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LECTURE 1
Differential operators

1.1. Differential operators I: trivial coefficients

In this section we discuss differential operators acting on spaces of functions on
a manifold, while in the next section we will move to those acting on spaces of
sections of vector bundles. We first discuss differential operators on an open

subset U C R".
We use the following notation for multi-indices oo € N” :

n n
|l :Zaj; a!:Haj!.
j=1 7=1

Moreover, if 8 € N™ we write a < 3 if and only if o; < g for all 1 < j < n. If

a < ([ we put
BN _11( 5
(o) -1(2 )

j=1
Finally, we put 0; = 9/0z; and
n
(1.1) =[]z, o* =010
j=1

Lemma 1.1.1. (Leibniz’ rule) Let f,g € C*°(U) and o € N". Then

*(f9) =3 ( 3 ) Of 7.

BLa

Proof Exercise. U

Definition 1.1.2. A differential operator of order at most k£ € N on U is an
endomorphism P € End(C*°(U)) of the form

(1.2) P= Z calz) 0%,

with ¢, € C*°(U) for all a.

The linear space of differential operators on U of order at most k is denoted
by Dy (U). The union of these, for £ € N, is denoted by D(U). Via Leibniz’
rule one easily verifies that the composition of two differential operators from
Dy (U) and D;(U) is again a differential operator, in Dy;(U). Accordingly, the
set D(U) of differential operators is a (filtered) algebra with unit.

Next, we look at the effect of coordinate changes. More precisely, let h be
a diffeomorphism from U onto a second open subset U’ C R™. Then by pull-
back, h induces the bijection h* : C*°(U’") — C*°(U). Thus, h*f(z) = f(h(x)).
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Accordingly, we have an induced map h, : End(C*°(U)) — End(C*°(U")), given
by
ha(T) = B* Vo T o h*.

Lemma 1.1.3. The map h, maps D(U) bijectively onto D(U’).

Proof It follows by repeated application of the chain rule for differentiation,
in combination with Leibniz’ rule. O

We now move to arbitrary manifolds now.

Definition 1.1.4. Let M be a smooth manifold. A linear operator P €
End(C*(M)) is called local if

supp(P(f)) Csupp(f) V fe C®(M).

Since the complement of the support of a function is the largest open on
which the function vanishes, the previous condition is equivalent to: for any
open U C M, f € C°°(M), one has the implication:

flu =0= P(f)|lv =0.

Lemma 1.1.5. There is a unique way to associate to any local operator P €
End(C*(M)) on a manifold M and any open U C M, a “restricted operator”

Py = Ply € End(C*>(U))
such that, if V.C U, then (Ply)lv = Plv.

Proof For f € C®(U), let’s look at what the value of Py(f) € C*(U) at
an arbitrary point x € U can be. We choose a function f, € C°°(M) which
coincides with f in an open neighborhood V,, C U of z. From the condition in
the statement, we must have

Pu(f)(x) = P(fo)(x).

We are left with checking that this can be taken as definition of Py. All we
have to check is the independence of the choice of f,. But if g, is another one,
then f, — g, vanishes on a neighborhood of x; since P is local, we deduce that
P(fz) — P(9:) = P(fz — g) vanishes on that neighborhood, hence also at x. O

Local operators can be represented in local charts: if (U, k) is a coordi-
nate chart, then P|y can be moved to x(U) using the pull-back map k* :
C>®(k(U)) — C*(U), to obtain an operator

P, : C®(k(U)) — C*®(k(U)), Ps = re(Ply) = (k") Lo Plyor™.

Definition 1.1.6. Let M be a smooth manifold. A differential operator
of order at most k on M is a local linear operator P € End(C°°(M)) with the
property that, for any coordinate chart (U, k), P € Di(k(U)).

The space of operators on M of order at most k is denoted by Dy (M).

Note that, in the previous definition, it would have been enough to require
the condition only for a family of coordinate charts whose domains cover M.
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Note also that the condition on a coordinate chart (U, k = (zf,...,z%)) simply

means that P|y is of type

Py = Z ca(x) 0,
o<k
with ¢, € C®(U). Here 0% act on C*°(U) and are defined analogous to 0% but
using the derivative along the vector fields 0/ &E? induce by the chart.
Next, we discuss the symbols of differential operators.

Definition 1.1.7. Let U C R" and let P € Dy (U) be of the form (1.2)). The
full symbol of the operator P is the function o(P) : U x R" — C defined by

o(P)(,6) = Y cala)(i€)".

o<k

The principal symbol of order k of P is the function o3 (P) : U x R" — C,

or(P)(x,€) = Y cal®)(i€)".

la|=k

A nice property of the principal symbol has, which fails for the total one is
its multiplicativity property (see Exercise [1.5.2]).
It is not difficult to check the following formulas for the symbols:

o(P)(,€) = e * P(c*)(x), 0x(P)(,€) = lim ¢~ "e " P(c™) ().

