a corner at q1,

• f and D agree with f̃ and D̃ outside f̃−1(V2), where V2 is a neighbourhood of the
path that expresses a vanishing cycles as a dual pair,

• D[2] = D̃[2] ∪ {p} and hence f has one elliptic–elliptic singularity more than f̃ ,

• D and D̃ have the same parity,

• f has one Lefschetz singularity less than f̃ ,

• f is homologically essential if and only if f̃ is.

The proofs of these theorems rely on the existence of specific boundary Lef-
schetz fibrations on S4 and on the open disc D4.

Lemma 2.3.5. There exists a homologically essential boundary Lefschetz fibration
with connected fibres, fS4 : (S4, D2) → (N, ∂N), with the following properties (see
Figure 2.4):

• D[2] has only one point, which has index −1,

• N is the disk with one corner,

• fS4 has only one Lefschetz singularity,

• the vanishing cycles of the Lefschetz fibre and any elliptic fibre form a dual pair.

The proof of this lemma is somewhat long, so we will postpone it to this end
of this section.
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γ

Figure 2.4: The base of the boundary Lefschetz fibration on S4 together with a
path expressing the Lefschetz and elliptic singularities as a dual pair.

Lemma 2.3.6. Let (D4, D) be the open disc in C2 with divisor Iz1 and let D2
+ ⊂ R2 be

the open half disc with boundary in the real axis

D2
+ = {(x, y) ∈ R2 : x2 + y2 < 1 and x ≥ 0}.

Then there is a proper boundary Lefschetz fibration with connected fibres, fD4 : (D4, D)→
(D2

+, ∂D2
+), such that:

• fD4 has a single Lefschetz fibre,

• the vanishing cycles of the Lefschetz fibre and the elliptic fibre form a dual pair.

Further, if f : (M,D) → (D2
+, ∂D2

+) is a proper boundary Lefschetz fibration with
connected fibres with the two properties above, then f is equivalent to fD4 , that is, there
is a commutative diagram

D4 M

(D2
+, ∂D2

+) (D2
+, ∂D2

+)

fD4 f

where the horizontal maps are diffeomorphisms.

Proof. The existence of the fibration fD4 follows from Lemma 2.3.5. Indeed, we
split the base of fS4 in two parts, V1, a neighbourhood of the vertex and V2, the
rest of the base plus a small overlap with V1, as indicated in Figure 2.5. Then,
due to Lemma 2.1.8, on f−1(V1), in appropriate coordinates, we have

V1 = {(x, y) ∈ R2 : x+ y < 1, x ≥ 0, y ≥ 0}

and the fibration is given by

fS4(z1, z2) = (|z1|2, |z2|2).

Hence, f−1
S4 (V1) is a disc and its complement f−1

S4
(V2) is also a disc. But

fS4 |V2 : V2 → fS4(V2)
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γ γ

S4 D4 ∪∂ D4

;

V2 V1

Figure 2.5: The base of the boundary Lefschetz fibration on S4 split in two halfs,
each half being a fibration of D4.

has all the properties required in the lemma after we choose a diffeomorphism
between V2 and D2

+. Therefore we have existence.
To prove the uniqueness part we study all possible ways such a fibration may

arise. Let f : M → (D2
+, ∂D2

+) be a boundary Lefschetz fibration satisfying the
assumptions of the lemma. Without loss of generality, we assume that the image
of the Lefschetz singularity is (2/3, 0) and we split D2

+ in two parts:

U1 = {(x, y) ∈ D2
+ : x ≤ 1/2},

U2 = {(x, y) ∈ D2
+ : x ≥ 1/2}.

The set f−1(U2) is a neighbouhood of the Lefschetz fibre and hence its differen-
tiable type as a fibration is fully determined [36]. Similarly, the set f−1(U1) is a
neighbourhood of an elliptic fibre hence its differentiable type as a fibration is
also fully determined:

f−1(U1) = D2 × S1 × (−1, 1), f(reiθ, ψ, t) = (r2, t).

Therefore all possible different fibrations with the desired properties are determ-
ined by the different ways these two pieces can be glued together modulo the
action of the isomorphism group of each half of the fibration.

Since the gluing takes place over a regular fibration over an interval, the
isotopy class of the gluing map is determined by the isotopy class of the map it
induces at a single fibre. Since the fibres are tori, this is in turn determined by
the corresponding map in homology. Since the vanishing cycles form a dual pair
there is, modulo the action of the isomorphism group of the fibration over V1, a
unique way to glue these together.

Next we show how to use Lemmas 2.3.5 and 2.3.6 to prove both singularity
trade theorems:

Proof of Theorem 2.3.3. Applying Theorem 2.2.3 to the boundary Lefschetz fibra-
tion on M and on S4 gives rise to a boundary Lefschetz fibration on M#S4 'M ,
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for which the inclusion M\{p} ↪→M preserves fibrations, in particular, we see
that the new fibration on M only changes in the small ball around p used for the
connected sum procedure. Since the divisor in S4 has only one point in the top
stratum, the new divisor satisfies D̃[2] = D[2]\{p} and D̃ and D have the same
index. Given the way the fibrations are glued, we see that the effect on the base
is to smooth out the corner corresponding to f(p). Continuing inductively gives
rise to a boundary Lefschetz fibration with embedded divisor.

Proof of Theorem 2.3.4. Under the conditions of the theorem, γ has a neighbour-
hood, V2, diffeomorphic to D2

+ in which the fibration has only one Lefschetz
singularity whose vanishing cycle forms a dual pair with the elliptic singularity.
Hence, by Lemma 2.3.6, f−1(V2) is diffeomorphic to D4 and f is equivalent to
the fibration of Lemma 2.3.6. Since the fibration on S4 splits as two discs, one
fibreing over D2

+ and the other fibreing over a neighbourhood, V1, of the origin in
(R+)2 (see Figure 2.5), we can realise M#S4 as follows: remove the disc f−1(V2)
and glue back, by the natural identification of the boundary, f−1

S4 (V1).
Since this procedure corresponds to performing connected sum with S4, the

final manifold is still diffeomorphic to M and the fibration only changes in the
part that has been surgered in, which includes the removal of the Lefschetz
singularity from f−1(V2) and the inclusion of the elliptic–elliptic singularity of
f−1
S4 (V1). Finally, notice that the process of filling the boundary of f−1(V2) with
f−1
S4 (V1) is not compatible with the given orientations of these spaces since they

both appear at opposite sides of a boundary in S4. That is, the orientation of M
is compatible with the opposite orientation of f−1

S4 (V1). Since the elliptic–elliptic
singularity for the fibration in S4 had index −1 and the orientation of S4 was
reversed in the connected sum process, the intersection index of the new elliptic–
elliptic singularity on M is +1 and hence the overall parity of the divisor is
unchanged.

To finish the proof of the trade theorems we must establish Lemma 2.3.5,
which we do next.

Proof of Lemma 2.3.5. The proof is done in two steps. In the first step we show
that if M is the total space of a boundary Lefschetz fibration whose singularities
are as stated in Lemma 2.3.5, then M = S4. In the second step we show that such
a fibration exists.

Step 1. We observe once again thatM is made of two fibrations glued together,
as illustrated in Figure 2.5: one fibration with an elliptic–elliptic singularity
over V1 and one with a Lefschetz singularity over V2. The fibration over V1 is
a copy of D4 added along its S3 boundary, that is, M = f−1(V2) ∪ 4-handle.
The space f−1(V2) itself can be readily described as a handlebody: we start with
a neighbourhood of a regular fibre, then add a −1-framed 2-handle along the
vanishing cycle of the Lefschetz singularity to obtain a neighbourhood of the
Lefschetz singular fibre and a 0-framed 2-handle along the vanishing cycle of
the elliptic singularity. Therefore the Kirby diagram of M is the one depicted in
Figure 2.6 (a). We can then slide the 2-handle that goes around both 1-handles to
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0
one 3-handle
one 4-handle

⊃

-1

0

(a)

0

⊃
-1

0

(b)

0

0

⊃

-1

0

(c)

0

one 3-handle
one 4-handle

one 3-handle
one 4-handle

Figure 2.6: Kirby diagram for the total space of the fibration described in
Lemma 2.3.6.

obtain Figure 2.6 (b) and see that the resulting 2-handle separates as a 0-framed
2-handle from the rest of the diagram and hence cancels with the 3-handle. The
remaining pairs of 1- and 2-handles clearly cancel each other (Figure 2.6 (c))
leaving us with the empty diagram, which corresponds to S4.

Step 2. To construct the desired fibration we will use a plumbing construction
applied to the disc bundle of O(2) → CP 1 in a way that is compatible with
the natural torus fibration of that space. Throughout we will use fixed para-
metrizations ϕ1, ϕ2 : C2 → O(2) for which the change of coordinates is given
by

ϕ−1
2 ◦ ϕ1(z, w) = (z−1, z−2w).

We will refer to ϕ1 as parametrizing a trivialization of O(2) with the south pole
removed and similarly ϕ2 does not cover the fibre over the north pole.

Rotation on both coordinates in the parametrization ϕ2 give rise to a torus
action on O(2) which, in the parametrizations above, is given by

(eiθ1 , eiθ2) · ϕ1(z, w) = ϕ1(e−iθ1z, ei(−2θ1+θ2)w),

(eiθ1 , eiθ2) · ϕ2(z, w) = ϕ2(eiθ1z, eiθ2w).
(2.3.1)
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To describe the quotient ofO(2) by this torus action, we will also want to consider
[−1, 1]×R+. Of course this space can be parametrised by a single, rather obvious,
chart, but it will be convenient to parametrise it by two charts instead. We
consider the parametrizations

ψ1 : R+×R+ → (−1, 1]×R+ ⊂ [−1, 1]×R+ ψ1(x1, y1) =

(
1− x1

1 + x1
,

y1

(1 + x1)2

)
,

ψ2 : R+×R+ → [−1, 1)×R+ ⊂ [−1, 1]×R+ ψ2(x2, y2) =

(
−1− x2

1 + x2
,

y2

(1 + x2)2

)
,

and keep in mind that these parametrizations induce opposite orientations, with
ψ2 agreeing with the natural orientation of [−1, 1]× R+.

Lemma 2.3.7. If we let h : S2 → R be the height function and g : Sym2O(2)→ R be
the Fubini-Study metric, then

f : O(2)→ [−1, 1]× R+

(z, w) 7→ (h(z), gz(w,w)),

defines a quotient map for the torus action on O(2). Further, f is a proper boundary
fibration with elliptic divisor induced by the holomorphic log divisor consisting of the
zero-section and fibres over the north and south pole.

Proof. In the parametrizations ϕi, the height and distance function take the form:

h ◦ ϕ1(z, w) =
1− |z|2

1 + |z|2
, g ◦ ϕ1(z, w) =

|w|2

(1 + |z|2)2
,

h ◦ ϕ2(z, w) = −1− |z|2

1 + |z|2
, g ◦ ϕ2(z, w) =

|w|2

(1 + |z|2)2
,

which are clearly invariant under the T 2-action in Equation (2.3.1). Further, for
i = 1, 2, the image of f ◦ ϕi lands in the image of the parametrization ψi and we
can compute the expression for f in these parametrizations:

fi(z, w) := ψ−1
i ◦ f ◦ ϕi(z, w) = (|z|2, |w|2), (2.3.2)

which shows clearly that f not only is the quotient map but also a boundary
fibration.

Now we perform a plumbing on O(2).

Definition 2.3.8. Let π : M2n → Nn be a Dn-bundle, and let D1,D2 be disjoint
disks in N over which π is trivialisable. A self-plumbing of π at D1 and D2 is
obtained by identifying π−1(D1) ' D1×Dn and π−1(D2) ' D2×Dn using a map
which preserves the product structure but reverses the factors. ♦
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(-1,0) (1,0)

(0,0) (0,0)

ψ2 ψ1

N

Figure 2.7: The base of the boundary fibration constructed in Lemma 2.3.9.

For the case at hand, let D2O(2) be the open ε-disk bundle with respect to the
Fubini–Study metric. By restricting f to D2O(2), we obtain a proper boundary
fibration f : D2O(2)→ [−1, 1]× [0, ε).

Further, we observe that ϕ1 and ϕ2 provide trivializations of D2O(2), hence
we can use them to perform a self-plumbing of D2O(2) at the north and south
poles. Let M be defined as the self-plumbing of D2O(2) via the trivializations ϕi
and the map

Φ: C2 → C2 : (z, w) 7→ (w, z),

that is, ϕ1(z, w) is identified with ϕ2(w, z).
Since the map used for the plumbing preserves elliptic ideals and identifies

the north and south pole, M is endowed with an elliptic divisor with a single
point in D[2]. Since the map Φ does not match co-orientations, the elliptic divisor
in M has intersection index −1.

To endow M with a boundary fibration we only need to take a quotient of
the base, [−1, 1] × [0, ε), by the equivalence relation that makes the following
diagram commute:

D2O(2) D2O(2)

[−1, 1]× [0, ε) [−1, 1]× [0, ε)

∼Φ

f f

∼Ψ

Since f is surjective, there is a unique identification, ∼Ψ, that gives rise to such
a diagram. In fact, we can easily compute it in the parametrizations ψi, where
it is induced by the map Ψ(x, y) = (1 − y, x + 1). That is, the point ψ1(x, y) is
identified with the point ψ2(y, x). Since ψ1 and ψ2 induce opposite orientations,
this identification preserves the natural orientation of [−1, 1] × [0, ε) and the
quotient is an oriented half-open cylinder with one corner (see Figure 2.7).

Lemma 2.3.9. The map f : D2O(2)→ [−1, 1]× [0, ε) descends to a boundary fibration
f̂ : M → N .
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Next we compute its monodromy along a generator of π1(N).

Lemma 2.3.10. Let f̂ : M → N be the boundary fibration from Lemma 2.3.9. Then the
monodromy of f̂ around a loop around the hole is a positive Dehn twist.

Proof. This is a direct computation using the given change of coordinates and the
plumbing map Φ. Indeed, all we need to to is to track what happens with the
torus action as we move along from the chart covered by ϕ2 to the chart covered
by ϕ1 and then back to ϕ2 via Ψ:

(eiθ1 , eiθ2) · ϕ2(z, w) = ϕ2(eiθ1z, eiθ2w) = ϕ1(e−iθ1z−1, ei(−2θ1+θ2)z−2w)

∼Φ ϕ2(ei(2θ1−θ2)z−2w, eiθ1z−1)

= (ei(2θ1−θ2), eiθ1)ϕ2(z−2w, z−1).

Therefore we see that, in the basis {eθ1 , eθ2} for H1(F ) corresponding to the
generators of the action, the monodromy transformation is given by the matrix(

2 −1
1 0

)
Notice that using the complex orientation ofO(2) and the standard orientation of
R2, {eθ1 , eθ2} is a negative basis for the homology of the fibre. Using this, we see
that the transformation above is a positive Dehn twist on the cycle eθ1 + eθ2 .

Now we can complete M to a closed manifold by glueing a neighbourhood of
a single Lefschetz fibre with vanishing cycle eθ1 + eθ2 in the hole of the annulus.
Finally we observe that this vanishing cycle forms a dual pair with either of the
two vanishing cycles of the elliptic singularity, which in the parametrization ϕ2

are given by either of the cycles eθ1 or eθ2 .

Remark 2.3.11. Simply drawing a base diagram for a boundary Lefschetz fibra-
tion does not guarantee the existence of a fibration that realises it. For example,
there is no manifold whose base diagram is that of Figure 2.4, but for which the
elliptic–elliptic singularity has intersection index 1. In the construction above
this would manifest itself in the fact that without using complex conjugation the
monodromy of the plumbing would be a negative Dehn twist. This highlights
that the long second step in the proof above is indeed necessary. ♦

Remark 2.3.12. Note that the existence of the boundary Lefschetz fibration in
Lemma 2.3.5 also provides an alternative proof of Theorem 1.4.12. Indeed, be-
cause by Theorem 2.1.23 S4 admits a stable generalized complex structure with
one point in D[2], which has negative index. Then by consecutively taking con-
nected sums with this S4 and the original stable generalized complex manifold,
we obtain a stable generalized complex structure with embedded type change
locus. ♦
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2.4 Examples

In this section we give several concrete examples of boundary fibrations. We
will first show that they arise naturally as the quotient maps of effective torus
actions and that our framework fits particularly well with the theory of integrable
systems. This connection provides us immediately with a wealth of examples of
both boundary fibrations and stable generalized complex structures. We will fur-
ther illustrate our constructions by showing how starting with simple examples
(of manifolds with torus actions) we can use the connected sum procedure to
obtain many more examples of boundary fibrations.

2.4.1 Torus actions

We show that quotient maps of torus actions provide boundary fibrations.

Proposition 2.4.1. Let Tn act effectively on a smooth manifold M2n, with connected
isotropy groups. Then:

• N := M2n/Tn is a manifold with corners;

• the quotient map defines a boundary fibration f : (M,D)→ (N, ∂N) with con-
nected fibres;

• the multiplicity stratification of the elliptic ideal coincides with the stratification
by orbit types on M ;

• ND[1] is co-orientable;

• if M is oriented, then so is N ;

• if M is four-dimensional and the action is not free, f is homologically essential.

Proof. Let p ∈ M , and let Gp denote the isotropy group of p and let Op denote
the orbit of p. By assumption, Gp is connected and therefore isomomorphic to T `

for some ` ≤ n. By the slice theorem, there exists a neighbourhood of Op which
is equivariantly diffeomorphic to a neighbourhood of the zero section in

G×Gp NpOp,

where Gp acts linearly on NpOp by the differentiated action. Because all groups
in consideration are Abelian and connected, this implies that there is a neigh-
bourhood U around p of the form

U = Tn−` × (Rn−` × C`).

The Tn = (Tn−` × T `)-action of U decomposes as Tn−` acting by multiplication
on Tn−` and T ` acting linearly on C`. Since the irreducible representations of
T ` are one-dimensional, we may without loss of generality assume that each
coordinate line in C` is preserved by the action. Therefore, if we let t denote the
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Lie algebra of T `, let l denote the kernel of exp: t→ T `, with minimal generating
set {ξ1, . . . , ξ`} and choose {α1, . . . , α`} ∈ l∗ the dual basis for the dual lattice,
then the action on each irreducible representation has the form

exp(Θ) · zj = e2πi〈Θ,njαj〉zj , Θ ∈ t.

Since the action is effective we have that nj 6= 0, and because the isotropy groups
are connected we must furthermore have nj = ±1. Hence, after appropriately
changing the signs of some of the αj , the T `-action is given by

(exp(θ1ξ1 · . . . · θ`ξ`)) · (z1, . . . , z`) = (e2πθ1iz1, . . . e
2πθ`iz`).

This normal form for the action has the following consequences:

• The quotient manifold is endowed with charts of the form Rn−`×(C`)/T ` '
Rn` , and is therefore a manifold with corners;

• The quotient map f : M → N in the above local coordinates is given by

f : Tn−` × (Rn−` × C`)→ Rn`
(q, x, z1, . . . , z`) 7→ (x, |z1|2 , . . . , |z`|2).

By Lemma 2.1.8 we see that f is a boundary fibration with respect to the
log divisor ∂N ;

• Because the vanishing locus of the induced elliptic ideal is given by f−1(∂N)
it follows that the multiplicity stratification coincides with the orbit type
stratification;

• At points p ∈ D[1], the isotropy group is given by S1 and therefore NpOp
inherits an S1-action and consequently admits an orientation. We conclude
that D[1] is co-orientable;

• When M is oriented, a choice of orientation for Tn gives rise to an orienta-
tion for N by observing that M\D → N\∂N is a principal Tn-bundle;

• When M is four-dimensional and the action is not free it is shown in [68]
that f admits a section. As a generic fibre and the image of this section
intersect only once, it follows that the intersection pairing of the fibre with
the image of this section is non-zero, and therefore f is homologically
essential.

The group actions underlying toric manifolds satisfy the conditions of this
proposition, leading to the following result:

Corollary 2.4.2. Let (M2n, ω) be a toric manifold and let f : M2n → ∆n denote the
quotient map. Then f is a boundary fibration.
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In four dimensions Proposition 2.4.1 provides us with fibrations that satisfy
nearly all the assumptions required to apply Theorem 2.1.23. However, the torus
action does not guarantee that the parity of the elliptic divisor is one. To proceed
we must add hypotheses to ensure that this is the case.

Proposition 2.4.3. Let f : (M4, ω) → R2 be a toric manifold. Then the parity of the
elliptic divisor obtained from Proposition 2.4.1 is 1, and therefore M admits a stable
generalized complex structure compatible with f .

Proof. By Proposition 2.4.1 we have that f is a boundary fibration, and therefore
by Theorem 2.1.23 the manifold M admits an elliptic symplectic structure. As
each of the preimages of the faces of the moment polytope is a symplectic sub-
manifold of (M,ω), the symplectic structure provides each component of the
elliptic divisor with a natural co-orientation for which the intersections have
positive index. It follows that the parity of the elliptic divisor is 1.

2.4.2 Simple examples

We give examples of boundary fibrations obtained from torus actions which will
serve as the building blocks for the connected sum procedure. The existence of
stable generalized complex/elliptic symplectic structures in all examples below
was known previously, and most of them are discussed in Section 1.6 as well.
The new input is that these spaces admit fibrations compatible with the structure
in question.

Example 2.4.4 (CP 2). Consider the standard toric structure on CP 2. Proposi-
tion 2.4.3 implies that f is a homologically essential boundary fibration and that
CP 2 admits an elliptic divisor with parity 1 (three lines intersecting at different
points). Therefore CP 2 admits a stable generalized complex structure compatible
with its moment map. 4

Example 2.4.5 (CP 2
). We consider CP 2

, i.e. CP 2 with the orientation opposite
to the standard complex structure. As an oriented manifold this is not a toric
manifold, but there is still a T 2-action with connected isotropies present. There-
fore 2.4.1 implies that the quotient map is a homologically essential boundary
fibration. Consequently, by Theorem 2.1.23 there exists a compatible elliptic
symplectic structure with imaginary parameter on CP 2

. The parity of the elliptic
divisor is −1 so this symplectic structure does not induce a stable generalized
complex structure. As CP 2

is not almost complex it can not have a stable gener-
alized complex structure, hence this problem can not be remedied. 4

Example 2.4.6 (S2 × S2). Let (S2 × S2) be given its standard toric structure,
i.e. the symplectic form is the product of the standard area forms and T 2 acts on
rotation by S1 one each of the factors. Proposition 2.4.3 implies that the quotient
map is a homologically essential boundary fibration and that S2 × S2 admits a
compatible stable generalized complex structure. 4
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Example 2.4.7 (S4). Consider S4 ⊂ C2 × R and let T 2 act in the standard way
on C2. This provides an effective T 2-action on S4 with connected isotropies.
Therefore by Proposition 2.4.1 we find that the quotient map is a homologically
essential boundary fibration. Consquently Theorem 2.1.23 implies the existence
of a compatible elliptic symplectic structure with imaginary parameter on S4.
The parity of the divisor is−1. Just as CP 2, S4 is not almost-complex so the index
can not be fixed by making different choices of divisor or orientations. 4

The following example of a boundary fibration appears also in [13]:

Example 2.4.8 (S3 × S1). There are two interesting T 2-actions on S3 × S1. First,
consider S3 ⊂ C2 as the unit sphere and restrict the natural T 2-action on C2 to S3.
This provides an effective T 2-action on S3 with S1 isotropy at all points in the
intersection with the coordinate hyperplanes. Extending the T 2-action trivially
to the S1-factor provides an effective T 2-action on S3 × S1 with only S1 isotropy
groups. The quotient map

f1 : (S3 × S1, D1)→ (I × S1, {0, 1} × S1),

then becomes a homologically essential boundary fibration by Proposition 2.4.1.
Note that D1 is given by the union of two disjoint tori.

Another T 2-action on S3 × S1 is obtained by letting one S1 act by rotation on
one of the coordinates of S3 ⊂ C2 and let the other act by multiplication on S1.
The quotient map

f2 : (S3 × S1, D2)→ (D2, ∂D2),

then again becomes a homologically essential boundary fibration by Proposi-
tion 2.4.1. In this case D2 is a single torus. In both cases Theorem 2.1.23 im-
plies the existence of a compatible elliptic symplectic structure with zero elliptic
residue. Moreover, as the vanishing locus of the elliptic divisor is smooth and co-
orientable, we obtain two stable generalized complex structures on S3 × S1. 4

The example we consider next is more elaborate than the previous ones.
The existence of stable generalized complex structures on these spaces is a con-
sequence of the more general Theorem 2 from [75].

Example 2.4.9 ((#nS1 × S2) × S1). In [68], it is shown that for 2g + h > 1, the
manifold M = (#(2g + h− 1)S1 × S2)× S1 admits an effective T 2-action with
connected isotropy groups over a base, B, which is a surface of genus g with h
small open discs removed. In fact, part of the action is just rotation of the last
S1-factor, so this action has no fixed points (a fact that also follows from the Euler
characteristic of M being 0).

By Proposition 2.4.1 we conclude that there exists a homologically essential
boundary fibration

f : ((#(2g + h− 1)S1 × S2)× S1, D)→ (B, ∂B).
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The degeneracy locus consist of h disjoint tori – precisely the number of bound-
ary components of B – and is in particular co-orientable. Consequently by
Theorem 2.1.23 there exists a compatible (smooth) stable generalized complex
structure on M whose type change locus has h connected components. 4

To illustrate the elliptic-elliptic trade theorem we give some examples:

Example 2.4.10 (CP 2). Applying Theorem 2.3.3 to Example 2.4.4 yields several
boundary Lefschetz fibrations f : (CP 2, D)→ (N, ∂N). The number of elliptic–
elliptic and Lefschetz singularities adds up to three, but any combination is
possible. See also Remark 2.4.13. 4

Example 2.4.11 (S4). Applying Theorem 2.3.3 to Example 2.4.7 yields a boundary
Lefschetz fibration f : (S4, D̃) → (D2, ∂D2) with two Lefschetz singularities.
Because the parity of the original divisor on S4 is −1, the new divisor D̃ will be
non-co-orientable. Therefore it is non-orientable and as it admits an S1-fibration
it must then be a Klein bottle. 4

2.4.3 Main class of examples

Using the above examples as building blocks we can now construct many more
examples:

Theorem 2.4.12. The manifolds in the following two families admit homologically
essential boundary fibrations:

• Xn,` := #n(S2 × S2)#`(S1 × S3), with n, ` ∈ N;

• Yn,m,` := #nCP 2#mCP 2
#`(S1 × S3), with n,m, ` ∈ N,

whenever their Euler characteristic is non-negative. Therefore, each of these manifolds
admits a compatible elliptic symplectic structure, which induces a stable generalized
complex structure if 1− b1 + b+2 is even.

Proof. In the previous section we exhibited boundary fibrations on CP 2,CP 2

and S2 × S2 with 3, 3, 4 points in D[2] respectively. Therefore we may apply
Theorem 2.2.3 inductively to obtain homologically essential boundary fibrations
on Xn,0 and Yn,m,0 for all possible values of n and m, including n = m = 0
by Example 2.4.7. The number of points in D[2] for these manifolds is 2n + 2
and n+m+ 2 respectively. Therefore we can apply Corollary 2.2.5 respectively
n+ 1 and bn+m+2

2 c-times to obtain homologically essential boundary fibrations
on Xn,l and Yn,m,`, for ` ≤ n+ 1, bn+m+2

2 c respectively. A simple computation
of the Euler characteristic of these manifolds shows that this is precisely when
their Euler characteristic is non-negative. The parity of the divisor in CP 2,CP 2

and S2 × S2 is 1,−1, 1 respectively. Therefore Theorem 2.2.3 gives us that the
parity of Xn,0 and Yn,m,0 is (−1)n−1. Corollary 2.2.5 gives us that the parity of
the divisor in Xn,` and Yn,m,` is (−1)n−1+`. By Theorem 2.1.23 these manifolds
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admit compatible elliptic symplectic structures. These induce stable generalized
complex structures when (−1)n−1+` = 1, which is to say that 1 − b1 + b+2 is
even.

+1

−1

+1

+1

+1

+1

;

Figure 2.8: We obtain a boundary fibration on #2CP 2#(S1 × S3) from #2CP 2

via self-connected sum.

The following remarks elaborate on the assumptions on the n,m and ` in the
above theorem.

Remark 2.4.13 (Euler characteristic). The condition on the Euler character-
istic is necessary. Indeed a simple application of Mayer–Vietoris shows that
if f : M4 → Σ2 is a boundary Lefschetz fibration over a surface with k corners,
and ` Lefschetz singular fibres then χ(M) = k + `. In particular, we find that the
Euler characteristic of a manifold admitting a boundary Lefschetz fibration is
necessarily non-negative. Therefore we conclude that we found all members of
the families appearing in Theorem 2.4.12 that admit boundary fibrations.

This observation has another consequence. One can perform connected sum
of manifolds with elliptic divisors (Mi, Di) at points in pi ∈ Di[1], but, differently
from the case of points inDi[2], connected sum atDi[1] is not compatible with the
existence of boundary Lefschetz fibrations. Indeed, if eachMi had such a fibration
which induced one in M1#p1,p2M2 by some identification of neighbourhoods of
p1 and p2, the number of corners and Lefschetz singularities would be no less
than the sum of corners and singularities for each Mi, but the Euler characteristic
of M1#M2 equals the sum of the Euler characteristics of M1 and M2 minus
two. ♦

Remark 2.4.14 (Betti numbers). The existence of a generalized complex structure
on a manifold implies the existence of an almost-complex structure. Such a
structure cannot exist when 1− b1 + b+2 is odd, which explains that we found all
members of the families appearing in Theorem 2.4.12 that admit stable general-
ized complex structures arising from boundary fibrations. ♦
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Remark 2.4.15 (Torus actions). Torus actions persist under taking connected
sums of disjoint manifolds at fixed points [68]. In fact, [68] provides a classi-
fication of simply connected four-manifolds with effective torus actions and
connected isotropy groups. The manifolds admitting such actions are precisely
the manifolds Xn,0, Yn,m,0, and S4 appearing in Theorem 2.4.12. Whenever such
a T 2-action is present it is possible to ensure that the elliptic symplectic structure
arising from Theorem 2.4.12 is T 2-invariant, hence we obtained all such simply
connected four-manifolds admitting T 2-invariant stable generalized complex
structures.

In the non-simply connected case, [68] also provides a classification of effect-
ive non-free torus actions with only S1-isotropy groups on compact oriented
connected four-manifolds. It is proven that any of these manifolds is of the form
as described in Example 2.4.9, hence we have obtained all manifolds with such
actions and T 2-invariant stable generalized complex structures. ♦

2.4.4 Relation to semi-toric geometry

We finish by relating our results to semi-toric geometry. Recall that a focus–focus
singularity of a completely integrable system (M,ω, f) is a point p ∈M where
there are Darboux coordinates (x1, y1, x2, y2) for ω in which f takes the form

(x1, y1, x2, y2)
f7−→ (x1y2 − x2y1, x1x2 + y1y2).

Semi-toric manifolds ([69]) are generalisations of four-dimensional toric mani-
folds where the moment map, besides elliptic and elliptic–elliptic singularities,
may also have focus–focus singularities. If we use the above Darboux coordinates
to define complex coordinates

(w1, w2) =
1

4
(x1 + y2 + i(x1 − y2), x1 − y2 + i(x1 + y2)),

we see that the point p becomes a Lefschetz singularity of the moment map f .

Proposition 2.4.16. Moment maps of semi-toric manifolds are boundary Lefschetz
fibrations. Consequently, semi-toric manifolds admit compatible stable generalized
complex structures, for which the elliptic divisor is the pre-image of the boundary of the
moment map image.

Proof. In light of Theorem 2.1.23 and the toric case (Proposition 2.4.3) we need
only argue that the map is homologically essential. This follows because the
homotopy type of M\D is obtained from a regular fibre by adding 2-cells along
the vanishing cycles corresponding to each Lefschetz singularity.

Remark 2.4.17. Theorem 2.3.3 trades an elliptic–elliptic singularity for a Lefschetz
singularity in the context of a fibration without further geometric structures. This
is reminiscent of the nodal trade/Hamiltonian Hopf bifurcation from semi-toric
geometry [80, 61] in the context of Lagrangian fibrations. In the Hamiltonian
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Hopf bifurcation, elliptic–elliptic singularities are traded for focus-focus singular-
ities, which by the above are equivalent to Lefschetz singularities. However these
maps interact differently with the underlying geometric structure. Notably, in the
semi-toric version, the base of the fibration has a singular integral affine structure
which helps with the extension of the fibration beyond a neighbourhood of the
singularities involved.

The converse trade for semi-toric geometry, similar to our Theorem 2.3.4,
appeared in [55]. There, the authors also make use of the singular integral affine
structure structure present in such integrable systems. ♦
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Chapter 3

The cohomology of the elliptic
tangent bundle

In this chapter, based on [78], we will make the first step into understanding the
deformation theory of the self-crossing stable and elliptic symplectic structures
defined in Chapter 1.

In [16] deformations of stable generalized complex structures with embed-
ded type change locus and the corresponding elliptic symplectic structures are
described. It is shown there that deformations are completely controlled by the
cohomology of the relevant Lie algebroid.1

If we allow the stable generalized crossings to have a type change locus with
self-crossings this will no longer be the case, still the computation of the Lie
algebroid cohomology is the first step in understanding the deformation theory.
We will show that the cohomology of the elliptic tangent bundle is completely
determined by the data of the manifold, of the type change locus and of the
normal bundle.
Organisation: In Section 3.1 we describe the geometric structure a self-crossing
elliptic divisor induces on the directions normal to its degeneracy locus. In
Section 3.2 we will use this geometric structure to define residue maps, which we
will use in Section 3.3 to compute the Lie algebroid cohomology of the elliptic
tangent bundle. In Section 3.4 we compute this cohomology in some explicit
examples. We end this section by giving an outlook on the deformation theory of
self-crossing stable generalized complex structures.

3.1 Geometric structure on the normal bundle

In this section we study the geometric structure present on the normal bundles
of the strata of the vanishing locus of an elliptic divisor. In the next section, this

1The description of deformations of stable generalized complex structures was obtained inde-
pendently in [38].
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geometric structure will be used to describe the Lie algebroid cohomology of the
elliptic tangent bundle.

Remark 3.1.1 (Metrics). Let I|D| be a smooth elliptic divisor with vanishing
locus D, and let f be any global function generating I|D|. Because f is nowhere
vanishing on M\D, and D has codimenion-two in M the sign of f is constant
on the entirety of M . Consequently, we can always choose a non-negative
representative of the elliptic ideal. Therefore the normal Hessian of f , Hessν f ∈
Γ(Sym2N∗D) is positive definite, and thus defines a metric. ♦

Remark 3.1.1 explains how a smooth elliptic divisor I|D| induces a metric
on the normal bundle to D. The metric depends on the choice of particular
trivialisation of R, but the conformal class does not. Phrased in another way,
Fr(ND) inherits a canonical reduction of its structure group to O(2)× R+. For
self-crossing elliptic divisors we have the following result for the stratification
from Remark 1.1.15:

Proposition 3.1.2. Let I|D| be an elliptic divisor with pointwise multiplicity n. Then
Fr(ND[n]) admits a canonical structure group reduction to (O(2)× R+)n o Sn.

Proof. For a point x ∈ D[n], let I|D1|, . . . , I|Dn| be any choice of local normal
crossing divisors and let the fi be any representatives of the I|Di|, which we may
choose to be all non-negative. Because the Di all intersect transversely, we have

Nx(D[n]) '
n⊕
i=1

Nx(Di)|D[n] .

If ui = (ui1 , ui2) forms a local frame for NDi|D[n], then (u11 , u12 , . . . , un1 , un2)

forms a local frame for N(D[n]). We consider all such local frames for which ui is
orthonormal with respect to Hessν(fi). There are two important points to remark.
Firstly, the choice of representatives fi is not canonical. Secondly, the ordering
of the local divisors is not well-defined, and instead there is an Sn-symmetry
present which permutes the divisors. Therefore we consider all the frames which
are orthonormal with respect to any of these possible choices of representatives
fi and any choice of orderings for the local divisors. This provides a reduction of
the structure group to (O(2)× R+)n o Sn.

Corollary 3.1.3. Let I|D| be an elliptic divisor with pointwise multiplicity n, then

• Fr(ND[n]) admits a (non-canonical) structure group reduction to O(2)n n Sn.

• If I|D| is a global normal crossing divisor, then a choice of non-negative represent-
atives f1, . . . , fn of the smooth elliptic divisor ideals induces a further structure
group reduction to O(2)n.

• If D[1] is furthermore co-orientable, then a further choice of co-orientation of D[1]
induces a structure group reduction to U(1)n.

Proof.
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• Recall that if P is a principal G-bundle, and H a normal subgroup, then P
admits a structure group reduction to H if the quotient G/H is contractible.
The quotient of (O(2) × R+)n o Sn by O(2)n n Sn is (R+)n, and thus
contractible. Therefore the required structure group reduction exists.

