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Zeros of Eisenstein series, quadratic class numbers

and supersingularity for rational function fields

by Gunther Cornelissen

Abstract. The support of the divisor of certain Eisenstein series on the

modular curve for GL(2,Fq[T ]) generate a “big” extension of Fq(T ). From

this, an upper bound for the number of supersingular primes of a fixed degree

for a given Drinfeld module can be deduced. In the course of the proof, 2-

power divisibility of the class number of certain hyperelliptic extensions of

Fq(T ) is studied.

Introduction

In the ample theory of classical modular forms, little attention seems to
have been paid to their zeros. As is well known, the (suitably counted)
number of zeros of a modular form for a congruence subgroup of SL(2,Z)
on the corresponding modular curve can be expressed in solely geometric
terms, e.g., the weight multiplied by a normalized hyperbolic volume of the
modular curve ([25], 2.16 & 2.20).

In a different vein (following prior work of Wohlfahrt, R.A. Rankin and
A.O.L. Atkin) F.K.C. Rankin and Swinnerton-Dyer [19] have used methods
of classical analysis to show that zeros of Eisenstein series of integer weight
for SL(2,Z) in the fundamental domain are located on the complex unit
circle. R.A. Rankin [20] has subsequently generalized the result.

Complementary to this, one can fix a point z in the upper half plane
and consider the weight s of such Eisenstein series as a variable complex
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number; the resulting functions behave very much like zeta-functions. For
a study of their zeros, see J. Hoffstein [16] and the references therein.

Now assume that f(z) is a holomorphic modular form for a congruence
group Γ of level N in SL(2,Z), and that it can be defined over a finite
extension L/Q of the rationals. By this we mean that f admits Fourier
expansions in L((e2πiz/N )). Assume also that L is big enough for the modular
curve XΓ to be uniformized by modular functions defined over L. From these
two assumptions it follows that the points in the support of the divisor of
f are defined over a finite extension of L. Hence also the j-invariants of
the zeros of f , i.e., the images of the zeros under the (L-rational) projection
XΓ → X(1), are algebraic numbers. Then a famous corollary of the Gelfond-
Schneider theorem implies that zeros in the upper half plane of any modular
form defined over a finite extension of Q, are either transcendental over Q,
or points of complex multiplication.

In order to pursue a meaningful algebraic study of the zeros of f , one
is led to focus on the field extension of L generated by the points in the
support of the divisor of f , denoted by L(div(f)).

Example. Let

El(z) = 1− 2l

Bl

∑
n≥1

∑
d|n

dl−1e2πinz,

be the Eisenstein series of even weight l > 2 for SL(2,Z), normalized in such
a way that it is defined over Q (where Bl is the l-th Bernoulli number). Set
l = 4d+ 6e+ 12m with d ∈ {0, 1, 2} and e ∈ {0, 1}. Let 1728 ·∆ = E3

4 −E2
6

and j = E3
4/∆ be the normalized discriminant ∆ and the j-invariant j

respectively. Then

El(z)E4(z)−dE6(z)−e∆(z)−m = Pl(j(z))

for some polynomial Pl of degree m, and the divisor of El on the j-line X(1)
is given by

div(El) =
d

3
· 0 +

e

2
· 1728 + div(Pl).

(As usual, this divisor takes into account the order of the stabilizers in
SL(2,Z), and lies in Div(X(1)) ⊗ Q, see [25]). One recognizes j = 0 and
j = 1728 as the two elliptic points of SL(2,Z). One can make the following,
partially empirical, observations:

E1. The theorem of Rankin and Swinnerton-Dyer is equivalent to the
fact that the roots of Pl are real and belong to the interval (0, 1728).
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E2. Assume that l + 1 equals a prime number p. Weights of this form
seem to be especially relevant to arithmetic due to Deligne’s observation that
Ep−1 is congruent to the Hasse invariant modulo p. A bit of computation
shows that for l < 90, div(Pl) is irreducible over Q. Furthermore, one
computes that

Gal(Q(div(El))/Q) = Sm

for the same such l. Thus, whereas the j-invariants of the zeros of El are
algebraic, their algebraic relations are “without affect”, i.e., like the roots of
the general polynomial.

E3. For l < 90 as in (E2), the discriminant of Pl is a highly composite
number, divisible by all primes < p+1

2 , with the possible exception of 11. As
an example of this,

Disc(P31) = 221 · 39 · 55 · 74 · 132 · 39468318601.

The aim of this work is to prove that the situation of the example per-
sists for an infinity of different weights, albeit in the corresponding theory of
modular forms for rational function fields (Eisenstein series for GL2 over a
polynomial ring over a finite field acting on the Drinfeld upper half plane).
We will also see how the analogue of Rankin’s and Swinnerton-Dyer’s theo-
rem fits into this algebraic way of thinking. The main results will be stated
after introducing some notations in the next section.

One of the reasons for having a closer look at zeros of modular forms
seems to be the following qualitative observation. Assume f is a modular
form defined over a number field L with ring of integers O and assume that
f is congruent modulo some prime B of O to an arithmetical function H
whose zeros z in the upper half plane are important (like invariants of elliptic
curves). Assume that f(z) ∈ O. Then a (hopefully meaningful) inequality
results as follows:

H(z) = 0⇒ f(z) = 0 or |NL
Qf(z)| ≥ |NL

QB|.

The Γ-orbits of the zeros z of f form a finite set of “exceptional” values,
and for all other values the inequality holds.

This somewhat vague principle can be applied in our situation, as we
consider weights corresponding to the case where Deligne’s congruence is
valid: the modular form “Eisenstein series” is congruent to the arithmeti-
cal object “Hasse invariant”. This also means that there will be an intimate
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connection to supersingularity and hence quadratic class numbers (or equiv-
alently, type numbers of quaternion algebras). Indeed, on the way we will
encounter a class number problem for certain hyperelliptic function fields,
and finally we will be able to present an application to supersingular reduc-
tion of Drinfeld modules in the aforementioned sense: if a j-invariant j is
supersingular modulo some prime B, then either it belongs to a finite list
of B-exceptions (corresponding to the zeros), or an inequality between the
degrees of B and j results. Actually, the number of such B of degree ≤ k
is bounded in terms of j and k for non-exceptional j. The technical result
is again stated in the next section.

