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Abstract. We determine the exact dimension of the F2-vector space of
Fq-rational 2-torsion points in the Jacobian of a hyperelliptic curve over Fq

(q odd) in terms of the degrees of the rational factors of its discriminant,
and relate this to genus theory for the corresponding function field. As a
corollary, we prove the existence of a point of order > 2 in the Jacobian of
certain real hyperelliptic curves.
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1. Introduction. Because of Cohen-Lenstra type heuristics in func-
tion fields (Friedman and Washington [4]), only the 2-primary part of the
class group of hyperelliptic curves is expected not to behave randomly. In-
deed, Artin (for “imaginary” fields), Zhang and Sémirat (in general) prove
the following theorem by developing genus theory and counting ambiguous
classes in hyperelliptic function fields:

(1.1) Theorem. (E. Artin [1], §11, X. Zhang [9], S. Sémirat [8]) Let
D = eP1 · · ·Ps, where Pi are mutually distinct monic irreducible polyno-
mials of degree di over Fq (q odd) with leading coefficient e ∈ Fq, and let
k = deg(D). Let Pic(OD) be the class group of the maximal order OD of
Fq(x,

√
D(x)) containing Fq[x]. Its 2-rank r2(D) = dimZ/2 Pic(OD)[2] is

(a) r2(D) = s− 2 if k is even, e ∈ F2
q and some di is odd;

(b) r2(D) = s − 1 if [k is odd] or [e ∈ F2
q and all di are even] or [k is

even, e ∈ Fq − F2
q and some di is odd];

(c) r2(D) = s if e ∈ Fq − F2
q and all di are even. 2

(1.2) Corollary. The class number h(D) of OD is divisible by 2r2(D),
where r2(D) is as in (1.1). 2

This theorem has a geometrical meaning. Notations being as above, let
XD be the associated hyperelliptic curve, whose affine equation is y2 = D(x).
Let JD be the Jacobian of XD. Observe that OD consists of functions on
XD which are holomorphic outside points above the place ∞ = 1

x of Fq(x).
The class group of OD fits into the following exact sequence (Rosen, [6],
4.1):

(1.3) 0→ RD → JD(Fq)→ Pic(OD)→ Z/δZ→ 0,

where RD is the group of degree zero divisor classes on XD supported at
the points at infinity, and δ is the greatest common divisor of the degrees of
the points at infinity of XD.
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It is known (loc. cit.) that δ = 1, unless e is not a square and k is even
(in which case δ = 2). Furthermore, RD is trivial, unless D is real (viz., if e
is a square and k is even). For such real D, RD is generated by the divisor
∞1−∞2, where∞1 and∞2 are the points of XD above∞. Its order is the
regulator of D (viz., |RD| = logq |εD|∞i , where εD is a fundamental unit of
OD, for any i = 1, 2). If D is not real, it is called imaginary.

The geometry contained in theorem (1.1) is that it bounds the 2-rank of
the Jacobian

r̂2(D) := dimZ/2Z JD[2](Fq)

non-trivially (from above in the imaginary case and from below in the real
case).

The aim of this paper is to show how to compute r̂2(D) exactly, only from
the data {di}si=1, independently of the arithmetic theory used in proving
theorem (1.1). More precisely:

(1.4) Theorem. For the 2-rank of JD the following holds:
(a) r̂2(D) = s− 2 if k is even and some di is odd;
(b) r̂2(D) = s− 1 if [k is odd] or [s = 1 and k = 2 mod 4];
(c) r̂2(D) = s if [s > 1 and all di are even] or [s = 1 and k = 0 mod 4].

In particular, the following supplements the divisibility result in (1.2)
(which would only give divisibility by 2):

(1.5) Corollary. For imaginary fields with D irreducible of degree
divisible by 4, the class number h(D) is divisible by 4.

Combination of theorem (1.1) and (1.4) via the sequence (1.3) leads to
the following information:

(1.6) Corollary. The following only happens when s = 1 and k is
divisible by 4, or D has only factors of even degree:

(a) For an imaginary discriminant D of even degree, all two-torsion
classes in Pic(OD) have even degree;

(b) Let ρ be the prime-to-2 part of |RD|. For a real discriminant D, the
divisor ρ(∞1 −∞2) is not further divisible in JD(Fq)[2

∞].