• Let I|D1|, . . . , I|Dn| be global smooth elliptic divisors for I|D|, and let the
functions f1, . . . , fn be generators of these ideals. Because ND[n] is now
globally isomorphic to ⊕ni=1NDi|D[n], we can consider frames (u1, . . . , un)
of ND[n], where ui is a local frame of NDi|D[n]. Considering those frames
for which ui is orthonormal with Hessν(fi) provides the required O(2)n-
reduction.

• Recall, that if a line bundle is triviallisable away from a subset of codi-
mension at least two, then it is in fact everywhere triviallisable. Therefore,
the co-orientation on D[1] induces a co-orientation on each Di away from
a codimension-two submanifold, and therefore a co-orientation on the
entirety of Di. Proceeding as in the previous point with oriented frames
provides a structure group reduction to U(1)n.

Note that for smooth elliptic divisors, passing from the canonical structure
group reduction of Fr(ND) from O(2) × R+ to O(2) corresponds precisely to
choosing a particular representative of the conformal class of metrics on ND. For
self-crossing elliptic divisors, we know that such a structure group reduction
exists, but we cannot make the choices involved more precise.

Remark 3.1.4. Let I|D| be an elliptic divisor, and i < n. The restriction of I|D| to
M\D(i+ 1) is an elliptic divisor of pointwise multiplicity i. The highest stratum
of this divisor is precisely D[i], and consequently we can apply the results in this
section to obtain structure group reduction of Fr(ND[i]) for each 1 ≤ i ≤ n. ♦

3.2 Residue maps

In this section we describe residue maps for elliptic divisors. These are maps
which pick out the coefficient of a singular generator of a Lie algebroid form,
much akin to the residue of a meromorphic differential form. In [52] a general
theory of residue maps of Lie algebroids is described. We will first recall the
general definition and then specialise to the case of elliptic divisors.

Let 0 → A → B → C → 0 be a short exact sequence of vector spaces
with l = dimA. A splitting of this sequence induces an isomorphism B '
A⊕C. Consequently ∧kB∗ decomposes as a direct sum⊕i(∧k−iC∗⊗∧kA∗). The
projections from ∧kB∗ to each of these factors depend on the particular splitting;
however, the projection to ∧k−lC∗⊗∧lA∗ = ∧k−lC∗⊗detA∗ does not. We define
the residue map to be this projection:

Res : ∧kB∗ → ∧k−lC∗ ⊗ detA∗.
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Let 0 → A → B → C → 0 be a short exact sequence of Lie algebroids with
rk(A) = l. Applying the residue map fibre-wise gives a map Res : Ωk(B) →
Ωk−l(C; det(A∗)). To endow Ω•(C; det(A∗)) with a differential, one needs a flat
C-connection on det(A∗). We now describe a situation in which such a connection
exists and the residue map is a cochain morphism with respect to this differential.

Proposition 3.2.1. Let B →M be a Lie algebroid and let i : A ↪→ B be an abelian ideal
subalgebroid of rank l. Then there is a canonical flat (B/A)-connection on det(A∗).

Furthermore assume that for every point x ∈M , there exists a neighbourhood U of
p and closed sections β1, . . . , βl ∈ Ω1(B|U ) such that i∗β1, . . . , i

∗βl generate Ω1(A|U ).
Then Res : Ωk(B)→ Ωk−l(B/A; det(A∗)) is a cochain morphism.

Proof. Let σ : B/A → B be any splitting and define:

∇c(a) = [σ(c), a], c ∈ Γ(B/A), a ∈ Γ(A).

It is straightforward to verify that this is connection is flat and does not depend
on the choice of splitting. If we let β1, . . . , βl ∈ Ω1(B) be local closed forms with
the property that their restriction to A defines a local frame for Ω1(A), then

Res(β1 ∧ . . . ∧ βl ∧ γ) = γ ⊗ (β1 ∧ . . . ∧ βl),

and one easily verifies that Res is a cochain morphism.

If I|D| is an elliptic ideal with pointwise multiplicity n then the restriction of
the anchor of the elliptic tangent bundle to D[n] has image inside TD[n], and
hence A|D|

∣∣
D[n]

is again a Lie algebroid. We will describe this Lie algebroid
using the language of Atiyah algebroids, which we recall in Appendix 3.5. The
explicit description of this Lie algebroid will allow us to construct residue maps
which we will use in the computation of the Lie algberoid cohomolog of A|D| in
Theorem 3.3.1.

To describe A|D|
∣∣
D[n]

, we will use a quadratic approximation of of the elliptic
divisor I|D| on tot(ND[n]). Let I1, . . . , In be local normal crossing elliptic divisors
for I|D| and let f1, . . . , fn by generators of these ideals. Let Qfi ∈ C∞(tot(NDi))
denote the quadratic approximations of these functions, and define the ideal
I
ND[n]
|D| = 〈Qf1

· · ·Qfn〉 on tot(ND[n]). Although the functions Qfi are neither
unique nor global this ideal is and thus defines an elliptic divisor on ND[n].
Let AND[n]

|D| denote the elliptic tangent bundle associated to this ideal, and let

Γ(AND[n]
|D| )lin denote the submodule of its sections which under the anchor are

send to linear vector fields on tot(ND[n]).

Lemma 3.2.2. Let I|D| be an elliptic divisor on M . Given X ∈ Γ(A|D|
∣∣
D[n]

) that there

exists a unique linear vector field X̃ ∈ Γ(AND[n]
|D| )lin with X̃

∣∣∣
D[n]

= X . Moreover, the
map

ϕ : Γ(A|D|
∣∣
D[n]

)→ Γ(AND[n]
|D| )lin, X 7→ X̃. (3.2.1)
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is a bracket preserving bijection.

Proof. Let p : U → D[n] be a tubular neighbourhood of D[n] and let X ′ ∈
Γ(A|D|

∣∣
U ) be any extension of X . If a vector field Z preserves the ideal generated

by one fi, then one readily verifies that the linearisation ν(Z) preserves the ideal
generated by the quadratic approximation Qfi . Using this we find that because
X ′ preserves the ideal I|D|, its linearisation X̃ := ν(X ′) preserves the ideal IND[n]

|D| .

Consequently we can define ϕ(X) = X̃ ∈ Γ(AND[n]
|D| )lin. To show that this does

not depend on the choice of extension X ′, we will use the local coordinates from
Lemma 1.1.25. In these coordinates we have

X =
∑
i

fi · ri∂ri |D[n] + gi · ∂θi |D[n] + Y,

with fi, gi ∈ C∞(D[n]) and Y ∈ X1(D[n]). Any extension of X , will thus be of
the form

X ′ =
∑
i

f̃i · ri∂ri + g̃i · ∂θi + Ỹ ,

with fi, gi ∈ C∞(tot(ND[n])), Ỹ ∈ Γ(p∗TD[n]). Its linearisation will be given by

X̃ =
∑
i

fi · ri∂ri + gi · ∂θi + Y,

and we see that this does not depend on the choice of X ′.
If X1, X2 ∈ Γ(A|D|

∣∣
D[n]

) have equal linearisations X̃1, X̃2, then in particular

X1 = X̃1|D[n] = X̃2|D[n] = X2, which shows that ϕ is injective.
If Z ∈ Γ(AND[n]

|D| )lin, then Z|D[n] ∈ Γ(A|D|
∣∣
D[n]

) and ϕ(Z|D[n]) = Z, which
shows that ϕ is surjective.

Proposition 3.2.3. Let I|D| be an elliptic divisor with pointwise multiplicity n and
let P denote the (O(2) × R+)n o Sn-structure group reduction of Fr(ND[n]) from
Proposition 3.1.2. Then A|D|

∣∣
D[n]
' At(P ).

Proof. By Lemma 3.2.2 we have that Γ(A|D|
∣∣
D[n]

) is isomorphic to Γ(AND[n]
|D| )lin,

and we are thus left to show that this coincides with sections of At(P ). Let F be
a generator of IND[n]

|D| , then

Γ(AND[n]
|D| )lin = {X ∈ X1(tot(ND[n]))lin : LX(F ) = λF for some λ ∈ C∞(D[n])}.

Note that an element of Γ(AND[n]
|D| ) we have LX(F ) = λF for a function λ ∈

C∞(tot(ND[n])), however because X is linear we must have λ ∈ C∞(D[n]).
As F is locally of the form Qf1 · · ·Qfn and all these functions are functionally

indivisible, we must have that for all i there exists precisely one j such that
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LX(Qfi) = λijQfj for some function λij ∈ C∞(D[n]). On the other side, using
Lemma 3.5.5 one can show that

At(P ) = {X ∈ X(tot(ND[n]))lin : ∀ i ∃! j s.t. LX(Hessν(fi)) = λij Hessν(fj)},

with the λij ∈ C∞(D[n]). Using the fact that for a linear vector fieldX and definite
Morse–Bott functions f, g we have LX(Hessν f) = g if and only if LX(Qf ) = Qg

we see that indeed Γ(AND[n]
|D| )lin = Γ(At(P )), which finishes the proof.

3.2.1 Residues for smooth elliptic divisors

In this section we describe the radial residue map for a smooth elliptic divisor.
The radial residue map was already used in [16, Definition 1.7] to compute the Lie
algebroid cohomology of the elliptic tangent bundle of a smooth elliptic divisor.
We recall the construction and add some details which are especially important
in the general case. To do this, we first have to study the isotropy of the restricted
Lie algebroid A|D|

∣∣
D

:

Lemma 3.2.4. Let I|D| be a smooth elliptic divisor on a manifold M , and let ρ :
A|D| → TM be the corresponding elliptic tangent bundle. There exists a unique
nowhere vanishing section ED in ker ρ|D with the property that every extension is an
Euler like vector field2.

Proof. Let U be any tubular neighbourhood of D, and let E be the corresponding
Euler vector field. Let f ∈ I|D| be a local representative of the ideal, and pick
local Morse–Bott coordinates in which f = r2. In these coordinates E is given by
r∂r. Therefore, E defines a section of the elliptic tangent bundle and its restriction
to D defines a section ED of ker ρ|D. It is readily verified that ED is the unique
vector field with the given property.

Because Lr = R · ED is an ideal of A|D|
∣∣
D

we can consider the quotient Lie
algebroid. In the co-orientable case this quotient Lie algebroid is described in [16,
Equation 1.20].

Lemma 3.2.5. Let I|D| be a smooth elliptic divisor with non-negative generator f ∈ I|D|.
Let Q = O(2)ND denote the induced structure group reduction from Corollary 3.1.3.
Then

ψ : A|D|
∣∣
D
/Lr → At(Q)

[X] 7→ ϕ(X)− ϕ(X)(Qf )

Qf
E

is an isomorphism of Lie algebroids, here ϕ(X) is as in Lemma 3.2.2.

2That is, a vector field which vanishes along D and has linearisation the Euler vector field.
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Proof. To check that this map is well-defined note that E(Qf ) = Qf , and thus
ψ([E|D]) = 0. Moreover, using the description of At(Q) as in Lemma 3.5.4 we see
that ψ has the desired target.

Let X1, X2 ∈ Γ(A|D|
∣∣
D
/Lr), with ϕ(X1) = ϕ(X2). Let g ∈ C∞(D) be any

function, then ϕ(X1)(p∗g) = p∗X1(g) and similarly for X2. As this holds for
all functions we conclude that X1 = X2, and thus that ψ is injective. Let Y ∈
Γ(At(Q)), then X = Y |D ∈ Γ(A|D|

∣∣
D

) and Y = ψ([X]), and thus ψ is surjective.
Proving that ψ is bracket-preserving is a straightforward, but slightly tedious,
computation and thus omitted.

Because Lr is an abelian ideal of A|D|
∣∣
D

we may apply Proposition 3.2.1 to
obtain a residue map Ω•(A|D|

∣∣
D

)→ Ω•−1(At(O(2)ND);L∗r). By Lemma 1.1.25
Ω1(A|D|) is locally generated by closed forms and therefore Proposition 3.2.1
implies that the residue map is a cochain morphism. After pre-composing with
the restriction to D to obtain the the radial residue map:

Resr : Ω•(A|D|)→ Ω•−1(At(O(2)ND);L∗r) = Ω•−1(At(O(2)ND)),

where we used that L∗r is trivial as an At(O(2)ND)-representation. Note that
this residue map depends on the choice of representative f ∈ I|D|, but any two
different choices result in isomorphic Atiyah algebroids. In the local coordinates
(x1, y1, w3, . . . , wn) of Lemma 1.1.25 the radial residue map is given by:

Resr(α) = (ιr1∂r1α)|D, α ∈ Ω•(A|D|).

3.2.2 Residues for self-crossing elliptic divisors

We will now describe residue maps for the self-crossing elliptic tangent bundle.
As in the case for smooth elliptic divisors, the (local) Euler vector fields generate
an abelian ideal:

Lemma 3.2.6. Let I|D| be an elliptic divisor with pointwise multiplicity n. Then there
exists a canonical abelian ideal subalgebroid Lr of A|D|

∣∣
D[n]

. In local coordinates of
Lemma 1.1.25 we have

Γ(Lr) '
〈
r1∂r1 |D[n] , . . . , rn∂rn |D[n]

〉
.

Proof. Let x ∈ D[n], and let I|D1|, . . . , I|Dn| be a local normal crossing divisor on
a neighbourhood U of x and let ρi : A|Di| → TU be the corresponding elliptic
tangent bundles. By transverality of the loci Di we obtain the following splitting:

ker ρ|D[n]∩U ' ker ρ1|D[n]∩U ⊕ · · · ⊕ ker ρn|D[n]∩U .

By Lemma 3.2.4 there exist canonical vector subbundles Lri of ker ρi|D(n) with
generators EDi . Define Lr|U as the direct sum of these vector subbundles. Al-
though each of the summands Lri is not globally defined and neither is their
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order, Lr does define a global vector bundle. Alternatively, we can define Lr as
the sheaf of C∞(D[n])-modules which assigns to any open V of D[n] such that
D[n] = D1 ∩ · · · ∩Dn the module

{X|D[n] ∈ Γ(V, A|D|
∣∣
D[n]

) : ρ(X) is Euler-like for some Di}.

Finally, in the local coordinates of Lemma 1.1.25 we have that generators of this
module are of the form ri∂ri as desired.

Because Lr is an ideal we can consider the quotient Lie algebroid. As in the
smooth case, we can again describe this as the Atiyah algebroid of a principal
bundle, although this description is slightly more involved:

Lemma 3.2.7. Let I|D| be an elliptic divisor with pointwise multiplicity n. There is an
(O(2)n o Sn)-principal bundle Q such that At(Q) = A|D|

∣∣
D[n]

/Lr.

Proof. Let P = (O(2)×R+)n o Sn be the structure group reduction from Propos-
ition 3.1.2. As locally the sections of Lr are generated by the Euler vector fields of
the normal bundles to the local lociDi we have that Lr generates an (R+)n-action
on P . If x ∈M and (u1, . . . , un) ∈ Px is a frame with ui a frame ofNxDi, then this
action is given by (λ1, . . . , λn) · (u1, . . . , un) = (λ1u1, . . . , λnun). We can consider
the quotient bundle Q := P/(R+)n, which is an (O(2)n o Sn)-principal bundle.
Consequently A|D|

∣∣
D[n]

/Lr = At(Q) which finishes the proof.

As in the smooth case we apply Proposition 3.2.1 to obtain a residue map,
which we compose with the restriction to D[n] to obtain the total radial residue
map:

Resnr : Ω•(A|D|)→ Ω•−n(At(Q); det(L∗r)),

In the local coordinates of Lemma 1.1.25 we have that the total radial residue
map is given by

Resnr (α) = (ιr1∂r1∧···∧rn∂rnα)|D[n].

When the elliptic divisor is a global normal crossing divisor the situation
simplifies significantly:

Lemma 3.2.8. Let I|D| = I|D1| · . . . · I|Dn| be a global normal crossing elliptic divisor.
Let Q = O(2)nND[n] denote the structure group reduction from Corollary 3.1.3. Then
A|D|

∣∣
D[n]

/Lr ' At(Q).

Proof. Let f1, . . . , fn be non-negative generators of the smooth elliptic ideals. Let
Lr = Lr1⊕· · ·⊕Lrn be the ideal subalgebroid from Lemma 3.2.6 and let E1, . . . , En
denote the Euler-vector fields of ND1, . . . , NDn respectively. Let f1, . . . , fn be
non-negative generators of I|D1|, . . . , I|Dn|. Then

A|D|
∣∣
D[n]

/Lr → At(Q),

[X] 7→ ϕ(X)− LX(Qf1
)

Qf1

E1 − . . .−
LX(Qfn)

Qfn
En,

is the desired isomorphism, with ϕ as in Lemma 3.2.2.
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3.3. Cohomology of the elliptic tangent bundle

In this case det(L∗r) is trivial as an At(O(2)n)-representation and we conclude
that the total radial residue map becomes a map:

Resnr : Ω•(A|D|)→ Ω•−n(At(O(2)nND[n])).

3.3 Cohomology of the elliptic tangent bundle

Using the total radial residue map introduced in the previous section, we will
compute the Lie algebroid cohomology of the elliptic tangent bundle.

Let I|D| be an elliptic divisor of pointwise multiplicity n, in this section we
will write An|D| to keep track of this number and to simpify notion we write:

Ω•res(An|D|) := Ω•(At(Q)); det(L∗r)),

and denote its cohomology by H•res(An|D|).
Recall that if i ≤ n, then the restriction of I|D| toM\D(i+1) defines an elliptic

divisor of pointwise multiplicity i, which we denote by I|D\D(i+1)|. Therefore the
inclusion ιi : M\D(i+ 1) ↪→M induces a cochain map:

ι∗i : Ω•(An|D|)→ Ω•(Ai|D\D(i)|).

Consequently, we can consider the radial residue map for the divisor I|D\D(i+1)|
and the composition:

Resir ◦ ι∗i : Ω•(An|D|)→ Ω•−ires (Ai|D\D(i+1)|),

for each 1 ≤ i ≤ n− 1. Combining these maps will give us the desired isomorph-
ism in computing the cohomology of the elliptic tangent bundle:

Theorem 3.3.1. Let I|D| be an elliptic divisor with pointwise multiplicity n. Then

Hk(An|D|)→ Hk(M\D)⊕
n⊕
i=1

Hk−i
res (Ai|D\D(i+1)|) (3.3.1)

[α] 7→ (ι∗0[α],Res1
r ◦ι∗1[α], . . . ,Resn−1

r ◦ι∗n−1[α],Resnr [α])

is an isomorphism.

Proof. The argument uses the following observation, used by Grothendieck in
[40, Theorem 2] to do a similar computation for the complex of meromorphic
forms with poles along a divisor. This observation was also used in [16, The-
orem 1.3]. Let F•1 ,F•2 be soft sheaves of cochain complexes (e.g. Lie algebroid
differential forms), and let ϕ : F•1 → F•2 be a cochain morphism. LetHFi : U →
H•(F•i (U)) denote the cohomology presheaves and assume that ϕ induces a
presheaf isomorphism HF1 → HF2 . Then ϕ in fact induces a global isomorph-
ism H•(F•1 (M)) ' H•(F•2 (M)). The proof of this observation goes by passing
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Chapter 3. The cohomology of the elliptic tangent bundle

through the Cech-de Rham complex Čp(M,Fqi ), and using that by softness of F•i
the cohomology of this complex vanishes whenever p > 0.

We will apply this observation with F•1 = Ω•(A|D|) the sheaf of elliptic
differential forms andF•2 = (ι0)∗Ω

•(M\D)⊕
⊕n

i=1(ιj)∗Ω
•−j
res (Ai|D\D(i+1)|), where

we push-forward the sheaves using the inclusion maps ιj to sheaves on M .
Consequently, we are left to show that Equation 3.3.1 induces an isomorphism

on the cohomology presheaves. This can be achieved by proving that it induces
an isomorphism on the level of stalks. Therefore, for every x ∈M we are left to
study the local picture, and may make use of the local model of elliptic divisors.

Let x ∈ D[l] and let U be a neighbourhood of x as in Lemma 1.1.25, that
is U ∩ D[l + 1] = ∅, U = R2l × Rm and I|D| is the standard elliptic divisor of
pointwise multiplicity l; I|D1| · . . . · I|Dl|.

Below we will implicitly push-forward sheaves using the inclusion maps ιj
whenever required. The left hand side of equation (3.3.1) can be easily described
as the following free algebra:

H•(U,An|D|) = 〈1, d log r1, . . . , d log rl, dθ1, . . . , dθl〉 .

Now let i ≤ l. By Lemma 3.2.8 Ω•res(Ai|D\D(i+1)|) = Ω•(At(O(2)iND[i])). Be-
cause D[i] is orientable, Lemma 3.5.6 furthermore implies Ω•res(Ai|D\D(i+1)|) =

Ω•(At(U(1)iND[i])). Recall that the latter can be viewed asU(1)i-invariant differ-
ential forms on tot(U(1)iND[i]), whose cohomology is given byH•dR(U(1)iND[i]).
We will thus view Resir ◦ι∗i as a map into the latter cohomology.

First, let us consider the map ι∗0. By an elementary argument U\D is ho-
motopic to U(1)l, and ι∗0 sends the forms α, with α ∈ 〈1, dθ1, . . . , dθl〉 pre-
cisely to the generators of H•(U(1)l), proving that ι∗0 is surjective. For i > l,
ι∗i : H•(U,An|D|)→ H•res(U,Ai|D\D(i+1)|) is the zero map as Ai|D\D(i+1)| = TU on
U and U is contractible.

We will prove that all maps ι∗i ◦ Resir with 1 ≤ i ≤ l are surjective and have
disjoint kernels.

First we need to establish the homotopy type of D[i]; remark that

D[i] =

·⋃
(j1,...,ji)

(Dj1 ∩ · · · ∩Dji)\D(i+ 1),

where the sum runs over all multi-indices of length i. By an elementary argument,
(Dj1 ∩ · · · ∩Dji)\D(i+ 1) is homotopic to U(1)l−i. Moreover, ND[i] decomposes
as a direct sum, and thus so does the associated U(1)i-bundle:

U(1)iND[i] =
⊕

(j1,...,ji)

S1NDj1 |D[i] ⊕ · · · ⊕ S1NDji |D[i]

Because each Djk is contractible, the above is a sum of trivial circle bundles, and
thus U(1)iND[i] = U(1)i × D[i]. Combining this with the description of the
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3.3. Cohomology of the elliptic tangent bundle

homotopy type of D[i] we conclude that:

H•res(U,Ai|D\D(i+1)|) '
⊕

(j1,...,ji)

H•(U(1)l). (3.3.2)

Given α ∈ Ωk(Ai|D\D(i+1)|), then Resir(α) is only non-zero if α contains a term
of the form d log rj1 ∧ · · · ∧ d log rji ∧ β, with β ∈ 〈1, dθ1, . . . dθl〉. Moreover, Resir
takes forms of this form precisely to the generators of the H•(Tn) in (3.3.2) cor-
responding to the multi-index (j1, . . . , ji). This shows that ι∗i ◦ Resir is surjective,
and that the kernels of these maps for different values of i are all disjoint. We
conclude that (ι∗0, ι

∗
1 ◦ Res1

r, . . . , ι
∗
n−1 ◦ Resn−1

r ,Resnr ) is an isomorphism.

When the elliptic divisor is a co-orientable normal crossing divisor the co-
homology becomes easier to describe:

Corollary 3.3.2. If I|D| is a global normal crossing elliptic divisor for which D[1] is
co-orientable. Then

Hk(A|D|) ' Hk(M\D)⊕
n⊕
i=1

Hk−i(tot(U(1)iN(D[i]))).

Proof. By Corollary 3.1.3 Fr(ND[i]) admits a U(1)i-structure group reduction,
and using Lemma 3.5.6 we see that Ω•Res(Ai|D\D(i+1)|) = Ω•(At(U(1)iND[i])).
Therefore by Theorem 3.3.1 we obtain that the cohomology is isomorphic to

Hk(A|D|) ' Hk(M\D)⊕
n⊕
i=1

Hk−i(At(U(1)iN(D[i])))

Recall that we can view elements of Ω(At(U(1)iN(D[i]))) precisely as the U(1)i-
invariant differential forms on tot(U(1)iN(D[i])). Because U(1)i is compact and
connected the cohomology of U(1)i-invariant forms on tot(U(1)iN(D[i])) coin-
cides the the ordinary de Rham cohomology of tot(U(1)iN(D[i])), and therefore
we arrive at the required result.

In applications we are often interested in the case when the manifold is four-
dimensional, and hence D[2] consists of a collection of points. In this case the
cohomology also simplifies for general divisors:

Corollary 3.3.3. Let I|D| be an elliptic divisor on M4 for which D[1] is co-orientable.
Then

Hk(A|D|) ' Hk(M\D)⊕Hk−1(tot(S1ND[1]))⊕Hk−2(U(1)2)(#D[2]).
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3.4 Examples and outlook

In this section we give some explicit examples of elliptic divisors and compute
their associated cohomology. The following example plays an important role in
constructing examples of stable generalized complex structures in [18, Example
2.9, 2.24]:

Example 3.4.1. Let M = CP 2 and let D be a normal crossings divisor consisting
of three lines intersecting transversely, for instance D = {z0z1z2 = 0}. The asso-
ciated holomorphic line bundle with section (L, σ) is a complex log divisor, and
let (R, q) be the associated elliptic divisor. We will now compute the cohomology
of the associated elliptic tangent bundle:

• The complement M\D = (C∗)2 and thus homotopic to T 2.

• The stratum D[1] consists of three disjoint cylinders, and therefore every
complex line bundle on it is trivial. Consequently S1ND[1] is homotopic
to three disjoint tori.

• The stratum D[2] consists of three points.

Corollary 3.3.3 now gives us the following description of the elliptic cohomology:

k 0 1 2 3 4 otherwise
Hk(A|D|) R R5 R10 R9 R3 0

The comohology of the complex log tangent bundle is much simpler and given
by:

k 0 1 2 otherwise
Hk(AD) C C2 C 0

4

The following example plays an important role in the construction of co-
dimension-one symplectic foliations in work in progress of Cavalcanti and
Crainic:

Example 3.4.2. Let M = CP 2 and let D be the smooth complex divisor given
by the zero-set of a smooth cubic, for instance D = {z3

0 + z3
1 + z3

2 = 0}. By the
genus-degree formula we know that D is isomorphic to a torus. The cohomology
of the complement can be computed using the long exact sequence associated to
the inclusion D ↪→M :

0→R id→ R→ H0(CP 2, D)→ 0→ R2 →

H1(CP 2, D)→ R f→ R→ H2(CP 2, D)→ 0.

Because D is a complex submanifold of a Kähler manifold it is also a symplectic
submanifold with respect to ωFS . Therefore the map H2(CP 2) → H2(D) is an
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isomorphism, and the map f becomes the identity, and we can easily read of the
cohomology of M\D form the above sequence. To compute the cohomology of
P = S1ND we employ the Thom-Gysin sequence, which takes the following
form:

0→ R→ H0(P )→ 0→ R2 → H1(P )→ R ∪ e→ R→ H2(P )→ R2 → 0.

We have ND = O(3)|D, becauseO(3) is non-trivial and H2(CP 2)→ H2(D) is an
isomorphism, we have that the Euler-class of P is non-trivial. Therefore the map
∪ e is an isomorphism, and we can easily read of the cohomology of P from the
sequence. Corollary 3.3.3 now gives us the following description of the elliptic
cohomology:

k 0 1 2 3 otherwise
Hk(A|D|) R R3 R2 R2 0

Again, this is quite different from the complex log tangent bundle:

k 0 1 otherwise
Hk(AD) C C2 0

4

Example 3.4.3. Let f : M4 → Σ2 be a Lefschetz fibration with singular value p
and corresponding singular fibre F = f−1(p). Let (E, s) be the complex divisor
on Σ corresponding to the divisor {p} ⊂ Σ, and define a self-crossing complex
log divisor on M by (f∗E, f∗s). This divisor has as vanishing locus precisely the
singular fibre F , and D[2] consist precisely of the critical points on F .

Let n be the number of critical points of F . Then D[1] consist of a disjoint
union of n cylinders, and consequently S1ND[1] is homotopic to n tori.

Corollary 3.3.3 now gives us the following description of the elliptic cohomo-
logy:

Hk(A|D|) = Hk(M\F )⊕ k 1 2 3 4 otherwise
Rn R3n R3n Rn 0

4

3.4.1 Outlook: Deformation theory

We end by given an outlook on studying the deformation theory of self-crossing
stable generalized complex structures and self-crossing elliptic symplectic struc-
tures.

Already the deformation theory of all smooth elliptic symplectic structures
is more difficult than that of smooth stable generalized complex structures. The
reason is that smooth complex log divisors are very rigid: if one deforms a
complex function which vanishes transversely a bit, than one again obtains
a function which vanishes transversely. This is used in [16, Lemma 1.16] to
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show that any two smooth complex log divisors which are deformations of
each other are in fact isomorphic. Therefore, deformations of smooth stable
generalized complex structures can be reduced to deformations on a fixed Lie
algebroid, simplifying the discussion significantly. In the end, this ensures that
deformations of smooth stable generalized complex structures are completely
controlled by the cohomology of the Lie algebroid.

Smooth elliptic divisors are much less rigid than smooth complex log divisors.
If I|D| is a smooth elliptic ideal with non-negative generator f then for all ε > 0,
the function f + ε will be nowhere vanishing. Therefore small deformations of
elliptic divisors will not necessarily be isomorphic to the original divisor, which
significantly complicates the deformation theory of general elliptic symplectic
structures.

Allowing for self-crossings allows for even more flexibility, so that in this
case also complex log divisors are no longer rigid. The reason is that the self-
crossings can be smoothend. Take for instance the complex divisor ID = 〈z1z2〉
on C2, which has as vanishing locus the coordinate hyperplanes. The divisor
IDt = 〈z1z2 + t〉 is a smooth complex log divisor for all t ∈ [0, 1] and provides
a deformation between ID and a complex log divisor with embedded vanish-
ing locus. This shows that for self-crossing complex log divisors, deformation
equivalent divisors need not be isomorphic.

One might restrict the discussion to deformations for which the divisors are
isomorphic. We have good reasons to believe that in that case the results of [16,
Theorem 3.14] can be generalized and the deformations will be controlled by the
cohomology. However, deformations as the one above are very important to the
theory. The particular deformation IDt is used in [18, Theorem 5.12] to show that
in four dimensions any self-crossing stable generalized complex structure can be
deformed into one with embedded degeneracy locus.

Therefore it is most natural to study general deformations, which would thus
combine the deformation theory of the Lie algebroid with that of the elliptic
symplectic structures. To study this one will have to combine the cohomology
governing the deformations of the Lie algebroid, which is the deformation co-
homology of Crainic-Moerdijk ([66]) together with the Lie algebroid cohomology
of the elliptic tangent bundle.

3.5 Atiyah algebroids

This section recalls some results on Atiyah algebroids needed in this thesis. These
results are all classical and can be found in the literature, see for instance [23].

Definition 3.5.1. Let P be a principal G-bundle over M . The Atiyah algebroid
of P , is defined as At(P ) = TP/G. The anchor is induced by the differential of
the projection P →M . The bracket is obtained by viewing sections of At(P ) as
G-invariant vector fields on P . ♦

The Atiyah algebroid is a transitive Lie algebroid (i.e., the anchor maps is
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3.5. Atiyah algebroids

surjective), and defines a short exact sequence:

0→ P ×G g→ At(P )→ TS → 0, (3.5.1)

called the Atiyah sequence.
If ρ : A → M is an arbitrary transitive Lie algebroid, then we call the short

exact sequence
0→ K → A

ρ→ TS → 0 (3.5.2)

an abstract Atiyah sequence. We call it integrable if A = At(P ) for a principal
G-bundle P . Splittings of the Atiyah sequence play an important role:

Proposition 3.5.2. Let P →M be a principal G-bundle with Atiyah sequence

0→ K → At(P )→ TM → 0.

There is a one-to-one correspondence between:

• Connection one-forms θ ∈ Ω1(P, g) on P and

• Vector bundle splittings σ : At(P )→ K of the Atiyah sequence of At(P ).

Given a vector bundle E, we can consider its frame bundle Fr(E) and its
associated Atiyah algebroid, which we will denote by At(E). We can describe its
sections as fibre-wise linear vector fields:

Lemma 3.5.3. Let E → M be a vector bundle. Then Γ(At(E)) ' X1(E)lin = {X ∈
X1(E) : [X, E ] = 0}.

Consequently, its Atiyah sequence is given by:

0→ End(E)→ At(E)→ TM → 0

Proposition 3.5.2 therefore tells us that splittings of this sequence are the same as
linear connections on E.

We are mainly interested in the case of metrics, for which we have the follow-
ing descriptions:

Lemma 3.5.4. Given a metric g on a vector bundle E let Q denote the corresponding
O(n) structure group reduction of Fr(E). We have

Γ(At(Q)) ' {X̃ ∈ X1(E)lin : LX̃g = 0}.

Lemma 3.5.5. Given a conformal class of metrics [g] let Q denote the corresponding
O(n)× R+ structure group reduction of Fr(E). We have

Γ(At(Q)) ' {X̃ ∈ X1(E)lin : LX̃g = λg, for some λ ∈ C∞(M)}.

The Atiyah algebroid cannot detect discrete parts of the structure group:

Lemma 3.5.6. If P is a principal G-bundle and Q is a structure group reduction to H ,
and g ' h then At(P ) ' At(Q).
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Chapter 4

Homogeneous multivector
fields

Introduction

In the coming chapters we study multivector fields, and in particular Poisson
structures, on vector bundles. We will study those multivector fields which are
compatible with the vector bundle structure in the sense that they are fibrewise
polynomial. Although these objects are simple to define, the space of polynomial
multivector fields has a very rich algebraic structure. We will study this algebraic
structure in this chapter, and indicate how to use it to study normal form results
for Poisson structures, as we will do in the next chapter. In this introduction we
will gather the main definitions and results of this chapter.

In the first section we start by introducing the necessary terminology.
Throughout, we denote by E →M a real vector bundle with finite rank r and

let E∗ denote its dual. We will describe multivector fields on E∗ by how they
act on polynomial functions. Recall that fibrewise homogeneous polynomial
functions f ∈ C∞(E∗) of degree d can be described as sections Γ(SdE); Γ(E) in
particular describes fibrewise linear functions.

For X ∈ Xp+1(E∗), one can restrict the associated multi-derivation LX acting
on C∞(E∗) to fibrewise linear functions:

LX : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p+1)−times

→ C∞(E∗).

This restriction determines the multivector field X uniquely and we will refer to
LX as the core of X . We will give an abstract definition of such objects:

Definition 4.2.3. We define V p(E) to be the space of skew-symmetric maps

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p+1)−times

→ C∞(E∗),
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with the property that there exists a map, called the symbol of D,

σD : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
p−times

→ Γ(π∗TM),

such that for all s0, . . . , sp ∈ Γ(E) and f ∈ C∞(M)

D(s0, . . . , sp−1, fsp) = fD(s0, . . . , sp−1, sp) + sp · 〈σD(s0, . . . , sp−1), df〉 .

Here sp· denotes the product as smooth functions on E∗ and π∗TM is the pullback to
E∗ via the projection π : E∗ →M .

Therefore we conclude:

Lemma 4.2.4. The map sending X to its core LX is a linear isomorphism:

Xp+1(E∗) ∼= V p(E).

We are in particular interested in studying vector fields that are compatible
with the vector bundle structure: We call a vector field X ∈ Xp+1(E∗) homogen-
eous of degree d if it satisfies m∗λX = λd−p−1X and denote the space of such
vector fields by Xp+1(E∗)d−pol. To describe these vector fields in terms of their
cores, let V p(E)d−pol denote the subset of V p(E) consisting of elements that map
into Γ(SdE) ⊂ C∞(E∗).

Lemma 4.2.13. The isomorphism from Lemma 4.2.4 restricts to a linear isomorphism:

Xp+1(E∗)d−pol
∼= V p(E)d−pol.

The symbols of elements of V p(E) again have symbols of their own. In fact,
we define the spaces V p

l (E) consisting of multilinear maps

D : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l+1)−times

→ Γ(π∗ΛlTM)

with the property that there exists a map

σD : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l)−times

→ Γ(π∗Λl+1TM)

satisfying the Leibniz type identity (4.2.4). Note that V p
0 (E) = V p(E). We will

show that if D ∈ V p
l (E), then σD ∈ V p

l+1(E), and thus we obtain an entire
sequence:

V p
0 (E)

σ−→ V p
1 (E)

σ−→ V p
2 (E)

σ−→ . . . , (4.2.5)

We will call this sequence the symbol tower. Similarly we will define polynomial
analogues, V p

l (E)d−pol, and also obtain a sequence:

V p
0 (E)d−pol

σ−→ V p
1 (E)d−pol

σ−→ V p
2 (E)d−pol

σ−→ . . . (4.2.7)
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Using the isomorphisms from Lemma 4.2.4 and 4.2.13 we endow V •(E) and
V •(E)•−pol with the structure of a Gerstenhaber algebra. The towers (4.2.5) and
(4.2.7) are part of a filtration on this Gerstenhaber structure. We will describe this
filtration in detail in Section 4.2.5.

