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LECTURE 1
Differential operators

1.1. Differential operators I: trivial coefficients

In this section we discuss differential operators acting on spaces of functions on
a manifold, while in the next section we will move to those acting on spaces of
sections of vector bundles. We first discuss differential operators on an open
subset U ⊂ Rn.

We use the following notation for multi-indices α ∈ Nn :

|α| =
n∑
j=1

αj ; α! =
n∏
j=1

αj !.

Moreover, if β ∈ Nn we write α ≤ β if and only if αj ≤ βj for all 1 ≤ j ≤ n. If
α ≤ β we put (

β
α

)
:=

n∏
j=1

(
βj
αj

)
.

Finally, we put ∂j = ∂/∂xj and

(1.1) xα =
n∏
j=1

x
αj

j , ∂α = ∂α1
1 · · · ∂

αn
n .

Lemma 1.1.1. (Leibniz’ rule) Let f, g ∈ C∞(U) and α ∈ Nn. Then

∂α(fg) =
∑
β≤α

(
α
β

)
∂βf ∂α−βg.

Proof Exercise. �

Definition 1.1.2. A differential operator of order at most k ∈ N on U is an
endomorphism P ∈ End(C∞(U)) of the form

(1.2) P =
∑
|α|≤k

cα(x) ∂α,

with cα ∈ C∞(U) for all α.

The linear space of differential operators on U of order at most k is denoted
by Dk(U). The union of these, for k ∈ N, is denoted by D(U). Via Leibniz’
rule one easily verifies that the composition of two differential operators from
Dk(U) and Dl(U) is again a differential operator, in Dk+l(U). Accordingly, the
set D(U) of differential operators is a (filtered) algebra with unit.

Next, we look at the effect of coordinate changes. More precisely, let h be
a diffeomorphism from U onto a second open subset U ′ ⊂ Rn. Then by pull-
back, h induces the bijection h∗ : C∞(U ′)→ C∞(U). Thus, h∗f(x) = f(h(x)).
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Accordingly, we have an induced map h∗ : End(C∞(U))→ End(C∞(U ′)), given
by

h∗(T ) = h∗−1 ◦T ◦h∗.

Lemma 1.1.3. The map h∗ maps D(U) bijectively onto D(U ′).

Proof It follows by repeated application of the chain rule for differentiation,
in combination with Leibniz’ rule. �

We now move to arbitrary manifolds now.

Definition 1.1.4. Let M be a smooth manifold. A linear operator P ∈
End(C∞(M)) is called local if

supp(P (f)) ⊂ supp(f) ∀ f ∈ C∞(M).

Since the complement of the support of a function is the largest open on
which the function vanishes, the previous condition is equivalent to: for any
open U ⊂M , f ∈ C∞(M), one has the implication:

f |U = 0 =⇒ P (f)|U = 0.

Lemma 1.1.5. There is a unique way to associate to any local operator P ∈
End(C∞(M)) on a manifold M and any open U ⊂M , a “restricted operator”

PU = P |U ∈ End(C∞(U))

such that, if V ⊂ U , then (P |U )|V = P |V .

Proof For f ∈ C∞(U), let’s look at what the value of PU (f) ∈ C∞(U) at
an arbitrary point x ∈ U can be. We choose a function fx ∈ C∞(M) which
coincides with f in an open neighborhood Vx ⊂ U of x. From the condition in
the statement, we must have

PU (f)(x) = P (fx)(x).

We are left with checking that this can be taken as definition of PU . All we
have to check is the independence of the choice of fx. But if gx is another one,
then fx − gx vanishes on a neighborhood of x; since P is local, we deduce that
P (fx)−P (gx) = P (fx− gx) vanishes on that neighborhood, hence also at x. �

Local operators can be represented in local charts: if (U, κ) is a coordi-
nate chart, then P |U can be moved to κ(U) using the pull-back map k∗ :
C∞(κ(U))→ C∞(U), to obtain an operator

Pκ : C∞(κ(U))→ C∞(κ(U)), Pκ = κ∗(P |U ) = (κ∗)−1 ◦ P |U ◦ κ∗.

Definition 1.1.6. Let M be a smooth manifold. A differential operator
of order at most k on M is a local linear operator P ∈ End(C∞(M)) with the
property that, for any coordinate chart (U, κ), Pκ ∈ Dk(κ(U)).

The space of operators on M of order at most k is denoted by Dk(M).

Note that, in the previous definition, it would have been enough to require
the condition only for a family of coordinate charts whose domains cover M .



LECTURE 1. DIFFERENTIAL OPERATORS 5

Note also that the condition on a coordinate chart (U, κ = (xκ1 , . . . , x
κ
n)) simply

means that P |U is of type

PU =
∑
|α|≤k

cα(x) ∂ακ ,

with cα ∈ C∞(U). Here ∂ακ act on C∞(U) and are defined analogous to ∂α but
using the derivative along the vector fields ∂/∂xκj induce by the chart.

Next, we discuss the symbols of differential operators.

Definition 1.1.7. Let U ⊂ Rn and let P ∈ Dk(U) be of the form (1.2). The
full symbol of the operator P is the function σ(P ) : U × Rn → C defined by

σ(P )(x, ξ) =
∑
|α|≤k

cα(x)(iξ)α.

The principal symbol of order k of P is the function σk(P ) : U × Rn → C,

σk(P )(x, ξ) =
∑
|α|=k

cα(x)(iξ)α.

A nice property of the principal symbol has, which fails for the total one is
its multiplicativity property (see Exercise 1.5.2).

It is not difficult to check the following formulas for the symbols:

σ(P )(x, ξ) = e−iξP (eiξ)(x), σk(P )(x, ξ) = lim
t→∞

t−ke−itξP (eitξ)(x).

Here we have identified ξ with the linear functional x 7→
∑
ξjxj . Accordingly,

eiξ stands for the function x 7→ eiξx. See also below.
Although the total symbol may look more natural then the principal one,

the situation is the other way around: it is the principal symbol that can
be globalized to manifolds (hence expressed coordinate free). Continuing the
discussion above, it is most natural to view ξ as a variable in the dual of Rn.
Accordingly, U × Rn should be viewed as the cotangent bundle T ∗U. In other
words, the principal symbol should be viewed as the function

σk(P ) : T ∗U → C, ξ1(dx1)x + . . .+ ξn(dxn)x 7→
∑
|α|=k

cα(x)(iξ)α.

The following lemma supports this interpretation: it shows that the symbol can
be characterized intrinsically (without reference to the coordinates).

Lemma 1.1.8. Let U ⊂ Rn, P ∈ Dk(U).
For ξx = (x, ξ) ∈ T ∗xRn (x ∈ U), choose ϕ ∈ C∞(U) such that (dϕ)x = ξx.

Then
σk(P )(x, ξ) = lim

t→∞
t−ke−itϕ(x)P (eitϕ)(x).

Proof Left to the reader. The proof follows by application of Leibniz’ rule. �

Although this should be already clear from the previous lemma, let us check
explicitly that the symbol behaves well under coordinate changes. More pre-
cisely, let h be a diffeomorphism from U onto a second open subset U ′ ⊂ Rn.
It induces the map T ∗h : T ∗U → T ∗U ′ given by T ∗h(x, ξ) = (h(x), ξ ◦Txh−1).
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Accordingly we have the map h∗ : C∞(T ∗U) → C∞(T ∗U ′) given by h∗σ =
σ ◦ (T ∗h)−1. Thus,

h∗σ(x, ξ) = σ(h−1(x), ξ ◦Txh).

Lemma 1.1.9. For all P ∈ Dk(U),

σk(h∗(P )) = h∗(σk(P )).

Proof Fix (x, ξ) ∈ U × Rn ' T ∗U. Put y = h(x) and η = ξ ◦Txh
−1. Select

select ϕ ∈ C∞(U ′) with dϕ(y) = η. Then

σk(h∗(P ))(y, η) = lim
t→∞

t−ke−itϕ(y)(h∗P )(eitϕ)(y)

= lim
t→∞

t−ke−ith
∗ϕ(x)P (eith

∗ϕ)(x)

= σk(P )(x, ξ).

This establishes the desired formula. �

Corollary 1.1.10. Let M be a manifold and P ∈ Dk(M). Then there is a
well-defined smooth function

σk(P ) : T ∗M → C
such that, for any coordinate chart (U, κ = (xκ1 , . . . , x

κ
n)),

T ∗xM 3 ξ1(dxκ1)x + . . .+ ξn(dxκn)x
σk(P )−→ σk(Pκ)(x, ξ1, . . . , ξn) ∈ C.

Definition 1.1.11. Let P ∈ Dk(M). The function σk(P ) : T ∗M → C from
the previous lemma is called the principal symbol of order k of the operator
P.

You should now try to solve Exercises 1.5.3, 1.5.5 and 1.5.6.

1.2. Differential operators II: arbitrary coefficients

We shall now introduce the notion of a differential operator between smooth
vector bundles E and F on a smooth manifold M , acting at the level of sections

P : Γ(E)→ Γ(F ).

It is useful to have in mind that degree zero differential operators correspond
to sections C ∈ Γ(Hom (E,F )) i.e. smooth maps

M 3 x 7→ Cx ∈ Hom(Ex, Fx).

More precisely, any such C defines an operator C : Γ(E) → Γ(F ) acting on
sections by

C(s)(x) = Cx(s(x)).
This construction identifies sections of Hom (E,F ) with C∞(M)-linear maps

Γ(E) to Γ(F ) (see Exercise 1.5.7).
First, we place ourselves in the following situation:
1. M = U is the domain of a coordinate chart (U, κ = (xκ1 , . . . , x

κ
n)).

2. E is trivializable and we have a fixed trivialization E ∼= U × Cr with
associated frame {s1, . . .}.
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Note that, in this case, we have “higher order derivatives operators”

∂ακ : Γ(E)→ Γ(E), f1s1 + . . . 7→ ∂ακ (f1)s1 + . . . .

A differential operator of order at most k from E to F is a linear map P :
Γ(U,E)→ Γ(U,F ) of the form

P =
∑
|α|≤k

Cα ◦ ∂α,

with Cα ∈ Γ(U,Hom (E,F )). The space of such differential operators is denoted
by Dk(U,E, F ).

Note that if also F is trivialized, with trivializing frame {s′1, . . .}, then each
Cα is uniquely determined by a matrix of smooth functions on U , c(α)ij ∈
C∞(U) (characterized by Cα(si) =

∑
j c(α)jis

′
j . With respect to the identifi-

cation Γ(U,E) ∼= C∞(U,C)r, (f1s1 + . . .) 7→ (f1, . . .), and similarly for F , P
becomes

P (f1, . . .) = (
∑
α,j

∂ακ (f j)c(α)1j , . . .).

Next, we explain that Dk(U,E, F ) does not depend on the trivialization of
E. Another trivialization (over U) is associated with a vector bundle isomor-
phism ϕE : E → E. Then ϕE(x, v) = (x,ΦE(x)v), with ΦE a smooth map
U → GL (Cr). The map ϕE induces a linear isomorphism ϕE∗ of Γ(U,E) onto
itself, given by ϕE∗s = ϕE ◦ s. Accordingly, we have an induced linear isomor-
phism ϕ∗ from Hom(Γ(U,E),Γ(U,F )) onto itself given by ϕ∗(T ) = T ◦ϕ−1

E∗. By
an easy repeated application of Leibniz’ formula, we see that the map ϕ∗ maps
Dk(U,E, F ) bijectively onto Dk(U,E, F ). Hence the space Dk(U,E, F ) defined
above only depends on the coordinate patch (U, κ) and on the fact that E is
trivializable (in turn, one can already proceed as in the previous section and
show that it does not depend on the choice of the coordinates on U either).

Proceeding as in the previous section, we say that a linear operator between
spaces of sections of two vector bundles E andF over a manifold M ,

P : Γ(E)→ Γ(F )

is local if, for any s ∈ Γ(E),

supp(P (s)) ⊂ supp(s).

By the same arguments as before, any such local operator can be restricted to
arbitrary opens U ⊂ M , obtaining new operators P |U from E|U to F |U . Also,
for a coordinate chart (U, κ), we obtain an operator Pκ acting on the resulting
bundles over κ(U): from Eκ := κ∗(E|U) = (κ−1)∗(E|U) to Fκ defined similarly.

Definition 1.2.1. Let E,F be smooth vector bundles over a smooth manifold
M. A differential operator of order at most k from E to F is a linear
local operator P : Γ(E) → Γ(F ) with the property that, for any coordinate
chart (U, κ) with the property that E|U is trivializable, Pκ ∈ Dk(Eκ, Fκ).

The space of differential operators of order at most k from E to F is denoted
by Dk(E,F ).
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We extend the definition of principal symbol as follows. We denote by
π : T ∗M → M the canonical projection. For a vector bundle E over M , let
π∗E be the pull-back of E to T ∗M (whose fiber above ξx ∈ T ∗xM is Ex). For
two vector bundles E and F over M , we consider the vector bundle Hom (E,F )
over M (whose fiber above x ∈M is Hom(Ex, Fx)) and its pull-back to T ∗M ,

π∗Hom (E,F ) ∼= Hom (π∗E, π∗F )

whose fiber above ξx ∈ T ∗xM is Hom(Ex, Fx).

Lemma 1.2.2. Let E,F be smooth vector bundles on M and let P ∈ Dk(E,F ).
There exists a unique section σk(P ) of π∗Hom (E,F ) (called again the prin-
cipal symbol of P ), i.e. a smooth function

T ∗x 3 ξx 7→ σk(P )(ξx) ∈ Hom(Ex, Fx),

with the following property: for each x0 ∈M and all s ∈ Γ(E) and ϕ ∈ C∞(M),

(1.3) σk(P )((dϕ)x0)(s(x0)) = lim
t→∞

t−ke−itϕ(x0)P (eitϕs)(x0).

Moreover, for each x ∈ M the function ξ 7→ σk(P )(x, ξ) is a degree k homoge-
neous polynomial function T ∗xM → Hom(Ex, Fx).

Proof Uniqueness follows from the fact that for every (x, ξ) ∈ T ∗M and v ∈ Ex
there exists a s ∈ Γ∞(E) such that s(x) = v and a function ϕ ∈ C∞(M) such
that dϕ(x) = ξ. Let x0 ∈M be given and select a coordinate patch U 3 x0 over
which E and F admit trivializations τE : E|U → U×E0 and τF : F |U → U×F0.
trivialize. Let (x1, . . . , xn) be a system of local coordinates on U. Then

τ∗(P ) =
∑
|α|≤k

Cα∂
α,

with Cα ∈ C∞(U,Hom (E0, F0)). It follows by application of Lemma 1.1.8 that
the limit on the right-hand side of (1.3) is given by∑

|α|≤k

[τ−1
F ] ◦Cα(x0)τE [s(x0)]ηα.

Here we have used the multi-index notation with ηj = ∂jϕ(x0), ∂1, . . . , ∂n being
the derivations induced by the choice of coordinates. It follows that the limit
on the right-hand side of (1.3) depends on s and φ through the values s(x0)
and dφ(x0). This implies the existence of a section σk(P ) of Hom (π∗E, π∗F )
with the property (1.3). The local computation just given also implies the final
assertions about smoothness and homogeneity. �

Example 1.2.3. We consider the complexified version of the DeRham com-
plex. I.e., we define Ωk(M)C = Ωk(M)⊗R C, which should be interpreted as the
space of sections of the complex vector bundle ΛCT

∗M whose fiber at x ∈ M
consists of antisymmetric, k-multilinear maps from TxM to C. The exterior dif-
ferentiation clearly extends to a C-linear map d = dk : Ωk(M)C → Ωk+1(M)C.
Let U be a coordinate patch of M with local coordinates x1, . . . , xn. Then for
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each a ∈ U, the one forms dx1(a), . . . , dxn(a) span the cotangent space T ∗aM.
Thus, ∧kT ∗aM has the basis

dxj1(a) ∧ · · · ∧ dxjk(a), withj1 < · · · < jk.

With respect to this basis, the restriction of a section s ∈ Ωk(M) to U may be
expressed as

s|U =
∑

j1<···<jk

sj1,...,jkdxj1 ∧ · · · ∧ dxjk .

Exterior differentiation is given by

ds|U =
∑

j1...<jk

d(sj1,...,jk) ∧ dxj1 ∧ · · · ∧ dxjk ,

where dsj1,...,jk =
∑

i ∂isj1,...,jk . From this we see that d is a differential operator
of order one from ∧kT ∗M to ∧k+1T ∗M. For its principal symbol, see Exercise
1.5.9.

For E1, E2 smooth vector bundles on M and P ∈ Dk(E1, E2), the principal
symbol σk(P ) is a section of the bundle Hom (π∗E1, π

∗E2). Equivalently, the
symbol may be viewed as a homomorphism from the bundle π∗E1 to π∗E2.
Thus, if E3 is a third vector bundle and Q ∈ Dl(E2, E3) then the composition
σl(Q) ◦σk(P ) is a vector bundle homomorphism from E1 to E3.

Lemma 1.2.4. Let E1, E2, E3 be smooth vector bundles on M. Let P ∈ Dk(E1, E2)
and Q ∈ Dl(E2, E3). Then the composition Q ◦P belongs to Dk+l(E1, E3) and

σk+l(Q ◦P ) = σl(Q) ◦σk(P ).

Finally, we discuss the notion of formal adjoint. Assume now that E and
F are equipped with hermitian inner products 〈−,−〉E1 and 〈−,−〉F . We also
choose a strictly positive density on M , call it dµ. One has an induced inner-
product on the space Γc(E) of compactly supported sections of E given by

〈s, s′〉E :=
∫
M
〈s(x), s′)〉Ex dµ,

and similarly an inner product on Γc(F ). Given P ∈ Dk(E,F ), a formal
adjoint of P (with respect to the hermitian metrics and the density) is an
operator P ∗ ∈ Dk(F,E) with the property that

〈P (s1), s2〉F = 〈s1, P ∗(s2)〉E , ∀ s1 ∈ Γc(E), s2 ∈ Γc(F ).

Proposition 1.2.5. For any P ∈ Dk(E,F ), the formal adjoint P ∗ ∈ Dk(F,E)
exists and is unique. Moreover, the principal symbol of P ∗ is σk(P ∗) = σk(P )∗,
where σk(P )∗(ξx) is the adjoint of the linear map

σk(P )(ξx) : Ex → Fx

(with respect to the inner products 〈−,−〉Ex and 〈−,−〉Fx ).2

1hence 〈−,−〉E is a family {〈−,−〉Ex : x ∈ M} of inner products on the vector spaces Ex, which
“varies smoothly with respect to x”. The last part means, e.g., that for any s, s′ ∈ Γ(E), the
function 〈s, s′〉E on M , sending x to 〈s(x), s′(x)〉Ex is smooth; equivalently, it has the obvious
meaning in local trivializations.
2note that P ∗ depends both on the hermitian metrics on E and F as well as on the density,
while it principal symbol does not depend on the density.
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Proof Due to the local property of differential operators (or, more precisely
to its sheaf property, cf. Exercise 1.5.8), it suffices to prove the statement (both
the existence as well as the uniqueness) locally. So assume that M = U ⊂ Rn,
where we can write P =

∑
|α|≤k Cα ◦ ∂α. We have dµ = ρ|dx| for some smooth

function ρ on U . Writing out 〈P (s1), s2〉F and integrating by parts |α| times
(to move ∂α from s to s′), we find the operator P ∗ which does the job:

P ∗(s′) =
∑
|α|≤k

1
ρ
∂α(ρC∗αs

′).

Clearly, this is a differential operator of order at most k. For the principal
symbol, we see that the only terms in this sum which matter are:∑

|α|=k

(−1)|α|
1
ρ
ρC∗α∂

α(s′) =
∑
|α|=k

(−1)|α|C∗α∂
α(s′),

i.e. the symbol is given by∑
|α|=k

(−1)|α|C∗α(iξ)α = (
∑
|α|=k

C∗α(iξ)α)∗.

The uniqueness follows from the non-degeneracy property of the integral: if∫
U fg = 0 for all compactly supported smooth functions, then f = 0. �

1.3. Ellipticity and a preliminary version of the Atiyah-Singer
index theorem

Definition 1.3.1. Let P ∈ Dk(E,F ) be a differential operator between two
vector bundles E and F over a manifold M . We say that P is an elliptic
operator of order k if, for any ξx ∈ T ∗xM non-zero,

σk(P )(ξx) : Ex → Fx

is an isomorphism.

The aim of these lectures is to explain and complete the following theorem
(a preliminary version of the Atiyah-Singer index theorem).

Theorem 1.3.2. Let M be a compact manifold and let P : Γ(E)→ Γ(F ) be an
elliptic differential operator. Then Ker(P ) and Coker(P ) are finite dimensional,

Index(P ) := dim(ker(P ))− dim(Coker(P ))

depends only on the principal symbol σk(P ), and Index(P ) can be expressed in
terms of (precise) topological data associated to σk(P ).

Due to the the way that elliptic operators arise in geometry (via “elliptic
complexes”), it is worth giving a slightly different dress to this theorem.

Definition 1.3.3. A differential complex over a manifold M ,

E : Γ(E0) P0−→ Γ(E1) P1−→ Γ(E2) P2−→ . . .

consists of:
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1. For each k ≥ 0, a vector bundle Ek over M , with Ek = 0 for k large
enough.

2. For each k ≥ 0, a differential operator Pk from Ek to Ek+1, of some order
d independent of k

such that, for all k, Pk+1 ◦Pk = 0.

Example 1.3.4. Let dk : Ωk(M) → Ωk+1(M) be exterior differentiation.
Then dk+1 ◦ dk = 0 for all k. Therefore, the sequence of differential operators
dk ∈ D1(∧kT ∗M,∧k+1T ∗M) forms a complex; it is called the de Rham complex.

Note that, from Lemma 1.2.4 it follows that for a complex of differential
operators as above, the associated sequence σdk

(Pk) of principal symbols is a
complex of homomorphisms of the vector bundles π∗Ek on M , i.e., for any
ξx ∈ T ∗xM , the sequence

E0
x
σd(P0)(ξx)−→ E1

x
σd(P1)(ξx)−→ E2

x
σd(P2)(ξx)−→ . . .

is a complex of vector space. In turn, this means that the composition of any
two consecutive maps in this sequence is zero. Equivalently,

Ker(σd(Pk+1)(ξx)) ⊂ Im(σd(Pk)(ξx)).

Definition 1.3.5. A differential complex E is called an elliptic complex if,
for any ξx ∈ T ∗xM non-zero, the sequence

E0
x
σd(P0)(ξx)−→ E1

x
σd(P1)(ξx)−→ E2

x
σd(P2)(ξx)−→ . . .

is exact, i.e.
Ker(σd(Pk+1)(ξx)) = Im(σd(Pk)(ξx)).

For a general differential complex E , one can define

Zk(E) = Ker(Pk), Bk(E) = Im(Pk1),

and the k-th cohomology groups

Hk(E) = Zk(E)/Bk(E).

The space Hk(M,P∗) defined as above, is called the k-th cohomology group
of the elliptic complex.

Theorem 1.3.6. If E is an elliptic complex over a compact manifold M , then
all the cohomology groups Hk(E) are finite dimensional and the resulting Euler
characteristic

χ(E) :=
∑
k

(−1)kdim(Hk(E))

can be expressed in terms of topological invariants of the principal symbols as-
sociated to E.

Example 1.3.7. The De Rham complex of a manifold M is elliptic (see Ex-
ercise 1.5.10). Recall that the resulting cohomology in a degree k, i called the
k-th de Rham cohomology of M, denoted Hk

dR(M). is defined to be the k-th
cohomology of the de Rham complex. According to the above result, the de
Rham cohomology of a compact manifold is finite dimensional. For a simpler
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proof of this result, involving Meyer-Vietoris sequences, we refer the reader to
the book by Thornehaeve-Madsen or the book by Bott and Tu.

Example 1.3.8. Any elliptic operator P ∈ Dk(E,F ) can be seen as an elliptic
complex with E0 = E, E1 = F and Ek = 0 for other k’s, P0 = P . Moreover,
its Euler characteristic is just the index of P . Hence the last theorem seems to
be a generalization of Theorem 1.3.1. However, there is a simple trick to go the
other way around. This is explained in the last three exercises of this lecture.

1.4. General tool: Fredholm operators

As we have already mentioned, the aim of these lectures is to understand The-
orem 1.3.2. The first few lectures will be devoted to proving that the index of
any elliptic operator (over compact manifolds) is finite; after that we will spend
some lectures to explain the precise meaning of “topological data associated
to the symbol” (and the last lectures will be devoted to some examples). The
nature of these three parts is Analysis- Topology- Geometry.

For the first part- on the finiteness of the index, we will rely on the fact
that indices of operators are well behaved in the framework of Banach spaces.
This is some very general theory that belongs to Functional Analysis, which
we recall in this section. In the next few lectures we will show how this theory
applies to our problem (on short, we have to pass from spaces of sections of
vector bundles to appropriate “Banach spaces of sections” and show that our
operators have the desired compactness properties).

So, for this section3 we fix two Banach spaces E and F and we discuss Fred-
holm operators between them- i.e. operators which have a well-defined index.
More formally, we denote by L(E,F) the space of bounded (i.e. continuous)
linear operators from E to F and we take the following:

Definition 1.4.1. A bounded operator T : E→ F is called Fredholm if Ker(A)
and Coker(A) are finite dimensional. We denote by F(E,F) the space of all
Fredholm operators from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A))− dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A)
is closed. Here are the first properties of Fredholm operators.

Theorem 1.4.2. Let E, F, G be Banach spaces.

(i) If B : E → F and A : F → G are bounded, and two out of the three
operators A, B and AB are Fredholm, then so is the third, and

Index(A ◦B) = Index(A) + Index(B).

3all the theorem stated in this section are proved in the auxiliary set of notes handed out to
you
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(ii) If A : E→ F is Fredholm, then so is A∗ : F∗ → E∗ and 4

Index(A∗) = −Index(A).

(iii) F(E,F) is an open subset of L(E,F), and

Index : F(E,F)→ Z
is locally constant.

What will be important for us is an equivalent description of Fredholm
operators, in terms of compact operators. First we recall the following:

Definition 1.4.3. A linear map T : E → F is said to be compact if for any
bounded sequence {xn} in E, {T (xn)} has a convergent subsequence.

Equivalently, compact operators are those linear maps T : E→ F with the
property that T (BE) ⊂ F is relatively compact, where BE is the unit ball of E.
Here are the first properties of compact operators.

We point out the following improvement/consequence of the Fredholm al-
ternative for compact operators (discussed in the appendix- see Theorem ??
there).

Theorem 1.4.4. Compact perturbations do not change Fredholmness and do
not change the index, and zero index is achieved only by compact perturbations
of invertible operators.

More precisely:
(i) If K ∈ K(E,F) and A ∈ F(E,F), then A+K ∈ F(E,F) and Index(A+

K) = Index(A).
(ii) If A ∈ F(E,F), then Index(A) = 0 if and only if A = A0 + K for some

invertible operator A0 and some compact operator K.

Finally, there is yet another relation between Fredholm and compact oper-
ators, know as the Atkinson characterization of Fredholm operators:

Theorem 1.4.5. Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E → F, the following are

equivalent:
(i) A is Fredholm.
(ii) A is invertible modulo compact operators, i.e. there exist and operator

B ∈ L(F,E) and compact operators K1 and K2 such that

BA = 1 +K1, AB = 1 +K2.

4here, A∗(ξ)(e) = ξ(A(e)))
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1.5. Some exercises

We advise you to do the following exercises (in this order): Exercise 1.5.2, 1.5.3,
1.5.9, 1.5.7 , 1.5.12, 1.5.4, 1.5.8 (you should do at least three of them!). The
take home exercise is Exercise 1.5.1.

Exercise 1.5.1. This exercise provides another possible (inductive) definition
of the spaces Dk(M). For each f ∈ C∞(M), let mf ∈ End(C∞(M)) be the
“multiplication by f” operator. The commutator of two operators P and Q is
the new operator [P,Q] = P ◦Q−Q ◦ P .

Starting with D−1(M) = 0, show that Dk(M) is the space of linear operators
P with the property that

[P,mf ] ∈ Dk−1(M) ∀f ∈ C∞(M).

Exercise 1.5.2. Let P ∈ Dk(U) and Q ∈ Dl(U). Then the composition QP
belongs to Dk+l and

σk+l(QP ) = σl(Q)σk(P ).

Exercise 1.5.3. Let V be a vector field onM. Show that ∂V : f 7→ V f := df ·V
is a first order differential operator on M. Show that its principal symbol is given
by σ1(P )(x, ξ) = ξ(vx).

Exercise 1.5.4. Show that any differential operator P ∈ D1(M) can be writ-
ten as

P (φ) = fφ+ ∂V (φ)
for some unique function f ∈ C∞(M) and vector field V on M .

Exercise 1.5.5. Let P ∈ Dk(M) and Q ∈ Dl(M). Show that QP ∈ Dk+l(M).
Moreover, σk+l(QP ) = σl(Q)σk(P ). Hint: use reduction to charts.

Exercise 1.5.6. Lemma 1.1.8 gives a different description of the principal
symbol without reference to charts. Show that, actually, for any P ∈ Dk(M)
and any f ∈ C∞(M) and all ϕ ∈ C∞(M)

(1.4) f(x)σk(P )((dϕ)x) = lim
t→∞

t−ke−itϕ(x)P (eitϕf)(x). 5

Exercise 1.5.7. Recall that at the beginning of section 1.2, we associated
to a section C ∈ Γ(Hom (E,F )) an operator (denoted by the same letter)
C : Γ(E) → Γ(F ). Show that this construction defines a 1-1 correspondence
between sections of Hom (E,F ) and maps from Γ(E) to Γ(F ) which are C∞(M)-
linear.

Exercise 1.5.8. Show that, for any two vector bundles E and F over a man-
ifold M , the assignment

U 7→ Dk(E|U , F |U )
(U ⊂M open) is a sheaf on M .

Exercise 1.5.9. Show that the principal symbol of exterior differentiation
d : Γ(ΛkT ∗M)→ Γ(Λk+1T ∗M) is given by

σ1(d)(x, ξ) : ∧kT ∗xM → ∧k+1T ∗xM, ω 7→ iξ ∧ ω.
5recall that (dϕ)x ∈ T ∗x M sends Xx ∈ TxM to Txϕ(Xx)
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Exercise 1.5.10. Let V be a finite dimensional complex vector space. Let
v ∈ V \{0}. Show that the complex of linear maps Tk : ∧kV → ∧k+1V, x 7→ v∧x,
is exact.

Deduce that the DeRham complex a manifold is an elliptic complex.

In the following three exercises we explain how to relate ellipticity for elliptic
complexes, and their Euler characteristic, to ellipticity of differential operators,
and their index. We start with a differential complex E as before and we fix
hermitian inner products on each Ek and a density on M . This allows us to
talk about the adjoints of Pk and to form the Laplacians

∆k := P ∗kPk + Pk−1P
∗
k−1 : Γ(Ek)→ Γ(Ek).

It will be useful to put everything together and consider

E = ⊕kEk, P = ⊕kPk ∈ Dd(E),∆ = P ∗P + PP ∗ = ⊕k∆k ∈ D2d(E).

Exercise 1.5.11.
1. Show that ∆ is self-adjoint (i.e. it coincides with its formal adjoint), and

then deduce that

(1.5) Ker(∆)⊕ Im(∆) ⊂ Γ(E).

(the only thing you have to show here is that the sum inside Γ(E) is
direct).

2. Then show that

Ker(∆) = Ker(P ) ∩Ker(P ∗), Im(∆) ⊂ Im(P )⊕ Im(P ∗).

and that the map

Ker(∆k) 3 s 7→ s mod Bk(E) ∈ Hk(E)

is an injection.
3. Finally, show that if (1.5) becomes equality, then also the last inclusion

becomes equality, and the last map becomes an isomorphism.

Exercise 1.5.12. Show that E is an elliptic complex if and only if ∆ is an
elliptic operator.

From the general properties of elliptic operators (to be developed later in
the course), we will deduce that the inclusion (1.5 ) is actually an equality for
any self-adjoint elliptic operator ∆. Hence, in this case, χ((E)) will be equal to∑

k

(−1)kdim(Ker(∆k)).

To relate this to the index of an operator, we introduce

E+ = ⊕k−evenE
k, E− = ⊕k−oddE

k, ∆+ = ⊕k−even∆k ∈ D2d(E+, E−).

Exercise 1.5.13. Show that, if the inclusion (1.5) becomes equality, then

χ(E) = Index(∆+).





LECTURE 2
Distributions on manifolds

As explained in the previous lecture, to show that an elliptic operator be-
tween sections of two vector bundles E and F ,

P : Γ(M,E)→ Γ(M,F )

has finite index, we plan to use the general theory of Fredholm operators be-
tween Banach spaces. In doing so, we first have to interpret our P ’s as oper-
ators between certain “Banach spaces of sections”. The problem is that the
usual spaces of smooth sections Γ(M,E) have no satisfactory Banach space
structure. Given a vector bundle E over M , by a “Banach space of sections of
E”, B(M,E), one should understand (some) Banach space which contains the
space Γ(M,E) of all the smooth sections of E as a (dense) subspace. One way
to introduce such Banach spaces is to consider the completion of Γ(M,E) with
respect to various norms of interest. This can be carried out in detail, but the
price to pay is the fact that the resulting “Banach spaces of sections” have a
rather abstract meaning (being defined as completions). We will follow a differ-
ent path, which is based on the following remark: there is a very general (and
natural!!) notion of “generalized sections of a vector bundle E over M”, hence
a space Γgen(M ;E) of such generalized sections (namely the space D′(M,E) of
distributions, discussed in this lecture), so general that all the other “Banach
spaces of sections” are subspaces of Γgen(M ;E). The space Γgen(M ;E) itself
will not be a Banach space, but all the Banach spaces of sections which will be
of interest for us can be described as subspaces of Γgen(M ;E) satisfying certain
conditions (and that is how we will define them).

Implicit in our discussion is the fact that all the spaces we will be looking
at will be vector spaces endowed with a topology (t.v.s.’s= topological vector
spaces). Although our final aim is to deal with Banach spaces, the general
t.v.s.’s will be needed along the way (however, all the spaces we will be looking
at will be l.c.v.s.’s= locally convex vector spaces, i.e., similarly to Banach spaces,
they can be defined using certain seminorms).

In this lecture, after recalling the notion of t.v.s. (topological vector space)
and the special case of l.c.v.s. (locally convex vector space), we will discuss the
space of generalized functions (distributions) on opens in Rn and then their gen-
eralizations to functions on manifolds or, more generally, to sections of vector

17
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bundles over manifolds. Since t.v.s.’s, l.c.v.s.’ and the local theory of general-
ized functions (distributions) on opens in Rn have already been discussed in the
intensive reminder, our job will be to pass from local (functions on opens in Rn)
to global (sections of vector bundles over arbitrary manifolds). However, these
lecture notes also contain some of the local theory that has been discussed in
the “intensive reminder”.

2.1. Locally convex vector spaces

We start by recalling some of the standard notions from functional analysis
(which have been discussed in the intensive reminder).

Topological vector spaces

First of all, a t.v.s. (topological vector space) is a vector space V (over C)
together with a topology T , such that the two structures are compatible, i.e.
the vector space operations

V × V, (v, w) 7→ v + w, C× V → V, (λ, v) 7→ λv

are continuous. Recall that associated to the topology T and to the origin
0 ∈ V , one has the family of all open neighborhoods of 0:

T (0) = {D ∈ T : 0 ∈ D}.
Since the translations τx : V → V , y 7→ y+ x are continuous, the topology T is
uniquely determined by by T (0): for D ⊂ V , we have

(2.1) D ∈ T ⇐⇒ ∀ x ∈ D ∃ B ∈ T (0) such that x+B ⊂ D.
In this characterization of the opens inside V , one can replace T (0) by any basis
of neighborhoods of 0, i.e. by any family B(0) ⊂ T (0) with the property that

D ∈ T (0) =⇒ ∃ B ∈ B such that B ⊂ D.
In other words, if we knows a basis of neighborhoods B(0) of 0 ∈ V , then we
know the topology T .

Exercise 2.1.1. Given a family B(0) of subsets of V containing the origin,
what axioms should it satisfy to ensure that the resulting topology (defined by
(2.1)) is indeed a topology which makes (V, T ) into a t.v.s.?

Note that, in a t.v.s. (V, T ), also the convergence can be spelled out in terms
of a (any) basis if neighborhoods B(0) of 0: a sequence (vn)n≥1 of elements of
V converges to v ∈ V , written vn → v, if and only if:

∀ B ∈ B(0), ∃ nB ∈ Z+ such that vn − v ∈ B ∀ n ≥ nB.
Of course, this criterion can be used for B(0) = T (0), but often there are smaller
bases of neighborhoods B(0) at hand (after all, “b” is just the first letter of the
word “ball”). For instance, if (V, || − ||) is a normed space, then the resulting
t.v.s. has as basis of neighborhoods

B(0) = {B(0, r) : r ≥ 0},
where

B(0, r) = {v ∈ V : ||v|| < r}.
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In a t.v.s. (V, T ), one can also talk about the notion of Cauchy sequence:
a sequence (vn)n≥1 in V is called a Cauchy sequence if:

∀ D ∈ T (0) ∃ nD ∈ Z+ such that vn − vm ∈ D ∀ n,m ≥ nD.

Again, if we have a basis of neighborhoods B(0) at our disposal, it suffices to
require this condition for D = B ∈ B(0).

In particular, one can talk about completeness of a t.v.s: one says that
(V, T ) is (sequentially) complete if any Cauchy sequence in V converges to
some v ∈ V .

Locally convex vector spaces

Recall also that a l.c.v.s. (locally convex vector space) is a t.v.s. (V, T )
with the property that “there are enough convex neighborhoods of the origin”.
That means that

Tconvex(0) := {C ∈ T (0) : C is convex}

is a basis of neighborhoods of 0 ∈ V or, equivalently:

∀ D ∈ T (0) ∃ C ∈ T (0) convex, such that C ⊂ D.

In general, l.c.v.s.’s are associated to families of seminorms (and sometimes
this is taken as “working definition” for locally convex vector spaces). First
recall that a seminorm on a vector space V is a map p : V → [0,∞) satisfying

p(v + w) ≤ p(v) + p(w), p(λv) = |λ|p(v),

for all v, w ∈ V , λ ∈ C (and it is called a norm if p(v) = 0 happens only for
v = 0).

Associated to any family
P = {pi}i∈I

of seminorms (on a vector space V ), one has a notion of balls:

Br
i1,...,in := {v ∈ V : pik(v) < r, ∀1 ≤ k ≤ n},

defined for all r > 0, i1, . . . , in ∈ I. The collection of all such balls form a family
B(0), which will induce a locally convex topology TP on V (convex because
each ball is convex). Note that, the convergence in the resulting topology is the
expected one:

vn → v in (V, TP )⇐⇒ pi(vn − v)→ 0 ∀ i ∈ I.

(and there is a similar characterization for Cauchy sequences). The fact that,
when it comes to l.c.v.s.’s it suffices to work with families of seminorms, follows
from the following:

Theorem 2.1.2. A t.v.s. (V, T ) is a l.c.v.s. if and only if there exists a family
of seminorms P such that T = TP .

Proof Idea of the proof: to produce seminorms, one associates to any C ⊂ V
convex the functional

pC(v) = inf {r > 0 : x ∈ rC}.
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Choosingn C “nice enough”, this will be a seminorm. One then shows that
one can find a basis of neighborhoods of the origin consisting of “nice enough”
convex neighborhoods. �

By abuse of terminology, we also say that (V, P ) is a l.c.v.s. (but one should
keep in mind that all that matters is not the family of seminorms P but just
the induced topology TP ).

Remark 2.1.3. In most of the examples of l.c.v.s.’s, the seminorms come
first (quite naturally), and the topology is the associated one. However, there
are some examples in which the topology comes first and one may not even
care of what the seminorms are (see the general construction of inductive limit
topologies at the end of this section).

On the other hand, one should be aware that different sets of seminorms
may induce the same l.c.v.s. (i.e. the same topology). For instance, if P0 ⊂ P is
a smaller family of seminorms, but which has the property that, for any p ∈ P ,
there exists p0 ∈ P0 such that p0 ≤ p (i.e. p0(v) ≤ p(v) for all v ∈ V ), then
P and P0 define the same topology. This trick will be repeatedly used in the
examples.

Exercise 2.1.4. Prove the last statement.

Next, it will be useful to have a criteria for continuity of linear maps between
l.c.v.s.’s in terms of the seminorms. The following is a very good exercise.

Proposition 2.1.5. Let (V, P ) and (W,Q) be two l.c.v.s.’s and let

A : V →W

be a linear map. Then T is continuous if and only if, for any q ∈ Q, there exist
p1, . . . , pn ∈ P and a constant C > 0 such that

q(A(v)) ≤ C ·max{p1(v), . . . , pn(v)} ∀ v ∈ V.

Note that we will deal only with l.c.v.s.’s which are separated (Hausdorff).

Exercise 2.1.6. Let (V, P ) be a l.c.v.s., where P = {pi}i∈I is a family of
seminorms on V . Show that it is Hausdorff if and only if, for v ∈ V , one has
the imlication:

pi(v) = 0 ∀ i ∈ I =⇒ v = o.

.

Finally, recall that a Frechet space is a t.v.s. V with the following prop-
erties:

1. it is complete.
2. its topology is induced by a countable family of semi-norms {p1, p2, . . .}.
In this case, it follows that V is metrizable, i.e. the topology of V can also

be induced by a (complete) metric:

d(v, w) :=
∑
n≥1

1
2n

pn(v − w)
1 + pn(v − w)

.
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Example 2.1.7. Of course, any Hilbert or Banach space is a l.c.v.s. This
applies in particular to all the familiar Banach spaces such as the Lp-spaces on
an open Ω ⊂ Rn

Lp(Ω) = {f : Ω→ C : f is measurable ,
∫

Ω
|f |p <∞},

with the norm
||f ||Lp = (

∫
Ω
|f |p)1/p

Recall that, for p = 2, this is a Hilbert space with inner product

〈f, g〉L2 =
∫

Ω
fg.

Example 2.1.8. Another class of examples come from functions of a certain
order, eventually with restrictions on their support. For instance, for an open
Ω ⊂ Rn, r ∈ Z+ and K ⊂ Ω compact, we consider the space

CrK(Ω) = {φ : Ω→ C : φ is of class Cr and supp(φ) ⊂ K}.
The norm which is naturally associated to this space is || · ||K,r defined by

||φ||r,K = sup{|∂αφ(x)| : x ∈ K, |α| ≤ r}.
With this norm, CrK(Ω) becomes a Banach space. Note that convergence in this
space is uniform convergence on K of all derivatives up to order r.

However, if we consider r =∞, then C∞K (Ω) should be considered with the
family of seminorms {|| · ||K,r : r ∈ Z+}. The result is a Frechet space. Note
that convergence in this space is uniform convergence on K of all derivatives.

Yet another natural space is the space of all smooth functions C∞(Ω). A
nice topology on this space is the one induced by the family of seminorms

{|| · ||K,r : K ⊂ Ω compact, r ∈ Z+}.
Using an exhaustion of Ω by compacts, i.e. a sequence (Kn)n≥0 of compacts
with

Ω = ∪nKn, Kn ⊂ Int(Kn+1),
we see that the original family of seminorms can be replaced by a countable
one:

{|| · ||Kn,r : n, r ∈ Z+}
(using Remark 2.1.3, check that the resulting topology is the same!). Hence
C∞(Ω) with this topology has the chance of being Frechet- which is actually
the case.

Note that convergence in this space is uniform convergence on compacts of
all derivatives.

Example 2.1.9. As a very general construction: for any t.v.s. (locally convex
or not), there are (at least) two important l.c. topologies on the continuous dual:

V ∗ := {u : V → R : u is linear and continuous}.
The first topology, denoted Ts, is the one induced by the family of seminorms
{pv}v∈V , where

pv : V ∗ → R, pv(u) = |u(v)|.
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This topology is called the weak* topology on V ∗, or the topology of simple
convergence. Note that un → u in this topology if and only if un(v)→ u(v) for
all v ∈ V .

The second topology, denoted Tb, called the strong topology (or of uniform
convergence on bounded sets) is defined as follows. First of all, recall that a
subset B ⊂ V is called bounded if, for any neighborhood of the origin, there
exists λ > 0 such that B ⊂ λV . If the topology of V is generated by a family
of seminorms P , this means that for any p ∈ P there exists λp > 0 such that

B ⊂ Bp(rp) = {v ∈ V : p(v) < rp}.

This implies (see also Proposition 2.1.5) that for any continuous linear func-
tional u ∈ V ∗,

pB(u) := sup{|u(v)| : v ∈ B} <∞.
In this way we obtain a family {pB}B of seminorms (indexed by all the bounded
sets B), and Tb is defined as the induced topology.

A related topology on V ∗ is the topology Tc of uniform convergence on
compacts, induced by the family of seminorms {pC : C ⊂ V ∗ compact}.

Some explanations (for your curiosity): In this course, when dealing with a par-
ticular l.c.v.s. V , what will be of interest to us is to understand the convergence in
V , understand continuity of linear maps defined on V or the continuity of maps with
values in V (i.e., in practical terms, one may forget the l.c. topology and just keep in
mind convergence and continuity). From this point of view, in almost all the cases in
which we consider the dual V ∗ of a l.c.v.s. V (e.g. the space of distributions), in this
course we will be in the fortunate situation that it does not make a difference if we
use Ts or Tb on V ∗ (note: this does not mean that the two topologies coincide- it just
means that the specific topological aspects we are interested in are the same for the
two).

What happens is that the spaces we will be dealing with in this course have some
very special properties. Axiomatising these properties, one ends up with particular
classes of l.c.v.s.’s which can be understood as part of the general theory of l.c.v.s.’s.
Here we give a few more details of what is really going on (the references below send
you to the book “Topological vector spaces, distributions and kernels” by F. Treves).

First of all, as a very general fact: for any t.v.s. V , Ts and Tc induce the same
topology on any equicontinuous subset H ⊂ V ∗ (Prop. 32.5, pp 340). Recall that H
is called equicontinuous if, for every ε > 0, there exists a neighborhood B of the origin
such that

|u(v)| ≤ ε, ∀ v ∈ B, ∀ u ∈ H.
An important class of t.v.s.’s is the one of barreled space, which we now recall. A

barrel in a t.v.s. V is a non-empty closed subset A ⊂ V with the following properties:

1. A is absolutely convex: |α|A+ |β|A ⊂ A for all α, β ∈ C with |α|+ |β| = 1.
2. A is absorbing: ∀ v ∈ V, ∃ r > 0 such that v ∈ rA.

A t.v.s. V is said to be barreled if any barrel in V is a neighborhood of zero. For
instance, all Frechet spaces are barreled.

For a barreled space V , given H ⊂ V ∗, the following are equivalent (Theorem 33.2,
pp.349):

1. H is weakly bounded (i.e. bounded in the l.c.v.s. (V ∗, Ts)).
2. H is strongly bounded (i.e. bounded in the l.c.v.s. (V ∗, Tb)).
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3. H is relatively compact in the weak topology (i.e. the closure of H in (V ∗, Ts)
is compact there).

4. H is equicontinuous.
Hence, for such spaces, the notion of “bounded” is the same in (V ∗, Ts) and (V ∗, Tb),
and we talk simply about “bounded subsets of V ∗. However, the notion of convergence
of sequences may still be different; of course, strong convergence implies weak conver-
gence, but all we can say about a weakly convergent sequence is that it is bounded in
the strong topology. More can be said for a more special class of t.v.s.’s.

A t.v.s. is called a Montel space if V is barreled and every closed bounded subset
of E is compact. Note that this notion is much more restrictive then that of barreled
space. For instance, while all Banach spaces are barreled, the only Banach spaces
which are Montel are the finite dimensional ones (because the unit ball is compact only
in the finite dimensinal Banach spaces). On the other hand, while all Frechet spaces
are barreled, there are Frechet spaces which are Montel, but also others which are not
Montel. The main examples of Montel spaces which are of interest for us are: the space
of smooth functions, and the space of test functions (discussed below).

For a Montel space V , it follows that the topologies Tc and Tb are the same (Prop.
34.5, pp. 357). From the general property of equicontinuous subsets H mentioned
above, we deduce that on such H’s,

Ts|H = Tb|H .
(also, by the last result we mentioned, H being equicontinuous is equivalent to being
bounded). Taking for H to be the elements of a weakly convergent sequence and
its weak limit (clearly weakly bounded!), it follows that the sequence is also strongly
convergent; hence convergence w.r.t. Ts and w.r.t. Tb is the same. Note that this not
implies that the two topologies are the same: we know from point-set topology that the
notion of convergence w.r.t. a topology T does not determine the topology uniquely
unless the topology satisfies the first axiom of countability (e.g. if it is metrizable).

As a summary, for Montel spaces V ,
1. the notion of boundedness in (V ∗, Ts) and in (V ∗, Tb) is the same (and coincides

with equicontinuity).
2. Ts and Tb induce the same topology on any bounded H ⊂ V ∗.
3. a sequence in V ∗ is weakly convergent if and only it is strongly convergent.

Inductive limits

As we saw in all examples (and we will see in almost all the other examples),
l.c.v.s.’s usually come with naturally associated seminorms and the topology
is just the induced one. However, there is an important example in which the
topology comes first (and one usually doesn’t even bother to find seminorms
inducing it): the space of test functions (see next section). This example fits
into a general construction of l.c. topologies, known as “the inductive limit”.
The general framework is the following. Start with

X = vector space , Xα ⊂ X vector subspaces such that X = ∪αXα,

where α runs in an indexing set I. We also assume that, for each α, we have
given:

Tα − locally convex topology on Xα.

One wants to associate to this data a topology T on X, so that
1. (X, T ) is a l.c.v.s.
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2. all inclusions iα : Xα → X become continuous.

There are many such topologies (usually the “very small” ones, e.g. the one
containing just ∅ and X itself) and, in general, if T works, then any T ′ ⊂ T
works as well. The question is: is there “the best one” (i.e. the smallest
one)? The answer is yes, and that is what the inductive limit topology on X
(associated to the initial data) is. On short, this is induced by the following
basis of neighborhoods:

B(0) := {B ⊂ X : B − convex such that B ∩Xα ∈ Tα(0) for all α ∈ I},

(show that one gets a l.c. topology and it is the largest one!). One should keep
in mind that what is important about (X, T ) is to recognize when a function
on X is continuous, and when a sequence in X converges. The first part is a
rather easy exercise with the following conclusion:

Proposition 2.1.10. Let X be endowed with the inductive limit topology T ,
let Y be another l.c.v.s. and let

A : X → Y

be a linear map. Then A is continuous if and only if each

Aα := A|Xα : Xα → Y

is.

The recognition of convergent subsequences is a bit more subtle and, in
order to have a more elegant statement, we place ourselves in the following
situation: the indexing set I is the set N of positive integers,

X1 ⊂ X2 ⊂ X3 ⊂ . . . , , Xn − closed in Xn+1, Tn = Tn+1|Xn

(i.e. each (Xn, Tn) is embedded in (Xn+1, Tn+1) as a closed subspace). We as-
sume that all the inclusions are strict. The following is a quite difficult exercise.

Theorem 2.1.11. In the case above, a sequence(xn)n≥1 of elements in X
converges to x ∈ X (in the inductive limit topology) if and only if the following
two conditions hold:

1. ∃ n0 such that x, xm ∈ Xn0 for all m.
2. xm → x in Xn0.

(note: one can also show that (X, T ) cannot be metrizable).

2.2. Distributions: the local theory

In this section we recall the main functional spaces on Rn or, more generally, on
any open Ω ⊂ Rn. Recall that, for K ⊂ Rn and r ∈ N, one has the seminorm
|| · ||K,r on C∞(Ω) given by:

||f ||r,K = sup{|∂αf(x)| : x ∈ K, |α| ≤ r}.
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E(Ω): smooth functions:

One defines
E(Ω) := C∞(Ω),

endowed with the locally convex topology induced by the family of seminorms
{|| · ||K,r}K⊂Ω compact,r∈Z+ . This was already mentioned in Example 2.1.8.
Hence, in this space, convergence means: fn → f if and only if for each multi-
index α and each compact K ⊂ Ω, ∂αfn → ∂αf uniformly on K.

As a l.c.v.s, it is a Frechet space (and is also a Montel space).
Algebraically, E(Ω) is also a ring (or even an algebra over C), with respect

to the usual multiplication of functions. Note that this algebraic operation is
continuous.

D(Ω): compactly supported smooth functions (test functions):

One defines
D(Ω) := C∞c (Ω),

the space of smooth functions with compact support, with the following topol-
ogy. First of all, for each K ⊂ Ω, we consider

EK(Ω) := C∞K (Ω),

the space of smooth functions with support insideK, endowed with the topology
induced from the topology of E(Ω) (which is the same as the topology discussed
in Example 2.1.8., i.e. induced by the family of seminorms {||·||K,r}r∈Z+ . While,
set theoretically (or as vector spaces),

D(Ω) = ∪KEK(Ω)

(union over all compacts K ⊂ Ω), we consider the inductive limit topology on
D(Ω) (see the end of the previous section).

Convergent sequences are easy to recognize here: fn → f in D(Ω) if and
only if there exist a compact K such that fn ∈ EK for all n, and fn → f in EK
(indeed, using an exhaustion of Ω by compacts (see again Example 2.1.8), we
see that we can place ourselves under the conditions which allow us to apply
Theorem 2.1.11).

As a l.c.v.s., D(Ω) is complete but it is not Frechet (see the end of Theorem
2.1.11). (However, it is a Montel space).

Algebraically, D(Ω) is also an algebra over C (with respect to pointwise
multiplication), which is actually an ideal in E(Ω) (the product between a com-
pactly supported smooth function and an arbitrary smooth function is again
compactly supported).

D′(Ω): distributions:

The space of distributions on Rn is defined as the (topological) dual of the space
of test functions:

D′(Ω) := (D(Ω))∗

(see also Example 2.1.9). An element of this space is called a distribution on
Ω. Unraveling the inductive limit topology on D(Ω), one gets a more explicit



26 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

description of these space. More precisely, using Proposition 2.1.10 to recognize
the continuous linear maps by restricting to compacts, and using Proposition
2.1.5 to rewrite the resulting continuity conditions in terms of seminorms, one
finds the following:

Corollary 2.2.1. A distribution on Ω is a linear map

u : C∞c (Ω)→ C

with the following property: for any compact K ⊂ Ω, there exists C = CK > 0,
r = rK ∈ N such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞K (Ω).

As a l.c.v.s., D′(U) will be endowed with the strong topology (the topology
of uniform convergence on bounded subsets- see Example 2.1.9)). Note however,
when it comes to convergence of sequences (un) of distributions, the strong
convergence is equivalent to simple (pointwise) convergence. 1

In general, any smooth function f induces a distribution uf

φ 7→
∫

Rn

fφ,

and this correspondence defines a continuous inclusion of

i : E(Ω) ↪→ D′(Ω).

For this reason, distributions are often called “generalized functions”, and one
often identifies f with the induced distribution uf .

Algebraically, the multiplication on E(Ω) extends to a E(Ω)-module struc-
ture on D′(Ω)

E(Ω)×D′(Ω)→ D′(Ω), (f, u) 7→ fu,

where
(fu)(φ) = u(fφ).

1 Explanation (for your curiosity): When it comes to the following notions:

1. bounded subsets of D′(Ω),
2. convergence of sequences in D′(Ω),
3. continuity of a linear map A : V → D′(Ω) defined on a Frechet space V (e.g. V =

E(Ω′)).
4. continuity of a linear map A : V → D′(Ω) defined on a l.c.v.s. V which is the inductive

limit of Frechet spaces (e.g. V = D(Ω′)).

(notions which depend on what topology we use on D′(Ω)), it does not matter whether we
use the strong topology Tb or the weak topology Ts on D′(Ω): the priory different resulting
notions will actually coincide.

For boundedness and convergence this follows from the fact that D(Ω) is a Montel space
(Theorem 34.4, pp. 357 in the book by Treves). For continuity of linear maps defined on a
Frechet space, one just uses that, because V is metrizable, continuity is equivalent to sequential
continuity (i.e. the property of sending convergent sequences to convergent sequences) and
the previous part. If V is an inductive limit of Frechet spaces one uses the characterization
of continuity of linear maps defined on inductive limits (Proposition 2.1.10).
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E ′(Ω): compactly supported distributions:

The space of compactly supported distributions on Ω is defined as the (topo-
logical) dual of the space of all smooth functions

E ′(Ω) := (E(Ω))∗.

Using Proposition 2.1.5 to rewrite the continuity condition, we find:

Corollary 2.2.2. A compactly supported distribution on Ω is a linear map

u : C∞(Ω)→ C
with the following property: there exists a compact K ⊂ Ω, C > 0 and r ∈ N
such that

|u(φ)| ≤ C||φ||K,r ∀ φ ∈ C∞(Ω).