I expect that most of these results obtained in the setting of a rational
function field should carry through for classical Eisenstein series on SL(2,Z)
too, but I have not carried out such a programme.

1. Notations and statements

Let q be a power of an odd prime p and A = Fq[T ] the polynomial ring over
the finite field Fq of q elements. Let K be the quotient field of A, and | · |
the absolute value on K given by |q| = qdeg a for a ∈ A. Let K∞ and C be
respectively the completion of K and the completion of an algebraic closure
of K∞. The space Ω := C −K∞ is called Drinfeld’s upper half space, and
carries a structure as a rigid analytic space, on which the group GL(2, A)
acts through fractional transformations. With respect to this action and
this notion of analyticity, the function

El(z) : Ω→ C : z 7→
∑

(0,0)6=(a,b)∈A2

(
1

az + b
)l, where l ∈ Z>0,

turns out to be a modular form of weight l. It is called the Eisenstein series
of weight l, and it is non-trivial only if q − 1 divides l. For an introduction
to this circle of ideas, we refer to [6], [10], [13], and [15].

We will set 〈i〉 = T q
i − T for any natural number i. The symbol 〈i〉

equals the product of all monic irreducibles polynomials in A whose degree
divides i. Define two modular forms g and ∆ of respective weights q−1 and
q2 − 1 by

g = 〈1〉Eq−1, ∆ = 〈1〉Eq+1
q−1 − 〈2〉Eq2−1.

The j-invariant j = gq+1/∆ induces an isomorphism of rigid analytic spaces
j-line = GL(2, A)\Ω → C. Note that we have not normalized the El such
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that they are “defined over K” in the sense of the introduction. But subse-
quent formulas will be written in such a form that all possible transcenden-
tals factor out.

As will become apparent, the role played by the pair (Ep−1, p) for a
prime p in the example above is taken over by (Eqk−1, p) for primes p ∈ A
of degree k. We will now formulate the main theorems on the arithmetic of
the divisors of these Eisenstein series.

First of all, in [4] it was proved that the divisor of the Eisenstein series
Eqk−1 on the j-line is given by

div(Eqk−1) =
χ(k)

q + 1
· 0 + div(Pk(j)),

where Pk is a polynomial in j, and χ is the characteristic function of the
odd integers, i.e. χ(2Z + 1) = 1, χ(2Z) = 0. Note that j = 0 is the unique
elliptic point for GL(2, A) (i.e., whose stabilizer for the action of GL(2, A)
on Ω is F∗q2 rather then the usual center F∗q of GL(2, A)). The degree of Pk
is

m(k) = degPk =
qk − qχ(k)

q2 − 1
.

Theorem E1 ([4], compare (2.3)). Non-zero j-invariants of zeros of
Eisenstein series Eqk−1 (i.e., the roots of Pl) have absolute value qq.

Theorem E2. For all k, Pk is irreducible over K. For even k, the
Galois group of Pk is alternating or symmetric of degree m(k). If we fix p,
then there exists a constant Ck,p such that for all q > Ck,p,

Gal(Pk/K) = Gal(K(j(z) : Eqk−1(z) = 0)/K) = Sm(k).

Theorem E3 (Gekeler, [12]). A prime of A ramifies in the splitting
field of Pk if and only if its degree is less than k.

These theorems should be compared to the similarly numbered statements in
the example from the introduction. The main task of this paper is to prove
theorem E2, and then apply our “vague principle” from the introduction.
Consequently the Leitfaden is as follows. In section two, the polynomials
Pk will be introduced, a theorem of Rankin & Swinnerton-Dyer type will be
derived, and properties of reductions of Pk will be related to supersingular-
ity of Drinfeld modules and class numbers of hyperelliptic function fields.
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The third paragraph will contain auxiliary results from the theory of prim-
itive permutation groups and local Galois theory. In the fourth paragraph,
a proof of the main theorem will be presented: a “big” cycle in Gal(Pk)
is produced by consideration of certain inertia groups. Then transitivity
is proved by combining a counting argument on these cycles with the ana-
logue of Rankin’s & Swinnerton-Dyer’s result. A group theoretic lemma
subsequently implies primitivity, and using results of Jordan-Marggraff and
Wielandt, the Galois group is alternating or symmetric. In the fifth section,
a link with 8-divisibility of class numbers is exploited to produce an even
element in the Galois group. There, we prove the following incongruence
result for class numbers of imaginary quadratic extensions of function fields:

Notation. For a ∈ A, we denote by h(a) the class number of A[
√
a].

Theorem H. (i) Fix a non-square e ∈ Fq. For a prime p of A, the
class number h(ep) is even if and only if deg p is, and is divisible by 4 if and
only if deg p is.

(ii) Fix a characteristic p > 0. If k is a fixed integer divisible by 4, then
there exists a constant Ck,p such that for all q > Ck,p there exist two primes
p and p′ of degree k in A and non-squares e, e′ in F∗q such that h(ep) and
h(e′p′) are incongruent modulo 8.

To the extension K(
√
ep) corresponds a hyperelliptic curve X : y2 =

ep(x), and the Fq-rational points of its Jacobian are related to the class
group of A[

√
ep]. Theorem H is proved using the action of Galois on the

2- and 4-torsion of this Jacobian. Part (ii) follows from a specialization
argument on the generic such hyperelliptic curve using Chebotarëv’s density
theorem and some linear algebra in J [4] as a Z/4-module.

Finally, an application to supersingular reduction of Drinfeld modules
is given in section six, generalizing [5]. Assume that F is a field equipped
with an A-algebra structure i : A → F . Denote the endomorphisms of the
additive group scheme over F by additive polynomials in the variable X.
Let

φ : A→ End(Ga(F ))

be a rank two A-Drinfeld module defined over F , i.e. a ring morphism such
that φ(a) has (1) linear part i(a)X and (2) degree q2 deg(a) in X. The second
of these requirements says that φ has “rank two”; since this will hold for all
Drinfeld modules we consider, we will omit references to the rank from now
on. An endomorphism of φ is by definition an element u ∈ End(Ga(F̄ ))
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such that u ◦φ = φ ◦u. If F is finite, φ (or its j-invariant j(φ) = gq+1/∆) is
said to be supersingular if its ring of endomorphisms is non-commutative.