Given a connection ∇ on E∗ one can use the induces isomorphism TE∗ '
π∗(E ⊕ TM) to obtain a description of V p

l (E). This description fits into the
Gerstenhaber picture, by saying that it leads to a splitting of the sequences (4.2.5)
and (4.2.7), and therefore:

Corollary 4.2.49. A connection on E induces an isomorphism

V p
l (E) '

p−l+1⊕
i=0

Γ(Λp−l+1−iE∗ ⊗ π∗Λl+iTM).

If we endow Γ(Λ•E∗ ⊗ π∗Λ•TM) with the associative algebra structure induced by the
wedge products, this isomorphism induces an isomorphism of associative algebras

V •• (E) ' Γ(Λ•E∗ ⊗ π∗Λ•TM).

And in the polynomial case:

Corollary 4.2.51. Each V p
l (E)d−pol is the space of sections of a vector bundle over M ,

Vpl (E)d−pol, the symbol map is part of a short exact sequences of vector bundles

0→ Λp−l+1E∗ ⊗ Sd−lE ⊗ ΛlTM −→ Vpl (E)d−pol
σ−→ Vpl+1(E)d−pol → 0.

Moreover, any connection∇ on E gives rise to an isomorphism of vector bundles

Vpl (E)d−pol '
p−l+1⊕
i=0

(
Λp−l+1−iE∗ ⊗ Sd−l−iE ⊗ Λl+iTM

)
.

If we endow Γ(Λ•E∗ ⊗ S•E ⊗ Λ•TM) with the associative algebra structure obtained
from combining the wedge products and symmetric products, we obtain an isomorphism
of associate algebras:

V •• (E)•−pol ' Γ(Λ•E∗ ⊗ S•E ⊗ Λ•TM).

In the case when E = A is a Lie algebroid, we furthermore describe a relation
with representations up to homotopy:

Theorem 4.3.7. Let A → M be a Lie algebroid. A connection ∇ on A induces an
isomorphism of differentially graded algebras:

(V •(A)d−pol, dπ1
) ' Ω(A;Sd ad∇)p+1.

Here π1 ∈ X2(A∗) is the linear Poisson structure corresponding to the algebroid structure
on A and Sd ad∇ is the symmetric power of the adjoint representation up to homotopy.

The idea is to use the isomorphism from Corollary 4.2.51 to decompose a
homogeneous Poisson structure π ∈ X2(E∗)d−pol into pieces. This will shine
some light upon certain normal form results.
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4.1 Poisson geometry

In this section we recall some of the basic notions of Poisson geometry, foliation
theory, and Lie algebroids needed in the coming chapters.

Definition 4.1.1. A Poisson bracket {·, ·} is a Lie bracket on C∞(M) which acts
by derivations. ♦

Spelled out, this means it is an R-bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

which satisfies:

• Skew symmetry: {f, g} = −{g, f}

• Leibniz rule: {fg, h} = f{g, h}+ {f, h}g,

• Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

for all f, g, h ∈ C∞(M).
Equivalently it can be described using a bivector field:

Definition 4.1.2. A Poisson structure on M is a bivector field π ∈ X2(M) for
which the Schouten-Nijenhuis bracket with itself vanishes: [π, π] = 0. ♦

The bracket and bivector are related through the condition {f, g} = π(df, dg)
for all f, g ∈ C∞(M). A Poisson bracket allows one to associate to each function
f ∈ C∞(M) a vector field, called the Hamiltonian vector field Xf of f which is
defined via the relation:

Xf (g) := {f, g} for all g ∈ C∞(M).

Given a Poisson structure we have an associated map π] : T ∗M → TM ,
defined by the relation π]x(αx)(βx) = πx(αx, βx) for all αx, βx ∈ T ∗xM . Note that
Xf = π](df).

Example 4.1.3. For any manifold M , the zero-bivector π = 0 defines a Poisson
structure π = 0. 4

Example 4.1.4. Let M be a smooth manifold. A symplectic structure is a two-
form ω ∈ Ω2(M) which is closed (dω = 0) and non-degenerate, that is the map
ω[ : TM → T ∗M defined by ω[(X)(Y ) = ω(X,Y ) is an isomorphism.

Given a symplectic structure one defines a Poisson bracket via the relation

{f, g} := −ω((ω[)−1(df), (ω[)−1(dg)).

Conversely, any Poisson structure for which π] is an isomorphism is induced by
a symplectic form ω with ω[ = (π])−1. 4

Poisson geometry is deeply related to foliation theory.
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Definition 4.1.5. A (regular) foliation F on Mn is a partition of M = ∪xLx into
disjoint connected immersed submanifolds (called the leaves) such that for all
x ∈M there is a neighbourhood U of x and coordinates (x1, . . . , xn) on M such
that

U ∩ Ly = {xk+1 = const, . . . , xn = const},

for all y ∈ U . The number k is called the codimension of the foliation. ♦

Although a regular foliation is a very geometric object, in practice it is easier
to work with the infinitesimal counterpart, which are the tangent spaces to the
leaves, TF . These form a subbundle of TM , defined by TxF = TxL, where L is
the leaf passing through x ∈M .

This subbundle has the following special property:

Definition 4.1.6. A subbundle E ⊂ TM is called involutive if [Γ(E),Γ(E)] ⊂
Γ(E). ♦

For any subbundle E ⊂ TM a submanifold S ⊂ M is called an integral
submanifold if TxS = Ex for all x ∈ S. An integral submanifold is called
maximal if it is not contained in any other integral submanifold.

Frobenius theorem ensures the existence of (maximal) integerable submani-
folds for involutive subbundles of TM :

Theorem 4.1.7 (Frobenius Theorem). There is a one-to-one correspondence between
regular foliations and involutive subbundles of TM :

• Given a foliation F , the tangent spaces to its leaves TF form an involutive
distribution.

• Given an involutive subbundle of TM , the maximal integral submanifolds form
the leaves of a foliation.

Associated to a regular foliation is the complex of leafwise differential forms:

Ω•(F) := Γ(Λ•T ∗F),

endowed with the leafwise de Rham differential dF :

(dFα)(X1, . . . , Xk+1) :=

k+1∑
i=1

(−1)i+1LXiα(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

for α ∈ Ωk(F) and X1, . . . , Xk+1 ∈ Γ(TF).
If (M,π) is a regular Poisson structure, i.e. the rank of π]x does not depend on

x ∈M , then π](T ∗M) defines an involutive subbundle. Therefore, by Frobenius’
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theorem it corresponds to a regular folation which will be denoted by Fπ. Loc-
ally, the distribution π](T ∗M) is spanned by the Hamiltonian vector fields and
therefore we can define a foliated two-form ωFπ ∈ Ω2(Fπ) via the relation:

ωFπ (Xf , Xg) = −{f, g} for all f, g ∈ C∞(M).

In this way, we arrive at the following definition:

Definition 4.1.8. A (regular) symplectic foliation on M is a foliation F together
with a leafwise two-form ωF ∈ Ω2(F) which is leafwise closed, i.e. dFωF = 0,
and leafwise non-degenerate, i.e. ω[F : TxL → TxL

∗ is an isomorphism for all
leaves L of F . ♦

For a Poisson manifold (M,π) the pair (Fπ, ωFπ ) indeed defines a symplectic
foliation.

Proposition 4.1.9. There is a one-to-one correspondence between regular Poisson
structures and regular symplectic foliations.

We will now recall some very special classes of regular Poisson structures:

Example 4.1.10. A cosymplectic structure on M2n+1 is a pair of closed forms
(θ, ω) ∈ Ω1

cl(M)× Ω2
cl(M) satisfying θ ∧ ωn 6= 0. In this case F := ker θ defines a

foliation and ω|F a leafwise symplectic form. 4

Definition 4.1.11. An almost k-cosymplectic structure onMk+2l is a (k+1)-tuple
(θ1, . . . , θk, ω) ∈ Ω1(M)× · · ·Ω1(M)×Ω2(M) satisfying the relation θ1 ∧ · · · θk ∧
ωl 6= 0.

It is called k-cosymplectic if all forms are closed. ♦

Note that in particular a 1-cosymplectic structure is a cosymplectic structure.
Also note that given a k-cosymplectic structure that F := ker θ1 ∩ · · · ∩ ker θk
defines a foliation and ω|F a leafwise symplectic form.

Definition 4.1.12. An almost k-Poisson structure on Mk+2l is a (k + 1)-tuple
(X1, . . . , Xk, π) ∈ X1(M) × · · · × X1(M) × X2(M) satisfying the relation X1 ∧
· · ·Xk ∧ πl 6= 0.

It is called k-Poisson if moreover π is Poisson, the Xi pairwise commute and
are Poisson vector fields, i.e. [Xi, π] = 0. ♦

Just as non-degenerate Poisson structures correspond to symplectic forms,
we can relate k-Poisson and k-cosymplectic structures:

Proposition 4.1.13 ([73]). There is a one-to-one correspondence between almost k-
Poisson structures and almost k-cosymplectic structures. This correspondence restricts
to a correspondence between k-Poisson and k-cosymplectic structures.
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4.1. Poisson geometry

4.1.1 Poisson cohomology and contravariant connections

Every Poisson manifold has an associated cohomology theory:

Definition 4.1.14. Let (M,π) be a Poisson manifold. Then

dπ : X•(M)→ X•+1(M) : X 7→ [π,X]

is a differential, i.e. d2
π = 0. The associated cohomology is denoted H•π(M)

and called the Poisson cohomology of (M,π). One-cocycles, i.e. vector fields
X ∈ X1(M) with dπ(X) = 0, are called Poisson vector fields. ♦

Let (M,π) be a Poisson manifold and let

∧•π] : Λ•T ∗M → Λ•TM

denote the unique algebra extension of π], that is ∧•π](α1 ∧ · · ·αk) = π](α1) ∧
· · · ∧ π](αk).

Lemma 4.1.15. Let (M,π) be a Poisson manifold. Then

∧•π] : (Ω•(M), d)→ (X•(M), dπ),

is a cochain map.

An important invariant of a Poisson manifold is the modular class: If (M,π)
is a Poisson manifold and Ω ∈ Ωtop(M) a volume form, then for any f ∈ C∞(M)
the divergence of Xf is defined by

LXf (Ω) = div(Xf )Ω.

The association f 7→ div(Xf ) is the modular vector field associated to Ω, and
denoted Xmod. Although this vector field depends on the particular choice of
volume form, the Poisson cohmology class, [Xmod] ∈ H1

π(M), does not and is
called the modular class of (M,π).

Definition 4.1.16. Let (M,π) be a Poisson manifold and let E →M be a vector
bundle. A contravariant connection1 on E is an R-bilinear map:

∇π : Γ(T ∗M)× Γ(E)→ Γ(E),

(α, e) 7→ ∇πα(e),

which is C∞(M) linear in the first entry and satisfies the Leibinz identity in the
second entry:

∇πα(fe) = f∇πα(e) + Lπ](α)(f) · e,

for all α ∈ Γ(T ∗M), f ∈ C∞(M) and e ∈ Γ(E). ♦
1Also known as Poisson connection.
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Definition 4.1.17. Let ∇π be a contravariant connection on E. Its curvature is
the endomorphism valued vector field R∇π ∈ X2(M ; End(E)) defined by the
relation

R∇π (α, β) = ∇πα(∇πβ(e))−∇πβ(∇πα(e))−∇π[α,β]π
(e)

for all α, β ∈ Ω1(M) and e ∈ Γ(E). Here [α, β]π is as in Equation 4.1.2. A
contravariant connection is called flat if its curvature vanishes. ♦

Contravariant connections form an affine space:

Lemma 4.1.18. Let (M,π) be a Poisson manifold and let E →M be a vector bundle.
Let ∇π and (∇π)′ be two contravariant connections. Then their difference defines an
endomorphism valued vector field∇π − (∇π)′ ∈ X1(M ; End(E)).

Example 4.1.19. Let (M,π) be a Poisson manifold and let E → M be a vector
bundle. Given an ordinary connection ∇ on E, one defines an induced contrav-
ariant connection via:

∇πα(e) = ∇π](α)(e).

If R∇ ∈ Ω2(M ; End(E)) is the curvature of∇, then

R∇π (α, β) = R∇(π](α), π](β)), for all α, β ∈ Ω1(M). 4

Out of a contravariant connection ∇π on a line bundle L we can define a
Poisson vector field in the following way: First assume that L is trivialisable and
let e ∈ Γ(L) be a nowhere vanishing section. Then necessarily ∇α(e) = fα,e · e
for some function fα,e ∈ C∞(M). It follows that the association Xe : α 7→ fα,e
defines a vector field. Moreover, if the contravariant connection is flat, then Xe

will be dπ-closed. If e′ = ge is another non-vanishing section for g ∈ C∞(M),
then Xe −Xe′ = π](d log g) and we conclude that Xe defines a well-defined class
c(L,∇) := H1

π(M).
When L is not trivialisable, L⊗L still is and one can endow it with the product

contravariant connection:

∇̃πα(s1 ⊗ s2) = ∇πα(s1)⊗ s2 + s1 ⊗∇πα(s2)

and define c(L,∇) = 1
2c(L⊗ L, ∇̃

π) ∈ H1
π(M).

Definition 4.1.20. Let L→M be a real line bundle and let∇π be a flat contrav-
ariant connection. The Poisson cohomology class c(L,∇π) ∈ H1

π(M) is called the
characteristic class of∇π . ♦

Example 4.1.21. Let (M,π) be a Poisson manifold. Then there is a canonical
flat-connection on ∧topT ∗M :

∇π : Γ(T ∗M)× Γ(∧topT ∗M)→ Γ(∧topT ∗M) : (α,Ω) 7→ Lπ](α)Ω + 〈dα, π〉Ω.

We denote ∧topT ∗M endowed with this flat connection with K∗π .
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When M is orientable, then the characteristic class of ∇π is precisely the
modular class of (M,π). We can use this flat connection also on non-orientable
manifolds to define:

The modular class of a Poisson manifold is defined as

[Xmod] = c(ΛtopT ∗M,∇π). 4

For a regular Poisson manifold we can also consider a slightly weaker invari-
ant. Consider the short exact sequence:

0→ ν∗Fπ ↪→ T ∗M
π]→ Fπ → 0, (4.1.1)

where→ ν∗Fπ = kerπ]. Given a contravariant connection ∇π on a line bundle
L→M , we can restrict the connection to obtain a map:

Γ(ν∗Fπ )× Γ(L)→ Γ(L).

Because ∇πα(fe) = f∇πα(e) + Lρ(α)(f)e = f∇πα(e) for all α ∈ Γ(ν∗Fπ ) we have
that the restriction of ∇π to Γ(ν∗Fπ ) is C∞(M)-linear in both components, so it
induces a vector bundle map

ν∗Fπ → Hom(L,L)

α 7→ ∇πα.

Because L is a line bundle, it can be identified with a section ϕ ∈ Γ(νFπ ). This
section is called the isotropy character2 of the contravariant connection.

WhenX ∈ X1(M) is a representative of the modular class of a regular Poisson
manifold (M,π)X mod Fπ coincides with the isotropy character of the canonical
contravariant connection on ∧topT ∗M .

Remark 4.1.22. There is a slightly different way of defining the characteristic
class of a flat contravariant connection ∇π on an arbitrary line bundle. A first
attempt is to see that, as L has rank one, End(E) ' R · id and thus by Lemma
4.1.18 the difference between any two flat contravariant connections is a dπ-closed
vector field. Because L is rank one there exists a flat connection∇ on L. Consider
the vector field X∇ ∈ X1(M) defined by the relation X∇ ⊗ id := ∇π −∇π .

If we had chosen another flat connection∇′, then we would see that∇−∇′ =
α ∈ Ω1(M), for some closed one-form α. Therefore, X∇ −X∇′ = −π](α) and we
get a well-defined object in Γ(νF ). This is precisely the isotropy character of the
contravariant connection.

To get the characteristic class, we have to restrict the class of connections we
work with. We do this in the following way: Let g ∈ Γ(Sym2L∗) be a metric
and let ∇g be the associated unique (flat) connection compatible with g. For the
(unique up to sign) local orthonormal frame e of L we have ∇gX(fe) = X(f)e.
If g′ is another orthonormal metric and g′ = hg for some nowhere vanishing
function h ∈ C∞(M), then ∇g −∇g′ = d log h⊗ id.

2Also known as normal/transverse Higgs field.
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Consequently, if we only use connections compatible with a metric to con-
struct the vector field X∇, we see that we do get a well-defined class in H1

π(M).
This class indeed coincides with the characteristic class of∇π . ♦

Lie algebroids

Definition 4.1.23. A Lie algebroid A on M consists of a vector bundle A →M ,
a vector bundle map ρ : Γ(A)→ TM , called the anchor, and a Lie bracket on the
space of sections Γ(A) satisfying the Leibniz identity:

[v, fw] = f [v, w] + Lρ(v)(f)w,

for all v, w ∈ Γ(A) and f ∈ C∞(M). ♦

Example 4.1.24. If F is a foliation on M , then TF is involutive and the space
of section Γ(TF) thus inherits the Lie bracket of vector fields. Together the the
inclusion TF ↪→ TM this defines a Lie algebroid structure on TF . 4

Lie algebroids play an important role in Poisson geometry:

Example 4.1.25. Let (M,π) be a Poisson manifold. Then T ∗M naturally inherits
the structure of a Lie algebroid as follows: The anchor is defined to be π] :
T ∗M → TM and the bracket is defined as follows:

[α, β]π = Lπ](α)(β)− Lπ](β)(α)− dπ(α, β), (4.1.2)

for all α, β ∈ Ω1(M). This Lie algebroid is referred to as the cotangent Lie
algebroid. 4

Given a Lie algebroid A, one can consider the Lie algebroid forms Ω•(A) :=
Γ(∧•A). The Lie bracket determines a differential on Ω•(A) using the Koszul
formula: Given α ∈ Ωk(A) define dAα ∈ Ωk+1(A) by:

dA(α)(v1, . . . , vk+1) =

k+1∑
i=1

(−1)iLρ(vi)α(v1, . . . , v̂i, . . . , vk+1)

+
∑
i<j

(−1)i+jα([vi, vj ], . . . , v̂i, . . . , v̂j , . . . , vk+1).

Example 4.1.26. Let (T ∗M, [·, ·]π, π]) be the cotangent Lie algebroid. Then the Lie
algebroid complex (Ω•(T ∗M), dT∗M ) coincides precisely with (X•(M), dπ). 4

Definition 4.1.27. Let A → M be a Lie algebroid and E → M a vector bundle.
An A-connection on E is an R-bilinear map:

Γ(A)× Γ(E)→ Γ(E) : (v, e) 7→ ∇v(e),
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which is C∞(M)-linear in the first entry and satisfies the Leibiniz identity in the
second entry:

∇v(fe) = f∇v(e) + Lρ(v)(f) · e,

for all v ∈ Γ(A), f ∈ C∞(M) and e ∈ Γ(E).
Its curvature is the endomorphism valued two-form R∇ ∈ Ω2(A; End(E))

defined by the relation

R∇(s1, s2) = ∇s1(∇s2(e))−∇s2(∇s1(e))−∇[s1,s2](e)

for all X,Y ∈ Γ(A) and e ∈ Γ(E). ♦

Example 4.1.28. The tangent bundle is naturally a Lie algebroid, with anchor the
identity map and Lie bracket the bracket of vector fields. TM -connections are the
same as ordinary connections. For a Poisson manifold (M,π), T ∗M -connections
are the same as contravariant connections. 4

4.1.2 Cohomology classes for symplectic foliations

We recall some cohomology classes for symplectic foliations which are used
in this thesis. Throughout let (F , ωF ) be a symplectic foliation and let Ω•F (M)
denote the kernel of the restriction map ι∗ : Ω•(M) → Ω•(F) of forms defined
on M to F . We have a short exact sequence of cochain complexes:

0→ Ω•F (M)→ Ω•(M)→ Ω•(F)→ 0

Here Ω•(F) is endowed with the foliated de Rham differential and Ω•(F , ν∗) is
endowed with a differential induced by the Bott-connection. There are a couple
of maps relating these complexes. The first is

p : Ωk+1
F (M)→ Ωk(F , ν∗),

p(α)(X1, . . . , Xk)(N) = α(X1, . . . , Xk, N),

where X1, . . . , Xk ∈ Γ(TF) and for N ∈ X(M), N denotes the corresponding
section of the normal bundle. Another map, which we simply denote by d, is
given by:

d : Hk(F)→ Hk+1
F (M)

[α] 7→ [dα̃],

where α̃ ∈ Ω•(M) is any extension of α. Combining these two we obtain the
variation map dν = p ◦ d : Hk(F)→ Hk(F , ν∗).

Definition 4.1.29. Let (F , ωF ) be a symplectic foliation. The symplectic variation
of (F , ωF ) is the class dν [ωF ] ∈ H2(F , ν∗). ♦

This class is used frequently in the literature. However from its construction
we see that we could also have defined the following class:
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Definition 4.1.30. Let (F , ωF ) be a symplectic foliation. The class d[ωF ] ∈ H3
F (M)

is called the characteristic class of (F , ωF ) and denoted C(F , ωF ). ♦

Another map relating the above complexes is given by:

q : Ωk(M,ν∗)→ Ωk+1
F (M),

q(α)(X1, . . . , Xk+1) =
〈
α(X1, . . . , Xk), Xk+1

〉
+ cycl. perm.

A straightforward check shows that the following diagram commutes:

Ωk+1
F (M) Ωk(F , ν∗)

Ωk(M,ν∗)

p

q
rest

Concluding, we obtain the following commutative diagram in cohomology:

Hk(F)

Hk+1
F (M) Hk(F , ν∗)

Hk(M,ν∗)

d
dν

p

q
rest

When the normal bundle to the foliation is trivial as a representation, the map q
can be expressed explicitly:

Lemma 4.1.31. Let α ∈ Ωk(M,ν∗) and suppose that ν∗ = 〈θ1, . . . , θn〉 for closed
one-forms θ1, . . . , θn. Then if α corresponds to (α1, . . . , αn) ∈ Ωk(M,Rn) we have

q(α) = α1 ∧ θ1 + · · ·+ αn ∧ θn.

4.2 Multivector fields on vector bundles

4.2.1 Multivector fields on manifolds

We will recall the Gerstenhaber algebra structure on the multivector fields. Let
Xk(N) denotes the space of k-multivector fields on N :

Xk(N) := Γ(ΛkTN).

The wedge product

Xk(N)× Xl(N)→ Xk+l(N) (X1, X2) 7→ X1 ∧X2

endows X•(N) with the structure of a graded algebra.
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Moreover, the Schouten-Nijenhuis bracket

[·, ·]SN : Xp+1(N)× Xq+1(N)→ Xp+q+1(N),

endows X•(N), up to a shift, with the structure of a graded Lie algebra. The
wedge product and Schouten-Nijenhuis bracket are compatible with each other,
and axiomatising their interaction gives rise to the notion of Gerstenhaber al-
gebra.

To describe the Schouten-Nijenhuis bracket and wedge product explicitly it is
useful to describe multivector fields as multi-deriviations – every X ∈ Xp+1(N)
gives rise to a multilinear skew-symmetric map

LX : C∞(N)× · · · × C∞(N)︸ ︷︷ ︸
(p+1)−times

→ C∞(N), (4.2.1)

LX(f0, . . . , fp) = 〈df0 ∧ . . . ∧ dfp, X〉.

Conversely, any (p + 1)-multilinear skew-symmetric map (4.2.1) which is a
derivation in each argument arises in this way.

Definition 4.2.1. The Schouten-Nijenhuis bracket of the multivector fields X ∈
Xp+1(N) and Y ∈ Xq+1(N) is the unique multivector field [X,Y ] ∈ Xp+q+1(N)
satisfying:

L[X,Y ] = LX ◦ LY − (−1)pqLY ◦ LX , (4.2.2)

where

LX ◦ LY (f0, . . . , fp+q) :=

=
∑

σ∈Sp,q+1

(−1)|σ|LX(fσ(0), . . . , fσ(p−1),LY (fσ(p+1), . . . , fσ(p+q)));

with sum over all (p, q + 1)-shuffles. ♦

Definition 4.2.2. The wedge product of the multivector fields X ∈ Xp(N) and
Y ∈ Xq(N) is the unique multivector field X ∧ Y ∈ Xp+q(N) satisfying:

LX∧Y (f1, . . . , fp+q) =
∑

σ∈Sp,q

sign(σ)LX(fσ(1), . . . , fσ(p))LY (fσ(p+1), . . . , fσ(p+q));

with sum over all (p, q)-shuffles. ♦

4.2.2 Cores of multivector fields

We will now proceed to study multivector fields on vector bundles. The fibrewise
linear structure allows us to talk about fibrewise linear functions, and we can
restrict the derivation associated to a multivector field to these functions. This
will define an object which captures the multivector field completely, which we
call its core. We will make an independent study of these cores, and exhibit a rich
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algebraic structure on the space of cores.

Throughout, let E → M denote a real vector bundle with finite rank r.
Fibrewise linear functions on E∗ correspond to sections of E via the inclusion

Γ(E) ⊂ C∞(E∗).

In particular, for X ∈ Xp+1(E∗), one can restrict the derivation LX from
(4.2.1) to Γ(E) ⊂ C∞(E∗); the resulting map is

LX : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p+1)−times

→ C∞(E∗). (4.2.3)

This restriction determines the multivector field X uniquely and we will refer to
LX as the core of X . We give an abstract definition of such objects:

Definition 4.2.3. We define V p(E) to be the space of skew-symmetric maps

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p+1)−times

→ C∞(E∗),

with the property that there exists a map, called the symbol of D,

σD : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
p−times

→ Γ(π∗TM),

such that

D(s0, . . . , sp−1, fsp) = fD(s0, . . . , sp−1, sp) + sp · 〈σD(s0, . . . , sp−1), df〉 .

Here “sp·” denotes the product as smooth functions on E∗ and π∗TM is the
pullback to E∗ via the projection π : E∗ →M . ♦

Where the core is defined as the restriction of LX to fibrewise linear functions,
we could also have restricted LX to some fibrewise constant functions, i.e. those
arising from the inclusion

π∗ : C∞(M) ↪→ C∞(E∗).

The symbol of the core of LX , corresponds precisely to the restriction of LX to

Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
p−times

×C∞(M).

Therefore we conclude:

Lemma 4.2.4. The map sending X to its core LX (4.2.3) is a linear isomorphism

Xp+1(E∗) ∼= V p(E).
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Restring more components to fibrewise constant entries gives rise to “higher
order” symbols of LX . This can be done purely algebraic, starting from the
definition of V p(E):

Lemma 4.2.5. Let E →M be a vector bundle, and let D ∈ V p(E). Its first symbol σD
is unique, and there is a sequence (D,σ1

D, σ
2
D, . . . , σ

k
D) of skew-symmetric maps,

σ0
D = D : Γ(E)× Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸

(p+1)−times

→C∞(E∗),

σ1
D = σD : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸

p−times

→Γ(π∗TM),

σ2
D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸

(p−1)−times

→Γ(π∗Λ2TM),

· · · ,
σpD : Γ(E)→Γ(π∗ΛpTM),

σp+1
D ∈Γ(π∗Λp+1TM),

each two consecutive ones being related by the Leibniz identity:

σlD(s0, . . . , sp−l−1, fsp−l) = fσlD(s0, . . . , sp−l−1, sp−l) (4.2.4)

+ sp−l · idf
(
σl+1
D (s0, . . . , sp−l−1)

)
.

Proving this lemma can be done inductively by introducing the spaces V p
l (E)

consisting of multilinear maps

D : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l+1)−times

→ Γ(π∗ΛlTM)

with the property that there exists a map

σD : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l)−times

→ Γ(π∗Λl+1TM)

satisfying the Leibniz type identity (4.2.4). Note that V p
0 (E) = V p(E). Lemma

4.2.5 now follows by applying the following statement inductively:

Lemma 4.2.6. If D ∈ V p
l (E), then σD ∈ V p

l+1(E).

Proof. To prove this statement we have to show that there exists a map σ2
D

such that σD also satisfies the Leibniz type identity (4.2.4). This follows from a
straightforward, but careful, application of the Leibniz identity for D twice, in
both possible orders, to the expression

D(s0, . . . , sp−l−2, fsp−l−1, gsp−l).
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Chapter 4. Homogeneous multivector fields

We conclude that there is an entire sequence:

V p
0 (E)

σ−→ V p
1 (E)

σ−→ V p
2 (E)

σ−→ . . . , (4.2.5)

which will be called the symbol tower. When we want to view σ as a map, we
write for D ∈ V p

l (E) that σ(D) := σD ∈ V p
l+1(E). One may even want to think

of elements D ∈ V p(E) as entire sequences

(σ0
D, σ

1
D, . . . , σ

p+1
D ),

starting with D and σD, although each element determines the next one.
Note that the isomorphism from Lemma 4.2.4 does restrict to the intermediate

spaces as follows:

Lemma 4.2.7. There is a linear isomorphism

V p
l (E) ' Xp+1−l(E∗;π∗ΛlTM).

4.2.3 Polynomial mutivector fields

We want to describe multivector fields (on vector bundles) which are fibrewise
polynomial. These can be described as sums of multivector fields which are ho-
mogeneous with respect to the fibrewise multiplication by scalars mλ : E∗ → E∗.
One can use the core of a multivector field to describe this behaviour very nicely.
Ample examples will be given towards the end of the section.

The rescaling operators mλ allow us to classify those functions on E∗ which
are fibrewise polynomial:

Definition 4.2.8. The graded algebra of fibrewise homogeneous polynomials
Pol•(E∗) ⊂ C∞(E∗), consists of those functions p ∈ Pold(E∗) with the property
that m∗λ(p) = λdp. ♦

Lemma 4.2.9. The association which sends p ∈ Γ(SdE) to the polynomial of degree d

p̂ : E∗ → R, e 7→ p(e, . . . , e).

defines an isomorphism of graded algebras Γ(S•E) ' Pol•(E∗).

Remark 4.2.10. The infinitesimal counterpart of the rescaling operators mλ is the
Euler vector field E ∈ X(E∗) whose flow at time t is met :

Ev :=
d

dt

∣∣∣∣
t=0

etv ∈ TvE∗.

Or, with respect to coordinates (x, y) for E∗ arising from coordinates x on the
base M and y on the fiber induced by a trivialization of the vector bundle E∗,
one has

E =

r∑
i=1

yi
∂

∂yi
.
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4.2. Multivector fields on vector bundles

Because the flow of the Euler vector field is the rescaling operator, we can describe
Definition 4.2.8 infinitesimally:

g ∈ Pold(E∗) ⇐⇒ LE(g) = d · g.

Lemma 4.2.11. Given X ∈ Xp+1(E∗) and d ≥ 0 integer, the following are equivalent:

(i) m∗λX = λd−p−1X .

(ii) [E , X] = (d− p− 1) ·X .

(iii) The core (4.2.3) of X takes values in the space of fiberwise polynomial function of
degree d.

A multivector field satisfying the conditions of the above lemma is called
homogeneous polynomial of degree d and the space of such multivector fields
is denoted by Xp+1(E∗)d−pol. We give the abstract definition of the cores of these
multivector fields:

Definition 4.2.12. Let E →M be a vector bundle. We denote by V p(E)d−pol the
space of skew-symmetric multilinear maps

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p+1) times

→ Γ(SdE)

with the property that there exists a skew-symmetric map

σD : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
p times

→ Γ(TM ⊗ Sd−1E),

satisfying

D(s0, . . . , sp−1, fsp) = f ·D(s0, . . . , sp−1, sp)+sp ·〈σD(s0, . . . , sp−1), df〉 . (4.2.6)
♦

The following is now easy to remark:

Lemma 4.2.13. The isomorphism from Lemma 4.2.4 restricts to a linear isomorphism

Xp+1(E∗)d−pol
∼= V p(E)d−pol.

And, as before, we define polynomial versions of the intermediate spaces:
V p
l (E)d−pol consists of the skew-symmetric multilinear maps

D : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l+1)−times

→ Γ(ΛlTM ⊗ Sd−lE).

with the property that there exists a skew-symmetric multilinear map

σD : Γ(E)× Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(p−l)−times

→ Γ(Λl+1TM ⊗ Sd−l−1E).

satisfying Leibniz-type condition (4.2.6). Lemma 4.2.6 now immediately implies
the following:
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Chapter 4. Homogeneous multivector fields

Lemma 4.2.14. V p(E)d−pol coincides with the subspace of V p(E) consisting of those
D taking values in Γ(SdE) ⊂ C∞(E∗). Furthermore, for D ∈ V p(E)d−pol there is an
entire sequence (σD = σ1

D, σ
2
D, . . . , σ

k
D), with σiD ∈ V p

i (E)d−pol.

Therefore we also obtain a polynomial version of the symbol tower (4.2.5):

V p
0 (E)d−pol

σ−→ V p
1 (E)d−pol

σ−→ V p
2 (E)d−pol

σ−→ . . . , (4.2.7)

We can also describe the intermediate spaces again:

Lemma 4.2.15. The isomorphism from Lemma 4.2.7 restricts to an isomorphism

V p
l (E)d−pol ' Xp+1−l(E∗; ΛlTM)(d−l)−pol.

Here Xp+1−l(E∗; ΛlTM)(d−l)−pol consist of linear combinations of elements
ϑ⊗X , with ϑ ∈ Xp+1−l(E∗)(d−l)−pol and X ∈ ∧lTM . We end this section with
some important and instructive examples:

Example 4.2.16 (0-polynomial). When d = 0 all symbols necessarily vanish and
we have

V p(E)0−pol = Γ(Λp+1E∗).

For any ξx ∈ E∗x one has a short exact sequence of vector spaces

0→ E∗x
ιξx−→ TξxE

∗ −→ TxM → 0;

where the first map is given by

ιξx(vx) =
d
dt

∣∣∣∣
t=0

(ξx + tvx).

and the second map is the differential of the projection E∗ → M . The map ι
induces an isomorphism

ι∗ : Γ(Λ•E∗)→ X•(E∗)0−pol,

inverse to the isomorphism in Lemma 4.2.13. 4

Example 4.2.17 (1-polynomial vector fields). V 0(E)1−pol consists of derivations.
That is, maps D : Γ(E)→ Γ(E) together with a vector field X on M such that:

D(fs) = fD(s) + LX(f)s

for all s ∈ Γ(E), f ∈ C∞(M). We see that Lemma 4.2.13 defines an isomorph-
ism between derivations on E and fibrewise linear vector fields X1(E∗)1−pol.
Moreover, if A ∈ End(E∗), then we can consider the vector field a(A) ∈ X1(E∗)
given by

a(A)ξx =
d
dt

∣∣∣∣
t=0

(ξx + tA(ξx)),
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4.2. Multivector fields on vector bundles

for ξx ∈ E∗x. This provides a map a : End(E∗) → X1(E∗)1−pol and its image
corresponds precisely to the vector fields for which the core has zero symbol. We
can also describe this construction dually. Let B ∈ End(E), and consider the core
ã(B) ∈ V 0(E)1−pol defined by

ã(B)(s) = B(s),

for s ∈ Γ(E). Of course, the two are related: The core corresponding to a(A) is
precisely ã(A∗). 4

Example 4.2.18 (1-polynomial bivector fields and Lie algebroids). Pre-Lie al-
gebroid brackets [·, ·] : Γ(E) × Γ(E) → Γ(E) (i.e., not necessarily satisfying
Jacobi) correspond precisely to elements of V 1(E)1−pol. The symbol of [·, ·] is pre-
cisely precisely the anchor map ρ : Γ(E)→ Γ(TM) (to be continued in Example
4.2.24). 4

Example 4.2.19 (1-polynomial multivector fields). For general multivector fields
the space

V p(E)1−pol = Derp(E),

is studied in [66] under the name of multi-derivations. 4

Example 4.2.20 (Contravariant connections + Warning!). The space V 1
1 (E)2−pol

consists of maps
D : Γ(E)→ Γ(E ⊗ TM),

such that there exists a Q ∈ X2(M) such that

D(fs) = fD(s) +Q](df)⊗ s.

Viewing D instead as a map from Γ(E)× Γ(T ∗M) to Γ(E), we see that it almost
defines a contravariant connection in the sense of Definition 4.1.16, except that
the bivector Q need not be Poisson.

Moreover, there is an unfortunate clash in conventions. If∇π is a contravari-
ant connection, then the corresponding element of V 1

1 (E) will satisfy

D(fs) = fD(s)− π](df)⊗ s,

and consequently its symbol is −π. 4

4.2.4 Schouten bracket and wedge product

In this section we will explicitly describe the Gerstenhaber algebra structure
on V p(E) and V p(E)d−pol, and in particular the interaction of the Schouten-
Nijenhuis bracket and wedge product with the (higher order) symbols.

The wedge product can be transported via the isomorphism from Lemma
4.2.4 to a product structure

∧ : V p(E)⊗ V q(E)→ V p+q+1(E) (4.2.8)

∧ : V p(E)d−pol ⊗ V q(E)d′−pol → V p+q+1(E)(d+d′)−pol.
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Chapter 4. Homogeneous multivector fields

Explicitly (D1 ∧D2)(s0, . . . , sp+q+1) is defined as:∑
τ∈Sp+1,q−1

sign(τ)D1(sτ(0), . . . , sτ(p)) ·D2(sτ(p+1), . . . , sτ(p+q+1)),

where the sum runs over all (p+ 1, q + 1)-shuffles.
The Schouten-Nijenhuis bracket can be transported via the isomorphism from

Lemma 4.2.4 to a bracket

[·, ·] : V p(E)⊗ V q(E) −→ V p+q(E). (4.2.9)

And using the characterization of polynomiality given by (i) of Lemma 4.2.11,
and the naturallity of the rescaling operator, also to a polynomial bracket:

[·, ·] : V p(E)d−pol × V q(E)d′−pol → V p+q(E)(d+d′−1)−pol.