Again, as in the case of D′(Ω), we endow E ′(Ω) with the strong topology.2

Note that the dual of the inclusion D(Ω) ↪→ E induces a continuous inclusion

E ′(Ω) ↪→ D′(Ω).

Explicitly, any linear functional on C∞(Ω) can be restricted to a linear func-
tional on C∞c (Ω), and the estimates for the compactly supported distributions
imply the ones for distributions.

Hence the four distributional spaces fit into a diagram

D //

��

E

��
E ′ // D′

,

in which all the arrows are (algebraic) inclusions which are continuous, and the
spaces on the left are (topologically) the compactly supported version of the
spaces on the right.

Supports of distributions

Next, we recall why E ′(Ω) is called the space of compactly supported distribu-
tions. The main remark is that the assignment

Ω 7→ D′(Ω)

defines a sheaf and, as for any sheaf, one can talk about sections with com-
pact support. What happens is that the elements in D′(Ω) which have com-
pact support in this sense, are precisely the ones in the image of the inclusion
E ′(Ω) ↪→ D′(Ω).

Here are some details. First of all, for any two opens Ω ⊂ Ω′, one has an
inclusion (“extension by zero”)

D(Ω) ↪→ D(Ω′), f 7→ f̃ ,

2Explanation (for your curiosity): The same discussion as in the case of D′(Ω) applies also to
E ′(Ω). This is due to the fact that also E(Ω) is a Montel space (with the same reference as for
D(Ω)). Hence, when it comes to bounded subsets, convergent sequences, continuity of linear
maps from a (inductive limit of) Frechet space(s) to E ′(Ω), it does not matter whether we use
the strong topology Tb or the simple topology Ts on E ′(Ω).
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where f̃ is f on Ω and zero outside. Dualizing, we get a “restriction map”,

D′(Ω′)→ D′(Ω), u 7→ u|Ω.
The sheaf property of the distributions is the following property which follows
immediately from a partition of unity argument:

Lemma 2.2.3. Assume that Ω = ∪iΩi, with Ωi ⊂ Rn opens, and that ui are
distributions on Ωi such that, for all i and j,

ui|Ωi∩Ωj = uj |Ωi∩Ωj .

Then there exists a unique distribution u on Ω such that

u|Ωi = ui

for all i.

Proof See your notes from the last lecture in the intensive reminder. �

From this it follows that, for any u ∈ D′(Ω), there is a largest open Ωu ⊂ Ω
on which u vanishes (i.e. u|Ωu = 0).

Definition 2.2.4. For u ∈ D′(Ω), define its support

supp(u) = Ω− Ωu = {x ∈ Ω : u|Vx = 0 for any neighborhood Vx ⊂ Ω of x}.
We say that u is compactly supported if supp(f) is compact.

Example 2.2.5. For any x ∈ Ω, one has the distribution δx defined by

δx(φ) = φ(x).

It is not difficult to check that its support is precisely {x}.
Exercise 2.2.6. Show that u ∈ D′(Ω) has compact support if and only if it is
in the image of the inclusion

E ′(Ω) ↪→ D′(Ω).

Derivatives of distributions and Sobolev spaces

Finally, we discuss one last property of distributions which is of capital impor-
tance: one can talk about the partial derivatives of any distribution! The key
(motivating) remark is the following, which follows easily from integration by
parts.

Lemma 2.2.7. Let f ∈ C∞(Ω) and let uf be the associated distribution.
Let ∂αf ∈ C∞(Ω) be the higher derivative of f associated to a multi-index

α, and let u∂αf be the associated distribution.
Then u∂αf can be expressed in terms of uf by:

u∂αf (φ) = (−1)|α|uf (∂αf).

This shows that the action of the operator ∂α on smooth functions can be
extended to distributions.

Definition 2.2.8. Fora distribution u on Ω and a multi-index α, one defines
the new distribution ∂αu on Ω, by

(∂αu)(φ) = (−1)αu(∂αφ), ∀ φ ∈ C∞c (Ω).
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Example 2.2.9. The distribution uf makes sense not only for smooth func-
tions on Ω, but also for functions f : Ω→ C with the property that φf ∈ L1(Ω)
for all φ ∈ C∞c (Ω) (so that the integral defining uf ) is absolutely convergent.
In particular it makes sense for any f ∈ L2(Ω) and, as before, this defines an
inclusion

L2(Ω) ↪→ D′(Ω).
We now see one of the advantages of the distributions: any f ∈ L2, although
it may even not be continuous, has derivatives ∂αf of any order! Of course,
they may fail to be functions, but they are distributions. In particular, it is
interesting to consider the following spaces.

Definition 2.2.10. For any r ∈ N, Ω ⊂ Rn open, we define the Sobolev space
on Ω of order r as:

Hr(Ω) := {u ∈ D′(Ω) : ∂α(u) ∈ L2(Ω) whenever |α| ≤ r},
endowed with the inner product

〈u, u′〉Hr =
∑
|α|≤r

〈∂αu, ∂αu′〉L2 .

In this way, Hr(Ω) becomes a Hilbert space.

2.3. Distributions: the global theory

The l.c.v.s.’s E(Ω), D(Ω), D′(Ω) and E ′(Ω) can be extended from opens Ω ⊂ Rn

to arbitrary manifold M (allowing us to talk about distributions on M , or
generalized functions on M) and, more generally, to arbitrary vector bundles
E over a manifold M (allowing us to talk about distributional sections of E,
or generalized sections of E). To explain this extension, we fix M to be an
n-dimensional manifold, and let E be a complex vector bundle over M of rank
p.

E(M ;E) (smooth sections):

One defines
E(M ;E) := Γ(E),

the space of all smooth sections of E endowed with the following local convex
topology. To define it, we choose a cover U = {Ui}i∈I of M by opens which
are domains of “total trivializations” of E, i.e. both of charts (Ui, κi) for M as
well as of trivializations τi : E|Ui → Ui ×Cp for E. This data clearly induce an
isomorphism of vector spaces

φi : Γ(E|Ui)→ C∞(κi(Ui))p

(see also subsection 2.3 below). Altogether, and after restricting sections of E
to the various U ′is, these define an injection

φ : Γ(E)→ ΠiC
∞(κi(Ui))p = ΠiE(κi(Ui))p.

Endowing the right hand side with the product topology, the topology on Γ(E)
is the induced topology (via this inclusion). Equivalently, considering as indices
γ = (i, l,K, r) consisting of i ∈ I (to index the open Ui), 1 ≤ l ≤ p (to index the
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l-th component of φ(s|Ui)), K ⊂ κ(Ui) compact and r- non-negative integer,
one has seminorms || · ||γ on Γ(E) as follows: for s ∈ Γ(E), restrict it to Ui,
move it to E(κi(Ui))p via φi, take its l-th component, and apply the seminorm
|| · ||K,r of E(κi(Ui)):

||s||γ = ||φ(s|Ui)
l||r,K .

Putting together all these seminorms will define the desired l.c. topology on
Γ(E).

Exercise 2.3.1. Show that this topology does not depend on the choices in-
volved.

Note that, since the cover U can be chosen to be countable (our manifolds
are always assumed to satisfy the second countability axiom!), it follows that
our topology can be defined by a countable family of seminorms. Using the
similar local result, you can now do the following:

Exercise 2.3.2. Show that E(M ;E) is a Frechet space.

Finally, note that a sequence (sm)m≥1 converges to s in this topology if and
only if, for any open U which is the domain of a local chart κ for M and of
a local frame {s1, . . . , sp} for E, and for any compact K ⊂ U , writing sm =
(f1
m, . . . , f

p
m), s = (f1, . . . , fp) with respect to the frame, all the derivatives

∂ακ (f im) converge uniformly on K to ∂ακ (f i (when m→∞).
When E = CM is the trivial line bundle over M , we simplify the notation to

E(M). As in the local theory, this is an algebra (with continuous multiplication).
Also, the multiplication of sections by functions make E(M,E) into a module
over E(M).

D(M,E) (compactly supported smooth sections)

One defines
D(M,E) := Γc(E),

the space of all compactly supported smooth sections endowed with the follow-
ing l.c. topology defined exactly as in the local case: one writes

D(M,E) = ∪KEK(M ;E),

where the union is over all compacts K ⊂M , and EK(M ;E) ⊂ E(M ;E) is the
space of smooth sections supported in K, endowed with the topology induced
from E(M ;E); on D(M,E) we consider the inductive limit topology.

Exercise 2.3.3. Describe more explicitly the convergence in D(M,E).

Again, when E = CM is the trivial line bundle over M , we simplify the
notation to D(M).

D′(M ;E) (generalized sections):

This is the space of distributional sections of E, or the space of generalized
sections of E. To define it, we do not just take the dual of D(M,E) as in the
local case, but we first:
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1. Consider the complex density line bundleD = DM onM .3 All we need to
know about D is that its compactly supported sections can be integrated

3This is the complex version of the density bundle from the intensive reminder. Here is
the summary (the complexified version of what we have already discussed). Given an n-
dimensional vector space V , one defines Dr(V ), the space of r-densities (for any real number
r > 0), as the set of all maps ω : ΛnV → C satisfying

ω(λξ) = |λ|rω(ξ), ∀ ξ ∈ ΛnV.

Equivalently (and maybe more intuitively), one can use the set Fr(V ) of all frames of V (i.e.
ordered sets (e1, . . . , en) of vectors of V which form a basis of V ). Then Dr(V ) can also be
described as the set of all functions

ω : Fr(V ) → C

with the property that, for any invertible n by n matrix A, and any frame e, for the new frame
A(e) one has

ω(A(e)) = |det(A)|rω(e).

Intuitively, one may think of an r-density on V as some rule of computing volumes of the
hypercubes (each frame determines such a hypercube). For each r, Dr(V ) is one dimensional
(hence isomorphic to C), but in a non-canonical way. Choosing a frame e of V , one has an
induced r-density denoted

ωe = |e1 ∧ . . . ∧ en|r
uniquely determined by the condition that ωe(e) = 1 (the ei’s in the notation stand for the
dual basis of V ∗).

For a manifold M , we apply this construction to all the tangent spaces to obtain a line
bundle Dr(M) over M , whose fiber at x ∈ M is Dr(TxM). For r = 1, D1(M) is simply
denoted D, or DM whenever it is necessary to remove ambiguities. The sections of D are
called densities on M .

Any local chart (U, κ = (x1
κ, . . . , xn

κ)) induces a frame (∂/∂xi
κ)x for TxM with the dual

frame (dxi
κ)x for T ∗x M , for all x ∈ U . Hence we obtain an induced trivialization of Dr(M)

over U , with trivializing section

|dx1
κ ∧ . . . ∧ dxn

κ|r
(and, as usual, the smooth structure on D is so that these sections induced by the local charts
are smooth).

An r-density on M is a section ω of Dr(M). Hence, locally, with respect to a coordinate
chart as before, such a density can be written as

ω = fκ ◦ κ · |(dx1
κ ∧ . . . ∧ dxn

κ|r
for some smooth function defined on κ(U). If we consider another coordinate chart κ′ on the
same U then, after a short (but instructive) computation, wee see that fκ changes according
to the rule:

fκ = |Jac(h)|rfκ′ ◦ h,

where h = κ′◦κ−1 is the change of coordinates, and Jac(h) is the Jacobian of h. The case r = 1
reminds us of the usual integration and the change of variable formula: the usual integration
of compactly supported functions on an open Ω ⊂ Rn defines a mapZ

Ω

: C∞c (Ω) → C

and, if we move via a diffeomorphism h : Ω → Ω′, one has the change of variables formulaZ
Ω

f =

Z
Ω

|Jac(h)| · f ◦ h.

Hence, for 1-densities on the domain U of a coordinate chart, one has an induced integration
map Z

U

: Γc(U, D|U ) → C
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over M without any further choice, i.e. there is an integral∫
M

: Γc(D)→ C.

If you are more familiar with integration of (top-degree) forms, you may
assume that M has an orientation, D = ΛnT ∗M ⊗ C- the space of C-
valued n-forms (an identification induced by the orientation), and

∫
M is

the integral that you already know. Or, if you are more familiar with
integration of functions on Riemannian manifolds, you may assume that
M is endowed with a metric, D is the trivial line bundle (an identification
induced by the metric) and that

∫
M is the integral that you already know.

2. Consider the “functional dual” of E:

E∨ := E∗ ⊗D = Hom(E,D),

the bundle whose fiber at x ∈ M is the complex vector space consisting
of all (C-)linear maps Ex → Dx.

The main point about E∨ is that it comes with a “pairing” (pointwise
the evaluation map)

< −,− >: Γ(E∨)× Γ(E)→ Γ(D)

(and its versions with supports) and then, using the integration of sec-
tions of D, we get canonical pairings

[−,−] : Γc(E∨)× Γ(E)→ C, (s1, s2) 7→
∫
M
< s1, s2 > .

We now define
D′(M ;E) := (D(M,E∨))∗

(endowed with the strong topology). Note that, it is precisely because of the
way that E∨ was constructed, that we have canonical (i.e. independent of any
choices, and completely functorial) inclusions

E(M ;E) ↪→ D′(M ;E),

sending a section s to the functional us :=< ·, s >. And, as before, we identify
s with the induced distribution us.

When E = CM , we simplify the notation to D′(M).
As for the algebraic structure, as in the local case, D′(M ;E) is a module

over E(M), with continuous multiplication

E(M)×D′(M ;E)→ D′(M ;E)

(by sending ω to
R

κ(U)
fκ) which does not depend on the choice of the coordinates. For the

global integration map Z
M

: Γc(M, D) → C,

one decomposes an arbitrary compactly supported density Ω on M as a finite sum
P

i ωi,
where each ωi is supported in the domain of a coordinate chart Ui (e.g. use partitions of
unity) and put Z

M

ω =
X

i

Z
Ui

ωi.

Of course, one has to prove that this does not depend on the way we decompose ω as such a
sum, but this basically follows from the additivity of the usual integral.
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defined by
(fu)(s) = u(fs).

E ′(M ;E) (compactly supported generalized sections):

This is the space of compactly supported distributional sections of E, or the
space compactly supported generalized sections of E. It is defined as in the
local case (but making again use of E∨), as

E ′(M ;E) := (E(M,E∨))∗.

Note that, by the same pairing as before, one obtains an inclusion

D(M,E) ↪→ E ′(M,E).

Hence, as in the local case, we obtain a diagram of inclusions

D(M,E) //

��

E(M,E)

��
E ′(M,E) // D′(M,E)

.

Example 2.3.4.
1. when E = CM is the trivial line bundle over M , we have shorten the

notations to D(M), E(M) etc. Hence, as vector spaces,

D(M) = Γc(M), E(M) = C∞(M),

while the elements of D′(M) will be called distributions on M .
2. staying with the trivial line bundle, but assuming now that M = Ω is an

open subset of Rn, we recover the spaces discussed in the previous section.
Note that, in the case of distributions, we are using the identification
of the density bundle with the trivial bundle induced by the section
|dx1 . . . dxn|.

3. when E = Cp
M is the trivial bundle over M of rank p, then clearly

D(M,Cp
M ) = D(M)p, E(M,M × Cp

M ) = E(M)p.

On the other hand, using the canonical identification between E∗ and E,
we also obtain

D′(M,Cp
M ) = D′(M)p, E ′(M,Cp

M ) = E ′(M)p.

Note that, as in the local theory, distributions u ∈ D′(M,E) can be re-
stricted to arbitrary opens U ⊂ M , to give distributions u|U ∈ D′(U,E|U ).
More precisely, the restriction map

D′(M,E)→ D′(U,E|U )

is defined as the dual of the map

D′(U,E∨|U )→ D(M,E∨)

which takes a compactly supported section defined on U and extends it by zero
outside U .

Exercise 2.3.5. For a vector bundle E over M ,
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1. Show that U 7→ D(U,E|U ) forms a sheaf over M .
2. Define the support of any u ∈ D(M,E).
3. Show that the injection

E ′(M,E) ↪→ D′(M,E)

identifies E ′(M,E) with the space of compactly supported distributional
sections (as a vector space only!).

Exercise 2.3.6. Show thatD(M,E) is dense in E(M,E), D′(M,E) and E ′(M,E)
(you are allowed to use the fact that this is known for trivial line bundles over
opens in Rn).

Invariance under isomorphisms

Given two vector bundles, E over M and F over a manifold N , an isomorphism
h between E and F is a pair (h, h0), where h0 : M → N is a diffeomorphism
and h : E → F is a map which covers h0 (i.e. sends the fiber Ex to Fh0(x)

or, equivalently, the diagram below is commutative) and such that, for each
x ∈M , it restricts to a linear isomorphism between Ex and Fh0(x).

E

��

h // F

��
M

h0 // N

.

We now explain how such an isomorphism h induces isomorphisms between
the four functional spaces of E and those of F (really an isomorphism between
the diagrams they fit in). The four isomorphism from the functional spaces of
E to those of F will be denoted by the same letter h∗, while its inverse by h∗.
At the level of smooth sections, this is simply

h∗ : E(M,E)→ E(N,F ), h∗(s)(y) = h(s(h−1
0 (y))),

which also restricts to the spaces D. At the level of generalized sections, it is
more natural to describe the map

h∗ : D′(N,F )→ D′(M,E),

(and h∗ will be its inverse). This will be dual of a map

h∨ : D(F∨)→ D(E∨)

defined by
h∨(u)(ex) = h∗0(u(h(ex))), (ex ∈ Ex),

where we have used the pull-back of densities, h∗0 : DN,h0(x) → DM,x.
The same formula defines h∗ on the spaces E ′.

Example 2.3.7. Given a rank p vector bundle E over M , one often has to
choose opens U ⊂ M which are domains of both a coordinate chart (U, κ) for
M as well as the domains of a trivialization τ : E|U → U × Cp for E. We
say that (U, κ, τ) is a total trivialization for E over U . Note that such a data
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defines an isomorphism h between the vector bundle E|U over U and the trivial
bundle κ(U)× Cp:

h0 = κ, h(ex) = (κ(x), τ(ex)).
Hence any total trivialization (U, κ, τ) induces isomorphisms

hκ,τ : D(U,E|U )→ D(κ(U))p, hκ,τ : E(U,E|U )→ E(κ(U))p, etc.

(see also Example 2.3.4).

2.4. General operators and kernels

Given two vector bundles, E over a manifold M and F over a manifold N ,
an operator from E to F is, roughly speaking, a linear map which associates
to a “section of E” a “section of F”. The quotes refer to the fact that there
are several different choices for the meaning of sections: ranging from smooth
sections to generalized sections, or versions with compact supports (or other
types of sections). The most general type of operators are is following.

Definition 2.4.1. If E is a vector bundle over M and F is a vector bundle
over F , a general operator from E to F is a linear continuous map

P : D(M,E)→ D′(N,F ).

Remark 2.4.2. Note that general operators are often described with different
domains and codomains. For instance, if F1 and F2 is any of the symbols E ,
D, E ′ or D′ (or any of the other functional spaces that will be discussed in the
next lecture), one can look at continuous linear operators

(2.2) P : F1(M,E)→ F2(M,F ).

But since in all cases D ⊂ F1 and F2 ⊂ D′ (with continuous inclusions), P does
induce a general operator

Pgen : D(M,E)→ D′(N,F ).

Conversely, since D(M,E) is dense in all the other functional spaces that we
have discussed (Exercise 2.3.6), Pgen determines P uniquely. Hence, saying that
we have an operator (2.2) is the same as saying that we have a general operator
Pgen with the property that it extends to F1(M,E), giving rise to a continuous
operator taking values in F2(M,F ).

On the other extreme, one has the so called smoothing operators, i.e. op-
erators which transforms generalized sections into smooth sections.

Definition 2.4.3. If E is a vector bundle over M and F is a vector bundle
over F , a smoothing operator from E to F is a linear continuous map

P : E ′(M,E)→ E(N,F ).

We denote by Ψ−∞(E,F ) the space of all such smoothing operators. When E
and F are the trivial line bundles, we will simplify the notation to Ψ−∞(M).

In other words, a smoothing operator is a general operator P : D(M,E)→
D′(N,F ) which

1. P takes values in E(N,F ).
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2. P extends to a continuous linear map from E ′(M,E) to E(N,F ).
A very useful way of interpreting operators is in terms of their so called

“kernels”. The idea of kernel is quite simple- and to avoid (just some) notational
complications, let us first briefly describe what happens when M = U ⊂ Rm

and N = V ⊂ Rn are two open, and the bundles involved are the trivial line
bundles. Then the idea is the following: any K ∈ C∞(V × U) induces an
operator

PK : D(U)→ E(V ), K(φ)(y) =
∫
U
K(y, x)φ(x)dx.

Even more: composing with the inclusion E(V ) ↪→ D′(V ), i.e. viewing PK as
an application

PK : D(U)→ D′(V ),
this map does not depend on K as a smooth functions, but just on K as a
distribution (i.e. on uK ∈ D′(V × U)). Indeed, for φ ∈ D(U), PK(φ), as a
distribution on V , is

uPK(φ) : ψ 7→
∫
V
PK(φ)ψ =

∫
V×U

K(y, x)ψ(y)φ(x)dydx = uK(ψ ⊗ φ),

where ψ⊗ φ ∈ C∞(V ×U) is the map (y, x) 7→ ψ(y)φ(x)). In other words, any

K ∈ D′(V × U)

induces a linear operator

PK : D(U)→ D′(V ), PK(φ)(ψ) = K(ψ ⊗ φ)

which can be shown to be continuous. Moreover, this construction defines a
bijection between D′(V × U) and the set of all general operators (even more,
when equipped with the appropriate topologies, this becomes an isomorphism
of l.c.v.s.’s).

The passing from the local picture to vector bundles over manifolds works
as usual, with some care to make the construction independent of any choices.
Here are the details. Given the vector bundles E over M and F over N , we
consider the vector bundle over N ×M :

F � E∨ := pr∗1(F )⊗ pr∗2(E∨),

where prj is the projection on the j-th component. Hence, the fiber over (y, x) ∈
N ×M is

(F � E∨)(y,x) = Fy ⊗ E∗
x ⊗DM,x.

Note that the functional dual of this bundle is canonically identified with:

(F � E∨)∨ ∼= F∨ � E.

Exercise 2.4.4. Work out this isomorphism. (Hints: the density bundle of
N ×M is canonically identified with DN ⊗DM ; D∗

M ⊗DM
∼= Hom(DM , DM )

is canonically isomorphic to the trivial line bundle.)

As before, one may decide to use a fixed positive density on M and one on
N , and then replace F � E∨ by F � E∗ and F∨ � E by F ∗ � E.

Fix now a distribution

K ∈ D′(N ×M,F � E∨).
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We will associate to K a general operator

PK : D(M,E)→ D′(N,F ).

Due to the definition of the space of distributions, and to the identification
mentioned above, K will be a continuous functions

K : D(N ×M,F∨ � E)→ C.
For ψ ∈ D(M,F∨) and φ ∈ D(M,E) we denote by

ψ ⊗ φ ∈ D(N ×M,F∨ � E)

the induced section (y, x) 7→ ψ(y) ⊗ φ(x). To describe PK , let φ ∈ D(M,E)
and we have to specify PK(φ) ∈ D′(N,F ), i.e. the continuous functional

PK(φ) : D(N,F∨)→ C.
We define

PK(φ)(ψ) := K(ψ ⊗ φ).
The general operator PK is called the general operator associated to the kernel
K. Highly non-trivial is the fact that any general operator arises in this way
(and then K will be called the kernel of PK).

Theorem 2.4.5. The correspondence K 7→ PK defines a 1-1 correspondence
between

1. distributions K ∈ D′(N ×M ;F � E∨).
2. general operators P : D(M,E)→ D′(N,F ).

Moreover, in this correspondence, one has

K ∈ E(N ×M ;F � E∨)⇐⇒ P is smoothing.

Note (for your curiosity): the 1-1 correspondence actually defines an isomorphism
of l.c.v.s.’s between

1. D′(N ×M ;F � E∨) with the strong topology.
2. the space L(D(M,E),D′(N,F )) of all linear continuous maps, endowed with

the strong topology.

Exercise 2.4.6. Let
P =

d

dx
: E(R)→ E(R).

Compute its kernel, and show that this is not a smoothing operator.





LECTURE 3
Functional spaces on manifolds

The aim of this section is to introduce Sobolev spaces on manifolds (or on
vector bundles over manifolds). These will be the Banach spaces of sections we
were after (see the previous lectures). To define them, we will take advantage
of the fact that we have already introduced the very general spaces of sections
(the generalized sections, or distributions), and our Banach spaces of sections
will be defined as subspaces of the distributional spaces.

It turns out that the Sobolev-type spaces associated to vector bundles can
be built up from smaller pieces and all we need to know are the Sobolev spaces
Hr of the Euclidean space Rn and their basic properties. Of course, it is not so
important that we work with the Sobolev spaces themselves, but only that they
satisfy certain axioms (e.g. invariance under changes of coordinates). Here we
will follow an axiomatic approach and explain that, starting with a subspace
of D′(Rn) satisfying certain axioms, we can extend it to all vector bundles
over manifolds. Back to Sobolev spaces, there is a subtle point: to have good
behaved spaces, we will first have to replace the standard Sobolev spaces Hr, by
their “local versions”, denoted Hr,loc. Hence, strictly speaking, it will be these
local versions that will be extended to manifolds. The result will deserve the
name “Sobolev space” (without the adjective “local”) only on manifolds which
are compact.

3.1. General functional spaces

When working on Rn, we shorten our notations to

E = E(Rn),D = D(Rn),D′ = . . .

and, similarly for the Sobolev space of order r:

Hr = Hr(Rn) = {u ∈ D′ : ∂αu ∈ L2 : ∀ |α| ≤ r}.

Definition 3.1.1. A functional space on Rn is a l.c.v.s. space F satisfying:
1. D ⊂ F ⊂ D′ and the inclusions are continuous linear maps.
2. for all φ ∈ D, multiplication by φ defines a continuous map mφ : F → F .

Similarly, given a vector bundle E over a manifold M , one talks about functional
spaces on M with coefficients in E (or just functional spaces on (M,E)).

39



40 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

As in the case of smooth functions, one can talk about versions of F with
supports. Given a functional space F on Rn, we define for any compact K ⊂ Rn,

FK = {u ∈ F , supp(u) ⊂ K},

endowed with the topology induced from F , and we also define

Fcomp := ∪KFK
(union over all compacts in Rn), endowed with the inductive limit topology. In
terms of convergence, that means that a sequence (un) in Fcomp converges to
u ∈ Fcomp if and only if there exists a compact K such that

supp(un) ⊂ K ∀n, un → u in F .

Note that Fcomp is itself a functional space.
Finally, for any functional space F , one has another functional space (dual

in some sense to Fcom), defined by:

Floc = {u ∈ D′(Rn) : φu ∈ F ∀ φ ∈ C∞c (Rn)}.

This has a natural l.c. topology so that all the multiplication operators

mφ : Floc → F , u 7→ φu (u ∈ D)

are continuous- namely the smallest topology with this property. To define it,
we use a family P of seminorms defining the l.c. topology on F and, for every
p ∈ P and φ ∈ C∞c (Rn) we consider the seminorm qp,φ on Floc given by

qp,φ(u) = p(φu).

The l.c. topology that we use on Floc is the one induced by the family {qp,φ :
p ∈ P, φ ∈ D. Hence, un → u in this topology means φun → φu in F , for all
φ’s.

Exercise 3.1.2. Show that, for any l.c.v.s. V , a linear map

A : V → Floc

is continuous if and only if , for any test function φ ∈ D, the composition with
the multiplication mφ by φ is a continuous map mφ ◦A : V → F .

Example 3.1.3. The four basic functional spaces D, E , E ′, D′ are functional
spaces and

Dcomp = Ecomp = D, (D′)comp = (E ′)comp = E ′,

Dloc = Eloc = E , (D′)loc = (E ′)loc = D′.
The same holds in the general setting of vector bundles over manifolds.

Regarding the Sobolev spaces, they are functional spaces as well, but the
inclusions

Hr,com ↪→ Hr ↪→ Hr,loc

are strict (and the same holds on any open Ω ⊂ Rn).

The local nature of the spaces FK is indicated by the following partition of
unity argument which will be very useful later on.
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Lemma 3.1.4. Assume that K ⊂ Rn is compact, and let {ηj}j∈J a finite
partition of unity over K, i.e. a family of compactly supported smooth functions
on Rn such that

∑
j ηj = 1 on K. Let Kj = K ∩ supp(ηj). Then the linear map

I : FK → Πj∈JFKj , u 7→ (ηju)j∈J
is a continuous embedding (i.e. it is an isomorphism between the l.c.v.s. FK
and the image of I, endowed with the subspace topology) and the image of I is
closed.

Proof The fact that I is continuous follows from the fact that each component
is multiplication by a compactly supported smooth function. The main obser-
vation is that there is a continuous map R going backwards, namely the one
which sends (uj)j∈J to

∑
j uj , such that R ◦ I = Id. The rest is a general fact

about t.v.s.’s: if I : X → Y , R : Y → X are continuous linear maps between
two t.v.s.’s such that R ◦ I = Id, then I is an embedding and D(X) is closed in
Y . Let’s check this. First, I is open from X to D(X): if B ⊂ X is open then,
remarking that

I(B) = I(X) ∩R−1(B)
and using the continuity of R, we see that I(B) is open in I(X). Secondly, to
see that I(X) is closed in Y , one remarks that

I(X) = Ker(Id− I ◦R).

�

Similar to Lemma 3.1.4, we have the following.

Lemma 3.1.5. Let F be a functional space on Rn and let {ηi}i∈I be a partition
of unity, with ηi ∈ D. Let Ki be the support of ηi. Then

I : Floc → Πi∈IFKi , u 7→ (µiu)i∈I
is a continuous embedding with closed image.

Proof This is similar to Lemma 3.1.4 and the argument is identical. Denoting
by X and Y the domain and codomain of I, we have I : X → Y . On the other
hand, we can consider R : Y → X sending (ui)i∈I to

∑
i ui (which clearly

satisfies R ◦ I = Id). What we have to make sure is that, if {Ki}i∈I is a locally
finite family of compact subsets of Rn, then one has a well-defined continuous
map

R : ΠiFKi → Floc, (ui)i∈I 7→
∑
i

ui.

First of all, u =
∑

i ui makes sense as a distribution: as a linear functional on
test functions,

u(φ) :=
∑
i

ui(φ)

(this is a finite sum whenever φ ∈ D). Even more, when restricted to DK ,
one finds IK finite such that the previous sum is a sum overall i ∈ IK for all
φ ∈ DK . This shows that u ∈ D′. To check that it is in Floc, we look at φu for
φ ∈ D (and want to check that it is in F). But, again, we will get a finite sum
of φui’s, hence an element in F . Finally, to see that the map is continuous, we
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have to check (see Exercise 3.1.2) that mφ ◦ A is continuous as a map to F ,
for all φ. But, again, this is just a finite sum of the projections composed with
mφ. �

3.2. The Banach axioms

Regarding the Sobolev spaces Hr on Rn, one of the properties that make them
suitable for various problems (and also for the index theorem) is that they are
Hilbert spaces. On the other hand, as we already mentioned, we will have to
use variations of these spaces for which this property is lost when we deal with
manifolds which are not compact. So, it is important to realize what remains
of this property.

Definition 3.2.1. (Banach axiom) Let F be a functional space on Rn. We
say that:

1. F is Banach if the topology of F is a Banach topology.
2. F is locally Banach if, for each compact K ⊂ Rn, the topology of FK is

a Banach topology.
Similarly, we talk about “Frechet”, “locally Frechet”, “Hilbert” and “locally
Hilbert” functional spaces on Rn, or, more generally, on a vector bundle E over
a manifold M .

Of course, if F is Banach then it is also locally Banach (and similarly for
Frechet and Hilbert). However, the converse is not true.

Example 3.2.2. E is Frechet (but not Banach- not even locally Banach). D is
not Frechet, but it is locally Frechet. The Sobolev spaces Hr are Hilbert. Their
local versions Hr,loc are just Frechet and locally Hilbert. The same applies for
the same functional spaces on opens Ω ⊂ Rn.

Proposition 3.2.3. A functional space F is locally Banach if and only if each
x ∈ Rn admits a compact neighborhood Kx such that FKx has a Banach topology
(similarly for Frechet and Hilbert).

Proof From the hypothesis it follows that we can find an open cover {Ui :
i ∈ I} of Rn such that each U i is compact and FU i

is Banach. It follows that,
for each compact K inside one of these opens, FK is Banach. We choose a
partition of unity {ηi}i∈I subordinated to this cover. Hence each supp(η)i is
compact inside Ui, {supp(η)i}i∈I is locally finite and

∑
i ηi = 1.

Now, for an arbitrary compact K, J := {j ∈ I : ηj |K 6= 0} will be finite
and then {ηj}j∈J will be a finite partition of unity over K hence we can apply
Lemma 3.1.4. There Kj will be inside Uj , hence the spaces FKj have Banach
topologies. The assertion follows from the fact that a closed subspace of a
Banach space (with the induced topology) is Banach. �

Remark 3.2.4. If F is of locally Banach (or just locally Frechet), then Fcomp

(with its l.c. topology) is a complete l.c.v.s. which is not Frechet (hint: Theorem
2.1.11 ).
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3.3. Invariance axiom

In general, a diffeomorphism χ : Rn → Rn (i.e. a change of coordinates) induces
a topological isomorphism χ∗ on D′:

χ∗(u)(φ) := u(φ ◦ χ−1).

To be able to pass to manifolds, we need invariance of F under changes of
coordinates. In order to have a notion of local nature, we also consider a local
version of invariance.

Definition 3.3.1. Let F be a functional space on Rn. We say that:
1. F is invariant if for any diffeomorphism χ of Rn, χ∗ restricts to a topo-

logical isomorphism
χ∗ : F ∼→ F .

2. F is locally invariant if for any diffeomorphism χ of Rn and any compact
K ⊂ Rn, χ∗ restricts to a topological isomorphism

χ∗ : FK
∼→ Fχ(K).

Similarly, we talk about invariance and local invariance of functional spaces on
vector bundles over manifolds.

Clearly, invariant implies locally invariant (but not the other way around).

Example 3.3.2. Of course, the standard spaces D, E , D′, E ′ are all invariant
(in general for vector bundles over manifolds). However, Hr is not invariant
but, fortunately, it is locally invariant (this is a non-trivial result which will be
proved later on using pseudo-differential operators). As a consequence (see also
below), the spaces Hr,loc are invariant.

Proposition 3.3.3. A functional space F is locally invariant if and only if
for any diffeomorphism χ of Rn, any x ∈ Rn admits a compact neighborhood
Kx such that χ∗ restricts to a topological isomorphism

χ∗ : FKx

∼→ Fχ(Kx).

Proof We will use Lemma 3.1.4, in a way similar to the proof of Proposition
3.2.3. Let K be an arbitrary compact and χ diffeomorphism. We will check the
condition for K and χ. As in the proof of Proposition 3.2.3, we find a finite
partition of unity {ηj}j∈J over K such that each Kj = K ∩ supp(ηj) has the
property that

χ∗ : FKj

∼→ Fχ(Kj).

We apply Lemma 3.1.4 to K and the partition {ηj} (with map denoted by I)
and also to χ(K) and the partition {χ∗(ηi) = ηj ◦ χ−1} (with the map denoted
Iχ). Once we show that χ∗(FK) = Fχ(K) set-theoretically, the lemma clearly
implies that this is also a topological equality. So, let u ∈ FK . Then ηju ∈ FKj

hence
χ∗(ηi) · χ∗(u) = χ∗(ηj · u) ∈ Fχ(Kj) ⊂ FK ,

hence also
χ∗(u) =

∑
j

χ∗(ηi) · χ∗(u) ∈ FK .

�
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3.4. Density axioms

We briefly mention also the following density axioms.

Definition 3.4.1. Let F be a functional space on Rn. We say that:
1. F is normal if D is dense in F .
2. F is locally normal if, for any compact K ⊂ Rn, FK is contained in the

closure of D in F .
Similarly, we talk about normal and locally normal functional spaces on vector
bundles over manifolds.

Again, normal implies locally normal and one can prove a characterization
of local normality analogous to Proposition 3.2.3 and Proposition 3.3.3.

Example 3.4.2. All the four basic functional spaces D, E , D′ and E ′ are
normal (also with coefficients in vector bundles). Also the space Hr is normal.
However, for arbitrary opens Ω ⊂ Rn, the functional spaces Hr(Ω) (on Ω) are
in general not normal (but they are locally normal). The local spaces Hr,loc are
always normal (see also the next section).

The normality axiom is important especially when we want to consider
duals of functional spaces. Indeed, in this case a continuous linear functional
ξ : F → C is zero if and only if its restriction to D is zero. It follows that the
canonical inclusions dualize to continuous injections

D ↪→ F∗ ↪→ D′.

The duality between Floc and Fcomp can then be made more precise- one has:

(Floc)∗ = (F∗)comp, (Fcomp)∗ = (F∗)loc

(note: all these are viewed as vector subspaces of D′, each one endowed with
its own topology, and the equality is an equality of l.c.v.s.’s).

3.5. Locality axiom

In general, the invariance axiom is not enough for passing to manifolds. One
also needs a locality axiom which allows us to pass to opens Ω ⊂ Rn without
loosing the properties of the functional space (e.g. invariance).

Definition 3.5.1. (Locality axiom) We say that a functional space F is local
if, as l.c.v.s.’s,

F = Floc.

Similarly we talk about local functional spaces on vector bundles over manifolds.

Note that this condition implies that F is a module not only over D but
also over E .

Example 3.5.2. From the four basic examples, E and D′ are local, while D
and E ′ are not. Unfortunately, Hr is not local- and we will soon replace it with
Hr,loc (in general, for any functional space F , Floc is local).
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With the last example in mind, we also note that, in general, when passing
to the localized space, the property of being of Banach (or Hilbert, or Frechet)
type does not change.

Exercise 3.5.3. Show that, for any functional space F and for any compact
K ⊂ Rn

(Floc)K = FK ,
as l.c.v.s.’s. In particular, F is locally Banach (or locally Frechet, or locally
Hilbert), or locally invariant, or locally normal if and only if Floc is.

With the previous exercise in mind, when it comes to local spaces we have
the following:

Theorem 3.5.4. Let F be a local functional space on Rn. Then one has the
following equivalences:

1. F is locally Frechet if and only if it is Frechet.
2. F is locally invariant if and only if it is invariant.
3. F is locally normal if and only if it is normal.

Note that in the previous theorem there is no statement about locally Ba-
nach. As we have seen, this implies Frechet. However, local spaces cannot be
Banach.
Proof (of Theorem 3.5.4) In each part, we still have to prove the direct
implications. For the first part, if F is locally Frechet, choosing a countable
partition of unity and applying the previous lemma, we find that Floc is Frechet
since it is isomorphic to a closed subspace of a Frechet space (a countable
product of Frechet spaces is Frechet!). For the second part, the argument is
exactly as the one for the proof of Proposition 3.3.3, but using Lemma 3.1.5
instead of Lemma 3.1.4. For the last part, let us assume that F is locally
normal. It suffices to show that E is dense in F : then, for any open U ⊂ F ,
U ∩ E 6= ∅; but U ∩ E is an open in E (because E ↪→ F is continuous) hence,
since D is dense in E (with its canonical topology), we find U ∩ D 6= ∅.

To show that E is dense in F , we will need the following variation of Lemma
3.1.5. We choose a partition of unity ηi as there, but with ηi = µ2

i , µi ∈ D. Let

A = F , X = Πi∈IF ,
(X with the product topology). We define

i : A→ X, u 7→ (µiu)i, p : X → A, (ui)i 7→
∑

µiui.

As in the lemma, these make A into a closed subspace of X. Hence we can
place ourselves into the setting that we have a subspace A ⊂ X of a l.c.v.s. X,
which has a projection into A, p : X → A (not that we will omit writing i from
now on). Consider the subset

Y = Πi∈ID ⊂ X.
Modulo the inclusion A ↪→ X, B = A ∩ Y becomes E and p(Y ) = B. Also,
since A (or its image by i) is inside the closed subspace of X which is ΠiFKi , we
see that the hypothesis of local normality implies that A ⊂ Y (all closures are
w.r.t. the topology of X). We have to prove that A is in the closure of B. Let
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a ∈ A, V an open neighborhood of a in X. We have to show that V ∩ B 6= ∅.
From V we make V ′ = p−1(A∩V )- another open neighborhood of a in X. Since
A ⊂ Y , we have V ′ ∩ Y 6= ∅. It now suffices to remark that p(V ′) ⊂ V ∩B. �

Finally, let us point out the following corollary which shows that, in the case
of locally Frechet spaces, locality can be checked directly, using test functions
and without any reference to Floc.

Corollary 3.5.5. If F is a functional space which is locally Frechet, then F
is local if and only if the following two (test-)conditions are satisfied:

1. u ∈ D′(Rn) belongs to F if and only if φu ∈ F for all φ ∈ C∞c (Rn).
2. un → u in F if and only if φun → φ in F , for all φ ∈ C∞c (Rn).

Proof The direct implication is clear. For the converse, assume that F is
a functional space which satisfies these conditions. The first one implies that
F = Floc as sets and we still have to show that the two topologies coincide. Let
T be the original topology on F and let Tloc be the topology coming from Floc.
Since F ↪→ Floc is always continuous, in our situation, this tells us that Tloc ⊂ T .
On the other hand, Id : (F , Tloc) → (F , T ) is clearly sequentially continuous
hence, since Floc is metrizable, the identity is also continuous, hence T ⊂ Tloc.
This concludes the proof. �

3.6. Restrictions to opens

The main consequence of the localization axiom is the fact that one can restrict
to opens Ω ⊂ Rn. The starting remark is that, for any such open Ω, there is a
canonical inclusion

E ′(Ω) ⊂ E ′(Rn) ⊂ D′(Rn)
which should be thought of as “extension by zero outside Ω”, which comes
from the inclusion E ′(Ω) ⊂ E ′(Rn) (obtained by dualizing the restriction map
C∞(Rn)→ C∞(Ω)). In other words, any compactly supported distribution on
Ω can be viewed as a (compactly supported) distribution on Rn. On the other
hand,

φu ∈ E ′(Ω), ∀ φ ∈ C∞c (Ω), u ∈ D′(Ω).
Hence the following makes sense:

Definition 3.6.1. Given a local functional space F , for any open Ω ⊂ Rn, we
define

F(Ω) := {u ∈ D′(Ω) : φu ∈ F ∀ φ ∈ C∞c (Ω)},
endowed with the following topology. Let P be a family of seminorms defining
the l.c. topology on F and, for every p ∈ P and φ ∈ C∞c (Ω) we consider the
seminorm qp,φ on F given by

qp,φ(u) = p(φu).

We endow F(Ω) with the topology associated to the family {qp,φ : p ∈ P, φ ∈
C∞c (Ω).

Theorem 3.6.2. For any local functional space F and any open Ω ⊂ Rn,
F(Ω) is a local functional space on Ω and, as such,
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1. F(Ω) is locally Banach (or Hilbert, or Frechet) if F is.
2. F(Ω) is invariant if F is.
3. F(Ω) is normal if F is.

Proof For the first part, one remarks that F(Ω)K = FK . For the second part,
applying Theorem 3.5.4 to the local functional space F(Ω) on Ω, it suffices
to show local invariance. I.e., it suffices to show that for any χ : Ω → Ω
diffeomorphism and x ∈ Ω, we find a compact neighborhood K = Kx such that
χ∗ is an isomorphism between F(Ω)K(= FK) and F(Ω)χ(K)(= Fχ(K)). The
difficulty comes from the fact that χ is not defined on the entire Rn. Fix χ and
x. Then we can find a neighborhood Ωx of x ∈ Ω and a diffeomorphism χ̃ on
Rn such that

χ̃|Ωx = χ|Ωx

(this is not completely trivial, but it can be done using flows of vector fields, on
any manifold). Fix any compact neighborhood K ⊂ Ωx. Using the invariance
of F , it suffices to show that χ∗(u) = χ̃∗(u) for all u ∈ FK . But

χ∗(u), χ̃∗(u) ∈ F ⊂ D′

are two distributions whose restriction to χ(Ωx) is the same and whose restric-
tions to Rn − χ(K) are both zero. Hence they must coincide. For the last
part, since we deal with local spaces, it suffices to show that F(Ω) is locally
normal, i.e that for any compact K ⊂ Ω, FK(Ω) = FK ⊂ F(Ω) is contained in
the closure of D(Ω). I.e., for any u ∈ FK and any open U ⊂ F(Ω) containing
u, U ∩ D(Ω) =6= ∅. But since F is locally normal and the restriction map
r : F → F(Ω) is continuous, we have r−1(U) ∩ D 6= ∅ and the claim follows. �

Exercise 3.6.3. By a sheaf of distributions F̂ on Rn we mean an assignment

Ω 7→ F̂(Ω)

which associates to an open Ω ⊂ Rn a functional space F̂(Ω) on Ω (local or
not) such that:

1. if Ω2 ⊂ Ω1 and u ∈ F̂(Ω1), then u|Ω2 is in F̂(Ω2). Moreover, the map

F̂(Ω1)→ F̂(Ω2), u 7→ u|Ω1 .

is continuous.
2. If Ω = ∪i∈IΩi with Ωi ⊂ Rn opens (I some index set), then the map

F̂(Ω)→ Πi∈IF̂(Ωi), u 7→ (u|Ωi)i∈I
is a topological embedding which identifies the l.c.v.s. on the left with
the closed subspace of the product space consisting of elements (ui)i∈I
with the property that ui|Ωi∩Ωj = uj |Ωi∩Ωj for all i and j.

Show that
1. If F is a local functional space on Rn then Ω 7→ F(Ω) is a sheaf of

distributions.
2. Conversely, if F̂ is a sheaf of distributions on Rn then

F := F̂(Rn)

is a local functional space on Rn and F̂(Ω) = F(Ω) for all Ω’s.
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Below, for diffeomorphisms χ : Ω1 → Ω2 between two opens, we consider
the induced χ∗ : D′(Ω1)→ D′(Ω2).

Corollary 3.6.4. Let F be a local functional space. If F is invariant then,
for any diffeomorphism χ : Ω1 → Ω2 between two opens in Rn, χ∗ induces a
topological isomorphism

χ∗ : F(Ω1)→ F(Ω2).

Proof The proof of 2. of Theorem 3.6.2, when showing invariance under
diffeomorphisms χ : Ω → Ω clearly applies to general diffeomorphism between
any two opens. �

3.7. Passing to manifolds

Throughout this section we fix

F = local, invariant functional space on Rn.

and we explain how to induce functional spaces F(M,E) (of “generalized sec-
tions of E of type F”) for any vector bundle E over an n-dimensional manifold
M .

To define them, we will use local total trivializations of E, i.e. triples
(U, κ, τ) consisting of a local chart (U, κ) for M and a trivialization τ : E|U →
U×Cp of E over U . Recall (see Example 2.3.7) that any such total trivialization
induces an isomorphism

hκ,τ : D′(U,E|U )→ D′(Ωκ)p (where Ωκ = κ(U) ⊂ Rn)1.

Definition 3.7.1. We define F(M,E) as the space of all u ∈ D′(M,E) with
the property that for any domain U of a total trivialization of E, hκ,τ (u|U ) ∈
F(Ωκ)p.

We still have to define the topology on F(M,E), but we make a few re-
marks first. Since the previous definition applies to all n-dimensional manifolds:

1 Let us make this more explicit. The total trivialization induces

1. a local frame s1, . . . , sp for E over U . Then, for any s ∈ Γ(E) we find (local) coefficients
f i

s ∈ C∞(Ωκ), i.e. satisfying

s(x) =
X

i

f i
s(κ(x))si(x) for x ∈ U.

2. the local dual frame s1, . . . , sp of E∗ and a local frame (i.e. non-zero section on U) of
the density bundle of M , |dx1

κ ∧ . . . ∧ xn
κ|. Then, for any ξ ∈ Γ(E∨) we find (local)

coefficients ξi ∈ C∞(Ωκ), i.e. satisfying

ξ(x) =
X

i

ξi(κ(x))si(x)|dx1
κ ∧ . . . ∧ xn

κ|x (x ∈ U).

3. any u ∈ D′(M, E) has coefficients ui ∈ D′(Ωκ), i.e. satisfying

u(ξ) =
X

i

ui(ξi) (ξ ∈ Γc(U, E∨)).

The map hκ,τ sends u to (u1, . . . , un).
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1. when applied to an open Ω ⊂ Rn and to the trivial line bundle CΩ over
Ω, one recovers F(Ω)- and here we are using the invariance of F .

2. it also applies to all opens U ⊂ M , hence we can talk about the spaces
F(U,E|U ). From the same invariance of F , when U is the domain of
a total trivialization chart (U, κ, τ), to check that u ∈ D′(U,E|U ) is in
F(U,E|U ), it suffices to check that hκ,τ (u) ∈ F(Ωκ)p- i.e. we do not need
to check the condition in the definition for all total trivialization charts.

3. If {Ui}i∈I is one open cover of M and u ∈ D′(M,E), then

u ∈ F(M,E)⇐⇒ u|Ui ∈ F(Ui, E|Ui) ∀ i ∈ I.
This follows from the similar property of F on opens in Rn.

Exercise 3.7.2. Given a vector bundle E over M and U ⊂M , F induces two
subspaces of D′(U,E|U ):

1. F(U,E|U ) just defined.
2. thinking of F(M,E) as a functional space on M (yes, we know, we still

have to define the topology, but that is irrelevant for this exercise), we
have an induced space:

{u ∈ D′(U,E|U ) : φu ∈ F(M,E), ∀ φ ∈ D(U)}.
Show that the two coincide.

Next, we take an open cover {Ui}i∈I by domains of total trivialization charts
(Ui, κi, τi). It follows that we have an inclusion

h : F(M,E)→ Πi∈IF(Ωκi)
p.

We endow F(M,E) with the induced topology.

Exercise 3.7.3. Show that the topology on F(M,E) does not depend on the
choice of the cover and of the total trivialization charts.

Theorem 3.7.4. For any vector bundle E over an n dimensional manifold
M , F(M,E) is a local functional space on (M,E).

Moreover, if F is locally Banach, or locally Hilbert, or Frechet (= locally
Frechet since F is local), or normal (= locally normal), then so is F(M,E).

Finally, if F is a vector bundle over another n-dimensional manifold N
and (h, h0) is an isomorphism between the vector bundles E and F , then h∗ :
D′(M,E)→ D′(N,F ) restricts to an isomorphism of l.c.v.s.’s

h∗ : F(M,E)→ F(N,F ).

Proof We just have to put together the various pieces that we already know
(of course, here we make use of the fact that all proofs that we have given so far
work for vector bundles over manifolds). To see that F(M,E) is a functional
space we have to check that we have continuous inclusions

D(M,E) ↪→ F(M,E) ↪→ D′(M,E).

We just have to remark that the map h used to define the topology of F(M,E)
also describes the topology for D and D′. To show that F(M,E) is local, one



50 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

uses the sheaf property of F(M,E)loc (see Exercise 3.6.3) where the Ui’s there
are chosen as in the construction of h above. This reduces the problem to a
local one, i.e. to locality of F .

All the other properties follow from their local nature (i.e. Proposition 3.2.3
and the similar result for normality, applied to manifolds) and the fact that,
for K ⊂ M compact inside a domain U of a total trivialization chart (U, κ, τ),
FK(M,E) is isomorphic to FK(Ωκ)p. �

Corollary 3.7.5. If F is locally Banach (or Hilbert) and normal then, for
any vector bundle E over a compact n dimensional manifold M , F(M,E) is a
Banach (or Hilbert) space which contains D(M,E) as a dense subspace.

Definition 3.7.6. Let F1 and F2 be local, invariant functional spaces on Rm

and Rn, respectively, and assume that F1 is normal. LetM be anm-dimensional
manifold and N an n-dimensional one, and let E and F be vector bundles over
M and N , respectively. We say that a general operator

P : D(M,E)→ D′(N,F )

is of type (F1, F2) if it takes values in F2 and extends to a continuous linear
operator

PF1,F2 : F1(M,E)→ F2(N,E).

Note that, due to the normality axiom, the extension PF1,F2 will be unique,
hence the notation is un-ambiguous.

3.8. Back to Sobolev spaces

We apply the previous constructions to the Sobolev spaces Hr on Rn. Let us
first recall some of the standard properties of these spaces:

1. they are Hilbert spaces.
2. D is dense in Hr.
3. if s > n/2 + k then Hs ⊂ Ck(Rn) (with continuous injection) (Sobolev’s

lemma).
4. for all r > s and all K ⊂ Rn compact, the inclusion Hs,K ↪→ Hs,K is

compact (Reillich’s lemma).
Also, as we shall prove later, Hr are locally invariant (using pseudo-differential
operators and Proposition 3.3.3). Assuming all these, we now consider the
associated local spaces

Hr,loc = {u ∈ D′ : φu ∈ Hr, ∀ φ ∈ D}
and the theory we have developed imply that:

1. Hr,loc is a functional space which is locally Hilbert, invariant and normal.
2. ∩rHr,loc = E . Even better, for r > n/2 + k, any s ∈ Hr,loc is of class Ck.

Hence these spaces extend to manifolds.

Definition 3.8.1. For a vector bundle E over an n-dimensional manifold M ,
1. the resulting functional spaces Hr,loc(M,E) are called the local r-Sobolev

spaces of E.
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2. for K ⊂ M compact, the resulting K-supported spaces are denoted
Hr,K(M,E).

3. the resulting compactly supported spaces are denoted Hr,comp(M,E)
(hence they are ∪KHr,K(M,E) with the inductive limit topology).

If M is compact, we define the r-Sobolev space of E as

Hr(M,E) := Hr,loc(M,E)(= Hr,comp(M,E)).

Corollary 3.8.2. For any vector bundle E over a manifold M ,
1. Hr,loc(M,E) are Frechet spaces.
2. D(M,E) is dense in Hr,loc(M,E).
3. if a distribution u ∈ D′(M,E) belongs to all the spaces Hr,loc(M,E), then

it is smooth.
4. for K ⊂ M compact, Hr,K(M,E) has a Hilbert topology and, for r > s,

the inclusion
Hr,K(M,E) ↪→ Hs,K(M,E)

is compact.

Proof The only thing that may still need some explanation is the compactness
of the inclusion. But this follows from the Reillich’s lemma and the partition
of unity argument, i.e. Lemma 3.1.4 . �

Corollary 3.8.3. For any vector bundle E over a compact manifold M , Hr(M,E)
has a Hilbert topology, contains D(M,E) as a dense subspace,

∩rHr,loc(M,E) = Γ(E)

and, for r > s, the inclusion

Hr(M,E) ↪→ Hs(M,E)

is compact.

Finally, we point out the following immediate properties of operators. The
first one says that differential operators of order k are also operators of type
(Hr,Hr−k).

Proposition 3.8.4. For r ≥ k ≥ 0, given a differential operator P ∈ Dk(E,F )
between two vector bundles over M , the operator

P : D(M,E)→ D(M,F )

admits a unique extension to a continuous linear operator

Pr : Hr,loc(M,E)→ Hr−k,loc(M,F ).

The second one says that smoothing operators on compact manifolds, viewed
as operators of type (Hr,Hs), are compact.

Proposition 3.8.5. Let E and F be two vector bundles over a compact man-
ifold M and consider a smoothing operator P ∈ Ψ−∞(E,F ). Then for any r
and s, P viewed as an operator

P : Hr(M,E)→ Hs(M,F )

is compact.
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Remark 3.8.6. Back to our strategy of proving that the index of an elliptic
differential operator P ∈ Dk(E,F ) (over a compact manifold) is well-defined,
our plan was to use the theory of Fredholm operators between Banach spaces.
We have finally produced our Banach spaces of sections on which our operator
will act:

Pr : Hr(M,E)→ Hr−k(M,F ).
To prove that Pr is Fredholm, using Theorem 1.4.5 on the characterization of
Fredholm operators and the fact that all smoothing operators are compact, we
would need some kind of “inverse of Pr modulo smoothing operators”, i.e. some
kind of operator “of order −k” going backwards, such that PQ−Id and QP−Id
are smoothing operators. Such operators “of degree −k” cannot, of course, be
differential. What we can do however is to understand what make differential
operators behave well w.r.t. (e.g.) Sobolev spaces- and the outcome is: it is
not important that their total symbols are polynomials (of some degree k) in ξ,
but only their symbols have a certain k-polynomial-like behaviour (in terms of
estimates). And this is a property which makes sense even for k-negative (and
that is where we have to look for our Q). This brings us to pseudo-differential
operators ...

Exercise 3.8.7. Show that if such an operator Q : Hr−k(M,F )→ Hr(M,E)
is found (i.e. with the property that PQ− Id and QP − Id are smoothing), then
the kernel of the operator P : Γ(E)→ Γ(F ) is finite dimensional. What about
the cokernel?



LECTURE 4
Fourier transform

4.1. Schwartz functions

Recall that L1(Rn) denotes the Banach space of functions f : Rn → C that are
absolutely integrable, i.e., |f | is Lebesgue integrable over Rn. The norm on this
space is given by

‖f‖1 =
∫

Rn

|f(x)| dx.