Let L be a finite extension of K with ring of integers O (i.e., the integral
closure of A in L), and φ a Drinfeld module over L. Assume that φ(T ) =
TX+gXq+∆Xq2 for certain g,∆ ∈ O. For a prime B of O not dividing ∆ it
makes sense to consider the reduction of φ mod B as a Drinfeld module over
the finite field O/B, and B is said to be a prime of supersingular reduction
of φ if its reduction is supersingular.

Definition. A non-zero algebraic integer j over K is said to be (k, L)-
lifting for an integer k and a finite extension L of K if j ∈ L and j = j(z)
for some zero z of Eqk−1.

Theorem S. Let L/K be a Galois extension of degree [L : K] with
ring of integers O. Assume that φ(T ) = TX + gXq + ∆Xq2 is a Drinfeld
module with g,∆ ∈ O. If j = j(φ) ∈ O is integral non-zero, then for any
k ≥ 1, either j is (k, L)-lifting, or∑

deg(p)≤k

f(p) deg(p)s(p) ≤ m(k) ·max{q[L : K], logq |O/j|},

where p runs over the primes of A, f(p) is the residue degree of p, and s(p)
is the number of supersingular primes of O which lie above p, but do not
divide g nor ∆.

The theorem should be contrasted with the asymptotic results of Brown
([2]). The inequality in theorem S imposes restrictions on the number of
supersingular invariants of a fixed degree. The point is that theorems E1-E3
show that j is only very rarely (k, L)-lifting. Theorem E1 implies that such
liftings have degree q. Theorem E2 (or rather, (4.2)) implies in particular
that the only (k,K)-lifting j-invariant is j = T q − T for k = 2 (this is the
case considered in [5]). More generally, if [L : K] < m(k), then there are no
(k, L)-lifting elements in L.

One can also combine theorem S and theorem E2 for families of j-
invariants. If {j1, ..., jn} is a set of distinct j-invariants in L which do not
satisfy the bound in theorem S for a certain even k, then forcedly

n ≤ m(k) and [K(j1, ..., jn) : K] ≥ n!/2.

For example, making a few crude estimates shows that there are at most
q2 + 1 integral j-invariants for which the number of supersingular primes B
in O that lie above a prime of degree 4 in A is larger then q5/4.
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Let us finally remark that a Drinfeld module can (by definition) have
good reduction at a prime B dividing the global discriminant ∆, namely if
it does not divide the B-local minimal discriminant. Hence there can be
more supersingular primes then the ones considered above. If φ admits a
global minimal model (e.g. if the class number of L is one), we can apply
the theorem to it, and the problem does not occur. We will not pursue this
topic any further here (but compare [5], (1.4)).

2. The polynomials Pk

This section presents a short reminder on the polynomials Pk as they were
introduced in [4]. It is our policy to give brief indications of the proofs,
and refer to that reference for details. It follows from the theory of Drinfeld
modules that g has a simple zero at the elliptic point j = 0 and nowhere
else, and that ∆ has a simple zero at the cusp of GL(2, A) and is non-zero
on Ω. The modular function

fk(z) = (−1)k−1
∏
i≤k
〈i〉g(z)−χ(k)∆(z)−m(k)Eqk−1(z)

has no poles on Ω, and hence is a polynomial in j(z). This turns out to
be our polynomial Pk: fk(z) = Pk(j(z)). There exists a recursion formula
connecting the Eisenstein series Eqk−1, and by retranslating it we find:

(2.1) Recursion Formula. Pk(j) ∈ A[j] is a polynomial satisfying
the recursion P0 = P1 = 1 and for k ≥ 2:

Pk(j) = jd(k)Pk−1 − 〈k − 1〉Pk−2, with d(k) =
qk−1 + (−1)k

q + 1
.2

(2.2) Examples.

P2(j) = j − 〈1〉,
P3(j) = jq − 〈1〉jq−1 − 〈2〉,
P4(j) = jq

2+1 − 〈1〉jq2 − 〈2〉jq2−q+1 − 〈3〉j + 〈1〉〈3〉,
P5(j) = jq

3+q − 〈1〉jq3+q−1 − 〈2〉jq3 − 〈3〉jq3−q2+q

+〈1〉〈3〉jq3−q2+q−1 − 〈4〉jq + 〈1〉〈4〉jq−1 + 〈2〉〈4〉.
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(2.3) Theorem E1. The roots of Pk have absolute value qq. The
zeros of Eqk−1 in the domain {z ∈ Ω : |z| = inf{|z − a| : a ∈ A} ≥ 1} (to
which any point of Ω can be mapped by GL(2, A)) are on the “unit circle”
|z| = 1. They are simple and transcendental over K.

Sketch of proof. The first statement follows from the fact that the Newton
polygon of Pk for the valuation −deg is a straight line of slope q: if we write

Pk(j) =

m(k)∑
i=0

c
(k)
i jm(k)−i,

then

(2.3.1) |c(k)
i | = qqi if c

(k)
i 6= 0.

(This is verified inductively using the recursion formula.) The second state-
ment follows from estimates relating |j(z)| and |z|. A theorem of Yu [27]
implies that non-transcendental zeros of Eqk−1 have complex multiplication.
An estimate for the j-invariants of such CM-points by Brown ([2], (2.8.2))
shows that they never have absolute value qq. Finally, the proof that the
zeros are simple is a generalization of the one given for k = 1 by Gekeler
([10], VII.3.3). It will also follow independently from (4.2). 2

The next proposition shows that the case k = 3 is special compared to
theorem (E2), apparently because all supersingular invariants in degree 3
are rational (cf. (2.7)).

(2.4) Proposition. The Galois group of P3 is the affine group
AGL(1,Fq).

