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LECTURE 1
Differential operators

1.1. Differential operators I: trivial coefficients

In this section we discuss differential operators acting on spaces of functions on
a manifold, while in the next section we will move to those acting on spaces of
sections of vector bundles. We first discuss differential operators on an open
subset U ⊂ Rn.

We use the following notation for multi-indices α ∈ Nn :

|α| =
n∑

j=1

αj ; α! =
n∏

j=1

αj !.

Moreover, if β ∈ Nn we write α ≤ β if and only if αj ≤ βj for all 1 ≤ j ≤ n. If
α ≤ β we put (

β
α

)
:=

n∏
j=1

(
βj

αj

)
.

Finally, we put ∂j = ∂/∂xj and

(1.1) xα =
n∏

j=1

x
αj

j , ∂α = ∂α1
1 · · · ∂

αn
n .

Lemma 1.1.1. (Leibniz’ rule) Let f, g ∈ C∞(U) and α ∈ Nn. Then

∂α(fg) =
∑
β≤α

(
α
β

)
∂βf ∂α−βg.

Proof Exercise. �

In what follows, we will use the notation C∞(U) for the space of smooth
complex-valued function on U ; we denote by End(C∞(U)) the space of C-linear
maps P : C∞(U)→ C∞(U), maps that we will also call “operators on U”.

Definition 1.1.2. A differential operator of order at most k ∈ N on U is an
operator P ∈ End(C∞(U)) of the form

(1.2) P =
∑
|α|≤k

cα ∂
α,

with cα ∈ C∞(U) for all α.

Hence such an operator acts on a function f = f(x) on U by

P (f)(x) =
∑
|α|≤k

cα(x) (∂αf)(x).

The linear space of differential operators on U of order at most k is denoted
by Dk(U). The union of these, for k ∈ N, is denoted by D(U). Via Leibniz’
rule one easily verifies that the composition of two differential operators from
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Dk(U) and Dl(U) is again a differential operator, in Dk+l(U). Accordingly, the
set D(U) of differential operators is a (filtered) algebra with unit.

To pass top general manifold, the most natural way to proceed is to first
prove that the spaces Dk(U) are invariant under coordinate changes (i.e. Ex-
ercise 1.1.7), then to “glue” these spaces together. However, we will follow a
shorter path which takes advantage of the fact that differential operators are
local.

Definition 1.1.3. Let M be a smooth manifold. A linear operator P ∈
End(C∞(M)) is called local if

supp(P (f)) ⊂ supp(f) ∀ f ∈ C∞(M).

Exercise 1.1.4. Show that P is local if and only if for any f ∈ C∞(M) and
any open U ⊂M , one has the implication:

f |U = 0 =⇒ P (f)|U = 0.

Lemma 1.1.5. There is a unique way to associate to any local operator P ∈
End(C∞(M)) on a manifold M and any open U ⊂M , a “restricted operator”

PU = P |U ∈ End(C∞(U))

such that, for all f ∈ C∞(M) ,

PU (f |U ) = P (f)|U
and, for V ⊂ U , (P |U )|V = P |V .

Proof For f ∈ C∞(U), let’s look at what the value of PU (f) ∈ C∞(U) at
an arbitrary point x ∈ U can be. We choose a function fx ∈ C∞(M) which
coincides with f in an open neighborhood Vx ⊂ U of x. From the condition in
the statement, we must have

PU (f)(x) = P (fx)(x).

We are left with checking that this can be taken as definition of PU . All we
have to check is the independence of the choice of fx. But if gx is another one,
then fx − gx vanishes on a neighborhood of x; since P is local, we deduce that
P (fx)−P (gx) = P (fx− gx) vanishes on that neighborhood, hence also at x. �

The main property of local operators can be represented in local charts: if
(U, κ) is a coordinate chart, then P |U can be moved to κ(U) using the pull-back
map

κ∗ : C∞(κ(U))→ C∞(U), κ∗(f) = f ◦ κ,

C∞(U) P // C∞(U)

C∞(κ(U))
Pκ

//

κ∗

OO

C∞(κ(U))

κ∗

OO

to obtain an operator

Pκ : C∞(κ(U))→ C∞(κ(U)), Pκ = κ∗(P |U ) = (κ∗)−1 ◦ P |U ◦ κ∗.
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Definition 1.1.6. Let M be a smooth manifold. A differential operator
of order at most k on M is a local linear operator P ∈ End(C∞(M)) with the
property that, for any coordinate chart (U, κ), Pκ ∈ Dk(κ(U)).

The space of operators on M of order at most k is denoted by Dk(M).

Note that the condition on a coordinate chart (U, κ = (xκ
1 , . . . , x

κ
n)) simply

means that P |U is of type

PU =
∑
|α|≤k

cα(x) ∂α
κ ,

with cα ∈ C∞(U). Here ∂α
κ act on C∞(U) and are defined analogous to ∂α

but using the derivative along the vector fields ∂/∂xκ
j induce by the chart.

Note also that, in the previous definition, it would have been enough to require
the condition only for a family of coordinate charts whose domains cover M .
This follows from the invariance of the space of differential operators under
coordinate changes:

Exercise 1.1.7. Let h : U → U ′ be a diffeomorphism between two open
subsets of Rn and consider the induced map

h∗ : End(C∞(U))→ End(C∞(U ′)), h∗(P ) = (h∗)−1 ◦ P ◦ h∗.
Show that h∗ maps D(U) bijectively onto D(U ′).

Deduce that a local operator P ∈ End(C∞(M)) on a manifold M is a
differential operator of order at most k if and only if for each x ∈ M there
exists a coordinate chart (U, κ) around x such that Pκ ∈ Dk(κ(U)).

Exercise 1.1.8. Show that any differential operator P ∈ D1(M) can be writ-
ten as

P (φ) = fφ+ LV (φ)
for some unique function f ∈ C∞(M) and vector field V on M , where LV (f) =
V (f) = df(V ) is the derivative of f along V .

Exercise 1.1.9. This exercise provides another possible (inductive) definition
of the spaces Dk(M). For each f ∈ C∞(M), let mf ∈ End(C∞(M)) be the
“multiplication by f” operator. The commutator of two operators P and Q is
the new operator [P,Q] = P ◦Q−Q ◦ P .

Starting with D−1(M) = 0, show that Dk(M) is the space of linear operators
P with the property that

[P,mf ] ∈ Dk−1(M) ∀f ∈ C∞(M).

Next, we discuss the symbols of differential operators.

Definition 1.1.10. Let U ⊂ Rn and let P ∈ Dk(U) be of the form (1.2). The
full symbol of the operator P is the function σ(P ) : U × Rn → C defined by

σ(P )(x, ξ) =
∑
|α|≤k

cα(x)(iξ)α.

The principal symbol of order k of P is the function σk(P ) : U × Rn → C,

σk(P )(x, ξ) =
∑
|α|=k

cα(x)(iξ)α.
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A nice property of the principal symbol has, which fails for the total one is
its multiplicativity property.

Exercise 1.1.11. Let P ∈ Dk(U) and Q ∈ Dl(U). Then the composition QP
belongs to Dk+l and

σk+l(QP ) = σl(Q)σk(P ).

It is not difficult to check the following formulas for the symbols:

σ(P )(x, ξ) = e−iξP (eiξ)(x), σk(P )(x, ξ) = lim
t→∞

t−ke−itξP (eitξ)(x).

Here we have identified ξ with the linear functional x 7→
∑
ξjxj . Accordingly,

eiξ stands for the function x 7→ eiξx. See also below.
Although the total symbol may look more natural then the principal one,

the situation is the other way around: it is the principal symbol that can be
globalized to manifolds (hence expressed coordinate free). Again, one natural
way to proceed is to prove the invariance of the principal symbol under coordi-
nate changes (but first one has to interpret the space U ×Rn of variables (x, ξ)
correctly- and that is to view it as the cotangent bundle of U). However, we
will follow a shorter path, based on the above formula for the symbol. First of
all, we need a version of this formula which is more coordinate free.

Lemma 1.1.12. Let U ⊂ Rn, P ∈ Dk(U). For (x, ξ) ∈ U × Rn, choose
ϕ ∈ C∞(U) such that

(dϕ)x =
n∑

j=1

ξj(dxj)x

(hence ∂j(ϕ)(x) = ξj for all j). Then

σk(P )(x, ξ) = lim
t→∞

t−ke−itϕ(x)P (eitϕ)(x).

Proof Left to the reader. The proof follows by application of Leibniz’ rule. �

One advantage of the previous lemma is that it is most natural to view ξ
as a variable in the dual of Rn. Accordingly, U × Rn should be viewed as the
cotangent bundle T ∗U. In other words, the principal symbol should be viewed
as the function

σk(P ) : T ∗U → C, ξ1(dx1)x + . . .+ ξn(dxn)x 7→
∑
|α|=k

cα(x)(iξ)α.

Exercise 1.1.13. Check directly that the principal symbol behaves well un-
der coordinate changes. More precisely, let h : U → U ′ be a diffeomorphism
between two opens U,U ′ ⊂ Rn. It induces the map T ∗h : T ∗U → T ∗U ′ given by
T ∗h(x, ξ) = (h(x), ξ ◦Txh

−1). Accordingly we have the map h∗ : C∞(T ∗U) →
C∞(T ∗U ′) given by h∗σ = σ ◦ (T ∗h)−1. Thus,

h∗σ(x, ξ) = σ(h−1(x), ξ ◦Txh).

Show that, for all P ∈ Dk(U),

σk(h∗(P )) = h∗(σk(P )).
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Moreover, the previous characterization of the principal symbol can be taken
as definition when we pass to manifolds. More precisely, given P ∈ Dk(M) on
a manifold M , one defines the principal symbol (of order k) of P as the smooth
function

σk(P ) : T ∗M → C
given by

σk(P )(ξx) = lim
t→∞

t−ke−itϕ(x)P (eitϕ)(x).

where, for x ∈ M , ξx ∈ T ∗xM , ϕ ∈ C∞(M) is chosen so that (dϕ)x = ξx.
The fact that this definition does not depend on the choice of ϕ follows from
the local case (previous lemma). Indeed, choosing a coordinate chart (U, κ =
(xκ

1 , . . . , x
κ
n)) around x, the data over U consisting of x, ξx, P, ϕ is pushed for-

ward by κ to similar data over κ(U):

xκ = κ(x), ξκ = ξx ◦ (dκ−1)κ(x), Pκ = (κ−1)∗ ◦ P ◦ κ∗, ϕκ = ϕ ◦ κ−1

and it is clear that, already before taking the limit,

t−ke−itϕκ(x)P (eitϕκ)(xκ) = t−ke−itϕ(x)P (eitϕ)(x).

In conclusion,

Corollary 1.1.14. For P ∈ Dk(M), there is a well-defined smooth function

σk(P ) : T ∗M → C

such that, for any coordinate chart (U, κ = (xκ
1 , . . . , x

κ
n)),

T ∗xM 3 ξ1(dxκ
1)x + . . .+ ξn(dxκ

n)x
σk(P )−→ σk(Pκ)(κ(x), ξ1, . . . , ξn) ∈ C.

Definition 1.1.15. Let P ∈ Dk(M). The function σk(P ) : T ∗M → C is called
the principal symbol of order k of the operator P.

Exercise 1.1.16. Let V be a vector field on M , f ∈ C∞(M) and let P be the
corresponding differential operator from Exercise 1.1.8. Show that the principal
symbol of P is given by σ1(P )(x, ξ) = ξ(Vx).

Exercise 1.1.17. Let P ∈ Dk(M) andQ ∈ Dl(M). Show thatQP ∈ Dk+l(M).
Moreover, σk+l(QP ) = σl(Q)σk(P ). Hint: use reduction to charts.

Exercise 1.1.18. Show that, for any P ∈ Dk(M) and any f ∈ C∞(M) and
all ϕ ∈ C∞(M)

(1.3) f(x)σk(P )((dϕ)x) = lim
t→∞

t−ke−itϕ(x)P (eitϕf)(x).

Finally, here is another interpretation of the (principal) symbol, which takes
into account the fact that σk(P )(x, ξ) is not only smooth in ξ, but actually
polynomial. Recall first the formalism that allows us to handle polynomials in
a coordinate free manner. Let V be a finite dimensional vector space real or
complex). Recall that a function p : V → C is called polynomial of degree k if,
for some (or, equivalently, any) basis {e1, . . . , en} of V , p is of the type

p(v) =
∑
|α|=k

pαv
α =

∑
|α|=k

pαv
α1
1 . . . vαn

n ,
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where the sum is over multi-indices α = (α1, . . . , αn) and pα ∈ C. We denote
by Polk(V ) the space of such functions. The key remark is that this space
is canonically isomorphic to the more intrinsic space SkV ∗ consisting of all
multilinear symmetric maps

p : V × . . .× V︸ ︷︷ ︸
k timers

→ C.

The identification between SkV ∗ and Polk(V ) associates to the symmetric func-
tion p on k-variables, the function

p(v) := p(v1, . . . , vk).

Exercise 1.1.19. Prove that, indeed, this defines a bijection between SkV ∗

and Polk(V ).

Passing to duals, one obtains an identification between Polk(V ∗) and SkV .
As usual, the operation V 7→ SkV extends to vector bundles so that, for any
vector bundle E over a manifold M , one forms a new vector bundle SkE over
M whose fiber above x ∈ M is SkEx. By the discussion above, any section
of SkE can be interpreted as a smooth function on the manifold E∗. With
these at hand, it should be clear now that the principal symbol of an operator
P ∈ Dk(M) becomes a section

σk(P ) ∈ Γ(SkTM).

1.2. Differential operators II: arbitrary coefficients

We shall now introduce the notion of a differential operator between smooth
vector bundles E and F on a smooth manifold M , acting at the level of sections

(1.4) P : Γ(E)→ Γ(F ).

It is useful to have in mind that degree zero differential operators correspond
to sections C ∈ Γ(Hom (E,F )) i.e. smooth maps

M 3 x 7→ Cx ∈ Hom(Ex, Fx).

More precisely, any such C defines an operator C : Γ(E) → Γ(F ) acting on
sections by

C(s)(x) = Cx(s(x)).

Exercise 1.2.1. Show that this construction defines a 1-1 correspondence
between sections of Hom (E,F ) and maps from Γ(E) to Γ(F ) which are C∞(M)-
linear.

As before, differential operators P : Γ(E) → Γ(F ) will have the important
property of locality: for any s ∈ Γ(E),

supp(P (s)) ⊂ supp(s).

And, as in the previous section (and by a similar argument), any such local
operator can be restricted to opens U ⊂M to induce operators

PU = P |U : Γ(E|U )→ Γ(F |U )

so that P (s)|U = PU (s|U ) and, for all V ⊂ U , (PU )V = PV .
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For the precise definition of differential operators between sections of vector
bundles there are many different but equivalent ways to proceed. The most
natural one is probably to assume locality, discuss the local case first (over
domains of charts and trivializations of the bundles), prove that the outcome is
independent of the choices, and then “glue” the local pieces together. Here is a
less natural but shorter way to proceed. The idea is to pass right away to the
case of of the trivial line bundles (i.e. to the previous section), in a coordinate
free manner. Given a linear operator (1.4), the key remark is that any sections

e ∈ Γ(E), λ ∈ Γ(F ∗)

induce a linear operator

Pe,λ : C∞(M)→ C∞(M), Pe,λ(f) := λ(P (fs))

(where, as above, we interpret λ as a linear map Γ(F )→ C∞(M)). Note that,
intuitively, the choice of (arbitrary) e and λ allows us to avoid working with
coordinates (with respect to (local) frames of E and F ); however, Pe,λ can be
thought of as “the (e, λ) global coordinate of P”.

Definition 1.2.2. We say that P : Γ(E)→ Γ(F ) is a differential operator
of order at most k from E to F if

Pe,λ ∈ Dk(M) ∀ e ∈ Γ(E), λ ∈ Γ(F ∗).

.
The space of such operators is denoted by Dk(M ;E,F ), or simply Dk(E,F ).

With this definition, locality is a consequence.

Proposition 1.2.3. Given two vector bundles E and F over M ,
(i) any differential operator P ∈ Dk(E,F ) is local and, for any U ⊂ M

open, the restriction

PU = P |U : Γ(E|U )→ Γ(F |U )

belongs to Dk(E|U , F |U ).
(ii) conversely, if P ∈ Γ(E) → Γ(F ) is a local operator with the property

that each point x ∈ M has an open neighborhood U such that P |U ∈
Dk(E|U , F |U ), then P ∈ Dk(M ;E,F ).

Proof Note first that, for any vector bundle E, there exists an integer l and
sections

e1, . . . , el ∈ Γ(E), λ1, . . . , λl ∈ Γ(E∗)
such that, for any s ∈ Γ(E),

s = λ1(s)e1 + . . .+ λl(s)el.

Indeed, a basic property of vector bundles is that one can always find another
vector bundle E′ such that E ⊕ E′ is isomorphic to the trivial bundle M × Cl

for some l. This isomorphism is encoded in a global frame ẽ1, . . . , ẽl of E ⊕E′.
Define then ej to be the first component of ẽj and λj(s) to be the j-th coordinate
of (s, 0) ∈ E ⊕ E′ with respect to this frame.

Returning to our proposition, assume that P ∈ Dk(E,F ), s ∈ Γ(E) vanishes
on U ⊂ M and we show that also P (s) vanishes on U (i.e. we use a version of
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Exercise 1.1.4). But the previous discussion shows that, if s|U = 0, then s can
be written as a sum

s = f1e1 + . . .+ flel

with ej ∈ Γ(E), fj ∈ C∞(M) with fi|U = 0 (take fj = λj(s)). But then, for
any λ ∈ Γ(F ∗),

λ(P (s)) = Pe1,λ(f1) + . . .+ Pel,λ(fl)
hence, from the locality of the operators Pe,λ, we deduce that P (s)|U is killed
by all λ ∈ Γ(F ∗), hence P (s)|U = 0.

Next, we postpone for the moment the proof of the fact that P |U ∈ Dk(E|U , F |U )
and we concentrate on the last part of the proposition. Hence assume that
P ∈ Γ(E)→ Γ(F ) is local and satisfies the properties from the statement. We
have to show that, for any e ∈ Γ(E), λ ∈ Γ(F ∗), Pe,λ ∈ Dk(M). But note that,
for any U ,

Pe,λ|U = (P |U )e|U ,λ|U
hence it suffices to combine the hypothesis with the last part of Exercise 1.1.7.