Given ξ ∈ Rn and x ∈ Rn, we put

ξx := ξ1x1 + · · ·+ ξnxn.

For each ξ ∈ Rn, the exponential function

eiξ : x 7→ eiξx, Rn → C,

has absolute value 1 everywhere. Thus, if f ∈ L1(Rn) then e−iξf ∈ L1(Rn) for
all ξ ∈ Rn.

Definition 4.1.1. For a function f ∈ L1(Rn) we define its Fourier transform
f̂ = Ff : Rn → C by

(4.1) Ff(ξ) =
∫

Rn

f(x)e−iξx dx.

We will use the notation Cb(Rn) for the Banach space of bounded continuous
functions Rn → C equipped with the sup-norm.

Lemma 4.1.2. The Fourier transform maps L1(R) continuous linearly to the
Banach space Cb(Rn).

Proof Let f be any function in L1(Rn). The functions fe−iξ are all dominated
by f in the sense that |fe−iξ| ≤ |f | (almost) everywhere. Let ξ0 ∈ Rn; then
it follows by Lebesgue’s dominated convergence theorem that Ff(ξ)→ Ff(ξ0)
if ξ → ξ0. This implies that Ff is continuous. It follows that F defines a
linear map from L1(R) to C(Rn). It remains to be shown that F maps L1(R)
continuously into Cb(R).

53
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For this we note that for f ∈ L1(Rn) and ξ ∈ Rn,

|Ff(ξ)| = |
∫

Rn

f(x) e−iξx dx | ≤
∫

Rn

|f(x) e−iξx| dx = ‖f‖1.

Thus, sup |Ff | ≤ ‖f‖1. It follows that F is a linear map L1(R)→ Cb(Rn) which
is bounded for the Banach topologies, hence continuous. �

Remark 4.1.3. We denote by C0(Rn) the subspace of Cb(Rn) consisting of
functions f that vanish at infinity. By this we mean that for any ε > 0 there
exists a compact set K ⊂ Rn such that |f | < ε on the complement Rn \K. It
is well known that C0(Rn) is a closed subspace of Cb(Rn), thus a Banach space
of its own right.

The well known Riemann-Lebesgue lemma asserts that, actually, F maps
L1(Rn) into C0(Rn).

The above amounts to the traditional way of introducing the Fourier trans-
form. Unfortunately, the source space L1(Rn) is very different from the target
space Cb(Rn). We shall now introduce a subspace of L1(Rn) which has the ad-
vantage that it is preserved under the Fourier transform: the so-called Schwartz
space.

Definition 4.1.4. A smooth function f : Rn → C is called rapidly decreasing,
or Schwartz, if for all α, β ∈ Nn,

(4.2) sup
x∈Rn

|xβ∂αf(x)| <∞.

The linear space of these functions is denoted by S(Rn).

Exercise 4.1.5. Show that the function

f(x) = e−‖x‖
2

belongs to S(x).

Condition (4.2) for all α, β is readily seen to be equivalent to the following
condition, for all N ∈ N, k ∈ N :

νN,k(f) := max
|α|≤k

sup
x∈Rn

(1 + ‖x‖)N |∂αf(x)| <∞.

We leave it to the reader to check that ν = νN,k defines a norm, hence in
particular a seminorm, on S(Rn). We equip S(Rn) with the locally convex
topology generated by the set of norms νN,k, for N, k ∈ N.

The Schwartz space behaves well with respect to the operators (multiplica-
tion by) xα and ∂β.

Exercise 4.1.6. Let α, β be multi-indices. Show that

xα : f 7→ xαf and ∂β : f 7→ ∂βf

define continuous linear endomorphisms of S(Rn).

Exercise 4.1.7.
(a) Show that S(Rn) ⊂ L1(Rn), with continuous inclusion map.
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(b) Show that
C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn),

with continuous inclusion maps.

Lemma 4.1.8. The space S(Rn) is a Fréchet space.

Proof As the given collection of seminorms is countable it suffices to show
completeness, i.e., every Cauchy sequence in S(Rn) should be convergent. Let
(fn) be a Cauchy sequence in S(Rn). Then by continuity of the second inclusion
in Exercise 4.1.7 (b), the sequence is Cauchy in C∞(Rn). By completeness of the
latter space, the sequence fn converges to f , locally uniformly, in all derivatives.
We will show that f ∈ S(Rn) and fn → f in S(Rn). First, since (fn) is Cauchy,
it is bounded in S(Rn). Let N, k ∈ N; then there exists a constant CN,k > 0 such
that νN,k(fn) ≤ CN,k, for all n ∈ N. Let x ∈ Rn, then from ∂αfn(x)→ ∂αf(x)
it follows that

(1 + ‖x‖)N∂αfn(x)→ (1 + ‖x‖)N∂αf(x), as n→∞.
In view of the estimates νN,k(fn) ≤ CN,k, it follows that |(1 + ‖x‖)N∂αf(x)| ≤
CN,k, for all α with |α| ≤ k. This being true for arbitrary x, we conclude that
νN,k(f) ≤ CN,k. Hence f belongs to the Schwartz space.

Finally, we turn to the convergence of the sequence fn in S(Rn). Let N, k ∈
N. Let ε > 0. Then there exists a constant M such that

n,m > M ⇒ νN,k(fn − fm) ≤ ε/2.
Let |α| ≤ k and fix x ∈ Rn. Then it follows that

(1 + ‖x‖)N |∂αfn(x)− ∂αfm(x)| ≤ ε

2
As ∂αfn → ∂αf locally uniformly, hence in particular pointwise, we may pass
to the limit for m→∞ and obtain the above estimate with fm replaced by f,
for all x ∈ Rn. It follows that νN,k(fn − f) < ε for all n ≥M. �

Another important property of the Schwartz space is the following.

Lemma 4.1.9. The space C∞c (Rn) is dense in S(Rn).

Proof Fix a function ϕ ∈ C∞c (Rn) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on the
closed unit ball in Rn. For j ∈ Z+ define the function ϕj ∈ C∞c (Rn) by

ϕj(x) = ϕ(x/j).

Let now f ∈ S(Rn). Then ϕjf ∈ C∞c (Rn) for all j ∈ Z+. We will complete the
proof by showing that ϕjf → f in S(Rn) as j →∞.

Fix N, k ∈ N. Our goal is to find an estimate for νN,k(ϕjf−f), independent
of f. To this end, we first note that for every multi-index β we have ∂βϕj(x) =
(1/j)|β|∂βϕ(x/j). It follows that

sup
Rn
|∂βϕj | ≤

1
j
, (j ∈ Z+, 0 < |β| ≤ k).

Let |α| ≤ k. Then by application of Leibniz’ rule we obtain, for all x ∈ Rn, that

|∂α(ϕjf − f)(x)| ≤ |(ϕj(x)− 1) ∂αf(x)|+ 1
j

∑
0<β≤α

(
α
β

)
|∂α−βf(x)|.
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The first term on the right-hand side is zero for ‖x‖ ≤ j. For ‖x‖ ≥ j it can be
estimated as follows:

|(ϕj(x)− 1)∂αf(x)| ≤ (1 + sup |ϕ|)(1 + j)−1(1 + ‖x‖)|∂αf(x)|
≤ 2j−1(1 + ‖x‖)|∂αf(x)|.

We derive that there exists a constant Ck > 0, only depending on k, such that
for every N ∈ N,

νN,k(ϕjf − f) ≤ Ck
j
νN+1,k(f).

It follows that ϕjf → f in S(Rn). �

The following lemma is a first confirmation of our claim that the Schwartz
space provides a suitable domain for the Fourier transform.

Lemma 4.1.10. The Fourier transform is a continuous linear map S(Rn)→
S(Rn). Moreover, for each f ∈ S(Rn) and all α ∈ Nn, the following hold.

(a) F(∂αf) = (iξ)αFf ;
(b) F(xαf) = (i∂ξ)αFf.

Proof Let f ∈ S(Rn) and let 1 ≤ j ≤ n. Then it follows by differentiation
under the integral sign that

∂

∂ξj

∫
Rn

f(x) e−iξx dx =
∫

Rn

f(x)(−ixj)e−iξx dx.

The interchange of integration and differentiation is justified by the observa-
tion that the integrand on right-hand side is continuous and dominated by
the integrable function (1 + ‖x‖)−n−1νn+1,0(f) (check this). It follows that
F(−xjf) = ∂jFf. By repeated application of this formula, we see that Ff is a
smooth function and that (b) holds. Since the inclusion map S(Rn)→ L1(Rn)
and the Fourier transform L1(Rn) → Cb(Rn) are continuous, it follows that F
is continuous from S(Rn) to Cb(Rn). As multiplication by xα is a continuous
endomorphism of the Schwartz space, it follows by application of (b) that F is
a continuous linear map S(Rn)→ C∞(Rn).

Let f ∈ C∞c (Rn) and 1 ≤ j ≤ n. Then by partial integration it follows that∫
Rn

∂jf(x)e−iξx dx = (iξj)
∫

Rn

f(x)e−iξx dx

so that F(∂jf) = (iξj)F(f)(ξ). By repeated application of this formula, it
follows that (a) holds for all f ∈ C∞c (Rn). By density of C∞c (Rn) in S(Rn)
combined with continuity of the endomorphism ∂α ∈ End(S) and continuity of
F as a map S(Rn)→ C(Rn) it now follows that (a) holds for all f ∈ S(Rn).

It remains to establish the continuity of F as an endomorphism of S(Rn).
For this it suffices to show that ξα∂βF is continuous linear as a map S(Rn)→
Cb(Rn). This follows from ξα∂βF = F ◦ (−i∂)α(−ix)β (by (a), (b)) and the fact
that (−i∂)α ◦ (−ix)β is a continuous linear endomorphism of S(Rn). �

Later on, we will see that it is convenient to write

Dα = (−i∂)α,
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so that formula (a) of the above lemma becomes

F(Dαf) = ξαFf.

Given a ∈ Rn we write Ta for the translation Rn → Rn, x 7→ x + a and T ∗a
for map C∞(Rn)→ C∞(Rn) induced by pull-back. Thus, T ∗a f(x) = f(x+ a).

Lemma 4.1.11. The map T ∗a restricts to a continuous linear endomorphism
of S(Rn). Moreover, for all f ∈ S(Rn),

F(T ∗a f) = eiξaF(f); F(e−iaxf) = T ∗aFf.

Exercise 4.1.12. Prove the lemma.

We write S for the point reflection Rn → Rn, x 7→ −x and S∗ for the induced
linear endomorphism of C∞(Rn). It is readily seen that S∗ defines a continuous
linear endomorphism of S(Rn).

Exercise 4.1.13. The map S∗ defines a continuous linear endomorphism of
S(Rn) which commutes with F .

We can now give the full justification for the introduction of the Schwartz
space.

Theorem 4.1.14. (Fourier inversion)

(a) F is a topological linear isomorphism S(Rn)→ S(Rn).
(b) The endomorphism S∗FF of S(Rn) equals (2π)n times the identity op-

erator. Equivalently, for every f ∈ S(Rn) we have

f(x) =
1

(2π)n

∫
Rn

Ff(ξ) eiξx dξ, (x ∈ Rn).

Proof We consider the continuous linear operator T := S∗FF from S(Rn)
to itself. By Lemma 4.1.10 it follows that

T ◦xα = S∗F ◦ ∂α ◦F = S∗ ◦xα ◦FF = xα ◦ T .

In other words, T commutes with multiplication by xα, for every multi-index
α. In a similar fashion it is shown that T commutes with T ∗a , for every a ∈ Rn.

We will now show that any continuous linear endomorphism T of S(Rn)
with these properties must be equal to a constant times the identity. For this
we use the Gaussian function G(x) = exp(−‖x‖/2). Let f ∈ C∞c (Rn) and put
ϕ = G−1f. Then ϕ is smooth compactly supported as well. Moreover, in view
of the formula

ϕ(x) = ϕ(0) +
∫ 1

0

∂

∂t
ϕ(tx) dt

= ϕ(0) + [
∫ 1

0
Dϕ(tx) dt]x,

we see that there exists a smooth map L : Rn → L(Rn,C) such that ϕ(x) =
ϕ(0)+L(x)x for all x ∈ Rn. It is easily seen that each component Lj(x) is smooth
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with partial derivatives that are all bounded on Rn. Hence, LjG ∈ S(Rn). It
now follows that

T (f) = T (ϕG))

= T (ϕ(0)G) + T (
∑
j

xjLjG)

= ϕ(0)T (G) +
∑
j

xjT (LjG).

Evaluating at x = 0 we find that T (f)(0) = cf(0), with c the constant T (G)(0).
We now use that T commutes with translation:

T (f)(x) = [T ∗xT (f)](0) = T (T ∗xf)(0) = c T ∗xf(0) = cf(x).

This proves the claim that T = cI. To complete the proof of (b) we must show
that c = (2π)n. This is the subject of the exercise below.

It follows from (b) and the fact that S∗ commutes with F that F has
(2π)−nS∗F as a continuous linear two-sided inverse. Hence, F is a topological
linear automorphism of S(Rn).

Exercise 4.1.15. We consider the Gaussian function g : R → R given by
g(x) = e−

1
2
x2
.

(a) Show that Fg satisfies the differential equation d
dxFg = −xFg.

(b) Determine the Fourier transform Fg.
(c) Prove that for the Gaussian function G : Rn → Rn we have T (G) =

(2π)nG.

In order to get rid of the constant (2π)n in formulas involving Fourier inver-
sion, we change the normalization of the measures dx and dξ on Rn, by requiring
both of these measures to be equal to (2π)−n/2 times Lebesgue measure. The
definition of F is now changed by using formula (4.1) but with the new nor-
malization of measures. Accordingly, the Fourier inversion formula becomes,
for f ∈ S(Rn),

(4.3) f(x) =
∫

Rn

f̂(ξ) eiξx dξ.

4.2. Convolution

The Schwartz space is also very natural with respect to convolution. In the
following we shall make frequent use of the following easy estimates, for x, y ∈
Rn

(4.4) (1 + ‖x‖)(1 + ‖y‖)−1 ≤ (1 + ‖x+ y‖) ≤ (1 + ‖x‖)(1 + ‖y‖).

The inequality on the right is an easy consequence of the triangle inequality.
The inequality on the left follows from the one on the right if we first substitute
−y for y and then, in the resulting inequality, x+ y for x.

Assume that f1, f2 : Rn → C are continuous functions with

νN (fj) := sup(1 + ‖x‖)Nfj(x) <∞
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for all N ∈ N (Schwartz functions are of this type). Then it follows that
|fj(x)| ≤ (1 + ‖x‖)−NνN (fj) for all x ∈ Rn. Therefore,

f1(y)f2(x− y) ≤ (1 + ‖y‖)−M (1 + ‖x− y‖)−NνM (f1)νN (f2)

≤ (1 + ‖y‖)N−M (1 + ‖x‖)−NνM (f1)νN (f2).

Choosing N = 0 and M > n we see that the function y 7→ f1(y)f2(x − y) is
integrable for every x ∈ Rn.

Definition 4.2.1. For f, g ∈ S(Rn) we define the convolution product f ∗ g :
Rn → C by

(f ∗ g)(x) =
∫

Rn

f(y) g(x− y) dy.

Lemma 4.2.2.
(a) The convolution product defines a continuous bilinear map

(f, g) 7→ f ∗ g, S(Rn)× S(Rn)→ S(Rn).

(b) For all f, g ∈ S(Rn),

F(f ∗ g) = FfFg and F(fg) = Ff ∗ Fg.

Proof Let f, g ∈ S(Rn) and let α be a multi-index of order at most k. Let
K ∈ N. Then it follows from the above estimates with f1 = f and f2 = ∂αg
that

(1 + ‖x‖)K |f(y)∂αg(x− y)| ≤ (1 + ‖y‖)N−M (1 + ‖x‖)K−NνM,0(f)νN,k(g).

We now choose N = K and M > N + n. Then the function on the right-
hand side is integrable with respect to y. It now follows by differentiation under
the integral sign that the function f ∗ g is smooth and that for all α we have
∂α(f ∗ g) = f ∗ ∂αg. Moreover, it follows from the estimate that

νK,k(f ∗ g) ≤ νM,0(f)νN,k(g)
∫

Rn

(1 + ‖y‖)N−M dy.

We thus see that the map (f, g) 7→ f ∗ g is continuous bilinear from S(Rn) ×
S(Rn) to S(Rn).

Moreover, the above estimates justify the following application of Fubini’s
theorem:

F(f ∗ g)(ξ) =
∫

Rn

∫
Rn

f(y)g(x− y)e−iξx dy dx

=
∫

Rn

∫
Rn

f(y)g(x− y)e−iξx dx dy

=
∫

Rn

∫
Rn

f(y)g(z)e−iξ(z+y) dz dy

= Ff(ξ)Fg(ξ).

To obtain the second equality of (b), we use that S∗F = FS∗ is the inverse
to F (by our new normalization of measures). Put ϕ = FS∗f and ψ = FS∗g.
Then fg = FϕFψ = F(ϕ ∗ ψ). By application of F we now readily verify that

F(fg) = S∗(ϕ ∗ ψ) = S∗(ϕ) ∗ S∗(ψ) = Ff ∗ Fg.
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�

Corollary 4.2.3. The convolution product ∗ on S(Rn) is continuous bilinear,
associative and commutative, turning S(Rn) into a commutative continuous
algebra.

Proof This follows from the above lemma combined with the fact that F :
S(Rn)→ S(Rn) is a topological linear isomorphism. �

Exercise 4.2.4. By using Fourier transform, show that the algebra (S(Rn),+, ∗)
has no unit element.

On S(Rn) we define the L2-inner product 〈 · , · 〉L2 by

〈f, g〉L2 =
∫

Rn

f(x) g(x) dx.

Accordingly, the space L2(Rn) may be identified with the Hilbert completion
of S(Rn).

Proposition 4.2.5. Let f, g ∈ S(Rn). Then 〈Ff,Fg〉L2 = 〈f, g〉L2 . The Fourier
transform has a unique extension to a surjective isometry F : L2(Rn) →
L2(Rn).

Proof We define the function ǧ : Rn → C by

ǧ(x) = g(−x).

Then g belongs to the Schwartz space, and F(ǧ) = Fg. Moreover,

〈f, g〉L2 = f ∗ ǧ(0).

By the Fourier inversion formula it follows that the latter expression equals∫
Rn

F(f ∗ ǧ)(ξ) dξ =
∫

Rn

Ff(ξ)Fg(ξ) dξ = 〈Ff,Fg〉L2 .

Thus, F : S(Rn)→ S(Rn) is an isometry for 〈 · , · 〉L2 . Since C∞c (Rn) is dense in
L2(Rn), so is S(Rn) and it follows that F has a unique continuous linear exten-
sion to an endomorphism of the Hilbert space L2(Rn); moreover, the extension
is an isometry. Likewise, S∗ is isometric hence extends to an isometric endomor-
phism of L2(Rn). By density of S(Rn) in L2(Rn) the composition of extended
maps S∗F is a two-sided inverse to the extended map F : L2(Rn) → L2(Rn).
Therefore, F is surjective. �

4.3. Tempered distributions and Sobolev spaces

By means of the Fourier transform we shall give a different characterization of
Sobolev spaces, which will turn out to be very useful in the context of pseudo-
differential operators. We start by introducing the notion of tempered distri-
butions.

Definition 4.3.1. The elements of S ′(Rn), the continuous linear dual of the
Fréchet space S(Rn) are called tempered distributions.
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Here we note that a linear functional u : S(Rn) → C is continuous if and
only if there exist constants N, k ∈ N and C > 0 such that

|u(f)| ≤ C νN,k(f) for all f ∈ S(Rn).

The name distributions is justified by the following observation. By transposi-
tion the continuous inclusions

C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn)

give rise to continuous linear transposed maps between the continuous linear
duals of these spaces. Here we assume to have the duals equipped with the
strong dual topologies (of uniform convergence on bounded sets). Moreover, as
C∞c (Rn) is dense in both S(Rn) and C∞(Rn), it follows that the transposed
maps are injective:

E ′(Rn) ↪→ S ′(Rn) ↪→ D′(Rn).
We note that the transposed maps are given by restriction. Thus, E ′(Rn) →
S ′(Rn) is given by u 7→ u|S(Rn). Moreover, the map S ′(Rn) → D′(Rn) is given
by v 7→ v|C∞c (Rn). In this sense tempered distributions may be viewed as distri-
butions.

We recall that the operators xα· and ∂α on D′(Rn) were defined through
transposition:

xαu = u ◦ (xα·), and ∂αu = u ◦ (−∂)α,
for u ∈ D′(Rn).

Exercise 4.3.2. Show that S ′(Rn) is stable under the operators ∂α and xα

for all multi-indices α.

We recall that there is a natural continuous linear injection L2
loc(Rn) ↪→

D′(Rn). If ϕ ∈ L2
loc(Rn) then the associated distribution is given by

f 7→ 〈ϕ, f〉 :=
∫

Rn

ϕ(x)f(x) dx, C∞c (Rn)→ C.

Lemma 4.3.3. The continuous linear injection L2(Rn) ↪→ D′(Rn) maps L2(Rn)
continuously into S ′(Rn).

Proof Denote the injection by j. Let ϕ ∈ L2(Rn) and f ∈ S(Rn). Fix N > n/2.
Then

〈ϕ, f〉 =
∫

Rn

ϕ(x)f(x) dx

≤
∫

Rn

ϕ(x)(1 + ‖x‖)−NνN,0(f) dx

≤ C ‖ϕ‖2 νN,0(f)

where C is the L2-norm of (1+‖ξ‖)−N . It follows that the pairing (ϕ, f) 7→ 〈ϕ, f〉
is continuous bilinear L2(Rn) × S(Rn) → C. This implies that j maps L2(Rn)
continuously into S ′(Rn). �

The inclusion S(Rn) ↪→ L2(Rn) is continuous. Accordingly, the natural
injection S(Rn)→ D′(Rn) maps S(Rn) continuous linearly into S ′(Rn).
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Exercise 4.3.4. Let s ∈ R. We denote by L2
s(Rn) the space of f ∈ L2

loc(Rn)
with (1 + ‖x‖)sf ∈ L2(Rn). Equipped with the inner product

〈f, g〉L2,s :=
∫

Rn

f(x)g(x)(1 + ‖x‖)2s dx

this space is a Hilbert space.
Show that the continuous linear injection L2

s(Rn) → D′(Rn) maps L2
s(Rn)

continuously into S ′(Rn).

The following result will be very useful for our understanding of Sobolev
spaces.

Proposition 4.3.5. The Fourier transform has a continuous linear extension
to a continuous linear map F : S ′(Rn) → S ′(Rn). For all u ∈ S ′(Rn) and
f ∈ S(Rn) we have

〈Fu, f〉 = 〈u,Ff〉.

The extension to S ′(Rn) is compatible with the previously defined extension to
L2(Rn).

Remark 4.3.6. It can be shown that C∞0 (Rn), hence also S(Rn) is dense
in S ′(Rn). Therefore, the continuous linear extension is uniquely determined.
However, we shall not need this.

Proof The Fourier transform F : S(Rn)→ S(Rn) is continuous linear. There-
fore its tranposed F t : u 7→ u ◦F is a continuous linear map S ′(Rn)→ S ′(Rn).

We claim that F t restricts to F on S(Rn). Indeed, let us view ϕ ∈ S(Rn)
as a tempered distribution. Then by a straightforward application of Fubini’s
theorem, it follows that, for all f ∈ S(Rn),

〈F tϕ, f〉 = 〈ϕ,Ff〉

=
∫

Rn

ϕ(ξ)
∫

Rn

f(x)e−iξx dx dξ

=
∫

Rn

∫
Rn

ϕ(ξ)e−iξx dξ f(x) dx

= 〈Fϕ, f〉.

This establishes the claim. We have thus shown that F has F t as a continuous
linear extension to S ′(Rn).

It remains to prove the asserted compatibility. Let u ∈ L2(Rn). There exists
a sequence of Schwartz functions un ∈ S(Rn) such that un → u in L2(Rn) for
n→∞. It follows that Fun → Fu in L2(Rn), hence also in S ′(Rn), by Lemma
4.3.3. On the other hand, we also have un → u in S ′(Rn) by the same lemma.
Hence F tun → F tu by what we proved above. Since F t = F on S(Rn) it
follows that Fun = F tun for all n. Thus, Fu = F tu. �

From now on, we shall denote the extension of F to S ′(Rn) by the same
symbol F . The following lemma is proved in the same spirit as the lemma above.
We leave the easy proof to the reader.
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Lemma 4.3.7. The operators ∂α, xα·, T ∗a and eia· have (unique) continuous
linear extensions to endomorphisms of S ′(Rn). For u ∈ S ′(Rn) we have

∂αu = u ◦ (−∂)α, xαu = u ◦xα, T ∗au = u ◦T ∗−a, eiau = u ◦ eia.

The formulas (a),(b) of Lemma 1.1.10 and the formulas of Lemma 1.1.11 are
valid for f ∈ S ′(Rn).

Lemma 4.3.8. Let u ∈ E ′(Rn). Then Fu is a smooth function. Moreover, for
every ξ ∈ Rn,

Fu(ξ) = 〈u, e−iξ〉.

Proof We sketch the proof. Not all details can be worked out because of time
constraints. Let f ∈ C∞c (Rn). Then the function ϕ : ξ 7→ f(ξ)e−iξ with values
in the Fréchet space C∞(Rn) is smooth and compactly supported. This implies
that ξ 7→ u(ϕ(ξ)) is smooth and compactly supported. Now

u(ϕ(ξ)) = f(ξ)u(e−iξ)

and since f was arbitrary, we see that û : ξ 7→ u(e−iξ) is a smooth function.
Furthermore, the integral for Ff may be viewed as an integral of the

C∞(Rn)-valued function ϕ. This means that in C∞(Rn) it can be approximated
by C∞(Rn)-valued Riemann sums. This in turn implies that

〈Fu, f〉 = 〈u,Ff〉

= u(
∫

Rn

ϕ(ξ) dξ)

=
∫

Rn

u(ϕ(ξ)) dξ

=
∫

Rn

f(ξ)u(e−iξ) dξ

= 〈û, f〉.
Since this is true for any f ∈ C∞c (Rn), it follows that û = Fu. �

We recall from Definition 2.2.10 that for r ∈ N the Sobolev space Hr(Rn) is
defined as the space of distributions u ∈ D′(Rn) such that ∂αf ∈ L2(Rn) for each
α ∈ Nn with |α| ≤ r. In particular, taking α = 0 we see that Hr(Rn) ⊂ L2(Rn).
Hence also Hr(Rn) ⊂ S ′(Rn).

Lemma 4.3.9. Let r ∈ N. Then

Hr(Rn) = {u ∈ S ′(Rn) | (1 + ‖ξ‖)rF(u) ∈ L2(Rn)}.

Proof Let u ∈ Hr(Rn) and let α be a multi-index of order at most r. Then
∂αu ∈ L2(Rn). It follows that

(iξ)αFu = F(∂αu) ∈ L2(Rn).

In view of the lemma below this implies that (1 + ‖ξ‖)rFu ∈ L2(Rn).
Conversely, let u ∈ S ′(Rn) and assume that (1 + ‖ξ‖)rFu ∈ L2(Rn). Then

Fu is locally square integrable, and in view of the obvious estimate

|ξα| ≤ (1 + ‖ξ‖)|α|, (ξ ∈ Rn)
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it follows that (iξ)αFu ∈ L2(Rn). We conclude that

∂αu = S∗F((iξ)αFu) ∈ L2(Rn).

�

Lemma 4.3.10. Let r ∈ N. There exists a constant C > 0 such that for all
ξ ∈ Rn,

(1 + ‖ξ‖)r ≤ C
∑
|α|≤r

|ξα|;

here ξ0 should be read as 1.

Proof It is readily seen that there exists a constant C > 0 such that

(1 +
√
n|t|)r ≤ C(1 + |t|r), (t ∈ R),

where |t|0 ≡ 1. Let ξ ∈ Rn and assume that k is an index such that |ξk| is
maximal. Then ‖ξ‖ ≤

√
n|ξk|. Hence,

(1 + ‖ξ‖)r ≤ (1 +
√
n|ξk|)r ≤ C(1 + |ξk|r) ≤ C

∑
|α|≤r

|ξα|.

�

Exercise 4.3.11. Show that the Fourier transform maps Hr(Rn) bijectively
onto L2

r(Rn). Thus, by transfer of structure, Hr(Rn) may be given the structure
of a Hilbert space. Show that this Hilbert structure is not the same as the one
introduced in Definition 2.2.10, but that the associated norms are equivalent.

The characterization of Hr(Rn) given above allows generalization to arbi-
trary real r.

Definition 4.3.12. Let s ∈ R. We define the Sobolev space Hs(Rn) of order
s to be the space of f ∈ S ′(Rn) such that (1 + ‖ξ‖)sFf ∈ L2(Rn), equipped
with the inner product

〈f, g〉s =
∫

Rn

Ff(ξ)Fg(ξ) (1 + ‖ξ‖)2s dξ.

Equipped with this inner product, the Sobolev space Hs(Rn) is a Hilbert
space. The associated norm is denoted by ‖ · ‖s.

Exercise 4.3.13. The Heaviside function H : R → R is defined as the char-
acteristic function of the interval [0,∞). For R > 0 we define uR to be the
characteristic function of [0, R].

(a) Show that uR,H ∈ S ′(R) and that uR → H in S ′(R) (pointwise) as
R→∞.

(b) Determine FuR for every R > 0.
(c) Show that uR ∈ Hs(R) for every s < 1

2 , but not for s = 1
2 .

(d) Determine FH and show that H /∈ Hs(Rn) for all s ∈ R.

Lemma 4.3.14. Let s ∈ R. Then S(Rn) ⊂ Hs(Rn), with continuous inclusion
map. Furthermore, C∞c (Rn) is dense in Hs(Rn).
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Proof If f ∈ S(Rn) then Ff ∈ S(Rn). Moreover, let N ∈ N be such that
N > s+ n/2. Then N = s+ n/2 + ε, with ε > 0, hence

|Ff(ξ)|2 (1 + ‖ξ‖)2s ≤ νN,0(Ff)2 (1 + ‖x‖)−n−2ε.

This implies that f ∈ Hs(Rn) and that

‖f‖s ≤ νN,0(Ff) ‖(1 + ‖x‖)−n−2ε‖1/2
L1 .

Since F : S → S is continuous, it follows from this estimate that the inclusion
map S → Hs is continuous.

For the assertion about density it suffices to show that the orthocomplement
of C∞c (Rn) in the Hilbert space Hs(Rn) is trivial. Let u ∈ Hs(Rn), and assume
that 〈u, f〉s = 0 for all f ∈ S(Rn). This means that∫

Rn

Fu(ξ)Ff(ξ) (1 + ‖ξ‖)2s dξ = 0, (f ∈ S(Rn)).

Therefore, the tempered distribution Fu(ξ) (1 + ‖ξ‖)2s vanishes on the space
F(C∞c (Rn)). The latter space is dense in F(Rn), since C∞c (Rn) is dense in
S(Rn) and F is a topological linear automorphism of S(Rn). We conclude that
Fu = 0, hence u = 0. �

We conclude this section with two results that will allow us to define the
local versions of the Sobolev spaces.

Lemma 4.3.15. Let s ∈ Rn. Then convolution (f, g) 7→ f ∗ g, S(Rn) →
S(Rn) → S(Rn) has a unique extension to a continuous bilinear map S(Rn) ∗
L2
s(Rn)→ L2

s(Rn).

Proof Let f, g ∈ C∞c (Rn). Then for all x, y ∈ Rn we have

(1 + ‖x‖)s|f(y)g(x− y)| ≤ (1 + ‖y‖)s|f(y)|(1 + ‖x− y‖)s|g(x− y)|.

Let ϕ ∈ C∞c (Rn). Then multiplying the above expression by |ϕ(y)|, followed by
integration against dxdy, application of Fubini’s theorem and of the Cauchy-
Schwartz inequality for the L2-inner product, we find

|〈(1 + ‖x‖)sf ∗ g, ϕ〉| ≤
∫

Rn

(1 + ‖y‖)s|f(y)| dy ‖g‖L2,s ‖ϕ‖L2 .

Since this holds for arbitrary ϕ ∈ C∞c (Rn), we obtain

‖(1 + ‖x‖)s(f ∗ g)‖L2 ≤ ‖(1 + ‖y‖)sf‖L1 ‖g‖L2,s.

The expression on the left-hand side equals ‖f ∗ g‖L2,s. Fix N ∈ N such that
s−N < −n. Then the L1-norm on the right-hand side is dominated by CνN,0(f),
with C equal to the L1-norm of the function (1 + ‖y‖)s−N . It follows that

‖f ∗ g‖L2,s ≤ CνN,0(f) ‖g‖L2,s.

As C∞c (Rn) is dense in both S(Rn) and L2
s(Rn), the result follows. �

Lemma 4.3.16. Let s ∈ R, ϕ ∈ S(Rn) and u ∈ Hs(Rn). Then ϕu ∈ Hs(Rn).
Moreover, the associated multiplication map S(Rn) × Hs(Rn) → Hs(Rn) is
continuous bilinear.
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Proof We recall that by definition the Fourier transform F : S(Rn)→ S(Rn)
is an isometry for the norms ‖ · ‖s (from Hs(Rn)) and ‖ · ‖L2,s. From the
above lemma it now follows that the multiplication map S(Rn) × S(Rn) →
S(Rn) has a unique extension to a continuous bilinear map S(Rn)×Hs(Rn)→
Hs(Rn). We need to check that this extension coincides with the restriction
of the multiplication map S(Rn) × D′(Rn) → D′(Rn). Fix f ∈ S(Rn) and
ϕ ∈ C∞c (Rn). Then we must show that 〈fg, ϕ〉 = 〈g, fϕ〉 for all g ∈ Hs(Rn).
By continuity of the expressions on both sides in g (verify this!), it suffices to
check this on the dense subspace C∞c (Rn), where it is obvious. �

In particular, it follows that C∞c (Rn)Hs(Rn) ⊂ Hs(Rn). Therefore, we may
define local Sobolev spaces.

Let U ⊂ Rn be open, and let s ∈ R. We define the local Sobolev space Hs,loc

in the usual way, as the space of distributions u ∈ D′(U) such that χu ∈ Hs(Rn)
for every χ ∈ C∞c (Rn). At a later stage we will prove invariance of the local
Sobolev spaces under diffeomorphisms, so that the notion of Hs,loc can be lifted
to sections of a vector bundle on a smooth manifold.

Exercise 4.3.17. This exercise is a continuation of Exercise 4.3.13. Show that
the Heaviside function H = 1[0,∞) belongs to Hs,loc(Rn) for every s < 1

2 but
not for s = 1

2 .

4.4. Some useful results for Sobolev spaces

We note that for s < t the estimate ‖f‖s ≤ ‖f‖t holds for all f ∈ Ht(Rn).
Accordingly, we see that

Ht(Rn) ⊂ Hs(Rn), for s < t,

with continuous inclusion map. We also note that, by the Plancherel theorem
for the Fourier transform, H0(Rn) = L2(Rn). Accordingly,

(4.5) Hs(Rn) ⊂ L2(Rn) ⊂ H−s(Rn) (s ≥ 0).

Lemma 4.4.1. Let α ∈ Nn. Then ∂α : S ′(Rn)→ S ′(Rn) restricts to a contin-
uous linear map Hs(Rn)→ Hs−|α|(Rn), for every s ∈ R.

Proof This is an immediate consequence of the definitions. �

Given k ∈ N we define Ckb (Rn) to be the space of Ck-functions f : Rn → C
with

sk(f) := max
|α|≤k

sup
x∈Rn

|Dα
xf(x)| <∞.

Equipped with the norm sk, this space is a Banach space.

Lemma 4.4.2. (Sobolev lemma) Let k ∈ N and let s > k + n/2. Then

Hs(Rn) ⊂ Ckb (Rn)

with continuous inclusion map.
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Proof In view of the previous lemma, it suffices to prove this for k = 0. We
then have s = n/2 + ε, with ε > 0. Let u ∈ C∞c (Rn), then

u(x) =
∫

Rn

Fu(ξ)eiξx dx

=
∫

Rn

eiξxFu(ξ)(1 + ‖ξ‖)s(1 + ‖ξ‖)−n/2−ε dξ

From this we read off that u is bounded continuous, and

sup |u| ≤ ‖u‖s ‖(1 + ‖ξ‖)−n/2−ε‖L2 .

It follows that the inclusion C∞c ⊂ Cb is continuous with respect to the Hs

topology on the first space. By density the inclusion has a unique extension to
a continuous linear map Hs → Cb. By testing with functions from S we see that
the latter map coincides with the inclusion of these spaces viewed as subspaces
of S ′. �

In accordance with the above embedding, we shall view Hs(Rn), for s >
k+n/2, as a subspace of Ckb (Rn). We observe that as an important consequence
we have the following result. Put

H∞(Rn) =
⋂
s∈R

Hs(Rn).

Corollary 4.4.3.

(a) H∞(Rn) ⊂ C∞b (Rn).
(b) H∞(Rn) equals the space of smooth functions f ∈ C∞(Rn) with ∂αf ∈

L2(Rn), for all α ∈ Rn.

Proof Assertion (a) is an immediate consequence of the previous lemma. For
(b) we note that Hr ⊂ Hs for s < r. We see that H∞(Rn) is the intersection
of the spaces Hr(Rn), for r ∈ N. Now use the original definition of Hr(Rn),
Definition 2.2.10. �

Let V,W be topological linear spaces. Then a pairing of V and W is a
continuous bilinear map β : V ×W → C. The pairing induces a continuous map
β1 : V → W ∗ by β1(v) : w 7→ β(v, w) and similarly a map β2 : W → V ∗; the
stars indicate the continuous linear duals of the spaces involved. The pairing
is called non-degenerate if both the maps β1 and β2 are injective. It is called
perfect if it is non-degenerate, and if β1 is an isomorphism V →W ∗, and β2 an
isomorphism W → V ∗.

If V is a complex linear space, we denote by V̄ the conjugate space. This is
the complex space which equals V as a real linear space, whereas the complex
scalar multiplication is given by (z, v) 7→ z̄v.

If V is a Banach space, the continuous linear dual V ∗ is equipped with the
dual norm ‖ · ‖∗, given by

‖u‖∗ = sup{|u(x)| | x ∈ V, ‖x‖ ≤ 1}.

This dual norm also defines a norm on the conjugate space V̄ ∗.
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If H is a Hilbert space with inner product 〈 · , · 〉, then the associated norm
‖ · ‖ may be characterized by

‖v‖ = sup
‖w‖≤1

|〈v, w〉|

It follows that v 7→ 〈v, · 〉 induces a linear isomorphism ϕ : H → H̄∗ which
is an isometry for the norm on H and the associated dual norm on H∗. The
isometry ϕ may be used to transfer the Hilbert structure on H to a Hilbert
structure on H̄∗, called the dual Hilbert structure. It is readily seen that the
norm associated with this dual Hilbert structure equals the dual norm ‖ · ‖∗
defined above.

Lemma 4.4.4. Let s ∈ R. Then the L2-inner product 〈 · , · 〉 on C∞c (Rn) ex-
tends uniquely to a continuous bilinear pairing Hs(Rn) × H̄−s(Rn) → C. The
pairing is perfect and induces isometric isomorphisms Hs(Rn) ' H̄−s(Rn)∗ and
H̄−s(Rn) ' Hs(Rn)∗.

Proof Let f, g ∈ C∞c (Rn). Then

〈f, g〉L2 =
∫
Rn

Ff(ξ)Fg(ξ) dξ

=
∫
Rn

Ff(ξ)(1 + ‖ξ‖)sFg(ξ)(1 + ‖ξ‖)−s dξ.

By the Cauchy-Schwartz inequality, it follows that the absolute value of the
latter expression is at most ‖f‖s‖g‖−s. By density of C∞c (Rn) in Hs(Rn), this
implies the assertion about the extension of the pairing. The above formulas
also imply that

sup
g∈C∞c (Rn),‖g‖−s=1

〈f, g〉 = ‖f‖s.

Thus, by density of C∞c (Rn), the induced map β1 : Hs(Rn) → H̄−s(Rn)∗ is
an isometry. Likewise, β2 : H−s(Rn) → H̄s(Rn)∗ is an isometry. From the
injectivity of β1 it follows that β2 has dense image. Being an isometry, β2 must
then be surjective. Likewise, β1 is surjective. �

4.5. Rellich’s lemma for Sobolev spaces

In this section we will give a proof of the Rellich lemma for Sobolev spaces,
which will play a crucial role in the proof of the Fredholm property for elliptic
pseudo-differential operators on compact manifolds.

Given s ∈ R and a compact subset K ⊂ Rn, we define

Hs,K(Rn) = {u ∈ Hs(Rn) | suppu ⊂ K}.
Lemma 4.5.1. Hs,K(Rn) is a closed subspace of Hs(Rn).

Proof Let f ∈ C∞c (Rn). Then the space

f⊥ := {u ∈ Hs(Rn) | 〈u, f〉 = 0}
has Fourier transform equal to the space of ϕ ∈ L2

s(Rn) with 〈ϕ,Ff〉 = 0, which
is the orthocomplement of (1+‖ξ‖)−2sFf in L2

s(Rn). As this orthocomplement
is closed in L2

s(Rn), it follows that f⊥ is closed in Hs(Rn).
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We now observe that Hs,K(Rn) is the intersection of the spaces f⊥ for
f ∈ C∞c (Rn) with supp f ∩K = ∅. �

Lemma 4.5.2. ( Rellich) Let t < s. Then the inclusion map Hs,K(Rn) →
Ht(Rn) is compact.

To prepare for the proof, we first prove the following result, which is based
on an application of the Ascoli-Arzéla theorem.

Lemma 4.5.3. Let B be a bounded subset of the Fréchet space C1(Rn). Then
B is relatively compact (i.e., has compact closure) as a subset of the Fréchet
space C(Rn).

Proof Boundedness of B means that every continuous semi-norm of C1(Rn)
is bounded on B. Let K ⊂ Rn be a compact ball. Then there exists a constant
C > 0 such that supK ‖df‖ ≤ C for all f ∈ B and each 1 ≤ j ≤ n. Since

f(x)− f(y) =
∫ 1

0
df(y + t(x− y))(x− y) dt

for all y ∈ x, we see that

|f(y)− f(x)| ≤ C‖x− y‖, for all (x, y ∈ K).

It follows that the set of functions B|K = {f |K | f ∈ B} is equicontinuous and
bounded in C(K). By application of the Ascoli-Arzèla theorem, the set B|K is
relatively compact in C(K). In particular, if (fk) is a sequence in B, then there
is a subsequence (fkj

) which converges uniformly on K.
Let (fk) be a sequence in B. We shall now apply the usual diagonal proce-

dure to obtain a subsequence that converges in C(Rn).
For r ∈ N let Kr denote the ball of center 0 and radius r in Rn. Then

by repeated application of the above there exists a sequence of subsequences
(fk1,j

) � (fk2,j
) � · · · ... such that (fkr,j

) converges uniformly on Kr, for every
r ∈ N.

The sequence (fkj,j
)j∈N is a subsequence of all the above sequences. Hence,

it converges uniformly on each ball Kr. Therefore, it converges in C(Rn). �

Remark 4.5.4. By a slight modification of the proof above, one obtains a
proof of the compactness of each inclusion map Ck+1(Rn) ↪→ Ck(Rn). This
implies that the identity operator of C∞(Rn) is compact. Equivalently, each
bounded subset of C∞(Rn) is relatively compact. A locally convex topological
vector space with this property is called Montel.

If B is a subset of L2
s(Rn) (see Lecture 4) and ϕ ∈ S(Rn), we write

ϕ ∗B := {ϕ ∗ f | f ∈ B}.

Then ϕ ∗B is a subset of L2
s(Rn).

Lemma 4.5.5. Let s ∈ R and let B ⊂ L2
s(Rn) be bounded. If ϕ ∈ S(Rn), then

the set ϕ ∗B is a relatively compact subset of C(Rn).
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Proof In view of the previous lemma, it suffices to prove that f ∗B is bounded
in C1(Rn). For this we note that for each 1 ≤ j ≤ n,

| ∂
∂xj

[ϕ(x− y)f(y)]|

= |∂jϕ(x− y)|(1 + ‖y‖)−s(1 + ‖y‖)s|f(y)|
≤ (1 + ‖x‖)−s|(1 + ‖x− y‖)−s‖∂jϕ(x− y)‖(1 + ‖y‖)s|f(y)|.

The right-hand side can be dominated by an integrable function of y, locally
uniformly in x. It now follows by differentiation under the integral sign that
ϕ ∗ f ∈ C1(Rn), that ∂j(ϕ ∗ f) = ∂jϕ ∗ f and that

‖∂j(ϕ ∗ f)(x)‖ ≤ (1 + ‖x‖)−s ‖ϕ‖L2,−s ‖f‖L2,s.

This implies that the set ϕ ∗B is bounded in C1(B), hence relatively compact
in C(Rn). �

Proposition 4.5.6. Let s > t and let B be a bounded subset of L2
s(Rn) which

at the same time is a relatively compact subset of C(Rn). Then B is relatively
compact in L2

t (Rn).

Proof For R > 0 we denote by 1R the characteristic function of the closed
ball B(R) := B̄(0;R). Then for each r ∈ R, the map f 7→ 1Rf gives the
orthogonal projection from L2

s(Rn) onto the closed subspace L2
s,B(R) of functions

with support in B(R). We now observe that the following estimate holds for
every f ∈ L2

s(Rn) :

‖(1− 1R)f‖2L2,t =
∫
‖x‖≥R

(1 + ‖x‖)2t−2s(1 + ‖x‖)2s‖f(t)‖2 dt

≤ (1 +R)2(t−s)‖f‖2L2,s.

Fix M > 0 such that ‖f‖L2,s ≤M for all f ∈ B. Then we see that

‖(1− 1R)f‖L2,t ≤M (1 +R)t−s, (f ∈ B).

Let now (fk) be a sequence in B. Then (fk) has a subsequence (fkj
) which

converges in C(Rn), i.e., there exists a function f ∈ C(Rn) such that fkj
→ f

uniformly on each compact set K ⊂ Rn. It easily follows from this that 1Rfkj
is

a Cauchy-sequence in L2
t (R), for each R > 0. We will show that fkj

is actually
a Cauchy sequence in L2

t (Rn). By completeness of the latter space, this will
complete the proof.

Let ε > 0. We fix R > 0 such that

M(1 +R)t−s <
1
3
ε.

There exists a constant N > 0 such that

i, j ≥ N ⇒ ‖1Rfki
− 1Rfkj

‖L2,t <
1
3
.
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It follows that for all i, j > N,

‖fki
− fkj

‖L2,t

≤ ‖1R(fki
− fkj

)‖L2,t + ‖(1− 1R)fki
‖L2,t + ‖(1− 1R)fkj

‖L2,t

< ε.

�

Proof of Lemma 4.5.2 Let K ⊂ Rn be compact and let B be a bounded
subset of Hs,K(Rn). Fix a smooth compactly supported function χ ∈ C∞c (Rn)
that is 1 on a neighborhood of K. Then χf = f for all f ∈ B. It follows that

F(B) = ϕ ∗ F(B),

with ϕ = F(χ) ∈ S(Rn). By Lemma 4.5.5 it now follows that F(B) is both
bounded in L2

s(Rn) and a relatively compact subset of C(Rn). By the previous
proposition, this implies that F(B) is relatively compact in L2

t (Rn). As F is
an isometry from Ht(Rn) to L2

t (Rn), it follows that B is relatively compact in
Ht(Rn). �





LECTURE 5
Pseudo-differential operators, local theory

5.1. The space of symbols

We consider a differential operator P on Rn of the form

(5.1) P = p(x,Dx) =
∑
|α|≤d

cα(x)Dα
x ;

here we recall that Dα
x = (−i∂x)α. The coefficients cα are assumed to be smooth

functions on Rn. The (full) symbol of P is the function p ∈ C∞(Rn×Rn) given
by

p(x, ξ) =
∑
|α|≤d

cα(x)ξα.

If f ∈ C∞c (Rn), then F(Dαf) = ξαFf, so that by the Fourier inversion formula
we have

Dαf(x) =
∫

Rn

ξαf̂(ξ) eiξx dξ,

where we have written f̂ = Ff. It follows that the action of P on C∞c (Rn) can
be described by

Pf(x) =
∫

Rn

p(x, ξ)f̂(ξ) eiξx dξ.

Pseudo-differential operators are going to be defined by the same formula, but
with p from a larger class of spaces of functions, the so-called symbol spaces.
The idea is to make the class large enough to allow a kind of division. This in
turn will allow us to construct inverses to elliptic operators modulo smoothing
operators, the so-called parametrices.

We return to the full symbol p of the differential operator P of degree at
most d considered above. By the polynomial nature of the symbol p in the
ξ-variable, there exists, for every compact subset K ⊂ Rn and all α, β ∈ Nn, a
constant C = CK,α,β > 0 such that

|∂αx ∂
β
ξ p(x, ξ)| ≤ C(1 + ‖ξ‖)d−|β|, ((x, ξ) ∈ K × Rn).

Exercise 5.1.1. Prove this.

73
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These observations motivate the following definition of the space of symbols
of order d, for d a real number.

Definition 5.1.2. Let U ⊂ Rn be an open subset and let d ∈ R. The space
of symbols on U of order at most d is defined to be the space of functions
q ∈ C∞(U × Rn) such that for each compact subset K ⊂ U and all multi-
indices α, β, there exists a constant C = CK,α,β such that

|∂αx ∂
β
ξ q(x, ξ)| ≤ C(1 + ‖ξ‖)d−|β|, ((x, ξ) ∈ K × Rn).

This space is denoted by Sd(U).

We note that Sd(U) can be equipped with the locally convex topology in-
duced by the seminorms

µdK,k(q) := max
|α|,|β|≤k

sup
K×Rn

(1 + ‖ξ‖)|β|−d |∂αx ∂
β
ξ q(x, ξ)|,

for K ⊂ U compact and k ∈ N. Moreover, Sm(U) is a Fréchet space for this
topology.

Exercise 5.1.3. Show that d1 ≤ d2 implies Sd1(U) ⊂ Sd2(U) with continuous
inclusion map.

We agree to write

S∞(U) = ∪d∈RS
d(U), S−∞(U) = ∩d∈RS

d(U).

Then S−∞(U) equals the space of smooth functions f : U ×Rn → C such that
for all K ⊂ U compact, N ∈ N and k ∈ N

νK,k,N (f) := max
|α|,|β|≤k

sup
K×Rn

(1 + ‖ξ‖)N |∂x∂βξ f(x, ξ)| <∞.

Moreover, the norms νK,k,N induce a locally convex topology on S−∞(U), which
turn this space into a Fréchet space. Here we note that a function ϕ in the usual
Schwartz space S(Rn) can be viewed as the function (x, ξ) 7→ ϕ(ξ) in S−∞(U).
The corresponding natural linear map S(Rn)→ S−∞(U) is a topological linear
isomorphism onto the closed subspace of functions in S−∞(U) that are constant
in the x-variable. More generally, if f ∈ C∞(U) and ϕ ∈ S(Rn) then the
function

f ⊗ ϕ : (x, ξ) 7→ f(x)ϕ(ξ)

belongs to S−∞(U). It can be shown that S−∞(U) is the closure of the sub-
space C∞(U)⊗S(Rn) generated by these elements. Accordingly, we may view
S−∞(U) as a topological tensor product; this is expressed by the notation

S−∞(U) = C∞(U) ⊗̂ S(Rn).

Exercise 5.1.4. Show that the following functions are symbols on U = Rn.
What can be said about their orders?

(a) p(x, ξ) = ‖x‖2(1 + ‖ξ‖2)s, for s ∈ R.
(b) p(x, ξ) = (1 + ‖x‖2 + ‖ξ‖2)s, for s ∈ R.

Exercise 5.1.5. Let U ⊂ Rn be an open subset.
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(a) Show that for each α ∈ Nn the operator ∂αx gives a continuous linear map
Sd(U)→ Sd(U).

(b) Show that for each multi-index α as above the operator ∂αξ restricts to a
continuous linear map Sd(U)→ Sd−|α|(U), for every d ∈ R.

(c) Show that the product map (p, q) 7→ pq restricts to a continuous bilinear
map Sd(U) × Se(U) → Sd+e(U), for all d, e ∈ N. Discuss what happens
if d = −∞ or e = −∞.

Exercise 5.1.6. Let U ⊂ Rn be an open subset and let P be an elliptic
differential operator of order d on U. This means that its principal symbol
σd(P ) does not vanish on U × (Rn \ {0}). Let p the full symbol of P. The
purpose of this exercise is to show that there exists a q ∈ S−d(U) such that
pq − 1 ∈ S−∞(U). We first address the local question. Let V ⊂ U be an open
subset with compact closure in U. We write pV for the restriction of p to V ×Rn.

(a) Show that there exists a constant R = RV > 0 such that p(x, ξ) 6= 0 for
x ∈ V and ξ ∈ Rn \B(0;R).

(b) Show that there exists a smooth function χV ∈ C∞c (Rn) such that the
function q : V × Rn → C defined by

q(x, ξ) := (1− χ(ξ))p(x, ξ)−1

if p(x, ξ) 6= 0 and by zero otherwise, is smooth.
(c) With χ and q as above, show that q ∈ S−d(V ).
(d) Show that pV q − 1 ∈ Ψ−∞(V ).
(e) Show that there exists a symbol q ∈ S−d(U) such that pq−1 ∈ Ψ−∞(U).

The following invariance result will allow us to extend the definition of the
symbol space to an arbitrary smooth manifold. Let ϕ : U → V be diffeomor-
phism between open subsets of Rn. We define the map ϕ∗ : C∞(U × Rn∗) →
C∞(V × Rn∗) by

ϕ∗f(y, η) = f(ϕ−1(y), η ◦ dϕ(ϕ−1(y))).

Identifying Rn with its dual Rn∗ by using the standard inner product, we may
view Sd(U) as a subspace of C∞(U × Rn∗).

Lemma 5.1.7. For every d ∈ R, the map ϕ∗ restricts to a topological linear
isomorphism Sd(U)→ Sd(V ).

Proof Put ψ = ϕ−1. Then, for f ∈ Sd(M), the function ϕ∗f is given by
ϕ∗f(y, η) = f(ψ(y), η ◦ dϕ(ψ(y))). The continuity of ϕ∗ follows from checking
that ∂αy ∂

β
η (ϕ∗f) satisfies the required estimates by a straightfoward but tedious

application of the chain rule combined with the Leibniz rule. Similarly, ψ∗ is
seen to be continuous linear. �

We define the symbol spaces on a manifold as follows.

Definition 5.1.8. Let M be a smooth manifold and let d ∈ R. A symbol of
order d is defined to be smooth function σ : T ∗M → Rn such that for each
x0 ∈M there exists a coordinate patch Uκ containing x0 such that the natural
map κ∗ : C∞(T ∗Uκ) → C∞(κ(Uκ) × Rn∗) maps σ|T ∗U to an element κ∗σ of
Sd(κ(Uκ)). The space of these symbols is denoted by Sd(M).



76 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Remark 5.1.9. Let ϕ : M → N be a diffeomorphism of smooth manfolds.
Then it follows by application of Lemma 5.1.7 that the natural map ϕ∗ :
C∞(T ∗M)→ C∞(T ∗N), given by

ϕ∗f(ηϕ(x)) = ηϕ(x) ◦Txϕ, (x ∈M, ηϕ(x) ∈ T ∗ϕ(x)N)

restricts to a linear isomorphism

ϕ∗ : Sd(M) '−→ Sd(N).

In this lecture we will concentrate on the local theory of symbols and the
associated pseudo-differential operators. The extension to manifolds will be
rather straightforward, by using invariance and partitions of unity. In particu-
lar, one needs to localize on the x-variable in the symbol space. Accordingly,
given A ⊂ U compact and d ∈ R̂ we define

SdA(U) = {p ∈ Sd(U) | pr1(supp p) ⊂ A},
where pr1 : U × Rn → Rn is the natural projection map. The union of these
spaces, for A ⊂ U compact, is denoted by Sdc (U). Here we note that Sdc (U) ⊂
Sdc (Rn) naturally, by extension by zero outside U × Rn.

5.2. Pseudo-differential operators

In this section we will give the definition of the space Ψ∞(U) of pseudo-
differential operators on an open subset U ⊂ Rn. For this, we first need to
introduce the space Ψ−∞(U) of smoothing operators on U. Given a smooth
function K ∈ C∞(U × U), we define the integral operator TK with integral
kernel K to be the continuous linear operator C∞c (U)→ C∞(U) given by

TKf(x) =
∫
U
K(x, y) f(y) dy.

We define Ψ−∞ to be the subspace of Hom(C∞c (U), C∞(U)) consisting of all
operators of the form TK , with K ∈ C∞(U×U). It is readily seen that K → TK
is injective, and thus provides a linear isomorphism from C∞(U × U) onto
Ψ−∞(U).

