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1 INTRODUCTION

1 Introduction

Imagine skipping on a skippyball. When you look at it whilst it is not being
used, you will probably observe a normal sphere, if not: you might want to
pump up the ball a bit further. If you proceed to sit on the ball, or bounce
with it, you will notice it deforming. When mid-bounce, it will press down
on the ground, flattening on both the top and bottom side, whilst spreading
out a bit more on the side. And post-bounce it will again resume it’s original
sphere shape. All the while, hopefully, not bursting. If you bounce it harder
and harder, it will flatten more and more upon impact. But in order to keep
all the air in, it will have to stay closed, and so the edges of the ball become
sharper and sharper curved. If you stop bouncing, and want to exact some
kind of vengeance on the ball, you can try puncturing it. When doing this
you will also notice that it becomes more and more concave at the point you
are pressing on it, whilst extruding around this crater you are forming.

Seeing as how you were already intently observing the deformation of a
skippyball, you probably are a mathematician, and you begin to wonder.
‘How could the ball get so flat, but still close in on itself?’, ‘Is the flattened
disc shape it assumes just as “round” as the sphere it was?’, ‘Are all inflat-
able objects equally “round”?’. Or maybe you did not, but now you do.

Luckily, you are not the first mathematician, and the “roundness” of
shapes has been studied extensively. The deformation of the skippyball is
closely linked to the subject of this thesis; the Gauss-Bonnet theorem. Which
determines that indeed the total curvature of a surface, without boundary, is
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1 INTRODUCTION

constant, even under deformations of it. The Gauss-Bonnet theorem states;∫
Σ

K(x)σ = 2πχ(Σ) (1)

Here Σ is our surface, K(x) is our curvature at a point x, σ is a volume
2-form, and χ(Σ) is the Euler characteristic of our surface.

Later on we will go more in depth about what these exactly mean. But
intuitively it states that the integral of the curvature over the entire surface
equals a constant, which is determined by the topology of the surface.

The goal of this thesis is to give an understanding of the mathematics
used to describe such things as surfaces and their curvature. And to give a
proof of the Gauss-Bonnet theorem for surfaces.

We will start by introducing the general concept of vector bundles and
connections on a manifold. From these definitions we will design the Euler
class of a manifold. Then we look at the specific manifestation of vector
bundles and connections needed for the Gauss-Bonnet theorem: the tangent
bundle and the Levi-Civita connection. Finally we will apply this specific
tangent bundle and connection to a 2-dimensional manifold; a surface. This
will conclude in the proof of the Gauss-Bonnet theorem.

The reader should have a basic understanding of - differential - topology.
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2 VECTOR BUNDLES AND CONNECTIONS

2 Vector Bundles and Connections

A key concept in defining the curvature on a manifold, is being able to work
with and manipulate vector bundles and connections. In this section we will
define what a vector bundle on a manifold is, and several operations we can
apply to these mathematical objects. From there on we will define sections,
which are maps which map to these introduced vector bundles. After we have
defined sections on vector-bundles, we will explain connections; an operator
on sections similar to the exterior derivative as known from calculus. We will
explain how to expand these connections to the more generalized concept of
covariant exterior derivatives. These three concepts together, vector bundles,
sections and connections, will form our basic toolbox for the rest of the work
done.

2.1 Vector Bundles

If we imagine a manifold M , then we can try and use this manifold M as a
base for a different, seemingly larger manifold. Such as expanding the unit
circle into a cylinder, or constructing a koosh-ball from a sphere. Vector
bundles formalize this notion; they give a mathematical framework of how
we can define a collection of vector spaces, which are smoothly indexed by
our base space. More formally;

Definition 2.1. a vector bundle of rank r over a manifold M is the triple
(E, π,M) where E and M are manifolds, and π : E → M a continuous
surjective map, for which the following holds;

• For each x ∈ M , π−1(x) := Ex, the fibre of x in E, is a r-dimensional
real valued vector space.

• For each x ∈ M there is an open neighbourhood Ux ⊂ M , such that
π−1(Ux) is diffeomorphic to Ux × Rr. And each fibre Ex is isomorphic
to {x} × Rr.

Strictly speaking the vector bundle is the entire triplet (E, π,M), for
brevity we will speak of a vector bundle E, and will only denote the entire
triplet if we want to emphasize the base manifold. The space E is the col-
lection of fibres Ex, which if only defined individually at each point x, are
disjoint spaces. However, we use the smooth structure of our manifold M , to
form this disjoint collection of vector spaces itself, into a smooth manifold E.
Without the information of the base space M on how to smoothly combine
these vector spaces, it would not make sense to speak of a new manifold E.
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2 VECTOR BUNDLES AND CONNECTIONS

(a) Cylinder S1 × I (b) Koosh Ball

Figure 1: Examples of Vector Bundles

To visualize this definition one can observe figure 1. In figure 1a one can
see a very trivial example of a vectorbundle; the cylinder. The cylinder as
a manifold E can be seen as the vector bundle of rank 1 over the manifold
M = S1. In fact, one can always form the so-called trivial vector bundle of
rank r by simply setting E = M × Rr. In figure 1b our base manifold M
would be given by the sphere S2. And to each point x one assigns a hair R,
it’s fibre Ex. The map π would be given by the projection of each fibre onto
the sphere. One can imagine this as constructing the Koosh ball as in 1b.
But then with infinite many fibres; becoming the solid sphere from which the
core has been removed. This would be the trivial vector bundle of rank 1
over S2. A non-trivial vector bundle of rank 1 over S1 is given by the Möbius
strip. This vector bundle assigns to each x the vector space R. But taken
over the whole, there is a “twist” in the bundle, so globally it is not the same
as the trivial bundle S1 × R.

2.2 Sections

We are now able to define new manifolds E called vector bundles. Being
manifolds over a base space M , we could be interested about maps sending
a point x ∈M to a point in it’s fibre Ex in a smooth way. A section is such
a function; spanning the different fibres of the vector bundle smoothly like a
graph. We will see that sections allow us to define a uniform bases for each

2.2 Sections 5



2 VECTOR BUNDLES AND CONNECTIONS

and every individual vector space Ex. We start with the definition;

Definition 2.2. a smooth section s : M → E of a vector bundle E is a
smooth map such that (π ◦ s) : IdM .
The space of all smooth sections of E is denoted by Γ(E).

Figure 2: Section on the Cylinder

An example of a section would be to draw a sine-like function on the
cylinder as before; the white line of figure 2 is a section of the vector bundle.
The zero section, the section s0 : M → Ex; x 7→ 0x, maps a point x ∈ M to
the 0x of it’s fibre Ex, where we have notated 0x to emphasise the fact that
it is the zero-vector of Ex specifically. We can visualise it as the inclusion
of the base space M into it’s vector bundle, and would be the black line in
figure 2.

We define section addition and function multiplication as being pointwise;

(s1 + s2)(x) := s1(x) + s2(x), for s1, s2 ∈ Γ(E),

(fs)(x) := f(x)s(x), for f ∈ C∞(M).

These operations make Γ(E) into a left C∞(M)-module.
An equivalent, but insightful, interpretation for Γ(E) arises when we com-

pare it with k-forms on our manifold M . From the definition it follows that a
k-form ω ∈ Ωk(M) is skew-symmetric; Taking k vector fields and producing
a function. Thus we can see ω as an element of the wedge, as it skew-
symmetric, of the dual, as it returns functions, of the tangent space, as it
takes vector fields; so it follows ω ∈

∧k T ∗M . The the entire space of k-forms
can actually be seen as a section of this space. So Ωk(M) ∼= Γ(

∧k T ∗M).
Now if we pair ω, which returns a smooth function f : M → (R), with e ∈ E,

2.2 Sections 6



2 VECTOR BUNDLES AND CONNECTIONS

we obtain a smooth section f ⊗ e : M → E, or alternatively; an E-valued
k-form. The space of all E-valued k-forms we will denote with Ωk(M ;E).
And so it follows that Ωk(M ;E) ∼= Γ(

∧k T ∗M ⊗ E). And specifically that
Γ(E) ∼= Ω0(M ;E).

Let us return to the vector bundle E, in particular the vector spaces
Ex assigned to each point x ∈ M . Being a vector space of rank r, we
naturally find a collection of r vectors as a basis for this space Ex. We could
just choose an arbitrary basis for each individual Ex. But seeing how E
is a smooth manifold, we would also like to be able to translate the bases
smoothly between fibres. This is where the fact that Γ(E) is a C∞(M)-
module comes into play;

Definition 2.3. A frame S of a vector bundle, of rank r, E is a collection
S := (s1, s2, · · · sr), such that for each x, S(x) := (s1(x), s2(x), · · · sr(x))
forms a basis of vector space Ex.

We see that a frame S gives rise to a way of choosing a basis for each of
our fibres Ex. Frames can be global, in which case they are defined for all
x ∈ M , or can be local, in which case they only apply at an open U ⊂ M .
Note that frames need not be unique. For example, the section drawn in
figure 2 defines a global frame of the cylinder. However, so would any line
which is non-vanishing does not cross the black border, i.e.: s(x) 6= 0x for all
x ∈M .

One does not often have the luxury of a global frame S defined by a single
collection of global non-vanishing sections. As such it is often necessary to
stitch together different, locally defined, frames, to form a global one. This is
possible as any atlas of our base space M would be smoothly compatible on
all its opens. Let’s say one has two locally defined frames SU := (s1, s2, · · · sr)
and SU ′ := (s′1, s

′
2, · · · s′r), over opens U , U ′ ⊂ M . These opens overlap, such

that U ∩ U ′ 6= ∅. Because SU , SU ′ are frames over U and U ′ respectively,
they are also each frames over U ∩ U ′. Because Γ(E) is a C∞(M)-module,
we can transform one section into another by using functions;

s′i(x) =
r∑
j=1

fi,j(x)sj(x).

Because s′i and si are smooth sections, we know that the functions fi,j
must be smooth too. A way to see the functions fi,j is as the transformation
of basess at the overlapping fibres of U and U ′; as SU and SU ′ are by definition
bases for the vector spaces Ex for x in the overlap of U and U ′.

2.2 Sections 7



2 VECTOR BUNDLES AND CONNECTIONS

2.3 Operations on Vector Bundles

Being vector spaces, we have the usual set of operations to combine different
types of vector spaces.

The way of constructing this vector bundle starts by defining the fibres
fibre-wise at each point. We do this by applying the usual rules of the
operation. As given two fibres of different vector bundles, combining them
in the usual linear algebraic fashions, will give us a new vector space. Doing
this for all the fibres of the vector bundles will produce a new collection of
fibres. But as we have not indexed them smoothly, they are simply disjoint.
We then need to observe however that this new vector bundle can also be
indexed in a smooth way by our base manifold. Luckily the procedure for
this is fairly straightforward once one has seen how to do it. We will highlight
a few of these operations; being the dual bundle E∗, tensor product E ⊗E ′,
the endomorphism bundle End(E), the direct sum E ⊕ E ′, and finally the
pull-back bundle f ∗E

2.3.1 Dual Bundle

As stated above, we start by forming the dual bundle by defining the indi-
vidual vector spaces fibre-wise. We set E∗x := (Ex)

∗, thus we define a fibre
of the dual space, as simply being the dual of the original fibre. Now we
take a collection of open sets {Ui, i ∈ I} which cover our base space M . We
want that it follows that E∗ too, is indexed smoothly by M . For this we set
a local frames Si = (s1, s2, · · · , sr) for each Ui over E. Then this induces
a local frame S∗i = (s∗1, s

∗
2, · · · , s∗r) for each Ui over E∗. We know from the

fact that E is a vector bundle, that each local frame is smoothly compatible.
That is, given two opens Ui and Uj where the overlap is non-empty. Then
over Ui ∩Uj we could write si(x) =

∑r
j=1 fi,j(x)sj(x). Now we find a similar

construction for the dual bundle; the transition functions fi,j : Si → Sj for
the dual bundle are given by (fTi,j)

−1 : S∗i → S∗j . As the duals of the smooth
functions are also smooth, we have now obtained a way to smoothly combine
the disjoint E∗x into the dual vector bundle E∗.

When constructing the tensor product bundle E ⊗ E ′, the direct sum
bundle E⊕E ′, and the endomorphism bundle End(E), the way of construct-
ing follows a similar structure. The disjoint fibres of the vector bundle after
the operation follows by definition of the operation applied fibre-wise to the
corresponding fibres of each space. Then one can find a way to make them
into a smooth manifold by looking at how the operation affects local frames.
Therefore we will only give a short explanation of how to form these spaces,

2.3 Operations on Vector Bundles 8



2 VECTOR BUNDLES AND CONNECTIONS

and some of their properties.
For the pull-back bundle Ef(x) the procedure is slightly different, so we

will highlight this one more extensively.