Finally, assume that P ∈ Dk(E,F ) and we prove that the restrictions P |U :
Γ(E|U )→ Γ(F |U ) are in Dk(E|U , F |U ). Let e ∈ Γ(E|U ), λ ∈ Γ(F ∗|U ); we show
that Q := (P |U )e,λ belongs to Dk(U). As before, we have to make sure that
any x ∈ U has an open neighborhood Vx ⊂ U such that Q|V ∈ Dk(U). Just
use Vx = V so that e|V and λ|V admit smooth extensions ẽ, λ̃ to M , so that
Q|V = Pẽ,f̃ |V will belong to Dk(U). �

Exercise 1.2.4. Show that, for any two vector bundles E and F over a man-
ifold M , the assignment

U 7→ Dk(E|U , F |U )
(U ⊂M open) is a sheaf on M .

Of course, with (ii) of the proposition in mind, we can go on and give slightly
different definitions, based on the local data. For instance, if U is an open on
which E and F are trivializable, with (fixed) trivialization frames

e = {e1, . . . , ep}, f = {f1, . . . , fq},
then the restriction to U of a local operator P : Γ(E)→ Γ(F ) is of type

P |U (ej) =
∑

k

P (e, f)k
j fk,

i.e. it is determined by a matrix of operators acting on C∞(U):

(P (e, f)k
j )1≤j≤p,1≤k≤q.

Exercise 1.2.5. Show that a linear operator P : Γ(E)→ Γ(F ) is in Dk(E,F )
if and only if it is local and, for each x ∈ M , there is an open U containing
x and local frames e and f of E and F over U , such that all the components
P (e, f)k

j are in Dk(U).

To express differential operators in perms of partial derivatives, we have to
restrict to opens U ⊂M with

1. U is the domain of a (fixed) coordinate chart (U, κ = (xκ
1 , . . . , x

κ
n)).
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2. E is trivializable over U , with a (fixed) frame {s1, . . .} over U .
Note that, in this case, we have “higher order derivatives operators”

∂α
κ : Γ(E)→ Γ(E), f1s1 + . . . 7→ ∂α

κ (f1)s1 + . . . .

Exercise 1.2.6. With the previous notations, show that a linear map P :
Γ(E|U ) → Γ(F |U ) is a differential operator of order at most k if and only if it
is of the form

P =
∑
|α|≤k

Cα ◦ ∂α,

with Cα ∈ Γ(Hom (E|U , F |U )).

We extend the definition of principal symbol as follows. We denote by
π : T ∗M → M the canonical projection. For a vector bundle E over M , let
π∗E be the pull-back of E to T ∗M (whose fiber above ξx ∈ T ∗xM is Ex). For
two vector bundles E and F over M , we consider the vector bundle Hom (E,F )
over M (whose fiber above x ∈M is Hom(Ex, Fx)) and its pull-back to T ∗M ,

π∗Hom (E,F ) ∼= Hom (π∗E, π∗F )

whose fiber above ξx ∈ T ∗xM is Hom(Ex, Fx).

Lemma 1.2.7. Let E,F be smooth vector bundles on M and let P ∈ Dk(E,F ).
There exists a unique section σk(P ) of π∗Hom (E,F ) (called again the prin-
cipal symbol of P ), i.e. a smooth function

T ∗x 3 ξx 7→ σk(P )(ξx) ∈ Hom(Ex, Fx),

with the following property: for each x0 ∈M and all s ∈ Γ(E) and ϕ ∈ C∞(M),

(1.5) σk(P )((dϕ)x0)(s(x0)) = lim
t→∞

t−ke−itϕ(x0)P (eitϕs)(x0).

Moreover, for each x ∈ M the function ξ 7→ σk(P )(x, ξ) is a degree k homoge-
neous polynomial function T ∗xM → Hom(Ex, Fx).

Proof Uniqueness follows from the fact that for every (x, ξ) ∈ T ∗M and v ∈ Ex

there exists a s ∈ Γ∞(E) such that s(x) = v and a function ϕ ∈ C∞(M) such
that dϕ(x) = ξ. We have to check that, fixing x0 ∈M , the right hand side of the
formula only depends on ξ := (dϕ)x0 and on s(x0), and the dependence is linear
on s(x0) and polynomial in ξ. We denote this formula by σ(ξ, s). Applying an
arbitrary λ ∈ Γ(F ∗) we obtain

λ(σ(ξ, s)) = σk(Ps,λ)(ξ),

hence λ(σ(ξ, s)) only depends on ξ (and in a polynomial fashion) and s and not
on the choice of φ (for any λ!), from which it follows that the same is true for
σ(ξ, s). Finally, for any f ∈ C∞(M), multiplying s by fs gives:

λ(σ(ξ, fs)) = lim
t→∞

t−ke−itϕ(x0)λ(P (eitϕfs)(x0)),

where λ(P (eitϕfs)(x0)) = Ps,λ(eitϕf) hence (using Exercise 1.1.18 applied to
Ps,λ) we find

λ(σ(ξ, fs)) = λ(f(x0)σ(ξ, s)).
Since this holds for all λ, it follows that σ(ξ, fs) = f(x0)σ(ξ, s); since σ(ξ, s) is
C-linear in s, we deduce that it only depends s(x0) and not on s(x0). �
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Example 1.2.8. We consider the complexified version of the DeRham com-
plex. I.e., we define Ωk(M)C = Ωk(M)⊗R C, which should be interpreted as the
space of sections of the complex vector bundle ΛCT

∗M whose fiber at x ∈ M
consists of antisymmetric, k-multilinear maps from TxM to C. The exterior dif-
ferentiation clearly extends to a C-linear map d = dk : Ωk(M)C → Ωk+1(M)C.
Let U be a coordinate patch of M with local coordinates x1, . . . , xn. Then for
each a ∈ U, the one forms dx1(a), . . . , dxn(a) span the cotangent space T ∗aM.
Thus, ∧kT ∗aM has the basis

dxj1(a) ∧ · · · ∧ dxjk
(a), withj1 < · · · < jk.

With respect to this basis, the restriction of a section s ∈ Ωk(M) to U may be
expressed as

s|U =
∑

j1<···<jk

sj1,...,jk
dxj1 ∧ · · · ∧ dxjk

.

Exterior differentiation is given by

ds|U =
∑

j1...<jk

d(sj1,...,jk
) ∧ dxj1 ∧ · · · ∧ dxjk

,

where dsj1,...,jk
=

∑
i ∂isj1,...,jk

. From this we see that d is a differential operator
of order one from ∧kT ∗M to ∧k+1T ∗M.

Exercise 1.2.9. Show that the principal symbol of exterior differentiation
d : Γ(ΛkT ∗M)→ Γ(Λk+1T ∗M) is given by

σ1(d)(x, ξ) : ∧kT ∗xM → ∧k+1T ∗xM, ω 7→ iξ ∧ ω.

For E1, E2 smooth vector bundles on M and P ∈ Dk(E1, E2), the principal
symbol σk(P ) is a section of the bundle Hom (π∗E1, π

∗E2). Equivalently, the
symbol may be viewed as a homomorphism from the bundle π∗E1 to π∗E2.
Thus, if E3 is a third vector bundle and Q ∈ Dl(E2, E3) then the composition
σl(Q) ◦σk(P ) is a vector bundle homomorphism from E1 to E3.

Lemma 1.2.10. Let E1, E2, E3 be smooth vector bundles on M. Let P ∈
Dk(E1, E2) and Q ∈ Dl(E2, E3). Then the composition Q ◦P belongs to Dk+l(E1, E3)
and

σk+l(Q ◦P ) = σl(Q) ◦σk(P ).

Finally, we discuss the notion of formal adjoint. For this, and for later use,
we need the notion of density.

Reminder on densities: This is about the density bundle from the intensive
reminder. Given an n-dimensional real vector space V , one defines Dr(V ), the space of
r-densities (for any real number r > 0), as the set of all maps ω : ΛnV → R satisfying

ω(λξ) = |λ|rω(ξ), ∀ ξ ∈ ΛnV.

Equivalently (and maybe more intuitively), one can use the set Fr(V ) of all frames of
V (i.e. ordered sets (e1, . . . , en) of vectors of V which form a basis of V ). Then Dr(V )
can also be described as the set of all functions

ω : Fr(V )→ R
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with the property that, for any invertible n by n matrix A, and any frame e, for the
new frame A(e) one has

ω(A(e)) = |det(A)|rω(e).

Intuitively, one may think of an r-density on V as some rule of computing volumes of
the hypercubes (each frame determines such a hypercube). For each r, Dr(V ) is one
dimensional (hence isomorphic to C), but in a non-canonical way. Choosing a frame e
of V , one has an induced r-density denoted

ωe = |e1 ∧ . . . ∧ en|r

uniquely determined by the condition that ωe(e) = 1 (the ei’s in the notation stand for
the dual basis of V ∗).

For a manifold M , we apply this construction to all the tangent spaces to obtain
a line bundle Dr(M) over M , whose fiber at x ∈M is Dr(TxM). For r = 1, D1(M) is
simply denoted D, or DM whenever it is necessary to remove ambiguities. The sections
of D are called densities on M .

Any local chart (U, κ = (x1
κ, . . . , x

n
κ)) induces a frame (∂/∂xi

κ)x for TxM with the
dual frame (dxi

κ)x for T ∗xM , for all x ∈ U . Hence we obtain an induced trivialization
of Dr(M) over U , with trivializing section

|dx1
κ ∧ . . . ∧ dxn

κ|r

(and, as usual, the smooth structure on D is so that these sections induced by the local
charts are smooth).

An r-density on M is a section ω of Dr(M). Hence, locally, with respect to a
coordinate chart as before, such a density can be written as

ω = fκ ◦ κ · |(dx1
κ ∧ . . . ∧ dxn

κ|r

for some smooth function defined on κ(U). If we consider another coordinate chart
κ′ on the same U then, after a short (but instructive) computation, wee see that fκ

changes according to the rule:

fκ = |Jac(h)|rfκ′ ◦ h,

where h = κ′ ◦ κ−1 is the change of coordinates, and Jac(h) is the Jacobian of h. The
case r = 1 reminds us of the usual integration and the change of variable formula: the
usual integration of compactly supported functions on an open Ω ⊂ Rn defines a map∫

Ω

: C∞c (Ω; R)→ R

and, if we move via a diffeomorphism h : Ω → Ω′, one has the change of variables
formula ∫

Ω

f =
∫

Ω

|Jac(h)| · f ◦ h.

Hence, for 1-densities on the domain U of a coordinate chart, one has an induced
integration map ∫

U

: Γc(U,D|U )→ R

(by sending ω to
∫

κ(U)
fκ) which does not depend on the choice of the coordinates. For

the global integration map ∫
M

: Γc(M,D)→ R,
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one decomposes an arbitrary compactly supported density Ω on M as a finite sum∑
i ωi, where each ωi is supported in the domain of a coordinate chart Ui (e.g. use

partitions of unity) and put ∫
M

ω =
∑

i

∫
Ui

ωi.

Of course, one has to prove that this does not depend on the way we decompose ω as
such a sum, but this basically follows from the additivity of the usual integral.

Note that one can clearly talk about positive/negative densities. Hence any metric
on D (and, in particular, any Riemannian metric on M) induces a no-where vanishing
section of D (the positive one, of length 1). In other words, D is trivializable (but not
canonically). The choice of a no-where zero density dµ induces an integration map:∫

M

· dµ : C∞c (M)→ C, f 7→
∫

M

(fdµ),

where the complex numbers show up because of the fact that C∞c (M) consists of com-
plex valued functions; of course,

∫
M

(f+ig)dµ is defined as
∫

M
fdµ+i

∫
M
gdµ. Actually,

to be consistent with our convention of only considering complex vector bundles, we
should complexify D, i.e. consider D⊗R C = D⊕ i ·D; equivalently, in all the previous
definitions we use C instead of R (i.e. we look at complex-valued densities). We will
continue to use the notation D for the resulting complex line bundle; one obtaines the
complex-valued version of the integration map∫

M

: Γc(M,D)→ C.

Assume now that E and F are two vector bundles over M equipped with
hermitian inner products 〈−,−〉E1 and 〈−,−〉F . We also choose a strictly
positive density on M , call it dµ. One has an induced inner-product on the
space Γc(E) of compactly supported sections of E given by

〈s, s′〉E :=
∫

M
〈s(x), s′)〉Ex dµ,

and similarly an inner product on Γc(F ). Given P ∈ Dk(E,F ), a formal
adjoint of P (with respect to the hermitian metrics and the density) is an
operator P ∗ ∈ Dk(F,E) with the property that

〈P (s1), s2〉F = 〈s1, P ∗(s2)〉E , ∀ s1 ∈ Γc(E), s2 ∈ Γc(F ).

Proposition 1.2.11. For any P ∈ Dk(E,F ), the formal adjoint P ∗ ∈ Dk(F,E)
exists and is unique. Moreover, the principal symbol of P ∗ is σk(P ∗) = σk(P )∗,
where σk(P )∗(ξx) is the adjoint of the linear map

σk(P )(ξx) : Ex → Fx

(with respect to the inner products 〈−,−〉Ex and 〈−,−〉Fx ).2

1hence 〈−,−〉E is a family {〈−,−〉Ex : x ∈ M} of inner products on the vector spaces Ex, which
“varies smoothly with respect to x”. The last part means, e.g., that for any s, s′ ∈ Γ(E), the
function 〈s, s′〉E on M , sending x to 〈s(x), s′(x)〉Ex is smooth; equivalently, it has the obvious
meaning in local trivializations.
2note that P ∗ depends both on the hermitian metrics on E and F as well as on the density,
while it principal symbol does not depend on the density.
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Proof Due to the local property of differential operators it suffices to prove
the statement (both the existence as well as the uniqueness) locally. So assume
that M = U ⊂ Rn, where we can write P =

∑
|α|≤k Cα◦∂α. We have dµ = ρ|dx|

for some smooth function ρ on U . Writing out 〈P (s1), s2〉F and integrating by
parts |α| times (to move ∂α from s to s′), we find the operator P ∗ which does
the job:

P ∗(s′) =
∑
|α|≤k

1
ρ
∂α(ρC∗αs

′).

Clearly, this is a differential operator of order at most k. For the principal
symbol, we see that the only terms in this sum which matter are:∑

|α|=k

(−1)|α|
1
ρ
ρC∗α∂

α(s′) =
∑
|α|=k

(−1)|α|C∗α∂
α(s′),

i.e. the symbol is given by∑
|α|=k

(−1)|α|C∗α(iξ)α = (
∑
|α|=k

C∗α(iξ)α)∗.

The uniqueness follows from the non-degeneracy property of the integral: if∫
U fg = 0 for all compactly supported smooth functions, then f = 0. �

1.3. Ellipticity; preliminary version of the Atiyah-Singer index
theorem

Definition 1.3.1. Let P ∈ Dk(E,F ) be a differential operator between two
vector bundles E and F over a manifold M . We say that P is an elliptic
operator of order k if, for any ξx ∈ T ∗xM non-zero,

σk(P )(ξx) : Ex → Fx

is an isomorphism.

The aim of these lectures is to explain and complete the following theorem
(a preliminary version of the Atiyah-Singer index theorem).

Theorem 1.3.2. Let M be a compact manifold and let P : Γ(E)→ Γ(F ) be an
elliptic differential operator. Then P is Fredholm (i.e. Ker(P ) and Coker(P )
are finite dimensional),

Index(P ) := dim(Ker(P ))− dim(Coker(P ))

depends only on the principal symbol σk(P ), and Index(P ) can be expressed in
terms of (precise) topological data associated to σk(P ).

Here are a few exercises about the notion of ellipticity and Fredholmness.
In these exercises we fix a a density on M and, on each vector bundle over M
that we will be considering, a hermitian inner product. So, for E over M , we
can talk about the adjoint D∗ of differential operators D : Γ(E) → Γ(E); we
will say that D is self-adjoint if D = D∗. We will prove later on (as part of the
theorem above) that, if D is elliptic, then
(Dec) Γ(E) = Ker(D) + Im(D).
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(Fre) Ker(D) and Coker(D) are finite dimensional (i.e. D is Fredholm).

Exercise 1.3.3. Given a self-adjoint differential operator D : Γ(E) → Γ(E),
show that:

(i) Ker(D) ∩ Im(D) = {0}
(ii) If D satisfies condition (Dec), then

(Ker(D))⊥ = Im(D), (Im(D))⊥ = Ker(D).

(iii) If D satisfies both conditions (Dec) and (Fre), then Index(D) = 0.

Exercise 1.3.4. Given a self-adjoint differential operator Q : Γ(E) → Γ(E)
and D = Q ◦Q, then

(i) D is elliptic if and only if Q is.
(ii) D satisfies conditions (Dec) and (Fre) if and only if Q does.

Exercise 1.3.5. Let Q+ : Γ(E+)→ Γ(E−) be a differential operator between
two vector bundles E+ and E− and we denote by Q− its adjoint:

(1.6) Γ(E+)
Q+

// Γ(E−) .
Q−oo

We place ourselves in the situation of the previous exercise by taking

E = E+ ⊕ E−, Q(s+, s−) = (Q−(s−), Q+(s+)),

so that D = Q ◦ Q has components D+ = Q− ◦ Q+, D− = Q+ ◦ Q− (acting
on Γ(E+) and Γ(E−), respectively). If D satisfies conditions (Dec) and (Fre),
show that Q+ is Fredholm and

Index(Q+) = Ker(D+)−Ker(D−).

Due to the the way that elliptic operators arise in geometry (via “elliptic
complexes”), it is worth giving a slightly different version of the Atiyah-Singer
index theorem.

Definition 1.3.6. A differential complex over a manifold M ,

E : Γ(E0) P0−→ Γ(E1) P1−→ Γ(E2) P2−→ . . .

consists of:

1. For each k ≥ 0, a vector bundle Ek over M , with Ek = 0 for k large
enough.

2. For each k ≥ 0, a differential operator Pk from Ek to Ek+1, of some order
d independent of k

such that, for all k, Pk+1 ◦Pk = 0.