The name smoothing operator is derived from the following observation.
We may extend the definition of TK to the space E ′(U) of compactly supported
distributions on U by the formula

TKu(x) = u(K(x, · )).
Since x 7→ K(x, · ) is a smooth function on U with values in the Fréchet space
C∞(U), and since u : C∞(U)→ C is continuous linear, it follows that TK(u) is
smooth. Moreover, the map

TK : E ′(U)→ C∞(U)

is continuous linear. Conversely, by the Schwartz kernel theorem it follows that
any continuous linear map T : E ′(U) → C∞(U) is of the form TK , with K a
uniquely determined smooth function on U × U. We define Ψ−∞(U) to be the
space of all operators of the form TK , for K ∈ C∞(U × U). Accordingly,

Ψ−∞(U) ' Hom(E ′(U), C∞(U)).
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We proceed to the definition of pseudo-differential operators on U. For ϕ ∈
S−∞(U) = C∞(U)) ⊗̂ S(Rn) the integral

W (ϕ)(x) :=
∫

Rn

eiξxϕ(x, ξ) dx

is absolutely convergent for every x ∈ U and is readily seen to define a function
W (ϕ) ∈ C∞(U). More precisely, the following result holds.

Lemma 5.2.1. For all ϕ ∈ S−∞(U) and α ∈ Nn,

(a) ∂αW (ϕ) = W ((∂x + iξ)αϕ);
(b) (ix)αW (ϕ) = W (∂αξ ϕ).

The map W is continuous linear from S−∞(U) to C∞(U).

Proof The proof is an obvious adaptation of the proof that Fourier transform
maps S(Rn) continuously to C∞(Rn). �

If p ∈ Sd(U) and F ∈ S(Rn) then it follows by a straightforward application
of the Leibniz rule that the function pF : (x, ξ) 7→ p(x, ξ)F (ξ) belongs to
S−∞(U). Moreover, the map (p, F ) 7→ pF is continuous and bilinear. These
observations justify the following definition.

Definition 5.2.2. Let p ∈ Sd(U). Then we define the operator Ψp : C∞c (U)→
C∞(U) by

(5.2) Ψpf(x) := W (pf̂)(x) =
∫

Rn

eiξxp(x, ξ)f̂(ξ) dξ.

We note that (p, f) 7→ Ψpf is continuous and bilinear Sd(U) × C∞c (U) →
C∞(U).

Lemma 5.2.3. The (linear) map p 7→ Ψp, S
d(Rn)→ Hom(C∞c (Rn), C∞(Rn))

is injective.

Proof Assume that p ∈ Sd(Rn) and Ψp = 0. Then for each x ∈ Rn the smooth
function eixpx given by ξ 7→ eiξxp(x, ξ) is perpendicular to all functions from
F(C∞c (Rn)) ⊂ S(Rn). By density of C∞c (Rn) in S(Rn) and the fact that F is a
continuous linear automorphism of S(Rn), it follows that F(C∞c (Rn)) is dense
in S(Rn). Hence, ξ 7→ eiξxp(x, ξ) is perpendicular to all functions from S(Rn).
In particular, px is perpendicular to C∞c (Rn) and it follows that px = 0. �

If P is a differential operator with smooth coefficients of order d on U then
its full symbol p belongs to Sd(U) and

P = Ψp.

We now generalize the notion of differential operator as follows.

Definition 5.2.4. Let U ⊂ Rn be an open subset and let d ∈ R. A pseudo-
differential operator of order d on U is a continuous linear operator P : C∞c (U)→
C∞(U) of the form

P = Ψp + T,

with p ∈ Sd(U) and T ∈ Ψ−∞(U). The space of these operators is denoted by
Ψd(U).
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Lemma 5.2.5. Let A ⊂ U be compact.
(a) Let p ∈ S−∞(U). Then there exists a unique K ∈ C∞c (U × U) such that

Ψp = TK . In particular, Ψp ∈ Ψ−∞(U). If Ψp vanishes on C∞c (U \ A)
then pr2 suppK ⊂ A.

(b) Let K ∈ C∞(U × U) be such that pr2(suppK) ⊂ A. Then there exists
a p ∈ S−∞(U) such that the integral operator TK : C∞c (U) → C∞(U)
equals Ψp.

Proof Let F2F denote the Fourier transform of a function F ∈ C∞(U) ⊗̂ S(Rn)
with respect to the second component. By straightforward estimation it follows
that F2 is a continuous linear endomorphism of C∞(U) ⊗̂ S(Rn). By application
of Theorem 4.1.14 with respect to the second variable it follows that in fact F2

is a topogical linear automorphism.
We can now prove (a). Let p be as asserted and define

K̃(x, y) = F2p(x, y − x).

Then K̃ ∈ C∞(U) ⊗̂ S(Rn). Moreover, by the Fourier inversion theorem we see
that p(x, ξ) = e−iξxF2(K̃)(x,−ξ). We put K = K̃|U×U . Then for all f ∈ C∞c (U)
and x ∈ U we have

TKf(x) = TK̃f(x) =
∫

Rn

F2K(x,−ξ)f̂(ξ) dξ = Ψpf(x).

Uniqueness of K is obvious.
Now assume that Ψp vanishes on C∞c (U \A). Then TK vanishes on C∞c (U \

A). This implies thatK is zero when tested with functions from C∞c (U×(U\A)).
Hence, suppK ⊂ U ×A.

We turn to (b). Let K ∈ C∞(U × U) and assume suppK ⊂ U × A. Then
K ∈ C∞(U) ⊗̂ S(Rn). Applying Proposition 4.2.5 with respect to the second
variable, we see that

TK = Ψp, p(x, ξ) = e−iξxF2(K)(x,−ξ).
It is clear that p ∈ S−∞(U) = S−∞(U).

�

Exercise 5.2.6. Let U ⊂ Rn be an open subset, and let K ∈ C∞(U × U).
Show that TK is a local operator if and only if K = 0.

In particular, it follows that pseudo-differential operators are not local in
general, in contrast to differential operators. In fact, in view of the following
result, differential operators are precisely those pseudo-differential operators
that are local.

Theorem 5.2.7. (Peetre’s theorem) Let P : C∞c (U) → C∞(U) be a linear
map such that suppPf ⊂ supp f for all f ∈ C∞c (Rn). Then P is a differential
operator (with bounded degree on every compact subset of U).

It is remarkable that this result is true without any assumption of conti-
nuity for P. The analogous result is much easier to prove if P is required to
be continuous. From this the above characterization of differential operators
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among the pseudo-differential operators already follows. A proof is suggested
in the following exercise.

Exercise 5.2.8. Let P : C∞c (U) → C∞(U) be a continuous linear operator
such that for all f ∈ C∞c (U) we have suppPf ⊂ supp f.

(a) Show that for every a ∈ U the map ua : f 7→ Pf(a) is a distribution
supported by {a}. Hint: use a suitable cut off function.

(b) Let V ⊂ U be an open subset whose closure is compact in U. Show
that there exists a constant d = dV ∈ N such that for every a ∈ V the
distribution ua has order at most d. This means that for every compact
neighborhood K of a there exists a constant CK > 0 such that

|ua(f)| ≤ CK max
|α|≤d

sup
K
|∂αf |.

(c) Show that there exist uniquely determined constants cα(a) ∈ C, for |α| ≤
d such that

ua =
∑
|α|≤d

cα(a)(−∂)αδa,

where δa denotes the Dirac measure at a (see the exercise below).
(d) Show that the functions cα, for |α| ≤ k, are smooth on V.
(e) Show that the restriction of P to V is a differential operator of order at

most dV .

Exercise 5.2.9. The purpose of this exercise is to show the following. Let
a ∈ Rn and let u ∈ E ′(Rn) be a distribution with suppu ⊂ {a}. Then there
exists a constant k ∈ N and constants cα ∈ C, for α ∈ Nn, such that

u =
∑
|α|≤k

cα∂
αδα.

(a) Show that without loss of generality we may assume that a = 0.
(b) Let χ ∈ C∞c (Rn) be identically 1 in a neighborhood of 0. Show that

u(χf) = u(f)

for all f ∈ C∞(Rn).
(c) Let f ∈ C∞(Rn). Let p be the k-th order (multivariable) Taylor polyno-

mial of f at 0 and let R be the remainder term, so that f = p+R. Show
that for all α with |α| ≤ k, we have

lim
x→0
‖x‖|α|−k−1/2|∂αR(x)| = 0.

(d) For ε > 0 define χε(x) = χ(x/ε). Show that

u(χεR)→ 0 (ε→ 0).

(e) Show that u(f) = u(p).
(f) Conclude the proof.
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5.3. Localization of pseudo-differential operators

We turn to the problem of localizing a pseudo-differential operator P ∈ Ψd(U),
for U ⊂ Rn open. More precisely, if χ ∈ C∞c (U) we denote by Mχ or simply χ,
the operator in End(C∞c (U)) given by multiplication by χ, i.e., Mχ(f) = χf.
The problem is whether Mχ ◦P ◦Mψ is a pseudo-differential operator again, for
χ, ψ ∈ C∞c (U).

It is immediate from the definitions that

Mχ ◦Ψp = Ψ(χ⊗1)p, Mχ ◦TK = T(χ⊗1)K ,

for p ∈ Sd(U) and K ∈ C∞(U × U). Moreover, it is also clear that TK ◦Mψ =
TK(1⊗ψ). The answer to the question whether Ψp ◦Mψ is pseudo-differential is
provided by the following result.

Proposition 5.3.1. Let p ∈ Sd(U) and let ψ ∈ C∞c (U). Then there exists a
q ∈ Cd(U) such that

Ψp ◦Mψ = Ψq.

Proof Let f ∈ C∞c (U). Then F(ψf) = F(ψ) ∗ F(f) so that

Ψp ◦Mψf(x) =
∫
eiξxp(x, ξ)(ψ̂ ∗ f̂)(ξ) dξ

=
∫ ∫

eiξxp(x, ξ)ψ̂(ξ − ζ)f̂(ζ) dζ dξ

=
∫ ∫

eiξxp(x, ξ)ψ̂(ξ − ζ)f̂(ζ) dξ dζ

=
∫ ∫

eiζxeiξx p(x, ξ + ζ) ψ̂(ξ)f̂(ζ) dξ dζ

=
∫
eiζxq(x, ζ)f̂(ζ) dζ,

where

(5.3) q(x, ζ) =
∫

Rn

eiξx p(x, ξ + ζ) ψ̂(ξ) dξ.

Note that all of the above integrals are absolutely convergent, because ψ̂ and f̂
are Schwartz functions. We will finish the proof by showing that q belongs to
Sd(U). More precisely, we will show that the map (p, ψ) 7→ q defined by (5.3)
is continuous bilinear Sd(U)× S(Rn)→ Sd(U).

Let K ⊂ U be compact, and k ∈ N. Then for multi-indices α, β of order at
most k, for x ∈ K and ξ, ζ ∈ Rn we have

|∂αx ∂
β
ζ [p(x, ξ + ζ)ψ̂(ξ)]| = |(∂αx ∂

β
ξ p)(x, ξ + ζ)||ψ̂(ξ)|

≤ (1 + ‖ξ + ζ‖)d−|β|(1 + ‖ξ‖)−NµdK,k(p)νN,0(ψ̂)

≤ (1 + ‖ζ‖)d−|β|(1 + ‖ξ‖)k+|d|−NµdK,k(p)νN,0(ψ̂).
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By application of the Leibniz rule, we now see that there exists a constant
C > 0, only depending on K, k,N, such that

|∂αx ∂
β
ζ [eiξx p(x, ξ + ζ)ψ̂(ξ)]|

≤ C (1 + ‖ζ‖)d−|β|(1 + ‖ξ‖)2k+|d|−NµdK,k(p)νN,0(ψ̂).

Choosing N such that 2k + |d| − N < −n, we see that in (5.3) differentiation
under the integral sign is allowed, and leads to the estimate

µdK,k(q) ≤ C ′µdK,k(p)νN,0(ψ̂), ((x, ζ) ∈ K × Rn),

with C ′ a constant only depending on K, k and N. As ψ 7→ ψ̂ is continuous in
S(Rn), the result follows. �

5.4. The full symbol

The formula (5.3) gives rise to an interesting characterization of q which we
shall now describe. We recall that U is an open subset of Rn.

If N is a countable set and ν 7→ dν a real-valued function on N , then by
limν→∞ dν = −∞ we mean that for every m ∈ R there exists a finite subset
F ⊂ N such that ν ∈ N \ F ⇒ dν < m.

Definition 5.4.1. LetN be a countable set, and ν 7→ dν a real-valued function
on N with dν → −∞ for ν → ∞. Let pν ∈ Sdν (U), for each ν ∈ N , and let
p ∈ Sd′(U). Then

(5.4) p ∼
∑
ν∈N

pν

means that for every d ∈ R there exists a finite subset F0 ⊂ N such that for
every finite subset F ⊂ N with F ⊃ F0,

p−
∑
ν∈F

pν ∈ Sd(U).

We observe that if a symbol p′ ∈ S∞(U) has the same expansion, then it
follows that p− p′ ∈ Sd(U) for all d, hence p− p′ ∈ S−∞(U). We thus see that
the asymptotic expansion (5.4) determines p modulo S−∞(U).

The symbol q of (5.3) may now be characterized modulo S−∞(U) as follows.
We note that the operator ∂αξ maps Sd(U) continuous linearly to Sd−|α|(U).

Lemma 5.4.2. Let p ∈ Sd(U) let ψ ∈ C∞c (U) and let the symbol q ∈ Sd(U)
be defined as in (5.3). Then

q ∼
∑
α∈Nn

1
α!

Dα
xψ ∂

α
ξ p.

Proof By the multi-variable Taylor formula with remainder term, we have,
for M ∈ N,

p(x, ξ + ζ) =
∑
|α|≤M

ξα

α!
∂αξ p(x, ζ) +RM (x, ξ, ζ),
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with remainder term given by

(5.5) RM (x, ξ, ζ) = − 1
M !

∫ 1

0
(1− t)M∂M+1

t [p(x, ζ + tξ)] dt.

This leads to
q(x, ζ) =

∑
|α|≤M

qα(x, ζ) + qM (x, ζ),

where
qM (x, ζ) =

∫
Rn

RM (x, ξ, ζ)ψ̂(ξ) dξ,

and where

α! qα(x, ζ) =
∫
eiξx ξα∂αξ p(x, ζ) ψ̂(ξ) dξ

= ∂αξ p(x, ζ)F−1(ξαF(ψ))(x)

= ∂αξ p(x, ζ)Dα
xψ(x).

Thus, to complete the proof, it suffices to show that

(5.6) qM ∈ Sd−(M+1)(U).

Let K ⊂ U be compact. Then by differentiation under the integral sign in
(5.5), application of the Leibniz rule, and a straightforward estimation of the
resulting integrals we see that there exists a constant C > 0 only depending on
K,M, k such that for all multi-indices α, β with |α|, |β| ≤ k and all x ∈ K <
ξ, ζ ∈ Rn, we have

|∂αx ∂
β
ζ RM (x, ξ, ζ)|

≤ C(1 + ‖ξ‖)M+1 sup
0≤t≤1

(1 + ‖ζ + tξ‖)d−(M+1)−|β|µdK,k+M+1(p).

We now observe that for 0 ≤ t ≤ 1 we have

(1 + ‖ζ + tξ‖)d−(M+1)−|β| ≤ (1 + ‖ζ‖)d−(M+1)−|β|(1 + ‖ξ‖)|d|+M+1+|β|,

so that

|∂αx ∂
β
ζ RM (x, ξ, ζ)|

≤ C(1 + ‖ζ‖)d−(M+1)−|β| (1 + ‖ξ‖)|d|+2(M+1)+kµK,k+M+1(p).

Now put

qM (x, ζ) =
∫

Rn

RM (x, ξ, ζ)ψ̂(ξ) dξ

Fix N ∈ N such that |d|+ 2(M + 1) + k−N < −n. Then by the usual method
we infer that there exists a constant C ′ > 0, only depending on K, k,N such
that

µ
d−(M+1)
K,k (qM ) ≤ C ′ µdK,k+M+1(p) νN,0(ψ̂)

The result follows.

Remark 5.4.3. From the estimate at the end of the proof we see that the
map (p, ψ) 7→ qM is continuous bilinear from Sd(U)×C∞c (U) to Sd−(M+1)(U).
In this sense, the asymptotic expansion for q depends on (p, ψ) in a continuous
bilinear fashion.
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Using the asymptotic expansion above, we can now derive an important
theorem. We begin by a useful sharpening of Proposition 5.3.1 Given an open
subsets V ⊂ U of Rn, we define the restriction map p 7→ pV from Sd(U) to
Sd(V ) by pV (x, ξ) = p(x, ξ), for x ∈ V and ξ ∈ Rn. Thus,

pV := p|V×Rn .

In the following we will use the notation V b U to indicate that V has compact
closure in U.

Proposition 5.4.4. Let p ∈ Sd(U). Let U ′ b U be an open subset and let
ψ ∈ C∞c (U) be equal to 1 on an open neighborhood of cl (U ′). Then there exists
a symbol q ∈ Sd(U) such that

(a) Ψq = Ψp ◦Mψ;
(b) qU ′ − pU ′ ∈ S−∞(U ′).

Proof Define q as in (5.3). Then (a) is valid, and we have the asymptotic
expansion from Lemma 5.4.2. Since Dα

xψ = 0 on U ′, except when α = 0, we
see that qU ′ ∼ pU ′ , or, equivalently, that (b) holds. �

Theorem 5.4.5. The map p 7→ Ψp induces a linear isomorphism

Sd(U)/S−∞(U) '−→ Ψd(U)/Ψ−∞(U).

Proof From the definition of Ψd(U) it follows that p 7→ Ψp induces a surjective
linear map Sd(U) → Ψd(U)/Ψ−∞(U). We must show that its kernel equals
S−∞(U). Thus, let p ∈ Sd(U) and assume that Ψp ∈ Ψ−∞(U). Then Ψp = TK
for a smooth function K ∈ C∞(U × U). We must show that this implies that
p ∈ S−∞(Rn). By using a partition of unity we see that it suffices to show that
χp ∈ S−∞(Rn) for all χ ∈ C∞c (U). Now Ψχp = Mχ ◦Ψp = T(χ⊗1)K . Thus, to
prove the theorem, we may assume from the start that there exists a compact
subset A ⊂ U such that supp p ⊂ A× U and suppK ⊂ A× U.

We now have that p ∈ Sdc (U) ⊂ Sdc (Rn), so that p also defines a pseudo-
differential operator Ψ̃p : C∞c (Rn)→ C∞A (Rn). Of course, Ψ̃p restricts to Ψp on
C∞c (U).

Fix an open subset U ′ b U. Then it suffices to show that pU ′ ∈ S−∞(U ′).
To prove this, we select a cut off function ψ ∈ C∞c (U) which equals 1 on an
open neighborhood of cl (U ′). Then

(5.7) Ψ̃p ◦Mψ = Ψp ◦Mψ = TK(1⊗ψ) ∈ Ψ−∞(Rn).

As K(1⊗ ψ) is compactly supported with support in U × U, it follows that

(5.8) TK(1⊗ψ) = Ψ̃r

for a symbol r ∈ S−∞(Rn).
On the other hand, by the above proposition applied with Rn in place of U,

we see that

(5.9) Ψ̃p ◦Mψ = Ψ̃q,

with a symbol q ∈ Sd(Rn) that has the property that qU ′ − pU ′ ∈ S−∞(U ′).
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From (5.7), (5.7) and (5.9) we see that Ψ̃r = Ψ̃q, so that r − q = 0, by
Lemma 5.2.5. This implies that

pU ′ − rU ′ = pU ′ − qU ′ ∈ S−∞(U ′).

Hence pU ′ ∈ S−∞(U ′) and the proof is complete. �

Definition 5.4.6. The inverse of the linear isomorphism of Theorem 5.4.5,
denoted

σ : Ψd(U)/Ψ−∞(U)→ Sd(U)/S−∞(U),

is called the (full) symbol map.

This symbol map is the appropriate generalization of the symbol map for
differential operators. Just as the latter symbol map cannot be extended nat-
urally to differential operators on manifolds, the present symbol map does not
allow a coordinate invariant extension to manifolds either. Just as in the case
of differential operators, there is an appropriate notion of principal symbol of
order d, which can be extended to the setting of manifolds.

Definition 5.4.7. The principal symbol map σd of order d is defined to be
the following map induced by the symbol map:

(5.10) σd : Ψd(U)/Ψd−1(U) −→ Sd(U)/Sd−1(U).

Corollary 5.4.8. The principal symbol map (5.10) is a linear isomorphism.

5.5. Expansions in symbol space

The construction of parametrices for elliptic pseudo-differential operators will
make use of a recurrence that is based on the following remarkable lemma.

Lemma 5.5.1. Let U ⊂ Rn be open. Let {dj}j≥0 be a sequence of real numbers
with dj → −∞ as j →∞. Assume that for each j a symbol pj ∈ Sdj (U) is given.
Then there exists a symbol p ∈ Sd(U), where d = max dj , such that pr1(suppp)
is contained in the closure of the union of the sets pr1(supp pj), for j ≥ 0, and
such that

(5.11) p ∼
∞∑
j=0

pj in Sd(U).

The symbol p is uniquely determined modulo S−∞(U).

Proof The uniqueness assertion is an immediate consequence of the meaning
of (5.11).

For the existence, we note that by using partitions of unity on U we can
reduce to the local situation where a compact subset A ⊂ U is given such that
pj ∈ S

dj

A (U). It then suffices to establish the existence of a symbol p ∈ SdA(U)
such that (5.11) is valid.

Taking suitable groups of terms we readily see that it suffices to consider
the case that the sequence dj is strictly decreasing. Then d = d0.



LECTURE 5. PSEUDO-DIFFERENTIAL OPERATORS, LOCAL THEORY 85

Fix χ ∈ C∞c (Rn) with the property that χ(ξ) = 0 for ‖ξ‖ ≤ 1 and χ(ξ) = 1
for ‖ξ‖ ≥ 2. For t > 0 we define the function χt : (x, ξ) 7→ χ(tξ) (constant in
the x-variable). Note that suppχt ∩ (U ×B(0; t−1)) = ∅.

We will select a sequence tj of positive real numbers with tj → 0 and define

p :=
∞∑
j=0

χtjpj .

The sum is locally finite with respect to the variable ξ, hence defines a smooth
function U×Rn → C. Moreover, pr1(supp p) is contained in A. We claim that it
is possible to select a sequence {tj} such that for every l ∈ N and all α, β ∈ Nn

the series ∑
j≥l

(1 + ‖ξ‖)|β|−dl∂αx ∂
β
ξ [χtjpj ]

converges uniformly on U×Rn. The proof of this claim is deferred to two lemmas
below. Let {tj} be as claimed, then the proof can be finished as follows. From
the above claim about convergence, it follows that the series

rl :=
∑
j≥l

χtjpj

convergences absolutely in the symbol space Sdl
A (U), relative to its continuous

seminorms. By completeness, this implies that rl ∈ Sdl
A (U). In particular it

follows that p = r0 ∈ SdA(U). Now

(5.12) p−
l−1∑
j=0

pj =
l−1∑
j=0

(χtj − 1)pj + rl.

The second sum defines a function with compact ξ-support, hence belongs to
S−∞(U). Since rl ∈ Sdl(U), it follows that the difference on the left-hand side
of (5.12) belongs to Sdl(U). This implies (5.11). �

To establish the claim of the above proof we need the following.

Lemma 5.5.2. Let j ≥ 0, α, β ∈ Nn. Then there exists a constant Cj,α,β > 0
such that

(5.13) |∂αx ∂
β
ξ [χtpj ](x, ξ)| ≤ Cj,α,β(1 + ‖ξ‖)dj−‖β|,

for all (x, ξ) ∈ U ′ × Rn and all 0 < t ≤ 1.

Proof The estimate is trivially valid in the area ‖ξ‖ ≤ t−1, where χt = 0.
By definition of the symbol space, it is also valid in the area ‖ξ‖ ≥ 2t−1, where
χt = 1. Thus, it remains to establish an estimate of the above type in the area
t−1 ≤ ‖ξ‖ ≤ 2t−1, with a constant independent of t, x, ξ.

The estimate then follows by application of Leibniz’ formula and bookkeep-
ing, as follows. The expression on the left-hand side of (5.13) may be estimated
by a sum of binomial coefficients times the expression |∂αx ( ∂γξ χt∂

β−γ
ξ pj)(x, ξ)|.
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With the notation (∂γξ χ)t(ξ) = (∂γξ χ)(tξ) the mentioned expression becomes,
by application of the chain rule,

|∂αx ( ∂γξ χt∂
β−γ
ξ pj)(x, ξ)| = t|γ| | [ (∂γξ χ)t∂αx ∂

β−γ
ξ pj ](x, ξ) |

≤ C ′j,α,γ t
|γ| (1 + ‖ξ‖)dj−|β|+|γ|,(5.14)

with a constant independent of t, x, ξ. From t ≤ 1 and ‖ξ‖ ≤ 2t−1 it follows
that

t|γ| = 3|γ|(3t−1)−|γ| ≤ 3|γ|(1 + 2t−1)−|γ| ≤ 3|γ|(1 + ‖ξ‖)−|γ|.
Substituting this in (5.14) we infer that the estimate (5.13) is valid in the area
considered. �

Lemma 5.5.3. (Claim) There exists a sequence {tj} of real numbers with
tj → 0 such that for every l ∈ N and all α, β ∈ Nn the series∑

j≥l
(1 + ‖ξ‖)|β|−dl∂αx ∂

β
ξ [χtjpj ]

converges uniformly on U × Rn.

Proof Let j ≥ 0. Then we may select tj > 0 such that

Cj,α,β(1 + t−1
j )dj−dl < 2−j

for all α, β, l with |α| + |β| + l < j. It follows that, for all such α, β, l and all
(x, ξ) ∈ U ′ × Rn with ‖ξ‖ ≥ t−1

j ,

|∂αx ∂
β
ξ [χtpj ](x, ξ)| ≤ Cj,α,β(1 + ‖ξ‖)dj−‖β|

≤ Cj,α,β(1 + ‖ξ‖)dj−dl(1 + ‖ξ‖)dl−‖β|

≤ Cj,α,β(1 + t−1
j )dj−dl(1 + ‖ξ‖)dl−‖β|

≤ 2−j(1 + ‖ξ‖)dl−‖β|.

On the other hand, if ‖ξ‖ ≤ t−1
j , then χtj (x, ξ) = χ(tjξ) = 0. We conclude that

for all α, β, l with |α|+ |β|+ l < j and all (x, ξ) ∈ U ×Rn the following estimate
is valid

|∂αx ∂
β
ξ [χtpj ](x, ξ)| ≤ 2−j(1 + ‖ξ‖)dl−‖β|.

This implies the claim. �



LECTURE 6
Pseudo-differential operators, continued

6.1. The distribution kernel of a pseudo-differential operator

Let U ⊂ Rn be an open subset. If p ∈ Sd(U), then the associated pseudo-
differential operator Ψp : C∞c (U) → C∞(U) may be viewed as a continuous
linear operator C∞c (U) → D′(U). Hence, by the Schwartz kernel theorem, the
operator Ψp has a (uniquely determined) distribution kernel Kp ∈ D′(U × U).
By this we mean that the pseudo-differential operator is given by

〈Ψpf, g〉 = 〈Kp, g ⊗ f〉, (f, g ∈ C∞c (U)).

It turns out that the kernel Kp can be quite easily determined, without reference
to the Schwartz kernel theorem.

The idea is to extend the formula of Lemma 5.2.4 to the more general setting
with p ∈ Sm(U). Fourier transform with respect to the second variable defines
a linear map

F2 : C∞c (U × Rn)→ C∞c (U) ⊗̂ S(Rn)

which is readily verified to be continuous. The transposed of this map is a
continuous linear map [C∞c (U) ⊗̂ S(Rn)]′ → D′(U ×Rn) which we denote by F2

as well. Via the bilinear pairing

Sm(U)× [C∞c (U) ⊗̂ S(Rn)]→ C

defined by integration, the space Sm(U) is mapped continuously and injectively
into [C∞c (U) ⊗̂ S(Rn)]′. Via composition with this injection, the Fourier trans-
form F2 gives a a continuous linear map

F2 : Sm(U)→ D′(U × Rn).

We note that on C∞c (U×R) this map coincides with the usual Fourier transform
in the second variable. Of course, this justifies the use of the notation F2 for it.

Proposition 6.1.1. Let p ∈ Sd(U). The distribution kernel Kp ∈ D′(U × U)
of Ψp is given by the formula

(6.1) Kp(x, y) = F2p(x, y − x) (in distribution sense).

87
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Remark 6.1.2. The phrase ‘in distribution sense’ should be interpreted as
follows. The formula is well defined for p ∈ C∞c (U × Rn) and can be rewritten
in such a way that it extends continuously to the space of distributions. Indeed,
since for a compactly supported smooth function p the transform F2p is a
smooth function, F2p(x, y − x) = L∗(F2p)(x, y), with L the map (x, y) 7→
(x, y − x) from U × Rn to U × Rn. The map L is smooth with smooth inverse
L−1 : (x, y) 7→ (x, y + x), hence is a diffeomorphism.

For all f, g ∈ C∞(U × Rn) with supp g compact, we have

〈L∗f, g〉 = 〈f, L−1∗g〉,
by substitution of variables, so that 〈L∗f, · 〉 = L−1∗t(〈f, · 〉). We thus see that
the operator L−1

∗ := L−1∗t ∈ End(D′(U × Rn)) is the unique continuous linear
extension of the operator L∗ ∈ End(C∞(U × Rn)). Accordingly, the above
formula (6.1) should be read as:

(6.2) Kp = L−1
∗ (F2(p))|U×U .

Proof Let g ∈ C∞c (U) and f ∈ C∞c (U). Then

〈g,Ψp(f)〉 =
∫
U
g(x)Ψpf(x) dx

=
∫
U

∫
Rn

g(x)eiξxp(x, ξ)f̂(ξ) dξ dx

=
∫
U

∫
Rn

g(x)p(x, ξ)F(T ∗xf)(ξ) dξ dx

=
∫
U

∫
Rn

g(x)F2p(x, y)(T ∗xf)(y) dξ dx

= 〈F2p, h〉,
where h(x, y) = g(x)f(y + x) = L−1∗(g ⊗ f)(x, y). It follows that

〈g,Ψp(f)〉 = 〈F2(p), L−1∗(g ⊗ f)〉 = 〈L−1
∗ F2(p), g ⊗ f〉.

This implies that Ψp = TK , with K = L−1
∗ F2(p)|U×U . �

Proposition 6.1.3. Let p ∈ Sm(U). Then the distribution kernel Kp of Ψp is
smooth on the complement of the diagonal diag (U) in U × U.
Proof The diagonal diag (U) is the pre-image of Rn × {0} under the map
L : U × Rn → U × Rn. Therefore, it suffices to show that F2p is smooth
outside Rn × {0}. For this it suffices to show that (1⊗ ψ)F2p is smooth for all
ψ ∈ C∞c (Rn) with 0 /∈ suppψ. By the usual formulas for the Fourier transform
of a differentiated function, we derive that

(6.3) (1⊗ ψ)F2p = [1⊗ ‖y‖−2Nψ]F2((−∆ξ)Np),

for every N ∈ N, where ∆ξ denotes the Laplace operator in the ξ-variable. Now
∆N
ξ maps Sd(U) to Sd−2N (U). If k ∈ N and d− 2N < −n− k, it is readily seen

that F2 maps Sd−2N (U) continuously to Ck(U × Rn). Thus, for such N the
distribution on the right-hand side of (6.3) belongs to Ck(U ×Rn). As the left-
hand side is independent of N, it follows that (1⊗ψ)F2p belongs to Ck(U×Rn)
for every k ∈ N. The result follows. �
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Corollary 6.1.4. Let P ∈ Ψd(U). Then the distribution kernel of the operator
P, denoted KP ∈ D′(U × U), is smooth outside the diagonal diag (U).

Proof By definition, there exist p ∈ Sd(U) and K ∈ C∞(U × U) such that
P = Ψp + TK . Now KP = Kp +K. �

Exercise 6.1.5. Let k ∈ N and assume that d < −n−k. Let p ∈ Sd(U). Show
that the distribution kernel Kp of Ψp belongs to Cp(U × U).

In the sequel we shall use the notation KP for the distribution kernel of
a pseudo-differential operator P on U. The operator P is said to be properly
supported if the maps prj : suppKP → U are proper, for j = 1, 2. Recall that
a continuous map Φ : X → Y between locally compact Hausdorff spaces is
proper if and only if the preimage Φ−1(A) is compact for each compact subset
A ⊂ Y. Thus, the requirement that P is properly supported is equivalent to the
requirement that the intersections (A×U)∩supp (KP ) and (U×A)∩supp (KP )
are compact, for each compact subset A ⊂ U.

The following lemma asserts that modulo a smoothing operator any pseudo-
differential operator may be represented by a properly supported one, with
kernel supported arbitrary close to the diagonal.

Lemma 6.1.6. Let P ∈ Ψd(U) and let Ω be an open neighborhood of the
diagonal in U × U. Then there exists a q ∈ Sd(U) such that Ψq is properly
supported with suppKq ⊂ Ω such that P − Pq ∈ Ψ−∞(U).

For the proof of this lemma, we need a generality about partitions of unity.

Lemma 6.1.7. Let X be a paracompact locally compact Hausdorff space. Let
Ω be an open neighborhood of the diagonal diag (X) in X ×X. Then for every
open cover U of X there exists a locally finite refinement V such that for all
V, V ′ ∈ V

V ∩ V ′ 6= ∅ ⇒ V × V ′ ⊂ Ω.

Proof Let U be an open cover of X. Then there exists an open cover W of
X, finer than U , such that W ×W ⊂ Ω for all W ∈ W. By paracompactness
of X, we may assume that W is locally finite. For each x ∈ X there exists an
open neighborhood Vx such that Vx is contained in every W ∈ W containing
x, whereas it has empty intersection with every W ∈ W not containing x. Let
V be a locally finite refinement of {Vx}x∈X . Let V, V ′ ∈ V have a point x in
common. Then x ∈ W for some W ∈ W. Now V ⊂ W and V ′ ⊂ W so that
V × V ′ ⊂W ×W ⊂ Ω. �

Corollary 6.1.8. Let X be a smooth manifold and let Ω be an open neigh-
borhood of the diagonal diag (X) in X ×X. Then for every open covering U of
X there exists a partition of unity {ψi}i∈I , subordinate to U , such that for all
i, j ∈ I,

suppψi ∩ suppψj 6= ∅ ⇒ suppψi × suppψj ⊂ Ω.
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Proof of Lemma 6.1.6 Let {ψi}i∈I be a partition of unity on U as in the
preceding corollary. Then the operators Pij := Mψi

ΨpMψj
are all of the form

Ψqij , with qij ∈ Sd(U). The kernel of Pij equals Kij := (ψi ⊗ ψj)KP , hence
has support inside suppψi × suppψj . If suppψi ∩ suppψj = ∅ then Kij is
smooth outside the diagonal and supported outside the diagonal, hence smooth
everywhere. On the other hand, if suppψi ∩ suppψj 6= ∅ then Kij has support
contained in Ω.

Let J be the set of (i, j) ∈ I × I with suppψi ∩ suppψj 6= ∅. We note that
pr1supp qij ⊂ suppψi, so that the collection of sets cl pr1supp qij for (i, j) ∈ J
is locally finite. It follows that

q :=
∑

(i,j)∈J

qij

is a symbol in Sd(U). We note that

K :=
∑

(i,j)∈I×I\J

Kij

is a locally finite sum of smooth functions on U×U, hence a smooth function of
its own right. It is now straightforward to verify that Ψp = Ψq +TK . Moreover,
the kernel Kq is given by the locally finite sum

Kq =
∑

(i,j)∈J

Kij .

It follows that suppK ⊂ Ω. We will finish the proof by showing that Ψq is
properly supported. Let A ⊂ U be compact. The set JA of (i, j) ∈ J with
suppψi ∩ A 6= ∅ is finite. As (A × U) ∩ suppKq is contained in the union of
the sets suppψi × suppψj for (i, j) ∈ JA, it follows that (A × U) ∩ suppKq is
compact. The compactness of (U ×A) ∩K is proved in a similar manner. �

Exercise 6.1.9. Let P : C∞c (U)→ C∞(U) be a linear operator such that for
each χ, ψ ∈ C∞c (U) the operator Mχ ◦P ◦Mψ is a pseudo-differential operator
in Ψd(U). Show that P ∈ Ψd(U).

Exercise 6.1.10. Let P ∈ Ψd(U) be properly supported.
Show that for every compact subset K ⊂ U there exists a compact subset

K′ ⊂ U such that P maps C∞K (U) to C∞K′(U).

Exercise 6.1.11. Let P ∈ Ψd(U) be properly supported.
Show that the operator P has a unique extension to a continuous linear

operator C∞(U)→ C∞(U).

6.2. The adjoint of a pseudo-differential operator

Let U ⊂ Rn be an open subset. It is a well known fact that the space C∞c (Rn)
is reflexive. By this we mean that the natural map j : C∞c (Rn)→ D′(Rn)′ is a
topological linear isomorphism. Here D′(Rn) is equipped with the strong dual
topology, and so is the dual of D′(Rn).
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Accordingly, if T : C∞c (U) → D′(U) is a continuous linear map, then the
transposed T t may be viewed as a continuous linear map C∞c (U) → D′(U).
According to this definition,

〈Tf, g〉 = 〈f, T tg〉, (f, g ∈ C∞c (U)).

Lemma 6.2.1. The distribution kernel KT t (which exists by Schwartz’ theo-
rem) of the adjoint map can be expressed in terms of the kernel KT by

KT t(x, y) = KT (y, x), ((x, y) ∈ U × U).

Of course, this equality should be interpreted in the sense of distributions.
Let τ : U × U → U × U be defined by τ(x, y) = (y, x), then the above equality
should be read as

KT t = τ∗(KT ).

Proof Put K = KT and K1 = τ∗(KT ). Then the integral operator T 1 with
distribution kernel K1 is given by

〈T 1(f), g〉 = 〈K1, g ⊗ f〉 = 〈K, τ∗(g ⊗ f)〉 = 〈K, f ⊗ g〉 = 〈f, Tg〉.
This shows that T 1 = T t and that K1 = KT t . �

It follows from the above proof that if Kt and K are distributions in D′(U×
U) related by Kt = τ∗(K), then the associated operator TKt is the adjoint of
TK . As each pseudo-differential operator P ∈ Ψ(U) has a distribution kernel,
we do not have to invoke the reflexivity of the space C∞c (U) to establish the
existence of the adjoint operator P t. However, the above reasoning puts the
existence of an adjoint operator in a general framework.

In the following proposition an important role is played by the continuous
linear map e〈Dx,∂ξ〉 ∈ End(S ′(R2n)), defined by

F ◦ e〈Dx,∂ξ〉 = eix̂ξ̂ ◦F ,
where F denotes the Fourier transform S ′(R2n)→ S ′(R2n). For details we refer
to the appendix to this lecture. For a proper understanding of the proposition
below, we mention that e〈Dx,∂ξ〉 maps Sdc (U) continuously into Sd(U). Moreover,
for each p ∈ Sdc (U),

e〈Dx,∂ξ〉p ∼
∑
k≥0

1
k!
〈Dx, ∂ξ〉k =

∑
α∈Nn

1
α!
Dα
x∂

α
ξ .

Proposition 6.2.2.

(a) Let p ∈ Sdc (U). Then

Ψt
p = Ψq, with q = e〈Dx,∂ξ〉p∨, p∨(x, ξ) = p(x,−ξ).

(b) Let P ∈ Ψd(U). Then P t ∈ Ψ(U). If p ∈ Sd(U) represents the full symbol
of P, then the full symbol of P t is given by the expansion

σ(P t)(x, ξ) ∼
∑
α∈Nn

(−1)|α|

α!
Dα
x ∂

α
ξ p(x,−ξ).



92 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Remark 6.2.3. Here we recall that the full symbol of P t is defined modulo
S−∞(U) hence is completely determined by the given expansion.

Proof Since pr1(p) has compact closure, p defines a tempered distribution on
R2n = Rn×Rn. We denote the variables in R2n by (x, ξ) ∈ Rn×Rn. The Fourier
transform of R2n defines a continuous linear isomorphism S(R2n) → S(R2n).
We agree to denote the (dual) variables on the Fourier transform side by (x̂, ξ̂).
Let F1 denote the Fourier transform with respect to the first variable x (or x̂)
and F2 the Fourier transform with respect to the second variable ξ (or ξ̂). Then
both partial Fourier transforms F1,F2 are readily seen to be topological linear
automorphisms of S(R2n) and we have

(6.4) F = F1 ◦F2.

By transposition we see that all these remarks extend to tempered distributions.
In particular, F2p ∈ S ′(R2n) and we see that the kernel Kp = L−1

∗ F2p of Ψp is
a tempered distribution as well. Let

Kt
p = τ∗Kp, q = F−1

2 L∗(Kt
p).

Then q is a tempered distribution on R2n. We will show that actually q ∈ Sd(U).
Then by (6.2) it follows that Ψq has kernel Kt

p hence is the transposed of Ψp.

We note that F2q = L∗τ∗L
−1
∗ F2p. Applying F1 to both sides, and using

(6.4) we see that
Fq = F1L∗τ∗L

−1
∗ F−1

1 Fp.
To understand the composition of operators acting on Fp, we note that

F1L∗τ∗L
−1
∗ F−1

1 = F1(L ◦ τ ◦L−1)∗F−1
1 = [F−1

1 (L ◦ τ ◦L−1)∗F1]t.

Now L ◦ τ ◦L−1(x, y) = (x+ y,−y). It follows that for f ∈ S(R2n) we have

F−1
1 (L ◦ τ ◦L−1)∗F1f(x̂, ξ̂) =

∫
Rn

eix̂xF1f(x+ ξ̂,−ξ̂) dx̂

=
∫

Rn

eix̂x−iξ̂x̂F1f(x,−ξ̂) dx

= e−ix̂ξ̂f(x̂,−ξ̂)

= e−ix̂ξ̂S∗2f(x̂, ξ̂),

where we have used the notation S2 for the map (x, ξ) 7→ (x,−ξ). By transpo-
sition we now see that

[F−1
1 (L ◦ τ ◦L−1)∗F1]t = eix̂ξ̂S2∗,

so that
Fq = eix̂ξ̂S2∗Fp = F [eDx∂ξp∨],

see appendix to this lecture. This proves the identity (a).
We turn to (b). Let P ∈ Ψd(U) and let p ∈ Sd(U) represent its symbol.

There exists a symbol p′ ∈ Sd(U) such that P ′ = Ψp′ is properly supported
and such that P − P ′ = T ∈ Ψ−∞. It follows that p − p′ ∈ S−∞(U), so that
p′ represents the symbol of P as well. The adjoint of T has a smooth kernel,
hence belongs to Ψ−∞. Thus, it suffices to show that P ′ has an adjoint which is a
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pseudo-differential operator with the required symbol. We thus see that without
loss of generality we may assume that P equals Ψp and is properly supported.
Let {ψj} be a partition of unity on U. Then each Pj := Mψj

◦Ψp is properly
supported and of the form Pj = Ψpj with symbol pj(x, ξ) = ψj(x)p(x, ξ). Let
Kj be the distribution kernel of Pj , then Kj = (ψj ⊗ 1)KP . From the fact that
P is properly supported, it follows that the collection of subsets pr2(suppKj)
is locally finite in U. We also note that p =

∑
j pj , with locally finite sum.

It follows from (a) that P tj = Ψqj , where qj = e〈Dx,∂ξ〉p∨j . This implies that
each qj has an asymptotic expansion of the form

qj =
∑
α∈Nn

1
α!
Dα
x∂

α
ξ [pj(x,−ξ)] =

∑
α∈Nn

(−1)|α|

α!
Dα
x∂

α
ξ pj(x,−ξ)

We note that pr1(supp qj) ⊂ pr2(Kj); hence the collection pr1(supp (qj)) is
locally finite.

We define

qα(x, ξ) :=
(−1)|α|

α!
Dα
x∂

α
ξ pj(x,−ξ)

This sum is locally finite in the x-variable, hence defines an element of Sd(U).
Let q ∈ Sd(U) be a symbol with

q ∼
∑
α∈Nn

qα.

Then Ψq ∈ Ψd(U). We claim that Ψq−Ψt
p ∈ Ψ−∞. To see this, let ϕ ∈ C∞c (U).

Then Mϕ ◦Ψq has symbol ϕq and

Mϕ ◦Ψt
p =

∑
j

Mϕ ◦Ψt
p ◦Mψj

=
∑
j

MϕΨqj = ΨP
j ϕqj

,

which is a finite sum. Since ϕq ∼
∑

j ϕqj by construction, it follows that
Mϕ ◦Ψq −Mψ ◦Ψt

p ∈ Ψ−∞(U) for all ϕ ∈ C∞c (U). This implies that Ψq −Ψt
p ∈

Ψ−∞(U) and the proof is complete. �

Exercise 6.2.4. Let P be a differential operator of order d on U with full
symbol p. Show by direct calculation that the full symbol q of the transposed
operator P t is given by the formula

q(x, ξ) =
∑
α∈Nn

(−1)|α|

α!
Dα
x∂

α
ξ p(x,−ξ).

Show that the terms in the above series are zero for |α| > d.

Let P ∈ Ψd(U). We define the conjugate P̄ of P by the formula

P̄ (f) = P (f̄), (f ∈ C∞(U)).

It is readily seen that the kernel of P̄ is given by KP̄ = K̄P (which should be
interpreted in the sense of distributions). If p ∈ Sd(U) then it is readily verified
that

Ψp = Ψp̄∨ .
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Exercise 6.2.5. Verify this.

Thus, Ψp is a pseudo-differential operator. In general it follows that the
conjugate of any pseudo-differential operator P is a pseudo-differential operator
again. Moreover, its full symbol is given by

σ(P̄ )(x, ξ) = σ(P )(x,−ξ).
We now define the adjoint P ∗ of P by P ∗ = P̄ t. Then it is readily checked that

〈Pf, g〉L2 = 〈f, P ∗g〉L2 , (f, g ∈ C∞c (U)).

where we have used the notation 〈f, g〉L2 = 〈f, ḡ〉 for the usual sesquilinear
pairing.

Corollary 6.2.6. Let P ∈ Ψd(U). Then the adjoint P ∗ belongs to Ψd(U) and
its full symbol is given by

σ(P ∗) ∼
∑
α∈Nn

1
α!
Dα
x∂

α
ξ σ(P )

Proof This follows from the discussion preceding this corollary, combined
with Proposition 6.2.2. �

Corollary 6.2.7. Let P ∈ Ψd(U). Then P extends uniquely to a continuous
linear operator E ′(U)→ D′(U).

Proof The transposed P t is a pseudo-differential operator, hence defines a
continuous linear operator C∞c (U)→ C∞(U). Its transposed (P t)t is a continu-
ous linear operator E ′(Rn)→ D′(Rn). Clearly, it restricts to P on C∞c (U). This
establishes existence. Uniqueness follows by density of C∞c (U) in E ′(U). �

6.3. Pseudo-locality

In the sequel our view-point will be that a pseudo-differential operator on a
manifold M is an integral operator with distribution kernel K on M ×M, with
K smooth away from the diagonal, whereas along the diagonal the operator is
described as in the local setting.

If E is a smooth vector bundle on a smooth manifold M, then by Γ−∞(E) we
denote the space of generalized sections of E. Let u ∈ Γ−∞(E) be a generalized
section. Then u is said to be smooth on an open subset U ⊂M if χu ∈ Γ∞(E)
for all χ ∈ C∞c (U). The generalized section u is said to be smooth at a point
x ∈M if their exists an open neighborhood U 3 x such that u is smooth on U.
The singular support of u, denoted singsupp (u), is defined to be the subset of
x ∈M such that u is not smooth at x. Clearly, singsuppu is a closed subset of
M.

Definition 6.3.1. Let E,F be vector bundles on a smooth manifold M. A
linear operator T : Γ−∞c (E)→ Γ−∞(F ) is said to be pseudo-local if

singsuppTu ⊂ singsuppu, for all u ∈ Γ−∞c (E).

Corollary 6.3.2. Let P ∈ Ψd(U). Then the operator P : E ′(U) → D′(U) is
pseudo-local.
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Proof The adjoint operator P has a distribution kernel K ∈ D′(U ×U) which
is smooth outside the diagonal of U.

Let u ∈ E ′(Rn) have singular support equal to A. Then A is contained in
suppu, hence compact. Let x ∈ Rn \ A. Then there exist open neighborhoods
U1 of x and U2 of A in U such that U1 ∩ U2 = ∅. Let ϕ ∈ C∞c (U1). Then it
suffices to show that ϕΨr(u) is smooth. Fix ψ ∈ C∞c (U2) such that ψ = 1
on an open neighborhood of A. Then (1 − ψ)u is in C∞c (Rn) hence P ((1 −
ψ)u) ∈ C∞(U). Thus, it suffices to show that ϕP (ψu) is smooth. The function
k : (x, y) 7→ ϕ(x)ψ(y)K(x, y) is smooth on U × U, since ϕ ⊗ ψ is supported in
U1 × U2 ⊂ U × U \ diag (U).

Moreover, for all f ∈ C∞c (Rn) we have

〈ϕP (ψu), f〉 = 〈P (ψu), ϕf〉
= 〈ψu, P t(ϕf〉
= 〈u, ψP t(ϕf)〉
= 〈u, Tkf〉
= 〈T tk(u), f〉,

where Tk denotes the integral operator with smooth kernel k. It follows that

ϕP (ψu) = T tk(u).

Since T tk(u) is smooth, the result follows. �
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Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric n × n matrix with complex
entries and with Re 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ Rn. Here 〈 · , · 〉 denotes the standard
bilinear pairing Cn × Cn → C. The function

(6.5) x 7→ e−〈Aξ,ξ〉

is bounded on Rn. Moreover, every derivative of (6.5) is polynomially bounded.
Hence, multiplication by the function (6.5) defines a continuous linear endomor-
phism M(A) of the Schwartz space S(Rn). As the operator M(A) is symmetric
with respect to the usual pairing S(Rn)×S(Rn)→ C defined by integration, it
follows that M(A) has a unique extension to a continuous linear endomorphism
S ′(Rn)→ S ′(Rn).

Clearly, M(A) leaves each subspace L2
s(Rn), for s ∈ R, invariant and re-

stricts to a bounded linear endomorphism with operator norm at most 1 on
it.

We define E(A) to be the unique continuous linear endomorphism of S ′(Rn)
such that the following diagram commutes

S ′(Rn)
M(A)−→ S ′(Rn)

F ↑ ↑ F
S ′(Rn)

E(A)−→ S ′(Rn)

As F restricts to a topological automorphism of S(Rn) and to an isometric
automorphism isomorphism from Hs(Rn) onto L2

s(Rn), it follows that E(A)
restricts to a bounded endomorphism of Hs(Rn) of operator norm at most 1.
Furthermore, E(A) restricts to a continuous linear endomorphism of S(Rn).

If ϕ ∈ S(Rn), then clearly ∂tM(tA)ϕ+ 〈Aξ, ξ〉M(tA)ϕ = 0. By application
of the inverse Fourier transform, we see that for a given function f ∈ S the
function ft := E(tA)f satisfies:

∂tft = −〈AD,D〉ft, where − 〈AD,D〉 =
∑
ij

Aij∂j∂i.

We note that f0 = f, so that ft may be viewed as a solution to the associated
Cauchy problem with initial datum f.

For obvious reasons, we will write

E(tA) = E−t〈AD,D〉

from now on. The purpose of these notes is to derive estimates for E which are
needed for symbol calculus.

Lemma 6.4.1. The operator e〈AD,D〉 : S ′(Rn) → S ′(Rn) commutes with the
translations T ∗a translations and the partial differentiations ∂j , for a ∈ Rn and
1 ≤ j ≤ n.

Proof This is obvious from the fact that translation and partial differentia-
tion become multiplication with a function after Fourier transform; each such
multiplication operator commutes with M(A). �
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Lemma 6.4.2. Assume that A is non-singular. Then the tempered function
x 7→ e−〈Ax,x〉/2 has Fourier transform

F(e−〈Ax,x〉/2) = c(A)e−〈Bξ,ξ〉/2

with c(A) a non-zero constant.

Remark 6.4.3. It can be shown that c(A) = (detA)−1/2, where a suitable
analytic branch of the square root must be chosen. However, we shall not need
this here.

Proof For v ∈ Rn let ∂v denote the directional derivative in the direction v.
Thus, ∂vf(x) = df(x)v. Then the tempered distribution f given by the function
x 7→ exp(−〈Ax, x〉/2) satisfies the differential equations ∂vf = −〈Av, x〉f. It
follows that the Fourier transform f̂ satisfies the differential equations 〈v, ξ〉f̂ =
−∂Avf̂ for all v ∈ Rn, or, equivalently, ∂vf = −〈Bv, ξ〉f. This implies that the
tempered distribution

ϕ = e〈Bξ,ξ〉/2f̂

has all partial derivatives equal to zero, hence is the tempered distribution
coming from a constant function c(A). �

Proposition 6.4.4. For each k ∈ N there exists a positive constant Ck > 0
such that the following holds. Let A be a complex symmetric n× n-matrix with
ReA ≥ 0. Let f ∈ S(R) and let x ∈ Rn be a point such that the distance d(x)
from x to suppu is at least one. Then

(6.6) |e−〈AD,D〉f(x)| ≤ Ckd(x)−k‖A‖s+k max
|α|≤2s+k

sup |Dαf |.

Proof The function e−〈Aξ,ξ〉f̂ in S(Rn) depends continuously on A and hence,
so does e〈AD,D〉f. We may therefore assume that A is non-singular.

As e−〈AD,D〉 commutes with translation, we may as well assume that x = 0.
We assume that f has support outside the unit ball B in Rn.

For each j let Ωj denote the set points y on the unit sphere S = ∂B with
|〈y, ej〉| > 1/2

√
n. Then the Uj form an open cover of S. Let {ψj} be a partition

of unity subordinate to this covering and define χj : Rn \ {0} → R by χj(y) =
ψj(y/‖y‖). Then each of the functions fj = χjf satisfies the same hypotheses as
f and in addition, |〈y, ej〉| ≥ |y|/2

√
n for y ∈ supp fj . As f =

∑
j fj , it suffices

to prove the estimate for each of the fj . Thus, without loss of generality, we
may assume from the start that there exists a unit vector v ∈ Rn such that
|〈y, v〉| ≥ |y|/2

√
n for all y ∈ supp f.

We now observe that

e−〈AD,D〉f(0) =
∫
e−〈Aξ,ξ〉f̂(ξ) dξ = c

∫
e−〈By,y〉/4 f(y) dy,

where B = A−1. The idea is to apply partial differentiation with the directional
derivative ∂Av to this formula. For this we note that

e−〈By,y〉/4 = − 2
〈v, y〉

∂Ave
−〈By,y〉/4
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on supp f, so that, for each j ≥ 0,

e−〈AD,D〉f(0) = c 2j
∫
e−〈By,y〉/4 [〈v, y〉−1∂Av]jf(y) dy

= [e−〈AD,D〉(〈v, · 〉−1∂Av)jf ](0).

By using the Sobolev lemma, we find, for each natural number s > n/2, that

|e−〈AD,D〉f(0)| ≤ C ′ max
|α|≤s

‖Dαe−〈AD,D〉(〈v, · 〉−1∂Av)jf‖L2

= C ′ max
|α|≤s

‖e−〈AD,D〉Dα(〈v, · 〉−1∂Av)jf‖L2

≤ C ′ max
|α|≤s

‖Dα(〈v, · 〉−1∂Av)jf‖L2 .

By application of the Leibniz rule and using that |〈v, y〉| ≥ ‖y‖/2
√
n and ‖y‖ ≥

d ≥ 1 for y ∈ supp f, we see that, for j > 2n,

|e−〈AD,D〉f(0)| ≤ C ′j‖A‖jdn/2−j max
|α|≤s+j

sup |Dαf |.

We now take j = s+ k to obtain the desired estimate. �

Our next estimate is independent of supports.

Lemma 6.4.5. Let s > n/2 be an integer. Then there exists a positive con-
stant with the following property. Let A ∈ Mn(C) be symmetric with ReA ≥ 0.
Then for all f ∈ S(Rn) and all x ∈ Rn,

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s

‖Dαf‖L2 .

Proof By the Sobolev lemma we have

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s

‖Dαe−〈AD,D〉f‖L2

= C max
|α|≤s

‖e−〈AD,D〉Dαf‖L2

≤ C max
|α|≤s

‖Dαf‖L2

�

Corollary 6.4.6. Let s > n/2 be an integer and let C > 0 be the constant of
Lemma 6.4.5. Let K ⊂ Rn a compact subset. Let A ∈ Mn(C) be symmetric
and ReA ≥ 0. Then for every f ∈ CsK(Rn), the distribution e−〈AD,D〉f is a
continuous function, and

|e−〈AD,D〉f(x)| ≤ C
√

vol (K) max
|α|≤s

sup |Dαf |, (x ∈ Rn).