Here we have identified £ with the linear functional x — ) {;z;. Accordingly,
e’ stands for the function z — e*. See also below.

Although the total symbol may look more natural then the principal one,
the situation is the other way around: it is the principal symbol that can
be globalized to manifolds (hence expressed coordinate free). Continuing the
discussion above, it is most natural to view £ as a variable in the dual of R".
Accordingly, U x R™ should be viewed as the cotangent bundle T*U. In other
words, the principal symbol should be viewed as the function

or(P): T*U = C, &(dw1)e+ ...+ &uldan)e = D cal) (i),
|a|=F
The following lemma supports this interpretation: it shows that the symbol can
be characterized intrinsically (without reference to the coordinates).

Lemma 1.1.8. Let U C R", P € Dy(U).
For & = (x,€) € TR™ (x € U), choose ¢ € C(U) such that (dp)z = &;.
Then
ou(P)(w,) = lim ¢~Femi0) P(eie) 1),

Proof Left to the reader. The proof follows by application of Leibniz’ rule. J

Although this should be already clear from the previous lemma, let us check
explicitly that the symbol behaves well under coordinate changes. More pre-
cisely, let h be a diffeomorphism from U onto a second open subset U’ C R".
It induces the map T*h : T*U — T*U’ given by T*h(x,£&) = (h(x), &0 Tph™1).
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Accordingly we have the map h, : C®°(T*U) — C*°(T*U’) given by h.o =
oo (T*h)~t. Thus,
heo(z,€) = o(h™ ' (x),£ o Tyh).
Lemma 1.1.9. For all P € Dy (U),
0k (h«(P)) = hu(ok(P)).

Proof Fix (z,6) € U x R® ~ T*U. Put y = h(x) and n = £oT,h~ 1. Select
select ¢ € C*°(U’) with dy(y) = n. Then

ok (h«(P))(y;n) = lim t~he= W) (h, P) (%) (y)
= tlim t_ke_ith*@(m)P(eith*‘p)(x)
= or(P)(z,8).
This establishes the desired formula. O

Corollary 1.1.10. Let M be a manifold and P € Dy(M). Then there is a
well-defined smooth function
op(P):T*M — C
such that, for any coordinate chart (U, k = (zf,...,xk)),
" P
TiM 3 6(dal)e + -+ &n(drf)e "5 on(P) (.61, 60) € C.
Definition 1.1.11. Let P € Dy(M). The function oy (P) : T*M — C from
the previous lemma is called the principal symbol of order k of the operator
P.

You should now try to solve Exercises [1.5.3] |1.5.5| and [1.5.6]

1.2. Differential operators II: arbitrary coefficients

We shall now introduce the notion of a differential operator between smooth
vector bundles E and F' on a smooth manifold M, acting at the level of sections

P:T(E) — [(F).

It is useful to have in mind that degree zero differential operators correspond
to sections C' € I'(Hom (F, F')) i.e. smooth maps

M >z — C, € Hom(E,, F;).

More precisely, any such C' defines an operator C' : I'(E) — I'(F') acting on
sections by
C(s)(x) = Cu(s(x)).
This construction identifies sections of Hom (E, F') with C'°°(M)-linear maps
I['(E) to I'(F) (see Exercise [1.5.7)).
First, we place ourselves in the following situation:

1. M = U is the domain of a coordinate chart (U, k = (zf,...,zk)).
2. F is trivializable and we have a fixed trivialization £ = U x C" with

associated frame {si,...}.
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Note that, in this case, we have “higher order derivatives operators”
02 :T(E) = T(E), flsi+...>0%(fs1+....

A differential operator of order at most k from E to F' is a linear map P :
I'(U,E) — I'(U, F) of the form

P= Z Cq 0 0%,

la|<k

with C, € I'(U, Hom (E, F')). The space of such differential operators is denoted
by D(U, E, F).
Note that if also F is trivialized, with trivializing frame {s/,...}, then each

Co is uniquely determined by a matrix of smooth functions on U, c(a); €

C*>(U) (characterized by Ca(si) = >_; c(a)gs;. With respect to the identifi-
cation ['(U, E) = C>®(U,C)", (fls; +...) — (f',...), and similarly for F, P

becomes

P(f1,...) = (Zaﬁ“(fj)C(a)}, S

Next, we explain that Dy (U, E, F') does not depend on the trivialization of
E. Another trivialization (over U) is associated with a vector bundle isomor-
phism ¢g : E — E. Then pg(z,v) = (z,Pg(zr)v), with @£ a smooth map
U — GL(C"). The map ¢g induces a linear isomorphism ¢g, of I'(U, E) onto
itself, given by wg«s = ¢pos. Accordingly, we have an induced linear isomor-
phism ¢, from Hom(T'(U, E),T(U, F)) onto itself given by ¢.(T) = T opz!. By
an easy repeated application of Leibniz’ formula, we see that the map ., maps
Dy (U, E, F) bijectively onto Dy (U, E, F'). Hence the space Dy (U, E, F') defined
above only depends on the coordinate patch (U, k) and on the fact that E is
trivializable (in turn, one can already proceed as in the previous section and
show that it does not depend on the choice of the coordinates on U either).