Proof. Taking derivatives in (2.2), we see that P3 is separable. Substituting
Y = j−1 in P3, we find

−〈2〉−1j−qP3(j) = f(Y ) = Y q + aY + b,

with a = 〈1〉/〈2〉, b = −1/〈2〉. P3 (hence f) is irreducible over K, since it
is an Eisenstein polynomial for the prime T of A. Consider the polynomial
g(X) = Xq−1 + a; it is also irreducible over K, since if we substitute X =
Z−1, we get 〈1〉Zq−1 + 〈2〉, and this is an Eisenstein polynomial for any
prime of degree two in A. Let α be a root of g in an algebraic closure of
K. Since K contains all (q − 1)-th roots of unity, K(α)/K is cyclic with
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Galois group G := Gal(K(α)/K) ∼= F∗q . Let y be a root of f in an algebraic
closure of K. Then

f =
∏
x∈Fq

(Y − y − xα),

so the splitting field of f is L := K(y + xα|x ∈ Fq) = K(y, α). The exten-
sion L/K(α) is of Artin-Schreier type of degree q, with Galois group H :=
Gal(L/K(α)) ∼= Fq. The group G is normal in Gal(L/K), and G∩H = {1}.
Hence the semi-direct product G >�H ∼= AGL(1,Fq) belongs to Gal(L/K)
and is of order q(q − 1). Since

|Gal(L/K)| = [L : K] = [L : K(α)][K(α) : K] = q(q − 1),

we find the desired result. 2

(2.5) Proposition. Let p be a prime of degree n in A. Then the
following congruences hold:

∀k ≥ 0 : Pk+n = jχ(k)d(n+1)P q
n

k Pn mod p.

Proof. Using recursion and the fact that 〈k + n− 1〉 ≡ 〈k− 1〉qn mod p.2

(2.6) Proposition (Gekeler [11] section 5). Let p be a prime of degree
k in A. Then jχ(k)Pk(j) mod p is the supersingular polynomial for rank 2-
Drinfeld modules modulo p, i.e., its roots are the supersingular j-invariants
over A/p. 2

(2.7) Proposition (Gekeler [9] (5.6), [10] (3.7), (6.4)). The supersin-
gular polynomial modulo p has simple roots, factorizes over A/p into the
product of linear and quadratic factors, and for k even, the number Qp of
quadratic factors of the supersingular polynomial satisfies

4Qp = 2m(k)− h(ep),

where e is some non-square in Fq. 2

3. Resources from group theory and Galois theory

(3.1) Proposition. Let F be a local field of residual characteristic
p, f an Eisenstein polynomial over F of degree n, coprime to p. Then the
inertia group of the splitting field of f is generated by an n-cycle.
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Proof. Let α be a root of f . The extension F (α)/F is totally ramified of
degree n, and since (n, p) = 1 we have F (α) = F ( n

√
π) for some uniformizing

element π ∈ F . The normal closure of F (α) is L := F (α)(ζn), where ζn is a
primitive n-th root of unity.

��

@@

@@

��

L

F (α) F (ζn)

F
n

Z/n

Since (n, p) = 1, the extension F (ζn)/F is unramified, and hence F (ζn) and
F (α) are linearly disjoint. Hence [L : F (ζn)] = [F (α) : F ] = n, so f is
irreducible over F (ζn). But Gal(L/F (ζn)) is the inertia group of L/F , and
hence cyclic of order n since (n, p) = 1 (e.g. [21], IV.2 Cor. I). Since f is
irreducible over F (ζn), this cyclic group is also transitive on the n roots of
f . Hence it is generated by an n-cycle. 2

(3.2) Proposition. A transitive permutation group of degree n, con-
taining a subgroup that acts transitively on d > n

2 letters, and stabilizes the
other letters, such that d and n are coprime, is primitive.

Proof. Assume that G acts transitively on Ω = {1, ..., n} as a permutation
group, and H is a subgroup of G acting transitively on D = {1, ..., d}, where
d > n

2 , but fixes Ω−D. Let B be a non-trivial block for G. We can assume
that |B| ≤ n

2 .
Assume that {i, j} ∈ B for some i ≤ d and j > d (such j > d exists since

d < n). Then for all h ∈ H : hj = j ∈ B ∩ hB, so H · B = B (since B is a
block). But D = H · {i} ⊆ H ·B = B, so d < |B| ≤ n

2 , a contradiction.
Hence either B ⊆ D or B ⊆ Ω − D. Since G is transitive, translates

of B are blocks that cover Ω. Finally, |B| has to divide both |D| = d and
|Ω| = n. 2

(3.3) Proposition (Jordan). A primitive permutation group of degree
n containing an m-cycle (m > 1) is at least (n−m+ 1)-transitive.

Remark. This theorem is frequently attributed to Marggraff, although
it appears to have been stated first by Jordan. For some history and an
up-to-date proof, one can consult [18], pp. 273-274. 2

(3.4) Proposition (Wielandt [26]). The degree of transitivity t of a
permutation group of degree n not containing An is bounded by t < 3 log n.
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Remark. Alternatively, it follows from the classification of finite simple
groups that t < 6. 2

4. Proof of theorem E2

(4.1) Gal(Pk) contains a d(k)-cycle. Let p be a prime of degree k−1 in
A. The Newton polygon of Pk over the completion Kp consists of a segment
from (0, 1) to (d(k), 0) and a segment from (d(k), 0) to (m(k), 0).

PPPPPP

0

1

d(k) m(k)

Np(Pk)

As the first segment contains no lattice points, Pk must factor as Pk = fg
over Kp, where f is an Eisenstein polynomial of degree d(k). Since Pk =
jd(k)Pk−1 mod p, it follows that g mod p is the supersingular polynomial for
p for even k, and the supersingular polynomial divided by j for odd k. Hence
it has no multiple roots by (2.7). So elements of the inertia group I(Pk/p)
of Pk over Kp act trivially on the roots of g. Hence I(Pk/p) ∼= I(f/p).

Since d(k) and q are coprime, lemma (3.1) on local fields implies that the
inertia group of f at p is cyclic, generated by a d(k)-cycle. By the above,
we find it in the inertia group of Pk at p, and a fortiori in the Galois group
of Pk.