Proof We first assume that f ∈ C∞K′(Rn) with K′ compact. Then by straight-
forward estimation,

‖Dαf‖L2 ≤ vol (K′) sup |Dαf |
and the estimate follows with K′ instead of K. Let now f ∈ CsK(Rn). Then
by regularization there is a sequence fn ∈ C∞Kn

(Rn), with Kn → K and fn →
f in Cs(Rn). By the above estimate, the sequence e−〈AD,D〉fn is Cauchy in
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C(Rn). By passing to a subsequence we may arrange that the sequence already
converges to a limit ϕ in C(Rn). By continuity of e−〈AD,D〉 in S ′(Rn) it follows
that ϕ = e−〈AD,D〉f. The required estimate for ϕ now follows from the similar
estimates for e−〈AD,D〉fn by passing to the limit for n→∞. �

In the sequel we shall frequently refer to a principle that is made explicit in
the following lemma.

Lemma 6.4.7. Let L : S ′(Rn) → S ′(Rn) be a continuous linear endomor-
phism. Let V,W be linear subspaces of S ′(Rn) equipped with locally convex
topologies for which the inclusion maps are continuous. Assume that C∞c (Rn)
is dense in V and that W is complete. If L maps C∞c (Rn) into W, and the
restricted map L0 : C∞c (Rn)→ W is continuous with respect to the V -topology
on the first space, then L(V ) ⊂W.

Proof The restricted map L0 has a unique extension to a continuous linear
map L1 : V → W. Thus, it suffices to show that L1 = L on V. Fix ϕ ∈ S(Rn).
Then, the linear functional 〈 · , ϕ〉 is continuous on W. It follows that the linear
functional µ on C∞c (Rn) given by µ(f) = 〈L1f, ϕ〉 is continuous linear for the
V -topology.

From the assumption about the continuity of L is follows that the functional
ν : f 7→ 〈Lf, ϕ〉 is continuous for the S ′(Rn) topology. In particular, this implies
that ν is continuous for the V -topology.

As µ = ν on C∞c (Rn) and C∞c (Rn) is dense in V it follows that L1 = L on
V. �

If p ∈ N we denote by Cpb (Rn) the Banach space of p times continuously
differentiable functions f : Rn → C with max|α|≤p sup |Dαf | <∞.

Proposition 6.4.8. Let s > n/2 be an integer. Then there exists a constant
C > 0 with the following property. For each symmetric A ∈ Mn(C) with ReA ≥
0 and all f ∈ C2s

b (Rn) the distribution e−〈AD,D〉f is continuous and

|e−〈AD,D〉f(x)| ≤ C‖A‖s max
|α|≤2s

sup |Dαf |.

For x with d(x) := d(x, supp f) ≥ 1 the stronger estimate (6.6) is valid.

Proof As in the proof of the previous corollary, we first prove the estimate
for f ∈ C∞c (Rn). By translation invariance we may as well assume that x = 0.

We fix a function χ ∈ C∞c (Rn) which equals 1 on the unit ball and has
support contained in K = B(0; 2) and such that 0 ≤ χ ≤ 1. Then the desired
estimate follows from combining the estimate of Corollary 6.4.6 for χf with the
estimate of Proposition 6.4.4 with k = 0 for (1− χ)f.

By density of C∞c (Rn) in Csc (Rn) it follows that e−〈AD,D〉 maps Csc (Rn)
continuously into Cb(Rn), with the desired estimate (apply Lemma 6.4.7). As
Csc (Rn) is not dense in Csb (Rn) we need an additional argument to pass to the
latter space.

Let χ be as above, and put χn(x) = χ(x/n). Then it is readily seen that
χnf → f in S ′(Rn). Hence e−〈AD,D〉fn → e−〈AD,D〉f in S ′(Rn). It follows by ap-
plication of Proposition 6.4.4 that for each compact subset K ⊂ Rn the sequence
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e−〈AD,D〉fn|K is Cauchy in C(K). This implies that e−〈AD,D〉fn converges to a
limit ϕ in the Fréchet space C(Rn). In particular, ϕ is also the limit in S ′(Rn)
so that e−〈AD,D〉f = ϕ is a continuous function.

We now note that by application of the Leibniz rule,

sup |Dαfn| ≤ sup |Dαf |+O(1/n).

Hence the desired estimate for f follows from the similar estimate for fn by
passing to the limit. �

Theorem 6.4.9. Let s > n/2 be an integer and let k ∈ N. Then there exists
a constant Ck > 0 with the following property. For each symmetric A ∈ Mn(C)
with ReA ≥ 0 and all f ∈ C2s+2k

b (Rn) the function e−〈AD,D〉f is continuous,
and

|e−〈AD,D〉f(x)−
∑
j<k

1
j!

(−〈AD,D〉)jf(x)| ≤ Ck‖A‖s max
|α|≤2s

sup |Dα〈AD,D〉kf |.

Proof Let Rk(A)f(x) denote the expression between absolute value signs
on the left-hand side of the above estimate. We first prove the estimate for a
function f ∈ C∞c (Rn). The function

ft(x) := e−〈tAD,D〉(x)

is smooth in (t, x) ∈ [0,∞)× Rn and satisfies the differential equation

∂tft(x) = −〈AD,D〉ft(x).

By application of Taylor’s formula with remainder term with respect to the
variable t at t = 0, we find that

f1(x) =
∑
j<k

∂jt ft(x)− 1
(k − 1)!

∫ 1

0
(1− t)k−1 ∂kt ft(x) dt.

This leads to

Rk(A)f(x) =
1

(k − 1)!

∫ 1

0
(1− t)k−1 (−〈AD,D〉)k ft(x) dt

=
1

(k − 1)!

∫ 1

0
(1− t)k−1 e−t〈AD,D〉(−〈AD,D〉)k f(x) dt.

By estimation under the integral sign, making use of Proposition 6.4.8, we now
obtain the desired estimate for f ∈ C∞c (Rn). For the extension of the estimate to
C2s+2k
c (Rn) and finally to C2s+2k

b (Rn) we proceed as in the proof of Proposition
6.4.8. �
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6.5. The exponential of a differential operator in symbol space

Let K be a compact subset of Rn and let d ∈ R. Then the space of symbols
SdK(Rn) is a subspace of the space of tempered distributions S ′(R2n) with con-
tinuous inclusion map. Indeed, if p ∈ SdK(Rn), then for all ϕ ∈ S(Rn) we have

〈p, ϕ〉 =
∫

R2n

p(x, ξ) ϕ(x, ξ) dx dξ

≤
∫
R2n

(1 + ‖ξ‖)−d−n−1|p(x, ξ)|(1 + |(x, ξ)|)|d|+n+1|ϕ(x, ξ)| dx dξ

≤ C µdK,0(p) ν|d|+n+1,0(ϕ),

with C > 0 only depending on n,K and d.
We consider the second order differential operator

〈Dx, ∂ξ〉 = i

n∑
j=1

∂

∂xj

∂

∂ξj
.

Thus, with notation as in the previous section, 〈Dx, ∂ξ〉 = −〈AD,D〉, where

A = i

(
0 In
In 0

)
,

with In the n × n identity matrix. The matrix A is complex, symmetric, and
has real part equal to zero, hence fulfills all conditions of the previous section.
Moreover, its operator norm ‖A‖ equals 1.

In the rest of this section we will discuss the action of e〈Dx,∂ξ〉 on SdK(Rn).
The following lemma is obvious.

Lemma 6.5.1. For each k ∈ N,
1
k!
〈Dx, ∂ξ〉 =

∑
|α|=k

1
α!
Dα
x∂

α
ξ .

In particular, 〈Dx, ∂ξ〉 defines a continuous linear map Sd(Rn) → Sd−k(Rn),
preserving supports.

Theorem 6.5.2. Let k ∈ N. Then

(6.7) e〈Dx,∂ξ〉 −
∑
|α|<k

1
α!
Dα
x∂

α
ξ ,

originally defined as an endomorphism of S ′(Rn), maps SdK(Rn) continuous
linearly into Sd−k(Rn). In particular, e〈Dx,∂ξ〉 restricts to a continuous linear
map SdK(Rn)→ Sd(Rn).

Before turning to the proof of the theorem, we list a corollary that will be
important for applications.

Corollary 6.5.3. Let p ∈ SdK(Rn). Then e〈Dx,∂ξ〉p ∈ Sd(Rn) and

e〈Dx,∂ξ〉p ∼
∑
α∈Nn

1
α!
Dα
x∂

α
ξ p.
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We will prove Theorem 6.5.2 through a number of lemmas of a technical
nature. The next lemma will be used frequently for extension purposes.

Lemma 6.5.4. Let K ⊂ U be compact and let d < d′. Then the space C∞K,c(Rn)
is dense in SdK(U) for the topology of Sd

′
K (U).

Proof Let p ∈ SdK(U). Select ψ ∈ C∞c (Rn) such that ψ = 1 on a neighborhood
of 0. Put ψn(ξ) = ψ(ξ/n) and

pn(x, ξ) = ψn(ξ)p(x, ξ).

Then by an application of the Leibniz rule in a similar fashion as in the proof
of Lemma 4.1.9, it follows that νd

′
K,k(pn − r)→ 0 as n→∞, for each k ∈ N. �

The expression (6.7) is abbreviated by Rk(D). It will be convenient to use
the notation

C∞K,c(R2n) := {f ∈ C∞c (R2n) | supp f ⊂ K × Rn}.

Lemma 6.5.5. Let k ∈ N. Then for each d < k the map Rk(D) maps SdK(Rn)
continuous linearly into Cb(R2n).

Proof Let s > n/2 be an integer. Let f ∈ C∞K,c(R2n). Then by Theorem 6.4.9,

|Rk(D)f(x, ξ)| ≤ Ck max
|α|+|β|≤2s

sup
K×Rn

|Dα
x∂

β
ξ 〈Dx, ∂ξ〉kf(x, ξ)|

≤ C ′k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

|Dα+γ
x ∂β+γ

ξ f(x, ξ)|

≤ C ′k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

(1 + ‖ξ‖)d−k νdK,2s+2k(f)

≤ C ′k ν
d
K,2s+2k(f).

It follows that the map Rk(D) is continuous C∞K,c(R2n)→ Cb(R2n), with respect
to the SdK(Rn)-topology on the first space, for each d < k.

Let now d < k and fix d′ with d < d′ < k. Then by density of C∞K,c(R2n)
in SdK(R2n) for the Sd

′
K (R2n)-topology, it follows by application of Lemma 6.4.7

that Rk(D) maps SdK(Rn) to Cb(Rn) with continuity relative to the Sd
′
K (Rn)-

topology on the domain. As this topology is weaker than the original topology
on SdK(Rn), the result follows. �

Lemma 6.5.6. Let d ∈ R and assume that k > |d|. Let s be an integer > n/2.
Then there exists a constant C > 0 such that for all f ∈ C∞K,c(Rn) and all
(x, ξ) ∈ R2n with ‖ξ‖ ≥ 4 we have

(6.8) |Rk(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)|d|−kνdK,2s+2k(f).

Proof Let χ ∈ C∞c (Rn) be a smooth function which is identically 1 on the
unit ball of Rn, and has support inside the ball B(0; 2). For t > 0 we define
the function χt ∈ C∞c (Rn) by χt(ξ) = χ(t−1ξ). Then χt(ξ) is identically 1 on
B(0; t) and has support inside the ball B(0; 2t). We agree to write ψ = 1−χ and
ψt(ξ) = ψ(t−1ξ). In the following we will frequently use the obvious equalities

sup |∂αξ χt| = t−|α| sup |∂αξ χ|, sup |∂αξ ψt| = t−|α| sup |∂αξ ψ|.
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Let f ∈ C∞K,c(Rn). Then f is a Schwartz function, hence e〈Dx,∂ξ〉f is a Schwartz
function as well, and therefore, so is Rk(D)f. For t > 0 we agree to write
ft(x, ξ) = χt(ξ)f(x, t) and gt(x, ξ) = ψt(ξ))f(x, ξ). Then f = ft + gt. From now
on we assume that (x, ξ) ∈ R2n, that ‖ξ‖ ≥ 4 and t = 1

4‖ξ‖.
We will complete the proof by showing that both the values |Rk(D)ft(x, ξ)|

and |Rk(D)gt(x, ξ)| can be estimated by C ′νdK,2s+k(f) with C ′ > 0 a constant
independent of f, x, ξ. We start with the first of these functions. As ft has
support inside B(0; 2t) = B(0; ‖ξ‖/2), it follows that d(ξ, supp ft) ≥ ‖ξ‖/2 ≥ 2.
In view of Proposition 6.4.4 it follows that there exists a constant Ck > 0, only
depending on k, such that

|Rk(D)f(x, ξ)| = |e〈Dx,∂ξ〉f(x, ξ)|
≤ Ck(‖ξ‖/2)−k max

|α|+|β|≤2s+k
sup |Dα

x∂
β
ξ (χtf)|

≤ C ′k(1 + ‖ξ‖)−k max
|α|+|β1+β2|≤2s+k

sup |∂β1

ξ χtD
α
x∂

β2

ξ f |,

with C ′k > 0 independent of f, x and ξ. For η ∈ suppχt we have ‖η‖ ≤ ‖ξ‖/2,
so that

|∂β1

ξ χt(η)Dα
x∂

β2

ξ f(y, η)| ≤ C ′′k t
−|β1|(1 + ‖η‖)d−|β2|νdK,2s+k(f)

≤ C ′′k (1 + ‖ξ‖/2)|d|νdK,2s+k(f)

≤ C ′′′k (1 + ‖ξ‖)|d|νdK,2s+k(f).

It follows that

|Rk(D)ft(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνdK,2s+2k(f).

We now turn to gt. By application of Theorem 6.4.9 it follows that

|Rk(D)(gt)(x, ξ)|
≤ Dk max

|α|+|β|≤2s
sup |Dα

x∂
β
ξ 〈Dx, ∂ξ〉k(ψtf)|

≤ D′
k max
|α|+‖β‖≤2s,|γ|=k

sup |∂γ+βξ (ψtDα+γ
x f)|

To estimate the latter expression, we concentrate on

(6.9) |∂γ+βξ (ψtDα+γ
x f)(y, η)|,

for y ∈ K and η ∈ Rn. Since ψt(η) equals zero for ‖η‖ ≤ t = ‖ξ‖/4 and equals 1
for ‖η‖ ≥ 2t = ‖ξ‖/2, we distinguish two cases: (a) ‖ξ‖/4 ≤ ‖η‖ ≤ ‖ξ‖/2 and
(b) ‖η‖ ≥ ‖ξ‖/2.
Case (a): the expression (6.9) can be estimated by a sum of derivatives of the
form

|(∂γ1ξ ψt)D
α+γ
x ∂γ2ξ f(y, η)|, (γ1 + γ2 = γ + β),

with suitable binomial coefficients. Now

|(∂γ1ξ ψt)D
α+γ
x ∂γ2ξ f(y, η)| ≤ D′′

kt
−|γ1|(1 + ‖η‖)d−‖γ2‖νdK,2s+2k(f)

≤ D′′′
k (1 + ‖ξ‖)−|γ1|(1 + ‖ξ‖)d−|γ2|νdK,2s+2k(f)

≤ D′′′
k (1 + ‖ξ‖)d−kνdK,2s+2k(f).
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Case (b): we now have that (6.9) equals |Dα+γ
x ∂γ+βξ f(y, η)|, and can be esti-

mated by

|Dα+γ
x ∂γ+βξ f)(y, η)| ≤ (1 + ‖η‖)d−|γ+β|νdK,2s+2k(f)

≤ (1 + ‖η‖)|d|−kνdK,2s+2k(f)

≤ (1 + ‖ξ‖/2)d−kνdK,2s+2k(f)

≤ D(1 + ‖ξ‖)d−kνdK,2s+2k(f).

Collecting these estimates we see that

|Rk(D)gt(x, ξ)| ≤ D′(1 + ‖ξ‖)|d|−k νd2s+2k(f),

with D′ > 0 a constant independent of f, x and ξ. �

Corollary 6.5.7. Let d, k and s be as in the above lemma. With a suitable
adaptation of the constant C > 0, the estimate (6.8) holds for all (x, ξ) ∈ R2n.

Proof It follows from Lemma 6.5.5 and its proof that there exists a constant
C1 > 0 such that |Rk(D)f(x, ξ)| ≤ C1ν

d
K,2s+2k(f). We now use that

(1 + ‖ξ‖)|d|−k ≥ 5|d|−k

for all ξ with |ξ‖ ≤ 4. Hence, the estimate (6.8) holds with C = 5k−|d|C1 for
‖ξ‖ ≤ 4. �

Corollary 6.5.8. Let d ∈ R and m ∈ N. Then there exist constants C > 0
and l ∈ N such that for all f ∈ C∞K,c(Rn) and all (x, ξ) ∈ R2n we have

(6.10) |Rm(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)d−mνdK,l(f).

Proof Let s be as in the previous corollary. Fix k ∈ N such that |d| − k <
d −m. Let now C ′ > 0 be constant as in the previous corollary. Then for all
f ∈ C∞K,c(Rn) we have

|Rk(D)f(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνdK,2s+2m(f), ( (x, ξ) ∈ R2n).

On the other hand,

Rm(D)−Rk(D) =
∑

k≤j≤m
〈Dx, ∂ξ〉j

is a continuous linear operator SdK(Rn) → Sd−kK (Rn). In fact, there exists a
constant C ′′ > 0 such that

|Rm(D)f(f(x, ξ)−Rk(D)f(x, ξ)| ≤ C ′′(1 + ‖ξ‖)d−kνdK,2m−2(f)

for all f ∈ SdK(Rn) and (x, ξ) ∈ R2n. The result now follows with C = C ′ + C ′′

and with l = max(2s+ 2m, 2m− 2). �

After these technicalities we can now finally complete the proof of the main
theorem of this section.
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Completion of the proof of Theorem 6.5.2 Let k ∈ N, let α, β ∈ Nn and
put m = k − |β|. Then by the previous corollary, applied with d− |β| in place
of d there exist constants C > 0 and l ∈ N such that for all f ∈ C∞K,c(Rn) and
all (x, ξ) ∈ R2n,

|Rk(D)f(x, ξ)| ≤ (1 + ‖ξ‖)d−|β|νd−|β|K,l (f).

Moreover, by definition of the seminorms,

ν
d−|β|
K,l (Dα

x∂
β
ξ f) ≤ νdK,l+|α|+|β|(f)

for all f ∈ C∞K,c(Rn). Combining these estimates and using that Rk(D) com-
mutes with Dα

x∂
β
ξ , we find that

|Dα
x∂

β
ξ Rk(D)f(x, ξ)| = Rk(D)[Dα

x∂
β
ξ f ](x, ξ)

≤ CνdK,l+|α|+|β|(f),

for all f ∈ C∞K,c(Rn) and (x, ξ) ∈ R2n.

It follows from the above that for each d′ ∈ R the map

Rk+1(D) : C∞K,c(Rn)→ Sd
′−(k+1)(Rn)

is continuous with respect to the Sd
′
K (Rn)-topology on C∞K,c(Rn). In particular,

this is valid for d′ = d+ 1. As C∞K,c(Rn) is dense in SdK(Rn) with respect to the
topology of Sd+1

K (Rn), it follows by application of Lemma 6.4.7 that Rk+1(D)
maps SdK(Rn) into Sd−k(Rn) with continuity relative to the Sd+1

K (Rn)-topology
on the first space. As this topology is weaker than the usual one, we conclude
that Rk+1(D) : SdK(Rn)→ Sd−k(Rn) is continuous. Now

Rk+1(D)−Rk(D) = 〈Dx, ∂ξ〉k

is continuous SdK(Rn)→ Sd−k(Rn) as well, and the result follows. �





LECTURE 7
Pseudo-differential operators, continued

7.1. The symbol of the composition

In this section we will investigate the composition P ◦Q of two pseudo-differential
operators P,Q ∈ Ψ(U); here U ⊂ Rn is an open subset. We first assume that
P = Ψp and Q = Ψq, with p ∈ Sd(U) and q ∈ Se(U), where d, e ∈ R. In general
the operator Q maps C∞c (U) to C∞(U), but not to C∞c (U). For the composi-
tion to exist we therefore require that the projection pr1(supp q) has compact
closure A in U. Then Ψq maps C∞c (U) to C∞A (U) and P ◦Q is a well-defined
continuous linear operator C∞c (U)→ C∞(U).

Proposition 7.1.1. Let p ∈ Sd(U) and q ∈ Sec (U). Then Ψp ◦Ψq = Ψr, with
r ∈ Sd+e(U) given by

(7.1) r(x, ξ) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,η=ξ.
In particular, pr1(supp r) ⊂ pr1(supp p) and

r ∼
∑
α∈Nn

1
α!
∂αξ p(x, ξ)D

α
x q(x, ξ).

As a preparation we prove the following result.

Lemma 7.1.2. The Fourier transform of the function u : R2n → C, (x, ξ) 7→
eiξx (which defines a tempered distribution) is given by Fu(x̂, ξ̂) = e−iξ̂x̂.

Proof Let Ω := {z ∈ C | Re z > 0}. For z ∈ Ω the function vz : x 7→ e−zx
2/2

defines a function in S(R). By checking the Cauchy-Riemann equations relative
to the variable z, using differentiation under the integral sign, we see that for
x̂ ∈ R, the Fourier transform

Fvz(x̂) =
∫

R
e−zx

2/2 e−ix̂x dx

depends holomorphically on z ∈ Ω. For z ∈ R ∩ Ω we find, by the substitution
of variables x→ z−1/2x, that Fvz(x̂) = z−1/2Fv1(z−1/2x̂), hence

(7.2) Fvz(x̂) = z−1/2e−x̂
2/2z.

107
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By analytic continuation in z the latter formula is valid for all z ∈ Ω, provided
the branch of z 7→ z1/2 over Ω which is positive on R ∩Ω is taken. If f ∈ S(R)
then by continuity of z 7→ 〈Fvz, f〉 = 〈vz,Ff〉 we conclude that formula (7.2)
remains valid for z ∈ Ω \ {0}, provided the continuous extension of the fixed
branch of the square root is taken. In particular we find that

Fvi(x̂) = e−πi/4 eix̂
2/2, Fv−i(x̂) = eπi/4 e−ix̂

2/2.

We now turn to the function u. Let a : R2n → R2n be the linear map defined
by a(x, ξ) = (x+ ξ, x− ξ)/

√
2. Then

[a∗u](x, ξ) = ei(x
2−ξ2)/2 =

n∏
j=1

vi(ξj)v−i(xj).

Therefore,

F [a∗u](x̂, ξ̂) =
n∏
j=1

ei(ξ̂
2
j−x̂2

j )/2 = [a∗u](−x̂, ξ̂).

By orthogonality of a we have that F ◦ a∗ = a∗ ◦F on S(R), hence also on S ′(R),
and the result follows. �

We also need an extension of the convolution product in order to be able
to convolve tempered distributions with Schwartz functions.

Lemma 7.1.3. The convolution product ∗ : S(Rn) × S(Rn) → S(Rn) has a
unique extension to a continuous bilinear map S(Rn) × S ′(Rn) → S ′(Rn). For
this extension, denoted by ∗ again,

F(f ∗ u) = Ff Fu, (f ∈ S(Rn), u ∈ S ′(Rn)).

Proof The multiplication map (f, u) → fu, S(Rn) × S ′(Rn) → S ′(Rn) is
readily seen to be continuous bilinear. Define ∗̃ = F−1 ◦ ∗ ◦ (F ×F). Then ∗̃ is
continuous bilinear and extends the convolution product on S(Rn), by Lemma
4.2.2(b). Uniqueness of the extension follows by density of S(Rn) in S ′(Rn). �

As a final preparation for the proof of Proposition 7.1.1 we need the follow-
ing lemma.

Lemma 7.1.4. Let u ∈ C∞(R2n) be defined by u(x, ξ) := e−iξx. Then

e〈Dx,∂ξ〉f = u ∗ f for all f ∈ S(Rn).

Proof In view of the definition of the operator e〈Dx,∂ξ〉 ∈ End(S(R2n)) (see Sec-
tion 6.4), this follows immediately by applicaton of Lemmas 7.1.3 and 7.1.2. �

Proof of Proposition 7.1.1 We will first prove the result under the as-
sumption that both p and q are smooth and compactly supported. Then
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p, q ∈ C∞c (R2n). Let f ∈ C∞c (U). Then

[ΨpΨqf ](x) =
∫ ∫

eiξ(x−y)p(x, ξ) [Ψqf ](y) dy dξ

=
∫ ∫ ∫

eiξ(x−y)eiyη p(x, ξ) q(y, η)f̂(η) dη dy dξ

=
∫
eiηxr(x, η)f̂(η) dη,

where

(7.3) r(x, η) =
∫ ∫

ei(ξ−η)(x−y) p(x, ξ) q(y, η) dξdy.

Here we note that all integrands are compactly supported and continuous, so
all integrals are convergent, and the order of the integrations is immaterial. For
each (x, η) ∈ R2n we define Rx,η : R2n → C by

Rx,η(y, ξ) = p(x, ξ)q(y, η).

Then Rx,η is smooth and compactly supported. Moreover, (7.3) can be rewrit-
ten as r(x, η) = [u ∗ Rx,η](x, η), with u(y, ξ) = e−iξy. In view of Lemma 7.1.4
above, this implies that

r(x, η) = [e〈Dy ,∂ξ〉Rx,η](x, η) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,ξ=η,

which in turn gives (7.1).
Fix a compact subset K ⊂ U. Our next step is to extend the validity of (7.1)

to (p, q) ∈ SdK(U) × SeK(U). We will do this by using a continuity argument.
For p, q ∈ S∞K (U) we observe that, for each (x, η) ∈ Rn × Rn, the function
(y, ξ) 7→ p(x, ξ)q(y, η) belongs to S∞K (U) again, and we define the function
ρ(p, q) : U × Rn → C by

(7.4) ρ(p, q)(x, ξ) = e〈Dy ,∂ξ〉p(x, ξ)q(y, η)|y=x,η=ξ.

In view of the lemma below, ρ has values in S∞(U) and maps SdK(U)× SeK(U)
continuous bi-linearly to Sd+e(U). Fix f ∈ C∞c (U). Then in view of the remark
below Definition 5.2.2 follows that

(7.5) (p, q) 7→ Ψρ(p,q)(f)

maps SdK(U)× SeK(U) continuous bi-linearly to C∞(U), for all d, e ∈ N.
On the other hand, for all d ∈ N the map (r, g) 7→ Ψr(g) is continuous

bilinear from SdK(U)×C∞c (U) to C∞K (U) and by composition it follows that for
all d, e ∈ N the map

(7.6) (p, q) 7→ ΨpΨq(f)

is continuous bilinear from SdK(U)× SeK(U) to C∞K (U). By the first part of the
proof the maps (7.5) and (7.6) are equal on C∞K,c(U) × C∞K,c(U). By density of
C∞K,c(U) in SdK(U) for the Sd+1-topology and in SeK(U) for the Se+1-topology,
it follows that the equality extends to SdK(U)× SeK(U).

It follows that Ψp ◦Ψq = Ψρ(p,q) on C∞c (U), for all p ∈ SdK(U) and q ∈
SeK(U).
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Now assume more generally that p ∈ Sd(U) and that q ∈ Sec (U). Then by
using a partition of unity we may write p as a locally finite sum p =

∑
j pj ,

with pj ∈ Sdc (U), and pr1(supp pj) a locally finite collection of subsets of U.
For each j we have Ψpj ◦Ψq = Ψrj with rj given in terms of pj and q as in
(7.3). In particular this implies that pr1(supp rj) ⊂ pr1(supp pj). It follows that
{pr1(supp rj)} is a locally finite collection of subsets of U. Therefore, r =

∑
j rj

defines a symbol in Sd+e(U). Clearly, r satisfies (7.3), and Ψp ◦Ψq = Ψr. �

Lemma 7.1.5. Let K ⊂ U be a compact subset. Then the map ρ defined by
(7.4) maps SdK(U)× SeK(U) continuous bilinearly to Sd+eK (U).

Proof By continuity of the map e〈Dy ,∂ξ〉 : SdK(U) → Sd(Rn) (see Theorem
6.5.2 there exist constants C > 0, k ∈ N, such that

(1 + ‖ξ‖)−d|[eDx∂ξf ](x, ξ)| ≤ CνdK,k(f),

for all f ∈ SdK(U), x ∈ K and ξ ∈ Rn. Let p ∈ SdK(U) and q ∈ SeK(U). Then
by application of the above estimate to f = fx,η : (y, ξ) 7→ p(x, ξ)q(y, η), and
observing that

(1 + ‖η‖)−eνdK,k(fx,η) ≤ νdK,k(p)νeK,k(q),

we find the estimate

(7.7) (1 + ‖ξ‖)−d−e|ρ(p, q)(x, ξ)| ≤ CνdK,k(p)νeK,k(q),

for all (x, ξ) ∈ U ×Rn. (Note that the expression on the left-hand side vanishes
for x ∈ U \ K. ) We now observe that for α, β ∈ Nn we have

∂αx ∂
β
ξ ρ(p, q) =

∑
α1+α2=α
β1+β2=β

(
α
α1

) (
β
β1

)
ρ(∂α1

x ∂β1

ξ p, ∂
α2
x ∂β2

ξ q).

Combining this with (7.7) we find that for every l ∈ N there exists a constant
Cl > 0, only depending on l, such that

νd+eK,l ρ(p, q) ≤ C Cl νdK,k+l(p) νeK,k+l(q).

The asserted continuity follows. �

Exercise 7.1.6. Give a proof of Proposition 6.2.2 based on the idea of con-
tinuous extension used in the above proof.

We recall that a pseudo-differential operator Q ∈ Ψe(U) has an operator
kernel KQ ∈ D′(U × U) and is said to be properly supported if and only if the
projection maps pr1,pr2 : supp (KQ)→ Rn are proper.

If B ⊂ U is compact then so is A := pr1(KQ ∩ pr−1
2 (B)) and it is easily

verified that Q maps C∞B (U) into C∞A (U). Hence, Q is a continuous linear
endomorphism of C∞c (U). Thus, for any P ∈ Ψd(U) the composition P ◦Q is a
well defined continuous linear operator C∞c (U)→ C∞(U).
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Theorem 7.1.7. Let P ∈ Ψd(U) and Q ∈ Ψe(U) be properly supported. Then
P ◦Q belongs to Ψd+e(U). Moreover, the full symbol of P ◦Q is given by

σ(P ◦Q) ∼
∑
α∈Nn

1
α!
∂αξ σ(P )Dα

xσ(Q).

Proof In view of Lemma 7.1.9 below, there exist symbols p ∈ Sd(U) and q ∈
Se(U) such that P = Ψp and Q = Ψq. Let KP ∈ D′(U ×U) be the distribution
kernel of P. Let {ψj} be a partition of unity on U. Let pj = ψjp; then P =

∑
j Pj ,

with Pj = Ψpj . For each j the set Aj := pr2(pr−1
1 (suppψj) ∩ suppKP ) is

compact and contained in U. Hence, there exists a χj ∈ C∞c (U) with χj = 1 on
Aj . It follows that Pj ◦Mχj has kernel (ψj ⊗χj)KP = (ψj ⊗ 1)KP hence equals
Pj . Therefore, Pj ◦Q = Pj ◦Qj , where Q = Mχj ◦Q = Ψqj , with qj = χjq. It
follows that Pj ◦Q = Ψrj , with rj ∈ Sd+e(U) expressed in terms of pj and qj as
in formula (7.3). In particular, pr1(supp (rj)) ⊂ suppψj , so that r =

∑
j rj is a

locally finite sum defining an element of Sd+e(U). We now have that

Ψr =
∑
j

Pj ◦Qj =
∑
j

Pj ◦Q = P ◦Q.

on C∞c (U). From the construction, it follows that qj = q on an open neighbor-
hood of suppψj , so that for all α ∈ Nn we have

∂αξ pj D
α
x qj = ∂αξ pjD

α
x q.

This implies that

r ∼
∑
α∈Nn

∑
j

1
α!
∂αξ pj D

α
x qj =

∑
α∈Nn

∑
j

1
α!
∂αξ pj D

α
x q

=
∑
α∈Nn

1
α!
∂αξ pD

α
x q.

The result follows. �

Lemma 7.1.8. Let T ∈ Ψ−∞(U) be properly supported. Then there exists a
r ∈ S−∞(U) such that T = Ψr.

Proof Let K be the integral kernel of T. Fix a partition of unity {ψj} on U.
Then Kj(x, y) = ψj(x)K(x, y) defines a smooth function with compact support
contained in pr−1

1 (suppψj)∩ suppK. By Lemma 5.2.5 (see also its proof) there
exists a p ∈ S−∞(U) with pr1(supp p) ⊂ pr1(ψj) such that TKj = Ψpj . The
locally finite sum

∑
j pj defines an element p ∈ S−∞(U), and it is clear that

Ψp =
∑

j Ψpj =
∑

j TKj = TK on C∞c (U). �

Lemma 7.1.9. Let d ∈ R ∪ {∞} and let P ∈ Ψd(U) be properly supported.
Then there exists a p ∈ Sd(U) such that P = Ψp.

Proof In view of the above lemma we may assume that d > −∞. Then by
Lemma 6.1.6 we may rewrite P as P = Ψq + T, with q ∈ Sd(U) and T ∈ Ψ−∞

and with Ψq and hence also T properly supported. By the previous lemma
there exists a r ∈ S−∞(U) such that T = Ψr. The lemma now follows with
p = q + r. �
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We can now deduce the important result that the principal symbol behaves
multiplicatively.

Corollary 7.1.10. Let P ∈ Ψd(U) and Q ∈ Ψe(U) be properly supported.
Then P ◦Q belongs to Ψd+e(U). Moreover, the principal symbol of P ◦Q of
order d+ e is given by

σd+e(P ◦Q) = σd(P )σe(Q).

7.2. Invariance of pseudo-differential operators

In order to be able to lift pseudo-differential operators to manifolds, we need to
establish invariance under diffeomorphisms. For this it will turn out to be useful
to have a different characterization of properly supported pseudo-differential
operators.

We recall the definition of the (Fréchet) space C∞(Rn) ⊗̂ S(Rn) = S−∞(Rn)
given in the text before Exercise 5.1.4. Note that S(Rn) may be identified with
the (closed) subspace of functions in C∞(Rn) ⊗̂ S(Rn) that are constant in the
x-variable.

For ϕ ∈ C∞(Rn) ⊗̂ S(Rn) the integral

W (ϕ)(x) :=
∫

Rn

eiξxϕ(x, ξ) dx

is absolutely convergent for every x ∈ X and defines a function W (ϕ) ∈
C∞(Rn). Moreover, by Lemma 5.2.1 the transform W is continuous linear from
C∞(Rn) ⊗̂ S(Rn) to C∞(Rn).

We now define a more general symbol space as follows. We write (x, ξ, y) for
points in R3n ' Rn×Rn×Rn and denote by Σd the space of smooth functions
R3n → C such that for all compact K ⊂ Rn and all k ∈ N,

(7.8) νdK,k(r) := max
|α|,|β|,|γ|≤k

sup
K×Rn×K

(1 + |ξ|)|β|−d|∂αx ∂
β
ξ ∂

β
y r(x, ξ, y)| <∞.

Note that the symbol space Sd(Rn) may be viewed as the subspace of Σd con-
sisting of functions that are constant in the y-variable.

Let now r ∈ Σd. Then for each f ∈ S(Rn) the integral

r(x, ξ, f) :=
∫

Rn

e−iξyr(x, ξ, y)f(y) dy

converges absolutely and defines a function in C∞(Rn) ⊗̂ S(Rn). Moreover, the
map f 7→ r( · , f) is continuous for the obvious topologies.

The definition of pseudo-differential operator may now be extended to sym-
bols in Σd by putting

(7.9) Ψr(f)(x) := W (r( · , · , f)) =
∫

Rn

∫
Rn

eiξ(x−y)r(x, ξ, y)f(y) dy dξ.

Note that if r is independent of the variable y, then r ∈ Sd(Rn) and by carrying
out the integration over y we see that (7.9) equals∫

Rn

eiξxr(x, ξ)f̂(ξ) dξ,
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which is compatible with the definition given before. In fact, we have not really
extended our class of operators. For K ⊂ Rn a compact subset, let Σd

K be the
closed subspace of Σd consisting of all functions r ∈ Σd with supp r ⊂ K×Rn×K.
Moreover, let Σd

c be the union of the spaces Σd
K, for K ⊂ Rn compact.

Proposition 7.2.1. Let r ∈ Σd
K. Then

p(x, ξ) = e〈Dy ,∂ξ〉r(x, ξ, y)|y=x

belongs to Sd(Rn), and Ψr = Ψp. In particular, Ψr belongs to Ψd(Rn) and its
full symbol is given by

σd(Ψr) ∼
∑
α∈Nn

1
α!
Dα
y ∂

α
ξ r(x, ξ, y)|y=x.

To prepare for the proof we introduce the space

C∞K,c(R3n) := {ϕ ∈ C∞c (R3n) | suppϕ ⊂ K × Rn ×K}.

The following lemma is proved in the same fashion as Lemma 4.1.9.

Lemma 7.2.2. Let d′ > d. Then C∞K,c(R3n) is dense in Σd
K for the Σd′-

topology.

Proof of Proposition 7.2.1 For r ∈ Σd
K and fixed x ∈ Rn the function

rx : (y, ξ) 7→ r(x, ξ, y) belongs to Sd(Rn). Moreover, x 7→ rx is a smooth map
Rn → SdK(Rn), supported by K and it follows that

x 7→ e〈Dy ,∂ξ〉(rx)

is a smooth map Rn → SdK(Rn). The function p = p(r) is given by the formula

p(r)(x, ξ) = e〈Dy ,∂ξ〉(rx)(x, ξ).

It is readily seen that r 7→ p(r) is a continuous linear map Σd
K → SdK(Rn).

Fix f ∈ C∞c (Rn). Then both r 7→ Ψr(f) and r 7→ Ψr(p)(f) are continuous
linear maps Σd

K → C∞(Rn), for every d ∈ R. As C∞K,c(R3n) is dense in Σd
K for

the Σd+1-topology, it suffices to prove the identity Ψr(f) = Ψp(r)(f) for every
p ∈ C∞K,c(R3n).

Thus, let p ∈ C∞K,c(R3n) be fixed. Then

Ψr(f) =
∫ ∫

eiξ(x−y)r(x, ξ, y)f(y) dy dξ

=
∫ ∫

eiξ(x−y)rx(y, ξ)
∫
eiyηf̂(η) dη dy dξ

=
∫
eiηx p(x, η)f̂(η) dη,

with

p(x, η) =
∫ ∫

e−i(η−ξ)(x−y)rx(y, ξ)dydξ.
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Write u(y, ξ) = e−iξy, then it follows that

p(x, η) = (u ∗ rx)(x, η)

= e〈Dy ,∂ξ〉rx(y, η)|y=x
= p(r)(x, η).

All assertions now follow. �

Corollary 7.2.3. Let p ∈ Sc(Rn). Then Ψp is properly supported if and only
if there exists a r ∈ Σd

K such that

Ψp = Ψr on C∞c (Rn).

For any such r the d-th order principal symbol of p is represented by the symbol
(x, ξ) 7→ r(x, ξ, x).

Proof The only if part as well as the statement about the principal symbol
follows from Proposition 7.2.1 above. For the if part, assume that Ψp is properly
supported. Let K be a compact subset of Rn such that supp p ⊂ K × Rn. Let
Kp be the distribution kernel of Ψp. Then K×Rn ∩ suppKp is compact, hence
contained in a product of the form K × K′, with K′ ⊂ Rn compact. Let V be
any open neighborhood of K′ in Rn. Then there exists a χ ∈ C∞c (U) which is
identically one on a neighborhood of K′. It follows that the Ψp = Ψp ◦Mχ on
C∞c (Rn). This implies that for all f ∈ C∞c (Rn),

Ψp(f)(x) = Ψp(χf(x))

=
∫
eiξxp(x, ξ)F(χf)(ξ) dξ

=
∫
eiξxp(x, ξ)

∫
e−iξyχ(y)f(y) dy dξ

= Ψr(f)(x),

with r(x, ξ, y) = p(x, ξ)χ(y). �

We now turn to the actual proof of the invariance. Given two points x, y ∈
Rn, we denote the line segment from x to y by [x, y]. Thus,

[x, y] = {x+ t(y − x) | t ∈ [0, 1]}.

We agree to write Mn(R) for the space of n× n-matrices with real entries, and
GL (n,R) for the subset of invertible matrices.

Lemma 7.2.4. Let U be an open subset of Rn.

(a) There exists an open neighborhood Ω of the diagonal diag (U) in U × U
such that (x, y) ∈ Ω⇒ [x, y] ⊂ U.

(b) If Ω is any such neighborhood, and if f : U → Rn is a smooth map, then
there exists a smooth map T : Ω→ Mn(R) such that

f(y)− f(x) = T (x, y)(y − x), (x, y ∈ Ω).

(c) Any continuous map T : Ω→ Mn(R) with property (b) satisfies T (x, x) =
df(x) for all x ∈ U.
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Proof The map a : [0, 1]× (U ×U)→ Rn given by a(t, x, y) = x+ t(y− x) is
continuous and maps [0, 1] × diag (U) to U. The preimage a−1(U) of U under
a is open in [0, 1] × U × U and contains [0, 1] × diag (U). By compactness of
[0, 1] it contains a subset of the form [0, 1] × Ω with Ω an open neighborhood
of diag (U) in U × U. For (x, y) ∈ Ω we have [x, y] = a([0, 1]× {(x, y)}) ⊂ U.

Let f be as in (b). Then

f(y)− f(x) =
∫ 1

0
∂tf(x+ t(y − x)) dt = T (x, y)(y − x),

with

T (x, y) =
∫ 1

0
df(x+ t(y − x)) dt.

Clearly, T is a smooth map Ω→ Mn(R).
Let now T : Ω → Mn(R) be any continuous map satisfying property (b).

Then for each v ∈ Rn we have

df(x)v = lim
t→0

t−1[f(x+ tv)− f(x)] = lim
t→0

T (x, x+ tv)v = T (x, x)v.

�

If ϕ : M → N is a diffeomorphism of smooth manifolds, and P : C∞c (M)→
C∞(M) a continuous linear operator, then the push-forward of P by ϕ, de-
noted ϕ∗(P ), is defined to be the continuous linear operator ϕ∗(P ) : C∞c (N)→
C∞(N) given by

ϕ∗(P )(f) = P (f ◦ϕ) ◦ϕ−1.

Proposition 7.2.5. Let ϕ : U → V be a smooth diffeomorphism between
open subsets of Rn, with inverse ψ. Let Ω be an open neighborhood of diag (V )
in V × V and assume that T : Ω → GL (n,R) is a smooth map such that
ψ(y)−ψ(x) = T (x, y)(y− x) for all (x, y) ∈ Ω (such a pair Ω, T exists). Let K
be a compact subset of U such that ϕ(K)× ϕ(K) ⊂ Ω.

(a) For every d ∈ N and r ∈ Σd
K, the function ϕ∗(r) : R3n → C defined by

(x, η, y) 7→ r(ψ(x), T (x, y)−1tη, ψ(y)) |det dψ(y)| |detT (x, y)|−1

on K × Rn ×K, and by ϕ∗(r) = 0 elsewhere, belongs to Σd
ϕ(K).

(b) For every d ∈ N, the map r 7→ ϕ∗(r) is continuous linear Σd
K → Σd

ϕ(K).

(c) For every d ∈ N and all r ∈ Σd
K,

ϕ∗(Ψr) = Ψϕ∗(r).

(d) The principal symbol of ϕ∗(Ψr) is represented by the symbol

(x, ξ) 7→ r(ψ(x), dϕ(ψ(x))tξ, ψ(x)).

Proof The proof of (a) and (b) is straightforward, be it somewhat tedious.
Fix f ∈ C∞c (V ). Then the equality ϕ∗(Ψr)(f) = Ψϕ∗(r)(f) is equivalent to

(7.10) Ψr(f ◦ϕ) ◦ψ = Ψϕ∗(r)(f).

The map r 7→ Ψr(f ◦ϕ) ◦ψ is continuous linear Σd
K → C∞K (U) and so is the map

r 7→ ϕ∗(Ψϕ∗(r)), for every d ∈ N. Now C∞K,c(R3n) is dense in Σd
K for the Σd+1-

topology. Therefore, it suffices to prove the equality (7.10) for all r ∈ C∞K,c(R3n).
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Fix r ∈ C∞K,c(R3n) and let x ∈ U. Then

Ψ(f ◦ϕ)(ψ(x)) =
∫ ∫

eiξψ(x)−iξz r(ψ(x), ξ, z) f(ϕ(z)) dz dξ

=
∫ ∫

eiξ(ψ(x)−ψ(y)) r(ψ(x), ξ, ψ(y)) f(y) |det dψ(y)| dy dξ

=
∫ ∫

ei[T (x,y)tξ](x−y) r(ψ(x), ξ, ψ(y)) f(y) |det dψ(y)| dξ dy

=
∫ ∫

eiη(x−y)ϕ∗(r)(x, η, y) f(y) dη dy

= Ψϕ∗(r)(f)(x).

This establishes (c).
For (d) we note that T (x, x) = dψ(x) so that the principal symbol of Ψϕ∗(r)

is given by

(x, ξ) 7→ ϕ∗(r)(x, ξ, x) = ϕ(ψ(x), dψ(x)−1tξ, ψ(x)).

Now use that dψ(x)−1 = dh(ψ(x)). �

Theorem 7.2.6. Let ϕ : U → V be a diffeomorphism of open subsets of Rn.
Then the following assertions are valid.

(a) For each d ∈ R ∪ {−∞} and all P ∈ Ψd(U) the operator ϕ∗(P ) belongs
to Ψd(V ).

(b) Let the principal symbol of P be represented by p ∈ Sd(U). Then the
principal symbol of ϕ∗(P ) is represented by

ϕ∗(p) : (x, ξ) 7→ p(ϕ−1(x), dϕ(ϕ−1(x))tξ).

Proof Let ψ : V → U be the inverse to ϕ and let Ω, T be as in the statement
of Proposition 7.2.5. First, assume that d = −∞ and let P ∈ Ψ−∞(U). Then P
is an integral operator TK with integral kernel K ∈ C∞(U×U). Let f ∈ C∞c (V )
and x ∈ V, then by substitution of variables

ϕ∗(P )(f)(x) =
∫
U
K(ψ(x), z)f(ϕ(z)) dz

=
∫
V
K(ψ(x), ψ(y))|det dψ(y)| f(y)dy

from which we see that ϕ∗(P ) is the integral transformation with smooth inte-
gral kernel K̃ ∈ C∞(V × V ) given by

K̃(x, y) = K(ψ(x), ψ(y)) |det dψ(y)|.
We now assume that d ∈ R and that P ∈ Ψd(U). Then by Lemma 6.1.6 we may
write P = Ψp + T, with T ∈ Ψ−∞(U) and p ∈ Sd(U) such that Ψp is properly
supported and has distribution kernel Kp supported inside ΩU := (ϕ×ϕ)−1(Ω).
Since ϕ∗(T ) is a smoothing operator by the first part of the proof, it suffices to
show that ϕ∗(Ψp) ∈ Ψd(V ). For this we proceed as follows.

Let {χj} be a partition of unity on U such that suppχj × suppχj ⊂ ΩU

for every j. For each j we select an open neighborhood Uj of suppχj with
Uj × Uj ⊂ ΩU and a function χ′j ∈ C∞c (Uj) which is identically 1 on suppχj .
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Then Pj = Pj ◦Mχ′j
+Tj , with Tj a smoothing operator supported in suppχj×Uj

and with Pj ◦Mξj = Ψrj , where rj(x, ξ, y) = χj(x)p(x, ξ)χ′j(y).
We now observe that Kj = suppχ′j is compact and that ϕ(Kj)×ϕ(Kj) ⊂ Ω.

Morover, rj ∈ Σd
Kj
. It follows that ϕ∗(Ψrj ) = Ψϕ∗(rj). The supports of the

kernels of the operators Tj form a locally finite set, so that T =
∑

j Tj is
a smoothing operator. Hence, so is ϕ∗(T ). The sum

∑
j Prj is locally finite,

and therefore so is Q =
∑

j ϕ∗(Prj ). Hence Q ∈ Ψd(V ). We conclude that
ϕ∗(P ) = Q+ϕ∗(T ) is a pseudo-differential operator on V of order d. Its principal
symbol equals the principal symbol of Q, which is represented by the symbol
q ∈ Sd(V ) given by

q(x, ξ) =
∑
j

ϕ∗(rj)(x, ξ, x)

=
∑
j

rj(ψ(x), dϕ(ψ(x))tξ, ψ(x))

=
∑
j

pj(ψ(x), dϕ(ψ(x))tξ)

= p(ψ(x), dϕ(ψ(x))tξ) = ϕ∗(p)(x, ξ).

�

7.3. Pseudo-differential operators on a manifold, scalar case

In view of the results of the previous section we can now extend the notion of
a pseudo-differential operator to a smooth manifold M of dimension n.

Definition 7.3.1. Let d ∈ R ∪ {−∞}. A pseudo-differential operator P of
order d on M is a continuous linear operator C∞c (M) → C∞(M) given by
a distribution kernel KP ∈ D′(M × M,CM � DM ) such that the following
conditions are fulfilled.

(a) The kernel KP is smooth outside the diagonal of M ×M.
(b) For each a ∈ M there exists a chart (Uκ, κ) containing a such that the

operator Pκ : C∞c (κ(U))→ C∞(κ(U)) given by

Pκ(f)(κ(x)) = P (f ◦κ)(x), (x ∈ U)

belongs to Ψd(κ(U)).

Remark 7.3.2. Of course, by the Schwartz kernel theorem, each continu-
ous linear operator P : C∞c (M) → C∞(M) is in particular continuous linear
C∞c (M)→ D′(M), hence given by a distribution kernel KP ∈ D′(M×M,DM⊗
CM ). In the above formulation, the existence of the kernel is demanded in order
not to rely on the kernel theorem.

Condition (a) asserts thatKP has singular support contained in the diagonal
of M, whereas condition (b) stipulates that the singularity along the diagonal
is of the same type as that of the kernel of a pseudo-differential operator on Rn.
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If ϕ : M → N is a diffeomorphism then by the nature of the definition the
map ϕ∗ : Ψd(M) → Ψd(N) is readily seen to be a linear isomorphism. Be-
fore proceeding we will show that the definition of pseudo-differential operator
coincides with the old one in case M is an open subset of Rn.

Lemma 7.3.3. Let M be an open subset of Rn and let P : C∞c (M)→ C∞(M)
be a continuous linear operator with distribution kernel KP . Then the following
statements are equivalent.

(1) Conditions (a) and (b) of the above definition are fulfilled.
(2) P is a pseudo-differential operator in the sense of Definition 5.2.4.

Proof Clearly (2) implies (1), since M can be taken as the coordinate patch.
We assume (1) and will prove (2).

We first assume that d = −∞. Then requirements (a) and (b) of Definition
7.3.1 guarantee that KP is smooth on all of M, hence that P is an integral
operator with smooth kernel KP ∈ Γ∞(M × M,CM � DM ). Thus, P is an
operator in Ψ−∞ in the sense of Definition 7.3.1.

We now assume that d ∈ R. By Lemma 6.1.6 each a ∈ M has an open
neighborhood Ua in M such that the operator Pa : C∞c (Ua) → C∞(Ua) given
by f 7→ (Pf)|Ua may be written as Pa = Ψpa + Ta, with pa a symbol in Ψd(Ua)
and with Ta ∈ Ψ−∞(Ua) a smoothing operator.

By paracompactness of M there exists a partition of unity {χj} on M such
that for each j the support of χj is contained in some set Uaj as above. We put
Pj = Paj , pj = paj and Tj = Taj . Then Pj = Ψpj + Tj . For each j we choose
a χ′j ∈ C∞c (Uj) such that χ′j = 1 on an open neighborhood of suppχj . Then
χj(1 − χ′j) = 0 so T ′j := MχjPM(1−χ′j) has kernel [χj ⊗ (1 − χ′j)]KP which is
smooth. The supports of these kernels form a locally finite collection, so that
T ′ =

∑
j T

′
j is a smoothing operator.

Moreover, we may write

Mχj ◦P ◦Mχ′j
= Ψqj +Mχj ◦Tj ◦Mχ′j

,

with qj ∈ Sd(M) supported by suppψj . It follows that q =
∑

j qj is a locally
finite sum and defines an element of Sd(M). Moreover, the smooth kernels of
the operators Mχj ◦Tj ◦Mχ′j

are locally finitely supported in M ×M so that
the operators sum up to a smoothing operator T. For f ∈ C∞c (M) we now have
that

Pf =
∑
j

χjP (χ′jf) + T ′(f) = Ψq(f) + T (f) + T ′(f)

and (2) follows. �

If M is a smooth manifold, P : C∞c (M) → C∞(M) a continuous linear
operator, and U ⊂ M an open subset, we agree to write PU for the operator
C∞c (U)→ C∞(U) given by

PUf = (Pf)|U , (f ∈ C∞c (U)).

The following results are now easy consequences of the definitions.
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Exercise 7.3.4. If K ∈ D′(M ×M) is the distribution kernel of P, then the
restriction K|U×U is the distribution kernel of PU .

Exercise 7.3.5. Let M be a smooth manifold, and U ⊂ M an open subset.
Then for each P ∈ Ψd(M), the operator PU belongs to Ψd(U).

In the sequel we shall make frequent use of the following results.

Lemma 7.3.6. Let P ∈ Ψd(M) and let χ ∈ C∞(M).
(a) Let ψ ∈ C∞(M) be such that suppψ ∩ suppχ = ∅. Then

Mχ ◦P ◦Mψ ∈ Ψ−∞(M).

(b) Let χ′ ∈ C∞c (M) be such that χ′ = 1 on an open neighborhood of suppχ.
Then

Mχ ◦P −Mχ ◦P ◦Mχ′ ∈ Ψ−∞(M).
Likewise, P ◦Mχ −Mχ′ ◦P ◦Mχ ∈ Ψ−∞(M).

(c) Let {Pj} is a collection of operators from Ψd(M) such that the supports
suppKPj of the distribution kernels form a locally finite collection of
subsets of M ×M. Then∑

j

Pj ∈ Ψd(M).

Proof Let KP denote the distribution kernel of P. The distribution kernel K ′

of the operator Mχ ◦P ◦Mψ equals K ′ = (χ ⊗ ψ)KP . Since χ ⊗ ψ = 0 on an
open neighborhood of the diagonal in M ×M, the kernel K ′ is smooth. Hence
(a).

We turn to (b). There exists a function ϕ ∈ C∞(M) such that ϕ = 1 on an
open neighborhood of suppχ and such that χ′ = 1 on an open neighborhood of
suppϕ. It follows that (1− χ) and ϕ have disjoint supports. Hence

Mχ ◦P −Mψ ◦Mχ = Mψ ◦ (Mϕ ◦P ◦M1−χ) ∈ Ψ−∞(M).

The second statement of (b) is proved in a similar way.
It remains to prove (c). Let Q =

∑
j Pj . Then Q is a well defined continuous

linear operator C∞c (M) → C∞(M) with distribution kernel KQ =
∑
KPj . On

the complement of the diagonal in M × M the kernel KQ is a locally finite
sum of smooth functions, hence a smooth function. Let a ∈ M. There exists
a coordinate patch U 3 a whose closure in M is compact. The collection J of
indices j for which suppKPj ∩ (U × U) 6= ∅ is finite. It follows that the kernel
of QU equals

KQ|U×U =
∑
j∈J

KPj |U×U =
∑
j∈J

KPjU
.

Hence, QU equals the finite sum
∑

j∈J PjU and belongs to Ψd(U). It follows
that Q ∈ Ψd(M). �

Exercise 7.3.7. Let M be a smooth manifold, and P : C∞c (M) → C∞(M)
a continuous linear operator with a distribution kernel that it smooth outside
the diagonal in M ×M. Let {Uj} be an open covering of M. If PUj ∈ Ψd(Uj)
for each j, then P ∈ Ψd(M).
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The following result indicates that pseudo-differential operators modulo
smoothing operators behave like sections of a sheaf.

Lemma 7.3.8. Let {Uj} be an open covering of the manifold M.

(a) Let P,Q ∈ Ψd(M) be such that PUj = QUj for all j. Then P − Q ∈
Ψ−∞(M).

(b) Assume that for each j a pseudo-differential operator Pj ∈ Ψd(Uj) is
given. Assume furthermore that Pi = Pj on C∞c (Ui ∩ Uj) for all indices
i, j with Ui ∩ Uj 6= ∅. Then there exist a P ∈ Ψd(M) such that PUj −
Pj ∈ Ψ−∞(Uj) for all j. The operator P is uniquely determined modulo
Ψ−∞(M).