Example 1.3.7. Let dk : Ωk(M) → Ωk+1(M) be exterior differentiation.
Then dk+1 ◦ dk = 0 for all k. Therefore, the sequence of differential operators
dk ∈ D1(∧kT ∗M,∧k+1T ∗M) forms a complex; it is called the de Rham complex.
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Note that, from Lemma 1.2.10 it follows that for a complex of differential
operators as above, the associated sequence σdk

(Pk) of principal symbols is a
complex of homomorphisms of the vector bundles π∗Ek on M , i.e., for any
ξx ∈ T ∗xM , the sequence

E0
x

σd(P0)(ξx)−→ E1
x

σd(P1)(ξx)−→ E2
x

σd(P2)(ξx)−→ . . .

is a complex of vector space. In turn, this means that the composition of any
two consecutive maps in this sequence is zero. Equivalently,

Ker(σd(Pk+1)(ξx)) ⊂ Im(σd(Pk)(ξx)).

Definition 1.3.8. A differential complex E is called an elliptic complex if,
for any ξx ∈ T ∗xM non-zero, the sequence

E0
x

σd(P0)(ξx)−→ E1
x

σd(P1)(ξx)−→ E2
x

σd(P2)(ξx)−→ . . .

is exact, i.e.
Ker(σd(Pk+1)(ξx)) = Im(σd(Pk)(ξx)).

For a general differential complex E , one can define

Zk(E) = Ker(Pk), Bk(E) = Im(Pk1),

and the k-th cohomology groups

Hk(E) = Zk(E)/Bk(E).

The space Hk(M,P∗) defined as above, is called the k-th cohomology group
of the elliptic complex. One says that E is a Fredholm complex if all these
groups are finite dimensional. In this case, one defines the Euler character-
istic of E as

χ(E) :=
∑

k

(−1)kdim(Hk(E)).

Another version of the preliminary version of the Atiyah-Singer index theorem
is the following:

Theorem 1.3.9. If E is an elliptic complex over a compact manifold M , then
it is also Fredholm, and the Euler characteristic χ(E) can be expressed in terms
of topological invariants of the principal symbols associated to E.

Example 1.3.10. For the DeRham complex (Ω∗(M), d), the resulting coho-
mology in a degree k is called the k-th de Rham cohomology of M, denoted
Hk

dR(M). The ellipticity of this complex (see the next exercise), together with
the above result, implies that the de Rham cohomology of a compact manifold
is finite dimensional. For a simpler proof of this result, involving Meyer-Vietoris
sequences, we refer the reader to the book by Thornehaeve-Madsen or the book
by Bott and Tu.

Exercise 1.3.11. Let V be a finite dimensional complex vector space. Let
ξ ∈ V ∗ \ {0}. Show that the complex of linear maps Tk : ∧kV ∗ → ∧k+1V ∗,
ω 7→ ξ ∧ ω, is exact.

Deduce that the DeRham complex a manifold is an elliptic complex.
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Example 1.3.12. Any elliptic operator P ∈ Dk(E,F ) can be seen as an
elliptic complex with E0 = E, E1 = F and Ek = 0 for other k’s, P0 = P .
Moreover, its Euler characteristic is just the index of P . Hence the last theorem
seems to be a generalization of Theorem 1.3.2. However, there is a simple trick
to go the other way around. This the next exercises.

In these exercises, we fix a a density on M and, on each vector bundle
over M that we will be considering, a hermitian inner product. First we relate
the notion of elliptic complexes to that of elliptic operators. For a complex of
differential operators

E : Γ(E0) P0−→ Γ(E1) P1−→ Γ(E2) P2−→ . . .

(with hermitian inner products on each Ek) we form the total vector bundle

E = E0 ⊕ E1 ⊕ . . .
and the Laplacian

∆ := P ◦ P ∗ + P ∗ ◦ P : Γ(E)→ Γ(E).

Note that Delta is of type

∆ = (∆0,∆1, . . .) with ∆k : Γ(Ek)→ Γ(Ek).

Exercise 1.3.13. For any complex of differential operators (E), show that
Ker(∆) = Ker(P ) ∩Ker(P ∗) and that the sum

Ker(∆) + Im(P ) + Im(P ∗) ⊂ Γ(E)

is a direct sum.

Exercise 1.3.14. Show that the complex (1.6) is elliptic if and only if the
Laplacian ∆E is an elliptic operator.

(Hint: translate this into an linear problem, in which you deal with a cochain
complex consisting of finite dimensional hermitian vector spaces

(1.7) V 0 ∂→ V 1 ∂→ V 2 ∂→ . . . ,

and show that this is exact if and only if the associated “algebraic Laplacian”

∂ ◦ ∂∗ + ∂∗ ◦ ∂ : ⊕kV
k → ⊕kV

k

is an isomorphism. )

The next exercise is similar to the previous one but, instead of addressing
ellipticity, it addresses the Fredholmness condition together with the condition
(Dec) mentioned before:
(Dec) Γ(E) = Ker(∆) + Im(∆).
The two exercises together will imply, once we show that elliptic differential
operators are Fredholm, that elliptic complexes are Fredholm.

Exercise 1.3.15. With the same notation as before, for an elliptic complex
E , show that the Laplacians Fredholm and satisfies (Dec) if and only if the
complex E is Fredholm and satisfies the following “Hodge decomposition”

Γ(E) = Ker(P ) ∩Ker(P ∗) + Im(P ) + Im(P ∗)
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or, equivalently (by Exercise 1.3.13),

Γ(E) = Ker(∆)⊕ Im(P )⊕ Im(P ∗).

Moreover, in this case Ker(P ) = Ker(∆)⊕ Im(P ), so that Hk(E) is canonically
isomorphic to Ker(∆k).

Putting the previous exercises together, we consider

E+ := E0 ⊕ E2 ⊕ E4 ⊕ . . . , E− := E1 ⊕ E3 ⊕ E5,

Q+ := (P + P ∗)|Γ(E+) : Γ(E+)→ Γ(E−)
and you should deduce:

Exercise 1.3.16. If E is Fredholm and ∆ satisfies (Dec), then Q+ is an elliptic
operator and

χ(E) = Index(Q+).

1.4. Fredholm operators as tools- summary of what we need

As we have already mentioned, the aim of these lectures is to understand The-
orem 1.3.2. The first few lectures will be devoted to proving that the index of
any elliptic operator (over compact manifolds) is finite; after that we will spend
some lectures to explain the precise meaning of “topological data associated
to the symbol” (and the last lectures will be devoted to some examples). The
nature of these three parts is Analysis- Topology- Geometry.

For the first part- on the finiteness of the index, we will rely on the fact that
indices of operators are well behaved in the framework of Banach spaces. This
is some very general theory that belongs to Functional Analysis, which we recall
in this section (for more details and proofs, see the next section). In the next
few lectures we will show how this theory applies to our problem (on short, we
have to pass from spaces of sections of vector bundles to appropriate “Banach
spaces of sections” and show that our operators have the desired compactness
properties).

So, for this section we fix two Banach spaces E and F and we discuss Fred-
holm operators between them- i.e. operators which have a well-defined index.
More formally, we denote by L(E,F) the space of bounded (i.e. continuous)
linear operators from E to F and we take the following:

Definition 1.4.1. A bounded operator T : E→ F is called Fredholm if Ker(A)
and Coker(A) are finite dimensional. We denote by F(E,F) the space of all
Fredholm operators from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A))− dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A)
is closed. Here are the first properties of Fredholm operators.

Theorem 1.4.2. Let E, F, G be Banach spaces.
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(i) If B : E → F and A : F → G are bounded, and two out of the three
operators A, B and AB are Fredholm, then so is the third, and

Index(A ◦B) = Index(A) + Index(B).

(ii) If A : E→ F is Fredholm, then so is A∗ : F∗ → E∗ and 3

Index(A∗) = −Index(A).

(iii) F(E,F) is an open subset of L(E,F), and

Index : F(E,F)→ Z
is locally constant.

What will be important for us is an equivalent description of Fredholm
operators, in terms of compact operators. First we recall the following:

Definition 1.4.3. A linear map T : E → F is said to be compact if for any
bounded sequence {xn} in E, {T (xn)} has a convergent subsequence.

Equivalently, compact operators are those linear maps T : E→ F with the
property that T (BE) ⊂ F is relatively compact, where BE is the unit ball of E.
Here are the first properties of compact operators.

We point out the following improvement/consequence of the Fredholm al-
ternative for compact operators (discussed in the appendix- see Theorem 1.5.9
there).

Theorem 1.4.4. Compact perturbations do not change Fredholmness and do
not change the index, and zero index is achieved only by compact perturbations
of invertible operators.

More precisely:
(i) If K ∈ K(E,F) and A ∈ F(E,F), then A+K ∈ F(E,F) and Index(A+

K) = Index(A).
(ii) If A ∈ F(E,F), then Index(A) = 0 if and only if A = A0 +K for some

invertible operator A0 and some compact operator K.

Finally, there is yet another relation between Fredholm and compact oper-
ators, know as the Atkinson characterization of Fredholm operators:

Theorem 1.4.5. Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E → F, the following are

equivalent:
(i) A is Fredholm.
(ii) A is invertible modulo compact operators, i.e. there exist and operator

B ∈ L(F,E) and compact operators K1 and K2 such that

BA = 1 +K1, AB = 1 +K2.

1.5. Appendix: Fredholm operators- more details and proofs

Here, for the curious reader, we expand the previous section, providing more
details and proofs.
3here, A∗(ξ)(e) = ξ(A(e)))
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1.5.1. Fredholm operators: basic properties

Let E and F be two Banach spaces. We denote by L(E,F) the space of bounded
linear operators from E to F.

Definition 1.5.1. A bounded operator T : E→ F is called Fredholm if Ker(A)
and Coker(A) are finite dimensional. We denote by F(E,F) the space of all
Fredholm operators from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A))− dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A)
is closed. Here are the first properties of Fredholm operators (stated already as
Theorem 1.4.2 in the previous section).

Theorem 1.5.2. Let E, F, G be Banach spaces.
(i) If B : E → F and A : F → G are bounded, and two out of the three

operators A, B and AB are Fredholm, then so is the third, and

Index(A ◦B) = Index(A) + Index(B).

(ii) If A is Fredholm, then so is A∗, and

Index(A∗) = −Index(A).

(iii) F(E,F) is an open subset of L(E,F), and

Index : F(E,F)→ Z
is locally constant.

Proof Part (i) is a purely algebraic result. We prove that if A and B are
Fredholm, then so is AB (the other cases following from the arguments bellow).
First of all we have a short exact sequence

0→ Ker(B)→ Ker(AB) B→ Im(B) ∩Ker(A)→ 0,

and this proves that AB has finite dimensional kernel with

dim(Ker(AB)) = dim(Ker(B)) + dim(Ker(A) ∩ Im(B)).

Next, we have the exact sequence

0→ Im(B) + Ker(A)
Im(B)

→ F
Im(B)

A→ G
Im(AB)

→ G

Im(A)
→ 0,

where the first map is the obvious inclusion, and the last one is the obvious
projection. All the spaces in this sequence, except maybe Coker(AB), are finite
dimensional (the first one is isomorphic to Ker(A)/Ker(A)∩Im(B), so we deduce
that also Coker(AB) is finite dimensional and

dim(Coker(AB)) = dim(Coker(A))+dim(Coker(B))−dim(Ker(A))+dim(Ker(A)∩Im(B)).

Combining the last two identities, we get the desired equation for the index.
Part (ii) is easy.
For (iii), let A ∈ F(E,F). We choose complements E1 of Ker(A) in E,

and F2 of Im(A) in F. This is possible because Ker(A) is finite dimensional,
and because Im(A) is closed of finite codimension, respectively. Denote by
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i1 : E1 → E the canonical inclusion and by p : F → Im(A) the projection. To
any operator S ∈ L(E,F) we associate the operator S0 = pSi : E1 → Im(A).
Since A0 is clearly an isomorphism, there exists ε > 0 so that, for all S such
that ||S − A|| < ε, S0 is an isomorphism. For such an S we can also say that
S0 = pSi is Fredholm of index zero. But p is Fredholm of index −dim(Ker(A))
while i is Fredholm of index dim(Coker(A)). Using (i), S must be Fredholm
and

0 = Index(S0) = −dim(Ker(A)) + Index(S) + dim(Coker(A)).
In conclusion, for ||S −A|| < ε, S is Fredholm of index equal to Index(A). �

1.5.2. Compact operators: basic properties

Definition 1.5.3. A linear map T : E → F is said to be compact if for any
bounded sequence {xn} in E, {T (xn)} has a convergent subsequence.

We denote by K(E,F) the space of such compact operators.

Equivalently, compact operators are those linear maps T : E→ F with the
property that T (BE) ⊂ F is relatively compact, where BE is the unit ball of E.
Here are the first properties of compact operators.

Proposition 1.5.4. Let E, F and G be Banach spaces.
(i) K(E,F) is a closed subspace of L(E,F).
(ii) given T ∈ L(E,F), S ∈ L(F,G), if T or S is compact, then so is T ◦ S.
(iii) T ∈ L(E,F) is compact if and only if T ∗ ∈ L(F∗,E∗) is.

In particular, K(E) is a closed two-sided ∗-ideal in L(E).

Note that, if E = H is a Hilbert space, then K(H) is the unique non-trivial
(norm-)closed ideal in L(H).
Proof We prove that, if Tn → T and Tn are all compact, then T is compact.
Since T (BE) is bounded and F is Banach, it suffices to show that T (BE) is
precompact, i.e. that it can be covered by a finite number of balls of arbitrarily
small radius ε. So, let ε > 0. Choose n such that ||Tn − T || < ε/2 and cover
Tn(BE) by a finite number of balls B(fi, ε/2). Then the balls B(fi, ε) cover
T (BE).

We now prove (iii) (the remaining statements are immediate). Assume
first that T is relatively compact, and let K ⊂ F be the closure of T (BE)
(compact). Let vn be a sequence in the unit ball of F∗. We want to prove that
T ∗(vn) = vn ◦ T has a convergent subsequence. We consider the space C(K) of
continuous functions on K, and the subspace H consisting of the restrictions
φn = vn|K . We claim we can apply Ascoli toH. Equicontinuity: since ||vn|| ≤ 1,
we have

|φn(x)− φn(y)| ≤ ||x− y||
for all x and y. Equiboundedness: since ||vn|| ≤ 1 and any y ∈ K has norm less
then ||T ||, we have

|φn(y)| ≤ ||T ||
for all y ∈ K and all n. By Ascoli, we find a subsequence of φn, which we may
assume is φn itself, which is convergent in norm. We use that it is Cauchy:

supy∈K |φn(y)− φm(y)| → 0.
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Since T (BE) ⊂ K, this clearly implies that T ∗(vn) is Cauchy in E∗, hence
convergent. For the converse of (iii), we apply the first half to conclude that
T ∗∗ : E∗∗ → F∗∗ is compact. Viewing E ⊂ E∗∗ as a closed subspace, and
similarly for F, we have T (BE) = T ∗∗(BE)-relatively compact. �

Next, we discuss the relationship with finite rank operators.

Definition 1.5.5. A linear map T : E → F is said to be of finite rank if it is
continuous and its image is a finite dimensional space. We denote by Kfin(E,F)
the space of compact operators from E to F.

Equivalently, Kfin(E,F) is the image of the canonical inclusion

E∗ ⊗ F→ L(E,F),
∑

e∗i ⊗ fi 7→
∑

e∗i (−)fi

i.e. the finite rank operators are those of type T (x) =
∑
e∗i (x)fi (finite sum)

with e∗i ∈ E∗, fi ∈ F. It is clear that

Kfin(E,F) ⊂ K(E,F) ⊂ L(E,F)

and Kfin(E,F) has all the properties of K(E,F) from the previous proposition,
except from being closed. All we can say in general is that

Kfin(E,F) ⊂ K(E,F),

and the next proposition4 gives conditions on F so that this inclusion becomes
equality. For this, we recall that a Schauder basis for F is a countable family
{fk : k ≥ 1} of elements of F with the property that each y ∈ F can be uniquely
written as

y =
∞∑

k=1

tkfk

with tk-scalars. Clearly, any separable Hilbert space admits a Schauder basis,
but also spaces such as Lp with p ≥ 1 do.

Proposition 1.5.6. If F admits a Schauder basis then an operator T ∈ L(E,F)
is compact if and only if it is the limit of a sequence of finite rank operators; in
other words,

K(E,F) = Kfin(E,F).

Proof We still have to show that any compact T is a limit of finite rank ones.
Let {fk : k ≥ 1} be a Schauder basis, and let fk : F → C be the coordinate
functions. It is known that the Schauder basis can be chosen such that fk are
continuous. We put Tk ∈ L(E,F),

Tk(x) =
k∑
i

f i(T (x))fi.

To prove Tk → T , let ε > 0. For any x of norm less then 1, we find N such that
∞∑

i=k

f i(T (x))fi|| < ε

4this proposition is just for your curiosity.
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for all k ≥ N . But since T (BE) is relatively compact, we can choose N uniform
with respect to x ∈ BE. Hence ||T − Tk|| < ε for all k ≥ N . �

Finally, to give an alternative description of compact operators, we recall
that a linear map T : E → F is said to be completely continuous if it carries
weakly convergent sequences into norm convergent sequences.

Proposition 1.5.7. Any compact operator T : E → F is completely continu-
ous. The converse is true if E is reflexive.

1.5.3. Compact operators: the Fredholm alternative

In this section, E = F (a Banach space). One of the versions of the Fredholm
alternative says that, if K is a compact operator on E, then the associated equa-
tion x = Kx+y behaves like in the finite dimensional case: if the homogeneous
equation x = Kx has only the trivial solution x = 0, then the inhomogeneous
equations

x = Kx+ y

has a unique solution x ∈ E, for every y ∈ E. More precisely, we have the
following:

Proposition 1.5.8. For K ∈ K(E), the following are equivalent:
(i) 1−K is injective.
(ii) 1−K is surjective.
(iii) 1−K is bijective.

The general version of the Fredholm alternative is best expressed in terms
of Fredholm operators.

Theorem 1.5.9. For any compact operator K on E, 1 − K is a Fredholm
operator of index zero.