2.3.2 Tensor Product and Endomorphism Bundle

For the tensor product between two vector bundles E ′ and E, the fibre-wise
construction is (E ⊗ E ′)x := Ex ⊗ E ′x. And given a local frames Si and S ′i,
the new frames are {Si⊗S ′j}(i,j). The rank of this new vector bundle is given
by multiplication r · r′. Remark that the tensor product is isomorphic to the
space of homomorphisms as following; E⊗E ′ ∼= Hom(E∗, E ′). So an element
e⊗ e′ is a map working on an element ε ∈ E∗ as follows; (e⊗ e′)(ε) = ε(e)e′.

Remark for the endomorphism bundle End(E) that it is isomorphic to
the space End(E) ∼= E∗⊗E. So we form the bundle, and it’s smoothness, by
combining what we know of the dual bundle and the tensor product bundle.
Note that it now follows that the rank of this vector bundle is r2.

2.3.3 Direct Sum Bundle

The direct sum E⊕E ′ is formed by the ordered pairing; (E⊕E ′)x := Ex⊕E ′x.
Where now the local frames Si and S ′j form the bases {(Si ⊕ S ′j)}i,j. The
rank of this new vector bundle is r + r′.

2.3.4 Pull-back Bundle

The pull-back bundle is constructed slightly different from the bundles dis-
cussed before; if we are given a vector bundle (E, πM ,M), a manifold N , and
a smooth function f : N → N , then we can construct a pull-back bundle
f ∗E. Because this is not as much a vector space operation as the above
examples, we will highlight its construction.

We start very similarly by defining the pull-back bundle fibre-wise. Namely;
(f ∗E)x := Ef(x). And we choose a collection of open sets {Ui}i∈I , such that
these opens cover M , and each open is small enough so that the vector bundle
E is trivial over each open. We want that from this it follows that f ∗E, too,
is trivial over small enough opens, thus making it into a vector bundle by def-
inition. It is reasonable to think that if we take our opens to be {f−1(Ui)}i∈I ,
then a trivialization follows. Indeed, if we let Sι = (sι1, s

ι
2, · · · sιr) be a local

frame for E|Uι , then let us define the function f ∗sιk(x) := sιk(f(x)), which

2.3 Operations on Vector Bundles 9
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maps from N to Ef(x). Then we now define a local frame for (f ∗E)|f−1(Uι)

as; f ∗Sι = (f ∗sι1, f
∗sι2, · · · , f ∗sιr). Notice now that because of how we defined

f ∗sιk, and the fact that we set (f ∗E)x := Ef(x), it follows that f ∗Sι is a basis
for (f ∗E)x for all x ∈ f−1(Uι). And because E was trivial over Uι, it follows
that these now form a trivialization of (f ∗E)|f−1(Uι).

Now that we know that for each of the opens in {Ui}i∈I it follows that for
each of the opens in {f−1(Ui)}i∈I we have f ∗E is trivial. This makes We only
need to check that each (f ∗E)|f−1(Ui) and (f ∗E)|f−1(Uj) are smoothly compat-
ible if f−1(Ui) and f−1(Uj) overlap. Recall that for the vector bundle E over
M we had the smooth compatibility as follows; s′i(x) =

∑r
j=1 gi,j(x)sj(x).

We form this into a smooth compatiblity for the vector bundle f ∗E over N
by simply taking the composition with our function f as follows; (f ∗s′i)(x) =∑r

j=1 gi,j(f(x))(f ∗sj)(x). Thus the transition functions become gi,j◦f , which
is a composition of smooth functions, thus smooth itself.

These two properties; the smoothness of the overlaps, and the trivializa-
tion on small opens, makes f ∗E into a vector bundle.

The vector space operations such as the tensor product and direct sum
have their use in properly obtaining a new vector bundle from the old ones.
On its own account, the pull-back bundle allows us to take pull-backs of
every section; if s is a section of (E, πM ,M), then f ∗s is a smooth section of
(f ∗E, πN , N). These are in fact precisely the elements of Γ(f ∗E). The rank
of the pull-back bundle is still r.

2.4 Connections

So far sections on vector bundles have been shown as smooth functions span-
ning over the different fibres Ex. Seeing how sections are indeed functions,
the question, as could be expected in differential geometry, arises whether
we could take the derivative of these functions. Normally when taking the,
possibly directional, derivative of a function, we compare the tangent spaces
of the points we are interested in. In “flat” Euclidean space this is a very
natural thing to do; the tangent space at each and every point is the same
space, and thus comparing them creates no issues whatsoever. This makes
it possible to have a canonical derivative. However, with arbitrary vector
bundles, we will find that points which are in different fibres, may have dif-
ferent tangent spaces. This makes the old concept of differentiating with d,
ill-defined.

To solve this problem we introduce the concept of connections; the equiv-
alent of exterior derivatives d for arbitrary vector bundles. We will see that
this concept of connection can be expanded into the even more generalized
covariant exterior derivative, also known as the exterior connection. We will

2.4 Connections 10



2 VECTOR BUNDLES AND CONNECTIONS

then explain how we can obtain new connections from given vector bundles,
and the operations explored in the previous section.

Definition 2.4. A connection ∇ : Γ(E) → Γ(T ∗M ⊗ E) is a linear map
such that the Leibniz identity holds;

∇(fs) = f∇(s) + df ⊗ s,

for f ∈ C∞(M) and s ∈ Γ(E).

Recall that Γ(
∧k T ∗M ⊗ E) = Ωk(M ;E), and so; Γ(E) = Ω0(M ;E) and

Γ(T ∗M ⊗ E) = Ω1(M ;E). Thus a connection ∇ can be seen as a linear
differential operator acting on E-valued 0-forms;

Ω0(M ;E) Ω1(M ;E).∇

Remark that this is already getting similar to the regular exterior derivative
d, which was also a linear differential operator d : Ω• → Ω•+1. So we would
like to expand connections from linear differential operators on just E-valued
0-forms, to any E-valued k-form.

For this purpose we have to look at the connection together with a vector
field. Take X ∈ X(M) a smooth vector field on M, we remark that X is
actually a section of the tangent bundle of M, so X ∈ Γ(TM). Keeping in
mind that ∇(s) ∈ Ω1(M ;E) an E-valued 1-form, and thus can be naturally
seen as a map ∇(s) : Γ(TM)→ Γ(E). Then we now define as follows;

Definition 2.5. The covariant derivative along X; ∇X : Γ(E) → Γ(E),
is defined by the tensor contraction;

∇X(s) := ix∇(s) = ∇(s)(X).

We can now define an operator which on vector bundles E and connections
∇, will serve the same function as the exterior derivative.

Definition 2.6. Given a vector bundle E and a connection ∇, then the
covariant exterior derivative d∇ is a linear differential operator of order
two;

Ωp(M ;E) Ωp+1(M ;E),
d∇

defined on an E-valued p-form ω ∈ Ωp(M ;E) as follows;

d∇(ω)(X1, · · · , Xp+1) :=
∑
i<j

(−1)i+jω([Xi, Xj], X1, · · · , X̂i, · · · X̂j, · · · , Xp+1)

+

p+1∑
i=1

(−1)i+1∇Xi(ω(X1, · · · , X̂i, · · · , Xp+1)) ∈ Ωp+1(M ;E),

2.4 Connections 11
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It satisfies the following Leibniz identity for ω ∈ Ωp(M ;E), and η ∈ Ωr(M ;E);

d∇(ω � η) = d∇(ω)� η + (−1)pω � d∇(η),

where � signifies any bilinear tensor operation.

For example on a 1-form φ ∈ Ω1(M ;E) we have;

d∇(φ)(X0, X1) = −φ([X0, X1] +∇X0φ(X1))−∇X1φ(X1).

From the definition and the linearity of the connection ∇, we can derive the
following properties for d∇;

1. For p = 0 it reduces to d∇ = ∇;

2. Given ω, η ∈ Γ(E), we have d∇(ω + η) = d∇(ω) + d∇(η);

3. Given ω ∈ Ωp(M) and s ∈ Γ(E), d∇(ωs) = dω ⊗ s+ (−1)pω · d∇(s);

The covariant exterior derivative is actually completely determined by the
vector bundle E and the connection ∇, thus how it acts upon Ω0(M ;E) =
Γ(E).

2.5 Constructed Connections

As d∇ is so determined by the vector bundle E and the original connection
∇, we would like to know how to construct different covariant exterior deriva-
tives, given from operations on vector bundles E and E ′, with connections
∇ and ∇′ respectively. We will look at the same operations we have handled
before; the dual E∗, tensor product E⊗E ′, direct sum E⊕E ′, endomorphism
End(E), and the pull-back bundle f ∗E. The tensor product and direct sum
connections follow fairly straightforward by defining maps which work on the
individual elements in a proper way regarding the vector space operations.
For the dual-, endomorphism-, and pull-back- connection, the way of deriving
the induced connections is slightly different.

2.5.1 Tensor Product Connection

Given vector bundles E and E ′, we formed the tensor product bundle by
taking the fibres (Ex ⊗ E ′x). Now form the section (s⊗ s′) ∈ Γ(E ⊗ E ′). As
we would like the Leibniz identity for ∇⊗ to hold, we define;

∇⊗(s⊗ s′) := ∇(s)⊗ s′ + s⊗∇(s′).

2.5 Constructed Connections 12
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We need to check that this indeed is a well-defined linear differential operator
of order 1 on the vector bundle E⊗E ′. Remark that indeed s⊗s′ ∈ Ω0(M ;E⊗
E ′). Furthermore, ∇(s) ∈ Γ(T ∗M⊗E), which means that it maps to T ∗M⊗
E, and s′ ∈ Γ(E ′), means it maps to E ′. So the tensor product of these maps
to T ∗M⊗E⊗E ′ which implies that∇(s)⊗s′ ∈ Γ(T ∗M⊗E⊗E ′) ∼= Ω1(E⊗E ′).
So the induced connection does indeed map from and towards where we want
it to.

The Leibniz identity is adhered to if we write it out, obtaining;

∇⊗(f(s⊗ s′)) = ∇⊗(fs⊗ s′),
= ∇(fs)⊗ s′ + fs⊗∇(s′),

= df ⊗ s⊗ s′ + f∇(s)⊗ s′ + fs⊗∇(s′),

= f(∇⊗(s⊗ s′)) + df ⊗ (s⊗ s′).

Apart from it acting on the right spaces, and adhering to the Leibniz identity,
we want the connection to be linear. So given η, θ ∈ Γ(E ⊗E ′) we want the
following to hold;

∇⊗(η + θ) = ∇⊗((η1 + θ1)⊗ (θ2 + η2)),

= ∇(η1 + θ1)⊗ (θ2 + η2) + (θ1 + η2)⊗∇′(θ2 + η2),

∼ ∇(η1)⊗ θ2 + η1 ⊗∇′(η2) +∇(θ1)⊗ θ2 + θ1 ⊗∇(θ2),

= ∇⊗(η) +∇⊗(θ).

This linearity combined with the property that under composition;

∇⊗(η ◦ θ) = ∇⊗(η1(θ1)⊗ η2(θ2)),

= ∇(η1 ◦ θ1)⊗ η2(θ2) + η1(θ1)⊗∇(η2(θ2)),

= [∇(η1) ◦ θ1 + η1 ◦ ∇(θ1)]⊗ η2(θ2) + η1(θ1)⊗ [∇(η2) ◦ θ2 + η2 ◦ ∇(∇2)] ,

= (∇(η1)⊗ η2) ◦ θ + (∇(η2)⊗ η1) ◦ θ + (∇(θ1)⊗ θ2) ◦ η + (∇(θ2)⊗ θ1) ◦ η,
= ∇⊗η ◦ θ +∇⊗θ ◦ η.

Now we remark that we have not actually checked whether this newly defined
map, is actually tensorial. Simply that it is a linear map satisfying the Leibniz
identity. Note that because (∇⊗η) ∈ Γ(T ∗M ⊗E⊗E ′). Therefore we should
be able to apply it to a section s ∈ Γ(E∗), or s′ ∈ Γ(E ′∗) or t ∈ Γ(TM).
In particular, we defined sections to be C∞-linear, thus when applied to a
section (fs), this linearity should hold.