Proceeding as in the previous section, we say that a linear operator between
spaces of sections of two vector bundles E andF' over a manifold M,

P:T(E)—T(F)
is local if, for any s € I'(E),

supp(P(s)) C supp(s).

By the same arguments as before, any such local operator can be restricted to
arbitrary opens U C M, obtaining new operators P|y from E|y to F|y. Also,
for a coordinate chart (U, k), we obtain an operator P, acting on the resulting
bundles over x(U): from E, := r.(E|U) = (x71)*(E|U) to F, defined similarly.

Definition 1.2.1. Let E, F' be smooth vector bundles over a smooth manifold
M. A differential operator of order at most k from E to F is a linear
local operator P : I'(E) — T'(F) with the property that, for any coordinate
chart (U, k) with the property that E|y is trivializable, P, € Dy(Ey, Fy,).

The space of differential operators of order at most k from E to F is denoted
by Dy(E, F).
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We extend the definition of principal symbol as follows. We denote by
w: T*"M — M the canonical projection. For a vector bundle F over M, let
©*E be the pull-back of E to T*M (whose fiber above &, € T M is E,). For
two vector bundles E and F' over M, we consider the vector bundle Hom (E, F')
over M (whose fiber above z € M is Hom(E;, F;)) and its pull-back to T*M,

n*Hom (E, F) = Hom (7" E, 7" F)
whose fiber above &, € T M is Hom(E,, F).

Lemma 1.2.2. Let E, F be smooth vector bundles on M and let P € Dy(E, F).
There ezists a unique section op(P) of m*Hom (E, F') (called again the prin-
cipal symbol of P), i.e. a smooth function

T, 3 & — op(P)(&s) € Hom(Ey, Fy),
with the following property: for each xo € M and all s € T'(E) and ¢ € C*°(M),
(1.3) 0k(P)((d)ay)(5(20)) = lim t ke (@) Pt 5 (2).
Moreover, for each x € M the function { — o (P)(x,&) is a degree k homoge-
neous polynomial function TM — Hom(E,, Fy).

Proof Uniqueness follows from the fact that for every (z,£) € T*M and v € E,
there exists a s € I'*°(E) such that s(z) = v and a function ¢ € C°°(M) such
that dp(x) = €. Let z9 € M be given and select a coordinate patch U > zg over
which E and F' admit trivializations 7 : E|y — U x Ep and 77 : F|y — U x EFy.

trivialize. Let (x1,...,2,) be a system of local coordinates on U. Then
7.(P) =) Cad",
o<k

with C, € C*°(U,Hom (Ey, Fy)). It follows by application of Lemma that
the limit on the right-hand side of ([1.3]) is given by

> (75" 0 Calao)mes(xo)ln®.

| <k

Here we have used the multi-index notation with n; = 0;¢(xo), 01, ..., 0, being
the derivations induced by the choice of coordinates. It follows that the limit
on the right-hand side of depends on s and ¢ through the values s(zg)
and d¢(xp). This implies the existence of a section oy (P) of Hom (7*E, 7* F)
with the property . The local computation just given also implies the final
assertions about smoothness and homogeneity. O

Example 1.2.3. We consider the complexified version of the DeRham com-
plex. Le., we define Q¥(M)c = QF(M)®g C, which should be interpreted as the
space of sections of the complex vector bundle AcT*M whose fiber at x € M
consists of antisymmetric, k-multilinear maps from T, M to C. The exterior dif-
ferentiation clearly extends to a C-linear map d = dj, : QF(M)c — QFFL(M)c.
Let U be a coordinate patch of M with local coordinates x1,...,xz,. Then for
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each a € U, the one forms dzi(a),...,dz,(a) span the cotangent space T, M.
Thus, A*T M has the basis

dzj (a) A+ Ndxj,(a), withj <--- < jg.