Before turning to the proofs, let us point out that these results are naturally
cast as properties of the spectrum of compact operators 5. Recall that, for an
operator T : E → E, the spectrum σ(T ) consists of those complex numbers
λ with the property that λ − T is not invertible. A particular case of this is
when the equation Tx = λx has a non-trivial solution x ∈ E. In this case λ
is called an eigenvalue of T , the space Nλ = {x ∈ E : Tx = λx} is called the
λ-eigenspace of T , and the set of all eigenvalues of T is denoted by σp(T ) (called
the point-spectrum of T ). With these, we have:

Theorem 1.5.10. Assume that E is infinite dimensional. For any compact
operator K ∈ K(E),

(i) σ(K) = σp(K)∪{0}, and this is either finite or it is a countable sequence
of complex number converging to zero.

(ii) for any non-zero eigenvalue λ, the corresponding eigenspace Nλ(K) is
finite dimensional.

We now turn to the proofs of these results. We will use the Riesz lemma:

5again, this (i.e. the next theorem) is just for your curiosity.
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Lemma 1.5.11. If M ⊂ E is a closed subspace, M 6= E, then for every ε > 0,
there exists xε ∈ E such that

||xε|| = 1, d(xε,M) > 1− ε.

Proof Choose x ∈ E−M and put d = d(x,M) > 0. Since d(x,M) < d/(1−ε),
we find mε ∈M such that ||x−mε|| < d/(1− ε). Put

xε =
x−mε

||x−mε||
.

�

Let us also point out the following simple consequence, known as the The-
orem of Riesz, which is interesting on its own, and which immediately implies
(ii) of Theorem 1.5.10.

Corollary 1.5.12. If the unit ball of a Banach space E is compact, then E is
finite dimensional.

Proof Cover BE by a finite number of balls of radius 1/2. Denote by M
the subspace spanned by the centers of these balls; if M 6= E, we can apply
the previous lemma with ε = 1/2 and we obtain a contradiction. In conclusion,
E = M is finite dimensional. �

Proof [(of Proposition 1.5.8 and of Theorem 1.5.9)] We first claim that, for
any compact operator K, the image of 1−K is closed in E. Denote S = 1−K,
N = Ker(S). Consider y ∈ S(E), and write

y = lim
n→∞

S(xn)

for some sequence {xn} in E. We will show that {xn} may be chosen to be
bounded. From the compactness of K, this implies that {xn} may be assumed
to converge to an element x ∈ E, hence y = S(x) ∈ S(E). To achieve the
boundedness of {xn}, it suffices to show that d(xn, N) is bounded. Indeed, in
this case we find an ∈ N such that {||xn−an||} is bounded and we may replace
xn by xn − an.

So, let us assume that {d(xn, N)} is unbounded and we will obtain a con-
tradiction. First of all, we may assume that this unbounded sequence converges
to ∞. Put

zn =
1

d(xn, N)
xn.

This has the properties:

d(zn, N) = 1, lim
n→∞

S(zn) = 0.

We may assume that zn is bounded (otherwise, by the first property above we
find z

′
n ∈ zn +N such that ||z′n|| ≤ 2 and {z′n} has the same properties). Since

K is compact, we may also assume that K(zn) converges to an element a ∈ E.
From the properties of zn, we find that d(a,N) = 1 and that zn = S(zn)+K(zn)
converges to a. The last statement and the definition of a imply that K(a) = a,
i.e. a ∈ N , which contradicts d(a,N) = 1. This finishes the proof of the fact
that Im(1−K) is closed.



26 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

With this property proven, to finish the proof of Proposition 1.5.8, one
can go on with a “direct” argument that does not use any of the properties of
Fredholm operators. Alternatively, one can now prove Theorem 1.5.9, which
clearly implies the proposition.
Proof [(end of proof of Proposition 1.5.8)] We now prove that (i) implies
(ii). Hence, let us assume that S is injective and S(E) 6= E. We consider the
decreasing sequence of subspaces of E:

. . . ⊂ E3 ⊂ E2 ⊂ E1 = E
where En = Sn(E). Note that K(En) ⊂ En. Since the restriction of K to
each En is compact, the first part of the proof implies that each En is a closed
subspace of En−1, while the injectivity of S implies that these inclusions are
proper. From the Riesz Lemma we find xn ∈ En with

||xn|| = 1, d(xn,En+1) ≥
1
2
.

However, for each n > m one has

Kxn −Kxm = Kxn − xm + Sxm ∈ En − xm + Em1 ⊂ Em1 − xm,

hence
||Kxn −Kxm|| >

1
2
,

and then {Kxn} cannot have a convergent subsequence, which contradicts the
compactness of K.

Finally, the inverse implication (ii) =⇒ (i) is a consequence of the direct
implication and the general fact that Ker(T ∗) = Im(T )⊥: if S = 1 − K is
surjective, it follows that Ker(S∗) = Im(S)⊥ = {0}, i.e. S∗ must be injective.
Applying (i) =⇒ (ii) to K∗ (we do know that K∗ is compact!), S∗ is surjective,
hence Ker(S) = Im(S∗)⊥ = {0}, i.e. S is injective. �

Proof [(end of the proof of Theorem 1.5.9), hence also of proof 2 of Proposition
1.5.8)] The Riesz Lemma immediately implies that Ker(1−K) is finite dimen-
sional. Applying this to K∗, we deduce that also Im(1−K)⊥ = Ker(1−K∗) is
finite dimensional. Since Im(1−K) is closed (see the first part of the previous
proof), we deduce Im(1−K) is of finite codimension. Hence 1−K is Fredholm.
We then have a continuous family {1− tK : t ∈ R} of Fredholm operators. By
the properties of the index, the index at t = 1 coincides with the index at t = 0,
which is zero. �

�

Proof [(of Theorem 1.5.10)] The only thing still to be proven is that σp(K) is
either finite, or a countable sequence converging to zero. It suffices to show that
for any sequence {λn} of distinct eigenvalues of K which converge to λ (finite
or infinite), λ = 0. Assume that {λn} is such a sequence. Choose eigenvectors
xn corresponding to λn, xn 6= 0 and put

En = span{x1, . . . , xn}.
Since the λi are distinct, it follows that

E1 ⊂ E2 ⊂ . . .
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is a strictly increasing sequence of subspaces of E. From the Riesz Lemma with
ε = 1/2 we find

un ∈ En, ||un|| = 1, d(un,En−1) >
1
2
.

Note also that
T (En) ⊂ En, (T − λmId)(Em) ⊂ Em−1.

We deduce that for m > n,

Tun

λn
− Tum

λm
∈ En + Em−1 − um = Em−1 − um,

hence

||Tun

λn
− Tum

λm
|| ≥ 1

2
,

and {Tun/λn} cannot have a convergent subsequence. But, since T is compact,
{Tun} does posses a convergent subsequence, so λ must equal 0. �

1.5.4. The relation between Fredholm and compact operators

We have already seen from the Fredholm alternative that, for any compact op-
erator K ∈ K(E), 1 − K is a Fredholm operator of index zero. Much more
precisely, we have the following (stated as Theorem 1.4.4 in the previous sec-
tion).

Theorem 1.5.13. Compact perturbations do not change Fredholmness and do
not change the index, and zero index is achieved only by compact perturbations
of invertible operators.

More precisely:
(i) If K ∈ K(E,F) and A ∈ F(E,F), then A+K ∈ F(E,F) and Index(A+

K) = Index(A).
(ii) If A ∈ F(E,F), then Index(A) = 0 if and only if A = A0 +K for some

invertible operator A0 and some compact operator K.

There is yet another relation between Fredholm and compact operators,
know as the Atkinson characterization of Fredholm operators (Theorem 1.4.5
in the previous section).

Theorem 1.5.14. Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E → F, the following are

equivalent:
(i) A is Fredholm.
(ii) A is invertible modulo compact operators, i.e. there exist and operator

B ∈ L(F,E) and compact operators K1 and K2
6 such that

BA = 1 +K1, AB = 1 +K2.

6from the proof we will see that one can actually choose K1 and K2 to be finite rank operators,
and B so that ABA = A, BAB = B.
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We now turn to the proofs of these results.
Proof [(of Theorem 1.5.14)] Assume first the existence of B, K1 and K2.
Since identity plus compact is Fredholm, we deduce that the kernel of A is
finite dimensional (since is included in the kernel of 1 +K1) and, similarly, the
cokernel of A is finite dimensional. Hence A is Fredholm.

Assume now that A is Fredholm. Choose a complement E1 of Ker(A) in E
and a complement F1 of Im(A) in F. Then A1 = A|E1 is an isomorphism from
E1 into Im(A) and we define B such that B = (A1)−1 on Im(A) and B = 0 on
F2. Then the resulting K1 will be a projection onto Ker(A) and 1 +K2 will be
a projection onto Im(A); hence K1 and K2 will have the desired properties. �

Proof [(of Theorem 1.5.13)] Part (i) follows easily from Atkinson’s characteri-
zation and the Fredholm alternative: choose B, K1 andK2 as above. We deduce
that B is itself Fredholm of index −index(A) (here we used the additivity of the
index and the Fredholm alternative). We remark that (A+K)B = 1+(K1+KB)
and BA = 1 + (K2 + BK), where K1 + KB and K2 + BK are compact. We
then deduce that A+K is Fredholm of index equal to −index(B) = index(A).

We still have to prove that Index(A) = 0 can only happen for compact
perturbations of invertible operators. As above, we choose a complement E1 of
the kernel of A and a complement F1 of the image of A. With respect to these
decompositions, A is just (x, y) 7→ (A1(x), 0), where A1 : E1 → Im(A) is an
isomorphism (the restriction of A to E1). That A has zero index means that
the dimension of Ker(A) equals to the dimension of F1 (bot finite!). Choosing
an isomorphism φ : Ker(A) → F1, the map K : (x, y) 7→ (0, φ(y)) is compact
and A+K = (A1, φ) is an isomorphism. �



LECTURE 2
Distributions on manifolds

As explained in the previous lecture, to show that an elliptic operator be-
tween sections of two vector bundles E and F ,

P : Γ(M,E)→ Γ(M,F )

has finite index, we plan to use the general theory of Fredholm operators be-
tween Banach spaces. In doing so, we first have to interpret our P ’s as oper-
ators between certain “Banach spaces of sections”. The problem is that the
usual spaces of smooth sections Γ(M,E) have no satisfactory Banach space
structure. Given a vector bundle E over M , by a “Banach space of sections of
E”, B(M,E), one should understand (some) Banach space which contains the
space Γ(M,E) of all the smooth sections of E as a (dense) subspace. One way
to introduce such Banach spaces is to consider the completion of Γ(M,E) with
respect to various norms of interest. This can be carried out in detail, but the
price to pay is the fact that the resulting “Banach spaces of sections” have a
rather abstract meaning (being defined as completions). We will follow a differ-
ent path, which is based on the following remark: there is a very general (and
natural!) notion of “generalized sections of a vector bundle E over M”, hence
a space Γgen(M ;E) of such generalized sections (namely the space D′(M,E) of
distributions, discussed in this lecture), so general that all the other “Banach
spaces of sections” are subspaces of Γgen(M ;E). The space Γgen(M ;E) itself
will not be a Banach space, but all the Banach spaces of sections which will be
of interest for us can be described as subspaces of Γgen(M ;E) satisfying certain
conditions (and that is how we will define them).

Implicit in our discussion is the fact that all the spaces we will be looking
at will be vector spaces endowed with a topology (t.v.s.’s= topological vector
spaces). Although our final aim is to deal with Banach spaces, the general
t.v.s.’s will be needed along the way (however, all the spaces we will be looking
at will be l.c.v.s.’s= locally convex vector spaces, i.e., similarly to Banach spaces,
they can be defined using certain seminorms).

In this lecture, after recalling the notion of t.v.s. (topological vector space)
and the special case of l.c.v.s. (locally convex vector space), we will discuss the
space of generalized functions (distributions) on opens in Rn and then their gen-
eralizations to functions on manifolds or, more generally, to sections of vector

29
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bundles over manifolds. Since t.v.s.’s, l.c.v.s.’s and the local theory of general-
ized functions (distributions) on opens in Rn have already been discussed in the
intensive reminder, our job will be to pass from local (functions on opens in Rn)
to global (sections of vector bundles over arbitrary manifolds). However, these
lecture notes also contain some of the local theory that has been discussed in
the “intensive reminder”.

2.1. Reminder: Locally convex vector spaces

We start by recalling some of the standard notions from functional analysis
(which have been discussed in the intensive reminder).

Topological vector spaces

First of all, a t.v.s. (topological vector space) is a vector space V (over C)
together with a topology T , such that the two structures are compatible, i.e.
the vector space operations

V × V, (v, w) 7→ v + w, C× V → V, (λ, v) 7→ λv

are continuous. Recall that associated to the topology T and to the origin
0 ∈ V , one has the family of all open neighborhoods of 0:

T (0) = {D ∈ T : 0 ∈ D}.
Since the translations τx : V → V , y 7→ y+ x are continuous, the topology T is
uniquely determined by T (0): for D ⊂ V , we have

(2.1) D ∈ T ⇐⇒ ∀ x ∈ D ∃ B ∈ T (0) such that x+B ⊂ D.
In this characterization of the opens inside V , one can replace T (0) by any basis
of neighborhoods of 0, i.e. by any family B(0) ⊂ T (0) with the property that

D ∈ T (0) =⇒ ∃ B ∈ B such that B ⊂ D.
In other words, if we knows a basis of neighborhoods B(0) of 0 ∈ V , then we
know the topology T .

Exercise 2.1.1. Given a family B(0) of subsets of a vector space V containing
the origin, what axioms should it satisfy to ensure that the resulting topology
(defined by (2.1)) is indeed a topology which makes (V, T ) into a t.v.s.?

Note that, in a t.v.s. (V, T ), also the convergence can be spelled out in terms
of a (any) basis of neighborhoods B(0) of 0: a sequence (vn)n≥1 of elements of
V converges to v ∈ V , written vn → v, if and only if:

∀ B ∈ B(0), ∃ nB ∈ N such that vn − v ∈ B ∀ n ≥ nB.

Of course, this criterion can be used for B(0) = T (0), but often there are smaller
bases of neighborhoods B(0) at hand (after all, “b” is just the first letter of the
word “ball”). For instance, if (V, || − ||) is a normed space, then the resulting
t.v.s. has as basis of neighborhoods

B(0) = {B(0, r) : r ≥ 0},
where

B(0, r) = {v ∈ V : ||v|| < r}.
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In a t.v.s. (V, T ), one can also talk about the notion of Cauchy sequence:
a sequence (vn)n≥1 in V is called a Cauchy sequence if:

∀ D ∈ T (0) ∃ nD ∈ N such that vn − vm ∈ D ∀ n,m ≥ nD.

Again, if we have a basis of neighborhoods B(0) at our disposal, it suffices to
require this condition for D = B ∈ B(0).

In particular, one can talk about completeness of a t.v.s: one says that
(V, T ) is (sequentially) complete if any Cauchy sequence in V converges to
some v ∈ V .

Locally convex vector spaces

Recall also that a l.c.v.s. (locally convex vector space) is a t.v.s. (V, T )
with the property that “there are enough convex neighborhoods of the origin”.
That means that

Tconvex(0) := {C ∈ T (0) : C is convex}

is a basis of neighborhoods of 0 ∈ V or, equivalently:

∀ D ∈ T (0) ∃ C ∈ T (0) convex, such that C ⊂ D.

In general, l.c.v.s.’s are associated to families of seminorms (and sometimes
this is taken as “working definition” for locally convex vector spaces). First
recall that a seminorm on a vector space V is a map p : V → [0,∞) satisfying

p(v + w) ≤ p(v) + p(w), p(λv) = |λ|p(v),

for all v, w ∈ V , λ ∈ C (and it is called a norm if p(v) = 0 happens only for
v = 0).

Associated to any family
P = {pi}i∈I

of seminorms (on a vector space V ), one has a notion of balls:

Br
i1,...,in := {v ∈ V : pik(v) < r, ∀1 ≤ k ≤ n},

defined for all r > 0, i1, . . . , in ∈ I. The collection of all such balls form a family
B(0), which will induce a locally convex topology TP on V (convex because
each ball is convex). Note that, the convergence in the resulting topology is the
expected one:

vn → v in (V, TP )⇐⇒ pi(vn − v)→ 0 ∀ i ∈ I.

(and there is a similar characterization for Cauchy sequences). The fact that,
when it comes to l.c.v.s.’s it suffices to work with families of seminorms, follows
from the following:

Theorem 2.1.2. A t.v.s. (V, T ) is a l.c.v.s. if and only if there exists a family
of seminorms P such that T = TP .

Proof Idea of the proof: to produce seminorms, one associates to any C ⊂ V
convex the functional

pC(v) = inf {r > 0 : x ∈ rC}.
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Choosing C “nice enough”, this will be a seminorm. One then shows that
one can find a basis of neighborhoods of the origin consisting of “nice enough”
convex neighborhoods. �

By abuse of terminology, we also say that (V, P ) is a l.c.v.s. (but one should
keep in mind that all that matters is not the family of seminorms P but just
the induced topology TP ).

Remark 2.1.3. In most of the examples of l.c.v.s.’s, the seminorms come
first (quite naturally), and the topology is the associated one. However, there
are some examples in which the topology comes first and one may even not
care about what the seminorms actually are (see the general construction of
inductive limit topologies at the end of this section).

On the other hand, one should be aware that different sets of seminorms
may induce the same l.c.v.s. (i.e. the same topology). For instance, if P0 ⊂ P
is a smaller family of seminorms which has the property that for any p ∈ P ,
there exists p0 ∈ P0 such that p0 ≤ p (i.e. p0(v) ≤ p(v) for all v ∈ V ), then
P and P0 define the same topology. This trick will be repeatedly used in the
examples.

Exercise 2.1.4. Prove the last statement.

Next, it will be useful to have a criteria for continuity of linear maps between
l.c.v.s.’s in terms of the seminorms. The following is a very good exercise.

Proposition 2.1.5. Let (V, P ) and (W,Q) be two l.c.v.s.’s and let

A : V →W

be a linear map. Then T is continuous if and only if, for any q ∈ Q, there exist
p1, . . . , pn ∈ P and a constant C > 0 such that

q(A(v)) ≤ C ·max{p1(v), . . . , pn(v)} ∀ v ∈ V.