Here, G[2∞] denotes the 2-primary part of a group G. The imaginary
case of (1.6) is not so interesting, but for the real case, we get the following
result about the existence of higher order 2-power torsion:

(1.7) Corollary. Let D be real, such that |RD| is even. If D has a
factor of odd degree, or D is irreducible with k = 2 mod 4, then there exists
a point of order > 2 in JD(Fq)[2

∞].

The method of proof of theorem (1.4) (as for s = 1 in [2]) is to reduce the
computation of r̂2(D) to linear algebra by studying the action of Gal(F̄q/Fq)
on JD[2]. Thus, the proof has quite a different flavour from that of theorem
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(1.1). Another explanation of the peculiar behaviour observed in corollary
(1.5) was provided using class field theory in [3].

(1.8) R e m a r k. Although the higher 2-power torsion should also be-
have in some regular way, it is much more difficult to control its dependence
on D. In particular, there is in general no criterion only depending on {di}
to decide whether 2r̂2(D)+1 divides h(D) (cf. [2], theorem H(ii)).

(1.9) R e m a r k. In recent years, hyperelliptic curves over finite
fields and their divisor class groups seem to have attracted some interest in
coding theory and cryptography (cf. Koblitz [5], Scheidler et. al. [7]). The
class number and the regulator are measures for the size of the key space of
such systems.

2. The action of Galois on the 2-torsion. Let {t1, · · · , tk} be the
roots of D. Let JD[M ] denote the M -torsion of JD for any integer M . Then
JD[M ] = (Z/MZ)2g for any M coprime to q, where g is the genus of X. We
have that 2g = k − 2 if k is even and 2g = k − 1 if k is odd. We leave out
the proofs of the next lemma, which is straightforward.

(2.1) Lemma. (a) If k is odd, let ∞ be the unique point at infinity of
X, and let Di = (ti, 0)−∞ for i = 1, ..., k. Then {D1, ..., Dk} span J [2] as an
F2-vector space, subject to the single relation

∑k
i=1Di = 0. In particular,

{D1, ..., Dk−1} is a basis of JD[2].
(b) If k is even, let Di = (ti, 0)−(t1, 0) for i = 2, ..., k. Then {D2, ..., Dk}

span J [2] as an F2-vector space, subject to the single relation
∑k
i=2Di = 0.

In particular, {D2, ..., Dk−1} is a basis of JD[2]. 2

Let G be the Galois group of D over Fq, and

σ = (t1 . . . td1)(td1+1 . . . td1+d2) · · · (td1+...+ds−1+1 . . . td1+...+ds)

a generator of G, expressed as a permutation of the roots of D. We have
that JD[2](Fq) = JD[2]G, where JD[2]G is the set of G-invariant elements in
JD[2]. The equation

(2.2) ?x ∈ JD[2] : σx = x

defining a G-invariant 2-torsion point x becomes linear when expressed by
matrices w.r.t. the bases from lemma (2.1).

(2.3) N o t a t i o n. Let Pn denote the permutation matrix of an
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n-cycle, viz.,

Pn =



0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 1 0


n×n

.

Also, if m is a given matrix, let m[r] (respectively m[c]) denote the matrix
m in which the first row (respectively, the last column) has been replaced
by a complete row (column) of 1’s. If we write m[r][c], we mean that both
operations [r] and [c] have been applied to m, and the top right corner
element of m has been set to zero.

(2.4) Lemma. With respect to a suitable basis for JD[2], the action
of σ 6= 1 is as follows:

(a) If k is odd, σ = diag(Pd1 , · · · , Pdi , · · · , Pds−1)[c].
(b) If k is even and s > 1, then

σ = diag(Pd1−1, Pd2 , · · · , Pdi , · · · , Pds−1)[r][c].

(c) If k is even and s = 1, then σ1 = Pk−2[r][c].

P r o o f. If k is odd, we can assume that tσk−1 = tk since σ is not
trivial. One immediately sees that the expression for σ w.r.t. the basis from
(2.1)(a) is as indicated.

If k is odd, we can assume that tσ1 = t2. If tk−2 is not stable by σ,
then it acts via the given matrix on the basis from (2.1)(b). On the other
hand, if tσk−2 = tk−2, then the matrix of σ w.r.t. the basis from (2.1)(b) is
σ = diag(Pd1−1, Pd2 , · · · , Pdi , · · · , Pds−1)[r], but adding all rows to the last
one, we find the given expression (using that k − 2 = 0 in F2 if k is even).
2

From this, one computes immediately the solution space of the equation
(2.3).

