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♠

Diangle groups should make you think of triangle groups. Let Γ ⊆ PSL(2,R)
be a discrete co-compact group with presentation

Γ ∼= 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γk |
∏

[αi, βi] = 1,
∏

γj = 1, γ
mj

j = 1〉.

Here, γi are elliptic elements, the other ones being hyperbolic. Such a group
acts by fractional transformations on the upper half plane H, and one can
compute the hyperbolic volume of a fundamental domain

µ(Γ) := vol(Γ\H) = 2π(2g − 2 +
k∑
j=1

(1− 1

mj
).

If S is a Riemann surface of genus g ≥ 2, its universal covering space is H,
and S is isomorphic to a space of the form ΓS\H for such a group ΓS without
elliptic elements (its fundamental group). If NS denotes the normalizer of ΓS
in PSL(2,R), then the automorphism group of S is isomorphic to NS\ΓS ,
so we have

|Aut(S)| = |NS

ΓS
| = µ(ΓS)

µ(NS)
=

4π(g − 1)

µ(NS)
≤ 84(g − 1),

the latter since one can estimate that µ(Γ) ≥ π
21 for any such group Γ

(in particular for Γ = NS). This bound is known as Hurwitz’s bound,
and in order to maximize |Aut(S)|, it now seems reasonable to minimize
µ(NS), so g(NS\H) and k. As it turns out that k ≥ 3 always holds, one
arrives at triangle groups, which are defined to be groups Γ as above with
(g = 0, k = 3) as signature. By fixing a free normal subgroup ΓS of Γ, they
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correspond to coverings of P1 ramified above three points with ramification
indices (m1,m2,m3) given by ΓS\H → Γ\H = P1. A favourite example
of such a triangle group is the fundamental group of the modular curve
X(7) of genus 3, also known as Klein’s quartic, which has 84(3 − 1) = 168
automorphisms. The appetizer for this talk is that, although k ≥ 3 in
characteristic zero, diangle groups exist in positive characteristic (i.e.,
signature (g = 0, k = 2) groups).

♠

We will review a few known facts in the following table. Let k be an al-
gebraically closed field. In the table, bounds on |Aut(X)| for a projective
curve X over k of genus g ≥ 2 will be given in terms of the data in the side
bars.

X= any curve X = ordinary curve X=Mumford curve

char(k) = 0 84(g − 1) ×× 12(g − 1)
(Hurwitz) ×× (Herrlich ’80)

char(k) = p > 0 16g4 + 1 exc. 84g(g − 1) ??
(Stichtenoth ’73) (S. Nakajima ’87) ??

Let us explain the ingredients of this table. For a curve X over a field k of
positive characteristic p > 0, one defines the p-rank of X to be

γ = dimFpJac(X)[p].

It is always true that γ ≤ g, and if equality holds, one says that X is or-
dinary (which is a Zariski dense property in the moduli space of all curves
over k). For a general curve X, there is the bound of Stichtenoth – where
“+1 exc.” means that there is one exception to the bound (a Fermat curve)
– but it turns out that curves with many automorphisms tend to have a low
p-rank. This is already reflected in Nakajima’s bound, which is quadratic in
the genus. However, the main observation is that there is no known family
{Xi}∞i=1 of curves of strictly increasing genus g(Xi+1) > g(Xi) whose num-
ber of automorphisms |Aut(Xi)| attains a quadratic polynomial in g(Xi).
Rather, only such families are known that attain a third degree bound in√
g(Xi).

♠
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The proofs of Stichtenoth and Nakajima use the generalization of Hurwitz’s
formula connecting the genera of X and Aut(X)\X via the ramification
divisor, to which, in positive characteristic, also the higher groups in the
ramification filtration contribute. Thus, their proofs have a different flavour
than the one for Riemann surfaces mentioned above using hyperbolic vol-
umes, which is more analytic. To do this kind of analytical proof over other
fields, one need rigid analysis. Although over a non-archimedean valued
field k (with residue class field k̄), compact rigid-analytic and projective al-
gebraic curves can still be identified, the analogue of the dualism to discrete
group theory is of quite a different nature, as not all curves admit the same
universal topological covering space (e.g., curves having good reduction are
analytically simply connected). But Mumford has shown that curves whose
stable reduction is split multiplicative (i.e., a union of rational curves inter-
secting in k̄-rational points) are isomorphic to an analytic space of the form
Γ\(P1