Note that we will deal only with l.c.v.s.’s which are separated (Hausdorff).

Exercise 2.1.6. Let (V, P ) be a l.c.v.s., where P = {pi}i∈I is a family of
seminorms on V . Show that it is Hausdorff if and only if, for v ∈ V , one has
the implication:

pi(v) = 0 ∀ i ∈ I =⇒ v = 0.

Finally, recall that a Frechet space is a t.v.s. V with the following prop-
erties:

1. it is complete.
2. its topology is induced by a countable family of semi-norms {p1, p2, . . .}.
In this case, it follows that V is metrizable, i.e. the topology of V can also

be induced by a (complete) metric:

d(v, w) :=
∑
n≥1

1
2n

pn(v − w)
1 + pn(v − w)

.
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Example 2.1.7. Of course, any Hilbert or Banach space is a l.c.v.s. This
applies in particular to all the familiar Banach spaces such as the Lp-spaces on
an open Ω ⊂ Rn

Lp(Ω) = {f : Ω→ C : f is measurable ,
∫

Ω
|f |p <∞},

with the norm
||f ||Lp = (

∫
Ω
|f |p)1/p.

Recall that, for p = 2, this is a Hilbert space with inner product

〈f, g〉L2 =
∫

Ω
fg.

Example 2.1.8. Another class of examples come from functions of a certain
order, eventually with restrictions on their support. For instance, for an open
Ω ⊂ Rn, r ∈ N and K ⊂ Ω compact, we consider the space

Cr
K(Ω) = {φ : Ω→ C : φ is of class Cr and supp(φ) ⊂ K}.

The norm which is naturally associated to this space is || · ||K,r defined by

||φ||r,K = sup{|∂αφ(x)| : x ∈ K, |α| ≤ r}.
With this norm, Cr

K(Ω) becomes a Banach space. Note that convergence in this
space is uniform convergence on K of all derivatives up to order r.

However, if we consider r =∞, then C∞K (Ω) should be considered with the
family of seminorms {|| · ||K,r : r ∈ N}. The result is a Frechet space. Note that
convergence in this space is uniform convergence on K of all derivatives.

Yet another natural space is the space of all smooth functions C∞(Ω). A
nice topology on this space is the one induced by the family of seminorms

{|| · ||K,r : K ⊂ Ω compact, r ∈ N}.
Using an exhaustion of Ω by compacts, i.e. a sequence (Kn)n≥0 of compacts
with

Ω = ∪nKn, Kn ⊂ Int(Kn+1),
we see that the original family of seminorms can be replaced by a countable
one:

{|| · ||Kn,r : n, r ∈ N}
(using Remark 2.1.3, check that the resulting topology is the same!). Hence
C∞(Ω) with this topology has the chance of being Frechet- which is actually
the case.

Note that convergence in this space is uniform convergence on compacts of
all derivatives.

Example 2.1.9. As a very general construction: for any t.v.s. (locally convex
or not), there are (at least) two important l.c. topologies on the continuous dual:

V ∗ := {u : V → R : u is linear and continuous}.
The first topology, denoted Ts, is the one induced by the family of seminorms
{pv}v∈V , where

pv : V ∗ → R, pv(u) = |u(v)|.
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This topology is called the weak* topology on V ∗, or the topology of simple
convergence. Note that un → u in this topology if and only if un(v)→ u(v) for
all v ∈ V .

The second topology, denoted Tb, called the strong topology (or of uniform
convergence on bounded sets) is defined as follows. First of all, recall that a
subset B ⊂ V is called bounded if, for any neighborhood of the origin, there
exists λ > 0 such that B ⊂ λV . If the topology of V is generated by a family
of seminorms P , this means that for any p ∈ P there exists λp > 0 such that

B ⊂ Bp(rp) = {v ∈ V : p(v) < rp}.

This implies (see also Proposition 2.1.5) that for any continuous linear func-
tional u ∈ V ∗,

pB(u) := sup{|u(v)| : v ∈ B} <∞.
In this way we obtain a family {pB}B of seminorms (indexed by all the bounded
sets B), and Tb is defined as the induced topology.

A related topology on V ∗ is the topology Tc of uniform convergence on
compacts, induced by the family of seminorms {pC : C ⊂ V ∗ compact}.

Some explanations (for your curiosity): In this course, when dealing with a par-
ticular l.c.v.s. V , what will be of interest to us is to understand the convergence in
V , understand continuity of linear maps defined on V or the continuity of maps with
values in V (i.e., in practical terms, one may forget the l.c. topology and just keep in
mind convergence and continuity). From this point of view, in almost all the cases in
which we consider the dual V ∗ of a l.c.v.s. V (e.g. the space of distributions), in this
course we will be in the fortunate situation that it does not make a difference if we
use Ts or Tb on V ∗ (note: this does not mean that the two topologies coincide- it just
means that the specific topological aspects we are interested in are the same for the
two).

What happens is that the spaces we will be dealing with in this course have some
very special properties. Axiomatising these properties, one ends up with particular
classes of l.c.v.s.’s which can be understood as part of the general theory of l.c.v.s.’s.
Here we give a few more details of what is really going on (the references below send
you to the book “Topological vector spaces, distributions and kernels” by F. Treves).

First of all, as a very general fact: for any t.v.s. V , Ts and Tc induce the same
topology on any equicontinuous subset H ⊂ V ∗ (Prop. 32.5, pp. 340). Recall that H
is called equicontinuous if, for every ε > 0, there exists a neighborhood B of the origin
such that

|u(v)| ≤ ε, ∀ v ∈ B, ∀ u ∈ H.
An important class of t.v.s.’s is the one of barreled space, which we now recall. A

barrel in a t.v.s. V is a non-empty closed subset A ⊂ V with the following properties:

1. A is absolutely convex: |α|A+ |β|A ⊂ A for all α, β ∈ C with |α|+ |β| = 1.
2. A is absorbing: ∀ v ∈ V, ∃ r > 0 such that v ∈ rA.

A t.v.s. V is said to be barreled if any barrel in V is a neighborhood of zero. For
instance, all Frechet spaces are barreled.

For a barreled space V , given H ⊂ V ∗, the following are equivalent (Theorem 33.2,
pp. 349):

1. H is weakly bounded (i.e. bounded in the l.c.v.s. (V ∗, Ts)).
2. H is strongly bounded (i.e. bounded in the l.c.v.s. (V ∗, Tb)).
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3. H is relatively compact in the weak topology (i.e. the closure of H in (V ∗, Ts)
is compact there).

4. H is equicontinuous.
Hence, for such spaces, the notion of “bounded” is the same in (V ∗, Ts) and (V ∗, Tb),
and we talk simply about “bounded subsets of V ∗. However, the notion of convergence
of sequences may still be different; of course, strong convergence implies weak conver-
gence, but all we can say about a weakly convergent sequence is that it is bounded in
the strong topology. More can be said for a more special class of t.v.s.’s.

A t.v.s. is called a Montel space if V is barreled and every closed bounded subset
of E is compact. Note that this notion is much more restrictive than that of barreled
space. For instance, while all Banach spaces are barreled, the only Banach spaces
which are Montel are the finite dimensional ones (because the unit ball is compact only
in the finite dimensinal Banach spaces). On the other hand, while all Frechet spaces
are barreled, there are Frechet spaces which are Montel, but also others which are not
Montel. The main examples of Montel spaces which are of interest for us are: the space
of smooth functions, and the space of test functions (discussed below).

For a Montel space V , it follows that the topologies Tc and Tb are the same (Prop.
34.5, pp. 357). From the general property of equicontinuous subsets H mentioned
above, we deduce that on such H’s,

Ts|H = Tb|H .
(also, by the last result we mentioned, H being equicontinuous is equivalent to being
bounded). Taking for H the set of elements of a weakly convergent sequence and
its weak limit (clearly weakly bounded!), it follows that the sequence is also strongly
convergent; hence convergence w.r.t. Ts and w.r.t. Tb is the same. Note that this does
not imply that the two topologies are the same: we know from point-set topology that
the notion of convergence w.r.t. a topology T does not determine the topology uniquely
unless the topology satisfies the first axiom of countability (e.g. if it is metrizable).

As a summary, for Montel spaces V ,
1. the notion of boundedness in (V ∗, Ts) and in (V ∗, Tb) is the same (and coincides

with equicontinuity).
2. Ts and Tb induce the same topology on any bounded H ⊂ V ∗.
3. a sequence in V ∗ is weakly convergent if and only it is strongly convergent.

Inductive limits

As we saw in all examples (and we will see in almost all the other examples),
l.c.v.s.’s usually come with naturally associated seminorms and the topology
is just the induced one. However, there is an important example in which the
topology comes first (and one usually doesn’t even bother to find seminorms
inducing it): the space of test functions (see next section). This example fits
into a general construction of l.c. topologies, known as “the inductive limit”.
The general framework is the following. Start with

X = vector space, Xα ⊂ X vector subspaces such that X = ∪αXα,

where α runs in an indexing set I. We also assume that, for each α, we have
given:

Tα − locally convex topology on Xα.

One wants to associate to this data a topology T on X, so that
1. (X, T ) is a l.c.v.s.
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2. all inclusions iα : Xα → X become continuous.

There are many such topologies (usually the “very small” ones, e.g. the one
containing just ∅ and X itself) and, in general, if T works, then any T ′ ⊂ T
works as well. The question is: is there “the best one” (i.e. the smallest
one)? The answer is yes, and that is what the inductive limit topology on X
(associated to the initial data) is. In short, this is induced by the following
basis of neighborhoods:

B(0) := {B ⊂ X : B − convex such that B ∩Xα ∈ Tα(0) for all α ∈ I},

(show that one gets a l.c. topology and it is the largest one!). One should keep
in mind that what is important about (X, T ) is to recognize when a function
on X is continuous, and when a sequence in X converges. The first part is a
rather easy exercise with the following conclusion:

Proposition 2.1.10. Let X be endowed with the inductive limit topology T ,
let Y be another l.c.v.s. and let

A : X → Y

be a linear map. Then A is continuous if and only if each

Aα := A|Xα : Xα → Y

is.

The recognition of convergent subsequences is a bit more subtle and, in
order to have a more elegant statement, we place ourselves in the following
situation: the indexing set I is the set N of positive integers,

X1 ⊂ X2 ⊂ X3 ⊂ . . . , , Xn − closed in Xn+1, Tn = Tn+1|Xn

(i.e. each (Xn, Tn) is embedded in (Xn+1, Tn+1) as a closed subspace). We as-
sume that all the inclusions are strict. The following is a quite difficult exercise.

Theorem 2.1.11. In the case above, a sequence (xn)n≥1 of elements in X
converges to x ∈ X (in the inductive limit topology) if and only if the following
two conditions hold:

1. ∃ n0 such that x, xm ∈ Xn0 for all m.
2. xm → x in Xn0.

(note: one can also show that (X, T ) cannot be metrizable).

2.2. Distributions: the local theory

In this section we recall the main functional spaces on Rn or, more generally, on
any open Ω ⊂ Rn. Recall that, for K ⊂ Rn and r ∈ N, one has the seminorm
|| · ||K,r on C∞(Ω) given by:

||f ||r,K = sup{|∂αf(x)| : x ∈ K, |α| ≤ r}.



LECTURE 2. DISTRIBUTIONS ON MANIFOLDS 37

E(Ω): smooth functions:

One defines
E(Ω) := C∞(Ω),

endowed with the locally convex topology induced by the family of seminorms
{|| · ||K,r}K⊂Ω compact,r∈N (see also Example 2.1.8). Hence, in this space, conver-
gence means: fn → f if and only if for each multi- index α and each compact
K ⊂ Ω, ∂αfn → ∂αf uniformly on K.

As a l.c.v.s, it is a Frechet space (and is also a Montel space).
Algebraically, E(Ω) is also a ring (or even an algebra over C), with respect

to the usual multiplication of functions. Note that this algebraic operation is
continuous.

D(Ω): compactly supported smooth functions (test functions):

One defines
D(Ω) := C∞c (Ω),

the space of smooth functions with compact support, with the following topol-
ogy. First of all, for each K ⊂ Ω, we consider

EK(Ω) := C∞K (Ω),

the space of smooth functions with support insideK, endowed with the topology
induced from the topology of E(Ω) (which is the same as the topology discussed
in Example 2.1.8, i.e. induced by the family of seminorms {|| · ||K,r}r∈N. While,
set theoretically (or as vector spaces),

D(Ω) = ∪KEK(Ω)

(union over all compacts K ⊂ Ω), we consider the inductive limit topology on
D(Ω) (see the end of the previous section).

Convergent sequences are easy to recognize here: fn → f in D(Ω) if and
only if there exist a compact K such that fn ∈ EK for all n, and fn → f in EK
(indeed, using an exhaustion of Ω by compacts (see again Example 2.1.8), we
see that we can place ourselves under the conditions which allow us to apply
Theorem 2.1.11).

As a l.c.v.s., D(Ω) is complete but it is not Frechet (see the end of Theorem
2.1.11). (However, it is a Montel space).

Algebraically, D(Ω) is also an algebra over C (with respect to pointwise
multiplication), which is actually an ideal in E(Ω) (the product between a com-
pactly supported smooth function and an arbitrary smooth function is again
compactly supported).

D′(Ω): distributions:

The space of distributions on Rn is defined as the (topological) dual of the space
of test functions:

D′(Ω) := (D(Ω))∗

(see also Example 2.1.9). An element of this space is called a distribution on
Ω. Unraveling the inductive limit topology on D(Ω), one gets a more explicit
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description of these space. More precisely, using Proposition 2.1.10 to recognize
the continuous linear maps by restricting to compacts, and using Proposition
2.1.5 to rewrite the resulting continuity conditions in terms of seminorms, one
finds the following:

Corollary 2.2.1. A distribution on Ω is a linear map

u : C∞c (Ω)→ C

with the following property: for any compact K ⊂ Ω, there exists C = CK > 0,
r = rK ∈ N such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞K (Ω).

As a l.c.v.s., D′(U) will be endowed with the strong topology (the topology
of uniform convergence on bounded subsets- see Example 2.1.9). Note however,
when it comes to convergence of sequences (un) of distributions, the strong
convergence is equivalent to simple (pointwise) convergence. 1

In general, any smooth function f induces a distribution uf

φ 7→
∫

Rn

fφ,

and this correspondence defines a continuous inclusion of

i : E(Ω) ↪→ D′(Ω).

For this reason, distributions are often called “generalized functions”, and one
often identifies f with the induced distribution uf .

Algebraically, the multiplication on E(Ω) extends to a E(Ω)-module struc-
ture on D′(Ω)

E(Ω)×D′(Ω)→ D′(Ω), (f, u) 7→ fu,

where
(fu)(φ) = u(fφ).

1 Explanation (for your curiosity): When it comes to the following notions:

1. bounded subsets of D′(Ω),
2. convergence of sequences in D′(Ω),
3. continuity of a linear map A : V → D′(Ω) defined on a Frechet space V (e.g. V =

E(Ω′)),
4. continuity of a linear map A : V → D′(Ω) defined on a l.c.v.s. V which is the inductive

limit of Frechet spaces (e.g. V = D(Ω′)).

(notions which depend on what topology we use on D′(Ω)), it does not matter whether we
use the strong topology Tb or the weak topology Ts on D′(Ω): the a priori different resulting
notions will actually coincide.

For boundedness and convergence this follows from the fact that D(Ω) is a Montel space
(Theorem 34.4, pp. 357 in the book by Treves). For continuity of linear maps defined on a
Frechet space, one just uses that, because V is metrizable, continuity is equivalent to sequential
continuity (i.e. the property of sending convergent sequences to convergent sequences) and
the previous part. If V is an inductive limit of Frechet spaces one uses the characterization
of continuity of linear maps defined on inductive limits (Proposition 2.1.10).
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E ′(Ω): compactly supported distributions:

The space of compactly supported distributions on Ω is defined as the (topo-
logical) dual of the space of all smooth functions

E ′(Ω) := (E(Ω))∗.

Using Proposition 2.1.5 to rewrite the continuity condition, we find:

Corollary 2.2.2. A compactly supported distribution on Ω is a linear map

u : C∞(Ω)→ C
with the following property: there exists a compact K ⊂ Ω, C > 0 and r ∈ N
such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞(Ω).

Again, as in the case of D′(Ω), we endow E ′(Ω) with the strong topology.2

Note that the dual of the inclusion D(Ω) ↪→ E induces a continuous inclusion

E ′(Ω) ↪→ D′(Ω).

Explicitly, any linear functional on C∞(Ω) can be restricted to a linear func-
tional on C∞c (Ω), and the estimates for the compactly supported distributions
imply the ones for distributions.

Hence the four distributional spaces fit into a diagram

D //

��

E

��
E ′ // D′

,

in which all the arrows are (algebraic) inclusions which are continuous, and the
spaces on the left are (topologically) the compactly supported version of the
spaces on the right.

Change of coordinates

In general, a change of coordinates (i.e. a diffeomorphism) χ : Ω1 → Ω2 induces
maps χ∗ from the four distributional spaces of Ω1 to the ones of Ω2, in a way
which is compatible with the diagrams themselvs. At the level of sections it is
simply

χ∗ : D(Ω1)→ D(Ω2), χ∗(φ) = φ ◦ χ−1

(and similarly for E). At the level of distributions, since we want χ∗ to be
compatible with the inclusion f 7→ uf of smooth functions into distributions,
we would like to have χ∗(uf ) = uχ∗(f) = uf◦χ−1 , i.e.

χ∗(uf )(φ) =
∫

Ω2

f ◦ χ−1 · φ =
∫

Ω1

|Jac(χ)|f · φ ◦ χ = uf (|Jac(χ) · φ ◦ χ).

2Explanation (for your curiosity): The same discussion as in the case of D′(Ω) applies also to
E ′(Ω). This is due to the fact that also E(Ω) is a Montel space (with the same reference as for
D(Ω)). Hence, when it comes to bounded subsets, convergent sequences, continuity of linear
maps from a (inductive limit of) Frechet space(s) to E ′(Ω), it does not matter whether we use
the strong topology Tb or the simple topology Ts on E ′(Ω).
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This brings us to the definition of χ∗ on all distributions:

(2.2) χ∗ : D′(Ω1)→ D′(Ω2), χ∗(u)(φ) = u(|Jac(χ)| · φ ◦ χ).