(2.5) N o t a t i o n. For a sequence α and an integer n, let α[n] denote
the sequence α, n times repeated.

(2.6) Lemma. The solution space V of the equation (2.2) w.r.t. the
basis of lemma (2.1) has the following following form:

(a) If k is odd,

V = {(α[d1]
1 , · · · , α[ds−1]

s−1 , 0[ds−1]) : αi ∈ F2}

(b) If k is even and D has a factor of odd degree,

V = {(α[d1−1]
1 , · · · , α[ds−1]

s−1 , 0[ds−1]) : αi ∈ F2},
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subject to the condition that

(2.6.1) d1α1 + · · ·+ ds−1αs−1 = 0.

(c) If k is even and all factors of D are of even degree, then

V = {((α1, α1 + αs)
[
d1−2

2
], α1, (α2, α2 + αs)

[
d2
2
], . . .

. . . , (αs−1, αs−1 + αs)
[
ds−1

2
], (αs, 0)[

ds−2
2

], αs) αi ∈ F2};

subject to the condition that

(2.6.2)
k − 4

2
· αs = 0.

P r o o f. The result for odd k is immediate. Assume k is even. The
last ds − 1 rows of the equation (2.2) imply that the last ds − 1 coordinates
of a solution x are of the form (αs, 0, αs, . . .).

Furthermore, if s > 1, the ds−1 (respectively ds−2, . . .) preceding rows
form a kind of permutation equations, and imply that the ds−1 (respec-
tively, ds−2, . . .) preceding coordinates of x are of the form (αds−1 , αds−1 +
αs, . . . , αds−1 +αs) (respectively . . .), with αs = 0 if ds−1 is odd (respectively,
ds−2, . . .). Finally, the first row of σ leads to an extra condition of the form
(2.6.1) if some di is odd; and

α1 + αs(
d1 − 2

2
+
d2
2

+ . . .+
ds−1

2
+
ds − 2

2
) = α1,

if all di are even — which is (2.6.2). 2

P r o o f o f t h e o r e m (1.4). One only has to count the dimension
of the solution spaces in lemma (2.6). Condition (2.6.1) imposes an extra
relation since not all di are even, and condition (2.6.2) only imposes an extra
relation if s = 1 and k = 2 mod 4. 2

3. Special 2-torsion classes. We will now prove the corollaries.
First of all, (1.5) needs no further explanation.

(3.1) The first claim of corollary (1.6) follows immediately from (1.1),
(1.3) and (1.4). However, we will prove it independently. Assume that D
is imaginary of even degree. If D has a factor P of odd degree, then there
is a 2-torsion class of odd degree, namely the class of the ideal above P in
OD (which is not principal). If all di are even, then all ambiguous ideals
(viz., ideals I such that I = I−1) have even degree, but there is the unique
ambiguous class (viz., an ideal class [I] such that [I] = [I]−1 in Pic(OD))
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which is not the class of any ambiguous ideal (cf. Artin, loc. cit.). It is the
class of the ideal (C,B +

√
D) if we write D = eC2 + B2 for some C of

degree k
2 and deg(B) < deg(C). The parity of its degree is well-defined and

equal to deg(C) = k
2 mod 2. If s > 1 and all di are even, then k is divisible

by 4; in particular, the degree of the ambiguous class is even. On the other
hand, if s = 1, then the ambiguous class has even degree exactly when k is
divisible by 4. This is what we wanted to prove. 2

(3.2) I know of no independent proof of the second fact of corollary (1.6).
It follows from (1.1) and (1.4) in the following way. The divisor ρ(∞1−∞2)
has order |RD|/ρ in JD[2∞]. If it is not further divisible, then we can write

JD[2∞] = Z/2a1 × · · · × Z/2ar ,

where 2a1 = |RD|/ρ and r = r̂2(D) is the geometric rank. Since the whole
group of order 2a1 coincides with RD[2∞], it is killed by the map JD[2∞]→
Pic(OD)[2∞], so the 2-rank of the latter group would satisfy r2(D) = r̂2(D)−
1. Looking at theorem (1.1) and (1.4), this only happens in the real case if
s = 1 and k is divisible by 4, or all di are even. 2

(3.3) The claim of corollary (1.7) can be proved as follows: by (1.6),
ρ(∞1 −∞2) is further divisible in JD[2∞], say = 2D, where D is of order
> 2 (2D = ρ(∞1 −∞2) 6= 0 since |RD| is even). 2
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