k −LΓ), where Γ is a discontinuous group in PGL(2, k) with LΓ as set
of limit points. Thus, the theory of non-archimedean discrete groups is both
more restrictive than the complex analytic one (as it cannot be applied to
any curve), and more powerful, as it can lead to stronger results for such
so-called Mumford curves. This is already apparent in the result of Herrlich
for p-adic curves (one has to assume char(k̄) ≥ 7 in the above table).

♠

It turns out that, in positive characteristic, Mumford curves are ordinary
(basically, because the Jacobian is uniformzable by (k∗)g/Γab). The question
remains what should be in place of the question marks in the above table,
and our main result answers this question:

Theorem ([CoKaCo]). Let X be a Mumford curve of genus g ≥ 2 over a
non-archimedean valued field of characteristic p > 0. Then

|Aut(X)| ≤ max{12(g − 1), F (g) := 2
√
g(
√
g + 1)2}.

Let us first make a few remarks about this theorem. We use the notation
Zn, Dn for the cyclic and dihedral group of order n and 2n, respectively.
• If Γ is the Schottky group of X, then Aut(X) = N/Γ, where N is the
normalizer of Γ in PGL(2, k).
• We need the “max” in the theorem. Although 12(g − 1) > F (g) only for
g ∈ {5, 6, 7, 8}, there does exists, e.g., a 1-dimensional family of icosahedral
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Mumford curves of genus 6 (so |Aut(X)| = |A5| = 12(6− 1)). These occur,
e.g., for the normalizer N = A5 ∗Z5 D5.
• The bound is sharp. It is attained by the so-called Artin-Schreier-Mumford
curves whose affine equation is given by

Xt,c : (xp
t − x)(yp

t − y) = c

for an integer t and c ∈ k∗ with |c| < 1.1 The reduction of this curve is a
“chess board” with (pt− 1)2 holes, so the curve is Mumford and its genus is
gt := (pt− 1)2. Its automorphism group is isomorphic to At := Z2t

p oDpt−1.
The normalizer of its Schottky group is isomorphic to

Nt = (Ztp o Zpt−1) ∗Zpt−1
Dpt−1.

The Schottky group of Xt,c is generated by the commutators [ε, γεγ], for
all ε ∈ Ztp, where γ is a fixed involution in Dpt−1 − Zpt−1. Note that
Xt,c → At,c\Xt,c = P1 is ramified above three points in p ≥ 3 and above
two points if p = 2, so here is our first diangle group!

♠

Let us now say something about the proof, which actually yields more: it
provides a kind of classification of those curves X for which |Aut(X)| >
12(g − 1). There are three steps. The first one is to observe that, by Hur-
witz’s techniques, the bound is O.K. unless if X → Aut(X)\X is a cover of
P1 ramified above ≤ 3 points (just one branch point cannot occur, since we
assume the curve is ordinary). In the second step, all such covers are clas-
sified into families according to the abstract structure of the corresponding
N . In the third step, the bounds are established in each of these cases using
a mixture of combinatorial group theory and algebraic geometry.
In the second step, the structure of N can be studied by its action on the
Bruhat-Tits tree T of PGL(2, k). Although this principle of proof was also
used by Herrlich in the p-adic case, the quintessence of our techniques is
rather different. In the p-adic case the expected bound is linear in the genus,
and this allows Herrlich to restrict to normalizers that are the amalgam of