Supports of distributions

Next, we recall why E ′(Ω) is called the space of compactly supported distribu-
tions. The main remark is that the assignment

Ω 7→ D′(Ω)

defines a sheaf and, as for any sheaf, one can talk about sections with com-
pact support. What happens is that the elements in D′(Ω) which have com-
pact support in this sense, are precisely the ones in the image of the inclusion
E ′(Ω) ↪→ D′(Ω).

Here are some details. First of all, for any two opens Ω ⊂ Ω′, one has an
inclusion (“extension by zero”)

D(Ω) ↪→ D(Ω′), f 7→ f̃ ,

where f̃ is f on Ω and zero outside. Dualizing, we get a “restriction map”,

D′(Ω′)→ D′(Ω), u 7→ u|Ω.

The sheaf property of the distributions is the following property which follows
immediately from a partition of unity argument:

Lemma 2.2.3. Assume that Ω = ∪iΩi, with Ωi ⊂ Rn opens, and that ui are
distributions on Ωi such that, for all i and j,

ui|Ωi∩Ωj = uj |Ωi∩Ωj .

Then there exists a unique distribution u on Ω such that

u|Ωi = ui

for all i.

Proof Use partitions of unity. �

From this it follows that, for any u ∈ D′(Ω), there is a largest open Ωu ⊂ Ω
on which u vanishes (i.e. u|Ωu = 0).

Definition 2.2.4. For u ∈ D′(Ω), define its support

supp(u) = Ω− Ωu = {x ∈ Ω : u|Vx = 0 for any neighborhood Vx ⊂ Ω of x}.

We say that u is compactly supported if supp(f) is compact.

Example 2.2.5. For any x ∈ Ω, one has the distribution δx defined by

δx(φ) = φ(x).

It is not difficult to check that its support is precisely {x}.

Exercise 2.2.6. Show that u ∈ D′(Ω) has compact support if and only if it is
in the image of the inclusion

E ′(Ω) ↪→ D′(Ω).
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Derivatives of distributions and Sobolev spaces

Finally, we discuss one last property of distributions which is of capital impor-
tance: one can talk about the partial derivatives of any distribution! The key
(motivating) remark is the following, which follows easily from integration by
parts.

Lemma 2.2.7. Let f ∈ C∞(Ω) and let uf be the associated distribution.
Let ∂αf ∈ C∞(Ω) be the higher derivative of f associated to a multi-index

α, and let u∂αf be the associated distribution.
Then u∂αf can be expressed in terms of uf by:

u∂αf (φ) = (−1)|α|uf (∂αf).

This shows that the action of the operator ∂α on smooth functions can be
extended to distributions.

Definition 2.2.8. For a distribution u on Ω and a multi-index α, one defines
the new distribution ∂αu on Ω, by

(∂αu)(φ) = (−1)|α|u(∂αφ), ∀ φ ∈ C∞c (Ω).

Example 2.2.9. The distribution uf makes sense not only for smooth func-
tions on Ω, but also for functions f : Ω→ C with the property that φf ∈ L1(Ω)
for all φ ∈ C∞c (Ω) (so that the integral defining uf is absolutely convergent).
In particular it makes sense for any f ∈ L2(Ω) and, as before, this defines an
inclusion

L2(Ω) ↪→ D′(Ω).
We now see one of the advantages of the distributions: any f ∈ L2, although
it may even not be continuous, has derivatives ∂αf of any order! Of course,
they may fail to be functions, but they are distributions. In particular, it is
interesting to consider the following spaces.

Definition 2.2.10. For any r ∈ N, Ω ⊂ Rn open, we define the Sobolev space
on Ω of order r as:

Hr(Ω) := {u ∈ D′(Ω) : ∂α(u) ∈ L2(Ω) whenever |α| ≤ r},
endowed with the inner product

〈u, u′〉Hr =
∑
|α|≤r

〈∂αu, ∂αu′〉L2 .

In this way, Hr(Ω) becomes a Hilbert space.

2.3. Distributions: the global theory

The l.c.v.s.’s E(Ω), D(Ω), D′(Ω) and E ′(Ω) can be extended from opens Ω ⊂ Rn

to arbitrary manifold M (allowing us to talk about distributions on M , or
generalized functions on M) and, more generally, to arbitrary vector bundles
E over a manifold M (allowing us to talk about distributional sections of E,
or generalized sections of E). To explain this extension, we fix M to be an
n-dimensional manifold, and let E be a complex vector bundle over M of rank
p.
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E(M,E) (smooth sections):

One defines

E(M,E) := Γ(E),

the space of all smooth sections of E endowed with the following locally convex
topology. To define it, we choose a cover U = {Ui}i∈I of M by opens which
are domains of “total trivializations” of E, i.e. both of charts (Ui, κi) for M as
well as of trivializations τi : E|Ui → Ui × Cp for E. This data clearly induces
an isomorphism of vector spaces

φi : Γ(E|Ui)→ C∞(κi(Ui))p

(see also subsection 2.3 below). Altogether, and after restricting sections of E
to the various U ′is, these define an injection

φ : Γ(E)→ ΠiC
∞(κi(Ui))p = ΠiE(κi(Ui))p.

Endowing the right hand side with the product topology, the topology on Γ(E)
is the induced topology (via this inclusion). Equivalently, considering as indices
γ = (i, l,K, r) consisting of i ∈ I (to index the open Ui), 1 ≤ l ≤ p (to index the
l-th component of φ(s|Ui)), K ⊂ κ(Ui) compact and r- non-negative integer,
one has seminorms || · ||γ on Γ(E) as follows: for s ∈ Γ(E), restrict it to Ui,
move it to E(κi(Ui))p via φi, take its l-th component, and apply the seminorm
|| · ||K,r of E(κi(Ui)):

||s||γ = ||φ(s|Ui)
l||r,K .

Putting together all these seminorms will define the desired l.c. topology on
Γ(E).

Exercise 2.3.1. Show that this topology does not depend on the choices in-
volved.

Note that, since the cover U can be chosen to be countable (our manifolds
are always assumed to satisfy the second countability axiom!), it follows that
our topology can be defined by a countable family of seminorms. Using the
similar local result, you can now do the following:

Exercise 2.3.2. Show that E(M,E) is a Frechet space.

Finally, note that a sequence (sm)m≥1 converges to s in this topology if and
only if, for any open U which is the domain of a local chart κ for M and of
a local frame {s1, . . . , sp} for E, and for any compact K ⊂ U , writing sm =
(f1

m, . . . , f
p
m), s = (f1, . . . , fp) with respect to the frame, all the derivatives

∂α
κ (f i

m) converge uniformly on K to ∂α
κ (f i) (when m→∞).

When E = CM is the trivial line bundle over M , we simplify the notation to
E(M). As in the local theory, this is an algebra (with continuous multiplication).
Also, the multiplication of sections by functions makes E(M,E) into a module
over E(M).
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D(M,E) (compactly supported smooth sections):

One defines
D(M,E) := Γc(E),

the space of all compactly supported smooth sections endowed with the follow-
ing l.c. topology defined exactly as in the local case: one writes

D(M,E) = ∪KEK(M,E),

where the union is over all compacts K ⊂M , and EK(M,E) ⊂ E(M,E) is the
space of smooth sections supported in K, endowed with the topology induced
from E(M,E); on D(M,E) we consider the inductive limit topology.

Exercise 2.3.3. Describe more explicitly the convergence in D(M,E).

Again, when E = CM is the trivial line bundle over M , we simplify the
notation to D(M).

D′(M,E) (generalized sections):

This is the space of distributional sections of E, or the space of generalized
sections of E. To define it, we do not just take the dual of D(M,E) as in the
local case, but we first:

1. Consider the complexification of the density line bundle, still denoted by
D = DM on M (see the previous chapter). All we need to know about
D is that its compactly supported sections can be integrated over M
without any further choice, i.e. there is an integral∫

M
: Γc(D)→ C.

If you are more familiar with integration of (top-degree) forms, you may
assume that M has an orientation, D = ΛnT ∗M ⊗ C- the space of C-
valued n-forms (an identification induced by the orientation), and

∫
M is

the integral that you already know. Or, if you are more familiar with
integration of functions on Riemannian manifolds, you may assume that
M is endowed with a metric, D is the trivial line bundle (an identification
induced by the metric) and that

∫
M is the integral that you already know.

2. Consider the “functional dual” of E:

E∨ := E∗ ⊗D = Hom(E,D),

the bundle whose fiber at x ∈ M is the complex vector space consisting
of all (C-)linear maps Ex → Dx.

The main point about E∨ is that it comes with a “pairing” (pointwise
the evaluation map)

< −,− >: Γ(E∨)× Γ(E)→ Γ(D)

(and its versions with supports) and then, using the integration of sec-
tions of D, we get canonical pairings

[−,−] : Γc(E∨)× Γ(E)→ C, (s1, s2) 7→
∫

M
< s1, s2 > .
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We now define
D′(M,E) := (D(M,E∨))∗

(endowed with the strong topology). Note that, it is precisely because of the
way that E∨ was constructed, that we have canonical (i.e. independent of any
choices, and completely functorial) inclusions

E(M,E) ↪→ D′(M,E),

sending a section s to the functional us :=< ·, s >. And, as before, we identify
s with the induced distribution us.

When E = CM , we simplify the notation to D′(M).
As for the algebraic structure, as in the local case, D′(M,E) is a module

over E(M), with continuous multiplication

E(M)×D′(M,E)→ D′(M,E)

defined by
(fu)(s) = u(fs).

Example 2.3.4. Special care has to be taken when M = Ω is an open in Rn

and E is a trivial vector bundle. Strictly speaking, we have now two spaces
represented by the same notation D′(Ω):

1. the space from the local theory, which is the dual of D(Ω) = C∞c (Ω) -
call it D′(Ω)old.

2. the space from the global theory, which is the dual ofD(Ω, D) = Γc(Ω, D)-
call it D′(Ω)new (where D is the density line bundle of Ω, complexified).

The two are identified by the canonical identification of D with the trivial line
bundle. At the level of distributions, the identification is

D′(Ω)old
∼←→ D′(Ω)new, ξ̂ ←→ ξ,

where
ξ̂(φ) := ξ(φ|dx1 . . . dxn|), for φ ∈ C∞c (Ω).

In what follows, when talking about D′(Ω) in the local case, we will still be
thinking of D′(Ω)old (which is more natural in the local context); one may
choose any of the two models, but one should stil keep in mind the identification
between the two. A good illustration of the need of being careful is the change
of coordinates formula at the level of distributions (see Example 2.3.9).

E ′(M,E) (compactly supported generalized sections):

This is the space of compactly supported distributional sections of E, or the
space of compactly supported generalized sections of E. It is defined as in the
local case (but making again use of E∨), as

E ′(M,E) := (E(M,E∨))∗.

Note that, by the same pairing as before, one obtains an inclusion

D(M,E) ↪→ E ′(M,E).
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Hence, as in the local case, we obtain a diagram of inclusions

D(M,E) //

��

E(M,E)

��
E ′(M,E) // D′(M,E)

.

Example 2.3.5.
1. when E = CM is the trivial line bundle over M , we have shortened the

notations to D(M), E(M) etc. Hence, as vector spaces,

D(M) = Γc(M), E(M) = C∞(M),

while the elements of D′(M) will be called distributions on M .
2. staying with the trivial line bundle, but assuming now that M = Ω is an

open subset of Rn, we recover the spaces discussed in the previous section.
Note that, in the case of distributions, we are using the identification
of the density bundle with the trivial bundle induced by the section
|dx1 . . . dxn|.

3. when E = Cp
M is the trivial bundle over M of rank p, then clearly

D(M,Cp
M ) = D(M)p, E(M,M × Cp

M ) = E(M)p.

On the other hand, using the canonical identification between E∗ and E,
we also obtain

D′(M,Cp
M ) = D′(M)p, E ′(M,Cp

M ) = E ′(M)p.

Note that, as in the local theory, distributions u ∈ D′(M,E) can be re-
stricted to arbitrary opens U ⊂ M , to give distributions u|U ∈ D′(U,E|U ).
More precisely, the restriction map

D′(M,E)→ D′(U,E|U )

is defined as the dual of the map

D′(U,E∨|U )→ D(M,E∨)

which takes a compactly supported section defined on U and extends it by zero
outside U .

Exercise 2.3.6. For a vector bundle E over M ,
1. Show that U 7→ D(U,E|U ) forms a sheaf over M .
2. Define the support of any u ∈ D(M,E).
3. Show that the injection

E ′(M,E) ↪→ D′(M,E)

identifies E ′(M,E) with the space of compactly supported distributional
sections (as a vector space only!).

Exercise 2.3.7. Show thatD(M,E) is dense in E(M,E), D′(M,E) and E ′(M,E)
(you are allowed to use the fact that this is known for trivial line bundles over
opens in Rn).
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Invariance under isomorphisms

Given two vector bundles, E over M and F over a manifold N , an isomorphism
h between E and F is a pair (h, h0), where h0 : M → N is a diffeomorphism
and h : E → F is a map which covers h0 (i.e. sends the fiber Ex to Fh0(x)

or, equivalently, the diagram below is commutative) and such that, for each
x ∈M , it restricts to a linear isomorphism between Ex and Fh0(x).

E

��

h // F

��
M

h0 // N

.

We now explain how such an isomorphism h induces isomorphisms between
the four functional spaces of E and those of F (really an isomorphism between
the diagrams they fit in). The four isomorphisms from the functional spaces of
E to those of F will be denoted by the same letter h∗. At the level of smooth
sections, this is simply

h∗ : E(M,E)→ E(N,F ), h∗(s)(y) = h(s(h−1
0 (y))),

which also restricts to the spaces D. At the level of generalized sections,

h∗ : D′(M,E)→ D′(N,F ),

is the dual of the map
h∨ : D(F∨)→ D(E∨)

defined by
h∨(u)(ex) = h∗0(u(h(ex))), (ex ∈ Ex),

where we have used the pull-back of densities, h∗0 : DN,h0(x) → DM,x.
The same formula defines h∗ on the spaces E ′.

Example 2.3.8. Given a rank p vector bundle E over M , one often has to
choose opens U ⊂ M which are domains of both a coordinate chart (U, κ) for
M as well as the domains of a trivialization τ : E|U → U × Cp for E. We
say that (U, κ, τ) is a total trivialization for E over U . Note that such a data
defines an isomorphism h between the vector bundle E|U over U and the trivial
bundle κ(U)× Cp:

h0 = κ, h(ex) = (κ(x), τ(ex)).

Hence any total trivialization (U, κ, τ) induces isomorphisms

hκ,τ : D(U,E|U )→ D(κ(U))p, hκ,τ : E(U,E|U )→ E(κ(U))p, etc.

(see also Example 2.3.5).

Example 2.3.9. Special care has to be taken in the case when M = Ω is an
open in Rn, E is the trivial line bundle and we work with distributions. See
first our discussion from Example 2.3.4. For a change of coordinates (diffeomor-
phism) χ : Ω1 → Ω2 between two opens in Rn, if we choose to represent D′(Ωi)
as the dual of D(Ωi) = C∞c (Ωi) (and we will do so), going carefully through the
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idenitification of the density bundles with the trivial ones (see again Example
2.3.4), we find that the change of coordinates from this section becomes

χ∗ : D′(Ω1)→ D′(Ω2), χ∗(u)(φ) = u(|Jac(χ)| · φ ◦ χ),

i.e. precisely the one from the local theory ((2.2) in Section 2.2 from this
chapter).

2.4. General operators and kernels

Given two vector bundles, E over a manifold M and F over a manifold N ,
an operator from E to F is, roughly speaking, a linear map which associates
to a “section of E” a “section of F”. The quotes refer to the fact that there
are several different choices for the meaning of sections: ranging from smooth
sections to generalized sections, or versions with compact supports (or other
types of sections). The most general type of operators are is following.

Definition 2.4.1. If E is a vector bundle over M and F is a vector bundle
over N , a general operator from E to F is a linear continuous map

P : D(M,E)→ D′(N,F ).

Remark 2.4.2. Note that general operators are often described with different
domains and codomains. For instance, if F1 and F2 is any of the symbols E ,
D, E ′ or D′ (or any of the other functional spaces that will be discussed in the
next lecture), one can look at continuous linear operators

(2.3) P : F1(M,E)→ F2(M,F ).

But since in all cases D ⊂ F1 and F2 ⊂ D′ (with continuous inclusions), P does
induce a general operator

Pgen : D(M,E)→ D′(N,F ).

Conversely, since D(M,E) is dense in all the other functional spaces that we
have discussed (Exercise 2.3.7), Pgen determines P uniquely. Hence, saying that
we have an operator (2.3) is the same as saying that we have a general operator
Pgen with the property that it extends to F1(M,E), giving rise to a continuous
operator taking values in F2(M,F ).

On the other extreme, one has the so-called smoothing operators, i.e. op-
erators which transforms generalized sections into smooth sections.

Definition 2.4.3. If E is a vector bundle over M and F is a vector bundle
over F , a smoothing operator from E to F is a linear continuous map

P : E ′(M,E)→ E(N,F ).

We denote by Ψ−∞(E,F ) the space of all such smoothing operators. When E
and F are the trivial line bundles, we will simplify the notation to Ψ−∞(M).

In other words, a smoothing operator is a general operator P : D(M,E)→
D′(N,F ) which

1. takes values in E(N,F ).
2. extends to a continuous linear map from E ′(M,E) to E(N,F ).
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A very useful way of interpreting operators is in terms of their so-called “ker-
nels”. The idea of a kernel is quite simple- and to avoid (just some) notational
complications, let us first briefly describe what happens when M = U ⊂ Rm

and N = V ⊂ Rn are two open, and the bundles involved are the trivial line
bundles. Then the idea is the following: any K ∈ C∞(V × U) induces an
operator

PK : D(U)→ E(V ), K(φ)(y) =
∫

U
K(y, x)φ(x)dx.