Proof LetKP andKQ denote the distribution kernels of P andQ, respectively.
Then KP |Uj×Uj and KQ|Uj×Uj are the distribution kernels of PUj and QUj ,
respectively. It follows that KP−Q = KP −KQ is smooth on each of the sets
Uj×Uj , hence on the diagonal of M×M. As KP−Q is already smooth outside the
diagonal, it follows that KP−Q is smooth on M×M. Hence, P −Q ∈ Ψ−∞(M).

We turn to (b). Let Ω = ∪jUj × Uj . Then Ω is an open neighborhood of
the diagonal in M ×M. Let Kj ∈ D′(Uj ×Uj) denote the distribution kernel of
Pj . Let Uij := Ui ∩ Uj 6= ∅. Then from the assumption it follows that Ki = Kj

on (Ui×Ui) ∩ (Uj ×Uj) = Uij ×Uij . From the gluing property of the sheaf D′
on Ω it follows that there exists a K ∈ D′(Ω) such that K = Kj on Uj ×Uj for
all j.

We will now use a cut off function to extend K to all of M ×M, leaving it
unchanged on an open neighborhood of the diagonal. Let {χν} be a partition
of unity of M, subordinate to the covering {Uj}. For each ν we select j(ν) such
that suppχν ⊂ Uj(ν) and we fix a function χ′ν ∈ C∞c (Uj(ν)) which is identically
1 on an open neighborhood of suppχν . The functions χν ⊗ χ′ν form a locally
finitely supported family of functions in C∞c (Ω). Put

ψ :=
∑
ν

χν ⊗ χ′ν .

Let x ∈ M and let Nx be the finite collection of indices ν with x ∈ suppψν .
Then the functions χ′ν , for ν ∈ Nx are all 1 on a common open neighborhood
Vx of x in M. Moreover,

∑
ν∈Nx

χν equals 1 on an open neighborhood Ux of x
in M. It follows that ψ = 1 on Ux×Vx. Hence, ψ = 1 on an open neighborhood
of the diagonal in M ×M. Put P =

∑
νMχν ◦Pj(ν) ◦Mχ′ν . Then P is a pseudo-

differential operator on M with kernel equal to

KP =
∑
ν

(χν ⊗ χ′ν)KPj = ψK.

For each j ∈ U we have that PUj has kernel

KP |Uj×Uj = ψK|Uj×Uj = ψKj .

It follows that KP − KPj is smooth on Uj × Uj , hence PUj − Pj ∈ Ψ−∞(Uj).
The uniqueness statement follows from (a). �
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In fact, with a bit more effort it can be shown that Ψd/Ψ−∞ defines a sheaf
of vector spaces on M. More precisely, for two open subsets U ⊂ V of M the
map P 7→ PU , Ψd(V ) → Ψd(U) induces a restriction map Ψd(V )/Ψ−∞(V ) →
Ψd(U)/Ψ−∞(U) which we claim to define a sheaf. The following exercise pre-
pares for the proof of this fact.

Exercise 7.3.9. Let Ω be smooth manifold, and let {Ωj}j∈J be an open cover
of Ω. Assume that for each pair of indices (i, j) with Ωij := Ωi ∩ Ωj 6= ∅ a
smooth function gij ∈ C∞(Ωij) is given such that

gij + gjk + gkj = 0 on Ωijk := Ωi ∩ Ωj ∩ Ωk

for all i, j, k with Ωijk 6= ∅. Show that there exist functions gj ∈ C∞(Uj) such
that gi − gj = gij for all i, j. Hint: select a partition of unity {ψα}α∈A on Ω
which is subordinate to the covering {Ωj}. Thus, a map j : A → J is given such
that suppψα ⊂ Uj(α). Now consider gj :=

∑
α ψαgjj(α).

Exercise 7.3.10.
(a) Show that with the restriction maps defined above the assignment U 7→

Ψd(U)/Ψ−∞(U) defines a presheaf on M.
(b) Show that U 7→ Ψd(U)/Ψ−∞(U) satisfies the restriction properety of a

sheaf.
(c) Use the previous exercise combined with the arguments of the proof of

Lemma 7.3.8 to show that U 7→ Ψd(U)/Ψ−∞(U) has the gluing property.

7.4. The principal symbol on a manifold

We will now extend the definition of principal symbol of a pseudo-differential
operator to the setting of a manifoldM. Let π : T ∗M →M denote the cotangent
bundle of M.

First we consider a coordinate patch U of M. Let κ : U → U ′ be a diffeomor-
phism onto an open subset U ′ of Rn. We consider the induced diffeomorphism
T ∗κ : T ∗U → U × (Rn)∗ ' U ′ × Rn given by

T ∗κ(ξx) = (κ(x) , ξx ◦Txκ−1), (x ∈ U, ξx ∈ T ∗xM).

Pull-back by the inverse of T ∗κ induces a linear isomorphism

κ∗ : C∞(T ∗U)→ C∞(U ′ × Rn).

For d ∈ R ∪ {−∞} we define

Sd(U) = {p ∈ C∞(T ∗U) | κ∗(p) ∈ Sd(U ′)}.

It follows from Lemma 5.1.6 that this space is independent of the choice of κ.

Definition 7.4.1. We define Sd(M) to be the space of smooth functions p :
T ∗M → C with the property that for each a ∈ M there exists a coordinate
patch U containing a such that p|T ∗U ∈ Sd(U).

If ϕ : M → N is a diffeomorphism of manifolds, then it follows from
the above definition that the induced linear isomorphism ϕ∗ : C∞(T ∗M) →
C∞(T ∗N) maps Sd(M) onto Sd(N). Moreover, if Ω ⊂ M is an open subset
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then the restriction map C∞(T ∗M) → C∞(T ∗Ω), p 7→ p|T ∗Ω maps Sd(M) to
Sd(Ω).

If Ω is an open subset of M, and K ⊂ Ω a compact subset, we define SdK(Ω)
to be the space of p ∈ Sd(Ω) with supp p ⊂ π−1(K). Finally, we define SdK(Ω) to
be the union of the spaces SdK(Ω), for K ⊂ Ω compact. We note that elements
of Sdc (Ω) may be viewed as elements of Sdc (M) by defining them to be zero on
T ∗M \ T ∗Ω.

If (U, κ) is a chart of M, then the map κ∗ : C∞(T ∗U) → C∞(κ(U) × Rn)
induces a linear bijection

κ∗ : Sd(U)/Sd−1(U) '−→ Sd(κ(U))/Sd−1(κ(U)).

The following definition is justified by Theorem 7.2.6 (b).

Definition 7.4.2. Let U be a coordinate patch of M. We define the map
σdU : Ψ(U)→ Sd(U)/Sd−1(U) by

κ∗σ
d
U (P ) = σdκ(U)(κ∗P ),

for κ a coordinate system on U. (Here σdκ(U) denotes the principal symbol map
of Sd(κ(U)), defined in Definition 5.4.7.)

If U ⊂ M is open, then the restriction map p 7→ p|T ∗Ω induces a map
Sd(M)/Sd−1(M) → Sd(Ω)/Sd−1(Ω), which we shall denote by σ 7→ σΩ. The
support of an element σ ∈ Sd(M)/Sd−1(M) is defined to be the complement of
the largest open subset Ω ⊂M such that σΩ = 0.

Lemma 7.4.3. Let d ∈ R. There exists a unique linear map σd : Ψd(M) →
Sd(M)/Sd−1(M) such that for every coordinate patch U ⊂M we have

σd(P )U = σdU (PU ).

Proof Uniqueness of the map follows from the fact that an element σ ∈
Sd(M)/Sd−1(M) is completely determined by its restrictions to the sets of an
open covering of M. We will establish existence by using a partition of unity.

Let χj be a partition of unity on M such that for each j, the support Kj of
χj is contained in a coordinate patch Uj . We define

σ̃d : P 7→
∑
j

σdUj
((Mψj

◦P )Uj )

Here we note that the term corresponding to j may be viewed as an element
of Sd(M)/Sd−1(M) with support contained in Kj . In particular, the sum is
locally finite and defines an element of Sd(M)/Sd−1(M). Let P ∈ Ψd(M) and
let (U, κ) be a chart of M. We will show that σ̃d(P )U = σdU (PU ).

Let ψ ∈ C∞c (U). Then it suffices to show that ψσ̃d(P )U = ψσdU (PU ). From
the definition given above it follows that ψσ̃d(P )U = σ̃d(ψP )U . Let J be the
finite collection of indices for which suppψj ∩ suppψ 6= ∅. For each j ∈ J we
fix a function χj ∈ C∞c (Uj ∩ U) which equals one on suppψψj . Then it follows
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that

ψσ̃d(P )U =
∑
j∈J

σdUj
(Mψψj

◦PUj )

=
∑
j∈J

σdUj
(Mψψj

◦PUj ◦Mχj )

= σdU (
∑
j∈J

Mψψj
◦PUj ◦Mχj ).

Now modulo smoothing operators from Ψ−∞(U) we have∑
j∈J

Mψψj
◦PUj ◦Mχj =

∑
j∈J

MψMψj
◦PU = Mψ ◦PU .

Hence,
ψσ̃d(P )U = σdU (Mψ ◦PU ) = ψσdU (PU ).

The result follows. �

Theorem 7.4.4. The principal symbol map σd : Ψd(M) → Sd(M)/Sd−1(M)
induces a linear isomorphism

σd : Ψd(M)/Ψd−1(M) '−→ Sd(M)/Sd−1(M).

Proof We will first establish surjectivity. Let p ∈ Sd(M). Let χj be a
partition of unity on M such that for each j the support of χj is contained in a
coordinate patch Uj . For each j there exists an operator Pj ∈ Ψd(Uj) such that
σdUj

(Pj) = pUj + Sd−1(Uj). For each j we select a function χ′j ∈ C∞c (Uj) such
that χ′j = 1 on an open neighborhood of suppχj . Then

P =
∑
j

Mχj ◦Pj ◦Mχ′j

defines an element of Ψd(M). We will show that σd(P ) = p + Sd−1(M). Let
ψ ∈ C∞c (M) have support inside a coordinate patch U. Then it suffices to
show that ψσd(P ) = ψp + Sd−1(M). Let ψ′ ∈ C∞c (U) be identically one on a
neighborhood of suppψ. Then

ψσd(P ) = ψσdU (PU ) = σdU (Mψ ◦PU ◦Mψ′)

=
∑
j

σdU (Mψχj
◦PU ◦Mψ′)

=
∑
j

σdU (Mψχj
◦PU ◦Mψ′χ′j

)

=
∑
j

σdUj
(Mψχj

◦PUj ◦Mψ′χ′j
)

=
∑
j

ψχjp+ Sd−1(M) = ψp+ Sd−1(M).

It remains to be established that σd : Ψd(M) → Sd(M)/Sd−1(M) has kernel
equal to Ψd−1(M). Clearly, the latter space is contained in the kernel. Con-
versely, let P ∈ Ψd(M) and assume that σd(P ) = 0. Then it follows that
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σdU (PU ) = 0 for each coordinate patch U. In view of Corollary 5.4.8 it follows
that PU ∈ Ψd−1(U) for each coordinate patch U. This in turn implies that
P ∈ Ψd−1(M) by Definition 7.3.1. �

7.5. Symbol calculus on a manifold

In this section we will discuss results concerning the principal symbols of ad-
joints and products of pseudo-differential operators on the manifold M. The
proofs of these results will consist of reduction to the analogous local results.

Our first goal is to understand the behavior of the principal symbol under
left and right composition with multiplication by smooth functions. Let χ ∈
C∞(M) and p ∈ Sd(M), then the function π∗(χ)p : T ∗xM 3 ξx 7→ χ(x)p(ξx)
belongs to Sd(M) again. Indeed, this is an easy consequence of the analogous
property in the local case. Accordingly, the space Sd(M) becomes a C∞(M)-
module and we write χp for π∗(χ)p. As Sd−1(M) is a submodule, it follows that
the quotient Sd(M)/Sd−1(M) is a C∞(M)-module in a natural way.

Lemma 7.5.1. Let P ∈ Ψd(M) and χ, ψ ∈ C∞(M). Then Mχ ◦P ◦Mψ ∈
Ψd(M) and

σd(Mχ ◦P ◦Mψ) = χψσd(P ).

Proof The first assertion is a straightforward consequence of the definition
and the fact that

(Mχ ◦P ◦Mψ)U = Mχ|U ◦PU ◦Mψ|U

for every open subset U ⊂M.
Let now U ⊂M be a coordinate patch. Then

σd(Mχ ◦P ◦Mψ)U = σdU ((Mχ ◦P ◦Mψ)U )

= σdU (Mχ|U ◦PU ◦Mψ|U )

= (χψ)|UσdU (PU ) = [χψσd(P )]U .

The result follows. �

Our next goal is to understand the symbol of the adjoint of a pseudo-
differential operator relative to a smooth positive density dm on M. We assume
such a density to be fixed for the rest of this section.

Given two smooth functions f ∈ C∞c (M) and g ∈ C∞(M), we agree to
write

( f , g ) =
∫
M
f(x)g(x) dm(x).

The above pairing has a unique extension to a continuous bilinear pairing
C∞c (M)×D′(M)→ C.
Lemma 7.5.2. Let P ∈ Ψd(M). Then there exists a unique continuous linear
operator R : E ′(M)→ D′(M) such that

(Pf , g ) = ( f , Rg ), for all f, g ∈ C∞c (M).

The operator R belongs to Ψd(M) and has principal symbol given by

σd(R)(ξx) = σd(P )(−ξx), (x ∈M, ξx ∈ T ∗xM).
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Proof The operator P̃ : f 7→ (Pf) dm is continuous linear from C∞c (M)
to Γ∞(DM ), where DM denotes the density bundle on M. It follows that
the transposed P̃ t : E ′(M) → D′(M,DM ) is continuous linear, hence of the
form u 7→ R(u) dm with R a uniquely determined continuous linear operator
E ′(M)→ D′(M). Clearly the operator R satisfies

(Pf , g ) = 〈(Pf) dm, g〉 = 〈f, P̃ tg〉 = 〈f, (Rg)dm〉 = ( f , Rg ).

Moreover, the operator R is uniquely determined by this property. It remains
to be shown that R ∈ Ψd(M). For this we first note that R has the distribution
kernel KR ∈ D′(M ×M,CM �DM ) given by

KR(x, y)(dm(x)⊗ 1) = KP (y, x)(dm(y)⊗ 1),

with KP ∈ D′(M ×M,CM �DM ) the distribution kernel of P. Of course this
equality should be interpreted in distribution sense. From the smoothness of
KP outside the diagonal, it follows that KR is smooth outside the diagonal. Let
now U ⊂M be a coordinate patch, with associated coordinate system κ : U →
U ′ ⊂ Rn. Then there exists a unique strictly positive function J ∈ C∞(U ′) such
that κ∗(dm) = J dx. Let f, g ∈ C∞c (U), then it follows that

〈fdm,Rg〉 = (Pf , g )
= 〈κ∗(Pf), κ∗g κ∗(dm)〉
= 〈κ∗(PU )κ∗f, Jκ∗g dx〉
= 〈κ∗f, κ∗(PU )t[Jκ∗g] dx〉
= 〈κ∗(f dm), J−1κ∗(PU )t[Jκ∗(g)]〉.

From this we conclude that

κ∗(RU ) = MJ−1 ◦κ∗(PU )t ◦MJ .

In view of Lemma 5.4.2 and Proposition 6.2.2 it now follows that κ∗(RU ) ∈
Ψd(U ′) with principal symbol given by

σd(κ∗(RU ))(x, ξ) = σd(MJ−1 ◦κ∗(PU )t ◦MJ)(x, ξ)

= J(x)−1J(x)σd(κ∗(PU ))(x,−ξ) = σd(κ∗(PU ))(x,−ξ).

We conclude that RU ∈ Ψd(U) with principal symbol given by

σdU (RU )([Tmκ]tξ) = σd(κ∗(RU ))(κ(m), ξ)

= σd(κ∗(PU ))(κ(m),−ξ) = σdU (PU )(−[Tmκ]tξ),

for all m ∈ U, ξ ∈ Rn. �

We will end this section by discussing the principal symbol of the composi-
tion of two properly supported pseudo-differential operators.

From the similar local property of principal symbols, it follows that multi-
plication induces a bilinear map

Sd(M)/Sd−1(M)× Se(M)/Se−1(M)→ Sd+e(M)/Sd+e−1(M)

for all d, e ∈ R ∪ {−∞}.
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Theorem 7.5.3. Let P ∈ Ψd(M) and Q ∈ Ψe(M) be properly supported.
Then P ◦Q belongs to Ψd+e(M) and has principal symbol given by

(7.11) σd+e(P ◦Q) = σd(P )σe(Q).

Proof We first consider the case that e = −∞, i.e., Q is a smoothing operator.
We will show that in this case P ◦Q is smoothing. Let K ∈ D′(M ×M,CM �
DM ) be the distribution kernel of P ◦Q. Let a be a point of M, U a coordinate
patch containing a and ψ ∈ C∞c (U) a function with ψ(a) 6= 0. Then it suffices
to show that (1 ⊗ ψ)K is smooth. The latter requirement is equivalent to the
requirement that P ◦Q ◦Mψ be smoothing. Now this can be seen as follows.
Since Q is proper, there exists a compact subset K ⊂M such that the supp (1⊗
ψ)K ⊂ K × suppψ. Fix a non-vanishing smooth density dm on M. We may
write KQ = K̃Q(1 ⊗ dm), with K̃Q ∈ D′(M ×M). Then the map kQ : z 7→
K̃Q( · , z)ψ(z) is smooth from M to C∞K (M). It follows that the map k : z 7→
P (kQ(z)) is smooth from M to C∞(M). For each f ∈ C∞c (M) we have

P ◦Q(ψf) = P [
∫
M
K̃Q( · , z)ψ(z)f(z)dz]

=
∫
M
P [K̃Q( · , z)ψ(z)]f(z) dz

=
∫
M
k(z)f(z) dz

which implies that P ◦Q ◦Mψ has the smooth integral kernel (x, y) 7→ k(z)(x)(1⊗
dm). We conclude that P ◦Q is smoothing whenever Q is.

Combining the above with Lemma 7.5.2 we see that P ◦Q is also a smooth-
ing operator whenever P is.

It remains to consider the case of arbitrary d, e ∈ R. We will first show that
P ◦Q is a pseudo-differential operator of order d + e. Let K ⊂ M be compact.
Then there exists a compact subset K′ ⊂ M such that suppKQ ∩ (M × K) ⊂
K′×K and a compact subset K′′ ⊂M such that suppKP ∩(M×K′) ⊂ K′′×K′.
Then Q maps C∞K (M) continuous linearly into C∞K′(M) and P maps the latter
space continuous linearly into C∞K′′(M). It follows that the composition P ◦Q
is continuous linear C∞K (M) → C∞K′′(M). This implies that R = P ◦Q is a
continuous linear map C∞c (M)→ C∞c (M).

Let ψj be a partition of unity on M such that each ψj is supported in
a coordinate patch. Then by Lemma 7.3.6 (c) it suffices to show that each
operator Rj = R ◦Mψj

belongs to Ψd+e(M). We fix j for the moment, put
ψ = ψj and let U = Uj be a coordinate patch containing suppψ. There exists
a compactly supported function χ ∈ C∞c (U) such that χ = 1 on an open
neighborhood of suppψ. Now M(1−χ) ◦Q ◦Mψ is smoothing, so by the first part
of the proof its left composition with P is smoothing as well. Put

Qj = Mχ ◦Q ◦Mψ.

Then it suffices to show that P ◦Qj belongs to Ψd+e(M). We select ψ′ ∈ C∞c (U)
such that ψ′ = 1 on an open neighborhood of suppχ and χ′ ∈ C∞c (U) such that
χ′ = 1 on an open neighborhood of suppψ′. Then M1−χ′ ◦P ◦Mψ′ is smoothing,
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and by the first part of the proof, so is [M1−χ′ ◦P ◦Mψ′ ]Qj . Put

Pj = Mχ′ ◦P ◦Mψ′ .

Then P = Pj + M1−χ′ ◦P ◦Mψ′ hence it suffices to show that Pj ◦Qj belongs
to Ψd+e(M). As the distribution kernels of the operators Pj , Qj are contained
in suppχ′× suppψ′ ⊂ U ×U, this result follows from the local result, Theorem
7.1.7. We conclude that P ◦Q ∈ Ψd+e(M). By application of Corollary 7.1.10
we obtain that

σd+e(Pj ◦Qj) = σd(Pj)σd(Qj).
From the above it follows furthermore that P ◦Q ◦Mψj

= Pj ◦Qj modulo a
smoothing operator, hence

ψjσ
d+e(P ◦Q) = σd+e(Pj ◦Qj) = σd(Pj)σe(Qj)

= χ′jψ
′
jχjψjσ

d(P )σd(Q) = ψjσ
d(P )σe(Q).

This holds for every j. The identity (7.11) follows. �

Exercise 7.5.4. Let P ∈ Ψd(M).
(a) Show that P has a unique extension to a continuous linear map E ′(M)→
D′(M).

(b) Show that the extension is pseudo-local.

Exercise 7.5.5. Let dm be positive smooth density on M and let P ∈ Ψd(M).
(a) Show that there exists a unique P ∗ ∈ Ψd(M) such that

(Pf , g ) = ( f , P ∗g ) for all f, g ∈ C∞c (M).

(b) Show that the principal symbol of P ∗ is given by

σd(P ∗) = σd(P ).





LECTURE 8
Operators between vector bundles

8.1. Operators on manifolds

In this section we shall extend the definition of pseudo-differential operator to
sections of vector bundles on a smooth manifold M. We start by recalling the
notion of a smooth kernel or smoothing operator between vector bundles on
manifolds.

Let M and N be smooth manifolds, and let πE : E →M and πF : F → N
be smooth complex vector bundles over M and N respectively.

We fix a positive smooth density dy on M, i.e., a smooth section of the
density bundle DM on M that is positive at every point of M. For the definition
of the density bundle and the integration of its sections, see Lecture 2.

The exterior tensor product F �E is the vector bundle on N ×M defined
by

F � E := pr∗1(F )⊗ pr∗2(E);

here pr1,pr2 denote the projections of N ×M to N and M, respectively. Let
k be a smooth section of the bundle F �E∗ on N ×M and let f ∈ Γ∞c (M,E).
For every x ∈ N we may view y 7→ k(x, y)f(y) dy as a compactly supported
density on M with values in the finite dimensional linear space Fx. By using a
partition of unity it is readily seen that the integral of the mentioned density
depends smoothly on x. Accordingly, we define the complex linear operator
T : Γ∞c (M,E)→ Γ∞(N,F ) by

Tf(x) =
∫
M
k(x, y) f(y) dy (y ∈M).

Any T of the above form is called a smooth kernel operator or smoothing
operator from Γ∞c (M,E) to Γ∞(N,F ). Obviously, for such an operator the
Schwartz kernel KT ∈ D′(N ×M,F �E∨) is smooth and given by the formula

KT (x, y) = k(x, y)pr∗2(dy).

In terms of local trivializations of the bundles, T is given by matrices of scalar
smoothing operators. More precisely, this may be described as follows.

129
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We recall that a trivialization of E over an open subset U of M is defined
to be a vector bundle isomorphism τ : EU → U × Ck, with k the rank of E.

A frame of E over an open subset U of M is an ordered set s1, . . . , sk of
sections in Γ∞(U,E) such that s1(x), . . . , sk(x) is an ordered basis of the fiber
Ex, for every x ∈ U. Given a choice of frame s1, . . . , sk, we have a vector bundle
isomorphism σ : U × Ck → EU given by (x, v) 7→ a1s1(x) + · · ·+ aksk(x). The
inverse τ of σ is a vector bundle isomorphism EU → U×Ck, i.e., a trivialization
of E over U.

Conversely, if τ : EU → U ×Ck is a trivialization of the bundle, then there
exists a unique frame s1, . . . , sk of E over U, to which τ is associated in the
above manner, i.e.,

τ [ a1s1(x) + · · ·+ aksk(x) ] = (x, a), ((x, a) ∈ U × Ck).

Assume that E trivializes over the open subset U ⊂M and that F trivializes
over the open subset V ⊂ N. Then the operator TV,U : Γ∞c (U,E) → Γ∞(V, F )
given by

TV,U (f) = (Tf)|V , (f ∈ Γ∞c (U,E)),

has Schwartz kernel equal to Kpr∗2(dy)|V×U . Let s1, . . . , sk be a local frame for
E over U and t1, . . . , tl a local frame for F over V, then TV,U is given by

TU,V
( ∑

j

f jsj
)

= T ij (f
j)ti,

with T ij uniquely determined smoothing operators C∞c (U) → C∞(V ). Con-
versely, any such collection of smoothing operators defines a smoothing opera-
tor from Γ∞c (U,E) to C∞(V, F ). Let t1, . . . , tl be the frame of F ∗ over U dual to
t1, . . . , tl, i.e., 〈ti(y), tj(y)〉 = δij for all y ∈ V. Then we note that the Schwartz
kernel of T ij equals

〈K(x, y), ti(x)⊗ sj(y)〉pr2(dy)(x,y).

The space of smooth kernel operators from E to F is denoted by Ψ−∞(E,F ).
Since any positive smooth density on M is of the form c(y)dy, with c a strictly
positive smooth function, the space Ψ−∞(E,F ) is independent of the particular
choice of the density dy.

Let CM denote the trivial line bundle M×C. Then the space Ψ−∞(CM ,CM )
may be identified with the space of smoothing operators C∞c (M) → C∞(M),
which we previously denoted by Ψ−∞(M).

We shall now give the definition of a pseudo-differential operator between
smooth complex vector bundles E,F →M. We first deal with the case that E
and F are trivial bundles on an open subset U ⊂ M. Thus, E = U × Ck and
F = U × Cl. Then we have natural identifications Γ∞c (U,E) ' C∞c (U,Ck) '
C∞c (U)k, and similar identifications for F. Accordingly, we define Ψd(U,E, F ) =
Ψd(EU , FU ) ⊂ Hom(Γ∞c (U,E),Γ∞(U,F )) by

Ψd(EU , FU ) := Ml,k(Ψd(U)),

the linear space of l × k matrices with entries in Ψd(U). With these identifica-
tions, the action of an element P ∈ Ψd(EU , FU ) on a section f ∈ Γ∞c (U,E) is
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given by
(Pf)i =

∑
1≤j≤k

Pijfj .

Assume that τE and τF are bundle automorphisms of the trivial bundles E =
U × Ck and F = U × Cl, respectively. Thus, τE is a map of the form (x, v) 7→
(x, γE(x)v) with γE : U → GL (k,C) a smooth map, and τF is similarly given
in terms of smooth map γF : U → GL (l,C). Then we have an induced linear
automorphism τE∗ of Γ∞c (U,E) ' C∞c (U)k given by

(τE∗f)(x) = γE(x)f(x), (x ∈ U).

Likewise, we have an induced linear automorphism τ∗F of Γ∞(U,F ), and, ac-
cordingly, an induced linear automorphism τ∗ of Hom(Γ∞c (U,E),Γ∞c (U,F )).
The latter is given by τ∗(Q) = τF∗ ◦Q ◦ τ−1

E∗ , or

τ∗(Q)(f) = γFQ(γ−1
E f), (f ∈ Γ∞c (U,E) ' C∞c (U)k).

It follows by component wise application of Lemma 7.5.1 that τ∗ maps the linear
space Ψd(EU , FU ) isomorphically onto itself.

The last observation paves the way for the definition of Ψd(U,E, F ) =
Ψd(EU , FU ) when E and F are smooth complex vector bundles on M that admit
trivializations over an open subset U ⊂ M. Let τE : E → E′ = U × Ck and
τF : F → F ′ = U×Cl be trivializations; let τE∗ : Γ∞c (U,E)→ Γ∞c (U,E′) be the
induced map, and let τF∗ : Γ∞(U,F ) → Γ∞(U,F ′) be defined similarly. Then
we define Ψd(U,E, F ) to be the space of linear maps Q : Γ∞c (U,E)→ Γ∞(U,F )
such that

(8.1) τ∗(Q) := τ∗F ◦Q ◦ τ−1
E∗ ∈ Ψd(U,E′, F ′).

This definition is independent of the particular choice of the trivializations for
EU and FU , by the observation made above.

Definition 8.1.1. Let E,F be smooth vector bundles on a manifold M and
let d ∈ R. A pseudo-differential operator of order at most d from E to F is
a continuous linear operator P : Γ∞c (E) → Γ∞(F ) with distribution kernel
KP ∈ D′(M ×M,F � E∨) such that the following conditions are fulfilled.

(a) The kernel KP is smooth outside the diagonal of M ×M.
(b) For each a ∈ M there exists an open neighborhood U ⊂ M on which E

and F admit trivializations and such that the operator PU : Γ∞c (U,E)→
Γ∞(U,F ), f 7→ Pf |U belongs to Ψd(EU , FU ).

The space of such pseudo-differential operators is denoted by Ψd(E,F ).

It follows from the above definition that the space Ψd(E,F ) transforms nat-
urally under isomorphisms of vector bundles. More precisely, let ϕ : M1 →M2

be an isomorphism of smooth manifolds, and let ϕE : E1 → E2 be a com-
patible isomorphism of smooth complex vector bundles πE1 : E1 → M1 and
πE2 : E2 → M2. Here the requirement of compatibility means that the pair
(ϕE , ϕ) is an isomorphism of E1 and E2 in the sense of Lecture 2, §3. The iso-
morphism ϕE induces a linear isomorphism ϕE∗ : Γ∞c (M1, E1)→ Γ∞c (M2, E2),
given by ϕE∗f = ϕE ◦ f ◦ϕ−1.



132 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Likewise, let ϕF : F1 → F2 be an isomorphism of vector bundles Fj → Mj

which is compatible with ϕ. Then we have an induced linear isomorphism ϕF∗ :
Γ∞(M1, F1)→ Γ∞(M2, F2). Moreover, the map

ϕ∗ : Hom(Γ∞c (M1, E1),Γ∞(M1, F1))→ Hom(Γ∞c (M2, E2),Γ∞(M2, F2))

given by ϕ∗(Q) = ϕF∗ ◦Q ◦ϕ−1
E∗ restricts to a linear isomorphism

ϕ∗ : Ψd(M1, E1, F1) '−→ Ψd(M2, E2, F2).

We note that it also follows from the above definition that if E and F admit triv-
ializations τE : E → E′ = U ×Ck and τF : F → F ′ = U ×Ck, respectively, then
τ∗ maps Ψd(U,E, F ) linearly isomorphically onto Ψd(U,E′, F ′) ' Ml,k(Ψd(U)).
Indeed, by the previous remark and the remark below (8.1), it suffices to prove
this for E = M × Ck and F = M × Cl. In this case

Hom(Γ∞c (E), C∞(F )) ' Ml,k(Hom(C∞c (M), C∞(M))).

If P ∈ Hom(Γ∞c (E), C∞(F )), then P ∈ Ψd(E,F ) in the sense of Definition 8.1.1
if and only if all its components Pij belong to Ψd(M) in the sense of Definition
7.3.1.

Remark 8.1.2. The straightforward analogues of Exercise 7.3.4 and 7.3.5,
Lemma 7.3.6, Exercise 7.3.7, Lemma 7.3.8, Exercise 7.3.10 are valid for opera-
tors from Ψd(E,F ), by reduction to trivial bundles and the scalar case, along
the lines discussed above. We leave it to the reader to check the details.

It follows from Definition 8.1.1 and the corresponding fact for scalar opera-
tors that Ψ−∞(E,F ) equals the intersection of the spaces Ψd(E,F ), for d ∈ R.

8.2. The principal symbol, vector bundle case

In this section we shall discuss the definition and basic properties of the prin-
cipal symbol for a pseudo-differential operator between smooth complex vector
bundles πE : E → M and πF : F → M. We first concentrate on the definition
of the appropriate symbol space.

Let πH : H →M be a vector bundle. We agree to write

Γ∞(T ∗M,H) = {f ∈ C∞(T ∗M,H) | ∀x ∈M : f(T ∗xM) ⊂ Hx}.
There is a natural identification of this space with the space of sections of the
pull-back π∗H of the vector bundle H under the map π : T ∗M → M, so that
Γ∞(T ∗M,H) ' Γ∞(T ∗M,π∗H), but we shall not need this. If H is trivial of
the form H = M × CN , then the elements of Γ∞(T ∗M,H) are precisely the
functions of the form ξx 7→ (x, f(ξx)) with f ∈ C∞(T ∗M,CN ). It follows that
Γ∞(T ∗M,H) ' C∞(T ∗M,CN ). Accordingly, we define

Sd(M,H) := {f ∈ Γ∞(T ∗M,V ) | ∀j : fj ∈ Sd(M) } ' Sd(M)N .

Let τ : H1 → H2 be an isomorphism of two vector bundles on M. Then the
map

τ∗ : Γ∞(T ∗M,H1)→ Γ∞(T ∗M,H2),
defined by

τ∗(f)(ξx) = τx(f(ξx)), (x ∈M, ξx ∈ T ∗xM),
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is a linear isomorphism. Assume now that τ is a bundle automorphism of the
trivial bundle H = M × CN . Then τ has the form τ(x, v) = (x, τx(v)), with
x 7→ τx a smooth map M → GL (N,C). It follows that the linear automorphism
τ∗ of Γ∞(T ∗M,H) ' C∞(T ∗M)N is given by

τ∗(f)(ξx) = τx(f(ξx)).

It is readily checked that this map restricts to a linear automorphism of the
symbol space Sd(T ∗M,H).

Now assume the bundle H is trivializable and let τ ′ : H → H ′ = M × CN

be a trivialization. Then we define Sd(M,H) := τ−1
∗ Sd(M,H ′). This definition

is independent of the particular choice of the trivialization τ, in view of the
preceding discussion.

Definition 8.2.1. Let H → M be a complex vector bundle. For d ∈ R ∪
{−∞}, we define the symbol space Sd(M,H) to be the space of sections p ∈
Γ∞(T ∗M,H) such that for every open neighborhood U on which H admits a
trivialization, the restriction pU := p|T ∗U belongs to Sd(U,HU ).

Clearly, for p ∈ Γ∞(T ∗M,H) to belong to Sd(M,H) is suffices that for
every a ∈ M there exists an open trivializing neighborhood U such that pU ∈
Sd(U,HU ).

We also note that for ϕ ∈ C∞(M) multiplication by π∗ϕ ∈ C∞(T ∗M) maps
Sd(T ∗M,H) linear isomorphically to itself. Accordingly, Sd(M,H) becomes a
C∞(M)-module. It follows that the quotient

Sd/Sd−1(M,H) := Sd(M,H)/Sd−1(M,H)

is a C∞(M)-module as well.
Let U ⊂M be open and let K ⊂ U be compact. Then we write SdK(U,HU )

for the subspace of Sd(U,HU ) consisting of p with support in K in the sense that
pU\K = 0. Equivalently, this means that the function p : T ∗U → HU vanishes
on π∗(U \ K). The extension of such a function to T ∗M by the requirement
u(ξx) = 0x ∈ Hx for every ξx ∈ T ∗M \ T ∗U belongs to SdK(M,H). Accordingly,
we have a linear injection

SdK(U,HU ) ↪→ SdK(M,H).

Let Sdc (U,HU ) denote the union of the spaces SdK(U,HU ), for K ⊂ U compact.
Then Sdc (U,HU ) ↪→ Sdc (M,H). Accordingly, we have an induced linear injection

Sdc (U,HU )/Sd−1
c (U,HU ) ↪→ Sdc (M,H)/Sd−1

c (M,H).

We will now see that the definition of the principal symbol map can be
generalized to the context of bundles. Let E,F be two complex vector bundles
on M. The principal symbol map associated with Ψd(E,F ) will be a map

σd : Ψd(M,E,F )→ Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).

Here Hom (E,F ) is the vector bundle on M whose fiber at x ∈M is given by

Hom (E,F )x = HomC(Ex, Fx).
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If U ⊂ M is an open subset on which both E and F admit trivializations
τU : EU → U × Ck and τF : FU → U × Cl, then the bundle Hom (E,F ) admits
the trivialization

τ : Hom (E,F )U → U ×Hom(Ck,Cl)

given by
τx(T ) = (τF )x ◦T ◦ (τE)−1

x .

Let ϕ : E → F be a vector bundle homomorphism. Then the map ϕ : x 7→
ϕx ∈ Hom(Ex, Fx) defines a smooth section of the bundle Hom (E,F ). Using
trivializations we readily see that the map ϕ 7→ ϕ defines a linear isomorphism

Hom(E,F ) '−→ Γ∞(Hom (E,F )).

Initially we will give the definition of principal symbol for trivial bundles.
Assume that E = M × Ck and F = M × Cl so that Hom (E,F ) = M ×
Hom(Ck,Cl) ' Ml,k(C). Then

Sd(M,Hom (E,F )) ' Ml,k(Sd(M))

and, accordingly,

Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )) ' Ml,k(Sd(M)/Sd−1(M))

In this setting of trivial bundles, we define the principal symbol map σd = σdE,F
component wise by

σd(P )ij := σd(Pij), (1 ≤ i ≤ l, 1 ≤ j ≤ k).

Assume now that τE and τF are automorphisms of the trivial bundles E and
F, respectively and let τ be the induced automorphism of Hom (E,F ). We
denote by τ∗ the induced automorphisms of Ψd(E,F ) and of the quotient space
Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).

Lemma 8.2.2. For every P ∈ Ψd(E,F ),

σd(τ∗(P )) = τ∗(σd(P )).

Proof We observe that for f ∈ Γ∞(E) ' C∞(M)k we have

(τ∗(P )f)i =
∑
r,s,j

(τFx)irPrs(τ−1
Ex)sjfj

so that by Lemma 7.5.1

σd(τ∗(P )ij) =
∑
r,s

(τF )ir(τ−1
E )sjσd(Prs)

=
∑
r,s

(τF )ir(τ−1
E )sjσd(P )rs

= (τ∗σd(P ))ij .

This implies that σd(τ∗(P ))ij = σd(τ∗(P )ij) = (τ∗σd(P ))ij . �
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If E and F admit trivializations τE : E → E′ = M ×Ck and τF : F → F ′ =
M ×Cl we define the principal symbol map σdE,F on Ψd(E,F ) by requiring the
following diagram to be commutative

(8.2)
Ψd(E,F ) τ∗−→ Ψd(E′, F ′)
σd

E,F ↓ ↓ σd
E′,F ′

Sd/Sd−1(M,Hom (E,F )) τ∗−→ Sd/Sd−1(M,Hom (E′, F ′)).

Finally, we come to the case that E → M and F → M are arbitrary complex
vector bundles of rank k and l respectively.

Lemma 8.2.3. Let P ∈ Ψd(E,F ). Then there exists a unique

σd(P ) = σdE,F ∈ Sd(M,Hom (E,F ))/Sd−1(Hom (E,F ))

such that for every open subset U ⊂ M on which both E and F admit trivial-
izations,

(8.3) σd(P )U = σdEU ,FU
(PU ).

Proof Uniqueness is obvious. We will establish existence. Let {Uj} be an
open cover of M consisting of open subsets on which both E and F admit
trivializations. We may assume that {Uj} is locally finite and that {ψj} is a
partition of unity on M with suppψj ⊂ Uj for all j. Given P ∈ Ψd(E,F ) we
define σd(P ) by

σd(P ) =
∑
j

ψjσ
d
EUj

,FUj
(PUj ).

As this is a locally finite sum, it defines an element of Sd(M,H)/Sd−1(M,H).
It remains to verify (8.3) for an open subset U on which E and F admit trivi-
alizations τU . With σd(P ) as just defined we have

σd(P )U =
∑
j

ψj |U σdEUj
,FUj

(PUj )U∩Uj

=
∑
j

ψj |U σdEU ,FU
(PU )U∩Uj

=
∑
j

ψj |U σdEU ,FU
(PU )

= σdEU ,FU

( ∑
j

Mψj |U ◦PU
)

= σdEU ,FU
(PU ).

�

Definition 8.2.4. Let P ∈ Ψd(E,F ). The d-th order principal symbol of P is
defined to be the unique element σd(P ) ∈ Sd/Sd−1(M,Hom (E,F )) satisfying
the properties of Lemma 8.2.3.

Obviously, P 7→ σd(P ) is a linear map. As should be expected, it follows
from the above definition that the principal symbol map behaves well under
bundle isomorphisms. Consider isomorphisms τE : E1 → E2 and τF : F1 → F2
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of vector bundles on M. Then the definitions have been given in such a way
that the following diagram commutes

(8.4)
Ψd(M,E1, F1) σd

−→ Sd(M,Hom (E1, F1))/Sd−1(M,Hom (E1, F1))
τ∗ ↓ ↓ τ∗

Ψd(M,E2, F2) σd

−→ Sd(M,Hom (E2, F2))/Sd−1(M,Hom (E2, F2))

The local version of this result is true because of the local requirement (8.2).
The global validity follows by the uniqueness part of the characterization of the
symbol map in Lemma 8.2.3.

Lemma 8.2.5. Let ψ, χ ∈ C∞(M). Then, for all P ∈ Ψd(E,F ),

σd(Mψ ◦P ◦Mχ) = ψχσd(P ).

Proof For trivializable bundles E and F the result is a straightforward con-
sequence of the analogous result in the scalar case. Let U be any open subset
of M on which both E and F admit trivializations. Then

σd(Mψ ◦P ◦Mχ)U = σdU (Mψ|U ◦PU ◦Mχ|U )

=
(
ψ|Uχ|UσdU (PU )

=
(
ψχσd(P )

)
U
.

The result follows. �

Theorem 8.2.6. The principal symbol map σd induces a linear isomorphism

Ψd(E,F )/Ψd−1(E,F ) '−→ Sd(M,Hom (E,F ))/Sd−1(M,Hom (E,F )).

Proof If E,F are trivial, then the result is an immediate consequence of
the analogous result in the scalar case. If E,F are trivializable, the result is
still true in view of the commutativity of the diagram (8.4). Let now E,F be
arbitrary complex vector bundles on M and put H = Hom (E,F ). We must
show that the principal symbol map σd : Ψd(E,F ) → Sd(M,H)/Sd−1(M,H)
has kernel Ψd−1(E,F ) and is surjective. Let P ∈ Ψd(E,F ), then σd(P ) = 0
if and only if for every open subset U ⊂ M on which both E and F admit a
trivialization, σd(P )U = 0. The latter condition is equivalent to σdU (PU ) = 0,
hence by the first part of the proof to PU ∈ Ψd−1(EU , FU ). It follows that
kerσd = Ψd−1(E,F ).

To establish the surjectivity, let p ∈ Sd(M,H) and let [p] denote its class
in the quotient Sd(M,H)/Sd−1(M,H). Let {Uj} be an open cover of M such
that both E and F admit trivializations over Uj , for all j. We may choose the
covering such that there exists a partition of one, {ψj}, with suppψj ⊂ Uj for
all j. By the first part of the proof, there exists for each j a pseudo-differential
operator Pj ∈ Ψd(EUj , FUj ), such that

σd(Pj) = [p]Uj ∈ Sd(Uj ,HUj )/Sd−1(Uj ,HUj ).

For each j we fix χj ∈ C∞c (Uj) such that χj = 1 on suppψj . Then Mψj
◦Pj ◦Mχj

is a pseudo-differential operator in Ψd(E,F ) with distribution kernel supported
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by suppψj × suppχj . It follows that the distribution kernels are locally finitely
supported. Hence

P :=
∑
j

Mψj
◦Pj ◦Mχj

is a well-defined pseudo-differential operator in ψd(E,F ). Let U be any rela-
tively compact open subset of M on which both E and F admit trivializations,
then

σd(P )U =
∑
j

(
ψjσ

d(Pj)
)
U

=
∑
j

ψj |U [p]U = [p]U ,

with only finitely many terms of the sums different from zero. It follows that
σd(P ) = [p].We have established the surjectivity of the principal symbol map. �

8.3. Symbol of adjoint and composition

We now turn to the behavior of the principal symbol when passing to adjoints.
Let E → M and F → M be complex vector bundles on M of rank k and l,
respectively. Let E∗ and F ∗ be the dual bundles of E and F respectively. We
recall that E∨ := E∗ ⊗DM and F∨ = F ∗ ⊗DM , with DM the density bundle
on M.

Lemma 8.3.1. Let V,W be finite dimensional complex linear spaces, and let
L be a one-dimensional complex linear space. Then the map T 7→ T ⊗IL defines
a natural isomorphism

HomC(V,W ) ' HomC(V ⊗ L,W ⊗ L).

Proof Straightforward. �

Corollary 8.3.2. The map

Hom (F ∗, E∗)x 3 Tx 7→ Tx ⊗ IDMx
∈ Hom (F∨, E∨)x

defines a natural isomorphism of vector bundles.

Given p ∈ Sd(M,Hom (E,F )), we define p∨ : T ∗M → Hom (F∨, E∨) by

p∨(ξx) = p(−ξx)∗ ⊗ IDMx
,

for x ∈ M and ξx ∈ T ∗xM. Then clearly, p∨ ∈ Sd(M,Hom (F∨, E∨)). The map
p→ p∨ is readily seen to define a linear isomorphism

Sd(M,Hom (E,F ))→ Sd(M,Hom (F∨, E∨),

for every d ∈ R ∪ {−∞}. Moreover, p∨∨ = p for all p. Accordingly, we have an
induced linear isomorphism

Sd/Sd−1(M,Hom (E,F )) '−→ Sd/Sd−1(M,Hom (F∨, E∨)),

denoted by σ 7→ σ∨.
Let P ∈ Ψd(E,F ). As P is a continuous linear operator Γ∞c (E)→ Γ∞(F ),

its adjoint P t is a continuous linear operator from the topological linear dual
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Γ∞(F )′ = E ′(F∨) to the topological linear dual Γ∞c (E)′ = D′(E∨). We recall
that the natural continuous bilinear pairing Γ∞(E∨)× Γ∞c (E)→ C defined by

〈f, g〉 =
∫
M

(f, g)

induces a natural continuous linear embedding Γ∞(E∨) ↪→ D′(E∨). Likewise,
we have a natural continuous linear embedding Γ∞c (F∨) ↪→ E ′(F∨).

Lemma 8.3.3. Let P ∈ Ψd(E,F ). The adjoint P t restricts to a continuous
linear map Γ∞c (F∨) → Γ∞(E∨). The restricted map is a pseudo-differential
operator in Ψd(F∨, E∨) with principal symbol given by

σd(P t) = σd(P )∨.

Proof Let U ⊂ M be an open subset. Then it is readily seen from the
definitions that (P t)U = (PU )t and that (σd(P )∨)U = (σd(P )U )∨ = σd(PU )∨.
Therefore the result is of a local nature, and we may as well assume that E and
F admit trivializations on M. Let e1, . . . , ek be a frame for E and let f1, . . . , fl
be a frame for F. Let e1, . . . , ek be the dual frame for the dual bundle E∗;
i.e., (ei, ej) = δij , for all 1 ≤ i, j ≤ k. Similarly, let f1, . . . , f l be the dual
frame for the dual bundle F ∗. Let dm be choice of smooth positive density on
M, then {dm} constitutes a frame for the density bundle DM . It follows that
e1dm, . . . , ekdm is a frame for E∨ and f1dm, . . . , f ldm a frame for F∨.

Let P ∈ Ψd(E,F ). The operator P has components Pij relative to the
frames {ej} and {fi}. Given ϕ,ψ ∈ C∞c (M), we have

ψPijϕ = (ψf i, P (ϕej)).

The components of the adjoint operator P t are given by

ϕ(P t)ji(ψ)dm = (ϕej , P t(ψf idm)).

Integrating the densities on both sides of the equality over M we find that

〈ϕdm, (P t)jiψ〉 = 〈P (ϕej), ψf idm〉 = 〈Pij(ϕ), ψdm〉.
This implies that (P t)ji equals the adjoint of Pij in the sense of Lemma 7.5.2.
Hence, P t ∈ Ψd(F∨, E∨) and

σd(P t)ji(ξx) = σd(P )ij(−ξx) =
(
σd(P )∨(ξx)

)
ji
.

The result follows. �

Let P ∈ Ψd(E,F ). Then it follows by application of the lemma above that
P extends to a continuous linear map E ′(E) → D′(F ). Indeed, the extension
equals the adjoint of the map P t : Γ∞c (F∨)→ Γ∞(E∨). The extension is unique
by density of Γ∞c (E) in E ′(E).

It follows from the definitions that if the distributional kernel KP has sup-
port S ⊂M ×M, then the distributional kernel of the adjoint operator P t has
support St = {(y, x) ∈ M ×M | (x, y) ∈ S}. In analogy with the scalar case,
the operator P is said to be properly supported if the restricted projection maps
prj |S : S → M are proper, for j = 1, 2. Thus, if P is properly supported, then
so is P t. In this case P t maps Γ∞c (F∨) continuous linearly into Γ∞c (E∨), and
we see that P extends to a continuous linear operator D′(E)→ D′(F ).
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Lemma 8.3.4. Let P ∈ Ψd(E,F ) be properly supported. Then the continuous
linear operator P : D′(E) → D′(F ) is pseudo-local, i.e., for all u ∈ D′(E) we
have

singsupp (Pu) ⊂ singsuppu.

Proof Let a ∈ M \ suppu. Then there exists an open neighborhood O 3 a
with O∩ suppu = ∅. Let ψ ∈ C∞c (O) be equal to 1 on a neighborhood of a. By
paracompactness of suppu there exists a smooth functions χ ∈ C∞(M) such
that χ = 1 on a neighborhood of suppu and such that suppψ ∩ suppχ = ∅.
It follows that T := Mψ ◦P ◦Mχ is a properly supported smoothing operator.
Hence ψPu = ψP (χu) = Tu is smooth. It follows that Pu is smooth in a
neighborhood of a. �

As in the scalar case, modulo a smoothing operator each pseudo-differential
operator can be represented by a properly supported one.

Lemma 8.3.5. Let Ω ⊂ M × M be an open neighborhood of the diagonal.
Then for each P ∈ Ψd(E,F ) there exists a properly supported P0 ∈ Ψd(E,F )
with suppKP0 ⊂ Ω such that P − P0 ∈ Ψ−∞(E,F ).

Proof The proof is an obvious adaptation of the proof of Lemma 6.1.6. By
Lemma 6.1.7 there exists a locally finite open covering {Uj}j∈J of M such that
for all i, j ∈ J, Ui ∩ Uj 6= ∅ ⇒ Ui × Uj ⊂ Ω. There exists a partition of unity
{ψj} with ψj ∈ C∞c (Uj). For each j we choose a χj ∈ C∞c (Uj) which equals 1
on an open neighborhood of suppψj . We now define

P0 =
∑
j∈J

Mψj
◦P ◦Mχj .

The j-th term in the above sum is a pseudo-differential operator of order d with
distribution kernel supported in suppψj × suppχj . As this is a locally finite
collection of sets, it follows that P0 ∈ Ψd(E,F ). Moreover, the distribution
kernel of P0 has support contained in the union of the sets Uj × Uj which is
contained in Ω.

Since suppψj ∩ supp (1− χj) = ∅, the operator

Tj := Mψj
◦P ◦M1−χj

is a smooth kernel operator, with smooth kernel supported inside the set Uj×M.
Since these sets form a locally finite collection in M ×M, the sum T =

∑
j Tj

is a well defined smoothing operator in Ψ−∞(E,F ). It is now readily checked
that P − P0 = T. �

We end this section with a discussion of the composition of two properly
supported pseudo-differential operators. To prepare for this, we will first study
the product of bundle-valued symbols. Let E1, E2, E3 be complex vector bun-
dles on M. Given p ∈ Sd(M,Hom (E1, E2) and q ∈ Se(M,Hom (E2, E3) we
define qp : T ∗M → Hom(E1, E3) by

qp : T ∗xM 3 ξx 7→ q(ξx) ◦x p(ξx) ∈ Hom (E1, E3)x,

where ◦x denotes the composition map from Hom (E1, E2)x×Hom (E2, E3)x to
Hom (E1, E3)x.
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Lemma 8.3.6. The assignment (p, q) 7→ qp defines a bilinear map

Sd(M,Hom (E1, E2))× Se(M,Hom (E2, E3))→ Sd+e(M,Hom (E1, E3)).

Proof The bilinearity of the assignment as a map into Γ∞(T ∗M,Hom (E1, E3))
is obvious. We will prove the remaining assertion that the assignment has image
contained in Sd+e.

If U is an open subset of M, then for p ∈ Sd(M,Hom (E1, E2)) and q ∈
Se(M,Hom (E2, E3)) we have (qp)U = qUpU . Therefore, the result is of a local
nature, and we may as well assume that each Ej admits a trivialization, for
j = 1, 2, 3. For each such j, let ej1, . . . , ejkj

be a frame for Ej . Then the symbol
p has components pβα ∈ Sd(M) given by

p(ξx)(e1α(x)) =
k2∑
β=1

pβα(ξx)e2β(x)

for all x ∈ M and ξx ∈ T ∗xM. Likewise, the symbol q has components qγβ ∈
Se(M) given by

q(ξx)(e2β(x)) =
k3∑
γ=1

qγβ(ξx)e3γ(x).

It follows that the γ-component of q(ξx)p(ξx)(e1α(x)) relative to the basis
{e3γ(x)} of E3x is given by

(qp)γα =
k2∑
β=1

qγβpβα.

This shows that qp ∈ Sd+e(M,Hom (E1, E3)). �

It follow from this lemma that the product map induces a bilinear map

Sd/Sd−1(M,Hom (E1, E2))× Se/Se−1(M,Hom (E2, E3))

−→ Sd+e/Sd+e−1(M,Hom (E1, E3))

denoted (σ1, σ2) 7→ σ2σ1.
We now turn to the composition of pseudo-differential operators. If P ∈

Ψd(E1, E2) is a properly supported pseudo-differential operator then P maps
Γ∞c (E1) continuous linearly to Γ∞c (E2). Thus, if Q ∈ Ψe(E2, E3) then the com-
position Q ◦P is a well-defined continuous linear operator Γ∞c (E1)→ Γ∞(E3).

Theorem 8.3.7. Let P ∈ Ψd(E1, E2) and Q ∈ Ψe(E2, E3) be properly sup-
ported. Then the composition Q ◦P is a properly supported pseudo-differential
operator in Ψd+e(E1, E3) with principal symbol given by

(8.5) σd+e(Q ◦P ) = σe(Q)σd(P ).

Proof We first assume that d = e = −∞ so that both P and Q are smoothing
operators and will show that Q ◦P is a smoothing operator. For this it suffices
to be shown that the kernel of Q ◦P is smooth at each point (a, b) ∈ M ×M.
Let U and W be relatively compact open neighborhoods of a and b on which
both E and F admit trivializations. Let χ ∈ C∞c (U) be equal to 1 on an open
neighborhood of a and let χ′ ∈ C∞c (W ) be equal to 1 on an open neighborhood
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of b. Then the kernel of Mχ′ ◦Q ◦P ◦Mχ equals the kernel of Q ◦P on an open
neighborhood of (b, a), so that it suffices to show that Mχ′ ◦Q ◦P ◦Mχ is a
smoothing operator.

Let A be a compact subset of M such that suppKP ⊂ A×U, and suppKQ ⊂
W ×A. Let {Vj} be a finite cover of A by open subsets of M on which each of
the bundles E,F admits a trivialization. Let ψj ∈ C∞c (Vj) be functions such
that

∑
j ψj = 1 on an open neighborhood of A. For each j, let ψ′j ∈ C∞c (Vj) be

such that ψ′j = 1 on an open neighborhood of suppψj . Then

Mχ′ ◦Q ◦P ◦Mχ =
∑
j

Qj ◦Pj ,

where Qj = Mχ′ ◦Q ◦Mψ′j
and Pj = Mψj

◦P ◦Mχ. It suffices to show that each
of the operators Qj ◦Pj is smoothing. Fix j. Let e11, . . . , e1k1 be a frame of E1

on U, e21, . . . , e2k2 a frame of E2 on Vj and e31, . . . , e3k3 a frame of E3 on W. Let
Pjβα be the components of Pj : Γ∞c (U,E1) → Γ∞c (Vj , E2) relative to the first
two frames, and let Qjγβ be the components of Qj : Γ∞c (Vj , E2) → Γ∞c (W,E3)
relative to the second pair of frames. These components are scalar smoothing
operators. The components of Qj ◦Pj : Γ∞c (U)→ Γ∞c (W ) are given by

(Qj ◦Pj)γα =
∑
β

Qjγβ ◦Pjβα.

As all operators in this sum are smoothing, it follows that Qj ◦Pj : Γ∞c (U,E1)→
Γ∞c (W,E3) is smoothing. As Qj ◦Pj vanishes on the complement of suppχ and
has image contained in C∞c (W ), it follows that Qj ◦Pj is a smoothing operator.