We can also give an explicit description of this bracket, similar to Definition 4.2.1:

Definition 4.2.21. Let D1 ∈ V p(E), D2 ∈ V q(E), then

[D1, D2] = D1 ◦ D2 − (−1)pqD2 ◦ D1,

where (D1 ◦ D2)(s0, . . . , sp+q) is given by∑
τ∈Sp,q+1

sign(τ)D1(sτ(0), . . . , sτ(p−1), D2(sτ(p), . . . , sτ(p+q))), (4.2.10)

with the sum taken over all (p, q + 1)-shuffles. ♦

Remark 4.2.22 (Warning!). In the expression (4.2.10) we used that D1 can be
applied to arbitrary functions on E. One should read the expression as

LX1
(sτ(0), . . . , sτ(p−1), D2(sτ(p), . . . , sτ(p+q))).

When describing the polynomial bracket we can make this explicit without
passing to vector fields: Let D1 ∈ V p(E)d−pol, D2 ∈ V q(E)d′−pol, and define

D̃1 : Γ(E)× · · · × Γ(E)× Γ(Sd
′
E)→ Γ(Sd+d′−1E),

by extending D1 as an algebra morphism in the last slot. In this case the expres-
sion in (4.2.10) should read D̃1(sτ(0), . . . , sτ(p−1), D2(sτ(p), . . . , sτ(p+q))). But we
have to be careful when d′ = 0, because then we are dealing with the symbol of
D rather than D itself. In that case the expression in (4.2.10) should read

σD̃1
(sτ(0), . . . , sτ(p−1), D2(sτ(p), . . . , sτ(p+q))). ♦

Example 4.2.23. The resulting Lie bracket on V •(E)0−pol
∼= Γ(Λ•+1E∗) (see

Example 4.2.16) vanishes. On V 0(E)1−pol (see Example 4.2.17) the bracket is the
ordinary commutator bracket. For d = 1 and p arbitrary (see Example 4.2.19) this
is the bracket introduced directly in [66]. 4
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4.2. Multivector fields on vector bundles

Example 4.2.24. We continue the discussion from Example 4.2.18 on pre-algebroid
structures [·, ·] on E interpreted as elements D ∈ V 1(E)1−pol. Computing [D,D]
one finds precisely half the Jacobiator

Jac[·,·] : Γ(E)× Γ(E)× Γ(E)→ Γ(E).

Hence the Jacobiator becomes an element in V 2(E)1−pol with symbol

Γ(E)× Γ(E)→ Γ(TM)

(s0, s1) 7→ ρ([s0, s1])− [ρ(s0), ρ(s1)].

Therefore the Jacobi identity (and consequently the fact that the anchor is bracket
preserving) is equivalent to the Poisson condition on the corresponding bivector
on E∗. 4

The previous example culminates into the well-known result:

Corollary 4.2.25. There is a one-to-one correspondence between Poisson structures
π ∈ X2(E∗)1−pol on E∗ and Lie algebroid structures on E.

Example 4.2.26. When M is a point E = V is a finite-dimensional vector space,
hence

V p(V )d−pol = Λp+1V ∗ ⊗ SdV.

The resulting bracket is uniquely determined by its value on S1, S2 ∈ ∧1V ∗,
P1, P2 ∈ S1V , given by:

[S1, S2] = [P1, P2] = 0,

[S1 ⊗ P1, S2 ⊗ P2] = 〈S1, P2〉P1 ⊗ S2 − 〈P1, S2〉P2 ⊗ S1. 4

Example 4.2.27. For a general vector bundle E →M , elements D ∈ V p(E)d−pol

which are C∞(M)-multilinear, i.e. satisfy σD = 0, define a subspace which is
given by

Γ(Λp+1E∗ ⊗ SdE) ⊂ V p(E)d−pol,

which is closed under the bracket. This bracket can be described by the same
formulae as in Example 4.2.26. 4

Symbols of the bracket and wedge product We will now describe the interac-
tion with the bracket (4.2.9) and the (higher) order symbols. This is somewhat
subtle because there are no natural brackets on the spaces V p

l (E), in which the
symbols live. We will elaborate on this in Remark 4.2.35. Nevertheless, in this
section we will prove:

Proposition 4.2.28. For any D1 ∈ V p1(E), D2 ∈ V p2(E) the symbol of [D1, D2] is
given by

σ[D1,D2] = [D1, σD2 ] + (−1)p1 [σD1 , D2], (4.2.11)

where the right hand side is defined below.
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Chapter 4. Homogeneous multivector fields

Moreover, for the higher order symbols we have:

Lemma 4.2.29. Let D1 ∈ V p1(E) and D2 ∈ V p2(E), then

σk[D1,D2] =

k∑
i=0

(−1)ip2

(
k

i

)
[σiD1

, σk−iD2
]. (4.2.12)

The wedge product interacts with the symbols as follows:

Lemma 4.2.30. Let D1 ∈ V p1(E) and D2 ∈ V p2(E), then

σkD1∧D2
=

k∑
i=0

(−1)i(p2+1)

(
k

i

)
σiD1
∧ σk−iD2

, (4.2.13)

where the right hand side is defined below.

The rest of this section is dedicated to defining the above expressions and
proving them. However, for the rest of the chapter it is not very important to
know the precise descriptions of these formulae.

The problems with (4.2.11), (4.2.12) and (4.2.13) is that, while they are equalit-
ies of elements in V •• (E), the various terms entering in the right hand side live in
larger spaces. We will now define these spaces:

Definition 4.2.31. We define

Ṽ p
l (E) := Altl(C∞(M),V p−l(E)),

that is maps
D : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸

l−times

→ V p−l(E),

which are R-multilinear and skew-symmetric. The set of elements of Ṽ p
l (E)

which take values in V p−l(E)d−pol are denoted by Ṽ p
l (E)d−pol. ♦

Given σ ∈ V p
l (E) we view it as an element of Ṽ p

l (E) via

σ(f1, . . . , fl)(s0, . . . , sp−l) = 〈σ(s0, . . . , sp−l), df1 ∧ · · · ∧ dfl〉 .

Moreover, V p
l (E) sits inside Ṽ p

l (E) precisely as those maps which are derivations
in each of the entries. Using these spaces we can define the expressions appearing
in (4.2.11), (4.2.12) and (4.2.13):

Definition 4.2.32. Given D1 ∈ Ṽ p1

l1
(E) and D2 ∈ Ṽ p2

l2
(E) one defines the wedge

product (D1 ∧D2)(f1, . . . , fl1+l2) by:∑
τ∈Sl1,l2

sgn(τ)D1(fτ(1), . . . , fτ(l1)) ∧D2(fτ(l1+1), . . . , fτ(l1+l2)).

with sum over (l1, l2)-shuffles. ♦
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Definition 4.2.33. Given D1 ∈ Ṽ p1

l1
(E) and D2 ∈ Ṽ p2

l2
(E) one defines their

bracket [D1, D2](f1, . . . , fl1+l2) by:∑
τ∈Sl1,l2

sgn(τ)[D1(fτ(1), . . . , fτ(l1)), D2(fτ(l1+1), . . . , fτ(l1+l2))].

with sum over (l1, l2)-shuffles and the last bracket the one on V •(E).
There are two exceptions: If D2 ∈ Ṽ p2

p2+1(E)(p2+1)−pol = Altp2+1(C∞(M)),
and D1 6∈ Ṽ p1

p1+1(E)(p1+1)−pol (or vice versa) then [D1, D2](f1, . . . , fl1+p2
) is given

by ∑
τ∈Sl1−1,p2+1

sgn(τ)σD1
(fτ(1), . . . , fτ(l1−1), D2(fτ(l1), . . . , fτ(l1+p2))).

If both D1 ∈ Altp1+1(C∞(M)) and D2 ∈ Altp2+1(C∞(M)), then [D1, D2] ∈
Altp1+p2+1(C∞(M)) is the Schouten-Nijenhuis bracket. ♦

Remark 4.2.34. Remark that if D1 ∈ V p1

l1
(E) and D2 ∈ Xp2+1(M), then [D1, D2]

does not depend on the whole D1, but only on its symbol σD1 . ♦

One unfortunate fact is that the brackets on V p(E) do not descend to (natural)
brackets on V p

l (E):

Remark 4.2.35. We will now explain why there can not be brackets on the spaces
V p
l (E) which are compatible with the symbol maps. The appropriate notion

of compatibility at the first stage would be the commutativity of the following
diagram:

V p+q(E)
σ2

// V p+q
2 (E)

V p(E)× V q(E)
σ×σ //

[·,·]

OO

V p
1 (E)× V p

1 (E)

[·,·]

OO

However, the formula for σ2[D1, D2] as described in (4.2.12) depends not only on
σD1 and σD2 but also on D1 and D2 themselves. This shows that there cannot be
a bracket on V p

1 (E) for which the above diagram commutes. In the exceptional
case

V 1(E)2−pol × V 1(E)2−pol,

we have σ2[D1, D2] = [σ2(D1), D2] − 2[σ(D1), σ(D2)] + [D1, σ
2(D2)]. However,

the expressions [σ2(D1), D2] and [D1, σ
2(D2)] actually do not depend on D1 and

D2 but only on their symbols. So in this case we can explicitly define

[σ1, σ2]V 1
1 (E)2−pol

(e; f, g) = σ1(e;σ(σ2)(f, g))− 2[σ1, σ2](e; f, g)

+ σ2(e;σ(σ1)(f, g)),

for all σ1, σ2 ∈ V 1(E)2−pol, and the above diagram will commute.
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Recall from Example 4.2.20 that a contravariant connection ∇π defines an
element of V 1

1 (E)2−pol. Moreover we have that

[∇π,∇π]V 1
1 (E)2−pol

= −2K∇π . ♦

Remark 4.2.36. Compatibility with the higher order symbols also rarely hap-
pens. However V p

p+1(E)(p+1)−pol = Γ(∧p+1TM) can be endowed with Schouten-
Nijenhuis bracket and in this case the following diagram commutes, up to a
constant:

V p+q(E)(p+q−1)−pol
σp+q+1

// Xp+q+1(M)

V p(E)p−pol × V q(E)q−pol
σp+1×σq+1

//

[·,·]

OO

Xp+1(M)× Xq+1(M)

[·,·]

OO

Again, the commutativity will follow from [σpD1
, σq+1
D2

] = [σp+1
D1

, σq+1
D2

]. ♦
We will now prove equation (4.2.11), the proof of (4.2.12) is more tedious but

the idea is the same. The proof of (4.2.13) is completely similar.

Proof of Proposition 4.2.28. To compute the bracket we will consider the vector
fields X1 ∈ Xp1+1(E∗) and X2 ∈ Xp2+1(E∗) corresponding to D1 respectively
D2. The symbol of [D1, D2] can then be computed by considering the expression:

[X1, X2](s0, . . . , sp1+p2−1, f) =∑
τ∈T1

sign(τ)X1(sτ(0), . . . , sτ(p1−2), f,X2(sτ(p1), . . . , sτ(p1+p2)))

+
∑
τ∈T2

sign(τ)X1(sτ(0), . . . , sτ(p1−1), X2(sτ(p1), . . . , sτ(p1+p2−1), f),

where we decomposed Sp1,p2+1 = T1 ∪ T2, with

T1 = {τ ∈ Sp1,p2+1 : τ(p1 + p2) = p1 − 1},
T2 = {τ ∈ Sp1,p2+1 : τ(p1 + p2) = p1 + p2}.

Given τ ∈ T1 we define ρ ∈ Sp1−1,p2+1 by

ρ(i) =

{
τ(i) if 0 ≤ i ≤ p1 − 2

τ(i+ 1) if p1 ≤ i ≤ p1 + p2 − 1,

where sign(ρ) = (−1)p2+1 sign(τ). Similarly, given τ ∈ T2, define η ∈ Sp1,p2
by

η(i) = τ(i) for all 0 ≤ i ≤ p1 + p2 − 1, so that sign(η) = sign(τ). In conclusion we
find

[X1, X2](s0, . . . , sp1+p2−1, f)

=
∑

ρ∈Sp1−1,q1+1

(−1)p2+1 sign(ρ)X1(sρ(0), . . . , sρ(p1−2), f,X2(sρ(p1−1), . . . , sρ(p1+p2−1)))

+
∑

η∈Sp1,p2

sign(η)X1(sη(0), . . . , sη(p1−1), X2(sη(p1), . . . , sη(p1+p2−1), f)).
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From this expression we conclude the desired statement.

4.2.5 The underlying filtered Gerstenhaber structure

In this section we will study the algebraic structure present on the symbol tower
(4.2.5) and its polynomial version (4.2.7). In particular we will describe a filtration
on V p(E) and V p(E)d−pol compatible with the Gerstenhaber structure.

Definition 4.2.37. A filtered Gerstenhaber algebra is a Gerstenhaber algebra
(L•, ·, [·, ·]) together with a filtration of type

0 = F−1L
• ⊂ F0L

• ⊂ F1L
• ⊂ . . . ⊂

⋃
l

FkL
• = L•

such that [Fl, Fl′ ] ⊂ Fl+l′ and Fl · Fl′ ⊂ Fl+l′ . ♦

Let V •(E)[−1] denote the algebra obtained from shifting the degree by one:
V p(E)[−1] = V p−1(E). The bracket (4.2.9) and wedge product (4.2.8) endow
V •(E)[−1] with the structure of a Gerstenhaber algebra. The compatibility of
this bracket and wedge product with the symbols on V p(E) allows us to show:

Lemma 4.2.38. The sets

FlV
p(E) := {D ∈ V p(E) : σl+1

D = 0},

endow the Gerstenhaber algebra V •(E)[−1] with the structure of filtered Gerstenhaber
algebra.

Proof. We have to prove that [Fl, Fl′ ] ⊂ Fl+l′ , that is, if σl+1
D = 0 and σl

′+1
D = 0,

then σl+l
′+1

[D,D′] = 0. This follows immediately from Lemma 4.2.29. Similarly
Fl · Fl′ ⊂ Fl+l′ follows from Lemma 4.2.30.

A filtered Gerstenhaber algebra has very rich algebraic structure, which we
will now recall. We would like to warn the reader however that, very often in
the literature, filtered Lie algebras are endowed with decreasing filtrations- a
situation that is fundamentally different. For a filtered Gerstenhaber algebra L•

one has the following induced objects:

• the associated tower:

L• = L•0
σ−→ L•1

σ−→ L•2
σ−→ . . .

where L•i := L•/Fi−1L
• and σ is the canonical projection. This is a tower

of graded vector spaces and σ is pointwise nilpotent (for each x ∈ L• there
exists k such that σk(x) = 0).

• the graded Gerstenhaber algebra associated to the filtered Gerstenhaber
algebra L•:

grl(L•) = Ker(L•l → L•l−1) = FlL
•/Fl−1L

•,
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endowed with the Lie bracket

[·, ·] : grl(L•)× grl
′
(L•)→ grl+l

′
(L•)

and product
· : grl(L•)× grl

′
(L•)→ grl+l

′
(L•),

induced from the ones of L•. It gives rise to a graded Gerstenhaber algebra

gr(L•) = ⊕grl(L•).

Example 4.2.39. For the filtered Gerstenhaber structure described in Lemma
4.2.38 we have that L•i = L•/Fi−1L

• ' V •i (E), where the last map is given by
[D] 7→ σiD. This map is well-defined and injective, however proving surjectivity
will have to be postponed Remark 4.2.50.

Consequently, for V •(E):

• the associated tower is precisely the symbol tower (4.2.5);

• each gr-space can be identified as

grlV
p(E) = Ker

(
σ : V p

l (E)→ V p
l+1(E)

) ∼= Γ
(
Λp−l+1E∗ ⊗ π∗ΛlTM

)
,

where the product on the right-hand side is the one induced by the wedge
product on Λ•E∗ and Λ•TM . 4

Example 4.2.40. Inside Example 4.2.39 one has the polynomial counterpart:

V •(E)pol = ⊕dV •(E)d−pol,

with FlV p(E)pol again defined as the kernel of σl+1. Note that this filtration
does not interact with the polynomial degree at all. Consequently, the associated
graded Gerstenhaber algebra inherits yet another grading, coming from the
polynomality: grlV p(E)pol = ⊕dgrlV p(E)d−pol. Therefore,

• the tower corresponding to V •(E)d−pol is the polynomial symbol tower
(4.2.7);

• each gr-space can be identified as

grlV
p(E)d−pol

∼= Γ(Λp−l+1E∗ ⊗ Sd−lE ⊗ ΛlTM).

We can explicitly describe the bracket on the graded Gerstenhaber-algebra as
follows: If Q1 ∈ grl1V

p1(E)d1−pol and Q2 ∈ grl2V
p2(E)d2−pol, such that

Q1 = S1 ⊗ P1 ⊗X1, Q2 = S2 ⊗ P2 ⊗X2,

the bracket is given by the following formula:

[S1⊗P1⊗X1, S2⊗P2⊗X2] = (〈S1, P2〉P1⊗S2−〈P1, S2〉P2⊗S1)⊗(X1∧X2). 4
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In some sense,
gr(L•) := ⊕grl(L•)

is a “first order” approximation of the original filtered graded Lie algebra L•; it
comes itself with a filtration

Fl gr(L•) = gr0L• ⊕ . . .⊕ grlL•

and gr(gr(L•)) = gr(L•). In general, gr(L•) is much simpler than the original L.

Linear isomorphisms Although in general quite different as Gerstenhaber
algebras, L• and gr(L•) have a good chance of being isomorphic as associative
algebras.

We will first search for a linear isomorphism between L• and gr(L•). To do so
one has to split the corresponding tower, i.e. find linear maps S going backwards
in the tower,

L•0 σ
// L•1

S
{{

σ
// L•2 σ

//

S
{{

S
||

with the property that σ ◦ S = Id. In that case each S can be viewed as a splitting
of the short exact sequence

0 // grk(L•)
i // L•k

σ // L•k+1
// 0.

Hence there are induced left splittings R as in the diagram:

0 // grk(L•) // L•k σ
//

R
xx

L•k+1
//

S
yy

0,

uniquely characterised byR◦i = id, i◦R+S◦σ = id. The resulting isomorphisms

L•k
∼= L•k+1 ⊕ grk(L•), x 7→ (σ(x), x− σ(x)),

applied inductively give rise to a linear isomorphism

L• ∼= gr(L•) x 7→ (R(x), Rσ(x), Rσ2(x), . . .) (4.2.14)

with inverse

i(x0) + S(i(x1)) + S2(i(x2)) + . . . 7→(x0, x1, x2, . . .). (4.2.15)

And, instead of going all the way to L•0 = L•, we also have intermediate
isomorphisms

L•k '
∞⊕
i=k

gri(L
•).

In our examples splittings will not be available right away. Instead, we
encounter the following interesting situation that we state in full generality.
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Definition 4.2.41. Let L• be a filtered graded Lie algebra. An h-splitting consists
of linear maps

L•0 σ
// L•1

h
{{

σ
// L•2 σ

//

h
{{

h
||

satisfying the homotopy-like equations

σ ◦ h− h ◦ σ = id . ♦

Lemma 4.2.42. Let L• be a filtered graded Lie algebra together with an h-splitting h.
Then h gives rise to a splitting of the tower given by:

S :=
∑
i≥1

(−1)i+1

i!
hi ◦ σi−1 : L•l+1 → L•l . (4.2.16)

Consequently L• is linearly isomorphic to gr(L•).

Proof. Because for each x ∈ L•l+1 there exists a k such that σk(x) = 0, the sum
defining S is finite. Inductively one shows that σ ◦ hi = ihi−1 + hi ◦ σ. Therefore

σ ◦ S =
∑
i≥1

(−1)i+1

i!
(ihi−1 + hi ◦ σ) ◦ σi−1

=
∑
i≥1

(−1)i+1

(i− 1)!
hi−1 ◦ σi−1 +

∑
i≥1

(−1)i+1

i!
hi ◦ σi.

This is a telescoping series, so only the first and last term remain. The first term
is precisely id, the last term vanishes because for each x ∈ L•l+1 there exists a k
such that σk(x) = 0.

Although the linear isomorphism (4.2.14) induced by an h-splitting is in
general pretty complicated, the inverse as in (4.2.15) is much easier to describe:

Lemma 4.2.43. Given an h-splitting h of a filtered graded Lie algebra, then for

D ∈ kerσ : L•i → L•i−1

and q ∈ N we have:

Sq(D) =
1

q!
hq(D),

where S is as in Lemma 4.2.42. Consequently (4.2.15) becomes

gr(L•)→ L•

D 7→ ehD.

The proof is a straightforward but somewhat lengthy computation and thus
omitted. To upgrade the linear isomorphism (4.2.15) to one which also respects
the associative algebra structure we ask for compatibility of the h-splitting with
the algebra structure:
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Lemma 4.2.44. Let L• be a filtered Gerstenhaber algebra, and let h be an h-splitting
which furthermore satisfies:

hl1+l2(D1 ·D2) =

(
l1 + l2
l1

)
hl1(D1) · hl2(D2), (4.2.17)

for all (D1, D2) ∈ gri1(L•)× gri2(L•). Then the linear isomorphism (4.2.15) is further-
more an isomorphism of associative algebras.

Proof. This follows immediately from Lemma 4.2.43.

We will now see how Lemma 4.2.42 is relevant in our setting. At the initial
stage the question becomes: given σ ∈ V •1 (E), find D ∈ V •(E) such that σ(D) =
σ. This is straightforward in the polynomial case when d = 1:

Example 4.2.45. When X ∈ V 0
1 (E)1−pol = X1(M), we want to construct an

element D ∈ V 0(E)1−pol with σD = X , that is a derivation D : Γ(E) → Γ(E)
whose symbol is σ. A connection ∇ induces such a derivation: D = ∇X .

If we take the vector field Y ∈ X1(E∗)1−pol corresponding to D, we see that
Y = hor∇

∗
(X). 4

The previous example shows that using a connection to construct the splitting
S is the natural way to proceed. Let us give one more example before we continue
with the general case:

Example 4.2.46. Let π ∈ V 1
2 (E)2−pol = X2(M), and let∇ be a connection on M .

We define D ∈ V 1
1 (E)2−pol by D(s0)(α) = ∇−π](α)(s0). Remark that when π is

Poisson this coincides with the construction of a contravariant connection from
an ordinary one as in Example 4.1.19. Also recall the need of the minus sign from
the discussion in Example 4.2.20. 4

With the previous examples in mind, there is a clear first attempt:
for D ∈ V p

l+1(E) arbitrary, construct h∇(D) ∈ V p
l (E) by:

h∇(D)(s0, . . . , sp−l) = (−1)p−l
∑
i

(−1)i〈D(s0, . . . , ŝi, . . . , sp−l),∇(si)〉.

(4.2.18)
Here the pairing in the right-hand-side is the pairing between π∗ ∧l−1 TM and
T ∗M . The only problem is that, in general, the symbol of h∇(D) is not quite D.
Instead, we find ourselves in the situation described in Lemma 4.2.42:

Lemma 4.2.47. For any connection∇ on E, (4.2.18) defines an h-splitting for V •(E),
i.e. satisfies σ ◦ h∇ − h∇ ◦ σ = id.
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Proof. Let D ∈ V p
l+1(E) we compute σ(h∇(D))(s0, . . . , sp−l−1; f):

(−1)p−l(−1)p−l 〈D(s0, . . . , sp−l−1),∇(fsp−l)− f∇(sp−l)〉

+ (−1)p−l
p−l−1∑
i=0

(−1)i 〈D(s0, . . . , ŝi, . . . , fsp−l)− fD(s0, . . . , ŝi, . . . , sp−l),∇(si)〉

= 〈D(s0, . . . , sp−l−1), df ⊗ sp−l〉

+ (−1)p−l
p−l−1∑
i=0

(−1)i 〈sp−l · σD(s0, . . . , ŝi, . . . , sp−l)(f),∇(si)〉

+ sp−l · 〈D(s0, . . . , sp−l), df〉

− (−1)p−l

〈
p∑
i=0

(−1)i 〈sp−l · σD(s0, . . . , ŝi, . . . , sp−l),∇(si)〉 , df

〉
= sp−l · 〈D(s0, . . . , sp), df〉

+ (−1)p−l−1sp−l ·

〈
p∑
i=0

(−1)i 〈σD(s0, . . . , ŝi, . . . , sp−l),∇(si)〉 , df

〉
.

Consequently h∇(D) defines an element of V p
l (E) with symbol D + h∇(σD),

which proves the desired identity

To prove that the h-splitting (4.2.18) is compatible with the algebra structure,
we will describe it explicitly. To do so, let

hor∇
∗

p : Γ(π∗ΛiTM)→ Xp(E∗;π∗Λi−pTM),

be the (partial) horizontal lift which is defined on decomposable pull-back sec-
tions as

hor∇
∗

p (π∗X1 ∧ · · · ∧ π∗Xi) =∑
τ

sign(τ) hor∇
∗
(Xτ(1)) ∧ · · · ∧ hor∇

∗
(Xτ(p)) ∧ π∗Xτ(p+1) ∧ · · · ∧ π∗Xτ(i),

where the sum runs over all (p, i− p)-shuffles.

Lemma 4.2.48. We have that

hj∇ : grl+1(V p(E))→ Xp+j−l(E∗;π∗Λl+1−jTM),

is given by
hj∇(ϑ⊗X) = j! ι∗(ϑ) hor∇

∗

j (X),

for all ϑ ⊗ X ∈ Γ(∧p−lE∗ ⊗ π∗Λl+1TM). Consequently the h-splitting satisfies
(4.2.17).
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Proof. We have

h∇(ϑ⊗X)(s0, . . . , sp−l) = (−1)p−l
∑
i

(−1)i 〈(ϑ⊗X)(s0, . . . , ŝi, . . . , sp−1),∇(si)〉

= (−1)p−l
∑
i

(−1)iϑ((s0, . . . , ŝi, . . . , sp−1)⊗ 〈X,∇(si)〉

= ((ι∗ϑ) ∧ h∇(X))(s0, . . . , sp−l),

where we used that, as X ∈ grl+1(V l(E)) we have h∇(X)(s) = 〈X,∇(s)〉. Con-
tinuing inductively we find that hj∇(ϑ⊗X) = ι∗(ϑ) · hj∇(X).

If X = fY , with f ∈ C∞(E∗) and Y ∈ Xl(M) then hj∇(X) = fhj∇(Y ). A
straightforward computation, where extra care with respect to the signs has to be
taken, results in

hj∇(Y )(s0, . . . , sl−1) =
∑
τ

〈
Y,∇(sτ(0)) ∧∇(sτ(1)) ∧ · · · ∧ ∇(sτ(l−1))

〉
,

where the sum runs over all permutations. Consequently

hj∇(Y )(s0, . . . , sl−1) = j!
〈
Y,∇(s0) ∧ · · · ∧ ∇(sτ(l−1))

〉
.

To finish the proof one has to show that the right-hand side coincides with the
horizontal lift. This follows from a straightforward but careful computation.
Because the horizontal lift is an algebra morphism it will follows that h∇ satisfies
the conditions of Lemma 4.2.44.

Given a connection∇ onE, one obtains an isomorphism TE∗ ' π∗(E∗⊕TM),
which in turn can be used to describe the vector fields on E∗. This description of
the vector fields on E∗ also directly follows from the existence of the h-splitting
for V •(E):

Corollary 4.2.49. A connection on E induces an isomorphism

V p
l (E) '

p−l+1⊕
i=0

Γ(Λp−l+1−iE∗ ⊗ π∗Λl+iTM).

If we endow Γ(Λ•E∗ ⊗ π∗Λ•TM) with the associative algebra structure induced by the
wedge products, this isomorphism induces an isomorphism of associative algebras

V •• (E) ' Γ(Λ•E∗ ⊗ π∗Λ•TM).

Proof. By Lemma 4.2.47 a connection gives rise to an h-splitting for V •(E), which
by Lemma 4.2.48 is compatible with the algebra structure. Therefore, Equation
(4.2.14) provides an algebra isomorphism between V •l (E) and ⊕i=lgri(V

•(E)).
By Example 4.2.39 we see that ⊕i=lgri(V

•(E)) is as desired
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Remark 4.2.50. In particular we find that the map V •(E) → V •i (E) : D 7→ σiD
is surjective, as announced in Example 4.2.39. Note that it might seem that
we already used the fact that the graded spaces of V •(E) coincide with V •i (E),
because we defined an h-splitting as maps in the associated tower. Of course
h∇ defines maps of the symbol tower (4.2.5) satisfying the homotopy like condi-
tions, and S as in Equation (4.2.16) then defines splittings of the symbol tower.
Therefore, each of the maps in the symbol tower is surjective and consequently
V •(E) → V •i (E) : D 7→ σiD, from which we conclude that indeed the graded
spaces of V •(E) coincide with V •i (E). ♦

It is immediate that the h-splitting h∇ from Lemma 4.2.47 restricts to an
h-splitting V •l (E)d−pol → V •l−1(E)d−pol, from which we conclude:

Corollary 4.2.51. Each V p
l (E)d−pol is the space of sections of a vector bundle over M ,

Vpl (E)d−pol, the symbol map is part of a short exact sequences of vector bundles

0→ Λp−l+1E∗ ⊗ Sd−lE ⊗ ΛlTM −→ Vpl (E)d−pol
σ−→ Vpl+1(E)d−pol → 0.

Moreover, any connection∇ on E gives rise to an isomorphism of vector bundles

Vpl (E)d−pol '
p−l+1⊕
i=0

(
Λp−l+1−iE∗ ⊗ Sd−l−iE ⊗ Λl+iTM

)
.

If we endow Γ(Λ•E∗ ⊗ S•E ⊗ Λ•TM) with the associative algebra structure obtained
from combining the wedge products and symmetric products we obtain an isomorphism
of associate algebras:

V •• (E)•−pol ' Γ(Λ•E∗ ⊗ S•E ⊗ Λ•TM).

Moreover:

Proposition 4.2.52. Let ι∗ be as in Example 4.2.16. The map

ψ : Γ(∧p−l+1−iE∗ ⊗ Sd−l−iE ⊗ Λl+iTM)→ Xp+1−l(E∗;∧lTM)(d−l)−pol

ϑ⊗ P ⊗Q 7→ P̂ ι∗(ϑ) ∧ hor∇
∗

i (Q),

induces a map which is inverse to the isomorphism in Corollary 4.2.51.

Proof. This follows from combining Lemma 4.2.48 and Lemma 4.2.43.

Remark 4.2.53. Because of the explicit nature of the inverse in Proposition 4.2.52
we can use it to study elements X ∈ Xp+1(E∗)d−pol in the following way:

• Consider D ∈ V p(E)d−pol associated to X , and use the isomorphism from
Corollary 4.2.51 to decompose

ϕ(D) = (S0, . . . , Sp+1) ∈
p+1⊕
i=0

(
Λp+1−iE∗ ⊗ Sd−iE ⊗ ΛiTM

)
.
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• Use the isomorphism in Proposition 4.2.52 to obtain the equality

X = ψ(S0) + · · ·+ ψ(Sp+1).

In this way, working with the multivector fields X on the vector bundle E∗

becomes much more concrete in terms of tensors over M . We will apply this
philosophy to Poisson structures in the next chapter. ♦

As remarked in the digression on filtered Lie algebras, gr(L•) can be thought
of as linear approximation of L•. We will illustrate this for V •(E)pol. Having
established the linear isomorphism in Proposition 4.2.51 we can transport the
Lie bracket on V •(E)pol to gr(V •(E)pol) and compare with the canonical bracket
there.

Lemma 4.2.54. Let∇ be a connection on E →M , let K∗ ∈ Ω2(M ; End(E∗)) denote
the curvature of the dual connection∇∗ and let [·, ·]SN denote the Schouten-Nijenhuis
bracket of multivector fields on M .

Consider the bracket on Γ(∧•E∗⊗S•E⊗∧•TM) uniquely determined by its value
on θ1, θ2 ∈ Γ(∧1E∗), P1, P2 ∈ Γ(S1E), Q1, Q2 ∈ Γ(TM):

[θ1, θ2] = 0, [θ1, P2] = 〈P2, θ1〉 , [θ1, Q2] = ∇Q2
(θ1)

[P1, P2] = 0, [P1, Q2] = ∇∗Q2
(P1), [Q1, Q2] = [Q1, Q2]SN +K∗(Q1, Q2),

and extended using the Leibniz identity

[η1, η2 · η3] = [η1, η2] · η3 + (−1)(r1+t1−1)(r2+t2)η2 · [η1, η3],

for ηi ∈ Γ(∧riE∗ ⊗ SsiE ⊗ ∧tiTM).
Endowed with this bracket the linear isomorphism in Corollary 4.2.51 becomes a Lie

algebra isomorphism.

Proof. This follows readily from using the map ψ in Proposition 4.2.52 to compare
the brackets in low degrees. Together with the expression

[hor∇
∗
(X),hor∇

∗
(Y )](s)− hor∇

∗
([X,Y ])(s) = K(X,Y )(s) = a(K(X,Y )∗)(s),

for all X,Y ∈ X1(M) and s ∈ Γ(E) and a is as in Example 4.2.17.

Considering the bracket in Lemma 4.2.54, we can make a couple of remarks.
First, as was to be expected, on Γ(∧•E∗ ⊗ S•E) it coincides with the bracket on
gr(V •(E)pol) as described in Example 4.2.40. However, we also conclude that
V •(E)d−pol is isomorphic to gr(V •(E)pol) as Gerstenhaber algebras if and only
if M is a point.
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4.2.6 Dual picture

While the spaces V p(E)d−pol focus on the vector bundleE, there is a dual version
of the same spaces which focuses on the dual vector bundle N = E∗. The
best illustration of this duality is by looking at V 0(E)1−pol, i.e. at derivations
D : Γ(E)→ Γ(E) with symbol X . Then D induces a dual derivation on E∗ (still
with symbol X):

D∗ : Γ(E∗)→ Γ(E∗), 〈D∗(ξ), s〉 := 〈ξ,D(s)〉+ LX(〈ξ, s〉),

for ξ ∈ Γ(E∗), s ∈ Γ(E).
On the other hand, the previous illustration may be misleading as one may ex-

pect some duality that allows one to pass from V p+1(E)d−pol to V p+1(E∗)d−pol;
but the constant case d = 0 (Γ(∧pE) v.s. Γ(∧pE∗)) there cannot be such a canon-
ical duality.

In this section we will introduce the objects dual to elements of V p(E)d−pol

and obtain the desired duality. It must be said that, although we can give explicit
formulae for such a duality, we are currently unable to find a deeper underlying
reason explaining them.

Definition 4.2.55. Let N → M be a vector bundle. We denote by Fd(N )p the
collection of sequences (G = σ0

G, σ
1
G, . . . , σ

d−l
G ) of symmetric R-multilinear maps

G : Γ(N )× · · · × Γ(N )︸ ︷︷ ︸
d−times

→ Γ(Λp+1N ),

σG : Γ(N )× · · · × Γ(N )︸ ︷︷ ︸
(d−1)−times

→ Γ(ΛpN ⊗ TM),

σ2
G : Γ(N )× · · · × Γ(N )︸ ︷︷ ︸

(d−2)−times

→ Γ(Λp−1N ⊗ Λ2TM),

· · · ,
σdG ∈ Γ(Λp−dN ⊗ ΛdTM),

and each two consecutive ones related via the Leibniz-type identity:

σiG(s1, . . . , fsd−l−i) = fG(s1, . . . , sd−l−i) + ιdf (σi+1
G (s1, . . . , sd−l−i−1)) ∧ sd−l−i.

(4.2.19)
♦

Remark 4.2.56. It is important to remark that while an element D ∈ V p(E)d−pol

determines all its higher order symbols, this is not the case for the first element
of a sequence in Fd(N )p. In Remark 5.1.59 we will see an example of an element
(G, σG, σ

2
G) ∈ F2(N )1 on a rank one vector bundle. Because N has rank one G

has to be identically zero, but σG and σ2
G need not be. ♦

As before we can define the intermediate spaces Fdl (N )p consisting of linear
maps

G : Γ(N )× · · · × Γ(N )︸ ︷︷ ︸
(d−l)−times

→ Γ(Λp+1−lN ⊗ ΛlTM),
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4.2. Multivector fields on vector bundles

such that there exists a map

σG : Γ(N )× · · · × Γ(N )︸ ︷︷ ︸
(d−l−1)−times

→ Γ(Λp−lN ⊗ Λl+1TM),

such that the Leibniz identity (4.2.19) is satisfied.
From the definition it it immediate that if (G, σ1

G = σG, . . . , σ
d−l
G ) ∈ Fdl (N )p,

then (σ1
G, . . . , σ

d−l
G ) ∈ Fdl+1(N )p and therefore we again obtain a symbol-sequence:

Fd(N )p
σ−→ Fd1 (N )p

σ−→ Fd2 (N )p
σ−→ . . .