(∇⊗η)(fs) = (∇η1 ⊗ η2)(fs) + (η1 ⊗∇η2)(fs),

= f(∇η1 ⊗ η2 + η1 ⊗∇η2)s,

= f(∇⊗η)s

All of the above makes ∇⊗ into a linear differential operator.
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2.5.2 Direct Sum Connection

Given vector bundles E and E ′, we recall that the direct sum E ⊕E ′ vector
bundle consists of the paired individual fibres (Ex, E

′
x). Now take sections

s ∈ Γ(E) and s′ ∈ Γ(E ′) to form the section (s, s′) ∈ Γ(E ⊕ E ′). Then we
define the induced connection ∇⊕ as being the matrix;

∇⊕ :=

(
∇ 0
0 ∇′

)
This works on a section (s, s′) ∈ Γ(E ⊕ E ′);

∇⊕(s, s′) = (∇s,∇′s′).

Observing that this is indeed a map to Ω1(M,E ⊕ E ′), we readily see that
all properties of a connection are satisfied as ∇ and ∇′ individually already
are connections.

2.5.3 Endomorphism Connection

For the endomorphism bundle we remark that an element L ∈ Γ(End(E))
is a function L : M → End(E). As such, given a section s ∈ Γ(E), we see
that Ls is also section of E. Applying ∇ to this, we would like the Leibniz
identity to hold; ∇(Ls) = (∇EndL)s+ L(∇s). This prompts us to define;

(∇EndL)s := ∇(Ls)− L(∇s).

Remark that everything above on the right-hand side has already been de-
fined. We want to check to be certain that ∇End(E) is indeed a map ∇End(E) :
Ω0(M ; End(E)) → Ω1(M ; End(E)). Note that if we interpret ∇(L)(s) :=
∇(Ls) and L(∇)(s) := L(∇s), then both ∇(L) and L(∇) can be seen as a
connections on E. This makes their difference ∇(L)−L∇ an endomorphism.
So ∇(L)− L∇ ∈ Ω1(M ; End(E)).

So it is indeed a well-defined map from and to the spaces we would like it
to go to. We also need to check that it is indeed a linear differential operator
by checking the Leibniz identity, the linearity, it’s application to a section fs
and it’s compatibility under compositions.

Regarding the Leibniz identity we see;

(∇EndfL)s = ∇(fLs)− fL(∇s),
= dfLs+ f∇(Ls)− fL(∇s),
= dfLs+ f(∇EndL)s,
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removing the s we see that;

(∇EndfL) = dfL+ f(∇EndL).

So it does indeed satisfy the Leibniz identity.
We also need to check whether or not ∇End is actually tensorial. That is;

C∞-linearity when applied to a section s. We check;

(∇EndL)fs = ∇(Lfs)− L∇(fs),

= dfLs+ f∇(Ls)− L(dfs) + Lf(∇s),
= f∇(Ls)− fL(∇s),
= f(∇EndL)s.

Thus indeed making it tensorial. For normal linearity on L ∈ Γ(End(E)) we
check;

∇End(L1 + L2) = ∇(L1 + L2)− (L1 + L2)∇,
= ∇(L1)− L1∇+∇(L2)− L2∇,
= ∇EndL1 +∇EndL2.

And so it adheres to the regular linearity we expect connections to adhere,
furthermore we check whether is is compatible under compositions;

(∇EndL1 ◦ L2)s = ∇(L1 ◦ L2s)− L1 ◦ L2(∇s),
= ∇(L1(L2s))− L1 ◦ L2(∇s),

applying the Leibniz identity,

= (∇EndL1) ◦ L2s+ L1 ◦ ∇(L2s)− L1 ◦ L2(∇s),
= (∇EndL1) ◦ L2s+ L1 ◦ (∇EndL2)s,

and removing the s, to obtain;

= (∇EndL1) ◦ L2 + L1 ◦ (∇EndL2).

So we see that ∇End is indeed a well-defined induced connection on the en-
domorphism bundle.

2.5.4 Dual Connection

In a very similar way one constructs the dual connection ∇∗ on the dual
bundle E∗. Starting with an element σ ∈ Γ(E∗) and a s ∈ Γ(E), we remark
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that σ : M → E∗, and so pairing it with s, we obtain a regular function
σ(s) : M → R. Thus ∇(σ(s)) = d(σ(s)). Applying the Leibniz identity as
before, we declare;

(∇∗σ)(s) := d(σ(s))− σ(∇s).
One must check the same properties as before. For brevity we will just
quickly show the Leibniz identity;

(∇∗fσ)s = d(fσ(s))− fσ(∇s),
= df ⊗ σ(s) + fd(σ(s))− σ(∇s)),

removing the s, and applying the induced connection we obtain;

(∇∗fσ) = df ⊗ σ + f(∇∗σ).

Thus this makes it into a connection on E∗

2.5.5 Pull-back Connection

The pull-back connection too is retrieved slightly different from the above
connections. Recall that the pull-back bundle f ∗E over a manifold N was
obtained if we had a smooth map f : N →M , and already an existing vector
bundle (E, πM ,M).

The pull-back connection f ∗∇ is now defined by wanting the following
diagram to commute;

Ω1(N ; f ∗E) Ω1(M ;E)

Ω0(N ; f ∗E) Ω0(M ;E).

f∗

f∗∇ ∇

f∗

Hence we define the pullback connection as follows;

(f ∗∇)(f ∗s) := f ∗(∇s),

where we recall that f ∗s ∈ Γ(f ∗E) is the pull-back of a section s ∈ Γ(E).
Showing that this is indeed a linear differential operator follows the same

path as shown above for the other induced connection. We will again only
quickly show the Leibniz identity;

(f ∗∇)(gf ∗s) = f ∗(∇gs),
= f ∗(dg ⊗ s+ g∇s),
= [dg ⊗ s+ g(∇s)] (f(x)),

= dg ⊗ f ∗s+ g(f ∗∇s),
= dg ⊗ f ∗s+ g((f ∗∇)(f ∗s)).

2.5 Constructed Connections 16
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2.6 Curvature of a Connection

We now have an understanding of connections and how to extend them to
the covariant exterior derivative d∇. If we look at these operators as linear
differential operators of order two, we will see that;

Ω0(M ;E) Ω1(M ;E) Ω2(M ;E) Ω3(M ;E) · · · ,∇ d∇ d∇ d∇

induces a co-chain.
Unfortunately, this co-chain is not a co-chain-complex, as generally speak-

ing d∇ ◦ d∇ 6= 0. As we will find out, d2
∇ is defined to be the curvature-form

of a connection ∇. In the following section we will define this curvature
form and how it acts upon its spaces. We will explain why this 2-form d2

∇ is
called the curvature form of a connection. From there on we will introduce
the Bianchi identity, and show how this identity is used to form a co-chain-
complex from the above chain.

Definition 2.7. The curvature form of a connection ∇ is the operator

κ∇ := d2
∇ = d∇ ◦ d∇.

It is a map

Ωp(M ;E) Ωp+2(M ;E).
k∇

Notice how we refer more to the curvature form rather than the curvature
operator. This is because we can show that κ∇(fs) = fκ∇(s), thus it is
C∞-linear, instead of adhering to the Leibniz identity, making it strictly
tensorial. And so it is actually a 2-form. We will show this as follows;
we start by observing the d∇ operator locally. Recall that if we are locally
enough, our vector bundle is trivial. Our covariant exterior derivative d∇ can
then be written as the sum of the regular exterior derivative and a connection
matrix. So locally we have;

dlocal∇ = d+ A,

here A is the r × r connection matrix consisting of 1-forms on M ;

A :=

ω
1
1 · · · ω1

r
...

. . .
...

ωr1 · · · ωrr

 .

As A is an r×r matrix of 1-forms, it is itself a 1-form with values in End(E).
And as such A ∈ Ω1(M ; End(E)) ∼= Γ(T ∗M ⊗End(E)). This leads to a local
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expression of the curvature κ∇ too. The curvature form can now locally be
written as;

κlocal∇ = (d+ A)(d+ A),

= dA+ A ∧ A

Note that because we saw that A ∈ Ω1(M ; End(E)), it follows that A ∧A ∈
Ω2(M ; End(E)). So locally we already see that κ∇ ∈ Ω2(M ; End(E)).

Now we are going to use this fact to show that κ∇ is completely deter-
mined by ∇, and thus does not depend on the k of the particular k-form of
the space Ωk(M ;E) it is working on. If we take a local frame for E|U . Then
any element ω ∈ Ωk(M ;E) can be rewritten in terms of this frame;

ω =
∑
i

ωi ⊗ si,

with each ωi ∈ Ωk(M), and each si ∈ Ω0(M ;E). Then we obtain via the
Leibniz identity that;

d∇ω =
r∑
i

dωi ⊗ si + (−1)kωi∇si

Now applying d∇ again, we obtain the curvature form κk∇, where we empha-
size with k that it works on the space Ωk(M ; End(E)). And rewriting gives
us;

κk∇ω = d2
∇ω =

∑
i

d∇(dωi ⊗ si) + d∇((−1)kωi ⊗∇si),

=
∑
i

d2ωi ⊗ si + (−1)k+1dωi ⊗∇si + (−1)kdωi ⊗∇si + (−1)2kωi ⊗∇2si,

=
∑
i

ωi ⊗ κ0
∇si.

Thus we see that κk∇ is independent of k. Now we apply κ∇ to a section fω,
we will see that κ∇ is C∞-linear, thus strictly tensorial on each space. Let f
a smooth function and ω ∈ Ωp(M ;E), then;

κ∇(fω) = d∇(d∇(fω)),

rewriting in a similar matter as above, yields us;

κ∇(fω) = fκ∇(ω),
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proving the C∞-linearity of our curvature form κ∇, thus proving that κ∇ ∈
Ω2(M ; End(E)) acts tensorially on every k-form and not just 0-forms. The
above result can be generalized if one observes that for any η ∈ Ωn(M) it
follows that;

κ∇(η ⊗ ω) = η ⊗ κ∇(ω).

Thus the C∞-linearity is just the special case that n = 0.

So why is this 2-form κ∇ actually called the curvature form of a connection
∇? For this we observe how κ∇ acts on the trivial vector bundle of a manifold
M being E = M × Rr. Note that a smooth function f ∈ C∞ is a map from
M to R. So in the case that E is trivial, these smooth functions are actually
sections of the vector bundle; f ∈ Γ(M ×R), by taking (x, f(x)) ∈ Ex. Now
note that the regular exterior derivative d becomes a connection; indeed it
takes a 0-form, (·, f) ∈ Ω0(M ;M × R) to a 1-form (·, df) ∈ Ω1(M ;M × R).
Now we already know d satisfies all the properties which makes it into a linear
differential operator. And also very importantly, we know that d makes the
co-chain into a co-chain complex, i.e.: d2 = κflat∇ = 0. Now remark that
because the vector bundle is trivial, the local representation of the curvature
form, actually becomes global representation. Which implies dA+A∧A = 0,
this is only the case when A is the zero-matrix. This gives us the reason to
call κ∇ the curvature form; because when our vector bundle is trivial, κ∇
will reduce to 0, and we can observe κ∇ 6= 0 as related to the failure of the
vector bundle to be flat. As such we will define as follows;

Definition 2.8. A connection for which we have;

κ∇ = 0,

is called a flat connection.

As said before, κ∇ 6= 0 can be as related to the failure of the vector bundle
to be flat. And most spaces are not flat. Luckily so; otherwise differential
topology would bore rather quickly. However, the fact that our co-chain does
not become a co-chain-complex in that case, is regrettable. Fortunately there
is a way we can construct a co-chain complex; by using the so-called Bianchi
identity.

Lemma 2.1. The second Bianchi identity is the property that;

(d∇κ∇)ω = 0. (2)
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Proof. The proof involves manipulating the expression algebraically using
the Leibniz identity. Let ω ∈ Ωp(M ;E), then it follows that;

d∇(κ∇ω) = (d∇κ∇)ω + (−1)2κ∇(d∇ω),

re-arranging gives us;

(d∇κ∇)ω = d∇(κ∇ω)− κ∇(d∇ω),

= d∇(d∇(d∇ω))− d∇(d∇(d∇ω)),

= 0

The Bianchi identity induces an alternate co-chain complex, from which
we can deduce so-called characteristic classes. The one we are interested in,
for the Gauss-Bonnet theorem, is the so called Euler class of a vector bundle.
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3 THE EULER CLASS

3 The Euler Class

We are now interested in designing a characteristic class; the Euler class. For
this class we need to have a connection which is compatible with a metric.
In this section we will explain how we can define a metric on a vector bundle.
We will then introduce the concept of metric compatibility of a connection.
Once we have defined these two key concepts, we will show how this leads to
a co-homology class, via the Bianchi identity, which we call a characteristic
class. The Euler class we will define is one of such classes. We will explore
it’s properties and it’s usefulness.