1T. Sekiguchi asked during the talk whether the Artin-Schreier-Mumford curves are
the unique curves that attain the (numerical) bound of the theorem. It turns out that
this is correct – at least when g /∈ {5, 6, 7, 8} – as will be shown in forthcomming work of
Cornelissen and Kato.
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two finite groups. In positive characteristic, the expected bound is not linear
in the genus, so we have to consider more complicated normalizers. We
therefore investigate directly the link between the ramification in π : X →
S := Aut(X)\X and the combinatorial geometry of the analytic reduction
of S.
Let TN (respectively T∗N ) be the subtree of T which is generated by the
limit points of Γ, seen as ends of T (respectively the limit points together
with the fixed points of torsion elements in N). The quotients TN = N\TN
and T ∗N = N\T∗N are homotopic to the intersection graph of the analytic
reduction of S as a rigid analytic space, but T ∗N has finitely many ends
attached to it, which are in bijection with the points above which π is
branched. The advantage of using T ∗N instead of the usual TN lies in the
following key proposition, which replaces the “restriction to an amalgam of
two groups” in the p-adic case: If T is a subtree of T ∗N having the same
ends as T ∗N , then T is a contraction of T ∗N , i.e., every geodesic connecting
a point from T ∗N − T to T is a path on which the stabilizers of vertices are
ordered increasingly w.r.t. inclusion in the direction of T . In particular, the
amalgams associated to T and T ∗N are the same (= N). The proof of this
result is very combinatorial and depends on the structure theorem for finite
subgroups of PGL(2, k). It is then enough to consider a simpler subtree T
of T∗N which is a “line” if m = 2 and a “star” if m = 3. We then show that
only finitely many types of such trees T (and hence, of such groups N) exist,
and this gives the classification of possible N . The analogue of hyperbolic
volume in the case of a tree such as TN is given by

µ(TN ) =
∑

[vw]∈E(TN )

1

|Nvw|
−

∑
v∈V (TN )

1

|Nv|
,

where E, V are the sets of edges and vertices of TN , respectively, and Nx is
the stabilizer of x (be it an edge or vertex) for the action of N . The main
theorem is equivalent to

µ(TN ) ≥ min{ 1

12
,

√
g − 1

2
√
g(
√
g + 1)

}.

♠

At the end of this talk, I want to finish by showing a typical diangle group!
It corresponds to the normalizer

N = PGL(2, pt) ∗Zt
poZpt−1

Ztdp o Zpt−1,
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which is one of the seven families of “diangle” N ’s. One can wonder what
orbifold this is the normalizer of. It turns out to be an arithmetical object.
Let q = pt, F = Fq(T ), and A = Fq[T ]; let F∞ = Fq((T

−1)) be the
completion of F and C a completion of the algebraic closure of F∞. On
Drinfeld’s “upper half plane” Ω := P1

C − P1
F∞

(which is a rigid analytic
space over C), the group GL(2, A) acts by fractional transformations. Let
Z ∼= F∗q be its center. For n ∈ A, the quotients of Ω by congruence subgroups
Γ(n) = {γ ∈ GL(2, A) : γ = 1 mod n} are open analytic curves which can
be compactified to projective curves X(n) by adding finitely many cusps.
These are moduli schemes for rank two Drinfeld modules with principal level
structure. They turn out to be Mumford curves for the free group Γ which
splits the inclusion Γ(n)tor � Γ(n), where Γ(n)tor is the subgroup generated
by torsion elements. It turns out that the normalizer of Γ is N , and for
p 6= 2 or q 6= 3, the automorphism group of the Drinfeld modular curves
X(n) is the “modular” automorphism group G(n) := Γ(1)/Γ(n)Z. That
these are genuine diangle groups can be seen from the fact that the TN has
only two ends, which are stabilized by Zq+1 and Ztdp o Zpt−1, respectively.
These correspond exactly to the ramification groups in X(n)→ X(1) = P1.

♠

Based on the above material, one can conjecture that for any ordinary curve
of genus g ≥ 2 over a field k of positive characteristic, the following bound
should hold

|Aut(X)| ≤ max{84(g − 1), F (g) := 2
√
g(
√
g + 1)2}.

(notice the factor 84!). Can one prove such a result by a kind of deforma-
tion of an ordinary curve with many automorphisms to a totally degenerate
curve?2

2At least, it is possible to compute the dimension of the first order equivariant defor-
mation space of Mumford curves and of ordinary curves, as will be shown in forthcomming
work of Cornelissen and Kato.
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