We also want to endow F•(N )• with the structure of a bi-graded algebra:

Definition 4.2.57. Given G1, G2 ∈ Fd1(N )p1 ,Fd2(N )p2 , we define

G1 ·G2 ∈ Fd1+d2(N )p1+p2+1,

by

(G1 ·G2)(s1, · · · , sd1+d2
) =

∑
τ∈Sd1,d2

G1(sτ(1), · · · , sτ(d1))⊗G2(sτ(d1+1), · · · , sτ(d2))

and σkG1·G2
(s1, . . . , sd1+d2−k) is defined by

k∑
j=0

∑
τ

σjG1
(sτ(1), · · · , sτ(d1−j))⊗ σ

k−j
G2

(sτ(1), · · · , sτ(d2−k+j))

where the first sum runs over (d1, d2)-shuffles and the third over (d1−j, d2−k+j)-
shuffles. ♦

For N = E∗ we will go through some examples which shine some light upon
the duality between V •(E)•−pol and F•(E∗)•:

Example 4.2.58 (d = 0). The set V p(E)0−pol consists of C∞(M)-linear skew-
symmetric maps

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
p+1−times

→ C∞(M).

These correspond precisely to elements of Γ(Λp+1E∗) = F0(E∗)p. 4

In the introduction of this section we already described the duality between
derivations on E and derivations on E∗. Using the notation from this section this
can be interpreted as an isomorphism between V 0(E)1−pol and F1(E∗)0.

Example 4.2.59 (d = 1, p = 1). Elements of V 1(E)1−pol are pre-Lie algebroid
structures (see Example 4.2.18 and 4.2.24),

L : Γ(E)× Γ(E)→ Γ(E),
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Chapter 4. Homogeneous multivector fields

with symbol σL : E → TM . The dual operator is the differential together with
the dual of the anchor (dE , σL) ∈ F1(E∗)1−pol:

L∗ = dE : Γ(E∗)→ Γ(Λ2E∗),

σL ∈ Γ(E∗ ⊗ TM)

defined by the usual relation

〈L∗(s), e1 ∧ e2〉 = 〈e1, σ
∗
Ld(〈s, e2〉)〉 − 〈e2, σ

∗
Ld(〈s, e1〉)〉 − 〈s, L(e1, e2)〉 .

Moreover, the Jacobiator of L, JacL : Γ(E)× Γ(E)× Γ(E)→ Γ(E), an element of
V 2(E)1−pol, is dual to d2

E : Γ(E∗)→ Γ(∧3E∗), an element of F1(E∗)2. 4

Example 4.2.60 (d = 1). Elements of F1(N )p correspond to the the almost (p+1)-
differentials of [48], i.e. pairs (δ1, δ0) consisting of linear maps

δ1 : Γ(N )→ Γ(Λp+1N ), δ0 : C∞(M)→ Γ(ΛpN )

satisfying the relations:

• δ0(fg) = fδ0(g) + gδ0(f), for all f, g ∈ C∞(M)

• δ1(fs) = fδ1(s) + δ0(f) ∧ s, for all f ∈ C∞(M), s ∈ Γ(N ).

Proposition 3.7 of [48] shows that such pairs (δ1, δ0) ∈ F1(N )p are in 1-1 cor-
respondence with degree one (p + 1)-multivector fields on N and thus with
V p(N ∗)1−pol. 4

The above examples indicate a duality between V p(N ∗)d−pol and Fd(N )p.
Before we continue let us recall some notation: For ex ∈ Nx let

ιex : Nx → TexNx,

be as in Example 4.2.16. For s ∈ Γ(N ) let

∧idxs : ΛiTxM → ΛiTs(x)N ,

be the algebra morphism induced by dxs : TxM → Ts(x)N .

Proposition 4.2.61. The following defines an algebra morphism:

ϕ : Fu(N )p → Xp+1(N )u−pol, G 7→ X (4.2.20)

where for ex ∈ Nx we define:

Xex = (u!)−1[ιex(G(s, . . . , s))− u(ιex ⊗ dxs)(σG(s, . . . , s)) (4.2.21)
+ · · ·+ (−1)uu!(ιex ⊗ ∧udxs)(σuG)],

where s is any section of E with s(x) = ex.

140



4.2. Multivector fields on vector bundles

Proof. The argument depends on the following two Leibniz-identities, which
follow from relatively short straightforward computations:

Claim 4.2.62. Given σiG ∈ Fui (N )p and f ∈ C∞(M) and s ∈ Γ(N ) we have

• σiG(fs, . . . , fs) = fu−iσiG(s, . . . , s) + (u− i)fu−i−1
〈
σi+1
G (s, . . . , s), df

〉
∧ s.

• ∧id(fs)(Y ) = f i−1ι∗(s) ∧ (∧i−1ds(ιdfY )) + f i ∧i ds(Y ), for all Y ∈ Xi(M).
♦

We need to show that Xex does not depend on the choice of section s. So let
f ∈ C∞(M) be a function with f(x) = 1 then

ιex(G(fs, . . . , fs)) = ιex(f lG(s, . . . , s) + lf l−1 〈σG(s, . . . , s), df〉 ∧ s)
= ιex(G(s, . . . , s) + l 〈σG(s, . . . , s), df〉 ∧ s),

and

(ιex ⊗ dx(fs))(σG(fs, . . . , fs)) = (ιex ⊗ dx(fs))(f l−1σG(s, . . . , s))

+ (l − 1)f l−2
〈
σ2
G(s, . . . , s), df

〉
∧ s).

Let us first focus on the first term of the left-hand-side of the previous equation;
we find

(ιex ⊗ dx(fs))(f l−1σG(s, . . . , s)) = ιex(f l−1 〈σG(s, . . . , s), df〉 ∧ s)
+ ιex(fdxs(f

l−1σG(s, . . . , s))

= ιex(〈σG(s, . . . , s), df〉 ∧ s)
+ (ιex ⊗ dxs)(σG(s, . . . , s)).

We find that the right hand side of (4.2.21) using the section fs is given by:

ιex(G(s, . . . , s)) + l 〈σG(s, . . . , s), df〉 ∧ s− lιex(〈σG(s, . . . , s), df〉 ∧ s)
− l(ιex ⊗ dxs)(σG(s, . . . , s)) + . . . =

ιex(G(s, . . . , s))− l(ιex ⊗ dxs)(σG(s, . . . , s)) + . . . ,

where the terms on the dots only depends on the higher order symbols of G.
Continuing in this way we will conclude that that Xex is well defined, hence
we obtain X ∈ Xp+1(N ). Because X is of degree d in s, it follows that X ∈
Xp+1(N )d−pol.
We will now prove that ϕ is an algebra morphism. Let G1 ∈ Fd1(N )p1

and
G2 ∈ Fd2(N )p2

. From definition of σkG1·G2
it follows

σkG1·G2
(s, . . . , s) =

k∑
j=0

(
d1 + d2 − k
d1 − j

)
σjG1

(s, . . . , s)⊗ σk−jG2
(s, . . . , s).
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Therefore

(d1 + d2)!ϕ(G1 ·G2) =
∑
k

(−1)k
(d1 + d2)!

(d1 + d2 − k)!

k∑
j=0

(
d1 + d2 − k
d1 − j

)
·

(ιex ⊗ ∧jdxs)σ
j
G1

(s, . . . , s)⊗ (ιex ⊗ ∧k−jdxs)σ
k−j
G2

(s, . . . , s)

=
∑
i,j

(−1)i+j
(d1 + d2)!

(d1 − i)!(d2 − j)!
·

(ιex ⊗ ∧idxs)(σiG1
(s, . . . , s)) ∧ (ιex ⊗ ∧jdxs)(σ

j
G2

(s, . . . , s)).

And from

ϕ(G1) ∧ ϕ(G2) =
1

(d1)!(d2)!

∑
i,j

(−1)i+1+j+1 d1!

(d1 − i)!
d2!

(d2 − j)!
·

(ιex ⊗ ∧idxs)(σiG1
(s, . . . , s)) ∧ (ιex ⊗ ∧jdxs)(σ

j
G2

(s, . . . , s))

we conclude the desired equality

Instead of proving that (4.2.20) is an isomorphism directly, we will compose
it with the isomorphism Xp+1(E∗)d ' V p(E)d−pol.

To give an explicit formula for this composition we need to introduce a bit
of notation: let I = (i1, . . . , il) be a multi-index with 0 ≤ ij ≤ p and let Î be the
complementary multi-index, i.e. I ∪ Î = {1, . . . , p}. For s ∈ Γ(E∗) and ei ∈ Γ(E)
we denote:

〈ds, eI〉 = d 〈s, ei1〉 ∧ · · · ∧ d 〈s, eil〉 ∈ Ωl(M),

eI = ei1 ∧ · · · ∧ eil .

Lemma 4.2.63. The composition of (4.2.20) with Xp+1(E∗)d−pol ' V p(E)d−pol,

ψ : Fd(E∗)p → V p(E)d−pol, G 7→ G∗,

is an isomorphism. Explicitly G∗ is given by:

〈G∗(e0, . . . , ep), s · . . . · s〉 = 〈G(s, . . . , s), e0 ∧ · · · ∧ ep〉

+

d−l∑
i=1

∑
|I|=i

(−1)i
d!

(d− i)!
〈〈
σiG(s, . . . , s), 〈s, eI〉

〉
, eÎ
〉
,

with e0, . . . , ep ∈ Γ(E), and s ∈ Γ(E∗) and the second sum runs over increasing
multi-indices.

To prove the above statement we will have to explicitly compute the symbols
of G∗:
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4.2. Multivector fields on vector bundles

Lemma 4.2.64. Let G∗ be as above, then

〈σjG∗(e0, . . . , ep−j), s · . . . · s〉 = (−1)j
d!

(d− j)!

〈
σjG(s, . . . , s), e0 ∧ . . . ∧ ep−j

〉
+

d−l∑
i=j+1

∑
|I|=i

(−1)i
d!

(d− i)!
〈〈
σiG(s, . . . , s), 〈s, eI〉

〉
, eÎ
〉
.

Proof. We consider the identity

〈G∗(e0, . . . , fep), s · . . . · s〉 − f 〈G∗(e0, . . . , ep), s · . . . · s〉 =

d∑
i=1

∑
|I|=i,p∈I

(−1)i
d!

(d− i)!
〈〈
σiG(s, . . . , s),

〈
ds, eI\{p}

〉
∧ df

〉
, eÎ
〉
· 〈s, ep〉

= 〈s, ep〉 ιdf
∑
i≥1

∑
|I|=i,p∈I

(−1)i
d!

(d− i)!
〈〈
σiG(s, . . . , s),

〈
s, eI\p

〉〉
, eÎ
〉

Carefully continuing inductively one can compute the higher order symbols in a
similar fashion, although this is a bit tedious.

Proof of Lemma 4.2.63. The given expression forG∗ follows from carefully pairing
(4.2.20) with e0 ∧ · · · ∧ ep. To prove that the map is surjective, because it is an
algebra morphism it is sufficient to show that the generators of V •(E)•−pol are in
its image. The generators consist of V −1(E)1−pol,V 0(E)0−pol and V 0(E)1−pol,
which are indeed in the image by Example 4.2.58, and the discussion in the
introduction of the section.

Finally, we will show that the association G 7→ G∗ is injective. Assume that
G ∈ Fd(E∗)p, has G∗ = 0. Then also σp+1

G∗ = 0 and as〈
(σp+1
G )∗, s · . . . · s

〉
= (−1)p+1 d!

(d− p)!
σp+1
G (s, . . . , s) ∈ Γ(∧p+1TM),

we find that σp+1
G = 0. Next,

0 = 〈(σpG)∗(e), s · . . . s〉 = 〈σpG(s, . . . , s), e〉+
〈
σp+1
G (s, . . . , s), d 〈e, s〉

〉
and because σp+1

G = 0 it will follow that σpG = 0. Carefully continuing inductively
one can argue that σiG = 0 for all i.

There is another, non-canonical way of identifying Fd(E∗)p and V p(E)d−pol

via the symbol sequence:

Fd0 (E∗)p
σ−→ Fd1 (E∗)p

σ−→ Fdm(E∗)p
σ−→ . . . (4.2.22)
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Lemma 4.2.65. Let∇ be a connection on E∗, then

h∇ : Fdl−1(E∗)p → Fdl (E∗)p,

h∇(G)(s0, . . . , sd−l) 7→ (−1)p
∑
i

(−1)i〈G(s0, . . . , ŝi, . . . , sd−l),∇(si)〉,

defines an h-splitting of (4.2.22). Consequently Fdl (E∗)n = Γ(Fdl (E∗)p) for some
vector bundle Fdl (E∗)p which is isomorphic to

Fdl (E∗)p '
p−l+1⊕
i=0

Λp−l+1−iE∗ ⊕ Sd−l−iE ⊕ Λl+iTM. (4.2.23)

Comparing (4.2.23) with Corollary 4.2.51 gives the desired duality between
Fd(E∗)p and V p(E)d−pol

4.3 Representations up to homotopy

In this section we explain how homogeneous multivector fields can be used to
give an intrinsic description of Lie algebroid cohomology with coefficients in the
symmetric powers of the adjoint representation. At the same time it will explain
the appearance of the particular vector bundle in Corollary 4.2.51.

This will generalise a result of Crainic-Moerdijk which relates the deforma-
tion complex with the adjoint representation. Moreover, we will comment on
the similarities with the description of the Weil algebra of a Lie algebroid using
algebroid forms in the symmetric powers of the co-adjoint representation. In this
way we will also investigate a possible duality of the latter with homogeneous
differential forms.

We will quickly recall the definition of a representation up to homotopy, and the
definition of the (co)adjoint representation up to homotopy. For more details
we will refer to [1]. Let A→M be a Lie algebroid and E →M a graded vector
bundle. Then Ω(A;E) becomes a bigraded algebra, where Ω(A;E)k will denote
the forms with total degree k, that is:

Ω(A;E)k =
⊕
i+j=k

Ωi(A;Ej).

Definition 4.3.1. A representation up to homotopy of a Lie algebroid A→M
consists of a graded vector bundle E →M , and an operator, called the structure
operator,

D : Ω(A;E)k → Ω(A;E)k+1,

which increases the total degree by 1 and satisfies D2 = 0 and the graded Leibniz
identity

D(ωη) = dA(ω)η + (−1)kωD(η),
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for all ω ∈ Ωk(A) and η ∈ Ω(A;E). Here dA : Ω•(A)→ Ω•+1(A) denotes the Lie
algebroid differential. ♦

To recall the definition of the adjoint representation up to homotopy, we first
need to recall the necessary building blocks:

Definition 4.3.2. Let A be a Lie algebroid over M and let∇ be a connection on
A, we define

• The basic A-connection induced by∇ on A:

∇bas
α (β) = ∇ρ(β)(α) + [α, β] for α, β ∈ Γ(A).

• The basic A-connection on TM :

∇bas
α (X) = ρ(∇X(α)) + [ρ(α), X] for α ∈ Γ(A), X ∈ Γ(TM).

• The basic curvature Rbas
∇ ∈ Ω2(A; Hom(TM ;A)) given by

Rbas
∇ (α, β)(X) := ∇X([α, β])− [∇X(α), β]− [α,∇X(β)]

−∇∇bas
β (X)(α) +∇∇bas

α (X)(β). ♦

Definition 4.3.3. Let ∇ be a connection on A. The adjoint representation up
to homotopy is a representation up to homotopy with graded vector bundle
E0 = A,E1 = TM and zero otherwise and structure operator

D∇ : Ω(A;E)k → Ω(A;E)k+1,

consisting of:

• The De Rham-like operator associated to the A-connection ∇bas
A on A:

d∇bas
A ,A : Ωk(A;A)→ Ωk+1(A;A),

• The map
ρ : Ωk(A;A)→ Ωk(A;TM),

obtained by applying the anchor ρ : A→ TM to the coefficient.

• The De Rham-like operator associated to the A-connection ∇bas
TM on TM :

d∇bas
TM ,A

: Ωk−1(A;TM)→ Ωk(A;TM).

• The map
Rbas
∇ : Ωk−1(A;TM)→ Ωk+1(A;A),

obtained by applying Rbas
∇ ∈ Ω2(A; End(TM,A)) to the coefficient and

then taking the wedge product.

145



Chapter 4. Homogeneous multivector fields

We will denote this representation up to homotopy by ad∇. ♦

Definition 4.3.4. Let∇ be a connection on A. The coadjoint representation up
to homotopy is a representation up to homotopy with graded vector bundle
E−1 = T ∗M,E0 = A∗ and zero otherwise and structure operator

D∇ : Ω(A;E)k → Ω(A;E)k+1,

consisting of:

• The De Rham-like operator associated to the A-connection (∇bas
A )∗ on A∗:

d
(∇bas

A )∗

A : Ωk(A;A∗)→ Ωk+1(A;A∗)

• The map
(ρ)∗ : Ωk+1(A;T ∗M)→ Ωk+1(A;A∗),

obtained by applying the dual of the anchor ρ∗ : T ∗M → A∗ to the coeffi-
cient.

• The De Rham-like operator associated to the TM -connection (∇bas
T M)∗ on

T ∗M :
d

(∇bas
TM )∗

A : Ωk+1(A;T ∗M)→ Ωk+2(A;T ∗M)

• The map
−(Rbas

∇ )∗ : Ωk(A;A∗)→ Ωk+2(A;T ∗M),

obtained by applying the dual coefficient of Rbas
∇ ∈ Ω2(A; End(TM ;A)) to

the coefficient and then taking the wedge product.

We will denote this representation up to homotopy by ad∗∇. ♦

One of the issues of these definitions is that one needs to use a connection on
A to describe the structure operator, although the resulting representation up to
homotopy is canonical up to isomorphism. To circumvent the use of a connection
one can introduce:

Definition 4.3.5 ([66]). Let A be a Lie algebroid. The deformation complex
C•def(A) is the graded Lie algebra V •(A)1−pol together with the differential δ
given by δ(D) = [π,D] where π ∈ C1

def(A) is the Poisson structure corresponding
to the Lie algebroid structure on A. ♦

Proposition 4.3.6 ([1]). Let A be a Lie algebroid and∇ a connection on A. Then there
exists a canonical isomorphism of cochain complexes:

(C•def(A), δ) ' (Ω(A; ad∇), D∇).

We will now give a similar statement but using coefficients in the symmetric
powers of the adjoint representation. As a graded vector bundle this is given by

Sd ad∇ = (SdA)︸ ︷︷ ︸
degree 0

⊕ (Sd−1A⊗ TM)︸ ︷︷ ︸
degree 1

⊕ · · · ⊕ (A⊗ ∧dTM)︸ ︷︷ ︸
degree d−1

⊕ (∧dTM)︸ ︷︷ ︸
degree d

.
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Theorem 4.3.7. Let A → M be a Lie algebroid. A connection ∇ on A induces an
isomorphism of differentially graded algebras:

(V p(A)d−pol, dπ1
) ' (Ω(A;Sd ad∇)p+1, D∇).

Proof. First we remark that

Ω(A;Sd ad∇)p+1 =

p+1⊕
i=0

Γ(Λp−i+1A∗ ⊗ Sd−iA⊗ ∧iTM)

Therefore the isomorphism from Proposition 4.2.51 provides an isomorphism of
C∞(M)-modules between Ω(A;Sd ad∇)p+1 and V p(A)d−pol. We will however
work with its inverse ψ : Ω(A;Sd ad∇)p+1 → V p(A)d−pol from Proposition
4.2.52. But, for this isomorphism to intertwine the differentials we need to add
some signs. We define ψ̃, which on Γ(Λp−i+1A∗ ⊗ Sd−iA ⊗ ∧iTM) is given by
ψ̃ = (−1)iψ. As this is still an isomorphism of algebras, we only need to prove it
intertwines the differentials in low degrees, that is on ∧1A∗, S1A and TM .
On ∧1A∗: In this case we need to show that the following diagram commutes

Ω1(A;S0A) = Γ(∧1A∗) V 0(A)0−pol

Ω2(A;S0A) = Γ(∧2A∗) V 1(A)0−pol

ι∗

dA dπ1

ι∗

which is immediate because π1 is the fibrewise linear Poisson structure corres-
ponding to the algebroid structure on A.
On S1A: We have to show that the following diagram commutes:

Γ(S1A) V −1(A)1−pol

Γ(∧1A∗ ⊗ S1A⊕ TM) V 0(A)1−pol

̂
D∇ dπ1

ψ̃

Let s ∈ Γ(A), we have D∇(s) = (∇bas
· (s), ρ(s)). Moreover, for any e ∈ Γ(A)

we have 〈
ψ̃(D∇(s)), e

〉
=
〈
ψ̃(∇bas

· (s)), e
〉

+
〈
ψ̃(ρ(s)), e

〉
= ∇̂bas

e (s)− ∇̂ρ(s)(e)

= ∇̂ρ(s)(e) + ̂[e, s]− ∇̂ρ(s)(e),
whereas 〈dπ1

(s), e〉 = π(dê, dŝ) = ̂[e, s] from which we conclude that the diagram
commutes.
On TM : We have to show that the following diagram commutes
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Γ(TM) V 0(A)1−pol

Γ(∧2A∗ ⊗ S1A⊕ ∧1A∗ ⊗ TM) V 1(A)1−pol

ψ̃

D∇ dπ1

ψ̃

We have D∇(X) = Rbas
∇ (·, ·)(X) +∇bas

· (X), and〈
ψ̃(Rbas

∇ (·, ·)(X)), e1 ∧ e2)
〉

= ∇X([e1, e2])− [∇X(e1), e2]− [e1,∇X(e2)]

−∇∇bas
e2

(X)(e1) +∇∇bas
e1

(X)(e2)

so

ψ̃(∇bas
· (X))(e1, e2) =

〈
− hor∇

∗
(∇bas

e1 (X)), e2

〉
−
〈
−hor∇

∗
(∇bas

e2 (X)), e1

〉
= −∇∇bas

e1
(X)(e2) +∇∇bas

e2
(X)(e1)

and consequently〈
ψ̃(D∇(X)), e1 ∧ e2

〉
= ∇X([e1, e2])− [∇X(e1), e2]− [e1,∇X(e2)].

On the other hand

dπ1
(ψ̃(X))(e1, e2) = −π1(dê1, d∇̂X(e2)) + π1(dê2, d∇̂X(e1)) +∇X(π1(dê1, dê2))

= −[e1,∇X(e2)] + [e2,∇X(e1)] +∇X([e1, e2]).

We thus conclude that ψ̃(D∇(X)) = dπ1
(ψ̃(X)).

Remark 4.3.8. Note that when E → M is just a vector bundle, and does not
carry an algebroid structure one can still consider the graded vector bundle
E0 = E,E1 = TM , and the associated graded symmetric power, again denoted
by Sd ad∇. In this case Proposition 4.2.51 still provides an isomorphism between
V p(A)d−pol and Ω(E;Sd ad∇)p+1 but neither side carries a differential. ♦

4.3.1 Homogeneous forms and the Weil algebra

We would like to end this chapter by discussing a possible duality between
homogeneous differential forms and the Weil algebra.

When one replaces the symmetric powers of the adjoint representation by
symmetric powers of the coadjoint representation in Theorem 4.3.7 one could
wonder what the object it is isomorphic to is. This turns out to be the Weil algebra:

Definition 4.3.9 ([1]). Let A → M be a Lie algebroid. The Weil algebra of A,
W p,q(A), consists of sequences of operators c = (c0, c1, . . .)

ci : Γ(A)× · · · × Γ(A)︸ ︷︷ ︸
p−i times

→ Γ(∧q−iT ∗M ⊗ SiA∗)
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satisfying

ci(α1, . . . , fαp−i) = fci(α1, . . . , αp−i)− df ∧ ∂αp−i(ci+1(α1, . . . , αp−i−1)),

for all αj ∈ Γ(A) and f ∈ C∞(M). Here ∂α : Sk(A∗)→ Sk−1(A∗) is given by:

∂α(P )(α0) =
d
dt

∣∣∣∣
t=0

P (α0 + tα).

if one views P ∈ Sk(A∗) as a function on A. ♦

Moreover, W p,q(A) can be equipped with the structure of differential graded
algebra. With differential dW = dv + dh, where the vertical differential dv raises
p by one and the horizontal differential dh raises q by one.

Proposition 4.3.10 ([1]). Let A→M be a vector bundle. A connection∇ induces an
isomorphism of differentially graded algebras:

W p,q(A) ' Ω(A;Sq ad∗∇)p−q '
⊕
k

Γ(∧q−kT ∗M ⊕ SkA∗ ⊕ ∧p−kA∗). (4.3.1)

Considering how Theorem 4.3.7 induces a relation between algebroid forms
with values in the adjoint representation and homogeneous vector fields on the
dual of the algebroid, one is lead to wonder whether a similar relation between
algebroid forms with values in the coadjoint representation and homogeneous
differential forms exists:

Definition 4.3.11. Let E →M be a vector bundle, define the space of homogen-
eous differential forms by:

Ωkl (E) := {ω ∈ Ωk(E) : m∗λω = λlω}.

Elements of the space Ωk1(E) are often linear differential forms. ♦

A relation between linear differential forms and the Weil algebra is described
in [11]:

Proposition 4.3.12 (Proposition 3 in [11]). Let E be a vector bundle, then there is a
canonical isomorphism of differential graded algebras (Ω•1(E), d) ' (W 1,•(E), dv)

There is a very naive guess for a possible extension of this result, namely
Ω•l (E) ' W l,•(E). However this is clearly wrong as W •,0(E) = Γ(∧•E∗) and
Ω0
l (E) = Γ(S•E∗). So let us proceed with a bit more care: Given ω ∈ Ωqp(E), we

may view it as a skew-symmetric C∞(E)-linear map

ω : X1(E)× · · · × X1(E)︸ ︷︷ ︸
k−times

→ C∞(E).

However, while we could view multivector fields as multi-derivations on func-
tions, we cannot do the same for differential forms. Still we can restrict ω to
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Chapter 4. Homogeneous multivector fields

Γ(E) by the inclusion ι∗ : Γ(E) ↪→ X1(E). However, this alone does not fully
determine ω; one also needs to use an auxiliary connection ∇ on E to obtain a
horizontal lift X1(M) ↪→ X1(E). In this way ω induces a sequence of operators:

Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
q−times

→ Γ(Sp−qE∗)

Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
(q−1)−times

×X1(M)→ Γ(Sp−q+1E∗)

· · ·
Γ(E)× X1(M)× · · · × X1(M)︸ ︷︷ ︸

(q−1)−times

→ Γ(Sp−1E∗)

X1(M)× · · · × X1(M)︸ ︷︷ ︸
q−times

→ Γ(SpE∗)

Note that all of these maps are C∞(M)-linear and skew-symmetric, and therefore
ω induces an element of

q⊕
k=0

Γ(∧q−kT ∗M ⊗ Sp−kE∗ ⊗ ∧kE∗).

As this process can be reversed we conclude the following:

Lemma 4.3.13. A connection on E induces an isomorphism

Ωqp(E) '
q⊕

k=0

Γ(∧q−kT ∗M ⊗ Sp−kE∗ ⊗ ∧kE∗). (4.3.2)

This has a striking similarity with the description of the Weil algebra from
Proposition 4.3.10 and indeed we see that

W 1,q(E) = Γ(ΛqT ∗M ⊗ Λ1E∗)⊕ Γ(Λq−1T ∗M ⊕ S1E∗),

and
Ωq1(E) = Γ(ΛqT ∗M ⊗ S1E∗)⊕ Γ(Λq−1T ∗M ⊗ Λ1E∗).

This gives a direct isomorphism between W 1,q(E), and Ωq1(E), and thus proving
Proposition 4.3.12. However, note that from this description it is not clear at
all that this isomorphism is canonical, whereas from the description in [11] it
is. We also see that this low-degree isomorphism worked so easily because
∧1E∗ = S1E∗. But if we pass to higher values of p, we find by comparing (4.3.1)
and (4.3.2) that for any p, q with p > 1 there exists no l,m such that Ωqp(E) is
isomorphic to W l,m(E).

However, the entire spaces W •,•(E) and Ω••(E) are isomorphic. It would be
very interesting to study the relation between these two spaces. For instance,
whereas the left-hand side has two differentials (dh and dv), a priori the right-
hand side has only one (dDR).
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Chapter 5

Homogeneous normal form
results in Poisson geometry

In this chapter we will study homogeneous normal form results in Poisson geo-
metry. We will consider Taylor expansions of Poisson structures in terms of
homogeneous bivector fields. The algebraic description of homogeneous polyno-
mial bivector fields obtained in the previous chapter will help us understand the
desired normal forms. In this introduction we collect the main definitions and
results from this chapter.

For a Poisson manifold (N, π) we will consider Taylor expansions of π, around a
submanifold M ⊂ N , of the form

∑
d πd, with each πd ∈ X2(νM ) of degree d. The

first non-zero term of this Taylor expansion always defines a Poisson structure
on the normal bundle πd ∈ X2(νM )d−pol. One could hope that πd provides a local
form theorem for π around M . We will study when this is the case and focus our
attention in particular on the linear and quadratic case.
Linear: For the linear approximation π1 to be Poisson we will need the constant
part π0 to vanish. This condition is equivalent to M ⊂ (N, π) being a co-isotropic
submanifold. However, we will see that π1 will have a chance to provide a
normal form only if M ⊂ (N, π) is also a Lagrangian submanifold. We will
describe precisely when this is the case in terms of cohomological conditions.
Because π1 has degree 1, it induces cochain complexes (X•(νM )k−pol, dπ1). If we
let F kX•(νM )M denote germs of multivector fields X for which Xi−pol = 0 for
all i < k we obtain a cochain complex (F kX•(νM )M , dπ). Using these we can
detect precisely when a Lagrangian is linearisable:

Definition 5.1.32. Let M ⊂ (N, π) be a Lagrangian submanifold and let X be an
Euler-like vector field for M . The linearisation class of M is defined to be

Λ(π,M) := [π − dπ(X)] ∈ H2
π(F 2X•(νM )M ).
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Proposition 5.1.33. A Lagrangian submanifold M ⊂ (N, π) is linearisable precisely
when Λ(π,M) = 0.

Directly computing the linearisation class is not easy. Yet, we can use the
algebraic structure on the homogeneous multivector fields to give sufficient
conditions for when it vanishes:

Theorem 5.1.34. Let (N, π) be a Poisson manifold, and M ⊂ (N, π) a Lagrangian
submanifold. If H1(νM )0−pol = 0, H1(νM )1−pol = 0 and [π] = 0 ∈ H2(N)M , then
the linearisation class vanishes.

As we have seen in Theorem 4.3.7, H1(νM )0−pol is the Lie algebroid cohomo-
logy for the Lie algebroid associated to π1 and H1(νM )1−pol is the Lie algebroid
cohomology with coeffients in the adjoint representation.

We conclude our discussion of the linear case by commenting on possible
ways in which integrablity of the Poisson manifold ensures that these cohomo-
logy groups vanish, although we obtained no clear applicable result yet.

In higher degrees we will quickly discuss a similar result to Proposition 5.1.33
using a d-th order approximation class defined in Definition 5.1.36.
Quadratic: For the quadratic approximation π2 to be Poisson we need the linear
part π1 to vanish. This condition will be satisfied for a particular class of Poisson
submanifolds. After given a digression of what is known on normal form results
around general Poisson submanifolds, we will describe a class of Poisson struc-
tures for which π2 gives a normal form result. These are the log symplectic and
elliptic symplectic structures. Most of the normal form results for these structures
have appeared before. We will collect explicit formulae for these normal forms,
and explain what choices are needed to describe them using the theory of the
previous chapter.

Elliptic symplectic structures fall in two categories, depending on whether
the elliptic residue vanishes. The ones with vanishing elliptic residue are studied
in Chapter 1 because of their relation with generalized complex structures. The
ones with non-vanishing elliptic residue had not been studied in detail yet.

Proposition 5.2.25. Let (N, π) be an elliptic symplectic manifold with degeneracy locus
D. If the the elliptic residue of π is τ 6= 0 then there exists a canonical flat connection ∇
on ν∗D such that

π2 = τ−1∂θ ∧ r∂r + hor∇
∗
(πD) ∈ X2(νD)

is Poisson diffeomorphic to π on a tubular neighbourhood of D.

With this explicit formula at hand we can prove the following:

Lemma 5.2.38. Let (M2n, ω) be a symplectic manifold and let S2n−2 ⊂M be a compact
symplectic submanifold with flat normal bundle. Then there exists an elliptic symplectic
structure ω̃ with non-zero elliptic residue on M with degeneracy locus precisely S.

Under (nearly) identical assumptions one can prove existence of log sym-
plectic structures ([14]). In the same spirit, there is a folklore result which states
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5.1. Submanifolds in Poisson Geometry

that the existence of a log symplectic structure on a symplectic manifold can
be deduced from the existence of a cosymplectic submanifold. However, the
process can not be reversed: there are log symplectic manifolds which do not
admit symplectic structures. In the non-zero elliptic residue case this procedure
can however be easily reversed:

Lemma 5.2.41. Let ω be an elliptic symplectic structure on M with non-zero elliptic
residue and degeneracy locus D. Then there exists a symplectic structure on M which
has D as symplectic submanifold.

We conclude that if one’s goal is to construct singular symplectic structures on
manifolds which are not symplectic, like we did in Chapter 1, one can disregard
elliptic symplectic structures with non-zero elliptic residue.

5.1 Submanifolds in Poisson Geometry

5.1.1 Taylor expansions of vector fields

A multivector field X ∈ Xp+1(N ) is called (fiberwise) polynomial if it is a finite
sum of homogeneous polynomial multivector fields (of various degrees), that is

X ∈ X•(N )pol = ⊕dX•(N )d−pol.

The completion of this space consists of formal infinite sums of homogeneous
polynomial multivector fields, that is

X•(N )form =
∏
d

X•(N )d−pol =

{ ∞∑
d=0

Xd : Xd ∈ X•(N )d−pol

}
.

Its elements are called formal multivector fields on N .
Because the rescaling operators mλ : N → N are bracket-preserving, the Lie

bracket preserves polynomality and there is an induced Lie bracket:

[·, ·] : X•(N )form × X•(N )form → X•(N )form. (5.1.1)

The multiplication operators mλ on N also allow us to define a Taylor ap-
proximation of multivector fields X ∈ Xp+1(N ) by considering expansions of
m∗λX of type ∑

d≥0

λd−p−1Xd−pol, with Xd−pol ∈ Xp+1(N ). (5.1.2)

The components Xd−pol can be explicitly computed by the following set of
equations:

X0−pol = lim
λ→0

λp+1 ·m∗λX,

Xk−pol = lim
λ→0

1

λk

(
λp+1 ·m∗λX −

k−1∑
i=0

λi ·Xi−pol

)
.
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Chapter 5. Homogeneous normal form results in Poisson geometry

Lemma 5.1.1. Taking the infinite jet is a Lie algebra map:

j∞ : X•(N )→ X•(N )form, X 7→
∑
d

Xd−pol

In other words:

1. For any X ∈ Xp+1(N ), Xd−pol is polynomial of degree d, i.e. m∗λXd−pol =
λd−p−1Xd−pol.

2. For any multivector fields X and Y ,

[X,Y ]d−pol =
∑

d1+d2=d+1

[Xd1−pol, Yd2−pol].

All these constructions are functorial with respect to isomorphisms of vector
bundles over M . However, as we are interested in tubular neighbourhoods, it is
important to look at more general diffeomorphisms

Φ : N → N ′, with Φ|M = IdM , (5.1.3)

between two vector bundles N ,N ′ over M . It is true that such a map induces
a vector bundle isomorphism dvertΦ : N → N ′, but this contains only the linear
information of Φ (along M ) and that is not enough. On the other hand, Φ also
induces an isomorphism

Φ∗ : X•(N )→ X•(N ′)

but this does not preserve polynomiality. Instead, we need the “Taylor expansion
of Φ” (around M ), which we define as the map

j∞Φ∗ : X•(N )form → X•(N ′)form, j∞X 7→ j∞Φ∗(X). (5.1.4)

To see that this is well defined, one just remarks that if Xd is homogeneous
polynomial of degree d than Φ∗(X)k = 0 for k < d. We deduce:

Lemma 5.1.2. Every diffeomorphism Φ as above (5.1.3) induces a Lie algebra isomorph-
ism between the corresponding spaces of formal power series (5.1.4)

j∞Φ∗ : X•(N )form
∼→ X•(N ′)form.

It is also convenient to describe the coefficients of the Taylor expansion as in
Equation (5.1.2) in terms of their cores:

Lemma 5.1.3. Let X ∈ Xp+1(E∗) and let D ∈ V p(E) denote its core. Then the core of
Xk−pol ∈ Xp+1(E∗)k−pol is Dk−pol ∈ V p(E)k−pol, which is given by:

Dk−pol(s0, . . . , sp) := (D(s0, . . . , sp))k−pol,

for s0, . . . , sp ∈ Γ(E). Moreover,

σlDk−pol
(f1, . . . , fl; s0, . . . , sp−l) = σD(f1, . . . , fl; s0, . . . , sp−l)(k−l)−pol,

for f1, . . . , fl ∈ C∞(M).
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We now move to our motivating setting, which is understanding multivector
fields (and in particular Poisson structures) around submanifolds. Let M ⊂
N be a submanifold, and X ∈ Xp+1(N) a multivector field. Using a tubular
neighbourhood, we can transport X to a multivector field X̃ ∈ Xp+1(νM ), and
take its k-th order approximations X̃k−pol ∈ Xp+1(νM )k−pol. However, in general
these will depend on the tubular neighbourhood. However, as is common when
working with jets, the first non-zero term does not depend on the choice of
tubular neighbourhood.