(4.2) Irreducibility. Suppose that Pk = fg for two factors f, g ∈ A[j].
In the previous paragraph, we have already found an irreducible factor of
Pk of degree d(k) over the completion of K at a prime of degree k − 1, and
hence one can assume that deg f ≥ d(k). For any prime p of degree k− 1 in
A, there is a factorization Pk = fpgp over Kp, with fp irreducible of degree
d(k). For reasons of degree, g divides gp, and since gp = Pk−1 mod p, one
finds that g divides Pk−1 mod p. Let α be a root of g; it follows that

Pk−1(α) = a
∏

p

holds in A[α], for some integral element a, where the product runs over all
irreducible p of degree k − 1 in A.

Assume that a 6= 0. Since Pk(α) = 0, it follows from (2.3) that |α| = qq,
and by (2.3.1), the coefficient of jm(k−1)−i in Pk−1, if it is non-zero, has
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absolute value qqi. Hence we see that all terms of Pk(α) have absolute value
qqm(k−1). Finally,

logq |a|+ logq |
∏

p| = logq |Pk−1(α)| ≤ qm(k − 1).

On the other hand,

logq |a| ≥ 0, logq |
∏

p| = (k − 1)Nk−1,

where Nk−1 is the number of primes of degree k − 1 in A. We claim that

qm(k − 1) < (k − 1)Nk−1.

It is equivalent to

qk−2 + qk−4 + ...+ q2−χ(k) <
∑
d|k−1

µ(
k − 1

d
)qd = qk−1 + ...,

(where µ is the Möbius function). This, however, is clear from considering
the numbers in the inequality as q-adic expansions (On the right hand side,
the only q-adic digits occurring are ±1, and q > 2).

In conclusion, a = 0, so α is a root of both Pk−1 and Pk. Hence by
using the recursion (2.1) in the opposite direction, one finds inductively
that P1(α) = 0, a contradiction. So g has no root, i.e. it is constant. 2

(4.3) Group theory, revisited. By (4.2), the Galois group of Pk is
transitive as a permutation group on the roots, and the d(k)-cycle of (4.1)

generates a cyclic subgroup which acts transitively on d(k) > m(k)
2 roots

and leaves the rest fixed. For k even, d(k) and m(k) are coprime since
qd(k) + (1 − q)m(k) = 1. By (3.2), we conclude that Gal(Pk) is primitive.
Since it also contains a d(k)-cycle, one obtains from (3.3) that it is (m(k)−
d(k) + 1) = (m(k − 1) + 1)-transitive. Since m(k − 1) + 1 ≥ 3 logm(k) for
k > 3, it follows from (3.4) that Gal(Pk) contains the alternating group of
degree m(k).

(4.4) An odd element in the Galois group. To decide in favour of Sm(k)

instead of Am(k), we will produce an odd element in the Galois group by
using theorem H.

Assume first of all that k is divisible by 4. By (2.7), primes p of degree k
in A are unramified in any root field of Pk, and their decomposition group is
generated by a product of Qp transpositions. Hence there is an odd element
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in Gal(Pk) if we can show that Qp is odd for some p. Since m(k) is constant if
k is, it suffices (again by (2.7)) to show that there exist non-squares e, e′ ∈ Fq

and primes p, p′ of degree k in A with h(ep) 6≡ h(e′p′) mod 8. But for big
enough q, this follows from theorem H, which will be proved in the next
section.

Finally, assume that k = 2 mod 4. Then for any prime q of degree k− 2
in A we have that

Pk(j) = (j − 〈1〉)qk−2
Pk−2(j) mod q,

and the corresponding Newton polygon consists of a segment from (0, 1) to
(qk−2, 0) and a segment from (qk−2, 0) to (m(k), 0). In this case, k − 2 is
divisible by 4. By the previous argument, we can find a q such that Qq is
odd. The corresponding product τ̄ of Qq transpositions in Gal(Pk−2 mod
q) lifts to an element στ of Gal(Pk/Kq) where σ is in the inertia group of q
by the above congruence (a similar argument was used at the end of (4.1)).
Hence also the (odd) element τ belongs to Gal(Pk). 2

5. Proof of theorem H

(5.1) Hyperelliptic curves. Assume that q is an odd prime power. Let F
be a field with exact field of constants Fq, and e a non-square in F . Consider
the projective hyperelliptic curve X of which the affine equation is given by

y2 = ef(x), f(x) = xk + σ1x
k−1 + ...+ σk, σ1, ..., σk ∈ F,

for k > 2, where f is separable, and has k distinct roots t1, ..., tk in a fixed
algebraic closure of F . We will assume throughout that f is irreducible over
F . The above plane model is singular at infinity as soon as k > 3, and its
genus g satisfies 2g = k − 2 if k is even and 2g = k − 1 if k is odd. Let J
denote the Jacobian of X (viz. of a non-singular projective model of X).

(5.2) Jacobians and class numbers. If F = Fq itself is a finite field,
then we have the following exact sequence ([22], II.2.2)

1→ J(Fq)→ Cl(Fq[x,
√
ef(x)])→ Z/d∞Z→ 1,

where d∞ is the degree of a place above ∞ = 1
x in F (X) and Cl denotes the

ideal class group. Since e is not a square, d∞ = 2 if k is even and d∞ = 1
if k is odd. This is why we will study the field of definition of the 2- and
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4-torsion of J , but a priori for more general fields F (because we will use a
specialization argument afterwards).

(5.3) The field of definition of J [2]. Assume first of all that k is even,
and F again arbitrary as in (5.1). Then for i = 2, ..., k one finds

div(
x− ti
x− t1

) = 2Di, where Di = (ti, 0)− (t1, 0).

In the Jacobian J of X we have that Di ∈ J [2], and these divisors satisfy
the linear relation

k∑
i=2

Di = div(y(x− t1)−
k
2 ) = 0

in J . Furthermore, {D2, ..., Dk−1} form a basis for J [2] ∼= (Z/2)2g.
On the other hand, if k is odd, then for any i = 1, ..., k, we have that

div(x− ti) = 2Di, where Di = (ti, 0)−∞.