3.1 Connections and Metrics

Let us start by specifying what a metric on a vector bundle is. Recall that
a vector bundle is actually a union of individual vector spaces, which we
indexed together in a smooth way determined by our base space M . As
such, a metric on each individual bundle is already given by the property
of it being a vector space. This will be the basis of our vector bundle wide
metric as follows;

Definition 3.1. A metric g(s1, s2) on E is the family of indiviual metrics of
each Ex;

g(s1, s2)(x) := {g|Ex(s1(x), s2(x))}x∈M .

We see that the metric is defined fibre-wise, and we cannot compare the
distance between s1(x) and s2(x′) if x and x′ lie in different fibres. From now
on we will denote g|Ex simply with g, and let it be clear from the context
that it is the specific metric on the fibre Ex.

Note that, by definition of a metric, g is a symmetric function. And g
takes the inner product of two sections at a point x to return a scalar in R,
which we interpret as the distance. So we can think of g(s1, s2) as a section
of the trivial bundle of M ; g(s1, s2) ∈ Γ(R). And g as a section of the trivial
bundle of Sym2(E∗), the smooth manifold of functions. We can now see g as
a bundle map Sym2(E)→ R, which is equivalent to g ∈ Sym2(E∗).

We now know what a metric on a vector bundle is. So let us establish a
relationship between metrics and connections.

Definition 3.2. A connection ∇ is called a metric connection of g, or metric
compatible with g if;

(∇g) = 0.
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This is equivalent to the following identity;

d(g(s1, s2)) = (∇g)(s1, s2) + g(∇s1, s2) + g(s1,∇s2),

= g(∇s1, s2) + g(s1,∇s2).

If a connection is metric compatible, then it follows that d∇ is also metric
compatible.

As seen above ∇(g) becomes the regular exterior derivative as the metric
is just a regular smooth function. This together with the fact that d2 = 0,
implies the following identity for the curvature 2-form;

Lemma 3.1. κ∇ is skew-symmetric with respect to g, i.e.:

g(κ∇s1, s2) = −g(s1, κ∇s2)

Proof. Rewriting the identity, using the fact that d∇ too is metric compatible,
we find;

κ∇(g(s1, s2) = d2(g(s1, s2)) = 0,

= d∇(g(∇s1, s2) + g(s1,∇s2)),

= g(κ∇s1, s2)− g(∇s1,∇s2) + g(∇s1,∇s2) + g(s1, κ∇s2),

= g(κ∇s1, s2) + g(s1, κ∇s2),

which, because it equals 0, after rearranging implies;

g(κ∇s1, s2) = −g(s1, κ∇s2).

One can see that a metric compatible connection has some nice properties
which we would like to use. However, it seems like a rather strong demand
to make of a connection. And such nice properties would be useless if a
connection is only very rarely metric compatible. Fortunately, it is possible
to construct a metric compatible connection for every vector bundle E with
a metric g.

Lemma 3.2. Every vector bundle E with a metric g, admits a metric com-
patible global connection.

Proof. Let us start by trivializing the vector bundle, which is to say to cover
M with opens {Ui}i∈I , such that E|Ui is trivial. Now let us observe a local
orthonormal frame (si1 , · · · sir). Because E|Ui is trivial, it inherits the flat
local connection. Thus on the local orthonormal frame, which just consists
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of the regular basis vectors of Rr, we get that ∇local
i si = dsi+Aisi = dsi = 0.

Because it is an orthonormal frame, we have that g(sir , sir′ ) = δrr′ , and so
d(g(sir , sjr′ )) = 0. Now we see that;

d(g(sir , sir′ )) = 0 = g(0, sir′ ) + g(sir , 0) = g(∇local
i sir , sir′ ) + g(sir ,∇local

i sir′ ),

which makes the local connection metric compatible. Now note that, by
definition of a frame, any arbitrary section σ|Ui can be written as σk|Ui =∑

r fr,ksir . And thus for two arbitrary sections σk|Ui and σm|Ui we have that;

d(g(σk, σm)) = d(g(
∑
r

fr,ksir ,
∑
r

fr,msir)).

For the left hand side of this equation, note that a metric is a C∞-linear
function, so we obtain;

g(
∑
r

fr,ksir ,
∑
r

fr,msir) =
∑
r,r′

fr,kfr,mg(sir , sir′ ),

=
∑
r

fr,kfr,m.

Applying the exterior derivative is a matter of calculus and leads to;

d(g(σk, σm)) =
∑
r

dfr,k · fr,m + fr,k · dfr,m.

Now let us look at what happens if we apply ∇local
i inside the metric;

g(∇local
i σk, σm) = g(d

∑
r

fr,ksir ,
∑
r

fr,msim),

= g(
∑
r

dfr,ksir + fr,k∇local
i sir ,

∑
r

fr,msim),

=
∑
r,r′

dfr,k · fr′,mg(sir , sir′ ),

=
∑
r

dfr,k · fr,m.

A similar result follows if we apply ∇local
i to σm. Thus we see that because

metric compatibility holds for a local orthonormal frame, it holds for arbi-
trary sections;

d(g(σk, σm)) = g(∇local
i σk, σm) + g(σk,∇local

i σm).
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Now we use these local connections ∇local
i to form a global connection ∇.

Consider a partition of unity {ρi}i∈I subordinate to the open cover {Ui}i∈I .
As said before, on each of these opens one can find a local orthonormal frame
si = (si1 , · · · sir). Now let us set the global connection ∇ as;

(∇s)(x) :=
∑
i

ρi(x)∇local
i (s|Ui(x))

One should check that this new connection does indeed adhere to all the
properties a linear differential operator should adhere to, but we will for
brevity only show it adheres to the Leibniz identity;

(∇fs)(x) =
∑
i

ρi(x)∇local
i (fs|Ui(x)),

=
∑
i

ρi(x)
[
f(x)∇local

i (s|Ui(x)) + df ⊗ s|Ui(x)
]
,

= df ⊗ s|Ui(x) + f(x)
∑
i

ρi(x)∇local
i (s|Ui(x)),

= df ⊗ s|Ui(x) + f(x)∇(fs(x))

This connection is metric compatible as;

∇(g(σk, σm)) =
∑
i

ρi∇local
i g(σk|Ui, σm|Ui),

=
∑
i

g(ρi∇local
i σk|Ui , σm|Ui) + g(σk|Ui , ρi∇local

i σm|Ui),

= g(∇σk, σm) + g(σk,∇σm).

So we see that given a metric g on a vector bundle E, we can construct a
metric compatible connection ∇.

3.2 Euler Class of a Vector Bundle

Now we understand what a metric on a vector bundle and when a connection
is metric compatible, we can start designing our Euler class.

The Euler class is a specific manifestation of the so-called characteristic
classes. These are formed by using the Bianchi identity (d∇κ∇) = 0 of lemma
2.6 to construct co-homology classes on M . In this section we will explain
how the Bianchi identity forms co-homology classes, and how we specifically
manipulate the Bianchi identity and the curvature form to obtain our specific
characteristic class; the Euler class.
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We remind ourselves that two k-forms ω and ω′ are called co-homologous
in the de-Rham co-homology, the co-homology using the regular exterior
derivative d, if they are closed and their difference is an exact form, i.e. ;
ω−ω′ = dη. This eventually induces the class Hk(M) := Ker(d)

Im(d)
. So to design

our Euler co-homology class, we would like a similar construction relating to
our covariant exterior derivative d∇. We see a semblance of this happening
because of the skew-symmetric property of κ∇. To find Ker(d) we start by
defining the folllowing form;

Lemma 3.3. Let ω(s1, s2) := g(κ∇s1, s2). Then

(∇ω) = 0

Proof. We start by observing what kind of form ω actually is. Note that κ∇
was skew-symmetric, and that g is a symmetric function. Manipulating the
arguments we see that;

ω(s1, s2) = g(κ∇s1, s2) = −g(s1, κ∇s2) = −g(κ∇s2, s1) = −ω(s2, s1).

So we see that ω is skew-symmetric in it’s arguments, and maps two sections
to the metric g, which maps to a scalar. Thus ω ∈ Ω2(M ;

∧2E∗). Now
it comes in handy that we derived in which function spaces ω, κ∇ and g
exsisted. Note that ω ∈ Ω2(M ;

∧2E∗) ⊂ Ω2(M ;
⊗2E∗). For g we showed

that g ∈ Γ(E∗⊗E). And finally for κ∇ we derived that κ∇ ∈ Ω2(M ; End(E)),
which implies it’s pullback is a map κ∗∇ : E∗ ×E → End(E) ∼= E∗ ⊗E. Now
we observe the following commutation diagram;

E∗ × E E∗ ⊗ E

R

ω

κ∗∇

g

we see that ω := g ◦ κ∇, by the universal property, is unique. Thus we have;

∇ω = ∇(g ◦ κ∗∇),

= dg ◦ κ∗∇ + g ◦ ∇∗κ∗∇,
= 0.

Where the left hand side goed to 0 because of metric compatibility, and the
right hand side goes to 0 because of the Bianchi identity.

We have found ourselves a 2-form ω for which we have ∇ω = 0. This
means that ω ∈ Ker(∇). We now would like to extend this to the entire
chain, to form a co-chain complex. Observe the wedge-product between to
forms as generating a higher form, that is; ∧ : Ωi ×Ωj → Ωi+j. We use this,
together with ω, to obtain ωk :=

∧k ω ∈ Ω2k(M ;
∧2k E∗). And we will prove;
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Lemma 3.4. For a 2k-form ωk we have that ωk ∈ Ker(∇), i.e.;

∇ωk = 0

Proof. The proof follows by induction. We know that for k = 1, we have
that ∇ω = 0. Now assume that for k−1 we have ∇ωk−1 = 0, then it follows;

∇(ωk) = ∇(ω ∧ ωk−1),

= ∇ω ∧ ωk−1 + ω ∧∇ωk−1,

= 0.

So it holds for every k.

So now we have that the property for the 2-form we have ω ∈ Ker(∇)
2-form, extends to the property of the 2k-form ωk ∈ Ker(∇) . Now we want
to be able to apply the regular exterior derivative d to what we have just
found. The problem in this lies in the fact that d only works on Ω•(M),
whilst our forms live in the space Ω•(M ;

∧2k E∗). We solve this problem by
recalling that there exists a natural pairing between linear functionals of E∗

and elements of E such that E∗ ⊗ E → R, becomes a regular C∞ function.
Upon this function we can just apply the regular exterior derivative d. We
obtain this by taking the tensor contraction 1

k!
〈ωk, σ′〉 = 1

k!
ωk(σ′), where

σ′ ∈ Γ(E). We then observe that;

d
1

k!
〈ωk, σ〉 =

1

k!
(∇ωk)σ′ + ωk(∇σ′) =

1

k!
ωk(∇σ′) =

1

k!
〈ωk,∇σ′〉

For this to be a closed form, i.e. an element of Ker(d), we need this to be
0. In order to obtain that 1

k!
〈ωk, σ〉 = 0, we will again turn to orthonormal

frames of E.

Lemma 3.5. Let σ = {s1, s2, · · · s2k} be a local orthonormal frame for E.
Then ∇local(σ) = 0

Proof. By the definition of orthonormality it follows that 〈sj, sj〉 = 1. We
then see;

∇local〈sj, sj〉 = ∇local(1) = 0,

= 〈∇localsj, sj〉+ 〈sj,∇localsj〉,
= 2〈∇localsj, sj〉.

So we see that 〈∇localsj, sj〉 = 0. Recall that locally ∇local = d+A, and thus;

〈∇localsj, sj〉 = 〈d(
∑
i

f ji si) + A(
∑
i

f ji si), sj〉,
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remark that for an orthonormal frame f ji = 0 if i 6= j, and f jj = 1 so

df jj = 0,

= 〈
∑
i′

Ai
′

j si′ , sj〉,

=
∑
i′

Ai
′

j 〈si′ , sj〉,

= Ajj = 0

We now have the following identity;

∇localsj =
∑
i′ 6=j

Ai
′

j si.