To prove this, we will first consider the simplest case, namely p = −1, that
is, functions on N . For functions f ∈ C∞(N) taking homogeneous approxim-
ations around a submanifold M ⊂ N is a well-known construction. Starting
with the first order approximation, the normal derivative, and the second order
approximation, the normal Hessian. We recall this construction for the sake of
completeness:

Definition 5.1.4. Let M ⊂ N be a submanifold and let f ∈ C∞(N) be a function.
Suppose that for all vector fields X1, . . . , Xk−1 in a neighbourhood of M we have
LX1
· · · LXk−1

(f)(x) = 0 for all x ∈M . Then we define

dk,νM f ∈ Γ(Skν∗M ),

by
dk,νM f(v1, . . . , vk)(p) = LX1LX2 · · · LXk(f)(p),

where p ∈M , v1, . . . , vk ∈ Γ(νM ) and X1, . . . , Xk are vector fields in a neighbour-
hood of M with vi|M mod TM = Xi. ♦

We prove this is well-defined:

Proof. Let X1, X̃1 be two vector fields whose normal parts coincide with v1.
Because dk−1,νM f = 0 we have that LX2

· · · LXk(f) vanishes atM , but asX1−X̃1

is tangent to M we have

LX1−X̃1
(LX2

· · · LXk(f)) = 0.

We conclude that dk,νM f does not depend on the choice of vector field represent-
ing v1. Continuing inductively we conclude that dk,νM f does not depend on any
choices. To check that dk,νM f is symmetric, we note that

LX1
LX2
· · · LXk(f)(p)− LX2

LX1
· · · LXk(f)(p) = L[X1,X2]LX3

· · · LXk(f)(p).

But as dk−1,νM f vanishes, the right-hand side is zero. This proves that dk,νM f is
indeed symmetric.

The following is now readily verified by taking local coordinates:
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Lemma 5.1.5. Let M ⊂ N be a submanifold and f ∈ C∞(N) a function. If for some
tubular neighbourhood the approximations fi−pol ∈ C∞(νM ) vanish for 0 ≤ i ≤ k − 1,
then

fk−pol = d̂k,νM f.

In particular, fk−pol ∈ C∞(νM )k−pol is independent of the tubular neighbourhood
chosen.

Proposition 5.1.6. Let M ⊂ N be a submanifold and X ∈ Xp+1(N) a multivector
field. If for some tubular neighbourhood the approximations Xi−pol ∈ Xp+1

i−pol(νM )

vanish for 0 ≤ i ≤ k − 1, then Xk−pol ∈ Xp+1(νM )k−pol is independent of the tubular
neighbourhood chosen.

Proof. By Lemma 5.1.3 we have that the core of Xi−pol is given by Di−pol. There-
fore Di−pol vanishes for all 0 ≤ i ≤ k − 1, and thus by definition

Di−pol(s0, . . . , sp) = (D(s0, . . . , sp))i−pol,

vanishes for all 0 ≤ i ≤ k − 1. Therefore, by Lemma 5.1.5 (D(s0, . . . , sp))k−pol

does not depend on the chosen tubular neighbourhood and thus neither does
Xk−pol.

Jets of multivector fields There is another way of taking jets of multivector
fields which we will now explain. Let M ⊂ N be a submanifold, and let IM ⊂
C∞(N) denote the ideal of functions vanishing on M . This ideal induces a
filtration F on X•(N):

X•(N) = F •−1 ⊃ F•0 ⊃ F•1 ⊃ · · ·
F•k = Ik+1

M X•(N), k ≥ 0.

This filtration satisfies

[F•k ,F•l ] ⊂ F•k+l, Fk ∧ Fl ⊂ Fk+l+1,

and therefore the graded spaces

JkM (X•(N)) := X•(N)/F•k

inherit the structure of Gerstenhaber algebra.
Intuitively, elements of JkM (X•(N)) are Taylor expansions where for each coef-

ficient function the Taylor expansion up to order k is taken. However JkM (X•(N))
is an abstract quotient space with no, a priori, explicit description.

Nevertheless, for a given X ∈ Xk+1(N) we want to compare JkMX with the
fibrewise approximation Xi−pol. As discussed before, the approximations Xi−pol

are not canonical in general and depend on the tubular neighbourhood chosen.
So we first restrict ourselves to the case of a vector bundle:
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Proposition 5.1.7. There is an isomorphism of graded vector spaces induced by

ϕ : JkMXp+1(E∗)→
p+1⊕
i=0

V p
i (E)(k+i)−pol

JkMW 7→
(

(DW )k−pol, (σDW )(k+1)−pol, . . . , (σ
p+1
DW

)(k+p+1)−pol

)
.

Proof. We first check that the map is well-defined. By Lemma 5.1.3 we have that

(σiDW )(k+i)−pol(f1, . . . , fi; s0, . . . , sp−i) = σiW (f1, . . . , fi, s0, . . . , sp−i)k−pol,

only depends on the k-th jet ofW . Similarly, we see that if [W ], [W̃ ] ∈ JkMXp+1(E∗)

and ϕ(JkMW ) = ϕ(JkMW̃ ) then the k-jets of W and W̃ coincide and thus ϕ is in-
jective. By Remark 4.2.50 we have that σi : V p(E)→ V p

i (E) is surjective. Thus
given (a0, . . . , ap+1) ∈ ⊕i=0V

p
i (E)(k+i)−pol let Dj ∈ V j(E) with σj(Dj) = aj . If

we let Xj ∈ Xp+1(E∗) denote the vector field with core Dj , then

ϕ(JkM (X0 + · · ·+Xp+1)) = (a0, . . . , ap+1),

which proves that ψ is surjective.

Given a submanifold M ⊂ N , we can choose a tubular neighbourhood and
associate to an element of JkMXp+1(N) an element of⊕p+1

i=0 V p
i (ν∗M )(k+i)−pol using

the above proposition. However, in general this does depend on the particular
tubular neighbourhood. But as in Proposition 5.1.6 we have:

Proposition 5.1.8. Let M ⊂ N be a submanifold and let W ∈ Xp+1(N) be such that
jk−1
M W = 0. Then jkMW corresponds to a canonical element of ⊕p+1

i=0 V p
i (ν∗M )(k+i)−pol.

Taylor expansions of Poisson structures The Nijenhuis-Schouten bracket (5.1.1)
on formal vector fields allows one to talk about formal Poisson structures:

Definition 5.1.9. A formal Poisson structure on the vector bundle N → M is
any formal bivector field π ∈ X2(N )form satisfying [π, π] = 0. ♦
Corollary 5.1.10. On any vector bundle N →M :

1. If π ∈ X2(N ) is a Poisson bivector, than j∞π ∈ X2(N )form is a formal Poisson
bivector.

2. If Π =
∑
d Πd ∈ X2(N )form is a formal Poisson bivector, then the first non-zero

homogeneous component of Π is a homogeneous Poisson bivector on N .

Proof. By Lemma 5.1.1 the map j∞ is a Lie algebra map. Therefore

[j∞π, j∞π]d−pol = [π, π]d−pol

which implies that j∞π is a formal Poisson structure. Let k be the first non-
zero integer for which πk 6= 0, by the same lemma we have [π, π](2k−1)−pol =∑
d1+d2=2k[πd1−pol, πd2−pol]. But as πi−pol = 0 for all i < k, the only term in this

sum which is non-zero is [πk−pol, πk−pol]. As π is a formal Poisson structure we
thus conclude that πk−pol is a Poisson bivector of degree k on N .
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Chapter 5. Homogeneous normal form results in Poisson geometry

Let
M ⊂ (N, π)

be a submanifold of a Poisson manifold. We would like to understand π around
M . Using a tubular neighborhood we may transport π to νM . Our general theory
gives approximations of π arising from the expansion

m∗λπ ∼ λ−2π0 + λ−1π1 + π2 + . . .

with πi ∈ X2(νM )i−pol. Combining Corollary 5.1.10 and Proposition 5.1.6 we
conclude:

Proposition 5.1.11. Let M ⊂ (N, π) be a submanifold of a Poisson submanifold. If
πi−pol = 0 for all 0 ≤ i ≤ k− 1, then πk−pol ∈ X2(νM ) is Poisson and does not depend
on the tubular neighbourhood chosen.

Consequently, in this setting we have that πk gives a canonical first candidate
for a normal form result around M . Although it is rather naive to expect that
only this first non-zero term is enough to capture the Poisson structure around
the submanifold, in the next sections we will see that surprisingly often this is
the case. We will focus ourselves mostly on the linear, π1, and quadratic, π2, case.

Remark 5.1.12. It is instructive to write down the expression for m∗λπ in local
coordinates. Let (xi, yi) be coordinates on N , with the xi in the direction of M
and the yi in the fibre directions. In these coordinates

π =
∑
i,j

Ai,j(x, y)∂xi ∧ ∂xj +Bi,j(x, y)∂xi ∧ ∂yj + Ci,j(x, y)∂yi ∧ ∂yj ,

and

m∗λπ =
∑
i,j

Ai,j(x, λy)∂xi ∧ ∂xj +
Bi,j(x, λy)

λ
∂xi ∧ ∂yj +

Ci,j(x, y)

λ2
∂yi ∧ ∂yj . ♦

5.1.2 The fiberwise constant case

Recall from Example 4.2.23 that the Lie bracket on X2(N )0−pol vanishes and
consequently:

Lemma 5.1.13. There is a one-to-one correspondence between Poisson structures π ∈
X2(N )0−pol and sections π0 ∈ Γ(Λ2N ).

IfM = {x0} is a point then π0 = πx0
is the (constant bivector) on Tx0

N . When
M = {x0}, by the Darboux-Weinstein theorem there is a neighbourhood of x0 on
which π is isomorphic to π0 precisely when x0 is a regular point of π. For higher
dimensional submanifolds π0 is seldom a good approximation of π.
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5.1.3 The fiberwise linear case

The next homogeneous approximation, π1, is Poisson when π0 = 0 which hap-
pens when the submanifold is coisotropic:

Definition 5.1.14. Let (N, π) be a Poisson manifold. A submanifold M ⊂ N is
called coisotropic if the π-orthogonal of the tangent spaces of TM ,

TM⊥,π := π](ν∗M )

is inside TM . ♦

The following equivalence is well-known, see for instance [77]:

Lemma 5.1.15. Let (N, π) be a Poisson manifold. An embedded submanifold M ⊂ N
is coisotropic if and only if one of the following equivalent conditions hold:

1. The vanishing ideal IM ⊂ C∞(N) of M is closed under the Poisson bracket.

2. For every point x ∈M and symplectic leaf S through x we have TxM ∩ TxS ⊂
TxS is a coisotropic subspace of the symplectic vector space (TxS, ωS,x)

Lemma 5.1.16. Let M ⊂ (N, π) be an embedded submanifold of a Poisson manifold.
Then π0 = 0 if and only if M is a coisotropic submanifold of (N, π),

Proof. Using a tubular neighbourhood we may assume that N = νM , the normal
bundle of M . The vanishing ideal of M is generated by Γ(ν∗M ). Because

π0(dŝ1, dŝ2) = π(dŝ1, dŝ2)|M ∈ C
∞(M), for all s1, s2 ∈ Γ(ν∗M )

we see that π0 vanishes precisely when the vanishing ideal is closed under the
bracket.

Example 5.1.17. When M = {x0} is a point, then the coisotropic condition cor-
responds to x0 being a fixed point of π, that is πx0

= 0. The resulting structure is
g := Tx0

N , the isotropy Lie algebra of π at x0, and the corresponding approxima-
tion of M near x0 will be g∗ endowed with the linear Poisson structure. 4

The most famous result for a normal form theorem using π1 is Conn’s linear-
isation theorem:

Theorem 5.1.18 ([20]). Let (N, π) be a Poisson manifold and x ∈ N a fixed point of
π. If the isotropy Lie algebra g is semi-simple and of compact type, then there exists a
neighbourhood of x on which π and π1 are Poisson diffeomorphic.

Example 5.1.19. When M is a collection of zeros of (N, π). Then the constant ap-
proximation π0 ∈ X2(νM ), vanishes and we can consider the linear π1 ∈ X2(νM ).
The corresponding Lie algebroid structure on the dual will have vanishing an-
chor; i.e., it is a bundle of Lie algebras. 4

WhenM ⊂ (N, π) is coisotropic it follows that ν∗M becomes a Lie subalgebroid
of the cotangent algebroid (T ∗N, [·, ·]π).
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Lemma 5.1.20. Let M ⊂ (N, π) be a coisotropic submanifold. The following two Lie
algebroid structures on ν∗M coincide:

• ν∗M viewed as Lie subalgebroid of (T ∗N, [·, ·]π).

• The Lie algebroid structure dual to the fibrewise linear Poisson structure π1,
through Lemma 5.1.13.

We would like to study normal form theorems for coisotropic submanifolds
using the fibrewise linear Poisson structure π1. A necessary condition for such a
result to hold is that the submanifold is Lagrangian:

Definition 5.1.21. Let M ⊂ (N, π) be an embedded submanifold of a Poisson
manifold. Then M is called Lagrangian if one of the following equivalent condi-
tions hold:

• The π-orthogonal coincides with the intersection with the tangent space to
the leaf:

TpM
⊥,π = TpM ∩ TpS,

for all symplectic leaves S of (N, π)

• For every point x ∈ M and symplectic leaf S through x the intersection
TxM ∩ TxS ⊂ (TxS, ωS,x) is a Lagrangian subspace. ♦

Lemma 5.1.22. Let A → M be a Lie algebroid, the zero section M ↪→ (A∗, π1) is a
Lagrangian submanifold.

Proof. We have to show that for all p ∈ M we have π]1,p(ν
∗
M,p) = TpS ∩ TpM ,

where S is the symplectic leaf through p. Because M is the zero-section of A∗,
we have that ν∗M = A. Consequently we are left to show that π]1(TpA

∗) ∩ TpM =

π]1(Ap). Because TpA∗ ' TpM∗ ⊕ A∗p, we can thus consider both π]1(TpM
∗) and

π]1(Ap). Recall that for s ∈ Γ(A) and α ∈ Ω1(M) we have

π]1(dŝ) = (ρ(s), [s, ·]), π]1(α) = (0, ρ∗α) ∈ TpA∗ ' TpM ⊕A∗p,

consequently π]1(TpA
∗) ∩ TpM coincides with the image of the anchor, which is

precisely π]1(Ap), which finishes the proof.

Definition 5.1.23. Let (N, π) be a Poisson manifold, and let M ⊂ N be a Lag-
rangian submanifold. If N has a neighbourhood on which it is Poisson diffeo-
morphic to π1, then we call M linearisable. ♦

We see that in the local model (ν∗M , π1), the zero section is not only a coiso-
tropic submanifold but also a Lagrangian submanifold. Therefore we can only
expect π to be linearisable around M if M was already Lagrangian in (N, π).

Example 5.1.24. A neighbourhood theorem for general coisotropic submanifolds
is proven in the symplectic category: This result is known as Gotay’s theorem
[37] and the normal form combines both the fibrewise linear part π1 as well as
the fibrewise quadratic part π2. Gotay’s theorem has been extended to several
settings in Poisson geometry: To regular Poisson manifolds by Cattaneo and
Zambon [12] and to log symplectic manifolds by Geudens and Zambon [33]. 4
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A Lagrangian neighbourhood theorem We will require several cohomology
groups to study the linearisablity of Poisson structures around Lagrangian sub-
manifolds. The first is a localised Poisson cohomology:

Definition 5.1.25. Let (N, π) be a Poisson manifold, and M ⊂ N a submanifold.
Let

X•(N)M := lim
M⊂U

X•(U),

with the direct limit taken over all opens U containingM . We denote byH•π(N)M
the resulting localised Poisson cohomology groups. ♦

The rescaling operators of the normal bundleN induce a filtration of X•(N )M .1

Lemma 5.1.26. For N →M a vector bundle, the sets

FkX
•(N )M := {X ∈ X•(N )M : Xi−pol = 0 for all i ≤ k − 1}

define a filtration of Gerstenhaber algebras,

F0X
•(N )M = X•(N )M ⊃ F1X

•(N )M ⊃ F2X
•(N )M ⊃ · · ·

of X•(N )M in the sense that:

[FiX
•(N )M , FjX

•(N )M ] ⊂ Fi+j−1X
•(N )M

FiX
•(N )M ∧ FjX•(N )M ⊂ Fi+jX•(N )M .

The associated graded Gerstenhaber algebra grd(X•(N )M ) is precisely X•(N )d−pol.

Proof. Let X ∈ FiX•(N )M and Y ∈ FjX•(N )M , then by Lemma 5.1.1 we have

[X,Y ](i+j−2)−pol = [Xi−1, Yj ] + [Xi, Yj−1] + · · · ,

vanishes and thus [X,Y ] ∈ Fi+j−1X
•(N )M . Moreover

(X ∧ Y )(i+j−1)−pol = Xi ∧Xj−1 +Xi+1 ∧Xj−2 + · · ·

vanishes and thus X ∧Y ∈ Fi+jX•(N )M . The quotient Fi/Fi+1 consists of germs
of vector fields of degree i, but as these are completely determined by their germs
we conclude the quotient is precisely X•(N )i−pol. Because [X,Y ]i+j−1−pol =
[Xi, Yj ] and (X ∧ Y )i−pol = Xi ∧ Yi we see that the Gerstenhaber structure on
grd(X•(N )M ) also coincides with the one on X•(N )d−pol.

Because FkX•(N )M defines a filtration of Gerstenhaber algebras, it also in-
duce a filtration of cochain complexes:

Lemma 5.1.27. Let M ⊂ (N, π) be a co-isotropic submanifold. Then

1And also of X•(N ), but we will need the germs in our application.
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• (FkX
•(νM ), dπ) and

• (X•(νM )k−pol, dπ1
)

are cochain complexes, and grk((X•(νM ), dπ)) is precisely (X•(νM )k−pol, dπ1). Expli-
citly, we have a short exact sequence:

0→ (Fk+1X
•(νM )M , dπ)

i→ (FkX
•(νM )M , dπ)

r→ (X•(νM )k−pol, dπ1
)→ 0,

(5.1.5)
The last map defined by sending a multivector to its degree k-part. For the corresponding
long exact sequence in cohomology the connecting morphism

Hi
π1

(νM )k−pol → Hi+1
π (Fk+1X

•(νM )M ),

coincides with dπ .

Proof. Because M ⊂ (N, π) is co-isotropic, we have that π ∈ F1X
•(νM )M . There-

fore dπ1
(FkX

•(νM )M ) ⊂ FkX
•(νM )M . Because grk(X•(νM )M ) = X•(νM )M as

Gerstenhaber algebras, they also coincide as cochain complexes. It is straightfor-
ward to show that the connection morphism of (5.1.5) coincides with dπ .

We will prove a normal form theorem using a strategy described in [62],
making use of the following concept:

Definition 5.1.28 ([10]). Let M ⊂ N . A vector field X ∈ X1(N) is Euler-like for
M if it is tangent to N , and the linear approximation X1−pol = E , the Euler vector
field of the normal bundle.2 ♦

Definition 5.1.29. Let O ⊂ νM be a star-shaped open neighbourhood of the
zero-section. A morphism ϕ : (O,M) → (N,M), is a tubular neighbourhood
embedding if ϕ is an embedding and the linear approximation ν(ϕ) is the identity.

♦

Theorem 5.1.30 ([10]). An Euler-like vector field determines a unique tubular neigh-
bourhood embedding

νM ⊃ O
ϕ→ N,

such that ϕ∗X = E .

The nice idea of [62] is to find Euler-like vector fields adapted to a particular
geometric structure, and use it to prove normal form results. In our setting we
have:

Lemma 5.1.31. Let M be a Lagrangian submanifold of a Poisson manifold (N, π), and
let π1 denote its first order approximation. Assume there exists an Euler-like vector field
for M such that [X,π] = −π. Then there exists a tubular neighbourhood of U of M on
which π and π1 are Poisson diffeomorphic via a diffeomorphism which is the identity on
M .

2Note that we have a different degree convention than used in [62].
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Proof. Let ϕ denote the tubular neighbourhood embedding associated toX . Then

[E , ϕ∗π] = ϕ∗[X,π] = −ϕ∗π.

Consequently, ϕ∗π is degree 1 and thus π1 = limλ→0 λ
−1m∗λϕ

∗π = ϕ∗π.

To solve the linearisation problem, we thus have to determine when such an
Euler-like vector field exists. To do so we introduce the following notion:

Definition 5.1.32. Let π ∈ X2(N), and M ⊂ N Lagrangian. Let X be any
Euler-like vector field for M , and define the linearisation class of M to be

Λ(π,M) := [π − dπ(X)] ∈ H2
π(F2X

•(νM )M ) ♦

Because M ⊂ (N, π) is Lagrangian, we have that π0−pol = 0. Therefore

(π − dπ(X))0−pol = π0 − dπ0
(X0) = 0

and
(π − dπ(X))1−pol = π1 − dπ1

(X1) = 0

and thus π − dπ(X) is indeed an element of F2X
2(νM )M . Moreover, if X̃ is

another Euler-like vector field then (X−X ′)1−pol = E −E = 0 and thusX−X ′ ∈
F2X

•(νM )M . Consequently, [dπ(X)] = [dπ(X ′)] ∈ H2
π(F2X

•(νM )M ). Therefore,
the linearisation class does not depend on the choice of Euler-like vector field.

Proposition 5.1.33. A Lagrangian submanifold M ⊂ (N, π) is linearisable precisely
when Λ(π,M) = 0.

Proof. If L is linearisable, then pushing forward the Euler-vector field by the
linearising Poisson diffeomorphism ϕ : νM → N provides an Euler-like vector
field satisfying the assumptions of Lemma 5.1.31, and therefore the linearisation
class vanishes.

If Λ(π,M) = 0, then there exists a vector field Y ∈ F2X
1(νM )M such that

π − dπ(X) = dπ(Y ). Because Y ∈ F2X
1(νM )M the vector field X̃ := X + Y is

still Euler-like and satisfies π = dπ(X̃). Therefore, M is linearisable by Lemma
5.1.31.

Unfortunately, directly computing the linearisation class is very difficult.
Instead, we give sufficient conditions for when it vanishes:

Theorem 5.1.34. Let M be a Lagrangian submanifold of a Poisson manifold (N, π), and
let π1 denote its first order approximation. If [π] = 0 ∈ H2

π(N)M and the morphisms

r∗ : H1
π(νM )M → H1

π1
(νM )0−pol

r∗ : H1
π(F1X

•(νM )M )→ H1
π1

(νM )1−pol

are surjective then Λ(π,M) = 0.
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Proof. Because [π] = 0 ∈ H2
π(νM )M we also have [π − dπ(X)] = 0 ∈ H2

π(νM )M .
Let us consider the long exact sequence induced by (5.1.5):

· · · → H1(νM )M
r∗→ H1(νM )0−pol

δ→ H2
π(F1X

•(νM )M )
i∗→ H2(νM )M → · · ·

Because r∗ is surjective, the connecting morphism δ vanishes and hence i∗ is
injective.

As [π − dπ(X)] = 0 ∈ H2
π(νM )M , we thus have

i∗[π − dπ(X)] = [π − dπ(X)] = 0 ∈ H2(νM )M ,

and consequently [π − dπ(X)] = 0 ∈ H2
π(F1X

•(νM )). The next connecting
morphism vanishes by the same reasoning and therefore we have that

[π − dπ(X)] = 0 ∈ H2
π(F2X

•(νM )).

This proves that the linearisation class vanishes.

The cohomology groups H1(νM )0−pol and H1(νM )1−pol appearing in The-
orem 5.1.34 have the following description: Using Theorem 4.3.7 we have that
H1(νM )0−pol = H1(ν∗M ), the Lie algebroid cohomology of the conormal Lie al-
gebroid ν∗M , and H1(νM )1−pol = H1(ν∗M , ad), the Lie algebroid cohomology with
coefficients in the the adjoint representation up to homotopy.

A higher degree neighbourhood theorem Suppose π ∈ X2(N) and M ⊂ N
with πi ∈ X2(νM ) = 0 for all i < d. We would again like to determine when πd
provides a normal form for π around N . We will use the same strategy as before
and look for an Euler-like vector field X with the property that [X,π] = (d− 2)π.
If we let ϕ : νM → U denote a tubular neighbourhood embedding associated to
X , then we have

LEϕ∗π = ϕ∗LXπ = (d− 2)ϕ∗π,

which shows that ϕ∗π is of degree d, and thus coincides with πd.
We again want to define a cohomology class which determines when such an

Euler-like vector field exists. Note that, in contrary to the linear case, FkX•(νM )M
is not closed under dπ . Instead we have that

dπ(F sX•(νM )M ) ⊂ F s+d−1Xk+1(νM )M .

We thus define:

Definition 5.1.35. Let π ∈ X2(N) and M ⊂ N is given with πi ∈ X2(νM ) = 0 for
all i < d. The cohomology of

→ F s−d+1Xk−1(νM )M
dπ−→ F sXk(νM )M

dπ−→ F s+d−1Xk+1(νM )M → (5.1.6)

is denoted by F sHk
π(νM ). ♦
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The graded of the cochain complex (5.1.6) is

→ Xk−1(νM )(s−d+1)−pol

dπd−→ Xk(νM )s−pol

dπd−→ Xk+1(νM )(s+d−1)−pol → (5.1.7)

and its cohomology is denoted by Hk
πd

(νM )s−pol.

Definition 5.1.36. Let M ⊂ (N, π) be such that πi = 0 ∈ X2(νM ) for all i < d,
and let X ∈ X1(N) be an Euler-like vector field for M . Define the d-th order
approximation class to be the class

Λd(π,M) := [(d− 2)π − [X,π]] ∈ F d+1H2
π(νM )M . ♦

Just as in the linear case this class is independent of the choice of Euler-like
vector field.

Lemma 5.1.37. Let M ⊂ (N, π) be such that πi = 0 ∈ X2(νM ) for all i < d. There
exists a tubular neighbourhood on which π is Poisson diffeomorphic to πd if and only if
Λd(π,M) = 0 ∈ F d+1H2

π(N ).

Proof. The class Λd(π,M) = 0 ∈ F d+1H2
π(νM ) if and only if there exists a vector

field Y ∈ F 2X1(νM ) such that (d− 2)π− [X,π] = [Y, π]. We see that X̃ := X + Y

defines an Euler like vector field with (d − 2)π = [X̃, π]. Therefore the desired
tubular neighbourhood is induced by the Euler-like vector field X̃ .

Computing the cohomology F d+1H2(νM )M in practice is not very viable. As
in the linear case we can control the vanishing of the d-th order approximation
class:

Proposition 5.1.38. Let M ⊂ (N, π) be such that πi = 0 ∈ X2(νM ) for all i < d. If
[π] = 0 ∈ H2

π(N)M and for all 0 ≤ i ≤ d

r∗ : F iH1
π(νM )M → H1

πd
(νM )i−pol

is surjective, then Λd(π,M) = 0.

Proof. The proof is as in the linear case, making use of the long exact sequences
induced by the short exact sequences

0→ (F s+1Xk(νM )M , dπ)→ (F sXk(νM )M , dπ)→ (Xk(νM )s−pol, dπd)→ 0

The complex (5.1.7), for νM a vector space, appears in work of Dufour and
Wade [30] and is used to study stability of higher order singularities at points of
Poisson structures.

Using integrability for linearisation The cohomology conditions appearing in
Theorem 5.1.34 are quite hard to deal with. A common way of controlling the
vanishing of Lie algebroid cohomology classes is by imposing the existence of
a particular groupoid integrating the Lie algebroid. Unfortunately, as of yet we
have been unable to obtain satisfactory integrability assumptions, instead we
prove:
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Proposition 5.1.39. Let M be a Lagrangian submanifold of (N, π) and assume there
exists a connected neighbourhood U ofM such that (U, π|U ) is integrable by a Hausdorff
source 2-connected proper groupoid. Moreover, assume that ν∗M is also integerable by a
Hausdorff source 1-connected proper groupoid. Then the conditions of Theorem 5.1.34
are satisfied.

Proof. Let (G,Ω) denote the given symplectic groupoid overU . Let GM denote the
given integration of ν∗M . Because GM is proper we have by [21] that Hk

diff(GM ) =
{0} for all k ≥ 1. Because the source fibres of GM are 1-connected, the Van Est
map [21] H1

diff(GM ) → H1(ν∗M ) is an isomorphism. Therefore we find that the
Lie algebroid cohomology H1(ν∗M ) vanishes as required. Similarly, using the
van Est map and vanishing of Lie groupoid cohomology with coefficients in a
representation up to homotopy, it follows from [3] that H1(ν∗M ; ad) vanishes.
Because G is source 2-connected the Van Est map Φ : H2(G)diff → H2

π|U
(U) is an

isomorphism. Because G is proper, we have that H2(G)diff vanishes and we thus
conclude thatH2

π|U
(U) = 0. In particular [π|U ] = 0 ∈ H2

π|U
(U), and consequently

[π] = 0 ∈ H2(U)M .

This statement should be seen as one step in solving a version of the linearisa-
tion problem. One case in which the above can be applied works is when M is a
point. In this case the result reduces to the second step of the geometric proof of
Conn’s linearisation theorem by Crainic-Fernandes [24], whereas Theorem 5.1.34
reduces to the first step. Note that when M is a point it is also a symplectic leaf.
A generalisation of Conn’s theorem around symplectic leaves is proven in [28].

Remark 5.1.40. In both the case of fixed points and symplectic leaves, the beha-
viour of the groupoid integrating the algebroid around M is well-understood
because M is an orbit of the groupoid. When M is a general Lagrangian, this is
no longer the case which complicates the situation significantly. This behaviour
manifests in that (global) integrablity of the Poisson manifold by the desired
groupoid, does not imply that an integration around M with the desired proper-
ties exists, as the next example will show. Note that the Lagrangian is, however,
linearisable. ♦

Example 5.1.41. Let (M,ω) be a simply connected symplectic manifold, and let
L ⊂M be a Lagrangian submanifold which is not simply connected (for instance
M = S2 and L = S1 is the equator). The pair groupoid G = M ×M is a proper
s-1-connected integration. However if we let U be a tubular neighbourhood of
L, the restriction of G to U is simply the pair groupoid U × U , which does not
have 1-connected source fibres as U is homotopic to L, and L is assumed to be
non simply connected. 4

Examples We end our discussion of the linear case by listing some of the known
classes of Lagrangian submanifolds in Poisson manifolds which are known to be
linearisable. We expect that all these examples should be treatable using Theorem
5.2.4.
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Example 5.1.42. Any Lagrangian submanifold M ⊂ (N,ω) of a symplectic
manifold is linearisable, as proven by Weinstein in [76]. 4

Example 5.1.43. If (M,π) is a regular Poisson manifold, and L is a Lagrangian
which is transverse to the leaves than it is linearisable ([12]), see also [34]). 4

Example 5.1.44. If (M,π) is a log symplectic manifold, and L is a Lagrangian
which is transverse to the degeneracy locus than it is linearisable ([51]). Similarly
if (M,π) is elliptic symplectic and the Lagrangian is transverse to the degeneracy
locus than it is linearisable ([16]).

Besides Lagrangian submanifolds which are transverse to the degeneracy
locus, one can also consider those which are contained in it. These are studied
by Geudens and Zambon in [34]. They prove a normal form result for these
Lagrangians, however this normal form is not fibrewise linear, instead combining
a linear and a quadratic part. 4

Example 5.1.45. All the above examples are examples of Lie algebroid symplectic
manifolds. A general linearisation result of Lagrangian submanifolds of Lie
algebroid symplectic structures is proven in [71]. Under the assumption that the
Lagrangian L is transverse to the anchor ρ : A → N and rk A = dimN − dimM
linearisability is proven. 4

We will also consider an example of a Lagrangian which is not linearisable:

Example 5.1.46. Let su(2) be the Lie algebra of trace-less skew Hermitian matrices,
and let π be the associated linear Poisson structure on su(2)∗. If we identify su(2)∗

with (R3, u1, u2, u3) the Poisson bracket is defined by the relations:

• {u1, u2} = 2u3

• {u2, u3} = 2u1

• {u3, u1} = 2u2.

The function f = u2
1 + u2

2 + u2
3 is a Casimir, and thus the symplectic leaves of π

are given by the concentric spheres together with the origin.
Consider the Lagrangian submanifold L = {u3} = 0. The associated fibrewise

linear Poisson structure on νL ' R3 is defined by the relations:

• {u1, u2}1 = 0

• {u2, u3}1 = 2u1

• {u3, u1}1 = 2u2.

The function f1 = u2
1 + u2

2 is a Casimir, and thus the symplectic leaves are
given by the concentric cylinders around the u3-axis and the u3-axis consists of
zero-dimensional leaves.

Any neighbourhood of L ⊂ (R3, {·, ·}) contains both a zero-dimensional leaf,
as well as infinitely many spherical leaves. Therefore, there is no neighbourhood
of L which is Poisson diffeomorphic to the linearisation (R3, {·, ·}1).
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Note that su(2) is integrable by S3 and thus globally all assumptions of
Theorem 5.1.39 are satisfied. However when localising around L this is no longer
the case. 4

5.1.4 Around Poisson submanifolds: The sesquilinear case

We will now continue our discussion of normal form results using the next ap-
proximation, the quadratic part π2. Instead of directly assuming that π1 vanishes,
we will make a slightly weaker assumption. Namely, we will assume that the
submanifold is a Poisson submanifold:

Definition 5.1.47. Let (N, π) be a Poisson manifold, a submanifold M ⊂ (N, π)
is called a Poisson submanifold if there is a Poisson structure πM on M such
that the inclusion ι : M → N is a Poisson map. ♦

Equivalently:

Proposition 5.1.48. Let (N, π) be a Poisson manifold. An embedded submanifold
M ⊂ (N, π) is a Poisson submanifold if and only if one of the following equivalent
conditions hold:

• Imπ]x ⊂ TxM for all x ∈M ,

• TM⊥,π = 0,

• the vanishing ideal IM of M is an ideal with respect to the Poisson bracket.

A Poisson submanifold is in particular a coisotropic submanifold. Because
TM⊥,π coincides with the image of the anchor of the conormal Lie algebroid ν∗M ,
Poisson submanifolds are precisely the coisotropic submanifolds for which the
conormal Lie algebroid has vanishing anchor.

Following our narrative, we thus do not ask that π1 vanishes but only that its
symbol does.

Much work has been done in understanding normal form results around
Poisson submanifolds. The point of view taken in the literature is that of jets
around S. The definition of local data is as follows:

Definition 5.1.49. Let M ⊂ N be a submanifold and let πM ∈ X2(M) be a
Poisson structure. A first jet of a Poisson structure is an element τ ∈ J1

M (X2
M (N)),

satisfying
τ |M = πM , and [τ, τ ] = 0.

The space of such element is denoted by J1
(M,πM ) Poiss(N). ♦

Using Proposition 5.1.7 we will describe the space of first jets of Poisson
structures in homogeneous terms. Let us first consider the case of vector bundles:
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Definition 5.1.50 ([28],[49]). Let E → (M,πM ) be a vector bundle over a Poisson
manifold. A triple ([·, ·],∇πM , R) consisting of a

• A Lie algebroid stucture [·, ·] on E

• A contravariant connection∇πM , with curvature K∇πM ∈ X2(M ; End(E))

• An E-valued bivector R ∈ X2(M ;E)

is called a Poisson triple if

∇πMα ([e1, e2])− [e1,∇πMα (e2)] = [∇πMα (e1), e2] (5.1.8)
K∇πM (α, β)(e1) = [R(α, β), e1] (5.1.9)

∇πMα (R(β, γ)) +R(α, [β, γ]πM ) + cycl. perm. = 0, (5.1.10)

for all e1, e2 ∈ Γ(E) and α, β, γ ∈ Ω1(M). ♦

Lemma 5.1.51 ([28, 49]). LetE → (M,πM ) be a vector bundle over a Poisson manifold.
There is a one-to-one connection between:

• Poisson triples on E and

• First jets of Poisson structures on E.

Proof. By Proposition 5.1.7 we have an isomorphism

J1
MX2(E) ' V 1(E)1−pol ⊕ V 1

1 (E)2−pol ⊕ V 1
2 (E)3−pol. (5.1.11)

Identifying the elements of the right-hand side (see Example 4.2.24, 4.2.20) we
find they are precisely the objects appearing in a Poisson triple, we only need to
check the differential conditions.

Given τ ∈ J1
(M,πM ) Poiss(E) let W ∈ X2(E) be such that J1

MW = τ . By
definition [τ, τ ] = J1

M [W,W ] = 0 and using Proposition 5.1.7 again we see that

J1
M [W,W ] ∼ ([W,W ]1−pol, σ([W,W ]2−pol), σ

2([W,W ]3−pol), σ
3([W,W ]4−pol))

From this we conclude:

• [W,W ]1−pol vanishing is equivalent to Jacobi for [·, ·],

• σ([W,W ]2−pol) vanishing is equivalent to (5.1.8),

• σ2([W,W ]3−pol) vanishing is equivalent to (5.1.9),

• σ3([W,W ]4−pol) vanishing is equivalent to (5.1.10).