Again, Di ∈ J [2], these divisors satisfy the linear relation

k∑
i=1

Di = div(y) = 0

in J , and {D1, ..., Dk−1} form a basis for J [2]. (Remark that geometrically,
the (ti, 0) are exactly the Weierstraß points of X.)

We see that the field of definition of the two-torsion in the Jacobian of
X (given by adjoining the coordinates of {Di} to F ) is contained in the
splitting field of f . Assume for a moment that Gal(f/F ) = Sk. If k > 4,
then the alternating group Ak is simple. It is easy to see from the action of
Sk on {Di} that Gal(F (J [2])/F ) is not trivial nor cyclic of order two, so we
have that Gal(F (J [2])/F ) = Sk too. The same conclusion holds for k = 3
by computing the action of S3 on {D1, D2, D3}. On the other hand, if k = 4,
then one sees that the subgroup of Gal(f/F ) generated by the products of
two transpositions fixes the divisors Di (using the linear relation between
them), and in that case, Gal(F (J [2])/F ) = S3 is dihedral. In conclusion:

(5.3.1) Lemma. If, in the setting of (5.1), we assume furthermore
that f has Galois group Sk over F , then the same holds for F (J [2])/F if
k 6= 4. If k = 4, then Gal(F (J [2])/F ) = S3 instead.
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(5.4) The Galois representation on J [2]. The action of the absolute
(separable) Galois group of F on J [2] ∼= (Z/2)2g induces a faithful represen-
tation

ρ1 : Gal(F (J [2])/F ) ↪→ GL(2g,F2).

We can now prove the following:

(5.5) Proposition. (i) Let F = Fq be a finite field, e a non-square
in Fq and p irreducible of degree k over Fq. Then the class number h(ep) is
even if and only if k is even, and divisible by 4 if and only if k is divisible
by 4.

(ii) If k is divisible by 4, then h(ep) is divisible by 8 if and only if J [4](Fq)
contains an element of order 4.

Proof. Let F = Fq and f := p in the setting of (5.1). Since f is irreducible,
its (cyclic) Galois group over F is generated by the k-cycle σ = (t1t2...tk).
If k is even, it follows from (5.2) that h(ep) is even (since d∞ = 2).

On the other hand, if k is odd, then h(ep) is even if and only if J [2](F ) 6=
0. For this to happen, ρ1(σ) has to fix a non-zero vector in GL(k − 1,F2),
i.e., det(ρ1(σ) − 1) = 0. One can compute the action of ρ1(σ) on the basis
{D1, ..., Dk−1} using the relation given in (5.3):

ρ1(σ) =



0 0 ... 0 0 1
1 0 ... 0 0 1
0 1 ... 0 0 1
...

...
. . .

...
...

...
0 0 ... 1 0 1
0 0 ... 0 1 1


, (k − 1)× (k − 1)

and it is immediate that det(ρ1(σ)− 1) = 1. Hence h(ep) is not even if k is
odd.

If k is even, we have w.r.t. the basis {D2, ..., Dk−1}:

ρ1(σ) =



1 1 ... 1 1 0
1 0 ... 0 0 1
0 1 ... 0 0 1
...

...
. . .

...
...

...
0 0 ... 1 0 1
0 0 ... 0 1 1


, (k − 2)× (k − 2)

and it is easy to see that

4|h(ep) ⇐⇒ J [2](F ) 6= 0 ⇐⇒ det(ρ1(σ)− 1) = 0 ⇐⇒ 4|k.
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We even see that ρ1(σ) is a Jordan block (its nilpotency order is k− 2).
Hence ρ1(σ) has a unique fixed vector in J [2], i.e., J [2∞](Fq) is a cyclic
group. From this and (5.2), part (ii) is immediate. 2

(5.6) The field of definition of J [4]. Let F again not necessarily be
finite, but from now on, assume that k is divisible by 4. We will compute
the extension F (J [4])/F (J [2]), and for this it is useful to change the shape
of the equation of X, over F (J [2]). For k > 4, the latter field contains the
roots of f . Now over a field which contains one root of f , we can find an
isomorphism which maps X to

X̃ : y2 = f̃(x), where f̃(x) = (x− u1)...(x− uk−1)

over F̃ := F (t1, u1, ..., uk−1) ([24], I.1.4). To find a basis for the 4-torsion in
J we have to find divisors Ẽi such that 2Ẽi = D̃i for each i = 1, ..., k − 1,
where the D̃i span the 2-torsion on the Jacobian J̃(∼=F̃ J) of X̃, as in the
odd case of (5.3). By Kummer theory ([23], 4.6), for any field L containing
F (J [2]) we have an injective group homomorphism

J̃(L)/2J̃(L) ↪→ (L∗/L∗2)k,

for which the image of the divisors D̃i may be computed explicitly to be

D̃i → (ui − u1, ..., ui − uk),

(see [3], 11.1). If D̃i = 2Ẽi and Ẽi is defined over L, then the image of the
Kummer map is zero on D̃i. Hence:

(5.6.1) Lemma. F (J [4]) = F (J [2])(
√
ui − uj ; i, j = 1, ..., k − 1). 2

(5.6.2) Remark. For k = 4, the above argument shows that F (J [4], t1) =
F (J [2], t1)(

√
ui − uj ; i, j = 1, 2, 3) One can check that this does not obstruct

the argumentation that follows.

(5.7) The Galois representations on J [4]. The groups J [M ] carry an
alternating, Galois-equivariant form, called the Weil-pairing ([17], par. 16).

Convention. To prevent us from too much duplication, we will assume
in the main text that the fourth roots of unity are contained in F , and
anything between set delimiters { } is concerned with the case when

√
−1 /∈

F .