Even more: composing with the inclusion E(V ) ↪→ D′(V ), i.e. viewing PK as
an application

PK : D(U)→ D′(V ),
this map does not depend on K as a smooth function, but just on K as a
distribution (i.e. on uK ∈ D′(V × U)). Indeed, for φ ∈ D(U), PK(φ), as a
distribution on V , is

uPK(φ) : ψ 7→
∫

V
PK(φ)ψ =

∫
V×U

K(y, x)ψ(y)φ(x)dydx = uK(ψ ⊗ φ),

where ψ⊗ φ ∈ C∞(V ×U) is the map (y, x) 7→ ψ(y)φ(x)). In other words, any

K ∈ D′(V × U)

induces a linear operator

PK : D(U)→ D′(V ), PK(φ)(ψ) = K(ψ ⊗ φ)

which can be shown to be continuous. Moreover, this construction defines a
bijection between D′(V × U) and the set of all general operators (even more,
when equipped with the appropriate topologies, this becomes an isomorphism
of l.c.v.s.’s).

The passing from the local picture to vector bundles over manifolds works
as usual, with some care to make the construction independent of any choices.
Here are the details. Given the vector bundles E over M and F over N , we
consider the vector bundle over N ×M :

F � E∨ := pr∗1(F )⊗ pr∗2(E
∨),

where prj is the projection on the j-th component. Hence, the fiber over (y, x) ∈
N ×M is

(F � E∨)(y,x) = Fy ⊗ E∗x ⊗DM,x.

Note that the functional dual of this bundle is canonically identified with:

(F � E∨)∨ ∼= F∨ � E.

Exercise 2.4.4. Work out this isomorphism. (Hints: the density bundle of
N ×M is canonically identified with DN ⊗DM ; D∗

M ⊗DM
∼= Hom(DM , DM )

is canonically isomorphic to the trivial line bundle.)

As before, one may decide to use a fixed positive density on M and one on
N , and then replace F � E∨ by F � E∗ and F∨ � E by F ∗ � E.

Fix now a distribution

K ∈ D′(N ×M,F � E∨).
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We will associate to K a general operator

PK : D(M,E)→ D′(N,F ).

Due to the definition of the space of distributions, and to the identification
mentioned above, K will be a continuous function

K : D(N ×M,F∨ � E)→ C.
For ψ ∈ D(M,F∨) and φ ∈ D(M,E) we denote by

ψ ⊗ φ ∈ D(N ×M,F∨ � E)

the induced section (y, x) 7→ ψ(y) ⊗ φ(x). To describe PK , let φ ∈ D(M,E)
and we have to specify PK(φ) ∈ D′(N,F ), i.e. the continuous functional

PK(φ) : D(N,F∨)→ C.
We define

PK(φ)(ψ) := K(ψ ⊗ φ).
The general operator PK is called the general operator associated to the kernel
K. Highly non-trivial is the fact that any general operator arises in this way
(and then K will be called the kernel of PK).

Theorem 2.4.5. The correspondence K 7→ PK defines a 1-1 correspondence
between

1. distributions K ∈ D′(N ×M ;F � E∨).
2. general operators P : D(M,E)→ D′(N,F ).

Moreover, in this correspondence, one has

K ∈ E(N ×M ;F � E∨)⇐⇒ P is smoothing.

Note (for your curiosity): the 1-1 correspondence actually defines an isomorphism
of l.c.v.s.’s between

1. D′(N ×M ;F � E∨) with the strong topology.
2. the space L(D(M,E),D′(N,F )) of all linear continuous maps, endowed with

the strong topology.

Exercise 2.4.6. Let
P =

d

dx
: E(R)→ E(R).

Compute its kernel, and show that this is not a smoothing operator.





LECTURE 3
Functional spaces on manifolds

The aim of this section is to introduce Sobolev spaces on manifolds (or on
vector bundles over manifolds). These will be the Banach spaces of sections we
were after (see the previous lectures). To define them, we will take advantage
of the fact that we have already introduced the very general spaces of sections
(the generalized sections, or distributions), and our Banach spaces of sections
will be defined as subspaces of the distributional spaces.

It turns out that the Sobolev-type spaces associated to vector bundles can
be built up from smaller pieces and all we need to know are the Sobolev spaces
Hr of the Euclidean space Rn and their basic properties. Of course, it is not so
important that we work with the Sobolev spaces themselves, but only that they
satisfy certain axioms (e.g. invariance under changes of coordinates). Here we
will follow an axiomatic approach and explain that, starting with a subspace
of D′(Rn) satisfying certain axioms, we can extend it to all vector bundles
over manifolds. Back to Sobolev spaces, there is a subtle point: to have good
behaved spaces, we will first have to replace the standard Sobolev spaces Hr, by
their “local versions”, denoted Hr,loc. Hence, strictly speaking, it will be these
local versions that will be extended to manifolds. The result will deserve the
name “Sobolev space” (without the adjective “local”) only on manifolds which
are compact.

3.1. General functional spaces

When working on Rn, we shorten our notations to

E = E(Rn),D = D(Rn),D′ = . . .

and, similarly for the Sobolev space of order r:

Hr = Hr(Rn) = {u ∈ D′ : ∂αu ∈ L2 : ∀ |α| ≤ r}.

Definition 3.1.1. A functional space on Rn is a l.c.v.s. space F satisfying:
1. D ⊂ F ⊂ D′ and the inclusions are continuous linear maps.
2. for all φ ∈ D, multiplication by φ defines a continuous map mφ : F → F .

Similarly, given a vector bundle E over a manifoldM , one talks about functional
spaces on M with coefficients in E (or just functional spaces on (M,E)).

51
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As in the case of smooth functions, one can talk about versions of F with
supports. Given a functional space F on Rn, we define for any compactK ⊂ Rn,

FK = {u ∈ F , supp(u) ⊂ K},

endowed with the topology induced from F , and we also define

Fcomp := ∪KFK

(union over all compacts in Rn), endowed with the inductive limit topology. In
terms of convergence, that means that a sequence (un) in Fcomp converges to
u ∈ Fcomp if and only if there exists a compact K such that

supp(un) ⊂ K ∀n, un → u in F .

Note that Fcomp is itself a functional space.
Finally, for any functional space F , one has another functional space (dual

in some sense to Fcom), defined by:

Floc = {u ∈ D′(Rn) : φu ∈ F ∀ φ ∈ C∞c (Rn)}.

This has a natural l.c. topology so that all the multiplication operators

mφ : Floc → F , u 7→ φu (u ∈ D)

are continuous- namely the smallest topology with this property. To define it,
we use a family P of seminorms defining the l.c. topology on F and, for every
p ∈ P and φ ∈ C∞c (Rn) we consider the seminorm qp,φ on Floc given by

qp,φ(u) = p(φu).

The l.c. topology that we use on Floc is the one induced by the family {qp,φ :
p ∈ P, φ ∈ D. Hence, un → u in this topology means φun → φu in F , for all
φ’s.

Exercise 3.1.2. Show that, for any l.c.v.s. V , a linear map

A : V → Floc

is continuous if and only if , for any test function φ ∈ D, the composition with
the multiplication mφ by φ is a continuous map mφ ◦A : V → F .

Example 3.1.3. The four basic functional spaces D, E , E ′, D′ are functional
spaces and

Dcomp = Ecomp = D, (D′)comp = (E ′)comp = E ′,

Dloc = Eloc = E , (D′)loc = (E ′)loc = D′.
The same holds in the general setting of vector bundles over manifolds.

Regarding the Sobolev spaces, they are functional spaces as well, but the
inclusions

Hr,com ↪→ Hr ↪→ Hr,loc

are strict (and the same holds on any open Ω ⊂ Rn).

The local nature of the spaces FK is indicated by the following partition of
unity argument which will be very useful later on.
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Lemma 3.1.4. Assume that K ⊂ Rn is compact, and let {ηj}j∈J a finite
partition of unity over K, i.e. a family of compactly supported smooth functions
on Rn such that

∑
j ηj = 1 on K. Let Kj = K ∩ supp(ηj). Then the linear map

I : FK → Πj∈JFKj , u 7→ (ηju)j∈J

is a continuous embedding (i.e. it is an isomorphism between the l.c.v.s. FK

and the image of I, endowed with the subspace topology) and the image of I is
closed.

Proof The fact that I is continuous follows from the fact that each component
is multiplication by a compactly supported smooth function. The main obser-
vation is that there is a continuous map R going backwards, namely the one
which sends (uj)j∈J to

∑
j uj , such that R ◦ I = Id. The rest is a general fact

about t.v.s.’s: if I : X → Y , R : Y → X are continuous linear maps between
two t.v.s.’s such that R ◦ I = Id, then I is an embedding and D(X) is closed in
Y . Let’s check this. First, I is open from X to D(X): if B ⊂ X is open then,
remarking that

I(B) = I(X) ∩R−1(B)
and using the continuity of R, we see that I(B) is open in I(X). Secondly, to
see that I(X) is closed in Y , one remarks that

I(X) = Ker(Id− I ◦R).

�

Similar to Lemma 3.1.4, we have the following.

Lemma 3.1.5. Let F be a functional space on Rn and let {ηi}i∈I be a partition
of unity, with ηi ∈ D. Let Ki be the support of ηi. Then

I : Floc → Πi∈IFKi , u 7→ (µiu)i∈I

is a continuous embedding with closed image.

Proof This is similar to Lemma 3.1.4 and the argument is identical. Denoting
by X and Y the domain and codomain of I, we have I : X → Y . On the other
hand, we can consider R : Y → X sending (ui)i∈I to

∑
i ui (which clearly

satisfies R ◦ I = Id). What we have to make sure is that, if {Ki}i∈I is a locally
finite family of compact subsets of Rn, then one has a well-defined continuous
map

R : ΠiFKi → Floc, (ui)i∈I 7→
∑

i

ui.

First of all, u =
∑

i ui makes sense as a distribution: as a linear functional on
test functions,

u(φ) :=
∑

i

ui(φ)

(this is a finite sum whenever φ ∈ D). Even more, when restricted to DK ,
one finds IK finite such that the previous sum is a sum overall i ∈ IK for all
φ ∈ DK . This shows that u ∈ D′. To check that it is in Floc, we look at φu for
φ ∈ D (and want to check that it is in F). But, again, we will get a finite sum
of φui’s, hence an element in F . Finally, to see that the map is continuous, we
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have to check (see Exercise 3.1.2) that mφ ◦ A is continuous as a map to F ,
for all φ. But, again, this is just a finite sum of the projections composed with
mφ. �

3.2. The Banach axioms

Regarding the Sobolev spaces Hr on Rn, one of the properties that make them
suitable for various problems (and also for the index theorem) is that they are
Hilbert spaces. On the other hand, as we already mentioned, we will have to
use variations of these spaces for which this property is lost when we deal with
manifolds which are not compact. So, it is important to realize what remains
of this property.

Definition 3.2.1. (Banach axiom) Let F be a functional space on Rn. We
say that:

1. F is Banach if the topology of F is a Banach topology.
2. F is locally Banach if, for each compact K ⊂ Rn, the topology of FK is

a Banach topology.
Similarly, we talk about “Frechet”, “locally Frechet”, “Hilbert” and “locally
Hilbert” functional spaces on Rn, or, more generally, on a vector bundle E over
a manifold M .

Of course, if F is Banach then it is also locally Banach (and similarly for
Frechet and Hilbert). However, the converse is not true.

Example 3.2.2. E is Frechet (but not Banach- not even locally Banach). D is
not Frechet, but it is locally Frechet. The Sobolev spaces Hr are Hilbert. Their
local versions Hr,loc are just Frechet and locally Hilbert. The same applies for
the same functional spaces on opens Ω ⊂ Rn.

Proposition 3.2.3. A functional space F is locally Banach if and only if each
x ∈ Rn admits a compact neighborhood Kx such that FKx has a Banach topology
(similarly for Frechet and Hilbert).

Proof From the hypothesis it follows that we can find an open cover {Ui :
i ∈ I} of Rn such that each U i is compact and FU i

is Banach. It follows that,
for each compact K inside one of these opens, FK is Banach. We choose a
partition of unity {ηi}i∈I subordinated to this cover. Hence each supp(η)i is
compact inside Ui, {supp(η)i}i∈I is locally finite and

∑
i ηi = 1.

Now, for an arbitrary compact K, J := {j ∈ I : ηj |K 6= 0} will be finite
and then {ηj}j∈J will be a finite partition of unity over K hence we can apply
Lemma 3.1.4. There Kj will be inside Uj , hence the spaces FKj have Banach
topologies. The assertion follows from the fact that a closed subspace of a
Banach space (with the induced topology) is Banach. �

Remark 3.2.4. If F is of locally Banach (or just locally Frechet), then Fcomp

(with its l.c. topology) is a complete l.c.v.s. which is not Frechet (hint: Theorem
2.1.11 ).
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3.3. Invariance axiom

In general, a change of coordinates (diffeomorphism) χ : Rn → Rn induces a
topological isomorphism

χ∗ : D′ → D′

(See (2.2) and Example 2.3.9 for the precise formula and the explanations).
To be able to pass to manifolds, we need invariance of F under changes of
coordinates. In order to have a notion of local nature, we also consider a local
version of invariance.

Definition 3.3.1. Let F be a functional space on Rn. We say that:
1. F is invariant if for any diffeomorphism χ of Rn, χ∗ restricts to a topo-

logical isomorphism
χ∗ : F ∼→ F .

2. F is locally invariant if for any diffeomorphism χ of Rn and any compact
K ⊂ Rn, χ∗ restricts to a topological isomorphism

χ∗ : FK
∼→ Fχ(K).

Similarly, we talk about invariance and local invariance of functional spaces on
vector bundles over manifolds.

Clearly, invariant implies locally invariant (but not the other way around).

Example 3.3.2. Of course, the standard spaces D, E , D′, E ′ are all invariant
(in general for vector bundles over manifolds). However, Hr is not invariant
but, fortunately, it is locally invariant (this is a non-trivial result which will be
proved later on using pseudo-differential operators). As a consequence (see also
below), the spaces Hr,loc are invariant.

Proposition 3.3.3. A functional space F is locally invariant if and only if
for any diffeomorphism χ of Rn, any x ∈ Rn admits a compact neighborhood
Kx such that χ∗ restricts to a topological isomorphism

χ∗ : FKx

∼→ Fχ(Kx).

Proof We will use Lemma 3.1.4, in a way similar to the proof of Proposition
3.2.3. Let K be an arbitrary compact and χ diffeomorphism. We will check the
condition for K and χ. As in the proof of Proposition 3.2.3, we find a finite
partition of unity {ηj}j∈J over K such that each Kj = K ∩ supp(ηj) has the
property that

χ∗ : FKj

∼→ Fχ(Kj).

We apply Lemma 3.1.4 to K and the partition {ηj} (with map denoted by I)
and also to χ(K) and the partition {χ∗(ηi) = ηj ◦ χ−1} (with the map denoted
Iχ). Once we show that χ∗(FK) = Fχ(K) set-theoretically, the lemma clearly
implies that this is also a topological equality. So, let u ∈ FK . Then ηju ∈ FKj

hence
χ∗(ηi) · χ∗(u) = χ∗(ηj · u) ∈ Fχ(Kj) ⊂ FK ,

hence also
χ∗(u) =

∑
j

χ∗(ηi) · χ∗(u) ∈ FK .
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�

3.4. Density axioms

We briefly mention also the following density axioms.

Definition 3.4.1. Let F be a functional space on Rn. We say that:
1. F is normal if D is dense in F .
2. F is locally normal if, for any compact K ⊂ Rn, FK is contained in the

closure of D in F .
Similarly, we talk about normal and locally normal functional spaces on vector
bundles over manifolds.

Again, normal implies locally normal and one can prove a characterization
of local normality analogous to Proposition 3.2.3 and Proposition 3.3.3.

Example 3.4.2. All the four basic functional spaces D, E , D′ and E ′ are
normal (also with coefficients in vector bundles). Also the space Hr is normal.
However, for arbitrary opens Ω ⊂ Rn, the functional spaces Hr(Ω) (on Ω) are
in general not normal (but they are locally normal). The local spaces Hr,loc are
always normal (see also the next section).

The normality axiom is important especially when we want to consider
duals of functional spaces. Indeed, in this case a continuous linear functional
ξ : F → C is zero if and only if its restriction to D is zero. It follows that the
canonical inclusions dualize to continuous injections

D ↪→ F∗ ↪→ D′.
The duality between Floc and Fcomp can then be made more precise- one has:

(Floc)∗ = (F∗)comp, (Fcomp)∗ = (F∗)loc

(note: all these are viewed as vector subspaces of D′, each one endowed with
its own topology, and the equality is an equality of l.c.v.s.’s).

3.5. Locality axiom

In general, the invariance axiom is not enough for passing to manifolds. One
also needs a locality axiom which allows us to pass to opens Ω ⊂ Rn without
loosing the properties of the functional space (e.g. invariance).

Definition 3.5.1. (Locality axiom) We say that a functional space F is local
if, as l.c.v.s.’s,

F = Floc.

Similarly we talk about local functional spaces on vector bundles over manifolds.

Note that this condition implies that F is a module not only over D but
also over E .

Example 3.5.2. From the four basic examples, E and D′ are local, while D
and E ′ are not. Unfortunately, Hr is not local- and we will soon replace it with
Hr,loc (in general, for any functional space F , Floc is local).
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With the last example in mind, we also note that, in general, when passing
to the localized space, the property of being of Banach (or Hilbert, or Frechet)
type does not change.

Exercise 3.5.3. Show that, for any functional space F and for any compact
K ⊂ Rn

(Floc)K = FK ,

as l.c.v.s.’s. In particular, F is locally Banach (or locally Frechet, or locally
Hilbert), or locally invariant, or locally normal if and only if Floc is.

With the previous exercise in mind, when it comes to local spaces we have
the following:

Theorem 3.5.4. Let F be a local functional space on Rn. Then one has the
following equivalences:

1. F is locally Frechet if and only if it is Frechet.
2. F is locally invariant if and only if it is invariant.
3. F is locally normal if and only if it is normal.

Note that in the previous theorem there is no statement about locally Ba-
nach. As we have seen, this implies Frechet. However, local spaces cannot be
Banach.
Proof (of Theorem 3.5.4) In each part, we still have to prove the direct
implications. For the first part, if F is locally Frechet, choosing a countable
partition of unity and applying the previous lemma, we find that Floc is Frechet
since it is isomorphic to a closed subspace of a Frechet space (a countable
product of Frechet spaces is Frechet!). For the second part, the argument is
exactly as the one for the proof of Proposition 3.3.3, but using Lemma 3.1.5
instead of Lemma 3.1.4. For the last part, let us assume that F is locally
normal. It suffices to show that E is dense in F : then, for any open U ⊂ F ,
U ∩ E 6= ∅; but U ∩ E is an open in E (because E ↪→ F is continuous) hence,
since D is dense in E (with its canonical topology), we find U ∩ D 6= ∅.