And so we can rewrite ∇localσ as follows;

∇localσ = ∇(s1 ∧ s2 ∧ · · · ∧ s2k),

= ∇s1 ∧ s2 ∧ · · · ∧ s2k) + s1 ∧∇(s2 ∧ · · · ∧ s2k,

=
∑
i′ 6=j

Ai
′

j si ∧ s2 ∧ · · · ∧ s2k + s1 ∧∇s2 ∧ · · · ∧ s2k + s1 ∧ s2 ∧∇(· · · ∧ s2k),

using that si ∧ si = 0, we find that by induction we end up with;

= 0.

Now remark that if we are given two local orthonormal frames σ and σ′

which determine the same orientation, then σ = σ′ where they overlap. This
is because the transformation of basis can be given by det(A)σ = σ′, and if
the orientation is the same det(A) = 1 for orthonormal frames.

We know that we can stitch together local frames by using partitions of
unity as in Lemma 3.2. Combining this with Lemma 3.5, we finally retrieve
∇σ = 0.

Lemma 3.6. If E is an orient vector bundle of rank 2k which admits a local
orthonormal frame, then we can construct a global nowhere vanishing section
σ such that ∇σ = 0

This is what we need for 〈ωk, σ〉 ∈ Ker(d), and thus we have a co-
homology class. We define e := 〈 1

k!
ωk, σ〉 where ω as before, and σ an

orthonormal frame.

Definition 3.3. E(E) = [e] ∈ H2k is the Euler class of a vector bundle E.
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3.3 Properties of the Euler Class

The Euler Class E is just one of many characteristic classes which can be
formed on vector bundles. So why are we so interested in this specific one?
For this to be clear we have to analyse some important properties of the
Euler Class.

Lemma 3.7. We define E(E) = 0 if the vector bundle E has odd rank.

The Euler class follows from the pairing of our 2k-form ωk with σ. We can
think of ωk as being the top-form of our vector bundle. Therefore our vector
bundle too should have rank 2k. If this is not the case, then ωk cannot be
the top form of our vector bundle, and thus the expression makes no sense.

In defining the Euler class we started with a metric compatible connec-
tion, which eventually defined our local frame σ.

Lemma 3.8. The Euler Class E is independent of the chosen connection.

Proof. Let ∇0 and ∇1 be two different connections on (E, π,M). Let us
define a map p by projection on the first factor;

p : M × I →M,

p : (m, t) 7→ (m).

This map is a smooth map to M , which already had a vector bundle E. So
this allows us to construct the pullback bundle p∗E over M×I. We now also
define a family of connections given by a linear combination of ∇0 and ∇1;

∇t := (1− t)∇0 + t∇1.

This is a linear combination of connections, which implies ∇t is a connection
on E too. We are going to use this to define a connection ∇̃ on p∗E.

We start by using a trivialization of E. So let {Uα}(α ∈ A) a collection of
opens which covers M , and for each Uα we have that E|Uα is trivial. Then on
each of these opens, the connections ∇1 and ∇2 can locally be seen as d+A1

and d+A2. And for the family of connections we have d+ [(1− t)A0 + tA1].
Now remark that these same opens induce a similar trivialization of the
vector bundle p∗E over M × I, by setting U ′α = Uα × I. We now define our
connection locally, and pointwise as;

∇̃(s)(x, t) := ((d+ (1− t)A0 + tA1)(s))(x)

Where we see that;

∇̃(s)(x, 0) = ∇0(s),

∇̃(s)(x, 1) = ∇1(s),

∇̃(s)(x, t) = ∇t(s)
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Now let us define an inclusion map it : M ↪→ M × I which, for a fixed t, is
defined as it(x) = (x, t). This would also induce a pull-back bundle i∗tp

∗E,
however we see that for fixed t, i∗tp

∗E ∼= E. And so we obtain the induced
connection i∗t ∇̃ = ∇t. The following commutative diagram helps visualize
these maps. Where some notational abuse has been taken; one should note
that the Ω have been omitted, and the ∇ must be seen as connections on
the vector bundle they originate from, rather than maps in the direction the
arrows are pointing;

E p∗E E

M M × I M

∇t ∇̃ ∇0,∇t,∇1

it p

Now let e∇̃t ∈ H ·(M × I), be the Euler form for the connection ∇̃t. And
since we have the two specific cases;

∇0 = i∗0∇̃,
∇1 = i∗1∇̃.

We obtain;

e∇0 = i∗0e∇̃,

e∇1 = i∗1e∇̃.

Now because i0 and i1 are homotopic they induce equal maps in homology,
thus i∗0 and i∗1 are both the same map H ·(M × I) → H ·(M). And thus it
follows that [e∇0 ] = i∗0[e∇̃] = i∗1[e∇̃] = [e∇1 ].

And thus we see that the Euler classes E∇0 = E∇1 do not depend on the
connection chosen.

The fact that the Euler class is independent of the connection chosen,
together with the fact that one can always find a connection given a vector
bundle and a metric, means that the Euler class is an intrinsic property of
the manifold M . This is important as it means we can freely choose any
representation of our manifold M to calculate the Euler class. And nothing
withholds us of choosing the easiest representation to work with every time.

Furthermore the Euler class is well-behaved under direct sums of vector
bundles, i.e.;

Lemma 3.9. Given vector bundles E and E ′, then it follows that;

E(E ⊕ E ′) = E(E) ^ E(E ′).
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Proof. Let us observe the ranks over the vector bundles E and E ′. We remark
that if E is even and E ′ is odd, then dim(E ⊕ E ′) is also odd, thus we see;

E(E ⊕ E ′) = 0 = E(E) ^ 0 = E(E) ^ E(E ′).

Now let us go to when rank(E) = k and rank(E ′) = l, where k,l either
both even or both odd. Remark that if ωiE ∈ Ω2i(M ;

∧2iE∗) and ωjE′ ∈
Ω2j(M ;

∧2j E ′∗), then we have that ωiE ∧ ω
j
E′ ∈ Ω2(i+j)(M

∧2iE∗ ∧
∧2j E ′∗)

Now observe that given the base sections ωE and ωE′ , we can set up a con-
nection matrix;

ωE⊕E′

(
s
s′

)
=

(
ωE 0
0 ωE′

)(
s
s′

)
= ωE(s) + ωE′(s

′)

From this we deduce the following identity;

ωk+l
E⊕E′ = (ωE + ωE′)

k+l

Some algebraic manipulation will show us;

ωk+l
E⊕E′ =

k+l∑
i=0

(
k + l

i

)
ωk+l−i
E ∧ ωiE′ ,

because Ωx(M ;E) = 0 if x > rank(E), the sum reduces drastically,

=
∑
l≤i≤l

(
k + l

i

)
ωk+l−i
E ∧ ωiE′ ,

=

(
k + l

l

)
ωkE ∧ ωlE′ ,

=
(k + l)!

k!l!
ωkE ∧ ωlE′ .

Now we recall that the definition of the Euler class was [〈ωn
n!
, σ〉], and that

[E(E)] ^ [E(E ′)] = [E(E) ∧ E(E ′)]. Then we can rewrite;[
〈
ωk+l
E⊕E′

(k + l)!
, σ〉

]
=

[
〈ω

k
E

k!
∧ ω

l
E′

l!
, σ〉
]
,

= [e ∧ e′] ,
= [e] ^ [e′]
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We see that the above lemma’s are useful properties to have when explic-
itly computing the Euler class of a manifold. However, they do not really
describe the Euler class. One of the most advantageous properties of the
Euler class is to be able to classify surfaces which admit a non-vanishing
section. More precisely;

Lemma 3.10. If there exists a global non-vanishing section ω ∈ Γ(E). Then
E(E) = 0

Proof. Remark that we can use ω to split up the vector bundle E in a part
defined by ω as L ⊂ E and a part orthogonal to it L⊥ = Lc, by setting;

L := {λ · ω|λ ∈ R},
L⊥ := {σ ∈ E|〈σ, ω〉 = 0}

We then see that E = L ⊕ L⊥. Now by remarking that L ∼= the trivial
bundle, of odd rank, and applying both Lemmas 3.9 and 3.7, we see that in
this case E(E) = 0.

The above lemma allows us to interpret the Euler class of a space as a
measure of how “twisted” this space is. To give a visual example, let us
re-observe the cylinder of figure 2. The white line we see is indeed a global
non-vanishing section of the vector bundle, being the cylinder. Thus we can
conclude that E(Cylinder) = 0. This makes sense intuitively, because the
cylinder is a very normally stretched space; it is the trivial bundle S1 × Rr.
We quickly see that this applies to any trivial bundle; given a space M , we
can always construct a global non-vanishing section of M × Rr by simply
taking the translation of M into M × R. Or more formally; we can define a
global non-vanishing section s : M →M ×R by taking s : x 7→ (x, λ), where
λ ∈ Rr a constant vector. Thus trivial vector bundles allow us to have global
non-vanishing sections, and thus always have Euler class equal to 0.

But let us give an example proof of a space which is twisted. The most
straightforward being the space obtained from twisting a strip onto itself;
the Möbius strip. An intrinsic property of the Möbius strip is the fact that
if you draw a straight line on it, you will have gone around twice, and end
up at the same spot where you started. We can obtain the Möbius strip by
gluing as in figure 3. This is the same as starting with a square [0, 1]× [−1, 1]
and applying the equivalence relation; (0, y) ∼ (1,−y). Giving us a vector
bundle (S1, π,Möbius). Now let s be a global section. Then remark that
E0 = E1, but that in this fibre, s assumes the values s(0) and s(1), and
for s to be smooth, we have to have s(0) = −s(1). This means that either
s(0) = s(1) = 0, in which case it vanishes in this fibre, or s(0) = c and
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Figure 3: Obtain the Mobius strip by a glueing

s(1) = −c. In this case, as s is a smooth function, the intermediate value
theorem states it should be 0 somewhere else on the vector bundle, thus it
vanished in another fibre. As such the Möbius strip does not admit a global
non-vanishing section. Thus a priori we cannot conclude it’s Euler class to
be zero.
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4 The Levi-Civita Connection

In the above theory we have explored the abstract notion of vector bundles
and connections. Which led us to designing the Euler class. Important results
were that the Euler class did not depend on the connection chosen, and that
for every metric and vector bundle, we could construct a connection. This
allows us a large degree of freedom in choosing the specific vector bundle
we want to work on, which we have not yet made concrete in the above
discussion.

For the Gauss-Bonnet theorem, we want to work on the tangent bundle
TM of a manifold M . We will explain how TM is a vector bundle. From
there on we will introduce a property for connections on the tangent bundle;
the so-called torsion of a connection. We will show that we can construct a
connection for which the aforementioned torsion vanishes. This connection is
appears to be unique, and is called the Levi-Civita connection ∇LC . We will
show the properties of this specific connection. This specific manifestation of
the above theory; the tangent bundle TM as our vector space, together with
a Riemannian metric g, and the Levi-Civita connection ∇LC , will be what
we use for the proof of the Gauss-Bonnet theorem for surfaces.

4.1 Tangent Bundle Connections

For a manifold of dimension M we can construct the tangent space TxM
at each point x ∈ M . Note that by definition, if M is a m-dimensional
manifold, then each tangent space TxM is a m-dimensional vector space.
Also remark that because M is a m-dimensional manifold, every point x has
a neighbourhood Ux which is homeomorphic to Rm, this is done via charts
on M . The tangent bundle of Rm is again Rm, so π−1(Ux) is diffeomorphic
to Rm×Rm, and each fibre TxM is isomorphic to x×Rm. Thus we see that
TM is a vector bundle of rank m, the same as the manifold;

Lemma 4.1. The rank of the vector bundle (TM, π,M) is the same as the
dimension of the manifold M .

Now we remark something interesting about connections on the vector
bundle TM . Recall that sections s ∈ Γ(E) are maps s : M → E, and that
connections are maps Γ(E)→ Γ(T ∗M ⊗E). If we now replace E with TM .
We find that s is now a map assigning a tangent vector s(x) ∈ TM to each
point x. Thus s is by definition now a vector field over M , and we denote
the space of all smooth vector fields on M by X(M). For which we now
have; Γ(TM) ∼= X(M). Now observe that ∇ becomes a map from this vector
field to Γ(T ∗M ⊗ TM) ∼= Γ(End(TM)). Recall that we defined a covariant
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derivative along a vector field X as ∇X(s′) := ∇(s′)(X) which was a map
∇X : Γ(E)→ Γ(E). So this can now become a map ∇s(s

′) := ∇(s′)(s) which
maps as ∇s : X(M)→ X(M). This implies that ∇ can work on two sections,
and thus smooth vector fields, s and s′, and return another vector field. So
if we take the vector bundle to be the tangent bundle, then we can observe
connections as maps;

∇(s, s′) := ∇s(s
′) = ∇(s′)(s), ∇ : X(M)× X(M)→ X(M).