The action of the absolute Galois group Gal(F̄ /F ) of the separable clo-
sure F̄ of F on the 4-torsion produces an action on (Z/M)2g which leaves
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invariant ({scales}) an alternating form, i.e., it is given by symplectic ma-
trices ({symplectic similitudes}). We arrive at the following diagram of
representations:

1 1
↓ ↓

ρ3 : Gal(F (J [4])/F (J [2])) ↪→ K
↓ ↓

ρ2 : Gal(F (J [4])/F ) ↪→ {G}Sp(k − 2,Z/4)
↓ ↓

ρ1 : Gal(F (J [2])/F ) ↪→ {G}Sp(k − 2,Z/2)
↓ ↓
1 1

where K is defined as the kernel of the natural reduction map

{G}Sp(k − 2,Z/4)→ {G}Sp(k − 2,Z/2).

(5.8) Linear algebra over Z/4. We will assume to have conjugated
all matrices in the above diagram such that the Weil pairing takes on the

form S = diag(J, ..., J) in the sense of block matrices, where J =

(
0 1
−1 0

)
(this is possible over Z/4 by copying the classical arguments over fields). An
element κ ∈ {G}Sp(k − 2,Z/4) is in the kernel K if and only if it is of the
form κ = 2m+ 1 and κSκt = {λ}S for some m ∈ Mat(2g × 2g) ({λ = ±1})
The symplectic condition is equivalent to 2(mS + Smt){+(1 − λ)S} = 0,
which in its turn is equivalent to mS = Smt{+1−λ

2 S} mod 2. If we write
m = (Mij) as a block matrix consisting of g2 matrices Mij of order 2 × 2,
then the symplectic condition is equivalent to

(∗) M t
ji = JMijJ mod 2 and tr(Mii) = 0{+1− λ

2
} mod 2

for all i and all j 6= i.

(5.8.1) Lemma. If [F (J [4]) : F (J [2])] = 2g(2g+1){+1}, then ρ3 is an
isomorphism.

Proof. The same κ ∈ K has two representations κ = 2m+ 1 = 2m′ + 1 if
and only ifm = m′ mod 2. This allows us to count the number of elements in

K. For i < j, choose Mij arbitrary modulo 2: this can be done in (24)
g(g−1)

2

ways. Then Mji is completely determined modulo 2 by (∗). One can then
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choose Mii of given trace modulo 2 in (23)k−2 ways ({resp. in 2 · (23)k−2

ways}). We finally see that |K| = 2g(2g+1){+1}. 2

(5.8.2) Lemma. A matrix h in Sp(k − 2,Z/4) does not have a fixed
vector of order 4 in J [4] if det(h− 1) = 2.

Proof. Let γad denote the classical adjoint of a matrix γ. Then (h −
1)ad(h− 1) = det(h− 1) · 1, so if v is a fixed vector of h,

2v = det(h− 1)v = (h− 1)ad(hv − v) = 0,

whence v is of order two. 2

(5.9) Proposition. Let k be divisible by 4, and σ the image of the
cycle (t1...tk) in Gal(F (J [2])/F ). Assume that ρ3 is an isomorphism. Then
there exist two lifts of σ to Gal(F (J [4])/F ) such that one of them has a
fixed vector of order 4 in J [4] and the other one does not. {Furthermore, if
µ4 * F , then one can choose such lifts with either action ±1 on

√
−1.}

Proof. Since ρ3 is an isomorphism, it suffices to find matrices h, h′ ∈
{G}Sp(k − 2,Z/4) lifting ρ1(σ) having/not having a fixed vector of order
4 {and having determinant ±1}. The matrix ρ1(σ) has a fixed vector v in
J [2], hence any of its lifts to {G}Sp(k− 2,Z/4) has the same fixed vector v,
which is of order two in J [4], so v = 2w for some w of order 4 in J [4]. We
fix one such lift h̄ ({resp. two such lifts h̄±, where the subscript denotes the
sign of the determinant of h̄}).

If we write ρ1(σ) with respect to a new, standard sympletic basis, we
may assume that w = ei for one of the standard vectors ei of this basis.
Indeed, choose i such that w is not orthogonal ei. Then the symplectic
transvection

x 7→ x+
(ei − w)Sxt

eiSwt
(ei − w)

preserves S and maps w to ei (see Artin [1]).
{The rest of the proof applies equally well to h± as it does to h.} There

exists a κ = 2m+ 1 ∈ K {of determinant one} such that the lift h = κh̄ to
{G}Sp(k−2,Z/4) fixes w. Indeed, since h̄2w = 2w, we have h̄w = w+2z for
some vector z. Consequently, κh̄w = w if and only if (2m+ 1)(w+ 2z) = w,
viz. 2mw = h̄w − w. Now h̄ and w = ei being given, this condition only
fixes the i-th column of m modulo two, and we can then choose m ({and
λ = 1}) to satisfy the conditions in (∗), so that κ is symplectic ({and has
determinant one}).
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On the other hand, to prove that there exists a lift h′ = κ′h for some
κ′ = 2m′ + 1 which does not fix a vector of order 4, it suffices by lemma
(5.8.2) to have that det(κ′h − 1) = 2, viz., det(h − 1 + 2m′) = 2 (since κ′

will have determinant one). Since h is constructed such that it fixes ei, the
i-th column of h− 1 is identically zero.

We introduce the following notation: for a matrix γ and an indexing set
I = {(i1, j1), ..., (il, jl)}, we denote by [γ, I] the I-th cofactor of γ (i.e., the
determinant of the matrix given by deleting the rows and columns going
through the elements γiα,jα for α = 1, ..., l). If l = 1, the cofactor is called
principal.

From the explicit form of ρ1(σ) − 1 given in (5.5), we see that its rank
(and that of h−1) is k−3 (since [ρ1(σ)−1, (1, k−2)] 6= 0). Hence at least one
of the principal cofactors of h− 1 is invertible in Z/4. This implies that one
of the cofactors of the i-th row of h−1 is a unit, say [h−1, (i, j)] = ±1 (since
all other principal cofactors are zero, as the zero row occurs in them). We
then choose m′ to have 0-entry everywhere, except m′ij = 1, and possibly one
more non-zero entry m′k,l to assure that m′ satisfies the symplectic conditions
(∗). Then by multilinearity

det(h− 1 + 2m) = 2 · [h− 1, (i, j)] + 4 · [h− 1, {(i, j), (k, l)}] = 2,

and we are done. {Note that since det(κ) = det(κ′) = 1, the lifts of h̄± have
determinant ±1.} 2

(5.10) Proposition. Fix a characteristic p > 0. Let k be a positive
integer divisible by 4. For q odd and big enough depending on p and k, there
exist non-squares e, e′ in F∗q and p, p′ irreducible polynomials in Fq(x) such
that the class number h(ep) is divisible by 8 and the class number h(e′p′) is
not.