We now assume that d ∈ R and e = −∞ and will show that Q ◦P is
smoothing. Let U ⊂ M be a relatively compact open subset on which each of
the bundles Ej , for j = 1, 2, 3 admits a trivialization. Let χ ∈ C∞c (U) then it
suffices to show that Mχ ◦Q ◦P is smoothing. Let ψ ∈ C∞c (U) be such that
ψ = 1 on an open neighborhood of suppχ. ThenMχ ◦Q differs fromMχ ◦Q ◦Mψ

by a smoothing operator, hence, by the first part of the proof it suffices to show
that Mχ ◦Q ◦Mψ ◦P is smoothing. Let χ′ ∈ C∞c (U) be such that χ′ = 1
on an open neighborhood of suppχ. Then Mχ ◦Q ◦Mψ ◦P = Q0 ◦P0, where
Q0 = Mχ ◦Q ◦Mψ and P0 = Mχ′ ◦P. As P is properly supported, there exists
a compact subset B ⊂M such that suppKP ∩U ⊂M ⊂ U ×B. Let {Vj} be a
finite open cover of B such that the bundle E1 admits a trivialization on each of
the sets Vj . Let ψj ∈ C∞c (Vj) be such that

∑
j ψj = 1 on an open neighborhood

of B. Then P0 =
∑

j Pj , where Pj = P0 ◦Mψj
. It suffices to show that each

operator Q0 ◦Pj is smoothing. Fix j, let e11, . . . , e1,k1 be a frame of E1 on
Vj , let e21, . . . e2k2 be a frame of E2 on U and e31, . . . , e3k3 a frame of E3 on U.
Then in terms of components of the operators Q0 : Γ∞c (U,E2)→ Γ∞c (U,E3) and
Pj : Γ∞c (Vj , E1) → Γ∞c (U,E2) the operator Q0 ◦Pj : Γ∞c (Vj , E1) → Γ∞c (U,E3)
has components given by

(8.6) (Q0 ◦Pj)γα =
k2∑
β=1

(Q0)γβ ◦ (Pj)βα
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The operators (Pj)βα are smoothing with kernels whose compact supports are
contained in U × Vj . Extending these kernels with value zero outside their
supports, we obtain kernels on M×M such that the identities (8.6) still hold for
the associated scalar operators. As (Q0)γβ ∈ Ψe(M) for all γ, β and (Pj)βα ∈
Ψ−∞(M) for all α, β, it follows from Theorem 7.5.3 that all components of
Q0 ◦Pj are smoothing operators. Hence, Q0 ◦P is smoothing. We conclude
that Q ◦P is smoothing.

Likewise, if e = −∞ and d ∈ R, then Q ◦P is a smoothing operator. To see
this we may either imitate the argument in the previous part of the proof, or
combine the result of that part with Lemma 8.3.3.

Finally, we discuss the case that e, d are arbitrary. We will show thatQ ◦P ∈
Ψd+e(E1, E3). Let U be an open subset of M on which each of the bundles
Ej , for j = 1, 2, 3 trivializes. Let χ ∈ C∞c (U); then it suffices to show that
Mχ ◦Q ◦P ∈ Ψd+e. Let χ′ ∈ C∞c (U) be such that χ′ = 1 on suppχ. Then Mχ ◦Q
equals Q0 := Mχ ◦Q ◦Mχ′ modulo a smoothing operator, hence by the first part
of the proof it suffices to show that Q0 ◦P belongs to Ψd+e. The latter operator
equals Q0 ◦Mψ ◦P for ψ ∈ C∞c (U) such that ψ = 1 on an open neighborhood
of suppχ′. Let ψ′ ∈ C∞c (U) be equal to 1 on an open neighborhood of suppψ,
then Mψ ◦P equals P0 := Mψ ◦P ◦Mψ′ modulo a smoothing operator, hence
it suffices to show that Q0 ◦P0 ∈ Ψd+e(E1, E3). As the supports of the kernels
of Q0 and P0 are contained in U × U, it suffices to show that (Q0)U ◦ (P0)U ∈
Ψd+e((E1)U , (E3)U ).

Thus, to show that Q ◦P belongs to Ψd+e(E1, E3) we may as well assume
that E1, E2, E3 are trivial on M from the start. In this situation, Ψd(E1, E2) '
Mk2,k1(Ψd(M)) and Ψe(E2, E3) ' Mk3k2(Ψe(M)). Moreover, the composition
Q ◦P has components

(Q ◦P )γα =
∑
β

Qγβ ◦Pβα.

It follows by application of Theorem 7.5.3 that these components belong to
Ψd+e(M) and have principal symbols given by

σd+e((Q ◦P )γα) =
∑
β

σe(Qγβ) ◦σd(Pβα).

It follows that
σd+e(Q ◦P )γα =

(
σe(Q)σd(P )

)
γα

whence (8.5).
We now assume to be in the general situation again. It remains to be shown

that R := Q ◦P is properly supported. Let A ⊂ M be compact. Then there
exists a compact subset B ⊂M such that suppKP ∩ (M ×A) ⊂ B ×A. There
exists a compact subset C ⊂M such that suppKQ ∩ (M ×B) ⊂ C ×B. It now
easily follows that suppKR ∩ (M ×A) ⊂ C×A. Thus, pr2|suppKR

: suppKR →
M is proper. The properness of pr1|suppKR

is established in a similar way. �

Exercise 8.3.8. Let P ∈ Ψd(E,F ). Show that the following two assertions
are equivalent.
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(a) The operator P is properly supported.
(b) The operator P maps Γ∞c (E) continuous linearly to Γ∞c (F ) and its ad-

joint P t maps Γ∞c (F∨) continuous linearly to Γ∞c (E∨).

8.4. Elliptic operators, parametrices

We assume that E →M and F →M are complex vector bundles on M of rank
k and l, respectively.

The symbol space S0(M,End (E)) has a distinguished element 1E given by

1E : T ∗xM 3 ξx 7→ IEx ∈ End (E)x, (x ∈M).

Likewise, S0(M,End (F )) has a distinguished element 1F .
A symbol p ∈ Sd(M,Hom (E,F )) is said to be elliptic (of order d) if there

exists a symbol q ∈ S−d(M,Hom (F,E) such that

pq − 1F ∈ S−1(M,End (F )), and qp− 1E ∈ S−1(M,End (E)).

For the classes [p] ∈ Sd/Sd−1 and [q] ∈ S−d/S−d−1 this means precisely that

[p][q] = [1F ], and [q][p] = [1E ].

Thus, the notion of ellipticity factors to the quotient space Sd/Sd−1.

Definition 8.4.1. A pseudo-differential operator P ∈ Ψd(E,F ) is said to be
elliptic if its principal symbol σd(P ) ∈ Sd/Sd−1(M,Hom (E,F )) is elliptic.

The notion of ellipticity of a pseudo-differential operator generalizes the
similar notion for a differential operator.

Lemma 8.4.2. Let d ∈ N and let P be a differential operator of order d from
E to F. Then the following assertions are equivalent.

(a) P is elliptic as differential operator;
(b) P is elliptic as a pseudo-differential operator in Ψd(E,F ).

Proof Let p be the principal symbol of P as a differential operator. Then
p ∈ Γ∞(T ∗M,Hom (E,F )) and for each x ∈ M, the map ξ 7→ p(x, ξ) is a
Hom(Ex, Fx)-valued polynomial function on TxM

∗ that is homogeneous of de-
gree d. By using local trivializations of E and F one sees that p is a symbol in
Sd(M,Hom (E,F )), and that its class in Sd/Sd−1 is the principal symbol of P
in the sense of pseudo-differential operators.

Now assume (a). This means that p(x, ξx) is an invertible homomorphism
Ex → Fx for every x ∈ M, ξx ∈ T ∗xM \ {0}. Let χ : T ∗M → R be a smooth
function such that π : suppχ → M is proper and such that χ = 1 on a
neighborhood of M ; as usual we identify M with the image of the zero section
in T ∗M. The existence of such a function can be established locally (relative to
M) by using an atlas ofM, and globally by using a partition of unity subordinate
to this atlas.

We define the smooth function q ∈ Γ∞(T ∗M,Hom (F,E)) by

q(ξx) := (1− χ(ξx))p(ξx)−1, (x ∈M, ξx ∈ T ∗xM).
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By a local analysis we readily see that q ∈ S−d(M,Hom (F,E)). Moreover, from
the definition of q it follows that

q(ξx)p(ξx)− IEx = χ(ξx)IEx , and p(ξx)q(ξx)− IFx = χ(ξx)IFx .

This implies that qp − 1E ∈ S−∞(E,E) and pq − 1F ∈ S−∞(F, F ). Hence (b)
follows.

Conversely, assume that (b) holds. Let p be the principal symbol of the dif-
ferential operator P introduced above. Then [p] = σd(P ) in the sense of pseudo-
differential operators, hence there exists a q ∈ S−d(M,Hom (F,E)) such that
[q][p] = [1E ] and [p][q] = [1F ]. It follows that there exists a r ∈ S−1(M,End (E))
such that

q(ξx)p(ξx) = IEx + r(ξx), (x ∈M, ξx ∈ T ∗xM).

Fix x ∈ M, and choose norms on the finite dimensional spaces T ∗xM and
End(Ex). Then it follows that

q(ξx)p(ξx)− IEx = O(1 + ‖ξx‖)−1 (‖ξx‖ → ∞).

This implies that det(q(ξx)p(ξx)) → 1 for ‖ξx‖ → ∞. Hence, p(ξx) is an in-
vertible element of Hom(Ex, Fx) for ‖ξx‖ sufficiently large. By homogeneity of
p|T ∗xM this implies that p(ξx) is invertible for all ξ ∈ T ∗xM \ {0}. As this holds
for any x ∈M, the operator P is elliptic as a differential operator. �

Corollary 8.4.3. Let P ∈ Ψd(E,F ) be properly supported and elliptic. Then
there exists a properly supported Q ∈ Ψ−d(F,E) such that QP − I ∈ Ψ−1(E,E)
and PQ− I ∈ Ψ−1(F, F ).

Proof By Definition 8.4.1 there exists a q ∈ S−d/S−d−1(M,Hom (F,E)) such
that σd(P )q = [1E ] and σd(p)q = [1F ]. By Theorem 8.2.6 there exists a Q ∈
Ψ−d(F,E) with σ−d(Q) = q. By Lemma 8.3.5 there exists such a Q such that
in addition Q is properly supported. It now follows from Theorem 8.3.7 that
σ0(Q ◦P ) = [1E ] and σ0(P ◦Q) = [1F ]. As [1E ] is the principal symbol of the
identity operator IE : Γ∞c (E)→ Γ∞c (E), it follows that Q ◦P −IE ∈ Ψ−1(E,E),
by Theorem 8.2.6. Likewise, P ◦Q− IF ∈ Ψ−∞(F, F ). �

The above corollary has the remarkable improvement thatQmay be adapted
in such a way that QP − I and PQ− I become smooth kernel operators. The
proof of this fact is based on the following principle involving series of pseudo-
differential operators. That principle in turn is the appropriate generalization
of the similar principle for symbols, as formulated in Lemma 5.5.1.

We put

Ψ(E,F ) =
⋃
d∈R

Ψd(E,F ).

Definition 8.4.4. Let {dj} be a sequence of real numbers with limj→∞ dj =
−∞. Let Qj ∈ Ψdj (E,F ), for j ∈ N. Let Q ∈ Ψ(E,F ). Then

Q ∼
∞∑
j=0

Qj
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means that for each d ∈ R there exists an N ∈ N such that for all k ≥ N

Q−
k∑
j=0

Qj ∈ Ψd(E,F ).

Theorem 8.4.5. Let {dν}ν∈N be a sequence of real numbers with limν→∞ dν =
−∞ and let for each ν ∈ N a pseudo-differential operator Qν ∈ Ψdν (E,F ) be
given. Then there exists a properly supported Q ∈ Ψ(E,F ) such that

(8.1) Q ∼
∞∑
ν=0

Qν .

The operator Q is uniquely determined modulo Ψ−∞(E,F ).

Proof If Q′ is a second pseudo-differential operator with this property, then
it follows from the definition of ∼ that Q−Q′ belongs to Ψd(E,F ) for every d.
Hence, Q−Q′ ∈ Ψ−∞(E,F ) and uniqueness follows.

Let d = maxν dν . In view of Lemma 8.3.5 it suffices to establish the existence
of an operator Q ∈ Ψd(E,F ) such that (8.1).

First we consider the case that M is an open subset of Rn and that E and
F are trivial of the form E = M × Ck and F = M × Cl. Then Ψ(E,F ) =
Ml,k(Ψ(M)). Let 1 ≤ i ≤ l and 1 ≤ j ≤ k. For every ν ∈ N there exists a
symbol (qν)ij ∈ Sdν (M) such that

(Qν)ij = Ψ(qν)ij
.

By Lemma 5.5.1 there exists a symbol qij ∈ Sd(M) such that

qij ∼
∑
ν∈N

(qν)ij .

Let Q ∈ Ψd(E,F ) be the pseudo-differential operator with Qij = Ψqij for all
1 ≤ i ≤ l, 1 ≤ j ≤ k. Then Q satisfies (8.1).

We now turn to the case that both E and F admit trivializations τE : E →
E′ = M × Ck and τF : F → F ′ = M × Cl. Then by the first part of the proof
there exists a P ∈ Ψ(E′, F ′) such that

P ∼
∑
ν∈N

τ∗(Qν).

Put Q = τ−1
∗ (P ), then Q satisfies (8.1). It remains to establish the general

case.
Let {Uj}j∈J be an open cover of M such that both bundles E and F admit

trivializations on Uj , for every j ∈ J. We may select such a cover with the
additional property that it is locally finite and that there exists a partition of
unity {ψj}j∈J such that suppψj ⊂ Uj for all j ∈ J. By the first part of the
proof there exists for each j an operator Qj ∈ Ψd(EUj , FUj ) such that

Qj ∼
∑
ν∈N

(Qν)Uj .

Clearly, for all i, j such that Uij := Ui ∩ Uj 6= ∅, both operators (Qi)Uij and
(Qj)Uij have the expansion

∑
ν(Qν)Uij . This implies that the difference of these
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operators belongs to Ψ−∞(Uij). By the gluing property for Ψd/Ψ−∞, see Exer-
cise 7.3.10 and Remark 8.1.2, it follows that there exists a Q ∈ Ψd(E,F ) such
that QUj −Qj ∈ Ψ−∞(EUj , FUj ) for all j. It follows that for all j we have

QUj ∼
∑
ν∈N

(Qν)Uj .

This implies (8.1). �

Theorem 8.4.6. Let E,F be two complex vector bundles on a manifold M. Let
P ∈ Ψd(E,F ) be a properly supported elliptic pseudo-differential operator. Then
there exists a properly supported pseudo-differential operator Q ∈ Ψ−d(F,E)
such that

(8.2) QP − I ∈ Ψ−∞(E,E).

The operator Q is uniquely determined modulo Ψ−∞(F,E) and satisfies

(8.3) PQ− I ∈ Ψ−∞(F, F ).

Remark 8.4.7. An operator Q with the above properties is called a parametrix
for P.

Proof It follows from Corollary 8.4.3 that there exists a properly supported
operator Q0 ∈ Ψ−d(F,E) such that Q0P − I ∈ Ψ−1(E,E) and PQ0 − I ∈
Ψ−1(E,E). Put R = I − Q0P. Then R is properly supported. It follows
that Rk ∈ Ψ−k(E,E). Hence, there exists a pseudo-differential operator A ∈
Ψ0(E,E) such that

A ∼
∞∑
k=0

Rk.

It is now a straightforward matter to verify that A(I − R) − I ∈ Ψ−n for all
n ∈ N. It follows that A(I−R)−I ∈ Ψ−∞. Put Q = AQ0. Then Q ∈ Ψ−d(F,E)
is properly supported and

QP − I = AQ0P − I = A(I −R)− I ∈ Ψ−∞(E,E).

This shows the existence of Q such that (8.2). We will show that Q also satisfies
(8.3). Put B = QP − I. Then B is a properly supported smoothing operator
in Ψ−∞(E,E). By what we proved so far there exists a properly supported
operator P1 ∈ Ψd(E,F ) such that P1Q − I ∈ Ψ−∞(F, F ). The operator C :=
P1Q − I is properly supported. We now observe that P1QP = P (I + B) =
P +PB, and that P1QP = (I+C)P1 = P1 +CP1. Hence P −P1 ∈ Ψ−∞(E,F )
and we conclude that D := PQ−I ∈ Ψ−∞(F, F ). This establishes the existence
of Q.

To establish uniqueness, let Q′ ∈ Ψ−d(F,E) be a properly supported oper-
ator with the same property as Q. Then E := Q′P − I is smoothing. It follows
that

Q′ −Q = Q′(PQ)−Q′D −Q = EQ−Q′D
is a smoothing operator. �
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Corollary 8.4.8. Let P ∈ Ψd(M,E,F ) be a properly supported elliptic pseudo-
differential operator. Then for all u ∈ D′(E) we have

singsuppu = singsuppPu.

In particular, if Pu is smooth, then u is smooth.

Proof Since P is pseudo-local, singsuppPu ⊂ singsuppu. Let Q ∈ Ψ−d be
a properly supported parametrix for P. Then QP − I is a properly supported
smoothing operator, hence QPu − u is smooth. Since Q is pseudo-local, it
follows that singsuppu ⊂ singsupp (QPu) ⊂ singsuppPu. �

Remark 8.4.9. Let P : Γ∞(E) → Γ∞(F ) be a differential operator of order
d. Then by locality of P is follows that 〈Pf, g〉 = 0 for all f ∈ Γ∞c (E) and
g ∈ Γ∞c (F∨) such that supp f ∩ supp g = ∅. This implies that the distribution
kernel of P is supported by the diagonal of M ×M. In particular, P is properly
supported. It follows that the above corollary applies to elliptic differential
operators.





LECTURE 9
The index of an elliptic operator

9.1. Pseudo-differential operators and Sobolev space

We recall the definition of the Sobolev space Hs(Rn), for every s ∈ R, from
Definition 4.3.12, The Sobolev space Hs(Rn) comes equipped with the inner
product that makes F an isometry from Hs(Rn) to L2

s(Rn). The associated
norm on Hs(Rn) is denoted by ‖ · ‖s. Since Fourier transform is an isometry
from L2(Rn) to itself, we see that

(9.1) H0(Rn) = L2(Rn)

as Hilbert spaces. We recall that for s < t we have Ht(Rn) ⊂ Hs(Rn) with
continuous inclusion. The intersection of these spaces, denoted H∞(Rn), and
equipped with all Sobolev norms ‖ · ‖s, is a Fréchet space.

We note that for all s ∈ R∪{∞} we have C∞c (Rn) ⊂ Hs(Rn) ⊂ D′(Rn) with
continuous inclusion maps. Thus, the following lemma implies that Hs(Rn) is
a local space in the sense of Lecture 3, Definition 3.1.1.

Lemma 9.1.1. Let s ∈ R ∪ {∞}. Then the multiplication map (ϕ, f) 7→
Mϕ(f), S(Rn)×S ′(Rn)→ S ′(Rn), restricts to a continuous bilinear map S(Rn)×
Hs(Rn)→ Hs(Rn).

Remark 9.1.2. This should have been the statement of Lemma 4.3.19, at
least for s <∞, and a proof should have been inserted.

Proof It suffices to prove this for finite s. It follows from Lemma 7.1.3 that
F(Mϕ(f)) = F(ϕ) ∗ F(f). Since F is a topological linear isomorphism from
S(Rn) onto itself, and from Hs(Rn) onto L2

s(Rn), the result of the lemma is
equivalent to the statement that convolution defines a continuous bilinear map
S(Rn)× L2

s(Rn)→ L2
s(Rn). This is what we will prove.

Let ϕ, f, g ∈ S(Rn). Then for all ξ, η ∈ Rn we have

(9.2) (1 + ‖ξ − η‖)−s(1 + ‖ξ‖)s ≤ (1 + ‖η‖)|s|,
149
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hence

|〈g, ϕ ∗ f〉|

≤
∫ ∫

| g(ξ)ϕ(η)f(ξ − η) | dηdξ

≤
∫
|ϕ(η)|(1 + ‖η‖)|s|

∫
|g(ξ)|(1 + ‖ξ‖)−s|f(ξ − η)|(1 + ‖ξ − η‖)s dξdη

≤
∫
|ϕ(η)| (1 + ‖η‖)|s| dη ‖f‖L2

s
‖g‖L2

−s
,

by the Cauchy-Schwartz inequality for the L2-inner product. Let N ∈ N be
such that |s| −N < −n; then there exists a continuous seminorm νN on S(Rn)
such that for all ϕ ∈ S(Rn),

|ϕ(η)| (1 + ‖η‖)|s| ≤ νN (ϕ)(1 + ‖η‖)−N+|s|, (η ∈ Rn).

We conclude that

|〈g, ϕ ∗ f〉‖ ≤ CνN (ϕ)‖f‖L2
s
‖g‖L2

−s
,

with C =
∫

(1 + ‖η‖)|s|−N dη a positive real number. Now this is valid for all g
in the dense subspace S(Rn) of the space L2

−s(Rn), whose dual is isometrically
isomorphic to L2

s(Rn). Therefore,

‖ϕ ∗ f‖L2
s
≤ CνN (ϕ)‖f‖L2

s
, (ϕ, f ∈ S(Rn)).

By density of S(Rn) in L2
s(Rn) it now follows that the convolution product has

a continuous bilinear extension to a map S(Rn)×L2
s(Rn)→ L2

s(Rn). The latter
space is included in S ′(Rn) with continuous inclusion map. Hence the present
extension of the convolution product must be the restriction of the convolution
product S(Rn)× S ′(Rn)→ S ′(Rn). �

As said, it follows from the above lemma that Hs(Rn) is a functional space.
In view of the general discussion in Lecture 3 we may now define the local
Sobolev space as follows.

Definition 9.1.3. Let U ⊂ Rn be open and let s ∈ R ∪∞. The local Sobolev
space Hs, loc(U) is defined to be the space of f ∈ D′(U) with the property
that ψf ∈ Hs(Rn) for all ψ ∈ C∞c (Rn). The space Hs(Rn) is equipped with the
locally convex topology induced by the collection of seminorms νψ : f 7→ ‖ψf‖s,
for ψ ∈ C∞c (U).

The space L2
loc(U) is defined in a similar fashion. In view of (9.1),

L2
loc(U) = H0,loc(U),

including topologies. Since Hs(Rn) is a Hilbert space, if follows from the theory
developed in Lecture 3 that Hs, loc(U) (with the specified topology) is a Fréchet
space.

It follows from the Sobolev lemma, Lemma 4.3.16, that C∞c (Rn) ⊂ H∞ ⊂
C∞(Rn) with continuous inclusion maps. This in turn implies that

H∞,loc(U) = C∞(U),

including topologies.
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The Sobolev spaces behave very naturally under the action of pseudo-
differential operators.

Lemma 9.1.4. Let K ⊂ Rn be a compact subset, and let −d, s ∈ R ∪ {∞}.
Then the map

(p, f) 7→ Ψp(f), SdK(Rn)× C∞c (Rn)→ C∞K (Rn),

has a unique extension to a continuous bilinear map

SdK(Rn)×Hs(Rn)→ Hs−d,K(Rn)

Proof It suffices to prove this for s, d finite, which we will now assume to
be the case. Uniqueness follows from density of C∞c (Rn) in Hs(Rn). Thus, it
suffices to establish existence. Given p ∈ SdK(Rn), let F1p denote the Fourier
transform of the function (x, ξ) 7→ p(x, ξ) with respect to the first variable. If
α ∈ Nn, then

(1 + ‖ξ‖)−d|ηαF1p(η, ξ)| = |F1((1 + ‖ξ‖)−d∂αx p)(η, ξ)|
≤ vol(K) sup

[
(1 + ‖ξ‖)−d|∂αx p(x, ξ)|

]
.

It follows that for every N ∈ N there exists a continuous seminorm µN on
SdK(Rn) such that

(1 + ‖η‖)N (1 + ‖ξ‖)−d|F1p(η, ξ)| ≤ µN (p), ((η, ξ) ∈ R2n),

for all p ∈ SdK(Rn).
Let now p ∈ SdK(Rn) and f, g ∈ C∞c (Rn). Then it follows that

〈g,Ψpf〉 =
∫ ∫

eiξxg(x)p(x, ξ)f̂(ξ) dξ dx

=
∫ ∫

eiξxg(x)p(x, ξ)f̂(ξ) dx dξ

=
∫ ∫

ĝ(ξ − η)F1p(η, ξ)f̂(ξ) dη dξ.

We obtain

|〈g,Ψpf〉|

≤
∫ ∫

Fp(η, ξ) (1 + ‖ξ − η‖)d−s|ĝ(ξ − η)| (1 + ‖ξ‖)s|f̂(ξ)| dξ dη

≤
∫

sup
ξ∈Rn

Fp(η, ξ) dη ‖g‖d−s‖f‖s,(9.3)

where

Fp(η, ξ) = |F1p(η, ξ)|(1 + ‖ξ − η‖)s−d(1 + ‖ξ‖−s

≤ |F1p(η, ξ)|(1 + ‖ξ‖)−d(1 + ‖η‖)|s−d|

≤ (1 + ‖η‖)|s−d|−N µN (p).

In the above estimation we have used (9.2) with s− d in place of s. Fix N such
that |s−d|−N < −n. Then combining the last estimate with (9.3) we see that
there exists a constant C > 0 such that for all f, g ∈ C∞c (Rn) and p ∈ SdK(Rn),

|〈g,Ψpf〉| ≤ C µN (p)‖g‖d−s‖f‖s.
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The space C∞c (Rn) is dense in the Hilbert space Hd−s(Rn) whose dual is iso-
metrically isomorphic with Hs−d(Rn). This implies that

‖Ψp(f)‖s−d ≤ C µN (p)‖f‖s, (p ∈ SdK(Rn), f ∈ C∞c (Rn)).

it follows that the map (p, f) 7→ Ψp(f) has a continuous bilinear extension
β : SdK(Rn)×Hs(Rn)→ Hs−d(Rn). Since β maps the dense subspace SdK(Rn)×
C∞c (Rn) into the closed subspace Hs−d,K(Rn) it follows that β maps continuous
bilinearly into this closed subspace as well. �

The local Sobolev spaces behave very naturally under the action of pseudo-
differential operators as well.

Proposition 9.1.5. Let P ∈ Ψd(U) be properly supported, d ∈ R ∪ {−∞}.
Then for every s ∈ R ∪ {∞} the operator P : D′(U) → D′(U) restricts to a
continuous linear operator Ps : Hs, loc(U)→ Hs−d, loc(U).

Proof By Lemma 7.1.9 there exists a p ∈ Sd(U) such that P = Ψp. Let
ψ ∈ C∞c (U) and putB = suppψ. Then it suffices to show that the operatorQ :=
Mψ ◦P is continuous linear from Hs, loc(U) to Hs−d(Rn). We note that Q = Ψq,

where q ∈ Sdc (U) ⊂ Sdc (Rn) is given by q = ψp. Since P is properly supported,
there exists a compact subset K of U such that the kernel of Q has support
contained in B×K. Let χ ∈ C∞c (U) be such that χ = 1 on an open neighborhood
of K. Then Q = Q ◦Mχ on C∞c (U), hence on D′(U), hence on Hs, loc(U). Put
A = suppχ. Then Mχ is continuous linear Hs, loc(Rn) → Hs,A(Rn). Moreover,
by Lemma 9.1.4 Ψq is continuous linear Hs,A(Rn) → Hs−d,B(Rn). Therefore,
Q = Ψq ◦Mχ is continuous linear Hs, loc(Rn)→ Hs−d(Rn). �

9.2. Sobolev spaces on manifolds

In the previous section we have seen that the local Sobolev spaces are functional
in the sense of Lecture 3. In order to be able to extend these spaces to manifolds,
we need to establish their invariance under diffeomorphims. We will do this
through characterizing them by elliptic pseudo-differential operators, which are
already known to behave well under diffeomorphisms. A first result in this
direction is the following.

Proposition 9.2.1. Let s ∈ R, and let P ∈ Ψs(U) be a properly supported
elliptic pseudo-differential operator. Then

Hs, loc(U) = {f ∈ D′(U) | Pf ∈ L2
loc(U)}.

Proof If f ∈ Hs,loc(U) then f ∈ D′(U) and Pf ∈ H0,loc(U) = L2
loc(U). This

proves one inclusion. To prove the converse inclusion, we use that by Theorem
8.4.6 applied with M = U and E = F = CU , there exists a properly supported
Q ∈ Ψ−s(U) such that Q ◦P = I + T, with T ∈ Ψ−∞(U) a properly supported
smoothing operator. If f ∈ D′(U) and Pf ∈ L2

loc(U) = H0,loc(U), then QPf ∈
Hs, loc(U) and Tf ∈ C∞(U) ⊂ Hs, loc(U). Hence, f = QPf−Tf ∈ Hs, loc(U). �

By combination of the above result with the following lemma, it can be
shown that the local Sobolev spaces behave well under diffeomorphisms.
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Lemma 9.2.2. Let U ⊂ Rn be an open subset and let d ∈ R. There exists a
properly supported elliptic operator in Ψd(U).

Proof Let d be finite. Then the function p = pd : R2n → C defined by
p(x, ξ) = (1 + ‖ξ‖2)d/2 belongs to the symbol space Sd(Rn). Since pdp−d = 1,
the operator R = Ψpd

∈ Ψd(Rn) is elliptic. Its restriction P = RU to U belongs
to Ψd(U) and has principal symbol [(pd)U ] hence is elliptic as well. By Lemma
8.3.5 there exists a properly supported P0 ∈ Ψd(U) such that P − P0 is a
smoothing operator. Hence, P0 has the same principal symbol as P and we see
that P0 is elliptic. �

Let ϕ : U → V be a diffeomorphism of open subsets of Rn. This diffeomor-
phism induces a topological linear isomorphism

(9.4) ϕ∗ : D′(U)→ D′(V ).

Theorem 9.2.3. Let ϕ : U → V be a diffeomorphism of open subsets of Rn

and let s ∈ R ∪ {∞}.
(a) The map (9.4) restricts to a linear isomorphism

ϕ∗s : Hs, loc(U)→ Hs, loc(V ).

(b) The isomorphism ϕ∗s is topological.

Proof It suffices to prove the result for finite s, the result for s =∞ is then
a consequence.

We will first obtain (a) as a consequence of Proposition 9.2.1 and Lemma
9.2.2. By the latter lemma there exists a properly supported elliptic operator
P ∈ Ψd(U). Let P ′ = ϕ∗(P ). Then P ′ ∈ Ψd(V ) and P ′ϕ∗(f) = ϕ∗(Pf) for all
f ∈ D′(U). The principal symbol of P ′ is given by σd(P ′) = ϕ∗(σd(P )), hence
elliptic. Therefore, P ′ is elliptic. The kernel of P ′ has support contained in
(ϕ× ϕ)(suppKP ), hence is properly supported.

By a straightforward application of the substitution of variables formula, it
follows that ϕ∗ restricts to a topological linear isomorphism L2

loc(U)→ L2
loc(V ).

Let now f ∈ D′(U). Then

f ∈ Hs, loc(U) ⇐⇒ Pf ∈ L2
loc(U) ⇐⇒ ϕ∗(Pf) ∈ L2

loc(V )

⇐⇒ P ′ϕ∗(f) ∈ L2
loc(V ) ⇐⇒ ϕ∗(f) ∈ Hs, loc(V ).

This proves (a). In order to prove (b) we need characterizations of the topology
on Hs, loc that behave well under diffeomorphisms. These will first be given
in two lemmas below. The present proof will be completed right after those
lemmas. �

Lemma 9.2.4. Let s ≥ 0 and let P ∈ Ψs(U) be properly supported and elliptic.
Then the topology on Hs, loc(U) is the weakest locally convex topology for which
both the inclusion map j : Hs, loc(U) → L2

loc(U) and the map P : Hs, loc(U) →
L2

loc(U) are continuous.

Proof For the topology on Hs, loc(U) the mentioned maps j and P are con-
tinuous with values in L2

loc(U). Let V be equal to Hs, loc(U) equipped with the
weakest locally convex topology for which j and P are continuous. Then we
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must show that the identity map V → Hs, loc(U) is continuous. Let ϕ ∈ C∞c (U);
then it suffices to show that the map Mϕ : V → Hs(Rn) is continuous.

Let Q ∈ Ψ−s(U) be a properly supported parametrix for P. Then

I = QP + T,

with T ∈ Ψ−∞(U) a properly supported smoothing operator. Let A = suppϕ.
There exists a compact subset B ⊂ U such that the intersections of both
suppKQ and suppKT with A× U are contained in A×B. Let ψ ∈ C∞c (U) be
such that ψ = 1 on an open neighborhood of B. Then Mϕ ◦Q = Mϕ ◦Q ◦Mψ

and Mϕ ◦T = Mϕ ◦T ◦Mψ. We now see that, for all f ∈ Hs, loc(U),

ϕf = Mϕ(QP + T )(f) = MϕQMψPf +MϕTMψf.

As Mϕ ◦Q and Mϕ ◦T define continuous linear maps H0(Rn) = L2(Rn) →
Hs(Rn), by Lemma 9.1.4, it follows that there exists a constant C > 0 such
that

‖ϕf‖s ≤ C(‖ϕPf‖0 + ‖ψf‖0),
for all f ∈ Hs, loc(U). The seminorms f 7→ ‖ϕPf‖0 and f 7→ ‖ψf‖0 are contin-
uous on V. Hence, Mϕ : V → Hs(Rn) is continuous. �

We will also need a characterization of the topology of Hs,loc by duality,
which is invariant under diffeomorphisms for all negative s. Let D = DRn

denote the density bundle on Rn. Then we have the natural continuous bilinear
pairing 〈 · , · 〉 : C∞c (Rn)× Γ∞c (Rn, D)→ C given by

〈f, γ〉 =
∫

Rn

fγ.

This pairing induces a continuous injection of the space C∞c (Rn) into the topo-
logical dual D′(Rn) of Γ∞c (Rn, D). This pairing also induces a continuous injec-
tion of Γ∞c (Rn, D) into D′(Rn, D) ' C∞c (Rn)′. We note that the map g 7→ gdx
defines a topological linear isomorphism C∞c (Rn) → Γ∞c (Rn, D) and extends
to a continuous linear isomorphism D′(Rn) → D′(Rn, D). For s ∈ R, the im-
age of the Sobolev space Hs(Rn) under this isomorphism, equipped with the
transferred Hilbert structure, is denoted by Hs(Rn, D).

By transposition, the inclusion Γ∞c (Rn, D)→ Hs(Rn, D) induces a continu-
ous linear map Hs(Rn, D)′ → D′(Rn) which is injective by density of Γ∞c (Rn, D)
in Hs(Rn, D). Of course the induced map is given by u 7→ u|Γ∞c (Rn,D).

The perfectness of the pairing of Lemma 4.3.18 can now be expressed as
follows.

Lemma 9.2.5. Let s ∈ R. The image of the injection Hs(Rn, D)′ → D′(Rn)
equals H−s(Rn). The associated bijection Hs(Rn, D)′ → H−s(Rn) is a topologi-
cal linear isomorphism.

More generally, if U ⊂ Rn is an open subset, we define Hs,comp(U,D) to
be the image of Hs,comp(U) in D′(U,D) under the map f 7→ fdm, equipped
with the topology that makes this map a topological isomorphism. The natural
inclusion Γ∞c (U,D)→ Hs,comp(U,D) induces a continuous linear injection

Hs,comp(U,D)′ ↪→ D′(U).

Here, the space on the left is equipped with the strong dual topology.
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Corollary 9.2.6. Let s ∈ R. Then the image of Hs,comp(U,D)′ in D′(U) equals
H−s,loc(U). The associated bijection Hs,comp(U,D)′ → H−s,loc(U) is a topologi-
cal linear isomorphism.

Proof Let j : Hs,comp(U)′ → D′(U) denote the natural linear injection. Let
ϕ ∈ C∞c (M). Then for all u ∈ Hs,comp(U)′ we have

Mϕ ◦ j(u) = j(u ◦Mϕ).

The map u 7→ u ◦Mϕ is continuous linear Hs,comp(U)′ → Hs(Rn)′. It follows
that u 7→ Mϕ ◦ j(u) = j(Mϕu) is continuous linear Hs,comp(U)′ → H−s(Rn).
Since this holds for all ϕ, it follows that j is continuous linear Hs,comp(U)′ →
H−s,loc(U) as stated.

Conversely, let K ⊂ U be compact. Let K′ be a compact neighborhood of
K in U. Then Hs,K(Rn) is contained in the closure of C∞K′(R

n) in Hs(Rn). Let
v ∈ H−s,loc(U) and let ϕ ∈ C∞c (U) be such that ϕ = 1 on a neighborhood of K′.
Then Mϕv ∈ H−s(Rn), hence, Mϕv = j(kϕ(v)) for a unique kϕ(v) ∈ Hs(Rn)′.
Moreover, the map kϕ : H−s,loc(Rn) → Hs(Rn)′ is continuous linear by the
above lemma. The restriction of kϕ(v) to C∞K′(R

n) is independent of the choice
of ϕ, and therefore so is the map kK : v 7→ kϕ(v)|Hs,K . The map kK is continuous
linear. Moreover, if K1 ⊂ K2 are compact subsets of U then kK1(v) = kK2(v)|K1.
It follows that there exists a unique linear map k : H−s,loc(U) → Hs,comp(U)′

such that kA(v) = k(v)|A for all v ∈ H−s,loc(U) and all A ⊂ U compact. As
all the kA are continuous, it follows that k is continuous. Now j ◦ k = I and it
follows that j defines a continuous linear isomorphism from Hs,comp(U)′ onto
H−s,loc(U). �

Completion of the proof of Theorem 9.2.3. First assume that s ≥
0. Let P ∈ Ψs(U) be a properly supported elliptic operator, and let P ′ =
ϕ∗(P ) be as in part (a) of the proof. Then by Lemma 9.2.4 the topology
of Hs(U) is the weakest locally convex topology for which both the inclusion
jU : Hs(U) → L2

loc(U) and the map P : Hs(U) → L2
loc(U) are continuous.

Likewise, the topology on Hs(V ) is the weakest for which both the inclusion
map jV : Hs(V )→ L2

loc(V ) and P ′ : Hs(V )→ L2
loc(V ) are continuous. The map

ϕ∗ : L2
loc(U) → L2

loc(V ) is a topological linear isomorphism and the following
diagrams commute:

Hs(U)
jU−→ L2

loc(U)
ϕ∗s ↓ ↓ ϕ∗
Hs(V )

jV−→ L2
loc(V )

Hs(U) P−→ L2
loc(U)

ϕ∗s ↓ ↓ ϕ∗
Hs(V ) P ′−→ L2

loc(V )

It follows that ϕ∗s is a topological linear isomorphism.
This proves (b) for s ≥ 0. We will complete the proof by proving (b) for

s ≤ 0, using the duality expressed in Lemma 9.2.5. We put t = −s, so that t ≥ 0.
By the validity of (b) for s ≥ 0 it follows that the map ϕ∗ : D′(U) → D′(V ),
restricts to a topological linear isomorphism ϕ∗t : Ht,comp(U) → Ht,comp(V ).
On the other hand, the map ϕ∗ restricts to the topological linear isomorphism
ϕ∗ : C∞c (U) → C∞c (V ) given by f 7→ f ◦ϕ−1. The map f 7→ fdx defines
a topological linear isomorphism from D′(U) to D′(U,D). Likewise, g 7→ gdy
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defines a topological linear isomorphism from D′(V ) to D′(V,D). Now

ϕ∗(fdx) = ϕ∗(f)ϕ∗(dx) = MJϕ∗(f)dy,

where J : V → (0,∞) is the positive smooth function given by

J(y) = |detDϕ(ϕ−1)|−1.

The map MJ defines a topological linear automorphism of D′(V ) and restricts
to a topological linear isomorphism of Ht(V ). We conclude that ϕ∗ defines a
topological linear isomorphism D′(U,D) → D′(V,D) and restricts to a topo-
logical linear isomorphism ϕ∗t : Ht,comp(U,D) → Ht,comp(V,D). Its restriction
to Γ∞c (U,D) is given by fdx 7→ MJ(ϕ−1)∗(f)dy, hence defines a topological
linear isomorphism Γ∞c (U,D) → Γ∞c (V,D). By taking transposed maps in the
commutative diagram

Ht,comp(U,D) −→ Ht,comp(V,D)
↑ ↑

Γ∞c (U,D) −→ Γ∞c (V,D)

we obtain the commutative diagram

D′(U)
ϕ−1
∗←− D′(V )

↑ ↑
Ht,comp(U,D)′ '←− Ht,comp(V,D)′.

Here the bottom arrow is the transpose of a topological linear isomorphism,
hence a topological linear isomorphism of its own right.

In view of Lemma 9.2.5, and using s = −t, we see that ϕ∗ : D′(U)→ D′(V )
restricts to a topological linear isomorphism ϕ∗s : Hs,loc(U)→ Hs,loc(V ). �

In particular, it follows from Theorem 9.2.3 that Hs,loc is an invariant local
functional space in the terminology of Lecture 3. It follows that for E a complex
vector bundle on a smooth manifold the spaces of sections Hs,comp(M,E) and
Hs,loc(M,E) are well defined locally convex topological vector spaces. More-
over, the first of these spaces is contained in the second with continuous inclu-
sion map, and the second space is a Fréchet space.

Lemma 9.2.7. Let s, t ∈ R and let s < t. Then Ht,loc(M,E) ⊂ Hs,loc(M,E)
with continuous inclusion map. If M is compact, this inclusion map is compact.

Proof Let {Uj}j∈J be a cover of M by relatively compact open coordinate
patches on which the bundle E admits a trivialization. Passing to a locally
finite refinement, we may assume that the index set J is countable. Let ϕj be
a partition of unity subordinate to the cover. For each j ∈ J we write Kj =
suppϕj . Then the map f 7→ (ϕjf)j∈J defines a continuous linear embedding

Hs,loc(M,E) −→
∏
j∈J

Hs,Kj (Uj , E),

for every s ∈ R. Via a trivialization of E over Uj we may identify Hs,Kj (Uj , E) '
Hs,Kj (Uj)k. As Ht,Kj (Uj)k ⊂ Hs,Kj (Uj)k, for s < t, with continuous inclusion
map, the first assertion of the lemma follows.
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If M is compact, we may take the covering such that the index set J is finite.
Then by the above reasoning and application of Rellich’s lemma, Lemma 4.5.2,
it follows that the following diagram commutes, and that the inclusion map
represented by the vertical arrow on the right is the finite direct product of
compact maps:

Hs(M,E) −→
∏
j∈J Hs,Kj (Uj , E)

↑ ↑
Ht(M,E) −→

∏
j∈J Ht,Kj (Uj , E).

As the maps represented by the horizontal arrows are embeddings, it follows
that the inclusion Ht(M,E)→ Hs(M,E), represented by the vertical arrow on
the left, is compact as well. �

We define
H∞,loc(M,E) = ∪s∈RHs,loc(M,E)

equipped with the weakest topology for which all inclusion mapsH∞,loc(M,E)→
Hs,loc(M,E) are continuous. Then by an argument similar to the one used in the
proof of the above lemma, it follows from the corresponding local statement (see
9.1.5), that H∞,loc(M,E) = Γ∞(M,E), as topological linear (Fréchet) spaces.

Theorem 9.2.8. Let E,F be vector bundles on the smooth manifold M. Let
d ∈ R∪{−∞} and s ∈ R∪{∞}. Finally, let P ∈ Ψd(E,F ) be properly supported.
Then P : D′(M,E) → D′(M,F ) restricts to a continuous linear operator Ps :
Hs,loc(M,E)→ Hs−d,loc(M,F ).

Proof First assume that d = −∞, so that P is a properly supported smooth-
ing operator. Then P is continuous linear D′(M,E) → Γ∞(M,F ). Since the
inclusion Hs,loc(M,E) → D′(M,E) is continuous linear, it follows that the re-
striction Ps : Hs,loc(M,E)→ Γ∞(M,F ) = H∞,loc(M,F ) is continuous linear.

Now assume that {Uj}j∈J is a cover of M with relatively compact open
coordinate patches. By paracompactness, we may assume that J is countable
and that the cover is locally finite. Let {ψj} be a partition of unity subordinate
to this cover. For each j ∈ J we select a function χj ∈ C∞c (Uj) such that χj = 1
on an open neighborhood of suppψj . Put Pj := Mψ ◦P ◦Mχj . Then it follows
that

Tj = Mψj
◦P − Pj

is a properly supported smoothing operator. The supports of the kernels of Tj
form a locally finite set, hence T =

∑
j Tj is a well-defined smoothing operator.

Moreover, P∗ =
∑

j Pj is a well-defined operator in Ψd(E,F ), which is properly
supported by local finiteness of the cover {Uj}. Moreover,

P = P∗ + T,

so T is properly supported. By the first part of the proof, T maps Hs,loc(M,E)
continuously into C∞(M,F ), hence also continuously into Hs−d(M,F ). Thus,
it suffices to show that P∗ is continuous linear Hs, loc(M,E)→ Hs−d,loc(M,F ).
Let ϕ ∈ C∞c (M). Then it suffices to show that Mϕ ◦P∗ is continuous linear
Hs, loc(M,E)→ Hs−d,B(M,F ), where B = suppϕ. Now Mϕ ◦P∗ =

∑
jMϕ ◦Pj ,

the sum extending over the finite set of j for which suppψj ∩ B 6= ∅. Thus,
it suffices to establish the continuity of (Pj)s : Hs,loc(M,E)→ Hs−d,loc(M,F ).
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This is equivalent to the continuity of (Pj)Uj : Hs,loc(Uj , E) → Hs−d,loc(Uj , F )
which by triviality of the bundles EUj and FUj follows from the local scalar
result, Proposition 9.1.5. �

Lemma 9.2.9. Let M be a smooth manifold, and E →M be a vector bundle.
For every s ∈ R the natural pairing Γ∞c (M,E)×Γ∞(M,E∨)→ C has a unique
extension to a continuous bilinear pairing

Hs,comp(M,E)×H−s,loc(M,E∨)→ C.
Moreover, the pairing is perfect, i.e., the induced maps

Hs,comp(M,E)→ H−s,loc(M,E∨)′, H−s,loc(M,E∨)→ Hs,comp(M,E)′

are topological linear isomorphisms.

Proof The proof will be given in an appendix. �

9.3. The index of an elliptic operator

We are now finally prepared to show that every elliptic operator between vector
bundles E,F over a compact manifold M has a well defined index.

Theorem 9.3.1. Let E,F be vector bundles over a compact manifold M. Let
d ∈ R and let P ∈ Ψd(E,F ) be elliptic. Then the transpose P t ∈ Ψd(F∨, E∨)
is elliptic as well.

The operator P∞ : Γ∞(M,E)→ Γ∞(M,F ) has a finite dimensional kernel,
and closed image of finite codimension.

For all s ∈ R the operator Ps : Hs(m,E) → Hs−d(M,F ) is Fredholm and
has index

indexPs = index (P∞).
In particular, the index is independent of s.

Proof Let p ∈ Sd(M,Hom (E,F )) be a representative of the principal symbol
σd(P ). Then the principal symbol of P t is represented by

p∨ : (x, ξ) 7→ p(x,−ξ)∗ ⊗ IDx .

Since p is elliptic, p∨ is elliptic as well, and we conclude that P t is elliptic.
Since M is compact, the spaces Hs(M,E) and Hs(M,F ) carry a Banach

topology. Let Q ∈ Ψ−d(F,E) be a parametrix. Then QP = IE + T, with T ∈
Ψ−∞(E,E) a smoothing operator. The operator T is continuous Hs(M,E)→
C∞(M,E), hence continuous Hs(M,E) → Hs+1(M,E). As Hs+1(M,E) →
Hs(M,E) with compact inclusion map, it follows that Ts : Hs(E) → Hs(E)
is a compact operator. It follows that Qs−d ◦Ps = (IE)s + Ts, hence Ps has
left inverse Qs−d modulo a compact operator. Likewise, from PQ − IF =
T ′ ∈ Ψ−∞(F, F ) we see that the operator Ps has right inverse Qs−d modulo a
compact operator. This implies that Ps is Fredholm. In particular, kerPs is
finite dimensional.

Since kerP∞ ⊂ kerPs and kerPs ⊂ Γ∞(M,E) by the elliptic regularity
theorem, Corollary 8.4.8, it follows that kerPs = kerP∞, for all s ∈ R. In
particular, kerP∞ is finite dimensional.
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Likewise, (P t)s : Hs(M,F∨) → Hs−d(M,E∨) is Fredholm, (kerP t)∞ is
finite dimensional and ker(P t)s = ker(P t)∞ for all s.

We consider the natural continuous bilinear pairing

(9.5) (f, g) 7→ 〈f, g〉, Γ∞(M,E)× Γ∞(M,E∨)→ C.

The operator P t : Γ∞(M,F∨))→ Γ∞(M,E∨) satisfies

(9.6) 〈Pf, h〉 = 〈f, P th〉

for all f ∈ Γ∞(M,E) and h ∈ Γ∞(M,F∨). The natural bilinear pairing (9.5)
extends uniquely to a continuous bilinear pairing Hs(M,E)×H−s(M,E∨)→ C,
which is perfect by Lemma 9.2.9. The map Ps is the continuous linear extension
of P : Γ∞(M,E) → Γ∞(M,F ) to a map Hs(M,E) → Hs−d(M,F ). Similarly,
P t extends to a continuous linear map (P t)d−s : Hd−s(M,F∨)→ H−s(M,E∨).
By density and continuity, the identity (9.6) implies that more generally,

〈(P t)d−sf, g〉 = 〈f, Psg〉

for all f ∈ Hd−s(M,F∨) and g ∈ Hs(M,E). In other words,

(Ps)t = (P t)d−s.

This implies that ker(Ps)t = ker(P t)d−s = ker(P t)∞.
The annihilator of imPs in Hd−s(M,F∨) relative to the natural pairing

Hs−d(M,F )×Hd−s(M,F∨)→ C

equals ker(Ps)t hence ker(P t)∞. By perfectness of the pairing, it follows that

(kerP t)∞ ' {u ∈ Hd−s(M,F )′ | u = 0 on imPs}
' [Hd−s(M,F )/im (Ps)]′.

Since Ps is Fredholm, its image is closed and of finite codimension. Hence
ker(P t)∞ ' coker (Ps)∗ and it follows that

index (Ps) = dim kerP∞ − dim ker(P t)∞.

We will complete the proof by showing that ker(P t)∞ ' (cokerP∞)∗, naturally.
For this we note that by the elliptic regularity theorem, Theorem 8.4.8,

im (Ps) ∩ Γ∞(M,F ) = imP∞.

Since Γ∞(M,F ) ⊂ Hs−d(M,F ) with continuous inclusion map, and since im (Ps)
is closed in Hs−d(M,F ), it follows that im (P∞) is closed in Γ∞(M,F ). The an-
nihilator of imP in Γ∞(M,F )′ = D′(M,F∨) equals the kernel of (P t)−∞ :
D′(M,F∨) → D′(M,E∨), which in turn equals ker(P t)∞ by the elliptic regu-
larity theorem. This implies that

ker(P t)∞ ' [Γ∞(M,F )/im (P∞)]′.

As the first of these spaces is finite dimensional, P∞ has finite dimensional
cokernel, and ker(P t)∞ ' [Γ∞(M,F )/im (P∞)]∗. �

For obvious reasons, the integer index (P∞) is called the index of P and
will more briefly be denoted by index (P ). The following result asserts that the
index depends on P through its principal symbol.
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Lemma 9.3.2. Let M be compact, and E,F complex vector bundles on M.
Let P, P ′ ∈ Ψd(E,F ) be elliptic operators. Then

σd(P ) = σd(P ′)⇒ index (P ) = index (P ′).

Proof From the equality of the principal symbols, it follows that P−P ′ = Q ∈
Ψd−1(E,F ). Let s ∈ R. The operator Q maps Hs(M,E) to Hs−d+1(M,F ). The
latter space is contained in Hs−d(M,F ), with compact inclusion map. It follows
that Q is compact as an operator Hs(M,E)→ Hs−d(M,F ). We conclude that
Ps − P ′s is compact, hence index (Ps) = index (P ′s). �



LECTURE 10
Characteristic classes

At this point we know that, for an elliptic differential operator of order d,

P : Γ(E)→ Γ(F )

its analytical index

Index(P ) = dim(Ker(P ))− dim(Coker(P ))

is well-defined (finite) and only depends on the principal symbol

σd(P ) : π∗E → π∗F

(where π : T ∗M → M is the projection). The Atiyah-Singer index theorem
gives a precise formula for Index(P ) in terms of topological data associated to
σd(P ),

Index(P ) = (−1)n
∫
TM

ch(σd(P ))Td(TM ⊗ C).

The right hand side, usually called the topological index, will be explained in
the next two lectures. On short, the two terms “ch” and “Td” are particular
characteristic classes associated to vector bundles. So our aim is to give a short
introduction into the theory of characteristic classes.

The idea is to associate to vector bundles E over a manifold M certain
algebraic invariants which are cohomology classes in H∗(M) which “measure
how non-trivial E is”, and which can distinguish non-isomorphic vector bundles.
There are various approaches possible. Here we will present the geometric one,
which is probably also the simplest, based on the notion of connection and
curvature. The price to pay is that we need to stay in the context of smooth
manifolds, but that is enough for our purposes.

Conventions: Although our main interest is on complex vector bundles,
for the theory of characteristic classes it does not make a difference (for a large
part of the theory) whether we work with complex or real vector bundles. So,
we will fix a generic ground field F (which is either R or C) and, unless a clear
specification is made, by vector bundle we will mean a vector bundle over the
generic field F.

Accordingly, when referring to C∞(M), TM , Ωp(M), X (M), H∗(M) with-
out further specifications, we mean in this lecture the versions which take into

161
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account F; i.e., when F = C, then they denote the algebra of C-valued smooth
functions on M , the complexification of the real tangent bundle, complex-valued
forms, complex vector fields (sections of the complexified real tangent bundle),
DeRham cohomology with coefficients in C. Also, when referring to linearity
(of a map), we mean linearity over F.

10.1. Connections

Throughout this section E is a vector bundle over a manifold M . Unlike the case
of smooth functions on manifolds (which are sections of the trivial line bundle!),
there is no canonical way of taking derivatives of sections of (an arbitrary) E
along vector fields. That is where connections come in.

Definition 10.1.1. A connection on E is a bilinear map ∇
X (M)× Γ(E)→ Γ(E), (X, s) 7→ ∇X(s),

satisfying
∇fX(s) = f∇X(s), ∇X(fs) = f∇X(s) + LX(f)s,

for all f ∈ C∞(M), X ∈ X (M), s ∈ Γ(E).

Remark 10.1.2. In the case when E is trivial, with trivialization frame

e = {e1, . . . , er},
giving a connection on E is the same thing as giving an r by r matrix whose
entries are 1-forms on M :

ω := (ωji )i,j ∈Mr(Ω1(U)).

Given ∇, ω is define by

∇UX(ei) =
r∑
j=1

ωji (X)ej .

Conversely, for any matrix ω, one has a unique connection ∇ on E for which
the previous formula holds: this follows from the Leibniz identity.

Remark 10.1.3. Connections are local in the sense that, for a connection ∇
and x ∈M ,

∇X(s)(x) = 0
for any X ∈ X (M), s ∈ Γ(E) such that X = 0 or s = 0 in a neighborhood U of
x. This can be checked directly, or can be derived from the remark that ∇ is a
differential operator of order one in X and of order zero in f .

Locality implies that, for U ⊂M open, ∇ induces a connection ∇U on the
vector bundle E|U over U , uniquely determined by the condition

∇X(s)|U = ∇UX|U (sU ).

Choosing U the domain of a trivialization of E, with corresponding local frame
e = {e1, . . . , er}, the previous remark shows that, over U , ∇ is uniquely deter-
mined by a matrix

θ := (θji )i,j ∈Mr(Ω1(U)).
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This matrix is called the connection matrix of ∇ over U , with respect to the
local frame e (hence a more appropriate notation would be θ(∇, U, e)).

Proposition 10.1.4. Any vector bundle E admits a connection.

Proof Start with a partition of unity ηi subordinated to an open cover {Ui}
such that E|Ui is trivializable. On each E|Ui we consider a connection ∇i (e.g.,
in the previous remark consider the zero matrix). Define ∇ by

∇X(s) :=
∑
i

∇X|Ui
)(ηis).

�

Next, we point out s slightly different way of looking at connections, in terms
of differential forms on M . Recall that the elements ω ∈ Ωp(M) (p-forms) can
be written locally, with respect to coordinates (x1, . . . , xn) in M , as

(10.1) ω =
∑
i1,...,ip

f i1,...,ipdxi1 . . . dxip ,

with f i1,...,ip-smooth functions while globally, they are the same thing as C∞(M)-
multilinear, antisymmetric maps

ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ C∞(M),

where X (M) is the space of vector fields on M .
Similarly, for a vector bundle E over M , we define the space of E-valued

p-differential forms on M

Ωp(M ;E) = Γ(ΛpT ∗M ⊗ E).

As before, its elements can be written locally, with respect to coordinates
(x1, . . . , xn) in M ,

(10.2) η =
∑
i1,...,ip

dxi1 . . . dxip ⊗ ei1,...,ip .

with ei1,...,ip local sections of E. Using also a local frame e = {e1, . . . , er} for
E, we obtain expressions of type∑

i1,...,ip,i

f
i1,...,ip
i dxi1 . . . dxip ⊗ ei.