From now on we will interchangeably use s, s′ which lie in Γ(TM) ∼=
X(M), with vector spaces X, Y ∈ X(M) ∼= Γ(TM), depending on where we
want the emphasis to lay. Note that given an atlas on M , we have charts
working on opens {Uα}α∈A which cover M . On each of these charts TM is

trivializable. The basis of the TM |Uα is given by
(

∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xm

)
. Note

that each ∂
∂xi

is in itself a vector field, and as such a smooth section. Thus the
canonical basis for TM |Uα can be seen as local frame for the vector bundle.

Recall that the curvature of a connection was directly related to the
connection itself as κ∇ := ∇2 on sections. As we could see ∇ as a function
working on two vector fields, we now can also observe κ∇ as working on two
vector fields. Let us observe how it behaves as such;

κ∇(X, Y )(Z) = ∇X(∇Y (X, Y ))(Z),

= ∇X∇Y (X, Y )(Z)−∇Y∇X(X, Y )(Z),

= (∇X∇Y −∇Y∇X)(X, Y )(Z),

= ∇[X,Y ](X, Y )(Z).

So if we use the tangent bundle as our vector bundle, then the curvature
of a connection can be written as;

κ∇(X, Y ) = ∇[X,Y ]

We see that the curvature now becomes skew symmetric because of the skew
symmetry in [X, Y ] and the C∞-linearity of ∇X in X, i.e.; ∇fX = f∇X .

Lemma 4.2. On the tangent bundle, the curvature of a connection is skew-
symmetric;

κ∇(X, Y ) = −κ∇(Y,X).
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4.2 Torsion

Earlier we defined the curvature of a connection κ∇, and we saw that it said
something about our connection∇; We could see the curvature as an intrinsic
property of the connection itself. For connections on the tangent bundle we
still have the curvature κ∇. But we also have another property, called the
torsion T∇ of the connection.

Definition 4.1. The Torsion T∇ of a connection ∇ is;

T∇(X, Y ) := ∇X(Y )−∇Y (X)− [X, Y ].

We will explore some properties of T∇. Note that T∇ is skew-symmetric
in it’s arguments;

T∇(Y,X) = ∇Y (X)−∇X(Y )− [Y,X],

= −∇X(Y ) +∇Y (X) + [X, Y ],

= −T∇(X, Y ).

Furthermore T∇ is tensorial, i.e. it is C∞-linear in each of it’s arguments;

T∇(fX, Y ) = ∇fX(Y )−∇Y (fX)− [fX, Y ],

= f∇(X)(Y )− ((df ⊗X)(Y ) + f∇Y (X))− f [X, Y ] + Y (f)X,

= Y (f)X − LY f(X) + f(∇X(Y )−∇Y (X)− [X, Y ]),

= f(T∇(X, Y )).

For the other argument we have that T∇(X, fY ) = −T∇(fY,X) = −f(T∇(Y,X)) =
fT∇(X, Y ). Because we now have that T∇ is skew-symmetric, tensorial and
is a map T ∗M × T ∗M → TM , we see that T∇ ∈ Γ(

∧2 T ∗M ⊗ TM) =
Ω2(M ;TM).

So we see parallels between the curvature of a connection κ∇ ∈ Ω2(M ; End(TM)),
and the torsion of a connection T∇ ∈ Ω2(M ;TM). Both are intrinsic proper-
ties of the connection, and just like we called a connection for which κ∇ = 0
a flat connection. So too do we classify connections for which T∇ = 0.

Definition 4.2. A connection is called torsion-free if;

T∇ = 0.

Which is equivalent to saying;

∇X(Y )−∇Y (X) = [X, Y ].
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To imagine what torsion-free means concretely, is slightly less intuitive
than imagining flatness. To give an intuitive, but not mathematically rig-
orous, way to think about torsion, observe again the Möbius strip. Imagine
a basis of a tangent space at a point a on the Möbius strip. Let’s say one
of the basis vectors points forwards along the Möbius strip, and the other
points towards the left. These vectors are coordinate vector fields, thus also
orthonormal, so [X, Y ] = 0. If we now displace this basis along the Möbius
strip, we will see we end up again out our point a. Whilst the forward point
basis vector still points in the same direction, we find that our basis vector
which started pointing to the left, now points to the right. If we now think
of ∇X(Y ) as being the change of the initially left pointing along the path
we walked, and of ∇Y (X) as the change of the forward facing if we step
sideways. Then we can imagine ∇Y (X) = 0, as forwards stays forwards even
if we side-step. But ∇X(Y ) 6= 0, as evidently the vector flipped from left to
right somewhere along the path. So of this “connection” we walked, T∇ 6= 0,
because our basis flipped on the Möbius trip.

Whereas having a flat connection was too strong a demand to place on
a connection, as that only naturally arises when the vector bundle is trivial,
having a torsion-free connection is something we can construct.

4.3 Levi-Civita Connection

We can construct a torsion-free connection on specific manifolds, with a spe-
cific metric. Even though these may sound as very specific demands, there is
a whole family of manifolds upon which this applies; Riemannian manifolds.
Riemannian manifolds are manifolds M combined with a Riemannian metric
〈·, ·〉, which is to say a defined inner product for vector field on each x. How-
ever, if we use the tangent bundle as our vector bundle. Then the metric g on
the tangent bundle, is a defined inner product for the vector field on each x,
because of the equivalency of vector fields and sections of the tangent bundle.
Thus this metric makes the base manifold into a Riemannian manifold. Thus
we are able to construct a metric compatible, torsion-free connection, which
we call the Levi-Civita connection ∇LC .

Let us start with a metric compatible connection ∇, which is torsion-
free. And let X, Y, Z be three vector fields. Then we observe the following
the following summation, also generally known as the Koszul-formula;

LXg(Y, Z) + LY g(X,Z)− LZg(X, Y ).

Writing it out we obtain;

= g(∇XY, Z) + g(Y,∇XZ) + g(∇YX,Z) + g(X,∇YZ)− g(∇ZX, Y )− g(X,∇ZY ),
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note that the Lie-derivatives here are the covariant exterior derivatives along
a vector field, applied to a regular function, which the metric is. Because the
metric is a linear function, we can group some terms together;

= g(∇YZ −∇ZY,X) + g(∇XZ −∇ZX, Y ) + g(∇XY +∇Y (X), Z),

now we use the property that ∇ is torsion-free to obtain;

= g([Y, Z], X) + g([X,Z], Y ) + g(−[X, Y ], Z) + g(2∇XY, Z).

We now define according to the following equality;

g(∇XY, Z) :=
1

2
[LXg(Y, Z) + LY g(X,Z)− LZg(X, Y )

+ g([Z, Y ], X) + g([Z,X], Y ) + g([X, Y ], Z)].

Now if we take X and Y fixed, then g(∇X(Y ), Z), which we remind ourselves
is the inner product, then only Z ultimately determines the terms. Note that
we have not yet proven much; we have only shown that starting from a metric
compatible and torsion-free connection, we can obtain a unique linear map,
by fixing X and Y , which maps as g(∇XY, ·) : Γ(TM)→ Γ(T ∗M). First we
will show that it is tensorial in Z, making it into a section of T ∗ ⊗ E, and
thus an element Ω1(M ;TM). We see from the fact that g is C∞-linear that

g(∇XY, fZ) = f(∇X , Z),

so indeed it is an element of Ω1(M ;TM). We notice that because ∇ satisfies
the Leibniz rule, then;

g(∇XfY, Z) = g(LX(f)Y, Z) + g(f∇XY, Z),

satisfies the Leibniz rule in Y . And similarly we can check that it is tensorial
in X too. This makes g(∇XY, ·) into a connection. Checking whether this is
torsion-free involves evaluating the identity;

g(∇XY −∇YX,Z) = g(∇XY, Z)− g(∇XY, Z).

From how we defined this expression, it now follows that this is;

=
1

2
[LXg(Y, Z) + LY g(X,Z)− LZg(X, Y )− LY g(X,Z)− LXg(Y, Z) + LZg(Y,X)]

+
1

2
[g([Z, Y ], X) + g([Z,X], Y ) + g([X, Y ], Z)− g([Z,X], Y )− g([Z, Y ], X)− g([Y,X], Z)],

=
1

2
(2g([X, Y ], Z)),

= g([X, Y ], Z).
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So we see that this new connection is indeed torsion-free. For metric com-
patibility we want that;

Lx(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) = g(∇XY, Z) + g(∇XZ, Y ).

And indeed, for the right hand side we find that;

= g(∇XY, Z) +
1

2
[LXg(Y, Z) + LZg(X, Y )− LY g(X,Z)]

− 1

2
[g([Z, Y ], X) + g([X, Y ], Z) + g([Z,X], Y )],

=
1

2
(2Lxg(Y, Z)),

= Lxg(Y, Z).

We have now proven that the above identity is unique, a connection, is
torsion-free, and is metric compatible. So now let us finally define the Levi-
Civita connection;

Definition 4.3. The Levi-Civita connection ∇LC on the tangent bundle of
a Riemannian manifold is the unique connection which is metric compatible
and torsion-free, ∇LC

X defined by;

g(∇LC
X Y, Z) (3)

and fixing X and Y .

And from the above derivation of how to construct the Levi-Civita con-
nection we also see;

Lemma 4.3. Every Riemannian manifold has a Levi-Civita connection.

We almost never use the explicit definition of the Levi-Civita connection,
but rather its nice properties of torsion-freeness, metric compatibility and
it’s uniqueness.

Even though TLC∇ = 0, there is no reason for it’s curvature to vanish
too. So being a connection, we naturally also have κLC∇ , the curvature of the
Levi-Civita connection. Earlier we introduced the second Bianchi identity,
pertaining to the curvature of the connection. For the Levi-Civita connection
we also have the so-called first Bianchi identity;

Lemma 4.4. For the Levi-Civita connection we have the following identity;

κLC∇ (X, Y )Z + κLC∇ (Z,X)Y + κLC∇ (Y, Z)X = 0.

Which is called the first Bianchi idenity
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Proof. The identity follows by writing out the terms and applying the torsion-
freeness;

= (∇X∇Y −∇Y∇X −∇[X, Y ])Z

+ (∇Z∇X −∇X∇Z −∇[Z,X])Y

+ (∇Y∇Z −∇Z∇Y −∇[Y, Z])X,

= (∇X∇ZY −∇Y∇ZX −∇Z [X, Y ])

+ (∇Z∇YX −∇X∇YZ −∇Y [Z,X])

+ (∇Y∇XZ −∇Z∇XY −∇X [Y, Z]),

now we can group terms together, and using torsion-freeness; i.e. ∇ij−∇ji =
[i, j], we simplify to;

= ∇X([Z, Y ]− [Y, Z]) +∇Y ([Z,X]− [Z,X]) +∇Z([Y,X]− [X, Y ]),

= −2(∇X [Y, Z] +∇Y [Z,X] +∇Z [X, Y ]),

= −2([X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]),

this is the Jacobi identity, which vanishes, so

= 0

4.4 Curvature Tensor

So far all the properties of curvature and torsion pertained to our connections.
And we have only spoken of curvature on a manifold or vector bundle itself
when this was quickly followed by the fact that the space was trivializable
and thus the curvature vanished anyway. We will now finally start taking
steps towards actually speaking of curvature on our manifold. And to do this
we will define the curvature tensor R. After we have defined the curvature
tensor, we will explore some algebraic properties of it.

Definition 4.4. The curvature tensor is a map R :
⊗4 TM → R defined

as;
R(X, Y, Z,W ) = g(κLC∇ (X, Y )Z,W ).

Note that κ∇ and g are both C∞-linear. And as such R is C∞-linear
in each of its arguments, thus tensorial, so it is indeed justified to call it a
tensor.

The curvature tensor has some convenient algebraic properties which
eventually show that R ∈ Sym2(

∧2 T ∗M) the space of functions which are
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4 THE LEVI-CIVITA CONNECTION

symmetric in its two arguments α, β ∈ T ∗M , which in their turn are skew-
symmetric functions from TM × TM , i.e α(a, b) = −α(b, a).