Given a Poisson manifold (N, π) and a Poisson submanifold M , the above
Lemma implies that a tubular neighbourhood induces a Poisson triple on νM .
The Lie algebroid structure on νM is independent on the tubular neighbour-
hood (and equal to the one from Lemma 5.1.20), and so is the contravariant
connection. Unfortunately, the bivector R does depend on the choice of tubular
neighbourhood.
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Remark 5.1.52. There is a rather interesting phenomena in this theory. Namely
that given a first jet of a Poisson structure τ ∈ J1

MX2(N) there need not be a
Poisson structure π around M with J1π = τ ([28]). In other words, there are
cases where local models need not exist.

However, there are some conditions known under which local models do
exists. One particular case is when M is a symplectic leaf, where it also provides
a normal form theorem.

It would be very interesting to see whether our framework can say anything
on the existence of local models. Viewing a Poisson triple again as an element of

([·, ·],∇π, R) ∈ V 1(νM )1−pol ⊕ V 1
1 (νM )2−pol ⊕ V 1

2 (νM )3−pol.

We can choose a connection and apply the splittings of the symbol sequence
(see Proposition4.2.51) S : V 1

1 (νM )2−pol → V 1(νM )2−pol and S : V 1
2 (νM )3−pol →

V 1(νM )3−pol and consider the bivector Π := π1 + S(∇π) + S(R). It would be
very interesting to see under which conditions this is Poisson and how it relates
to the known local models. Most likely, the existence of connections adapted
to the situation is important. When M is a symplectic leaf we have a canonical
condition, namely the one induced by the contravariant connection. ♦

The contravariant connection plays an important role in our discussion so we
will describe it explicitly:

Lemma 5.1.53. Let (N, π) be a Poisson manifold and let M ⊂ N be a Poisson subman-
ifold. Then the normal bundle ν∗M →M carries an induced contravariant connection:
Transport π to νM using a tubular neighbourhood and define

(∇πM )∗df (s) = {f̂ , ŝ}1−pol.

Moreover, (∇πM )∗ does not depend on the choice of tubular neighbourhood.

Proof. Proving that this is a contravariant connection follows readily from the
Jacobi identity for π. By Lemma 5.1.5 {f̂ , ŝ}1−pol does not depend on the choice
of tubular neighbourhood.

5.1.5 The fibrewise quadratic case

We now consider the quadratic homogeneous approximation, π2. This is Poisson
when π0 = π1 = 0 which happens under the following conditions:

Lemma 5.1.54. Let (N, π) be a Poisson manifold, and let M ⊂ N be a submanifold.
Then the constant and linear approximation of π around N , π0 and π1, vanish if and
only if M is a Poisson submanifold whose conormal Lie algebroid is abelian.

Spelling out the isomorphism X2(E∗)2−pol ' V 1(E)2−pol we find:

Proposition 5.1.55. There is a 1-1 correspondence between fiberwise quadratic Poisson
structures π ∈ X2(E∗)2−pol and triples (πM ,∇π, Q) with:
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• a Poisson structure πM on M .

• a flat contravariant (w.r.t. πM ) connection∇π : Γ(T ∗M)× Γ(E)→ Γ(E).

• a bilinear antisymmetric map Q : Γ(E)× Γ(E)→ Γ(S2E) satisfying the deriva-
tion property

Q(s1, fs2) = fQ(s1, s2) +∇πdf (s1) · s2 (s1, s1 ∈ Γ(E), f ∈ C∞(M))

and the Jacoby-type condition

Q(s1, Q(s2, s3)) +Q(s2, Q(s3, s1)) +Q(s3, Q(s1, s2)) = 0

(where, Q is extended to the entire Γ(S•E) by requiring it to be a derivation in each
entry).

We have encountered the contravariant connection ∇π already before, al-
though it is moreover flat in this setting. The real new piece under consideration
is a bilinear antisymmetric map Q : Γ(E)× Γ(E)→ Γ(S2E).

Remark 5.1.56. The thesis of Matviichuk [60] studies fibrewise quadratic Poisson
structures on holomorphic vector bundles E, under the assumption that the
fibres ofE are coisotropic submanifolds, or equivalently that the induced Poisson
structure on the base vanishes. Therefore, the induced contravariant connection
will beC∞(M)-linear in both-entries and define an element ϕ ∈ End(E;E⊗TM).
These elements called co-Higgs fields are the main object of study in [60]. ♦

Remark 5.1.57. For a triple (πM ,∇π, Q) as in Proposition 5.1.55, the Poisson
condition [πM , πM ] = 0 as well as the flatness of ∇π actually follow from the
Jacoby-type identity for Q. Indeed, this follows from considering the symbols of
[Q,Q] using Lemma 4.2.29. Besides these conditions, this identity also implies
that Q is compatible with∇ in the sense that

∇πα(Q(s1, s2)) = Q(∇παs1, s2) +Q(s1,∇παs2) + 〈dα,∇π(s1) ∧∇π(s2)〉,

for all α ∈ Ω1(M). ♦

In the case of line bundles the map Q is already determined by the other
pieces: Because E has rank one, there is only one linearly independent fibrewise
linear function on E∗. Consequently, a Poisson bracket on E∗ is determined by
its value on C∞(M)× Γ(E), and thus

{f̂ , ŝ} = ∇̂πMdf (s), f ∈ C∞(M), s ∈ Γ(E), (5.1.12)

induces a bracket on E∗. The Jacobi identity follows readily from the flattness of
∇πM . We conclude:

Corollary 5.1.58. For any line bundle E →M there is a 1-1 correspondence between
fiberwise quadratic Poisson structures π ∈ X2(E∗)2−pol and pairs (πM ,∇π) consisting
of a Poisson structure πM on M and a flat contravariant connection∇π on E.

171



Chapter 5. Homogeneous normal form results in Poisson geometry

The above result appears in the algebraic/holomorphic setting in work of Pol-
ischuk [70]. A thorough study of line bundles with flat contravariant connections
is performed in [44].

We want to obtain an explicit formula for the bivector associated to the
Poisson bracket in (5.1.12). Using Corollary 4.2.51 we have an isomorphism:

ϕ∇ : V 1(E)2−pol ' X2(E∗)2−pol → Γ(Λ2E∗ ⊗ S2E ⊕ E∗ ⊗ E ⊗ TM ⊕ ∧2TM),
(5.1.13)

Given π2 ∈ X2(E∗)2−pol with core Q we write ϕ∇(π2) = (S0, S1, S2). To not force
the reader to go back to Section 4.2.5, we will recall this isomorphism explicitly.
Because we will use this construction in general in a moment, we will do so for
general vector bundles:3

• S2 = πM is precisely the induced Poisson structure on the zero section of
E∗.

• S1 = Y , where Y ∈ X1(M ; End(E)) is the difference (∇πM −∇πM ).4

• S0 = Q− h∇(∇π) + 1
2h

2
∇(πM ), with for s0, s1 ∈ Γ(E)

h∇(∇π)(s0, s1) = 〈∇π(s1),∇π(s0)〉 − 〈∇π(s0),∇π(s1)〉

and 1
2h

2
∇(πM ) is the core of hor∇

∗
(πM ) ∈ X2(E∗).

The procedure inverse to Equation (5.1.13) is given by:

π2 = ι∗(S0) + (hor∇
∗
⊗ a)(Y ) + hor∇

∗
(πM ), (5.1.14)

where

• ι∗(S0) is obtained by applying ι∗ (see Example 4.2.16) to the Λ2E∗ compon-
ent and viewing the S2E-component as quadratic function on E∗.

• (hor∇
∗
⊗ a)(Y ) is obtained taking the horizontal lift of the vector field and

applying a (see Example 4.2.17) to the coefficient.

For line bundles, the situation simplifies significantly: S0 = 0 and Y = X ⊗ id.
Therefore, Equation 5.1.14 now simply reads:

π2 = hor∇
∗
(X) ∧ E + hor∇∗(πM ). (5.1.15)

This gives the explicit bivector corresponding to the bracket in (5.1.12).

Remark 5.1.59. There is another way to argue that the map Q disappears in
the case of line bundles. By Lemma 4.2.63 we know that the triple (Q,∇π, π)
corresponds to an element of (Q∗, (∇π)∗, π∗) ∈ F2(E∗)1. The map Q∗ takes
values in Γ(Λ2E∗) and must therefore necessarily vanish. Moreover (∇π)∗ is the
dual contravariant connection and π∗ = π. ♦

3Recall from Example 4.2.20 the unfortunate fact that the symbol of∇πM , when viewed as element
in V 1

1 (E)2−pol, is −πM rather than πM . To make the formulae more natural, we have thus changed
the signs slightly compared to Corollary 4.2.51.

4With∇πM the induced contravariant connection as in Example 4.1.19.
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5.1.6 Complex homogeneity

When a vector bundle E furthermore carries a complex structure, we can also
study Poisson structures which are compatible with it. We could consider com-
plex Poisson structures and repeat the entire story above. However, we are mainly
interested in real Poisson geometry so we will focus on the underlying real geo-
metry. We now furthermore have the complex rescaling operators mλ : E → E
for λ ∈ C at our disposal. Suppose π ∈ X2(E∗) satisfies m∗λπ = λd−2π. Because
the left-hand side is real, we thus see that only d = 2 is possible and thus we
define:

Definition 5.1.60. Let E∗ → M be a complex vector bundle. We say that π ∈
X2(E∗) is complex homogeneous of degree 2 if m∗λπ = π for all λ ∈ C. ♦

If a Poisson structure is complex homogeneous of degree 2, then it is real
homogeneous of degree 2 and thus defines an element of V 1(E)2−pol. However,
as is to be expected this element is furthermore compatible with the complex
structure:

Proposition 5.1.61. Let E → M be a complex vector bundle, with almost-complex
structure J . There is a one-to-one correspondence between:

• Poisson structures π ∈ X2(E∗) which are complex homogeneous of degree 2.

• Triples (Q,∇π, πM ) as in Proposition 5.1.55 satisfying

– Q(Js0, Js1) = J(Q(s0, s1)) for all s0, s1 ∈ Γ(E).5

– ∇π(Js) = J(∇π(s)) for all s ∈ Γ(E).

Note that the condition on the contravariant connection actually follows from
the condition on Q.

Given π ∈ X2(E∗) for which π0 = π1 = 0. Whereas π2 = limλ→0m
∗
λπ exists

when the limit is taken over the real numbers, the limit might not exists when
taken over the complex numbers. However if the complex limit exists then
Proposition 5.1.61 tells us that π2 satisfies extra conditions.

Example 5.1.62. The Poisson structure x1x2∂x1 ∧ ∂x2 on R2 is real homogeneous
of degree 2, but not complex homogeneous. 4

5.2 Log and elliptic symplectic structures

In the previous sections we studied homogeneous Poisson structures and how to
obtain such structures from an arbitrary Poisson structure on a vector bundle.
We will now study two cases in which this procedure gives an honest local form
result; namely log and elliptic symplectic structures. We will show that these
are, in a sense, among the easiest examples of Poisson structures for which their
quadratic approximation provides a local model.

5Here J on the right-hand side denotes the involution on S2E defined by J(s0 · s1) = Js0 · Js1.

173



Chapter 5. Homogeneous normal form results in Poisson geometry

Log symplectic We quickly recall some notation regarding log symplectic struc-
tures. A log symplectic structure is a Poisson structure π ∈ X2(N2n) such that ∧nπ
vanishes transversely along a hypersurface Z. The logarithmic tangent bundle as-
sociated to a hypersurface Z ⊂ N , denoted AZ , is the Lie algebroid with sections
vector fields tangent to Z. A log symplectic structure is equivalently described
by a log symplectic form ω ∈ Ω2(AZ), which is a Lie algebroid symplectic form for
the logarithmic tangent bundle.

In a sense, Poisson structures on the logarithmic tangent bundle (not necessar-
ily non-degenerate) are precisely those which admit a quadratic approximation:

Lemma 5.2.1. Let E → Z be a vector bundle, and let π ∈ X2(E). Then π0 = π1 = 0 if
and only if π ∈ X2

Z(E), i.e. it is tangent to Z.

Proof. This follows from a straightforward application of the local expression of
m∗λπ from Remark 5.1.12.

So, in the case E is a line bundle, the above lemma states that the constant and
linear approximation of π vanish if and only if π admits a lift to the logarithmic
tangent bundle.

Elliptic symplectic We quickly recall some notation about elliptic symplectic
structures from Chapter 1. Let N be a manifold. An elliptic divisor on N is an
ideal I|D| ⊂ C∞(N) which is generated by a single definite Morse-Bott function
with codimension two critical set D. The elliptic tangent bundle, A|D|, is the Lie
algebroid which has as sections vector fields preserving the ideal I|D|. An elliptic
symplectic form ω ∈ Ω2(A|D|) is a Lie algebroid symplectic structure for the elliptic
tangent bundle.

An elliptic symplectic structure ω ∈ Ω2(A|D|) is equivalently described by
certain Poisson structures: Let N2n be an oriented manifold with co-volume
Q ∈ Γ(∧2nTN), then for every Poisson structure π ∈ X2(N2n) we have πn = fQ,
for some function f ∈ C∞(N). A Poisson structure is called elliptic symplectic if
〈f〉 ⊂ C∞(N) defines an elliptic divisor.

In what follows we will use the slight abuse of terminology to call both π and
ω “the” elliptic structure.

If I|D| is an elliptic divisor for which D is co-oriented the elliptic residue map is
the cochain morphism:

Resq : Ω•(A|D|)→ Ω•−2(D).

In local Morse–Bott coordinates for f , in which f = x2 + y2, the elliptic residue is
given by Resq(α) = ι∗D(ιr∂r∧∂θα) where r∂r = x∂x + y∂y and ∂θ = y∂x − y∂x.

The critical set D ⊂ N is a Poisson submanifold, and the rank is determined
by the value of the residue:

Proposition 5.2.2 ([52]). Let ω ∈ Ω2(A|D|) be an elliptic symplectic structure. Then
Resq(ω) is constant and:
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5.2. Log and elliptic symplectic structures

• Resq(ω) = 0 if and only if πD has corank 2.

• Resq(ω) 6= 0 if and only if πD is non-degenerate.

If E → M is a complex line bundle then Γ((E1,0)∗) ⊂ C∞(E) generates a
complex ideal I on E. The real ideal defined by the relation I|D| ⊗ C = I ⊗ I is
an elliptic divisor called the elliptic divisor associated to E.

When I|D| is an elliptic divisor, then νD inherits a natural divisor in the
following way: Let f ∈ I|D| denote a generator, and let Hessν(f) ∈ Γ(S2ν∗D) be
the normal Hessian. The quadratic function Qf ∈ C∞(νD) associated to Hessν(f)
generates an elliptic ideal IνD|D| on νD.

Elliptic vector fields X ∈ Γ(A|D|) are tangent to the degeneracy locus D.
Consequently, an elliptic symplectic structure π is tangent to D, i.e. π ∈ X2

D(N).
Therefore by Lemma 5.2.1 the constant and linear approximation of π vanish,
i.e. π0 = π1 = 0. Elliptic bivectors distinguish themselves by the fact that the
complex quadratic approximation always exists:

Lemma 5.2.3. Let E → M be a complex line bundle and let π ∈ X2(E). Then the
limit limλ→0m

∗
λπ, with limit taken over λ ∈ C, exists if and only if π admits a lift to

∈ Γ(∧2A|D|), where I|D| is the elliptic divisor associated to E.

Proof. Use coordinates (xi, z), with the xi coordinates along the base and z a
complex fibre coordinate, to write

π =
∑
j,k

Ajk(x, z)
∂

∂xj
∧ ∂

∂xk
+
∑
j

Bj(x, z)
∂

∂xj
∧ ∂

∂z

+
∑
j

Bj(x, z)
∂

∂xj
∧ ∂

∂z
+ iC(x, z)

∂

∂z
∧ ∂

∂z
.

Using the complex variant of the local expression of m∗λπ as in Remark 5.1.12 we
see that limλ→0m

∗
λπ exists if and only if

Bj = zB̃j , C = zzC̃.

Which happens precisely when π can be lifted to a section of ∧2A|D|.

5.2.1 Proving the normal form

We will recall how to, abstractly, prove that for log and elliptic symplectic struc-
tures there exists a neighbourhood around their degeneracy locus which is
Poisson diffeomorphic to the quadratic approximation π2. The first ingredient is
the following Moser result:

Theorem 5.2.4 ([52]). Let A → M be a Lie algebroid with dense isomorphism locus.
Let ω, ω′ ∈ Ω2(M) be two A-symplectic forms such that:

• ZA is smooth and (ρ−1
A )∗(ω′ − ω) extends smoothly by 0 over ZA.
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• [ω] = [ω′] ∈ H2(A) and there is a path of A-symplectic forms connecting ω and
ω′.

Then there exists a Lie algebroid isomorphism ϕ : A|U → A|U such that ϕ∗ω′ = ω.

Remark 5.2.5. It is important to remark that we do not only ask that ω′ coincides
with ω on ZA, but also that the difference extends smoothly. Indeed when A is
the elliptic tangent bundle, the form xd log r vanishes on ZA as an elliptic form
but is not smooth. For the logarithmic tangent bundle this problem clearly does
not arise. ♦

Lemma 5.2.6. Let π ∈ X2(N) be log symplectic, then so is π2 ∈ X2(νZ). Let π ∈
X2(N) be elliptic symplectic with respect to I|D|, then so is π2 ∈ X2(νD) with respect to
IνD|D|.

Moreover, πp = πp,2 as log respectively elliptic bivectors for all p in the degeneracy
locus.

Proof. We will give the argument in the log symplectic case, the elliptic case is
analogous. If in local coordinates

π =
∑
i,j

Ai,j(x, y)∂xi ∧ ∂xj +
∑
i

Bi(x, y)∂xi ∧ ∂y,

then
π2 =

∑
i,j

Ai,j(x, 0)∂xi ∧ ∂xj +
∑
i

y
∂Bi
∂y

(x, 0)∂xi ∧ ∂y.

From the expression of π2 it is clear that it admits a lift to the logarithmic tangent
bundle π̃2 ∈ Γ(AZ). Because π is log symplectic we have that the Bi vanish
transversely and therefore Bi(x, y) and y ∂Bi∂y (x, 0) have the same first order jet.
Consequently the lifts π̃ and π̃2 coincide along Z. Therefore π̃2,p : A∗Z,p → AZ,p
is an isomorphism for all p ∈ Z. Because π2 is homogeneous it follows that π̃2,p

is an isomorphism for all p ∈ Z.

This will allow us to prove the abstract normal form theorem for log sym-
plectic Poisson structures.

Corollary 5.2.7 ([45]). Let Z ⊂ N be a hypersurface and let π be log symplectic with
(∧nπ)−1({0}) = Z. Then there exists a neighbourhood U around Z on which π is
Poisson diffeomorphic to π2 via a Poisson diffeomorphism which is the identity on Z.

Proof. By Lemma 5.2.6 we have that π and π2 coincide on Z as logarithmic
bivectors. Therefore there inverses, ω, ω2 ∈ Ω2(A|D|) also coincide on the de-
generacy locus. Because of the nature of the logarithmic tangent bundle ω − ω2

extends smoothly to zero over the degeneracy locus. Therefore by Theorem 5.2.4
we have that ω an ω2 are logarithmic symplectomorphic on a tubular neighbour-
hood. Hence we also conclude that π is Poisson diffeomorphic to π2 on a tubular
neighbourhood.
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For the elliptic case, we need one more ingredient:

Lemma 5.2.8 ([16]). If a closed elliptic form vanishes along the degeneracy locus, then
it is trivial in the elliptic de Rham cohomology.

Combined with this lemma, we also get the result for the elliptic symplectic
structures:

Corollary 5.2.9 ([16]). Let π ∈ X2(N) be an elliptic symplectic Poisson structure with
D = (∧nπ)−1({0}). Then there exists a neighbourhood U around D on which π is
Poisson diffeomorphic to π2, via a diffeomorphism which is the identity on D.

Proof. First by Lemma 5.2.6 we have that π and π2 coincide on D as elliptic
bivectors. Therefore there inverses, ω, ω2 also coincide on D. Therefore the
linear interpolation ωt = tω2 + (1− t)ω is non-degenerate on a neighbourhood
of D, and by Lemma 5.2.8 we have that [ω] = [ω2] ∈ H2(A|D|). Consequently,
Theorem 5.2.4 implies that ω an ω2 are elliptic symplectomorphic on a tubular
neighbourhood. Hence we conclude that π is Poisson diffeomorphic to π2 on a
tubular neighbourhood.

5.2.2 Explicit normal forms

In the previous section we abstractly described a normal form result for log and
elliptic symplectic structures. We now use the strategy outlined in Remark 4.2.53
to obtain explicit formulae for the local model π2.

Log symplectic We first need to relate the contravariant connection on the
normal bundle of Z induced by the Poisson structure, with the restriction of the
canonical contravariant connection:

Lemma 5.2.10. Let (N, π) be a log symplectic manifold, with degeneracy locus Z. Then
ν∗Z endowed with the contravariant connection from Lemma 5.1.53 and ∧2nT ∗N

∣∣
Z

endowed with the canonical contravariant connection are isomorphic as vector bundles
endowed with a contravariant connection.

Proof. We will establish this by showing that the connection matrices coincide.
Because πn vanishes transversely along Z, it induces an isomorphism

dνπn : νZ → Λ2nTN
∣∣
Z
.

If we let z denote a defining function for Z, then it induces a local frame for νZ
as well as a local orientation ρ ∈ Γ(∧2nTN

∣∣
Z

) via ρ := z−1πn. The isomorphism
dνπn sends these local frames to each other.

Because ∇can(πn) = 0, we find ∇can(zρ) = 0 from which we conclude that
z∇can(ρ) = −π](dz)⊗ ρ. We conclude that the connection matrix of∇can is given
by −z−1π](dz).

On the other had, the contravariant connection on νZ induced by Lemma
5.1.53 has, after inspection of the definition, the same connection matrix.

177
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In Equation (5.1.15) we have already obtained an explicit formula for any
fibrewise quadratic Poisson structure on a vector bundle E∗. We now consider
under which conditions this is log-symplectic:

Proposition 5.2.11. Let E → Z2n−1 be a vector bundle and let π2 ∈ X2(E∗)2−pol

be a quadratic log-symplectic structure and let ∇ be a connection on E with curvature
K = K̃⊗id ∈ Ω2(Z; End(E)). Then using (5.1.13) we have ϕ∇(π2) = (0, X⊗id, πZ)
with

• [πZ , X] = π](K̃),

• [πZ , πZ ] = 0,

• X ∧ πn−1
Z 6= 0.

Therefore,
π2 = hor∇

∗
(X) ∧ E + hor∇

∗
(πZ), (5.2.1)

with E the Euler vector field of E∗.

Proof. Using Lemma 4.2.54 to compute [π2, π2] = 0, or doing directly, we find:

[X ⊗ id +πZ , X ⊗ id +πM ] = 2[X,πZ ]⊗ id +[πZ , πZ ]

= 2([X,πZ ] +K∗(X,πZ))⊗ id

+ [πZ , πZ ]SN +K∗(πZ , πZ)

= (2[X,πZ ]SN +K∗(πZ , πZ))⊗ id +[πZ , πZ ]SN .

One can readily show that K∗(πZ , πZ) = 2π]M (K̃)⊗ id, which proves that for π2

to be Poisson [πZ , X] = π](K̃) and [πZ , πZ ] = 0. The condition X ∧ πn−1
Z must

hold for π2 to define a log symplectic structure.

Combining this description with the abstract normal form from the previous
section we conclude:

Corollary 5.2.12. Let π ∈ X2
Z(N) be a log-symplectic structure on a manifold N . Then

there is a neighbourhood of Z on which π is Poisson diffeomorphic to π2 ∈ X2(νZ)
in Equation (5.2.1) via a Poisson diffeomorphism which is the identity on Z. If the
connection used is induced by a metric, then X is the restriction of a modular vector field
of (N, π) to Z.

Proof. By Corollary 5.2.7 we have π is Poisson diffeomorphic to π2. In Remark
4.1.22 we explained how to use a metric to obtain the vector field X , which
then represents the modular class of the contravariant connection from 5.1.53.
By Lemma 5.2.10 this contravariant connection is isomorphic to the restriction
of the canonical contravariant connection, and consequently X represents the
characteristic class of the restriction of the canonical contravariant connection.
Consequently, X is the restriction of a modular vector field of (N, π).
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Proposition 5.2.11 also tells us that if (X,πZ) is a pair satisfying the said
equations than Equation (5.2.1) defines a quadratic Poisson structure. However,
this discussion depends on the connection. The non-degeneracy of the Poisson
structure can also be detected from the (canonical) contravariant connection:

Proposition 5.2.13 ([42]). Let E → Z be a real line bundle. There is a 1-1 correspond-
ence between quadratic log symplectic structures π2 ∈ X2(E∗) and

• Corank 1 Poisson structures πZ on Z.

• contravariant connections ∇πZ for which the character of the isotropy representa-
tion6 (as in Definition 4.1.1) is nowhere vanishing.

Proof. By Proposition 5.1.55 we have that there is a one-to-one correspondence
between quadratic Poisson structures and contravariant connections. Therefore,
we only have to show that π2 is log symplectic if and only if said conditions hold.

Proposition 5.2.11 tells us that for a quadratic Poisson structure π2 we have

∧nπ2 = −E ∧ hor∇
∗
(X) ∧ hor∇

∗
(πZ)n−1.

BecauseX mod FπZ is precisely the character of the isotropy representation of the
connection∇πZ , we see that ∧nπ2 vanishes transversely if and only if (πZ)n−1 6=
0 and the character of the isotropy representation is nowhere vanishing.

Remark 5.2.14. In [42, 44], the conditions of the above proposition are described
using the notion of the residue of a line bundle endowed with a flat contravariant
connection. This residue is, in the notation of (5.2.1), precisely X ∧ πn−1

Z . Note
that although X itself depends on the choice of the connection, this residue does
not. ♦

Remark 5.2.15 (Regularisation). Given any Poisson manifold (Nn, π), we have
the canonical flat contravariant connection on K = ∧nTM from Example 4.1.21.
Consequently, by Corollary 5.1.58 we have that the total space ofK∗ itself inherits
a Poisson structure.

Now let (N, π) be log-symplectic with degeneracy locus Z. Dualising the flat
contravariant connection on ν∗Z to one on νZ we obtain a Poisson structure on ν∗Z .
Because of Lemma 5.2.10 we have that ν∗Z ⊂ K∗ is a Poisson submanifold.

This construction might seem harmless, but variants of it have popped up
in many places. For log symplectic structures, the Poisson structure on K∗ will
have constant rank away from the zero section, and thus defines a codimension-
one symplectic foliation on K∗\N . Because this Poisson structure is fibrewise
homogeneous, this space can be compactified to a circle bundle over N . This
Poisson manifold is known as the regularisation of (N, π) and appears in [73]
for orientable N .

A completely analogous construction appears in [16] for stable generalized
complex structures. ♦

6Also known as normal/transverse Higgs field.
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Log symplectic form We can also explicitly obtain the normal form for the log
symplectic form inverse to π2. To do this we need the following construction:

Let N → Z be a real line bundle, and let N× := Fr(N ) = N\Z denote
the associated principal R∗-bundle. A connection ∇ on N induces a principal
connection on N×. Let ρ ∈ Ω1(N×;R) denote the corresponding connection
one-form. The curvature of this one-form dρ ∈ Ω2(N×;R)bas ' Ω2(Z) coincides
precisely with K̃ ∈ Ω2(Z) where K̃ ⊗ id ∈ Ω2(Z; End(N )) is the curvature or∇.

Lemma 5.2.16. Let N → Z be a real line bundle with connection ∇. Then the
connection one-form ρ ∈ Ω1(N×;R) can be extended to a smooth logarithmic form
ρ ∈ Ω1(AZ) on N .

Proof. For ρ to extend to a logarithmic form we only need to check that ρ(E)
extends over the zero-section, as this is the coefficient of the singular part. But
this is immediate as ρ(E) = 1 because ρ is a connection one-form.

Using this form we can describe the elliptic symplectic form inverse to π2:

Lemma 5.2.17. Let π2 ∈ X2(E∗)2−pol be a quadratic log symplectic structure. Then
the elliptic symplectic form ω2 ∈ Ω2(E∗,AZ) inverse to it is given by:

ω2 = ρ ∧ p∗θ + p∗β, (5.2.2)

where (θ, β) is the almost 1-cosymplectic structure (see Definition 4.1.11) inverse to the
almost 1-cosymplectic structure (X,πZ).

Proof. To prove that the two are inverses, we will compute π]2(ω[2(W )), for W
equal to E ,hor∇

∗
(X) and hor∇

∗
(V ), for V tangent to the foliation on Z. Because

these vector fields span TE at every point the desired result follows. What is left
is just a computation, making use of the fact that ρ annihilates horizontal vector
fields:

π]2(ω[2(hor∇
∗
(X)) = π]2(−ρ) = hor∇

∗
(X)

π]2(ω[2(E)) = π]2(p∗θ) = E

π]2(ω[2(V )) = π]2(p∗β[(V )) = hor∇
∗
(πZ)](p∗β(V )) = hor∇

∗
(V ).

Remark 5.2.18. Because line bundles always admit flat connections we have
that given an elliptic symplectic structure π we can always associate an actual
1-Poisson structure (X,πZ) or cosymplectic structure (α, β).

In the literature, it is more common to define the singular form ρ define using
a Riemannian metric on E∗, with associated distance function |·| : E∗ → R, and
then consider d log |x|. If the connection used to define ρ is however compatible
with the Riemannian metric then ρ = d log |x|.

The one form θ, is called the residue of the log symplectic structure θ =
Res(ω). ♦
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Remark 5.2.19. The study of log symplectic structures was initiated in [67] and
continued in [45]. Here a Moser argument is proven to prove that ω and ω2

are symplectomorphic is given. The normal form result is also discussed in
[14], where, a variant of, the explicit formula (5.2.2) is given. There it is also
explained that the induced geometric structure is the contravariant connection on
the normal bundle. The normal form is also discussed in [42], where the explicit
formula (5.2.1) appears in the proof op Proposition 1.9 loc. cit. ♦

Elliptic symplectic For elliptic symplectic structures the story is a bit more
complicated. To obtain explicit formulae for the local model π2 we have to make
the additional assumption that the normal bundle to the degeneracy locus is
orientable, and can thus be endowed with a complex structure.

The contravariant connection on the normal bundle of the degeneracy locus,
and the canonical contravariant connection are related:

Lemma 5.2.20. Let (N, π) be an elliptic symplectic manifold with co-orientable degen-
eracy locus, and let (E,∇π) denote the contravariant connection induced by Proposition
5.1.61. Consider the Poisson line bundle defined (R, ∇̃π) via:

(R, ∇̃π)⊗ C := (E,∇π)⊗ (E∗, (∇π)∗).

Then (R, ∇̃π) is isomorphic to the restriction of the canonical representation ∧topT ∗N
to D.

Proof. We again do this by comparing the connection matrices, as we did in
Lemma 5.2.10. Note that both R and ∧topT ∗N are trivialisable. Let f ∈ I|D| be a
function defining the elliptic ideal. Then πn/f defines a volume form and the
connection matrix of ∇can with respect to this volume form is −π](d log f). Let z
denote a local fibre coordinate of E, such that |z|2 = f and let e ∈ Γ(E) denote
the associated local frame.

Because the contravariant connection ∇π is complex linear the associated
connection matrix is given by −π](d log z). Therefore

(∇π ⊗∇π)(e⊗ e) = ∇π(e)⊗ e+ e⊗∇π(e)

= −π](d log z)e⊗ e+ e⊗ π](d log z)e

= −2π](d log |z|)e⊗ e,

and thus the connection matrix is −π](d log |z|2), which finishes the proof.

If E∗ is a complex line bundle, we may consider the complex Euler vector
field. We denote its real and imaginary part by r∂r and ∂θ. If we view E∗ as a
real vector bundle endowed with a complex structure J ∈ End(E∗), we have
r∂r = a(id) and ∂θ = a(J).

For elliptic symplectic structures, we now obtain:
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Proposition 5.2.21. Let π2 ∈ X2(E∗)2−pol be a quadratic elliptic symplectic structure
and let ∇ be a complex linear connection on E with curvature

K = K1 ⊗ id +K2 ⊗ J ∈ Ω2(M ; End(E)).

Then for (5.1.13) we have ϕ∇(π2) = (g id ·J,X⊗id +Y ⊗J, πD), for some g ∈ C∞(D),
X,Y ∈ X1(D). Therefore

π2 = gr∂r ∧ ∂θ + hor∇
∗
(X) ∧ r∂r + hor∇

∗
(Y ) ∧ ∂θ + hor∇

∗
(πD). (5.2.3)

Proof. Let ϕ∇(π2) = (S0, S1, S2). We apply the discussion around Equation
(5.1.14). Because∇π is complex linear we have that S1 is an endomorphism val-
ued vector field Z ∈ X1(D; End(E∗)), which takes values in the endomorphism
which commute with J . Because these endomorphism are spanned by id and J ,
because E has rank 2, we find that there exists vector fields X,Y ∈ X1(D) such
that Z = X ⊗ id +Y ⊗ J .

Recall that if we let Q ∈ V 1(E)2−pol denote the core of π2, S0 = Q−h∇(∇π)+
1
2h

2
∇(πD), with h∇ as in Equation 4.2.18. By Proposition 5.1.61 we have that Q

is compatible with J in the sense Q(Js0, Js1) = J(Q(s0, s1)). Inspecting the
definition of h∇, we see that also h∇(∇π) and h2

∇(πD) satisfy this relation, and
therefore so does S0.

Claim 5.2.22. Let S ∈ Γ(∧2E∗ ⊗ S2E) satisfy S(Js0, Js1) = JS(s0, s1), then
S = gid⊗̂J , for some function g ∈ C∞(D). ♦

Proof of claim. Let s0, s1 be a local frame on some open U ⊂ D adapted to the
complex structure, i.e. Js0 = s1. The local frame provides a trivialisation
S2E|U ' R3, and thus we have

S(s0, s1) = f1s0 · s0 + f2s0 · s1 + f3s1 · s1,

for some functions f1, f2, f3 ∈ C∞(U). But also

S(Js0, Js1) = f1s1 · s1 − f2s1 · s0 + f3s0 · s0,

and hence f1 = f3 and f2 = 0. Consequently S(s0, s1) = f1(s0 · s0 + s1 · s1) =
−f1(s0 · Js1− Js0 · s1). One readily verifies that the function f1 does not depend
on the local frame and thus gives rise to a global function g ∈ C∞(D).

Combining the above proposition with Corollary 5.2.9 and Lemma 5.2.20 we
arrive at:

Corollary 5.2.23. Let π ∈ X2(N) be an elliptic symplectic structure with co-orientable
degeneracy locus. Then there exists a tubular neighbourhood of D on which π is Poisson
diffeomorphic to π2 as in Equation (5.2.3), via a Poisson diffeomorphism which is the
identity on D.

When the connection used is compatible with a metric, X is the restriction of a
modular vector field to D.

To simplify the formula for π2 further we have to differentiate between the
zero and non-zero elliptic residue cases.
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Non-zero residue We first remark that the assumption of co-orientablity of the
normal bundle is automatically verified for non-zero residue elliptic symplectic
structures:

Lemma 5.2.24. Let ω ∈ Ω2(N,A|D|) be an elliptic symplectic structure with non-zero
elliptic residue. Then νD is oriented.

Proof. Remark that the elliptic symplectic structure induces an orientation on the
manifoldN . By Lemma 5.2.2, we have thatD is a symplecitc manifold, and hence
an oriented submanifold of an oriented manifold. Therefore ND is oriented.

We inspect Proposition 5.2.21 in more detail for non-zero residue elliptic
symplectic structures. This case is particularly nice because in this case the
normal bundle becomes canonically endowed with a flat connection:

Proposition 5.2.25. There is a one-to-one correspondence between:

• Quadratic non-zero residue elliptic symplectic structures π2 ∈ X2(E∗)2−pol.

• Triples (λ,∇, πD) where λ is a non-zero constant,∇ is a flat connection on E and
πD is a non-degenerate Poisson structure on D.

Given such a triple (λ,∇, πD) the associated elliptic symplectic structure is given by

π2 = λ∂θ ∧ r∂r + hor∇
∗
(πD). (5.2.4)

Conversely, given π ∈ X2(N) with non-zero elliptic residue the associated π2 corresponds
to πD = π2|D, λ = Resq(π2)−1 and ∇ is the Bott-connection of the symplectic leaf D.

Proof. Recall from Proposition 5.1.61 that the quadratic Poisson structure π2

is complex linear. Moreover by Lemma 5.2.2 πD is non-degenerate, and the
contravariant connection∇πD therefore induces an ordinary connection via:

∇X(s) := ∇(π]D)−1(X)(s).

We therefore see that if we construct X and Y as in Proposition 5.2.21 using this
connection they vanish.