Globally, such an η is a C∞(M)-multilinear antisymmetric maps

ω : X (M)× . . .×X (M)︸ ︷︷ ︸
p times

→ Γ(E).

Recall also that
Ω(M) =

⊕
p

Ωp(M)
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is an algebra with respect to the wedge product: given ω ∈ Ωp(M), η ∈ Ωq(M),
their wedge product ω ∧ η ∈ Ωp+q(M), also denoted ωη, is given by
(10.3)
(ω∧η)(X1, . . . , Xp+q) =

∑
σ

sign(σ)ω(Xσ(1), . . . , Xσ(p))·η(Xσ(p+1), . . . , Xσ(p+q)),

where the sum is over all (p, q)-shuffles σ, i.e. all permutations σ with σ(1) <
. . . < σ(p) and σ(p + 1) < . . . < σ(p + q). Although this formula no longer
makes sense when ω and η are both E-valued differential forms, it does make
sense when one of them is E-valued and the other one is a usual form. The
resulting operation makes

Ω(M,E) =
⊕
p

Ωp(M,E)

into a (left and right) module over Ω(M). Keeping in mind the fact that the
spaces Ω are graded (i.e are direct sums indexed by integers) and the fact that
the wedge products involved are compatible with the grading (i.e. Ωp ∧ Ωq ⊂
Ωp+q), we say that Ω(M) is a graded algebra and Ω(M,E) is a graded bimodule
over Ω(M). As for the usual wedge product of forms, the left and right actions
are related by1

ω ∧ η = (−1)pqη ∧ ω ∀ ω ∈ Ωp(M), η ∈ Ωq(M,E).

In what follows we will be mainly using the left action.
Finally, recall that Ω(M) also comes with DeRham differential d, which

increases the degree by one, satisfies the Leibniz identity

d(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d(η),

where |ω| is the degree of ω2, and is a differential (i.e. d ◦ d = 0). We say that
(Ω(M) is a DGA (differential graded algebra). However, in the case of Ω(M,E)
there is no analogue of the DeRham operator.

Proposition 10.1.5. Given a vector bundle E over M , a connection ∇ on E
induces a linear operator which increases the degree by one,

d∇ : Ω•(M,E)→ Ω•+1(M,E)

which satisfies the Leibniz identity

d∇(ω ∧ η) = d(ω) ∧ η + (−1)|ω|ω ∧ d∇(η)

for all ω ∈ Ω(M), η ∈ Ω(M,E). The operator ∇ is uniquely determined by
these conditions and

d∇(s)(X) = ∇X(s)
for all s ∈ Ω0(M,E) = Γ(E), X ∈ X (M).

Moreover, the correspondence ∇ ↔ d∇ is a bijection between connections
on E and operators d∇ as above.

1Important: this is the first manifestation of what is known as the “graded sign rule”: in
an formula that involves graded elements, if two elements a and b of degrees p and q are
interchanged, then the sign (−1)pq is introduced
2Note: the sign in the formula agrees with the graded sign rule: we interchange d which has
degree 1 and ω
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Instead of giving a formal proof (which is completely analogous to the proof
of the basic properties of the DeRham differential), let us point out the explicit
formulas for d∇, both global and local. The global one is completely similar to
the global description of the DeRham differential- the so called Koszul formula:
for ω ∈ Ωp(M), dω ∈ Ωp+1(M) is given by

d(η)(X1, . . . , Xp+1) =
∑
i<j

(−1)i+jη([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xp+1))

+
p+1∑
i=1

(−1)i+1LXi(η(X1, . . . , X̂i, . . . , Xp+1)).(10.4)

Replacing the Lie derivatives LXi by ∇Xi , the same formula makes sense for
η ∈ Ω(M,E); the outcome is precisely d∇(η) ∈ Ωp+1(M,E). For the local de-
scription we fix coordinates (x1, . . . , xn) in M and a local frame e = {e1, . . . , er}
for E. We have to look at elements of form (10.2). The Leibniz rule for d∇
implies that

d∇(η) =
∑
i1,...,ip

(−1)pdxi1 . . . dxip ⊗ d∇(ei1,...,ip)

hence it suffices to describe d∇ on sections of E. The same Leibniz formula
implies that it suffices to describe d∇ on the frame e. Unraveling the last
equation in the proposition, we find

(10.5) d∇(ei) =
r∑
j=1

ωji ej ,

where θ = (θij)i,j is the connection matrix of ∇ with respect to e.

Exercise 10.1.6. Let ∇ be a connection on E, X ∈ X (M), s ∈ Γ(E), x ∈M
and γ : (−ε, ε) → M a curve with γ(0) = x, γ′(0) = Xx. Show that if Xx = 0
or s = 0 along γ, then

∇X(s)(x) = 0.

Deduce that, for any Xx ∈ TxM and any section s defined around x, it makes
sense to talk about ∇Xx(s)(x) ∈ Ex.

10.2. Curvature

Recall that, for the standard Lie derivatives of functions along vector fields,

L[X,Y ] = LXLY (f)− LY LX(f).

Of course, this can be seen just as the definition of the Lie bracket [X,Y ]
of vector fields but, even so, it still says something: the right hand side is a
derivation on f (i.e., indeed, it comes from a vector field). The similar formula
for connections fails dramatically (i.e. there are few vector bundles which admit
a connection for which the analogue of this formula holds). The failure is
measured by the curvature of the connection.
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Proposition 10.2.1. For any connection ∇, the expression

(10.6) k∇(X,Y )s = ∇X∇Y (s)−∇Y∇X(s)−∇[X,Y ](s),

is C∞(M)-linear in the entries X,Y ∈ X (M), s ∈ Γ(E). Hence it defines an
element

k∇ ∈ Γ(Λ2T ∗M ⊗ End(E)) = Ω2(M ;End(E)),
called the curvature of ∇.

Proof It follows from the properties of ∇. For instance, we have

∇X∇Y (fs) = ∇X(f∇Y (s) + LY (f)s)
= f∇X∇Y (s) + LX(f)∇Y (s) + LX(f)∇Y (s) + LXLY (f)s,

and the similar formula for ∇X∇Y (fs), while

∇[X,Y ](fs) = f∇[X,Y ](s) + L[X,Y ](f)s.

Hence, using L[X,Y ] = LXLY − LY LX , we deduce that

k∇(X,Y )(fs) = fk∇(X,Y )(s),

and similarly the others. �

Remark 10.2.2. One can express the curvature locally, with respect to a local
frame e = {e1, . . . , er} of E over an open U , as

k∇(X,Y )ei =
r∑
j=1

kji (X,Y )ej ,

where kji (X,Y ) ∈ C∞(U) are smooth functions on U depending on X,Y ∈
X (M). The previous proposition implies that each kji is a differential form (of
degree two). Hence k∇ is locally determined by a matrix

k = (kji )i,j ∈Mn(Ω2(U)),

called the curvature matrix of ∇ over U , with respect to the local frame e. Of
course, we should be able to compute k in terms of the connection matrix θ.
This will be done as bit later.

There is another interpretation of the curvature, in terms of forms with
values in E. While ∇ defines the operator d∇ which is a generalization of the
DeRham operator d, it is very rarely that it squares to zero (as d does). Again,
k∇ measure this failure. To explain this, we first look more closely to elements

K ∈ Ωp(M,End(E)).

The wedge product formula (10.3) has a version when ω = K and η ∈ Ωq(M,E):

(K∧η)(X1, . . . , Xp+q) =
∑
σ

sign(σ)K(Xσ(1), . . . , Xσ(p))(η(Xσ(p+1), . . . , Xσ(p+q))),

Any such K induces a linear map

K̂ : Ω•(M,E)→ Ω•+p(M,E), K̂(η) = K ∧ η.
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For the later use not also that the same formula for the wedge product has
an obvious version also when applied to elements K ∈ Ωp(M,End(E)) and
K ′ ∈ Ωq(M,End(E)), giving rise to operations

(10.7) ∧ : Ωp(M,End(E))× Ωq(M,End(E))→ Ωp+q(M,End(E))

which make Ω(M,End(E)) into a (graded) algebra.

Exercise 10.2.3. Show that K̂ is an endomorphism of the graded (left) Ω(M)-
module Ω(M,E) i.e., according to the graded sign rule (see the previous foot-
notes):

K̂(ω ∧ η) = (−1)pqω ∧K(η),
for all ω ∈ Ωq(M).

Moreover, the correspondence K 7→ K̂ defines a bijection

Ωp(M,End(E)) ∼= EndpΩ(M)(Ω(M,E))

between Ωp(M,End(E)) and the space of all endomorphisms of the graded
(left) Ω(M)-module Ω(M,E) which rise the degree by p.

Finally, via this bijection, the wedge operation (10.7) becomes the compo-
sition of operators, i.e.

K̂ ∧K ′ = K̂ ◦ K̂ ′

for all K,K ′ ∈ Ω(M,End(E)).

Due to the previous exercise, we will tacitly identify the element K with
the induced operator mK . For curvature of connections we have

Proposition 10.2.4. If ∇ is a connection on E, then

d2
∇ = d∇ ◦ d∇ : Ω•(M,E)→ Ω•+2(M,E)

is given by
d2
∇(η) = k∇ ∧ η

for all η ∈ Ω∗(M ;E), and this determines k∇ uniquely.

Proof Firs of all, d∇ is Ω(M)-linear: for ω ∈ Ωp(M) and η ∈ Ωp(M,E),

d2
∇(ω ∧ η) = d∇(d(ω) ∧ η + (−1)pω ∧ d∇(η)

= [d2(ω) ∧ η + (−1)p+1d(ω) ∧ d∇(η)] + (−1)p[d(ω) ∧ d∇(η) + (−1)pω ∧ d2
∇(η)

= ω ∧ d∇(η).

Hence, by the previous exercise, it comes from multiplication by an element
k ∈ Ω2(M). Using the explicit Koszul-formula for d∇ to compute d2

∇ on Γ(E),
we see that d2

∇(s) = k∇ ∧ s for all s ∈ Γ(E). We deduce that k = k∇. �

Exercise 10.2.5. Let θ and k be the connection and curvature matrices of ∇
with respect to a local frame e. Using the local formula (10.5) for d∇ and the
previous interpretation of the curvature, show that

kji = dθji −
∑
k

θki ∧ θ
j
k,

or, in a more compact form,

(10.8) k = dθ − θ ∧ θ .
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10.3. Characteristic classes

The local construction of characteristic classes is obtained by gluing together
expressions built out of connection matrices associated to a connection. Hence
it is important to understand how connection matrices change when the frame
is changed.

Lemma 10.3.1. Let ∇ be a connection on E. Let e = {e1, . . . , er} be a local
frame of E over an open U and let θ and k be the associated connection matrix
and curvature matrix, respectively. Let e′ = {e′1, . . . , e′r} be another local frame
of E over some open U ′ and let θ′ and k′ be the associated connection and
curvature matrix of ∇. Let

g = (gji ) ∈Mn(C∞(U ∩ U ′))
be the matrix of coordinate changes from e to e′, i.e. defined by:

e
′
i =

r∑
j=1

gji ej

over U ∩ U ′. Then, on U ∩ U ′,

θ′ = (dg)g−1 + gθg−1.

k′ = gkg−1.

Proof Using formula (10.5 ) for d∇ we have:

d∇(e′i) = d∇(
∑
l

gliel)

=
∑
l

d(gli)el +
∑
l,m

gliθ
m
l em,

where for the last equality we have used the Leibniz rule and the formulas
defining θ. Using the inverse matrix g−1 = (gij)i,j we change back from the
frame e to e′ by ej =

∑
i g
i
jωi and we obtain

d∇(e′i) =
∑
l,j

d(gli)g
j
l e
′
j +

∑
l,m,j

gliθ
m
l g

j
me

′
j .

Hence
(θ′)ji =

∑
l

d(gli)g
j
l +

∑
l,m

gliθ
m
l g

j
m,

i.e. the first formula in the statement. To prove the second equation, we will
use the formula (refinvariance) which expresses k in terms of θ. We have

dθ′ = d(dg · g−1 + gθg−1) = −dgd(g−1) + d(g)θg−1 + gd(θ)g−1 − gθd(g−1).

For θ′ ∧ θ′ we find

dgg−1 ∧ d(g)g−1 + dgg−1 ∧ gθg−1 + gθg−1 ∧ dgg−1 + gθg−1 ∧ gθg−1.

Since
g−1dg = d(g−1g)− d(g−1)g = −d(g−1)g,
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the expression above equals to

−dgd(g−1) + d(g)θg−1 − gθd(g−1) + gωωg−1.

Comparing with the expression for dθ′, we find

k′ = dθ′ − θ′ ∧ θ′ = g(dθ − θ ∧ θ)g−1 = gkg−1.

�

Since the curvature matrix stays the same “up to conjugation”, it follows
that any expression that is invariant under conjugation will produce a globally
defined form on M . The simplest such expression is obtained by applying the
trace:

Tr(k) =
∑
i

kii ∈ Ω2(U).

Indeed, it follows immediately that, if k′ corresponds to another local frame e′

over U ′, then Tr(k) = Tr(k′) on the overlap U ∩U ′. Hence all these pieces glue
to a global 2-form on M :

Tr(k∇) ∈ Ω2(M).

As we will see later, this form is closed, and the induced cohomology class in
H2(M) does not depend on the choice of the connection (and this will be, up
to a constant, the first Chern class of E). More generally, one can use other
“invariant polynomials” instead of the trace. We recall that we are working
over the field F ∈ {R,C}.

Definition 10.3.2. We denote by Ir(F) the space of all functions

P : Mr(F)→ F

which are polynomial (in the sense that P (A) is a polynomial in the entries of
A), and which are invariant under the conjugation, i.e.

P (gAg−1) = P (A)

for all A ∈Mr(F), g ∈ Glr(F).

Note that Ir(F) is an algebra (the product of two invariant polynomials is
invariant).

Example 10.3.3. For each p ≥ 0,

Σp : Mr(F)→ F, Σp(A) = Tr(Ap)

is invariant. One can actually show that the elements with 0 ≤ p ≤ r generate
the entire algebra Ir(F): any P ∈ Ir(F) is a polynomial combination of the
Σp’s. Even more, one has an isomorphism of algebras

Ir(F) = F[Σ0,Σ1, . . . ,Σp].

Example 10.3.4. Another set of generators are obtained using the polynomial
functions

σp : Mr(F)→ F
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defined by the equation

det(I + tA) =
r∑
p=0

σp(A)tp.

For instance, σ1 = Σ1 is just the trace while σp(A) = det(A). One can also
prove that

Ir(F) = F[σ0, σ1, . . . , σp].

Remark 10.3.5. But probably the best way to think about the invariant
polynomials is by interpreting them as symmetric polynomials, over the base
field F, in r variables x1, . . .xr which play the role of the eigenvalues of a generic
matrix A. More precisely, one has an isomorphism of algebras

Ir(F) ∼= SymF[x1, . . . , xr]

which associates to a symmetric polynomial S the invariant function (still de-
noted by S) given by

S(A) = S(x1(A), . . . , xr(A)),

where xi(A) are the eigenvalues of A. Conversely, any P ∈ Ir(F) can be viewed
as a symmetric polynomial by evaluating it on diagonal matrices:

P (x1, . . . , xr) := P (diag(x1, . . . , xr)).

For instance, via this bijection, the Σp’s correspond to the polynomials

Σp(x1, . . . , xr) =
∑
i

(xi)p,

while the σp’s correspond to

σp(x1, . . . , xr) =
∑

i1<...<ip

xi1 . . . xip ,

With this it is now easier to express the Σ’s in term of the σ’s and the other
way around (using “Newton’s formulas”: Σ1 = σ1, Σ2 = (σ1)2 − 2σ2, Σ3 =
(σ1)3 − 3σ1σ2 + 3σ3, etc.).

From the previous lemma we deduce:

Corollary 10.3.6. Let P ∈ Ir(F) be an invariant polynomial of degree p.
Then for any vector bundle E over M of rank r and any connection ∇ on E,
there exists a unique differential form of degree 2p,

P (E,∇) ∈ Ω2p(M)

with the property that, for any local frame e of E over some open U ,

P (E,∇)|U = P (k) ∈ Ω2p(U),

where k ∈Mr(Ω2(U)) is the connection matrix of ∇ with respect to e.

The following summarizes the construction of the characteristic classes.
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Theorem 10.3.7. Let P ∈ Ir(F) be an invariant polynomial of degree p. Then
for any vector bundle E over M of rank r and any connection ∇ on E, P (E,∇)
is a closed form and the resulting cohomology class

P (E) := [P (E,∇)] ∈ H2p(M)

does not depend on the choice of the connection ∇. It is called the P -characteristic
class of E.

This theorem can be proven directly, using local connection matrices. Also,
it suffices to prove the theorem for the polynomials P = Σp. This follows from
the fact that these polynomials generate Ir(F) and the fact that the construction

Ir(F) 3 P 7→ P (E,∇) ∈ Ω(M)

is compatible with the products. In the next lecture we will give a detailed
global proof for the Σp’s; the price we will have to pay for having a coordinate-
free proof is some heavier algebraic language. What we gain is a better under-
standing on one hand, but also a framework that allows us to generalize the
construction of characteristic classes to “virtual vector bundles with compact
support”. Here we mention the main properties of the resulting cohomology
classes (proven at the end of this lecture).

Theorem 10.3.8. For any P ∈ Ir(F), the construction E 7→ P (E) is natural,
i.e.

1. If two vector bundles E and F over M , of rank r, are isomorphic, then
P (E) = P (F ).

2. If f : N →M is a smooth map and

f∗ : H•(M)→ H•(N)

is the pull-back map induced in cohomology, then for the pull-back vector
bundle f∗E,

P (f∗E) = f∗P (E).

10.4. Particular characteristic classes

Particular characteristic classes are obtained by applying the constructions of
the previous section to specific polynomials. Of course, since the polynomials
Σp (and similarly the σp’s) generate I(F), we do not loose any information if
we restrict ourselves to these polynomials and the resulting classes. Why don’t
we do that? First, one would have to make a choice between the Σp’s or σp’s.
But, most importantly, it is the properties that we want from the resulting
characteristic classes that often dictate the choice of the invariant polynomials
(e.g. their behaviour with respect to the direct sum of vector bundles- see
below). Sometimes the Σp’s are better, sometimes the σp’s, and sometimes
others. On top, there are situations when the relevant characteristic classes are
not even a matter of choice: they are invariants that show up by themselves
in a specific context (as is the case with the Todd class which really shows up
naturally when comparing the “Thom isomorphism” in DeRham cohomology
with the one in K-theory- but that goes beyond this course).
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Here are some of the standard characteristic classes that one considers. We
first specialize to the complex case F = C.

1. Chern classes: They correspond to the invariant polynomials

cp =
(

1
2πi

)p

σp,

with 0 ≤ p ≤ r. Hence they associate to complex vector bundle E rank r a
cohomology class, called the p-th Chern class of E:

cp(E) ∈ H2p(M) (0 ≤ p ≤ r).
The total Chern class of E is defined as

c(E) = c0(E) + c1(E) + . . .+ cr(E) ∈ Heven(M);

it corresponds to the inhomogeneous polynomial

c(A) = det(I +
1

2πi
A).

For the purpose of this lecture, the rather ugly constants in front of σp
(and the similar constants below) are not so important. Their role will be to
“normalize” some formulas so that the outcome (the components of the Chern
character) are real, or even integral (they come from the cohomology with
integral coefficients; alternatively, one may think that they produce integrals
which are integers). If you solve the following exercise you will find out precisely
such constants showing up.

Exercise 10.4.1. Let M = CP1 be the complex projective space, consisting
of complex lines in C2 (i.e. 1-dimensional complex vector subspaces) in C2.
Let L ⊂ CP1 × C2 be the tautological line bundle over M (whose fiber above
l ∈ CP1 is l viewed as a complex vector space). Show that

c1(L) ∈ H2(CP1)

is non-trivial. What is its integral? (the element a := −c1(L) ∈ H2(CP1) will
be called the canonical generator).

Here are the main properties of the Chern classes (the proofs will be given
at the end of the section).

Proposition 10.4.2. The Chern classes of a complex vector bundle, priory
cohomology classes with coefficients in C, are actually real (cohomology classes
with coefficients in R). Moreover,

1. The total Chern class has an exponential behaviour with respect to the
direct sum of vector bundles i.e., for any two complex vector bundles E
and F over M ,

c(E ⊕ F ) = c(E)c(F )
or, component-wise,

cp(E ⊕ F ) =
∑
i+j=p

ci(E)cj(F ).
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2. If E is the conjugated of the complex vector bundle E, then

ck(E) = (−1)kck(E).

Remark 10.4.3. One can show that the following properties of the Chern
classes actually determines them uniquely:

C1: Naturality (see Theorem 10.3.8).
C2: The behaviour with respect to the direct sum (see the previous proposi-

tion).
C3: For the tautological line bundle L, c1(L) = −a ∈ H2(CP1) (see the

previous exercise).

2. Chern character: The Chern character classes correspond to the in-
variant polynomials

Chp =
1
p!

(
− 1

2πi

)p

Σp.

Hence Chp associates to a complex vector bundle E a cohomology class, called
the p-th component of the Chern character of E:

Chp(E) ∈ H2p(M).

They assemble together into the full Chern character of E, defined as

Ch(E) =
∑
p≥0

Chp(E) ∈ Heven(M);

it corresponds to the expression (which, strictly speaking is a powers series and
not a polynomial, but which when evaluated on a curvature matrix produces a
finite sum):

Ch(A) = Tr(e−
1

2πi
A).

Note that Ch(E) are always real cohomology classes; this follows e.g. from
the similar property for the Chern classes, and the fact that the relationship
between the Σ’s and the σ’s involve only real coefficients (even rational!). Here
is the main property of the Chern character.

Proposition 10.4.4. The Chern character is additive and multiplicative i.e.,
for any two complex vector bundles E and F over M ,

Ch(E ⊕ F ) = Ch(E) + Ch(F ), Ch(E ⊗ F ) = Ch(E)Ch(F ).

3. Todd class: Another important characteristic class is the Todd class
of a complex vector bundle. To define it, we first expand formally

t

1− e−t
= B0 +B1t+B2t

2 + . . . .

(the coefficients Bk are known as the Bernoulli numbers). For instance,

B0 = 1, B1 =
1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, etc,
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(and they have the property that Bk = 0 for k-odd, k ≥ 3 and they have vari-
ous other interesting interpretations). For r-variables, we expand the resulting
product

T := Πr
i=1

xi
1− e−xi

= T0 + T1(x1, . . . , xr) + T2(x1, . . . , xr) + . . .

where each Tk is a symmetric polynomial of degree k. We proceed as before
and define

Tdk(E) =
(

1
2πi

)k

Tk(E) ∈ H2k(M),

The Todd class of a vector bundle E is the resulting total characteristic class

Td(E) =
∑
k

Tdk(E) ∈ Heven(M).

Again, Td(E) are real cohomology classes and Td is multiplicative.

4. Pontryagin classes: We now pass to the case F = R. The Pontryagin
classes are the analogues for real vector bundles of the Chern classes. They
correspond to the polynomials

pk =
(

1
2π

)2k

σ2k,

for 2k ≤ r. The reason we restrict to the σ’s of even degree (2k) is simple: the
odd dimensional degree produce zero forms (see below). Hence pk associates to
a real vector bundle E of rank r a cohomology class, called the k-th Pontryagin
class of E:

pk(E) ∈ H4k(M) (0 ≤ k ≤ r/2).
They assemble together into the full Pontryagin class of E, defined as

p(E) = p0(E) + p1(E) + . . .+ p[ r
2 ] ∈ H

•(M).

The Pontryagin class has the same property as the Chern class: for any two
real vector bundles,

p(E ⊕ F ) = p(E)p(F ).
The relationship between the two is actually much stronger (which is expected
due to their definitions). To make this precise, we associate to any real vector
bundle E its complexification

E ⊗ C := E ⊗R C = {e1 + ie2 : e1, e2 ∈ E, }.

Proposition 10.4.5. For any real vector bundle E,

cl(E ⊗ C) =
{

(−1)kpk(E) if l = 2k
0 if l = 2k + 1

Finally, one can go from a complex vector bundle E to a real one, denoted
ER, which is just E vied as a real vector bundle. One has:

Proposition 10.4.6. For any complex vector bundle E,

p0(ER)− p1(ER) + p2(ER)− . . . = (c0(E) + c1(E) + . . .)(c0(E)− c1(E) + . . .).
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5. The Euler classs: There are other characteristic classes which are,
strictly speaking, not immediate application of the construction from the pre-
vious section, but are similar in spirit (but they fit into the general theory of
characteristic classes with structural group smaller then GLn). That is the case
e.g. with the Euler class, which is defined for real, oriented vector bundles E
of even rank r = 2l. The outcome is a cohomology class over the base manifold
M :

e(E) ∈ H2l(M).

To construct it, there are two key remarks:
1. For real vector bundles, connection matrices can also be achived to be

antisymmetric. To see this, one choose a metric 〈·, ·〉 on E (fiberwise an
inner product) and, by a partition of unity, one can show that one can
choose a connection ∇ which is compatible with the metric, in the sense
that

Lx〈s1, s2〉 = 〈∇X(s1), s2〉+ 〈s1,∇X(s2)〉
for all s1, s2 ∈ Γ(E). Choosing orthonormal frames e, one can easily
show that this compatibility implies that the connection matrix θ with
respect to e is antisymmetric.

2. With the inner product and ∇ as above, concentrating on positively
oriented frames, the change of frame matrix, denoted g in the previous
section, has positive determinant.

3. In general, for for skew symmetric matrices A of even order 2l, det(A) is
naturally a square of another expression, denoted Pf(A) (polynomial of
degree l):

det(A) = Pf(A)2.

For instance,

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = (af + cd− be)2.

Moreover, for g with positive determinant,

Pf(gAg−1) = Pf(A).

It follows that, evaluating Pf on connection matrices associated to positive
orthonormal frames, we obtain a globvally defined form

Pf(E,∇) ∈ Ω2l(M).

As before, this form is closed and the resulting cohomology class does not
depend on the choice of the connection. The Euler class is

e(E) =

[(
1

2π

)l

Pf(E,∇)

]
∈ H2l(M).
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Note that, since det is used in the construction of pl(E), it follows that

pl(E) = e(E)2.

10.5. Proofs of the main properties

The proofs of the main properties of the characteristic classes (Theorem 10.3.8,
Proposition 10.4.2, Proposition 10.4.4 and Proposition 10.4.5 ) are based on
some basic constructions of connections: pull-back, direct sum, dual, tensor
product.

Pullback of connections and the proof of Theorem 10.3.8: For
Theorem 10.3.8 we need the construction of pull-back of connections: given a
vector bundle E over M and a smooth map f : N →M then for any connection
∇ on E, there is an induced connection f∗∇ on f∗E. This can be described
locally as follows: if e is a local frame e of E over U and θ is determined by the
connection matrix (with respect to e) θ then, using the induced local frame f∗e
of f∗E over f−1(U), the resulting connection matrix of f∗∇ is f∗θ (pull back
all the one-forms which are the entries in the matrix θ). Of course, one has to
check that these connection matrices glue together (which should be quite clear
due to the naturality of the construction); alternatively, one can describe f∗∇
globally, by requiring

(10.9) (f∗∇)X(f∗s)(x) = ∇(df)x(Xx)(s)(f(x)), x ∈ N

where, for s ∈ Γ(E), we denoted by f∗s ∈ Γ(f∗E) the section x 7→ s(f(x)); for
the right hand side, see also Exercise 10.1.6.

Exercise 10.5.1. Show that there is a unique connection f∗∇ on f∗E which
has the property (10.9). Then show that its connection matrices can be com-
puted as indicated above.

With this construction, the second part of Theorem 10.3.8 is immediate:
locally, the connection matrix of f∗∇ is just the pull-back of the one of ∇,
hence we obtain P (E, f∗∇) = f∗P (E,∇) as differential forms. The first part
of the theorem is easier (exercise!).

Direct sum of connections and the proof of Proposition 10.4.2:
For the proof of the behaviour of c with respect to direct sums (and similarly
for the Pontryagin class) we need the construction of the direct sum of two
connections: given connections ∇0 and ∇1 on E and F , respectively, we can
form a new connection ∇ on E ⊕ F :

∇X(s0, s1) = (∇0
X(s0),∇1

X(s1)).

To compute its connection matrices, we will use a local frame of E ⊗ F which
comes by putting together a local frame e for E and a local frame f for F (over
the same open). It is then clear that the connection matrix θ for ∇ with respect
to this frame, and similarly the curvature matrix, can be written in terms as
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the curvature matrices θi, i ∈ {0, 1} for E and F (with respect to e and f) as

θ =
(
θ0 0
0 θ1

)
, k =

(
k0 0
0 k1

)
.

Combined with the remark that

det(I + t

(
A0 0
0 A1

)
) = det(I + tA0) det(I + tA1)

for any two matrices A0 and A1, we find that

c(E ⊕ F,∇) = c(E,∇0)c(F,∇1)

(as differential forms!) from which the statement follows.

Duals/conjugations of connections and end proof of Prop. 10.4.2:
For the rest of the proposition we need the dual and the conjugate of a con-
nection. First of all, a connection ∇ on E induces a connection ∇∗ on E∗

by:
∇X(s∗)(s) :=  LX(s∗(s))− s∗(∇X(s)), ∀ s ∈ Γ(E), s∗ ∈ Γ(E∗).

(why this formula?).

Exercise 10.5.2. Show that this is, indeed, a connection on E∗.

Starting with a local frame e of E, it is not difficult to compute the connec-
tion matrix of ∇∗ with respect to the induced dual frame θ∗, in terms of the
connection matrix θ of ∇ with respect to e:

θ∗ = −θt

(minus the transpose of θ). Hence the same holds for the curvature matrix.
Since for any matrix A

det(I + t(−At)) = det(I − tA) =
∑

(−1)ktkσk(A),

we have σk(−At) = (−1)kσk(A) from which we deduce

ck(E∗) = (−1)kck(E).

Similarly, any connection ∇ on E induces a conjugated connection ∇ on
E. While E is really just E but with the structure of complex multiplication
changed to:

z · v := zv, (z ∈ C, v ∈ E)
∇ is just ∇ but interpreted as a connection on E. It is then easy to see that
the resulting connection matrix of ∇ is precisely θ. Since for any matrix A,

det(I +
1

2πi
A) = det(I − 1

2πi
A),

we have ck(A) = (−1)kck(A) and then

ck(E) = (−1)kck(E).

Finally, note that for any complex vector bundle E, E∗ and E are isomorphic
(the isomorphism is not canonical- one uses a hermitian metric on E to produce
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one). Hence ck(E∗) = ck(E). Comparing with the previous two formulas, we
obtain

ck(E) = (−1)kck(E) = (−1)kck(E)
which shows both that ck(E) is real as well as the last formula in the proposition.

Tensor product of connections and the proof of Proposition 10.4.2:
The additivity is proven, as above, using the direct sum of connections and the
fact that for any two matrices A (r by r) and A′ (r′ by r′),

Tr

(
A 0
0 A′

)k

= Tr(Ak) + Tr(A
′k).

For the multiplicativity we need the construction of the tensor product of two
connections: given∇0 on E and∇1 on F , one produces∇ on E⊗F by requiring

∇X(s0 ⊗ s1) = ∇0
X(s0)⊗ s1 + s0 ⊗∇1

X(s1)

for all s0 ∈ Γ(E), s1 ∈ Γ(F ). Frames e and f for E and F induce a frame
e ⊗ f = {ei ⊗ fp : 1 ≤ i ≤ r, 1 ≤ p ≤ r′} for E ⊗ F (r is the rank of E and r′

of F ). After a straightforward computation, we obtain as resulting curvature
matrix

k = k0 ⊗ Ir′ + Ir ⊗ k1

where Ir is the identity matrix and, for two matrices A and B, one of size r and
one of size r′, A ⊗ B denotes the matrix of size rr′ (whose columns and rows
are indexed by pairs with (i, p) as before)

(A⊗B)j,qi,p = AjiB
q
p.

Remarking that Tr(A⊗B) = Tr(A)Tr(B), we immediately find

Tr(eA⊗I+I⊗B) = Tr(eA)Tr(eB)

from which the desired formula follows.

Complexifications of connections and the proof of Proposition
10.4.5: For this second part, i.e. when l is odd, it suffices to remark that,
for E ⊗ C, it is isomorphic to its conjugation then just apply the last part of
Proposition 10.4.2. For l even we have to go again to connections and to remark
that a connection ∇ on a real vector bundle E can be complexified to give a
connection ∇C on E ⊗ C: just extend ∇ by requiring C-linearity. Comparing
the connection matrices we immediately find that

c2k(E ⊗ C) =
(

1
i

)2k

pk(E) = (−1)kpk(E).

Proof of Proposition 10.4.6: The main observation is that, for any
complex vector bundle E, one has a canonical isomorphism

ER ⊗ C ∼= E ⊕ E
defined fiberwise by

v +
√
−1w 7→ (v + iw, v − iw),
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where
√
−1 is “the i used to complexify ER). Hence

c(ER ⊗ C) = c(E)c(E)

and, using the formulas from Proposition 10.4.5 and from end of Proposition
10.4.2, the desired formula follows.

10.6. Some exercises

Here are some more exercises to get used with these classes but also to see some
of their use (some of which are rather difficult!).

Exercise 10.6.1. Show that, for any trivial complex vector bundle T (of ar-
bitrary rank) and any other complex vector bundle E,

c(E ⊕ T ) = c(E).

Exercise 10.6.2. (the normal bundle trick). Assume that a manifold N is
embedded in the manifold M , with normal bundle ν. Let τM be the tangent
bundle of M and τN the one of N . Show that

c(τM )|N = c(τN )c(ν).

Exercise 10.6.3. For the tangent bundle τ of Sn show that

p(τ) = 1.

Exercise 10.6.4. Show that the the tautological line bundle L over CP1 (see
Exercise 10.4.1) is not isomorphic to the trivial line bundle. Actually, show that
over CP1 one can find an infinite family of non-isomorphic line bundles.

Exercise 10.6.5. Let L ⊂ CPn × Cn+1 be the tautological line bundle over
CPn (generalizing the one from Exercise 10.4.1) and let

a := −c1(L) ∈ H2(CPn).

Show that ∫
CPn

an = 1.

Deduce that all the cohomology classes a, a2, . . . , an are non-zero.

Exercise 10.6.6. This is a continuation of the previous exercise. Let τ be
the tangent bundle of CPn- a complex vector bundle (why?), and let τR be the
underlying real vector bundle. We want to compute c(τ) and p(τR).

Let L⊥ ⊂ CPn × Cn+1 be the (complex) vector bundle over CPn whose
fiber at l ∈ CPn is the orthogonal l⊥ ⊂ Cn+1 of l (with respect to the standard
hermitian metric).

1. Show that

Hom(L,L) ∼= T 1, Hom(L,L⊥)⊕ T 1 ∼= L∗ ⊕ . . .⊕ L∗︸ ︷︷ ︸
n+1

,

where T k stands for the trivial complex vector bundle of rank k.
2. Show that

τ ∼= Hom(L,L⊥).
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3. Deduce that

c(τ) = (1 + a)n+1, p(τR) = (1 + a2)n+1.

4. Compute Ch(τ).

Exercise 10.6.7. Show that CP4 cannot be embedded in R11.
(Hint: use the previous computation and the normal bundle trick).

Exercise 10.6.8. Show that CP2010 cannot be written as the boundary of a
compact, oriented (real) manifold.

(Hint: first, using Stokes’ formula, show that if a manifold M of dimen-
sion 4l can be written as the boundary of a compact oriented manifold then∫
M pl(τM )) = 0).

Exercise 10.6.9. Show that CP2010 can not be written as the product of two
complex manifolds of non-zero dimension.

(Hint: for two complex manifolds M and N of complex dimensions m and
n, respectively, what happens to Chm+n(τM×N ) ∈ H2m+2n(M ×N)?).

10.7. Chern classes: the global description and the proof of The-
orem 10.3.7

In this section we look closer at the Chern character, which shows up naturally
in the context of the Atiyah-Singer index theorem. We start by giving a slightly
different dress (of a more global flavour) to the discussion of characteristic
classes from the previous lecture and we prove Theorem 10.3.7. The algebraic
formalism that we use is known as “Quillen’s formalism”. It has the advantage
that it applies (with very litlle changes) to other settings (in particular, it can
be addapted easily to non-commutative geometry).

Although we concentrate on the Chern character (which uses the invariant
polynomials Σp), most of what we say in this section can be carried out for
arbitrary invariant polynomials (see also the comments which follow Theorem
10.3.7).

This section can (and should) be viewed as a global presentation of the
Chern classes already discussed (including proofs). There are three ingredients
that we need. The first two have already been discussed
• the algebra Ω∗(M,End(E)) of differential forms on M with coefficients

in End(E), and the wedge product (10.7) which makes it into a (graded)
algebra.
• a connection ∇ on E and the associated curvature, interpreted globally

as an element
k∇ ∈ Ω2(M,End(E)).

The last ingredient is a global version of the trace map. Due to the invari-
ance of the usual trace map of matrices, it follows that it does not really depend
on the choice of the basis; hence any finite dimensional (complex) vector space
V comes with a trace map

TrV : End(V )→ C
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which can be computed via a (any) basis ei of V ; the any T ∈ End(V ) has a
matrix representation T = (tji ) and TrV (T ) =

∑
i t
i
i. This map has “the trace

property” (an infinitesimal version of invariance):

(10.10) TrV ([A,B]) = 0,

for all A,B ∈ End(V ), where [A,B] = AB −BA.
Since TrV is intrinsec to V , it can be applied also to vector bundles: for

any vector bundle E, the trace map (applied fiberwise) is a vector bundle map
from End(E) to the trivial line bundle. In particular, one has an induced map,
which is the final ingredient:
• The trace map:

(10.11) Tr : Ω•(M ;End(E))→ Ω•(M).

Exercise 10.7.1. Show that Tr has the graded trace property:

Tr([A,B]) = 0,

for all A ∈ Ωp(M ;End(E)), B ∈ Ωq(M ;End(E)), where [A,B] are the graded
commutators:

[A,B] = A ∧B − (−1)pqB ∧A.
and ∧ is here the wedge operation on Ω(M,End(E)) (see (10.7)).

Putting things together we find immediately:

Proposition 10.7.2. For a connection ∇ on E,

Chp(E,∇) =
1
p!

(
− 1

2πi

)p

Tr(kp∇) ∈ Ω2p(M).

Hence, using the wedge product and the usual power seria development to
define formally the exponential map

exp : Ω(M,End(E))→ Ω(M,End(E)),

the Chern character can be written as

Ch(E,∇) = Tr(e−
1

2π
√
−1
k∇).

Next, we explain the relationship between these ingredients; putting ev-
erything together, we will obtain the proof of Theorem 10.3.7 (for the Chern
classes). The plan is as follows:

• show that the connection ∇ on E induces a connection ∇̃ on End(E).
• show that Tr : Ω•(M ;End(E))→ Ω•(M) is compatible with d∇̃ and d.
• show that k∇ is d∇̃-closed.

Lemma 10.7.3. Given a connection ∇ on E, there is an induced connection
∇̃ on End(E), given by

∇̃X(T )(s) = ∇X(T (s))− T (∇X(s)),

for all X ∈ X (M), T ∈ Γ(End(E)), s ∈ Γ(E). Moreover, the induced operator

d∇̃ : Ωp(M ;End(E))→ Ωp+1(M ;End(E))
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is given by

(10.12) d∇̃(K) = [d∇,K]

where, as in Exercise 10.2.3, we identify the elements in K ∈ Ω∗(M ;End(E))
with the induced operators K̂ and we use the graded commutators

[d∇,K] = d∇ ◦K − (−1)pK ◦ d∇
In particular, d∇̃ also satisfies the Leibniz identity with respect to the wedge
product (10.7) on Ω(M,End(E)).

Proof First one has to check that, for X ∈ X (M), T ∈ Γ(End(E)), ∇̃X(T ) ∈
Γ(End(E)), i.e. the defininig formula is C∞(M)-linear on s ∈ Γ(E):

∇̃X(T )(fs) = ∇X(T (fs))− T (∇X(fs))
= [f∇X(T (s)) + LX(f)T (s)]− [fT (∇X(s)) + LX(f)T (s)]

= f∇̃X(T )(s).

The identities that ∇̃ have to satisfy to be a connection are proven similarly.
For the second part, we first have to show (similar to what we have just checked)
that, for K ∈ Ωp(M,End(E)),

K ′ := [d∇,K] ∈ Ωp+1(M,End(E)).

More porecisely, unraveling the identifications between the elements K and the
operators K̂, we have to show that

K̂ ′ := d∇ ◦ K̂ − (−1)pK̂ ◦ d∇ : Ω•(M,E)→ Ω•+p+1(M,E)

is Ω(M)-linear, i.e.

K̂ ′(ω ∧ η) = (−1)(p+1)|ω|ω ∧ K̂ ′(η)

for all ω ∈ Ωp(M), η ∈ Ω(M,E). writing out the left hand side we find

d∇(K̂(ω ∧ η))− (−1)pk(d∇(ω ∧ η))

which is (using the Ω(M)-linearity of K̂ and the Leibniz identity for d∇):

[(−1)p|ω|d(ω) ∧ K̂(η) + (−1)(p+1)|ω|ω ∧ d∇(K̂(η))]−

−[(−1)p|ω|d(ω) ∧ K̂(η) + (−1)p+(p+1)|ω|ω ∧K(d∇(η))]
which equals to

(−1)(p+1)|ω|ω ∧ [d∇(K̂(η))− (−1)pK̂(d∇(η)),

i.e. the right hand side of the formula to be proven. Hence we obtain an
operator

D : Ωp(M ;End(E))→ Ωp+1(M ;End(E)), D(K) = [d∇,K],

and we have to prove that it coincides with d∇̃. By a computation similar
to the one above, one shows that D satisfies the Leibniz identity. Hence it
suffices to show that the two coincide on elements T ∈ Γ(End(E)). They are
both elements of Ω1(M,End(E)) hence they act on X ∈ X (M), s ∈ Γ(E) and
produce sections of E. For d∇̃(T ) we obtain

d∇̃(T )(X)s = ∇X(T (s))− T (∇X(s))
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while for D(T ) we obtain

D̂(T )(s)(X) = (d∇ ◦ T̂ − T̂ ◦ d∇)(X)(s)]
= d∇(T (s))(X)− T (d∇(s)(X))
= ∇X(T (s))− T (∇X(s)).

�

From the second part of the proposition we immediately deduce:

Corollary 10.7.4. (Bianchi identity) d∇̃(k∇) = 0.

We can now return to the issue of the relationship between the trace map
and the DeRham differential.

Proposition 10.7.5. For any connection ∇, the trace map Tr : Ω∗(M ;End(E))→
Ω∗(M) satisfies

Tr ◦ d∇̃ = d ◦ Tr.

Proof Consider

Φ := Tr ◦ d∇̃ − d ◦ Tr : Ω•(M,End(E))→ Ω•+1(M,End(E)).

By a computations similar to the previous ones (but simpler), one check the
graded Ω(M)-linearity of Φ:

Φ(ω ∧K) = (−1)|ω|ω ∧ Φ(K).

Hence to show that Φ is zero, it suffices to show that it vanishes on elements
T ∈ Γ(End(E)). I.e., we have to show that, for all such T ’s and all X ∈ X (M),

Tr(∇̃X(T ))− LX(Tr(T )) = 0.

This can be checked locall, using a local frame e = {ei} for E. Such a local
frame induces a local frame {eij} for End(E) given by eij(ei) = ej and zero on
the other ek’s. If the matrix corresopnding to T is {tji} (T (ei) =

∑
j t
j
iej), for

T̃ := ∇̃X(T ) we have:

T̃ (ei) =
∑
j

∇X(tjiej)−
∑
j

T (θji (X)ej),

where {θji } is the connection matrix. Writing this out, we find the matrix
corresponing to T̃ :

t̃ki =
∑
j

tjiθ
k
j (X)−

∑
j

θji (X)tkj + LX(tki ).

We deduce that

Tr(∇̃X(T )) = LX(
∑
i

tii) = LX(Tr(T )).

�
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Corollary 10.7.6. For any connection ∇ on E,

Tr(kp∇) ∈ Ω2p(M)

is closed.

Proof From the previous proposition,

dTr(kp∇) = Tr(d∇̃(kp∇)).

Due to the Leibniz rule for d∇̃ and the Bianchi identity (the previous corollary)
we find d∇̃(kp∇) = 0. �

Finally, we prove the independence of the connection.

Proposition 10.7.7. For any vector bundle E over M , the cohomology class

[Tr(kp∇)] ∈ H2p(M)

does not depend on the choice of the connection ∇.

Proof Let ∇′ be another connection. The expression

R(X)s = ∇′X(s)−∇X(s)

is then C∞(M)-linear in X and s, hence defines an element

R ∈ Ω1(M,End(E)).

Related to this is the fact that the difference

R̂ = d∇′ − d∇ : Ω•(M,E)→ Ω•+1(M,E)

is Ω(M)-linear (in the graded sense). This follows immediately from the Leibniz
rule for d∇ and d∇′ . Our notation is not accidental: R and R̂ correspond to
each other by the bijection of Exercise 10.2.3 (why?). In what follows we will
not distinguish between the two.

The idea is to join the two connections by a path (of connections): for each
t ∈ [0, 1] we consider

∇t := ∇+ tR

and the induced operators
d∇t = d∇ + tR.

Computing the square of this operator, we find

k∇t = k∇ + t[d∇, R] + t2R2 = k∇ + td∇̃(R) + t2
1
2

[R,R]

from which we deduce
d

dt
(k∇t) = d∇̃(R) + t[R,R] = d∇̃t(R).

Using the Leibniz identity,
d

dt
(kp∇t) =

∑
i

ki−1
∇t d∇̃t(R)kp−i∇t

hence, using the fact that Tr is a graded trace,
d

dt
(Tr(kp∇t)) = pTr(kp−1

∇t d∇̃t(R)).
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Using again the Leibniz and Bianchi identity,
d

dt
(Tr(kp∇t)) = pd[Tr(kp−1

∇t R)].

Integrating from 0 to 1 we find

Tr(kp∇′ )− Tr(k
p
∇) = d[p

∫ 1

0
Tr(kp−1

∇t R)],

i.e. the two terms in the left hand side differ by an exact form, hence they
represent the same element in the cohomology group. �





LECTURE 11
K-theoretical formulation of the Atiyah-Singer index

theorem

11.1. K-theory and the Chern character

For a manifold M we denote by V b(M) the set of isomorphism classes of vector
bundles over M . Together with the direct sum of vector bundles, is an abelian
semi-group, with the trvial 0-dimensional bundle as the zero-element.

In general, one can associate to any semi-group (S,+) a group G(S), called
the Grothendick group of S, which is the “smallest group which can be made
out of S”. For instance, applied to the semigroup (N,+) of positive integers,
one recovers (Z,+). Or, if S is already a group, then G(S) = S.

Given an arbitrary semi-group (S,+), G(S) consists of formal differences

[x]− [y]

with x, y ∈ S, where two such formal differences [x]− [y] and [x′]− [y′] are equal
if and only if there exists z ∈ S such that

(11.1) x+ y′ + z = x′ + y + z.

More formally, one defines

G(S) = S × S/ ∼,

where ∼ is the equivalence relation given by: (x, y) ∼ (x′, y′) if and only if there
exists a z ∈ S such that (11.1) holds. Denote by [x, y] the equivalence class of
(x, y). The componentwise addition in S × S descends to a group structure on
G(S): the zero element is [0, 0], and the inverse of [x, y] is [y, x]. For x ∈ S, we
define

[x] := [x, 0] ∈ G(S),

and this defines a morphism of semigroups S 7→ G(S) (find the universal prop-
erty of G(S)!). Also, since

[x, y] = [(x, 0)]− [(y, 0)] = [x]− [y],

187



188 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

we obtain the representation of G(S) mentioned at the beginning. Note that
there is a canonical map:

i : S → G(S), x 7→ [x],

which is a morphisms of semi-groups.

Exercise 11.1.1. Show that G(S) has the following universal property: for
any other group G and any morphism iG : S → G of semi-groups, there is a
unique morphism of groups, φ : G(S)→ G such that iG = φ ◦ i.

Definition 11.1.2. Define the K-theory group of M as the group associated
to the semi-group V b(M) of (isomorphism classes) of vector bundles over M .

Exercise 11.1.3. Is the map i : V b(M) → K(M) injective? (hint: you can
use that the tangent bundle of S2 is not trivial).

One may think of K(M) as “integers over M”. Indeed, natural numbers are
in bijection with isomorphism classes of finite dimensional vector spaces. Since
vector bundles can be viewed as families of vector spaces indexed by the base
manifold M , isomorphism classes of vector bundles play the role of “natural
numbers over M”, and K(M) the one of “integers over M”.

Note also that the tensor product of vector bundles induces a product on
K(M), and K(M) becomes a ring.

Theorem 11.1.4. The Chern character induces a ring homomorphism

Ch : K(M)→ Heven(M), [E]− [F ] 7→ Ch(E)− Ch(F ).

Proof The compatibility By the additive property of the Chern character,

Ch : V b(M)→ Heven(M)

is a morphism of semi-groups hence by the universality of K(M) (see Exercise
11.1.1), it induces a morphism of groups K(M)→ Heven(M). This is precisely
the map in the statement. The compatibility with the produtcs follows from
the multiplicativity of the Chern character. �

Remark 11.1.5. One can show that, after tensoring with R,

Ch⊗Z R : K(M)⊗Z R→ Heven(M)

becomes an isomorphism.

11.2. K-theory and the Chern character with compact supports

Next, we discuss K-theory with compact supports. We consider triples

(11.2) C = (E,α, F )

where E and F are vector bundles over M and

α : E → F

is a vector bundle morphism with compact support, i.e. with the property that

supp(C) := {x ∈M : αx : Ex → Fx is not an isomorphism}
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is a compact subset of M . We denote by L1(M) the set of equivalence classes
of such triples. If C ′ = (E′, α′, F ′) is another one, we say that C and C are
homotopic, and we write

C ≡ C ′

if there exists a smooth family Ct = (Et, αt, Ft), indexed by t ∈ [0, 1], of triples
(still with compact supports), such that

C0 = C,C1 = C ′.

More precisely, we require the existence of a triple C̃ = (Ẽ, α̃, F̃ ) over M× [0, 1]
(with compact support), such that C is the restriction of C̃ via i0 : M ↪→
M × [0, 1], i0(x) = (x, 0) and C ′ is the restriction of C̃ via i1 : M ↪→M × [0, 1],
i1(x) = (x, 1).

Finally, we introduce a new equivalence relation ∼ on L1(M):

C ∼ C ′ ⇐⇒ C ⊕ T ≡ C ′ ⊕ T ′

for some triples T and T ′ with empty support.

Definition 11.2.1. Define the K-theory of M with compact supports as the
quotient

Kcpct(M) = L1(M)/ ∼ .

For C ∈ L1(M), we denote by [C] the induced element in Kcpct(M).

With respect to the direct sum of vector bundles and morphisms of vector
bundles, Kcpct(M) becomes a semi-group.

Exercise 11.2.2. Show that Kcpct(M) is a group. Also, when M is compact,
show that

Kcpct(M)→ K(M), [(E,α, F )] 7→ [E]− [F ]

is an isomorphism of groups.

Example 11.2.3. Given an elliptic operator P : Γ(E)→ Γ(F ) of order d over
a compact manifold M , its principal symbol

σd(P ) : π∗E → π∗F

(where π : T ∗M →M is the projection) will induce an element

[(π∗E, σd(P ), π∗F )] ∈ Kcpct(T ∗M).

Next, we discuss the Chern character on Kcpct(M). We start with an ele-
ment

C = (E,α, F ) ∈ L1(M).

Lemma 11.2.4. There exists a connection ∇E onb E and ∇F on F and a
compact L ⊂M such that α is an isomorpism outside L and

α∗(∇F ) = ∇E on M − L.
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Note that, here,
α∗(∇F )X(s) = α−1∇FX(α(s)).

Proof Let ∇F be any connection on F . We will construct ∇E . For that we
first fix an arbitrary connection ∇ on E (to be changed). Let K be the support
of α and L a compact in M with

K ⊂ Int(L) ⊂ L.
Then α∗(∇F ) is well-defined as a connection on U := M −K. The difference

∇X(s)− α∗(∇F )X(s)

is C∞(U)-linear in X and s, hence defines a section

θ ∈ Γ(U, T ∗M ⊗ End(E)).

From the general properties of sections of vector bundles, for any closed (in M)
A ⊂ U , we find a smooth section

θ̃ ∈ Γ(M,T ∗M ⊗ End(E))

such that
θ̃|A = θ|A.

We apply this to A = M − Int(L) and we define ∇E by

∇EX(s) = ∇X(s)− θ̃(X)s.

�

Theorem 11.2.5. For any pair of connections ∇E and ∇F as in Lemma
11.2.4,

Ch(C,∇E ,∇F ) := Ch(E,∇E)− Ch(F,∇F ) ∈ Ωcpct(M)

is a closed differential form on M with compact support and the induced coho-
mology class

Ch(C) := [Ch(C,∇E ,∇F )] ∈ Heven
cpct (M)

does not depend on the choice of the connections. Moreover, Ch induces a group
homomorphism

Ch : Kcpct(M)→ Heven
cpct (M), [C] 7→ Ch(C).

Proof The naturality of the Chern character implies that

Ch(C,∇E ,∇F )|M−L = Ch(E|M−L, α
∗(∇F |M−L))−Ch(F |M−L,∇F |M−L) = 0.

Hence Ch(C,∇E ,∇F ) is a closed from with compact support. To see that
the cohomology class does not depend on the choice of the connections, we
addapt the argument for the similar statement for the Chern character of vector
bundles; see the proof of Proposition 10.7.7. With the same notations as there,
another pair of connections as in Lemma 11.2.4 will be of type

∇E +RE ,∇F +RF

with
RE ∈ Ω1(M,End(E)), RF ∈ Ω1(M,End(F ))
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and the two new connections correspond to each other via α outise some com-
pact L′ (which may be different from L). Let K = L ∪ L′. We apply the
construction in the proof of Proposition 10.7.7 and we obtain

Chp(E,∇E)− Chp(E,∇E +RE) = d(ωE)

for some form ωE which has compact support, and similarly for F . Looking
at the explicit formulas for ωE and ωF , we see immediately that ωE − ωF has
compact support.

Finally, to see that Ch induces a map in the K-theory with compact sup-
port, we still have to show that if (E,α, F ) ≡ (E′, α′, F ′) then they have the
sama Chern character (in cohomology). But this follows by an argument simialr
to the last one, because the equivalence ≡ means that the two triples can be
joined by a smooth family of triple (Et, αt, Ft), t ∈ [0, 1] (fill in the details!). �

11.3. The K-theoretical formulation of the Atiyah-Singer index
theorem

Next, we give an outline of the K-theoretical formulation of the index theorem.
First of all

Definition 11.3.1. Let M be a compact n-dimensional manifold. The topo-
logical index map is defined as

Indt : Kcpt(T ∗M)→ R, Indext([C]) = (−1)n
∫
T ∗M

Ch(C)π∗(Td(TCM)),

where π : T ∗M →M is the projection.

A few explanations are in order. First of all, TCM is the complexification
of the tangent bundle of M . Secondly,

Ch(C) ∈ Hcpt(T ∗M), π∗(Td(T ∗CM)) ∈ H(T ∗M)

hence their product is a cohomology class with compact support. Finally, T ∗M
has a canonical orientation: any coordinate chart (U, χ = (x1, . . . , xn)) on M
induces a coordinate chart on T ∗M :

T ∗U 3 y1(dx1)x + . . .+ yn(dxn)x 7→ (x1, . . . , x,y1, . . . , yn);

moreover, the resulting atlas for T ∗M is oriented and defines the canonical
orientation of T ∗M . In particular, we have an integration map∫

T ∗M
: H∗

cpt(T
∗M)→ R,

which kills all the cohomology classes except the ones in the top degree 2n
(dim(T ∗M) = 2n).

Next, we discuss the analytic index. We have already seen that the index
of an elliptic pseudo-differential operator only depends on its principal symbol.
However, what happens is the following:
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1. For an elliptic pseudo-differential operator P of degree d, Index(P ) only
depends on

[σd(P )] ∈ Kcpt(T ∗M).
2. Any element in Kcpt(T ∗M) can be represented by the principal symbol

of an elliptic operator.
Hence there is a unique map

Inda : Kcpt(T ∗M)→ Z
with the property that, for any elliptic pseudo-differential operator of degree d,

Inda([σd(P )]) = Index(P ).

Definition 11.3.2. The map Inda is called the analytic index map.

With these, we have the following formulation of the Atiyah-Singer index
theorem.

Theorem 11.3.3. On any compact manifold M , Indt = Inda.
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