The first property is skew-symmetry in it’s first two arguments, i.e.:
R(X, Y, Z,W ) = −R(Y,X,Z,W ). Remark that flipping these arguments
only flips the part on which κLC∇ works on. We can apply lemma 4.2, to see
that κLC∇ is skew-symmetric, and thus this implies R(X, Y, Z,W ) is skew-
symmetric in its first two arguments.

For skew-symmetry on the second pair of arguments, i.e.: R(X, Y, Z,W ) =
−R(X, Y,W,Z). We use the fact that the connection is metric compatible;

LX(g(Z,W )) = g(∇XZ,W ) + g(Z,∇XW ),

together with the fact that the Lie-derivative is exact; LX(LY (g)) = 0. Ap-
plying both these fact to g(Z,W ), we obtain;

LX(LY g(Z,W ))− LY (LXg(Z,W )) = 0,

LX(LY g(Z,W )) = LY (LXg(Z,W )),

∇X(g(∇YZ,W ) + g(Z,∇YW )) = ∇Y (g(∇XZ,W ) + g(Z,∇XW )),

applying metric compatibility again, we find that the terms where ∇ is not
doubly applied, cancel each other out. Grouping g’s together when one of
the arguments is equal, we obtain;

g((∇X∇Y −∇Y∇X)Z,W ) = g(Z, (∇Y∇X −∇X∇Y )W ),

g(∇[X,Y ]Z,W ) = −g(Z,∇[X,Y ]W ),

g(κ∇(X, Y )Z,W ) = −g(κ∇(X, Y )W,Z),

R(X, Y, Z,W ) = −R(X, Y,W,Z),

which proves it is skew-symmetric in the second pair of arguments too. The
two skew-symmetric properties combine to also give us R(X, Y, Z,W ) =
R(Y,X,W,Z)

To prove pairwise symmetry, we use the first Bianchi identity proven in
lemma 4.4; we can think of this identity applied to R in the sense that an
even permutation of the first three arguments is the negative sum of the other
two even permutations. A combination of flipping and permuting will give
us the desired result. To save space we denote R(X, Y, Z,W ) with Rxyzw.
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4 THE LEVI-CIVITA CONNECTION

Then a way to obtain the desired identity is as follows;

Rxyzw = −Rzxyw −Ryzxw,

= Rzxwy −Ryzwx,

= −(Rwzxy +Rxwzy)− (Rwyzx +Rzwyx),

= Rzwxy +Rxwyz +Rwyxz +Rzwxy,

= 2Rzwxy −Ryxwz,

= 2Rzwxy −Rxyzw,

2Rxyzw = 2Rzwxy,

Rxyzw = Rzwxy.

We now have proven the three algebraic properties of the curvature tensor
we wanted to have;

1. Rxyzw = −Ryxzw,

2. Rxyzw = −Rxywz,

3. Rxyzw = Rzwxy.

and thus we see that R is pairwise symmetric in its arguments; which would
imply R ∈ Sym2(

⊗2 T ∗M), but is antisymmetric within these pairs, thus
this implies R ∈ Sym2(

∧2 T ∗M).

4.4 Curvature Tensor 41
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5 The Scalar Curvature

We are now ready to define the quintessential quantity used in the Gauss-
Bonnet theorem; the scalar curvature of a point in our manifold. Though
we disclaim that we will be proving the theorem for 2-dimensional compact
orientable Riemannian manifolds. The above theory is generalized enough
to prove it for Riemannian manifolds with boundary, which would add an
extra term to account for the boundary. And can also be expanded to prove
the generalized Gauss-Bonnet theorem for higher dimensional manifolds. We
remind ourselves that the questions arisen were related to our skippyball; so
compact orientable 2-dimensional Riemannian manifolds will do just fine.
We will denote these surfaces with Σ.

We will start by defining a scalar curvature function K(x) on our ori-
entable surface. Then we will show some actual examples of what the Levi-
Civita connection is on the flat plane, torus, and sphere. And show how we
can calculate the scalar curvature of these points. We will then show what
the relation is between the earlier designed Euler class and this new-found
scalar curvature function.

5.1 Scalar Curvature Function

Armed with the curvature tensor, we are now finally ready to define a curva-
ture function K : M → R, more aptly called the scalar curvature of a man-
ifold M . This is the function we will eventually use for the Gauss-Bonnet
theorem.

The theory we have discussed so far is applicable to any orientable Rie-
mann surface Σ, as this is a smooth manifold of dimension 2. As such there
exists an atlas such that each x is in a neighbourhood Uα which is home-
omorphic to a subset AUx ⊂ R2. Now if a surface is orientable, there are
only two possible orientations of the surface, these correspond to the nor-
mal vector pointing inwards, to be imagined as being inside on the surface
of the object, or outwards, to be imagined as being outside on the surface
of the object. Recall that according to lemma 4.1, the tangent bundle of
a Riemann surface, is a vector bundle of rank 2. We now define on each
of these Uα of the atlas, a local orthonormal frame of the tangent bun-
dle: {sα,1sα,2)}α, and its dual {(s∗α,1, s∗α,2)}α, which are all oriented the same
way, let’s say positively. Then we have according to lemma 3.6 a global
nowhere vanishing section σ = s1 ∧ s2 on

∧2 TΣ, and let σ∗ the dual global
nowhere vanishing section for

∧2 T ∗Σ. Recall that because si ∈ Γ(TM), it
is by definition a map M → TM , and so we have elements si(x) ∈ TM .
This implies that s1(x) ∧ s2(x) ∈ TM ∧ TM . And as such their duals
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5 THE SCALAR CURVATURE

s∗1(x) ∧ s∗2(x) ∈ T ∗M ∧ T ∗M . Now remark that elements in T ∗M ∧ T ∗M
are skew-symmetric linear functionals with two vector fields as arguments.
So multiplying two of these with the regular dot product makes sense as we
are just multiplying functions, the regular dot product is symmetric. So we
can construct a function (σ∗ · σ∗)(X, Y, Z,W ) := σ∗(X, Y ) · σ∗(Z,W ), and
this function is an element of the function space Sym2(

∧2 T ∗M).
Now let us return to R, and let us a define a slightly different curvature

tensor by setting R := −R. We still have the fact that R ∈ Sym2(
∧2 T ∗M).

Now because function spaces are vector spaces, there should be a third vector
connecting R and σ∗ · σ∗. And so there must exist a function such that we
have the following;

Definition 5.1. For a 2-dimensional orientable Riemann surface Σ we have
that there exists a function K(x) such that;

R(X, Y, Z,W )(x) = K(x) · σ∗(X, Y ) · σ∗(Z,W ).

We define this function as the scalar curvature function.

So K(x) is a function K : Σ → R which returns for every point on the
function a scalar, which we interpret as the curvature of the surface at that
point. We might find it strange that it is just a scalar, one would expect that
for a 2-dimensional manifold, one would expect some kind of vector instead
of a scalar to denote the curvature. We admit that the scalar curvature is a
specific definition of the curvature; there are other ways to define a curvature,
which have other properties. The main reason we defined the scalar curvature
is because it is the specific curvature used in the Gauss-Bonnet theorem. But
we will show that it seems to agree with our a priori intuition of curvature
on a surface with the following examples.

5.1.1 The Plane

Let us first observe the flat plane R2. It is an astute observation that this is
indeed not a compact manifold, but remark that the definition of the scalar
curvature does not yet depend on compactness. Our intuition tells us that the
curvature of a point ~x should be 0, and moreover that it should be constant.

Because this surface is trivial, we see that a global frame orthonormal
frame is given by (x, y), with the corresponding orthonormal dual frame of
the tangent bundle (∂x, ∂y). The metric given on the flat plane is naturally
just the flat metric, that is to say;

gR2 =

(
1 0
0 1

)
.
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Not let us pick X = Z = ∂x and Y = W = ∂y. Then we see that;

R(∂x, ∂y, ∂x, ∂y)(~x) = −g(∇[x,y]x, y),

= −g(0, y),

= 0.

So the metric curvature tensor is constant over the entire plane, and even
vanishes, this leads us to;

R(∂x, ∂y, ∂x, ∂y)(~x) = 0 = KR2(~x)(∂x ∧ ∂y)⊗ (∂x ∧ ∂y)(~x),

= KR2(x)(∂x ∧ ∂y)x · (∂x ∧ ∂y)y,
= KR2(~x).

We remark that if we can find an orthogonal frame for our manifold, then R
will always just be equal to the scalar curvature function. So we see that the
scalar curvature KR2(~x) of the Euclidean plane R2 is constant, as we would
have intuitively expected for non varying shape, and is 0 everywhere, which
is on its turn in accordance with the intuitive thought that the plane is flat.

5.1.2 The Sphere

Now let us observe a less trivial Riemann surface; the unit sphere S2. This
actually is a compact Riemann surface without boundary, and the results
found here for the sphere will actually satisfy the Gauss-Bonnet theorem.
We will later on use the results found here for the sphere in the proof for the
Gauss-Bonnet theorem.

The surface is globally non-trivial, so we cannot, as we did for the plane,
use a single global section as a frame. Locally however we can. Let us start
by looking at a parametrisation of S2 = (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)).
Using the spherical coordinates (θ, φ). When given a parametrisation for a
surface f : R2 → R3, we can find a metric g for this space via the Jacobian
matrices Jf via; g = JTf Jf . The Jacobian for this specific parametrisation is
given by;

JfS2 =

− sin(θ) cos(φ) − cos(θ) cos(φ)
cos(θ) cos(φ) − sin(θ) sin(φ)

0 cos(φ)


And so a metric on S2 is given by;

gS2 = JTfS2JfS2 =

(
cos2(φ) 0

0 1

)
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Remark that this is a diagonal matrix, so we have g(θ, φ) = g(φ, θ) = 0,
as we would have expected for a orthogonal frame. And g(θ, θ) = cos2(φ)
g(φ, φ) = 1, which shows that it is indeed not an orthonormal frame, as then
the manifold would be trivializable, and we would just end up with the exact
same curvature as the plane. Now recall the definition of the Levi-Civita
connection with a given metric g. If we choose coordinate vector fields as
a basis, then the Lie-brackets vanish, and so we have for coordinate vector
fields X, Y, Z;

g(∇XY, Z) :=
1

2
[LXg(Y, Z) + LY g(X,Z)− LZg(X, Y )]

We can use this expression to find identities the Levi-Civita connection
identites of ∇LC

θ θ, ∇LC
θ φ, ∇LC

φ θ, and ∇LC
φ φ. Recall that a covariant ex-

terior derivative along a vector field was a map sending sections to section;
∇i : Γ(TM) → Γ(TM), as such, by property of lying in the same vector
spaces, we can express the above identities as;

∇LC
θ θ = f1,θ,θθ + f2,θ,θφ,

∇LC
θ φ = f1,θ,φθ + f2,θ,φφ,

∇LC
φ θ = f1,φ,θθ + f2,φ,θφ,

∇LC
φ φ = f1,φ,θθ + f2,φ,θφ.

Now finding these f is a matter of evaluating the Lev-Civita connection
explicitly for each of the vector fields. Luckily the non-diagonal terms of
the metric g vanish as we have an orthogonal frame. We will show how to
compute ∇LC

θ θ, where in the expressions to come it may be cleear that when
we speak of ∇, we speak specifically of ∇LC .

g(∇θθ, θ) = g(f1,θ,θθ, θ) + g(f2,θ,θφ, θ),

= f1,θ,θg(θ, θ),

so re-arranging the terms gives us,

f1,θ,θ =
g(∇θθ, θ)

g(θ, θ)
,

=
Lθ(cos2 φ)

2 cos2(φ)
,

f1,θ,θ = 0
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To find f2,θ,θ we find in a similar fashion;

f2,θ,θ =
g(∇θθ, φ)

g(φ, φ)
,

= Lθg(θ, φ)− 1
2
Lφg(θ, θ),

= −1

2
Lφ cos2(φ),

= sin(φ) cos(φ).

So we retrieve the expression;

∇LC
θ θ = (sin(φ) cos(φ))φ,

doing the same calculation for the other expressions yields;

∇LC
θ φ = − sin(φ)

cos(φ)
θ,

∇LC
φ θ = − sin(φ)

cos(φ)
θ,

∇LC
φ φ = 0

Now we are ready to evaluate R(X, Y, Z,W ). As before, we pick vector fields
X = Z = ∂θ

cos(φ)
and Y = W = ∂φ. Then we find;

R( ∂θ
cos(φ)

, ∂φ,
∂θ

cos(φ)
, ∂φ)(~x), = − 1

cos2(φ)
R(∂θ, ∂φ, ∂θ, ∂φ)(~x),

= − 1

cos2(φ)
g(∇[θ,φ]θ, φ),

= − 1

cos2(φ)
g(− cos2(φ)φ, φ),

= 1.