We are thus left to compute the function g from Proposition 5.2.21. Because
π2 = gr∂r ∧ ∂θ + hor∇

∗
(πD), and [π2, π2] = 0 it follows that [g, πD] = 0 and thus

that g = λ ∈ R. We are left to show that this constant is the inverse of the elliptic
residue. Instead of proving this directly, we will show in Lemma 5.2.31 that π2 is
inverse to an elliptic symplectic form ω2 from which it will follow that λ is minus
the inverse of the elliptic residue.

Corollary 5.2.26. Let π ∈ X2(N) be elliptic symplectic with non-zero elliptic residue.
Then there exists a tubular neighbourhood of the degeneracy locus on which π is Poisson
diffeomorphic to π2 from (5.2.4), via a Poisson diffeomorphism which is the identity on
D.
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Zero residue We now inspect Proposition 5.2.21 for zero residue elliptic sym-
plectic structures. As discussed in Chapter 1 these structures are in one-to-one
correspondence with gauge equivalence classes of stable generalized complex
structures. The normal form results of these are discussed in [16].

Proposition 5.2.27. LetE → D2n−2 be a complex vector bundle. Let π2 ∈ X2(E∗)2−pol

be a quadratic elliptic symplectic structure with zero elliptic residue. Then there exists
a connection ∇ on E such that ϕ∇(π2) = (0, X ⊗ id +Y ⊗ J, πD), where ϕ∇ is as in
(5.1.13). The triple (X,Y, πD) ∈ X1(D)× X1(D)× X2(D) satisfies

• [X,Y ] = π]D(ιYK1) + π]D(ιXK2)

• [πD, X] = π]D(K1)

• [πD, Y ] = −π]D(K2)

• [πD, πD] = 0

• X ∧ Y ∧ πn−2
D 6= 0.

Given any such triple (X,Y, πD) and connection, the associated elliptic symplectic
structure is given by:

π2 = hor∇
∗
(X) ∧ r∂r + hor∇

∗
(Y ) ∧ ∂θ + hor∇

∗
(πD). (5.2.5)

Proof. We again apply Proposition 5.2.21. Because π2 has zero elliptic residue,
we have by Proposition 5.2.2 that πD has rank 2n− 4. Therefore, by Proposition
5.2.21 we have that for all connections∇

∧2nπ2 = r∂r ∧ ∂θ ∧ hor∇
∗
(X) ∧ hor∇

∗
(Y ) ∧ hor∇

∗
(πD)n−2,

and for π2 to be non-degenerate we must thus have that X ∧Y ∧πn−2
D is nowhere

vanishing.
Let Q ∈ V 1(E)1−pol denote the core of π2. We will show that there exists

a connection ∇ such that Q = S∇(σQ), where S∇ : V 1
1 (E)1−pol → V 1(E)1−pol

denotes the splitting of the symbol sequence from Lemma 4.2.42. Recall that
S∇(σQ) = h∇(σQ) − 1

2h
2
∇(σ2

Q), wich h∇ as in (4.2.18). If we prove this we will
have shown that S0 = Q− S∇(σQ) = 0.

Let ∇,∇′ be any two Hermitian connections compatible with a metric. We
compute the difference S∇(σQ)− S∇′(σQ). Because there exists β ∈ Ω1(D) such
that

∇−∇′ = β ⊗ J,

we have

(h∇(σQ)− h∇′(σQ))(s0, s1) = 〈σQ(s0), β〉 Js1 − 〈σQ(s1), β〉 Js0.

Moreover,
h2
∇(σ2

Q)(s0, s1) =
〈
σ2
Q,∇(s0) ∧∇(s1)

〉
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and thus

h2
∇(σ2

Q)(s0, s1)− h2
∇′(σ

2
Q)(s0, s1) =

〈
σ2
Q,∇(s0) ∧ (β ⊗ Js1)

〉
−
〈
σ2
Q, (β ⊗ Js0) ∧∇′(s1)

〉
= ∇π](β)(s0) · Js1 −∇′π](β)(s1) · Js0.

Now we denote∇π](−)−∇π = X⊗id+Y ⊗J , and∇′π](−)−∇
π = X ′⊗id+Y ′⊗J .

If we combine the two difference terms we end up with

h2
∇(σ2

Q)(s0, s1)− h2
∇′(σ

2
Q)(s0, s1) = X(β)s0 · Js1 −X ′(β)s1 · Js0

+ (Y (β)− Y ′(β))Js0 · Js1

Note that X −X ′ = 0 and Y −Y ′ = π](β), consequently (Y (β)−Y ′(β)) = 0. We
conclude that

(S∇(σQ)− S∇
′
)(σQ)(s0, s1) = +X(β)(Js1 · s0 − Js0 · s1).

By Claim 5.2.22 we have that (Q−S∇(σQ)(s0, s1) = −gs0 ·Js1+gJs0 ·s1. Because
the vector field X is nowhere vanishing we can take β such that β(X) = g. Doing
this ensures that (Q− S∇′(σQ)) = 0.

Using Lemma 4.2.54 to compute [π2, π2] = 0 ensures that X,Y and πD satisfy
the given conditions.

Corollary 5.2.28 ([16]). Let π ∈ X2(N) be elliptic symplectic with zero elliptic residue
and co-orientable degeneracy locus. Then there exists a tubular neighbourhood of the
degeneracy locus on which π is Poisson diffeomorphic to π2 from (5.2.5), via a Poisson
diffeomorphism which is the identity on D. If the connection used is compatible with a
metric, than X is the restriction of a modular vector field to D.

In contrary to the non-zero elliptic residue case there is no canonical (flat)
connection on E; the triple (X,Y, πD) is therefore also dependent on the auxiliary
connection. In the statement of Proposition 5.2.27 the termQ ∈ V 1(E)2−pol seems
to drop out of the discussion, as there is a connection such that Q = S∇(∇π).
We now ask ourselves whether it is enough to remember ∇π, and what the
conditions are for such a connection∇ to exist:

Lemma 5.2.29. Let E → D be a complex line bundle. There is a one-to-one correspond-
ence between:

• Zero-residue quadratic elliptic symplectic structures π2 ∈ X2(E∗)2−pol.

• Poisson structures πD ∈ X2(D) together with flat contravariant connections∇πD
satisfying:

– πD has corank 2.

– The transverse Higgs field of ∇πD (as in Definition 4.1.1) defines a frame for
the normal bundle to the symplectic foliation.
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– The symplectic foliation can be described as the intersection of the kernels of
two closed one-forms.

– 2πq(c1(E)) = C(F , ωF ) (as in Section 4.1.2).7

This can be seen as the purely Poisson geometric version of the same result
for stable generalized complex structures in [16]. Proving such a result is easier
by passing to the elliptic symplectic form ω2 dual to π2. So we will first give the
description of this form and after that prove the above lemma.

Elliptic symplectic form To describe the elliptic symplectic forms associated to
the Poisson structures in Proposition 5.2.27 and Proposition 5.2.25 we need the
following construction, which is completely analogous to Lemma 5.2.16:

Lemma 5.2.30. Let N → D be a complex line bundle, with complex linear connection
∇ with curvature C1 ⊗ id +C2 ⊗ J ∈ Ω2(M ; End(N )). The connection-one form on
the associated C∗-bundle N× extends to a complex log-form ζ ∈ Ω1(AD).

Recall from Section 1.3.3 that taking the imaginary part of a complex log form
gives an elliptic form, and thus we can define

ρ := Re(ζ), Θ := Im(ζ) ∈ Ω2(A|D|).

And these satisfy dρ = C1 and dΘ = C2.
If the connection is moreover compatible with a metric with corresponding

distance function r2, then the corresponding ρ coincides with d log r, and Θ is the
connection-one form of the principal S1-connection.

Non-zero elliptic residue The elliptic symplectic form dual to a non-zero
residue elliptic symplectic form can be described as follows:

Lemma 5.2.31. Let τ = λ−1 and ωD = π−1
D , where λ and πD are as in Theorem 5.2.25.

When the same flat connection as in Theorem 5.2.25 is used to construct ρ and Θ then
the elliptic symplectic form dual to π2 is given by

ω2 = τρ ∧Θ + p∗ωD ∈ Ω2(E∗,AE
∗

|D|), (5.2.6)

where AE∗|D| is the elliptic tangent bundle induced by the complex structure on E.

Proof. The proof is completely similar as the one in Lemma 5.2.17. We will again
compute π]2(ω[2(W )), for W either r∂r, ∂θ or hor∇

∗
(V ), for V ∈ X1(D):

π]2(ω[2(r∂r)) = π]2(τΘ) = λτr∂r

π]2(ω[2(∂θ)) = π]2(−τρ) = λτ∂θ

π]2(ω[2(hor∇
∗
(V )) = π]2(p∗ω[D(V )) = hor∇

∗
(V ).

7A priori, 2πq(c1(E)) ∈ H2(D;C). But if we identify the coefficient in C with a coefficient in ν∗

via a+ bi 7→ aθ2 + bθ1, then we may view c1(E) ∈ H2(D; ν∗) and apply q to it.
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Zero elliptic residue The elliptic symplectic form dual to a zero residue elliptic
symplectic form can be described as follows:

Lemma 5.2.32 ([16]). Let (X,Y, πD) ∈ X1(D) × X1(D) × X2(D) be the almost 2-
Poisson structure as in Proposition 5.2.27, and let (α, β, ω) ∈ Ω1(D)×Ω1(D)×Ω2(D)
be the dual almost 2-cosymplectic structure (see Definition 4.1.11). Then the elliptic
symplectic form dual to π2 is given by

ω2 = ρ ∧ p∗θ1 + Θ ∧ p∗θ2 + p∗β ∈ Ω2(E∗,AE
∗

|D|). (5.2.7)

Proof. The proof is similar to the one in Lemma 5.2.31. We will again compute
π]2(ω[2(W )) forW either r∂r, ∂θ,hor∇

∗
(X),hor∇

∗
(Y ) or hor∇

∗
(V ), with V tangent

to the foliation on D:

π]2(ω[2(hor∇
∗
(X))) = π]2(−ρ) = hor∇

∗
(X)

π]2(ω[2(hor∇
∗
(Y ))) = π]2(−Θ) = hor∇

∗
(Y )

π]2(ω[2(hor∇
∗
(V ))) = π]2(p∗β[(V )) = hor∇

∗
(V )

π]2(ω[2(r∂r)) = π]2(p∗θ1) = r∂r

π]2(ω[2(∂θ)) = π]2(p∗θ2) = ∂θ.

Relating local data One can show directly that if (X,Y, πD) is an almost 2-
Poisson structure satisfying the conditions of Proposition 5.2.27, then the dual
almost 2-cosymplectic structure (θ1, θ2, β) satisfies the following conditions:

dθ1 = dθ2 = 0 and dβ = −K∗1 ∧ θ1 −K∗2 ∧ θ2 = −K1 ∧ θ1 +K2 ∧ θ2. (5.2.8)

Proof. We assume we are given (θ1, θ2, β) satisfying (5.2.8) and will show that
the dual almost 2-Poisson structure (X,Y, πD) satisfies the desired conditions.
We have

dθ1(X,Y ) = X(θ1(Y ))− Y (θ1(X))− θ1([X,Y ]) = −θ1([X,Y ])

dθ2(X,Y ) = −θ2([X,Y ]),

and therefore [X,Y ] is tangent to the foliation. Now for Z tangent to F we
consider:

dβ(X,Y, Z) = −β([X,Y ], Z),

but at the same time

(−θ1 ∧K1 + θ2 ∧K2)(X,Y, Z) = −K1(Y,Z)−K2(X,Z).

Because this holds for all Z ∈ TF we conclude that

β[([X,Y ]) = ιYK1 + ιXK2,

and as [X,Y ] is tangent to F by applying π]D to this expression we obtain

[X,Y ] = π]D(ιYK1) + π]D(ιXK2).
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Let V,W be in F and α, γ ∈ T ∗F such that π](α) = V and π](γ) = W then

[πD, X](α, γ) = −X(πD(α, γ)) = −X(β(V,W ))

= −dβ(X,V,W ) = K1(V,W ) = π](K1)(α, γ).

The proof for [πD, Y ] is similar, and [πD, πD] = 0 already follows from the fact
that (θ1, θ2, β) defines a symplectic foliation.

Remark 5.2.33. The one-forms θ1, θ2 as above arise canonically from a given
elliptic symplectic form ω ∈ Ω2(A|D|). Indeed they are the residues of ω: θ1 =
Resr(ω) and θ2 = Resθ(ω). ♦

We deduce the following intrinsic properties form the almost 2-cosymplectic
structure (θ1, θ2, β):

Lemma 5.2.34. Let ω2 ∈ Ω2(A|D|) be an elliptic symplectic form. Then:

• The symplectic foliation (F , ωF ) on D is defined by two closed one-forms θ1, θ2 ∈
Ω2(D).

• The complex line bundle E → D satisfies:

2πq(c1(E)) = C(F , ωF ).

Proof. We have that dβ = −θ1 ∧K∗1 − θ2 ∧K∗2 , consequently C(F , ωF ) = [−θ1 ∧
K1 + θ2 ∧K2] ∈ H3

F (D). Moreover, c1(E) = 1
2πi [K1 + iK2], which we view as

element of H2(D; ν∗) via 1
2π (−K1 ∧ θ1 + K2 ∧ θ2). Under the isomorphism of

Lemma 4.1.31 we conclude that q(c1(E)) = 1
2π (−K1 ∧ θ2 + K2 ∧ θ1), and thus

C(F , ωF ) = 2πq(c1(E)), which finishes the proof.

Here we view c1(E) ∈ H2(D, ν∗) using the isomorphism ν∗ ' R2 induced by
θ1 and θ2.

Note that, by the discussing in Section 4.1.2 this in particular implies that
c1(E)|F = varωF . However the condition given above is slightly more.

Although the symplectic foliation together with the one forms is completely
canonical, it does not remember enough to reconstruct the associated quadratic
elliptic symplectic form; we also need the contravariant connection. However
having only the symplectic foliation does ensure that an extension of the foliated
form, β, satisfying (5.2.8) can be found:

Lemma 5.2.35. A manifold admits a symplectic foliation as in Lemma 5.2.34 if and only
it admits an almost 2-cosymplectic structure (θ1, θ2, β) satisfying (5.2.8).

Proof. Pick any extension β ∈ Ω2(D) of ωF and let∇ be any connection. Because
2πq(c1(E)) = C(F , ωF ), we thus have that

dβ = dη −K1 ∧ θ1 +K2 ∧ θ2,

with η ∈ Ω2
F (D). Let η1, η2 ∈ Ω1(D) be such that η = η1 ∧ θ1 + η2 ∧ θ2, then

dβ = −(K1 − dη1) ∧ θ1 − (K2 + dη2) ∧ θ2.

We conclude that∇− η1 ⊗ id + η2 ⊗ J is the desired connection.

188
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The discussion in this section allows us to describe the conditions required
on the contravariant connection to induce an elliptic symplectic form, and thus
prove Lemma 5.2.29.

Proof of Lemma 5.2.29. We let∇ be any connection on E, and use it to define the
triple (X,Y, πD) as in Proposition 5.2.21. For this triple we have the desired
expressions for [πD, πD], [πD, X] and [πD, Y ] already follow from the flatness
of the contravariant connection. We however have no a priori control over
[X,Y ]. Invert (X,Y, πD) to an almost-2-cosymplectic structure (θ1, θ2, β). By
assumption the one-forms θ1, θ2 are closed. As β is an extension of the foliated
symplectic form, and 2πq(c1(E)) = −C(F , ωF ) we can argue exactly as in the
proof of Lemma 5.2.35 that there exists a connection ∇̃ for which then dω =

−K̃1 ∧ θ1 − K̃2 ∧ θ2. For this connection it thus follows that (X,Y, πD) satisfy the
conditions in Proposition 5.2.27 and consequently they define a Poisson structure
via Equation (5.2.5).

Remark 5.2.36. One might wish to construct examples of quadratic elliptic
symplectic structures using the description in Lemma 5.2.29. However, finding
such a setting in practice might prove to be difficult. Lemma 5.2.34 tells us that we
only need to find a manifold D endowed with a symplectic foliation defined by
two closed one forms and a vector bundle over D with the correct curvature. ♦

Remark 5.2.37 (Terminology). We comment on the use of the adverbs constant,
linear and quadratic for the above normal forms. From our point of view, the
normal forms for log and elliptic symplectic structures should be called fibrewise
quadratic, because the Poisson bracket of two linear functions is a quadratic
function.

In [45, 16] these normal forms are usually referred to as a linearisation. This
also sensible, because the coefficient functions in the normal forms (5.2.2) and
(5.2.5) are fibrewise affine. The exception, (5.2.4), which has quadratic coefficient
functions and should thus really be called quadratic.

However, in calling these normal forms a linearisation one could remark
that the normal form does not use all data of the first jet of the original Poisson
structure. Indeed, if we see the decomposition of a jet of a Poisson structure as in
Lemma 5.1.51 we see that we only used the contravariant connection, and not
the extra bivector with values in the normal bundle. However, as the local model
had no need of this piece it is irrelevant for our discussion.

Finally, from the Lie algebroid point of view one could add a third compet-
ing terminology, namely constant. Indeed, viewed as Lie algebroid forms, the
formulae (5.2.2), (5.2.6) and (5.2.7) have fibrewise constant coefficients. ♦

5.2.3 Existence of elliptic symplectic forms with non-zero el-
liptic residue

In this section we will show how the explicit normal forms for elliptic and log
symplectic structures can be used to construct examples of such structures.
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Figure 5.1: A function as in the proof of Lemma 5.2.38.

Lemma 5.2.38. Let (M2n, ω) be a symplectic manifold and let S2n−2 ⊂M be a compact
symplectic submanifold with flat normal bundle. Then there exists an elliptic symplectic
structure ω̃ with non-zero elliptic residue on M with degeneracy locus precisely S.

Proof. Because S ⊂ M is an orientable submanifold of an orientable manifold,
its normal bundle νS gets an induced orientation. Pick a metric g on νS and
consider the induced complex structure. Let ∇ be a connection compatible with
this metric, and let ρ,Θ denote the corresponding elliptic forms as in Lemma
5.2.30. Let p : U → S be a tubular neighbourhood of S, and let r2 : U → R denote
the distance function induced by g. On U we consider the following symplectic
form:

ω2 = r2ρ ∧Θ + p∗ωS .

Note that this is indeed a well-defined symplectic form, because with respect to
local fibre coordinates (x, y), in which r2 = x2 + y2, we have ρ ∧Θ = r−2dx ∧ dy.
Because ω is cohomologous to ω2 on U , and ι∗Sω2 = ι∗Sω we have that they are
symplectomorphic on a, possibly smaller, open neighbourhood U ′. Let f : R→ R
be a smooth function which is 1 on a neighbourhood of 0, and |x| near −1 and 1.
Then

ω̃ := f(|·|2)ρ ∧Θ + p∗ωD,

defines an elliptic symplectic form on U ′. Because ω̃ coincides with ω2 near the
boundary of U ′ we see that ω̃ extends to a globally defined form.

The assumptions in this statement are (nearly) identical to a similar statement
of constructing log symplectic structures, as proven in [14]. Moreover, it is also
very similar in nature to another construction of log symplectic structures, which
is folklore in the community:

Lemma 5.2.39. Let (M2n, ω) be an orientable symplectic manifold and let Z ⊂M be a
compact cosymplectic submanifold. Then there exists a log symplectic structure ω̃ on M
with degeneracy locus two copies of Z.

Proof. By the cosymplectic neighbourhood theorem we have that there exists a
tubular neighbourhood U ' Z × R of Z on which

ω = dx ∧ p∗θ + p∗β,
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Figure 5.2: A function as in the proof of Lemma 5.2.39.

where (θ, β) is the cosymplectic structure on Z. Let f : R → R be a smooth
function satisfying:

• f has nowhere vanishing derivative at all points,

• f coincides with log |x| for 0,

• There are a, c with −1 < a < b < c < 0, such that f coincides with
− log(|−b− x|) on [a, c],

• f is equal to x near −1 and 1.

Then
ω̃ = df ∧ p∗θ + p∗β

is a log symplectic structure on U . Because ω̃ coincides with ω near the boundary
of U ′ it can be extended to a global log symplectic form on M .

To close the circle, we compare with the construction in [14]:

Lemma 5.2.40. Let ω be an elliptic symplectic structure on M with non-zero elliptic
residue and degeneracy locus D. Then there exists a log symplectic structure on M with
degeneracy locus S1 ×D.

Proof. Pick a metric g on νD and consider the induced complex structure. Let∇ be
a connection compatible with this metric, and let ρ,Θ denote the corresponding
elliptic forms as in Lemma 5.2.30. By Lemma 5.2.31 we have that there exists a
tubular neighbourhood U of D on which

ω = τρ ∧Θ + p∗ωD.

Let 0 < ε < 1 and f : R→ R be a function which coincides with x2/x2 − ε near
the origin, vanishes only at the origin and is equal to 1 near −1 and 1.

Then
ω̃ = f(|·|)τρ ∧Θ + p∗ωD,

defines a log symplectic structure on U with degeneracy locus {|·|2 = ε} ' D×S1.
Because ω̃ and ω coincide near the boundary of U we have that ω̃ can be extended
to a globally defined logarithmic form.
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Figure 5.3: A function as in the proof of Lemma 5.2.40.

The proofs of Lemma 5.2.38 and Lemma 5.2.39 are similar, but there is one
clear difference. For the log case we needed to introduce a disconnected de-
generacy locus, whereas we could suffice with a connected degeneracy locus in
the elliptic case. This gives a hint that reversing the process (i.e. turning a log
symplectic structure into a symplectic one) might not be so easy. And indeed, as
proven in [14, 58] there are examples of manifolds which admit log symplectic
structures but not symplectic structures.

The problem of the disconnected degeneracy locus did not appear in the
elliptic case, and in fact we can reverse Lemma 5.2.38 in general:

Lemma 5.2.41. Let ω be an elliptic symplectic structure on M with non-zero elliptic
residue and degeneracy locus D. Then there exists a symplectic structure on M which
has D as symplectic submanifold.

Proof. Pick a metric g on νD and consider the induced complex structure. Let∇ be
a connection compatible with this metric, and let ρ,Θ denote the corresponding
elliptic forms as in Lemma 5.2.30. By Lemma 5.2.31 we have that there exists a
tubular neighbourhood U of D on which

ω = τρ ∧Θ + p∗ωD.

Let f : R→ R be a non-zero function which is positive away from the origin, x2

near the origin, and 1 near −1 and 1. Then

ω̃ = f(|·|)τρ ∧Θ + p∗ωD

defines a symplectic structure on U . Because ω and ω̃ coincide near the boundary
of U we have that ω̃ can be extended to a globally defined symplectic form.

Because elliptic symplectic structures with zero elliptic residue corresponds
to generalized complex structures, we have studied them in Chapter 1 and 2 of
this thesis. We have not paid much attention to the ones with non-zero elliptic
residue. The above lemma states that, if one’s goal is to construct geometric
structures on manifolds which do not admit symplectic structures (as we have
done in Chapter 1), one can disregard elliptic symplectic structures with non-zero
elliptic residue.
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1

−1 1
Figure 5.4: A function as in the proof of Lemma 5.2.41.

Remark 5.2.42. The results discussed in this section can also be used to un-
derstand the geometry of symplectic manifolds themselves. The results in [14,
58] provide obstructions on the existence of log-symplectic structures. If these
results imply that a symplectic manifold (M,ω) can not admit a log-symplectic
structure then we conclude that M cannot have a cosymplectic submanifold, or a
codimension-two symplectic submanifold with trivial normal bundle. For if this
was the case, then Lemma 5.2.39 or Lemma 5.2.40 would imply that M admits a
log-symplectic structure. In particular, this implies that CP 2 cannot have such
submanifolds. ♦
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Samenvatting

In dit proefschrift worden twee hoofdonderwerpen bestudeert: gegeneraliseerde
complexe meetkunde en Poisson meetkunde. In deze samenvatting zullen we deze
concepten aan niet-ingewijden uitleggen.

Differentiaalmeetkunde

De differentiaalmeetkunde is het vakgebied dat ruimtes genaamd gladde variëteiten
bestudeerd. Een gladde variëteit van dimensie n is een ruimte met de eigenschap
dat hij er lokaal uitziet als de Euclidische ruimte Rn.

Bijvoorbeeld het oppervalk van de aarde, een sfeer S2 genaamd, is een gladde
variëteit van dimensie twee aangezien deze lokaal met behulp van een twee
dimensionale kaart beschreven kan worden. Maar ook de rand van een donut,
een torus T 2 genaamd, of de rand van een krakeling zijn voorbeelden van twee-
dimensionale gladde variëteiten. Hoger dimensionale gladde variëteiten zijn
vaak lastig om je voor te stellen, maar dat weerhoudt ons er niet van om ze te
bestuderen.

Gladde variëteiten bieden de omgeving om bepaalde fysische systemen te
modelleren. Maar om dit te doen is het vaak handig om extra data, genaamd
meetkundige structuren, te gebruiken. Een goed voorbeeld is een begrip van
afstand gegeven door een Riemanniaanse metriek. In de Euclidische ruimte is
de standaardmetriek gedefinieerd door het feit dat de kortste paden gegeven
worden door rechte lijnen. Dit is echter niet het enige voorbeeld.

Als we een stuk wereldkaart nemen en de snelste route voor een vliegtuig
tussen Amsterdam en New York willen aangeven dan is dit een gekromde lijn in
plaats van een rechte; dit correspondeert met een andere metriek op R2, gegeven
door de kromming van de aarde.

Er zijn heel veel verschillende soorten meetkundige structuren, in dit proef-
schrift bestuderen we er twee: Poisson structuren en gegeneraliseerde complexe
structuren.

Poissonmeetkunde

Poissonmeetkunde geeft de wiskundige basis voor Hamiltoniaanse mechanica,
een formalisme binnen de natuurkunde dat gebruikt wordt om bewegingen te
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Figuur 5.5: Lokaal ziet de aarde er uit als een plat vlak. De kortste route voor een
vliegtuig tussen Amsterdam en Toronto ziet er op een kaart uit als een cirkelboog.

modelleren. Een Poissonhaak op een gladde varieteit M is een afbeelding

{·, ·} : C∞(M)× C∞(M)→ C∞(M),

die twee functies f, g op M pakt en een derde functie, {f, g}, teruggeeft en tevens
aan de volgende eigenschappen voldoet:

• {af + bg, h} = a{f, h}+ b{g, h},

• {f, g} = −{g, f},

• {fg, h} = f{g, h}+ {f, h}g,

• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

voor alle functies f, g, h ∈ C∞(M) en getallen a, b ∈ R. De Poissonhaak beschrijft
de dynamica op de volgende manier: Als de functie f een fysische grootheid is,
en de functie H de energie van het systeem dan is {f,H} de verandering van de
grootheid f door de tijd heen.

De Poissonhaak werd reeds door wiskundigen en natuurkundigen in het
begin van de negentiende eeuw gebruikt om de beweging van hemellichamen te
beschrijven. Sinds de jaren 70 heeft de Poissonmeetkunde zich als levendig vak-
gebied met vele interacties met andere takken van de wiskunde en natuurkunde
ontwikkeld.

Normaalvormen

Gladde variëteiten zien er lokaal uit als de Euclidische ruimte Rn. Wat Rn speciaal
maakt is dat het een vectorruimte is: Je kan punten in Rn bij elkaar optellen en
vermenigvuldigen met getallen λ ∈ R.

Laat M een variëteit en x ∈ M een punt in M zijn. Als we M zien als deel
van Rk, dan kunnen we alle vectoren rakend aan x beschouwen (zie figuur 3?).
Deze vormen een vectorruimte TxM genaamd de raakruimte aan x. De definitie
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Figuur 5.6: De cylinder met de kortste afstand tussen twee punten weergegeven.
Lokaal ziet de cylinder er uit als een plat vlak, en wordt de kortste afstand door
een rechte lijn gegeven. Een omgeving van een cirkel in de torus ziet er uit als
een cylinder.

van variëteit verteld ons dus dat voor elk punt x ∈M er een omgeving U van x
bestaat zodat U er uit ziet als TxM .

Een van de grote vragen in de studie van meetkundige structuren is of dit
ook geldt voor gladde variëteiten tezamen met meetkundige structuren. Dat wil
zeggen, gegeven een meetkundige structuur op M en een punt x ∈ M bestaat
er een modelstructuur op TxM en een omgeving U zodat U tezamen met de
meetkundige structuur lijkt op TxM tezamen met het model.

Als voorbeeld beschouwen we wederom Riemanniaanse metrieken, en in het
bijzonder de cylinder C = S1×R. Deze heeft een metriek waarbij het kortste pad
tussen twee punten wordt gegeven door tegelijkertijd langs de cirkel te bewegen
en omhoog te lopen.

Als we een stukje van de cylinder identificeren met het vlak, komt dit overeen
met het pad gegeven door een rechte lijn. Dus geldt inderdaad dat voor ieder
punt er een omgeving is welke lijkt op R2 met de standaardmetriek. Daarom
zeggen we dat R2 een lokaal model geeft voorC. Daarentegen zijn er ook ruimtes
met metrieken te bedenken die niet lokaal op de standaard metriek lijken, een
voorbeeld is S2 met de metriek die we eerder hebben gezien.

Voor metrieken is het precies bekend welke lokaal op de standaardmetriek in
Rn lijken (deze worden plat genoemd). Maar voor andere meetkundige structuren
is dit nog niet het geval, zoals bijvoorbeeld voor Poisson structuren.

Naast kijken rond punten, is het ook erg interessant om rond grotere stukken
van een variëteiten te kijken. Een deelvariëteit N ⊂ M is een deelverzameling
van M die zelf ook weer een variëteit is. Als x ∈ N een punt in de deelvarieteit
is, dan kunnen we alle vectoren in de richting van N beschouwen, TxN , deze
vormen een deelvectorruimte van alle vectoren TxM . De normaalrichting van N
op x is de vectorruimte die bestaat uit alle vectoren die “loodrecht” op N staan.
In andere worden is dit de vectorruimte Nx met de eigenschap dat elke vector
v ∈ TxM te schrijven valt als een som v1 + v2 waarbij v1 ∈ TxN in de richting
van N is en v2 ∈ Nx in de normaalrichting staat.

Als je de vectoruimtesNx voor alle x ∈ N aan elkaar plakt krijg je de normaal-
bundel van N in M . Dit is een specifiek geval van een vectorbundel: Een variëteit
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Figuur 5.7: De raakruimte aan een sfeer. Het vectorveld weergegeven op de sfeer
stelt de rotatiesnelheid aan het aardoppervlak voor.

E, met een afbeelding π : E → N naar een andere variëteit N met de eigenschap
dat de ruimtes Ex (vezels genaamd) bestaande uit alle punten in E die naar een
vast punt x ∈ N worden gestuurd een vectorruimte zijn.

Neem bijvoorbeeld de torus T 2, als we inzoomen rond een boogcirkel dan
ziet het eruit als een cylinder S1 × R. Dit is een speciaal geval van een algemeen
resultaat genaamd de tubulaire omgeving stelling: Elke deelvariteit N ⊂M heeft
een omgeving die lijkt op de normaalbundel N van N in M .

Idem als hiervoor, is een grote vraag in de studie van meetkundige structuren
of er gegeven een deelvariëteit N ⊂ M een modelstructuur op de normaal-
bundel N bestaat waarop de originele structuur lijkt in een omgeving van de
deelvariëteit.

Homogene vectorvelden

Als we alle raakruimtes van een variëteit M samenbinden krijgen we een vec-
torbundel genaamd de raakbundel TM . Een vectorveld op M , is een afbeelding
X : M → TM die aan elk punt p ∈M een vector Xp in TpM associeert.

Een multi-vectorveld op M , is (ongeveer) een object wat aan elk punt p ∈M
een collectie (Q1,p, . . . , Qn,p) van vectorvelden associeert.

Als onze variëteit zelf een vectorbundel, E, is dan kunnen we vectorvelden
bestuderen die goed samenspelen met de vectorruimtestructuur op de vezels
van E. We zeggen dat een vectorveld X op E homogeen van graad d is als voor
alle punten v ∈ E, de vector Xλ·v direct gerelateerd is aan λdXv. We illustreren
dit hieronder aan de hand van een voorbeeld (Figuur 4).

Homogene (multi-)vectorvelden zijn vaak de bouwstenen om normaalvor-
men, zoals in de vorige sectie beschreven, te bestuderen. Daarom is het heel
interessant om hun eigenschappen te bestuderen. Dat is wat we doen in Hoofd-
stukken 4 en 5 van dit proefschrift. In Hoofdstuk 4 bestuderen we de ruimte van
homogene multi-vectorvelden, en geven een concrete beschrijving daarvan. In
Hoofdstuk 5 gebruiken we de opgedane kennis om normaalvormen in Poisson
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Figuur 5.8: We beschouwen hier de vectorbundel gegeven door een interval aan
rechte lijnen. Het linker vectorveld is op elke hoogte even lang, en dus homogeen
van graad d = 0. Het rechter vectorveld neemt linear in lengte toe en is dus
homogeen van graad d = 1.

meetkunde te bestuderen.

Gegeneraliseerde complexe structuren

Er zijn ontzettend veel verschillende meetkundige structuren, elk met hun eigen
theorie. Wat men vaak in de wiskunde doet is het zoeken naar overeenkomsten
en kaders om verschillende structuren tegelijk te kunnen bestuderen. Ook van dit
soort kaders zijn er weer veel variaties. In Hoofdstuk 1, 2 en 3 van dit proefschrift
bestuderen we gegeneraliseerde complexe meetkunde, dat een kader is om twee
verschillende meetkundige structuren, complexe en symplectische structuren te
verenigen.

Symplectische structuren zijn een heel speciaal soort Poisson structuren. Ze
beschrijven fysische systemen waarbij de beweging door de ruimte alleen beperkt
wordt door de beginenergie. Complexe structuren zijn meetkundige structuren
op variëteiten M , die elk van de raakruimtes TpM een complexe structuur geven.
Dat wil zeggen, de vectorruimtes TpM krijgen een afbeelding J : TpM → TpM
(“vermenigvuldiging met i”) die aan J(J(v)) = −v voldoet.

Gegeneraliseerde complexe structuren bouwen hier op voort. Een gegenerali-
seerde complexe structuur induceert een decompositie TxM = V1 ⊕ V2 in twee
vectorruimtes, waarbij V1 een symplectische structuur en V2 complexe structuur
krijgt. Het aantal complexe richtingen (oftewel de dimensie van V2) noemen we
het type van x. Echter hoeft het type voor verschillende punten in de variëteit
niet hetzelfde te zijn.

Naast het bieden van een overkoepelend raamwerk voor symplectische en
complexe meetkunde, heeft gegeneraliseerde complexe meetkunde ook andere
interessante implicaties. Er zijn toepassingen binnen de theoretische fysica (in
het bijzonder in de snaartheorie en spiegelsymmetrie), maar ook binnen andere
takken van de wiskunde. Een gegeneraliseerde complexe structuur induceert
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bijvoorbeeld een Poisson structuur.
Een interessante vraag die veel bestudeerd wordt in de differentiaalmeet-

kunde is: Welke variëteiten hebben een bepaald type meetkundige structuur?
Het beantwoorden van zo’n vraag levert vaak niet alleen inzichten op over de
specifieke meetkundige structuur, maar ook over de vorm van de variëteiten in
het algemeen.

Voor symplectische en complexe structuren is deze vraag goed bestudeerd
(wat niet wil zeggen dat het helemaal is opgelost). Een natuurlijke vraag die
oprijst na het geven van de definitie van gegeneraliseerde complexe structuren
is of er variëteiten zijn die geen symplectische en complexe structuren hebben,
maar wél gegeneraliseerde complexe structuren. Dit blijkt het geval te zijn, maar
om zulke voorbeelden te construeren moet men wel wat werk verzetten.

In hoofdstuk 1 en 2 zetten we een theorie op om dit te doen. De voorbeelden
die we construeren zijn onderdeel van een klasse van gegeneraliseerde complexe
structuren, genaamd stabiel. Dit zijn gegeneraliseerde complexe structuren met de
eigenschap dat het type bijna overal 0 is, en op een deelverzameling van dimensie
twee lager type 2 heeft. De eerste constructies van stabiele gegeneraliseerde
complexe structuren waren vrij ingewikkeld. De theorie die we in hoofdstuk 1
en 2 beschrijven is een stuk inzichtelijker.
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Lauran and Dušan, thanks for sharing the office with me. Thanks for all the
discussions, and ensuring that I was almost never alone there.

201



Acknowledgements
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[5] R. İnanç Baykur. “Kähler decomposition of 4-manifolds”. In: Algebr. Geom.
Topol. 6 (2006), pp. 1239–1265.
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ies”. In: Publications Mathématiques de l’Institut des Hautes Études Scientifiques
29.1 (Jan. 1966), pp. 95,103.

[41] Marco Gualtieri. “Generalized complex geometry”. In: Ann. of Math. (2)
174.1 (2011), pp. 75–123.

[42] Marco Gualtieri and Songhao Li. “Symplectic Groupoids of Log Symplectic
Manifolds”. In: International Mathematics Research Notices 2014.11 (2014),
pp. 3022–3074.
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