Proof. Consider the condition

(5.10.1) [F (J [4]) : F (J [2])] = 2g(2g+1){+1}.

It is fulfilled for the “generic” hyperelliptic curve as in (5.1) over the field
F = Fp(e, σ1, ..., σk), where e, σi are independent transcendental parame-
ters. Indeed, the discriminant of f (and f̃) is then squarefree (modulo con-
stants in Fp), so if uα−uβ = uγ−uδ modulo squares, then {α, β} = {γ, δ}. It

follows from (5.6.1), that the degree [F(J [4]) : F(J [2])] is
(
k−1

2

)
= g(2g+1).

Now let F := Fp(t) for a transcendental t. Since F is Hilbertian,
Hilbert’s irreducibility theorem ([8], chapter 12) implies that there exists
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a specialization e(t), σi(t) of e, σi ∈ F to F such that (5.10.1) holds, and the
corresponding f ∈ F (x) has Galois group Sk over F . For this F and f , the
corresponding ρ3 is an isomorphism by (5.8.1).

By Chebotarëv’s theorem (see the appendix to [14]), for big enough n
(bounded below in terms of p and k), there exist primes P, P ′ of degree n
in F whose Frobenius elements act conjugate to h and h′ on J [4]. Then
since h and h′ acts like a k-cycle σ on the roots of f by construction, p :=
f mod P and p′ := f mod P ′ remain irreducible over Fq := Fl[t]/P = Fln .
If n is even or p ≡ 1 mod 4, then µ4 ⊆ Fq; if n is odd and p ≡ 3 mod 4, then
Frobq acts like −1 on

√
−1(/∈ Fq), hence we choose h− then (and similarly

for P ′ and h′).
The above constructions apply to any e(t) which is not a square in F ,

irrespective of its precise form. We choose it to be a non-square modulo P
and P ′, and set e = e(t) mod P and e′ = e(t) mod P ′.

It then makes sense to consider the reduction of the diagram in (5.7)
modulo P and P ′ respectively. We see that in the first case, Frobq = h has
a fixed vector of order 4 in J [4], so h(ep) is divisible by 8 by (5.5), (ii). In
the second case, Frobq = h′ does not have a fixed vector of order 4 in J [4],
so h(e′p′) is not divisible by 8. Also, the resulting Frobq has the right action
on
√
−1 by construction. This finishes the proof of theorem H. 2

(5.10.2) Remark. The argument of the first paragraph even applies if
k = 4. Namely, let d = [F (t1) : F ]. Then we know that we can choose the
specializations of σi to satisfy [F (t1, J [4]) : F ] = 48d. Since [F (J [2]) : F ] =
6, [F (J [4]) : F (J [2])] ≤ |K| = 8 and [F (t1, J [4]) : F (J [4])] ≤ d, both these
inequalities are actually equalities.

(5.10.3) Remark. It might be possible to suppress the dependence of
Cp,k on p by a good effective version of Hilbert irreducibility over K ([7]).

6. Supersingularity

(6.1) Proposition (Gekeler, [9]). Let φ be a Drinfeld module over a
finite field F equipped with an A-algebra structure i : A→ F . Let i = ker(i).

Then φ is supersingular if and only if the coefficient of Xqdeg(i) in φ(i) is zero.
2

(6.2) Proposition. Let φ be a Drinfeld module over a finite extension
L of K, and assume that φ(T ) = TX + gXq + ∆Xq2 for some g,∆ ∈ O,
where O is the ring of integers of L. Set j = gq+1/∆. Let B be a prime
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ideal of O, not dividing ∆, and set p = B∩A. Let lp(g,∆) be the coefficient

of Xqdeg(p) in φ(p). Then:
(i) B is a supersingular prime of φ if and only if lp(g,∆) = 0 mod B.
(ii) (“Deligne’s congruence”) lp(g,∆) = Pdeg p(j)∆

m(k)gχ(k) mod B.

Proof. The first part follows immediately from (6.1). For L = K, part (ii)
is the contents of theorem (11.5) in [11]. The proof is inductive, using the
recursion formula for Pk. A careful inspection of the arguments show that
they go through in our setting. 2

(6.3) Proof of theorem S. Let φ, g,∆, j, L,O be as in the statement of
the theorem. Assume S is the set of supersingular primes B for φ, such that
B ∩ A is of degree i ≤ k, not dividing g,∆. Since B does not divide g and
∆, we find by (6.2) that

Pi(j) = 0 mod B.

Now the congruences in (2.5) also hold modulo B (an easy check), so the
previous formula implies that B|Pk(j). Taking everything together, we find
that the following inclusion of ideals holds:

Pk(j) · O ⊆
∏
B∈S

B

since the different B are coprime. If we define degO by degO(A) = logq |O/A|
(i.e., the extension of the degree-function on O to the non-zero ideals of O),
then the above implies that either Pk(j) = 0, so j is (k, L)-lifting, or

degO(Pk(j)) ≥
∑
S

degO(B).

Using (2.3.1), we find that

degO(c
(k)
i ) = [L : K] deg(c

(k)
i ) = [L : K]qi,

and a small computation gives that

degO(Pk(j)) ≤ m(k) ·max{q[L : K], logq |O/j|}.

On the other hand,

degO(B) = f(B) deg(B ∩A),
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where f(B) = [O/B : A/(B ∩ A)] is the residue degree of B. If we assume
that L/K is Galois, and put everything together, we find∑

deg(p)≤k

f(p) deg(p)s(p) ≤ m(k) ·max{q[L : K], logq |O/j|},

where f(p) is the residue degree of p, and s(p) is the number of supersingular
primes B not dividing g,∆ and lying above p in O. 2
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