So we see that the curvature tensor R is a constant, equal to 1. Thus we find
that;

1 = KS2(~x),

the scalar curvature function is also constant and equal to 1. Remark that
if in the above calculation we had taken into account a constant radius r,
not necessarily equal to 1, of the sphere. Then we would have found that
gS2

r
= r2gS2 which would have manifested itself by setting KS2(~x) = 1

r2
. So

the curvature would still be constant, but would be inversely proportional to
r2.
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Lemma 5.1. The scalar curvature of a sphere with radius r is constant and

KS2(~x) =
1

r2

Again we see that the scalar curvature agrees with our intuition; the
sphere is equally curved all over the surface, so we would indeed expect the
curvature to be a constant. The inverse proportionality is a hit or miss
regarding intuition, as it implies that smaller spheres are in a sense more
curved than larger spheres. We can however agree on the fact that a sphere
of infinite radius, should be akin to the plane, so we would indeed want that
if r → ∞, then K(~x) → 0. A better way to imagine scalar curvature might
not be via the lexical idea of curvature, but to what extent the surface does
not curve like a unit sphere.

5.1.3 The Torus

So far the notion of scalar curvature has been very intuitive, and it almost
seems useless that we devised such a large theory to just confirm what we
already seemed to know about curvature. A shape however where the rig-
orous definitions of scalar curvature definitely benefits us in the calculation,
as well as giving us a slightly counter-intuitive result, is for the torus. The
torus, like the sphere, is also a compact Riemannian surface, and so too will
use the results here in the proof of the Gauss-Bonnet theorem.

As with the sphere, we start by parametrizing the torus, in order to obtain
a metric on the torus. Even though the torus can be seen as embedded in
R3, this parametrization of the torus is not actually the easiest to calculate
with. Lemma 4.3 says that every Riemannian manifold has a Levi-Civita
connection, so we see that we are free to choose any parametrization of the
torus. We will find out that the flat torus, a parametrization which cannot be
embedded in R3, is very easy to calculate with. The flat torus is parametrized
by;

T = (cos(u), sin(v), cos(u), sin(v)),

it is obtained by the well known glueing shown in figure 4. The parametriza-
tion gives rise to a Jacobi matrix.

JT =


− sin(u) 0
cos(u) 0

0 − sin(v)
0 cos(v)


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Figure 4: The Flat Torus by Glueing

Now we see something very satisfying happening, the metric given by g =
JTJ actually reduces to the flat metric, i.e.:

gT =

(
1 0
0 1

)
.

Thus the metric on the flat torus, is actually the same as the metric for the
plane. And so the calculation simplify as, like with the flat plane, all the
∇LC
i j vanish. Thus giving us;

R(∂u, ∂v, ∂u, ∂v)(~x) = 0 = KT(~x).

So this is where the scalar curvature function might not actually agree with
our intuition. Even though we probably agree that, when looking just at the
glueing, the flat torus has constant curvature, and is indeed flat; as subtly
implied by the name. When looking at the embedding of the torus in R3, we
would intuitively say that the curvature is not constant, we would actually
expect the curvature to vary in some sense, depending on wether we are on
the inside or outside radius of the torus. Now it is good to remark that this is,
in fact, true. If we take that embedding of the torus, we will indeed find that
the scalar curvature is not a constant, and as we would expect it is positive on
the outside radius, and negative on the inside radius. However, this curvature
is much harder to calculate; because it is not a constant. It is true that by
using the flat torus, we in some sense have lost some information. But one
could also argue that the embedding of the torus obfuscates a property of
the torus, namely that it’s curvature in a sense cancels out over the entire
surface, which is actually vital for the Gauss-Bonnet theorem over surfaces.

Lemma 5.2. The scalar curvature of the Torus is constant and;

KT(~x) = 0.
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5.2 Euler Class and Scalar Curvature

Now we have an actual mathematical definition of what the curvature at a
point is. Let us try and relate this to the earlier defined Euler class of a
vector bundle. Recall that the Euler class was defined for a vector bundle of
rank 2k, as the equivalence class of e = [ 1

k!
〈ωk, σ∗〉], where we changed to σ∗

to keep more in line with the notation used in the previous sections. Now for
a 2-dimensional Riemannian surface, we tangent bundle is a vector bundle
of rank 2. So it simplifies to the equivalence class of just e[〈ω, σ〉]. So what
are ω and σ when interpreted in the context of a Riemann surface? Letting
sections of the vector bundle be vector fields, the connection chosen the Levi-
Civita connection, then we can now interpret ω(X, Y ) = g(κLC∇ X, Y ), and
ω ∈ Ω2(Σ,

∧2 T ∗M). Now observe that we could construct a global section
which locally was expressed as σ∗ = s∗1 ∧ s∗2 where (s∗1, s

∗
2) is the dual frame

for the orthonormal frame (s1, s2). So the pairing becomes;

〈ω, σ∗〉(~x) = ω(σ∗)(~x),

= g(κLC∇ s∗1(~x), s∗2(~x))

Now let us return again to the curvature tensor R, which evaluated at a point
x became R(X, Y, Z,W )~x = K(~x)σ∗(X, Y )σ∗(Z,W ). Now note that is we set
(X, Y ) = σ, then because of orthonormality it reduces to; R(σ, Z,W )(~x) =
K(~x)σ∗(Z,W ). We now see that pointwise 〈ω, σ∗〉(~x) = K(~x)σ∗. And hence
for compact orientable Riemann surfaces we obtain;

Lemma 5.3. Let Σ a compact orientalbe Riemann surface with vector bundel
TΣ, then we have that; ∫

Σ

E(TΣ) =

∫
Σ

K(~x)σ∗.

We now finally have all the tools to prove the Gauss-Bonnet theorem, for
compact orientable Riemann Surfaces.
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6 The Gauss-Bonnet Theorem

The Gauss-Bonnet theorem for surfaces is already very similar to what we
have shown in lemma 5.3. The exact statement is;

Theorem 6.1. Given a compact 2-dimensional orientable Riemannian man-
ifold without boundary Σ. Then;∫

Σ

K(~x)σ∗ = 2πχ(Σ). (4)

Where K(~x) is the scalar curvature at a point ~x andχ(Σ) is the Euler char-
acteristic of the manifold Σ.

Proof. The proof follows from induction, from the cases we have already
done, namely the unit sphere, shown in lemma 5.1, to have constant scalar
curvature +1, and the torus T, shown in lemma 5.2 to have constant curva-
ture 0. Because the curvature is constant, and we have orthonormal frames
(u, v) and θ, φ. We get that σ∗, the volume form signifying the area dA, be-
come dφ∧dθ and du∧dv, the integral becomes just the surface area multiplied
by a constant, this gives us; ∫

S2

1 dφ ∧ dθ = 4π,∫
T

0 du ∧ dv = 0.

Now for the Euler characteristic χ for an orientable surface, we know that it
is given by χ(Σ) = 2 − 2g, where g is the genus of the surface. The lowest
genus an orientable surface can have is 0, corresponding to the sphere, or
any sphere-like manifold. Their is no upper limit to the genus an orientable
manifold can have. For the sphere and torus we then see that χ(S2) = 2 and
χ(T) = 0. Relating this to the above, we already see that the Gauss-Bonnet
theorem holds for orientable Riemann surfaces of genus 0 and 1;∫

S2

1 dφ dθ = 2πχ(S2) = 4π,∫
T

0 du dv = 2πχ(T) = 0.

Now we start the induction step. Let us assume that the Gauss-Bonnet
theorem holds for a genus g orientable manifold. Let us observe the connected
sum of this genus g surface σg, and another torus. That is, let D1 : D1 ↪→ σg
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be a smooth embedding of the unit disc into Σg, and let D2 : D1 ↪→ T be a
smooth embedding of the unit disc into T. Then with the connected smash
sum Σg#T we mean the new manifold Σg#T = (Σg t T)/ ∼, where ∼ is
the equivalence relation ∂(D1) ∼ ∂(D2). Now one has smoothly combined
the genus g surface σg and the torus T. We can visualize this operation as
intersecting the torus and the genus g surface. Now because integration is
linear over it’s limits, we can see the integration of this entire new surface, as
the sum of the surface integral of the g+ 1 surface summed with the integral
of the unit sphere, that is;∫

Σg#S2

K(~x)σ∗ =

∫
Σg+1

K(~x)σ∗ +

∫
S2

K(~x)(σ∗).

A visualization of this process can be seen in figure 5.

Figure 5: Induction on g
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We now work out;∫
T
K(~x)σ∗ +

∫
Σg

K(~x)σ∗ =

∫
Σg#S2

K(~x)σ∗,

0 + 2π(2− 2g) =

∫
Σg+1

K(~x)σ∗ +

∫
S2

K(~x)σ∗,

2π(2− 2g) =

∫
Σg+1

K(~x)σ∗ + 4π,

2π(2− 2g − 2) =

∫
Σg+1

K(~x)σ∗,

2π(2− 2(g + 1)) =

∫
Σg+1

K(~x)σ∗,

2πχ(Σg+1) =

∫
Σg+1

K(~x)σ∗.

And so by induction on g = 1, we see that it must be true for any orientable
compact Riemann surface without boundary, and thus we find;∫

Σ

K(~x)σ∗ = 2πχ(Σ). (5)

Thus proving the Gauss-Bonnet theorem for surfaces.
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7 Conclusion

The beauty of the Gauss-Bonnet theorem lies in the fact that it relates a
local property to a global invariant of the surface. One might forget that
the scalar curvature is a local property of a point, even though we found
and worked on surfaces which had a constant, and so in some sense global,
curvature. Most surfaces however do not have constant curvature, but still
satisfy the Gauss-Bonnet theorem. So a change locally of the curvature of a

Figure 6: Local deformations are compensated

manifold, must be in some sense compensated by the rest of the surface, by
changing the curvature at other points of the manifold, as such we can not
change the curvature at a single point alone and keep the rest of the manifold
unchanged.

Let us think back of the skippy-ball, the flattening of the top and bottom,
thus decreasing the curvature there, was compensated by the increase of
curvature at the sides. Trying to puncture the skippyball deforms the skippy
ball as in the cross section of it in figure 6. It gives us a notion that surfaces,
though in topology often deformed very freely, are still very much connected
objects.

53



REFERENCES

References

[1] Crainic, Marius. Mastermath Course Differential Geometry, Utrecht Uni-
versity, 2015.

[2] Hatcher, Allen. Algebraic Topology, Cambridge University Press, 2001.

[3] Lee, John M. Riemannian Manifolds, Springer-Verlag New York, 1997.

[4] Lee, John M.Introduction to Smooth Manifolds., Springer Sci-
ence+Business Media New York, 2013. 2nd Edition.

[5] Loring, T. Wu. Differential Geometry, Springer International Publishing,
2017.

[6] Madsen, Ib.; Tornehave Jørgen. From Calculus to Cohomology, Cam-
bridge University Press, 1997.

[7] Milnor, John W.; Stasheff, James D. Characteristic Classes, Princeton
University Press and Tokyo University Press, 1974.

[8] Petersen, Peter. Riemannian Geometry, Springer International Publish-
ing, 2016. 3rd edition.

REFERENCES 54


	Introduction
	Vector Bundles and Connections
	Vector Bundles
	Sections
	Operations on Vector Bundles
	Dual Bundle
	Tensor Product and Endomorphism Bundle
	Direct Sum Bundle
	Pull-back Bundle

	Connections
	Constructed Connections
	Tensor Product Connection
	Direct Sum Connection
	Endomorphism Connection
	Dual Connection
	Pull-back Connection

	Curvature of a Connection

	The Euler Class
	Connections and Metrics
	Euler Class of a Vector Bundle
	Properties of the Euler Class

	The Levi-Civita Connection
	Tangent Bundle Connections
	Torsion
	Levi-Civita Connection
	Curvature Tensor

	The Scalar Curvature
	Scalar Curvature Function
	The Plane
	The Sphere
	The Torus

	Euler Class and Scalar Curvature

	The Gauss-Bonnet Theorem
	Conclusion