To show that E is dense in F , we will need the following variation of Lemma
3.1.5. We choose a partition of unity ηi as there, but with ηi = µ2

i , µi ∈ D. Let

A = F , X = Πi∈IF ,
(X with the product topology). We define

i : A→ X, u 7→ (µiu)i, p : X → A, (ui)i 7→
∑

µiui.

As in the lemma, these make A into a closed subspace of X. Hence we can
place ourselves into the setting that we have a subspace A ⊂ X of a l.c.v.s. X,
which has a projection into A, p : X → A (not that we will omit writing i from
now on). Consider the subset

Y = Πi∈ID ⊂ X.
Modulo the inclusion A ↪→ X, B = A ∩ Y becomes E and p(Y ) = B. Also,
since A (or its image by i) is inside the closed subspace of X which is ΠiFKi , we
see that the hypothesis of local normality implies that A ⊂ Y (all closures are
w.r.t. the topology of X). We have to prove that A is in the closure of B. Let
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a ∈ A, V an open neighborhood of a in X. We have to show that V ∩ B 6= ∅.
From V we make V ′ = p−1(A∩V )- another open neighborhood of a in X. Since
A ⊂ Y , we have V ′ ∩ Y 6= ∅. It now suffices to remark that p(V ′) ⊂ V ∩B. �

Finally, let us point out the following corollary which shows that, in the case
of locally Frechet spaces, locality can be checked directly, using test functions
and without any reference to Floc.

Corollary 3.5.5. If F is a functional space which is locally Frechet, then F
is local if and only if the following two (test-)conditions are satisfied:

1. u ∈ D′(Rn) belongs to F if and only if φu ∈ F for all φ ∈ C∞c (Rn).
2. un → u in F if and only if φun → φ in F , for all φ ∈ C∞c (Rn).

Proof The direct implication is clear. For the converse, assume that F is
a functional space which satisfies these conditions. The first one implies that
F = Floc as sets and we still have to show that the two topologies coincide. Let
T be the original topology on F and let Tloc be the topology coming from Floc.
Since F ↪→ Floc is always continuous, in our situation, this tells us that Tloc ⊂ T .
On the other hand, Id : (F , Tloc) → (F , T ) is clearly sequentially continuous
hence, since Floc is metrizable, the identity is also continuous, hence T ⊂ Tloc.
This concludes the proof. �

3.6. Restrictions to opens

The main consequence of the localization axiom is the fact that one can restrict
to opens Ω ⊂ Rn. The starting remark is that, for any such open Ω, there is a
canonical inclusion

E ′(Ω) ⊂ E ′(Rn) ⊂ D′(Rn)
which should be thought of as “extension by zero outside Ω”, which comes
from the inclusion E ′(Ω) ⊂ E ′(Rn) (obtained by dualizing the restriction map
C∞(Rn)→ C∞(Ω)). In other words, any compactly supported distribution on
Ω can be viewed as a (compactly supported) distribution on Rn. On the other
hand,

φu ∈ E ′(Ω), ∀ φ ∈ C∞c (Ω), u ∈ D′(Ω).
Hence the following makes sense:

Definition 3.6.1. Given a local functional space F , for any open Ω ⊂ Rn, we
define

F(Ω) := {u ∈ D′(Ω) : φu ∈ F ∀ φ ∈ C∞c (Ω)},
endowed with the following topology. Let P be a family of seminorms defining
the l.c. topology on F and, for every p ∈ P and φ ∈ C∞c (Ω) we consider the
seminorm qp,φ on F given by

qp,φ(u) = p(φu).

We endow F(Ω) with the topology associated to the family {qp,φ : p ∈ P, φ ∈
C∞c (Ω).

Theorem 3.6.2. For any local functional space F and any open Ω ⊂ Rn,
F(Ω) is a local functional space on Ω and, as such,
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1. F(Ω) is locally Banach (or Hilbert, or Frechet) if F is.
2. F(Ω) is invariant if F is.
3. F(Ω) is normal if F is.

Proof For the first part, one remarks that F(Ω)K = FK . For the second part,
applying Theorem 3.5.4 to the local functional space F(Ω) on Ω, it suffices
to show local invariance. I.e., it suffices to show that for any χ : Ω → Ω
diffeomorphism and x ∈ Ω, we find a compact neighborhood K = Kx such that
χ∗ is an isomorphism between F(Ω)K(= FK) and F(Ω)χ(K)(= Fχ(K)). The
difficulty comes from the fact that χ is not defined on the entire Rn. Fix χ and
x. Then we can find a neighborhood Ωx of x ∈ Ω and a diffeomorphism χ̃ on
Rn such that

χ̃|Ωx = χ|Ωx

(this is not completely trivial, but it can be done using flows of vector fields, on
any manifold). Fix any compact neighborhood K ⊂ Ωx. Using the invariance
of F , it suffices to show that χ∗(u) = χ̃∗(u) for all u ∈ FK . But

χ∗(u), χ̃∗(u) ∈ F ⊂ D′

are two distributions whose restriction to χ(Ωx) is the same and whose restric-
tions to Rn − χ(K) are both zero. Hence they must coincide. For the last
part, since we deal with local spaces, it suffices to show that F(Ω) is locally
normal, i.e that for any compact K ⊂ Ω, FK(Ω) = FK ⊂ F(Ω) is contained in
the closure of D(Ω). I.e., for any u ∈ FK and any open U ⊂ F(Ω) containing
u, U ∩ D(Ω) =6= ∅. But since F is locally normal and the restriction map
r : F → F(Ω) is continuous, we have r−1(U) ∩ D 6= ∅ and the claim follows. �

Exercise 3.6.3. By a sheaf of distributions F̂ on Rn we mean an assignment

Ω 7→ F̂(Ω)

which associates to an open Ω ⊂ Rn a functional space F̂(Ω) on Ω (local or
not) such that:

1. if Ω2 ⊂ Ω1 and u ∈ F̂(Ω1), then u|Ω2 is in F̂(Ω2). Moreover, the map

F̂(Ω1)→ F̂(Ω2), u 7→ u|Ω1 .

is continuous.
2. If Ω = ∪i∈IΩi with Ωi ⊂ Rn opens (I some index set), then the map

F̂(Ω)→ Πi∈IF̂(Ωi), u 7→ (u|Ωi)i∈I

is a topological embedding which identifies the l.c.v.s. on the left with
the closed subspace of the product space consisting of elements (ui)i∈I

with the property that ui|Ωi∩Ωj = uj |Ωi∩Ωj for all i and j.
Show that

1. If F is a local functional space on Rn then Ω 7→ F(Ω) is a sheaf of
distributions.

2. Conversely, if F̂ is a sheaf of distributions on Rn then

F := F̂(Rn)

is a local functional space on Rn and F̂(Ω) = F(Ω) for all Ω’s.
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Below, for diffeomorphisms χ : Ω1 → Ω2 between two opens, we consider
the induced χ∗ : D′(Ω1)→ D′(Ω2) (see (2.2) and Example 2.3.9).

Corollary 3.6.4. Let F be a local functional space. If F is invariant then,
for any diffeomorphism χ : Ω1 → Ω2 between two opens in Rn, χ∗ induces a
topological isomorphism

χ∗ : F(Ω1)→ F(Ω2).

Proof The proof of 2. of Theorem 3.6.2, when showing invariance under
diffeomorphisms χ : Ω → Ω clearly applies to general diffeomorphism between
any two opens. �

3.7. Passing to manifolds

Throughout this section we fix

F = local, invariant functional space on Rn.

and we explain how to induce functional spaces F(M,E) (of “generalized sec-
tions of E of type F”) for any vector bundle E over an n-dimensional manifold
M .

To define them, we will use local total trivializations of E, i.e. triples
(U, κ, τ) consisting of a local chart (U, κ) for M and a trivialization τ : E|U →
U×Cp of E over U . Recall (see Example 2.3.8) that any such total trivialization
induces an isomorphism

hκ,τ : D′(U,E|U )→ D′(Ωκ)p (where Ωκ = κ(U) ⊂ Rn)1.

Definition 3.7.1. We define F(M,E) as the space of all u ∈ D′(M,E) with
the property that for any domain U of a total trivialization of E, hκ,τ (u|U ) ∈
F(Ωκ)p.

We still have to define the topology on F(M,E), but we make a few re-
marks first. Since the previous definition applies to all n-dimensional manifolds:

1 Let us make this more explicit. The total trivialization induces

1. a local frame s1, . . . , sp for E over U . Then, for any s ∈ Γ(E) we find (local) coefficients
f i

s ∈ C∞(Ωκ), i.e. satisfying

s(x) =
X

i

f i
s(κ(x))si(x) for x ∈ U.

2. the local dual frame s1, . . . , sp of E∗ and a local frame (i.e. non-zero section on U) of
the density bundle of M , |dx1

κ ∧ . . . ∧ xn
κ|. Then, for any ξ ∈ Γ(E∨) we find (local)

coefficients ξi ∈ C∞(Ωκ), i.e. satisfying

ξ(x) =
X

i

ξi(κ(x))si(x)|dx1
κ ∧ . . . ∧ xn

κ|x (x ∈ U).

3. any u ∈ D′(M, E) has coefficients ui ∈ D′(Ωκ), i.e. satisfying

u(ξ) =
X

i

ui(ξi) (ξ ∈ Γc(U, E∨)).

The map hκ,τ sends u to (u1, . . . , un).
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1. when applied to an open Ω ⊂ Rn and to the trivial line bundle CΩ over
Ω, one recovers F(Ω)- and here we are using the invariance of F .

2. it also applies to all opens U ⊂ M , hence we can talk about the spaces
F(U,E|U ). From the same invariance of F , when U is the domain of
a total trivialization chart (U, κ, τ), to check that u ∈ D′(U,E|U ) is in
F(U,E|U ), it suffices to check that hκ,τ (u) ∈ F(Ωκ)p- i.e. we do not need
to check the condition in the definition for all total trivialization charts.

3. If {Ui}i∈I is one open cover of M and u ∈ D′(M,E), then

u ∈ F(M,E)⇐⇒ u|Ui ∈ F(Ui, E|Ui) ∀ i ∈ I.
This follows from the similar property of F on opens in Rn.

Exercise 3.7.2. Given a vector bundle E over M and U ⊂M , F induces two
subspaces of D′(U,E|U ):

1. F(U,E|U ) just defined.
2. thinking of F(M,E) as a functional space on M (yes, we know, we still

have to define the topology, but that is irrelevant for this exercise), we
have an induced space:

{u ∈ D′(U,E|U ) : φu ∈ F(M,E), ∀ φ ∈ D(U)}.
Show that the two coincide.

Next, we take an open cover {Ui}i∈I by domains of total trivialization charts
(Ui, κi, τi). It follows that we have an inclusion

h : F(M,E)→ Πi∈IF(Ωκi)
p.

We endow F(M,E) with the induced topology.

Exercise 3.7.3. Show that the topology on F(M,E) does not depend on the
choice of the cover and of the total trivialization charts.

Theorem 3.7.4. For any vector bundle E over an n dimensional manifold
M , F(M,E) is a local functional space on (M,E).

Moreover, if F is locally Banach, or locally Hilbert, or Frechet (= locally
Frechet since F is local), or normal (= locally normal), then so is F(M,E).

Finally, if F is a vector bundle over another n-dimensional manifold N
and (h, h0) is an isomorphism between the vector bundles E and F , then h∗ :
D′(M,E)→ D′(N,F ) restricts to an isomorphism of l.c.v.s.’s

h∗ : F(M,E)→ F(N,F ).

Proof We just have to put together the various pieces that we already know
(of course, here we make use of the fact that all proofs that we have given so far
work for vector bundles over manifolds). To see that F(M,E) is a functional
space we have to check that we have continuous inclusions

D(M,E) ↪→ F(M,E) ↪→ D′(M,E).

We just have to remark that the map h used to define the topology of F(M,E)
also describes the topology for D and D′. To show that F(M,E) is local, one
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uses the sheaf property of F(M,E)loc (see Exercise 3.6.3) where the Ui’s there
are chosen as in the construction of h above. This reduces the problem to a
local one, i.e. to locality of F .

All the other properties follow from their local nature (i.e. Proposition 3.2.3
and the similar result for normality, applied to manifolds) and the fact that,
for K ⊂ M compact inside a domain U of a total trivialization chart (U, κ, τ),
FK(M,E) is isomorphic to FK(Ωκ)p. �

Corollary 3.7.5. If F is locally Banach (or Hilbert) and normal then, for
any vector bundle E over a compact n dimensional manifold M , F(M,E) is a
Banach (or Hilbert) space which contains D(M,E) as a dense subspace.

Definition 3.7.6. Let F1 and F2 be local, invariant functional spaces on Rm

and Rn, respectively, and assume that F1 is normal. LetM be anm-dimensional
manifold and N an n-dimensional one, and let E and F be vector bundles over
M and N , respectively. We say that a general operator

P : D(M,E)→ D′(N,F )

is of type (F1, F2) if it takes values in F2 and extends to a continuous linear
operator

PF1,F2 : F1(M,E)→ F2(N,E).

Note that, due to the normality axiom, the extension PF1,F2 will be unique,
hence the notation is un-ambiguous.

3.8. Back to Sobolev spaces

We apply the previous constructions to the Sobolev spaces Hr on Rn. Let us
first recall some of the standard properties of these spaces:

1. they are Hilbert spaces.
2. D is dense in Hr.
3. if s > n/2 + k then Hs ⊂ Ck(Rn) (with continuous injection) (Sobolev’s

lemma).
4. for all r > s and all K ⊂ Rn compact, the inclusion Hs,K ↪→ Hs,K is

compact (Reillich’s lemma).
Also, as we shall prove later, Hr are locally invariant (using pseudo-differential
operators and Proposition 3.3.3). Assuming all these, we now consider the
associated local spaces

Hr,loc = {u ∈ D′ : φu ∈ Hr, ∀ φ ∈ D}
and the theory we have developed imply that:

1. Hr,loc is a functional space which is locally Hilbert, invariant and normal.
2. ∩rHr,loc = E . Even better, for r > n/2 + k, any s ∈ Hr,loc is of class Ck.

Hence these spaces extend to manifolds.

Definition 3.8.1. For a vector bundle E over an n-dimensional manifold M ,
1. the resulting functional spaces Hr,loc(M,E) are called the local r-Sobolev

spaces of E.
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2. for K ⊂ M compact, the resulting K-supported spaces are denoted
Hr,K(M,E).

3. the resulting compactly supported spaces are denoted Hr,comp(M,E)
(hence they are ∪KHr,K(M,E) with the inductive limit topology).

If M is compact, we define the r-Sobolev space of E as

Hr(M,E) := Hr,loc(M,E)(= Hr,comp(M,E)).

Corollary 3.8.2. For any vector bundle E over a manifold M ,
1. Hr,loc(M,E) are Frechet spaces.
2. D(M,E) is dense in Hr,loc(M,E).
3. if a distribution u ∈ D′(M,E) belongs to all the spaces Hr,loc(M,E), then

it is smooth.
4. for K ⊂ M compact, Hr,K(M,E) has a Hilbert topology and, for r > s,

the inclusion
Hr,K(M,E) ↪→ Hs,K(M,E)

is compact.

Proof The only thing that may still need some explanation is the compactness
of the inclusion. But this follows from the Reillich’s lemma and the partition
of unity argument, i.e. Lemma 3.1.4 . �

Corollary 3.8.3. For any vector bundle E over a compact manifold M , Hr(M,E)
has a Hilbert topology, contains D(M,E) as a dense subspace,

∩rHr,loc(M,E) = Γ(E)

and, for r > s, the inclusion

Hr(M,E) ↪→ Hs(M,E)

is compact.

Finally, we point out the following immediate properties of operators. The
first one says that differential operators of order k are also operators of type
(Hr,Hr−k).

Proposition 3.8.4. For r ≥ k ≥ 0, given a differential operator P ∈ Dk(E,F )
between two vector bundles over M , the operator

P : D(M,E)→ D(M,F )

admits a unique extension to a continuous linear operator

Pr : Hr,loc(M,E)→ Hr−k,loc(M,F ).

The second one says that smoothing operators on compact manifolds, viewed
as operators of type (Hr,Hs), are compact.

Proposition 3.8.5. Let E and F be two vector bundles over a compact man-
ifold M and consider a smoothing operator P ∈ Ψ−∞(E,F ). Then for any r
and s, P viewed as an operator

P : Hr(M,E)→ Hs(M,F )

is compact.
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Remark 3.8.6. Back to our strategy of proving that the index of an elliptic
differential operator P ∈ Dk(E,F ) (over a compact manifold) is well-defined,
our plan was to use the theory of Fredholm operators between Banach spaces.
We have finally produced our Banach spaces of sections on which our operator
will act:

Pr : Hr(M,E)→ Hr−k(M,F ).
To prove that Pr is Fredholm, using Theorem 1.4.5 on the characterization of
Fredholm operators and the fact that all smoothing operators are compact, we
would need some kind of “inverse of Pr modulo smoothing operators”, i.e. some
kind of operator “of order −k” going backwards, such that PQ−Id and QP−Id
are smoothing operators. Such operators “of degree −k” cannot, of course, be
differential. What we can do however is to understand what make differential
operators behave well w.r.t. (e.g.) Sobolev spaces- and the outcome is: it is
not important that their total symbols are polynomials (of some degree k) in ξ,
but only their symbols have a certain k-polynomial-like behaviour (in terms of
estimates). And this is a property which makes sense even for k-negative (and
that is where we have to look for our Q). This brings us to pseudo-differential
operators ...

Exercise 3.8.7. Show that if such an operator Q : Hr−k(M,F )→ Hr(M,E)
is found (i.e. with the property that PQ− Id and QP − Id are smoothing), then
the kernel of the operator P : Γ(E)→ Γ(F ) is finite dimensional. What about
the cokernel?
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