With respect to this basis, the restriction of a section s € Q*(M) to U may be
expressed as
slu=">_ sjy.gduy, A Ny,
J1<<Jk
Exterior differentiation is given by

dsly = Z d($jy,...gi) N djy A= A dagy
J1--<jk
where dsj, ... j, = >;0iSj,.... j,- From this we see that d is a differential operator
of order one from AFT*M to A¥t1T*M. For its principal symbol, see Exercise
o9

For E1, E5 smooth vector bundles on M and P € Dy (F1, E2), the principal
symbol o (P) is a section of the bundle Hom (7*E, 7*E3). Equivalently, the
symbol may be viewed as a homomorphism from the bundle 7*F; to n*Es.
Thus, if F3 is a third vector bundle and @ € D;(Es2, F3) then the composition
01(Q) o o (P) is a vector bundle homomorphism from F; to Ej.

Lemma 1.2.4. Let Eq, Ey, E3 be smooth vector bundles on M. Let P € Dy (F1, E2)
and Q € Dy(Ey, E3). Then the composition Qo P belongs to Dy1;(E1, E3) and

0r+1(Qo P) = 0y(Q) o o) (P).
Finally, we discuss the notion of formal adjoint. Assume now that F and
F are equipped with hermitian inner products (—, —)EE| and (—, —). We also
choose a strictly positive density on M, call it du. One has an induced inner-
product on the space I'.(E) of compactly supported sections of E given by

(5.0 1= [ (s@).5)E

and similarly an inner product on T'.(F). Given P € Di(E,F), a formal
adjoint of P (with respect to the hermitian metrics and the density) is an
operator P* € D(F, E) with the property that

(P(s1),50)F = (s1, P*(52))E, V¥ 51 € To(E),s9 € To(F).

Proposition 1.2.5. For any P € Dy(E, F), the formal adjoint P* € Dy(F, E)
exists and is unique. Moreover, the principal symbol of P* is op(P*) = op(P)*,
where o (P)* (&) is the adjoint of the linear map

ox(P)(&) 1 Ex — Fy
(with respect to the inner products (—, =2 and (—, —>5)E|

x
Thence (—, =) is a family {(—, —)Z : © € M} of inner products on the vector spaces E,, which
“varies smoothly with respect to x”. The last part means, e.g., that for any s, s’ € I'(E), the
function (s, s')* on M, sending z to (s(z), s'(x))Z is smooth; equivalently, it has the obvious
meaning in local trivializations.
Znote that P* depends both on the hermitian metrics on E and F as well as on the density,

while it principal symbol does not depend on the density.
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Proof Due to the local property of differential operators (or, more precisely
to its sheaf property, cf. Exercise , it suffices to prove the statement (both
the existence as well as the uniqueness) locally. So assume that M = U C R”,
where we can write P =3, o} Ca 0 9. We have du = p|dz| for some smooth

function p on U. Writing out (P(s1),s2) and integrating by parts || times
(to move 9° from s to '), we find the operator P* which does the job:

Py = 3 Loo(ocns).
e

Clearly, this is a differential operator of order at most k. For the principal
symbol, we see that the only terms in this sum which matter are:

S (1) 0z () = 3 (1) s,
|a|=F
i.e. the symbol is given by
> (=Dl = (Y Calig))
|a|=k la|=k

The uniqueness follows from the non-degeneracy property of the integral: if
fU fg = 0 for all compactly supported smooth functions, then f = 0. O

1.3. Ellipticity and a preliminary version of the Atiyah-Singer
index theorem

Definition 1.3.1. Let P € Dy(E, F) be a differential operator between two
vector bundles £ and F' over a manifold M. We say that P is an elliptic
operator of order k if, for any &, € Ty M non-zero,

ok(P)(&) : Ex — Fy
is an isomorphism.

The aim of these lectures is to explain and complete the following theorem
(a preliminary version of the Atiyah-Singer index theorem).

Theorem 1.3.2. Let M be a compact manifold and let P : T'(E) — I'(F) be an
elliptic differential operator. Then Ker(P) and Coker(P) are finite dimensional,

Index(P) := dim(ker(P)) — dim( Coker(P))

depends only on the principal symbol oy (P), and Index(P) can be expressed in
terms of (precise) topological data associated to oy (P).

Due to the the way that elliptic operators arise in geometry (via “elliptic
complexes” ), it is worth giving a slightly different dress to this theorem.

Definition 1.3.3. A differential complex over a manifold M,
& 1(E% o ey 2rEr) B

consists of:
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1. For each k > 0, a vector bundle Fi over M, with E; = 0 for k large
enough.

2. For each k > 0, a differential operator Py from Ej to Ej41, of some order
d independent of k

such that, for all k, Pxy10 P, = 0.

Example 1.3.4. Let dy : QF(M) — QF1(M) be exterior differentiation.
Then dgy10dr = 0 for all k. Therefore, the sequence of differential operators
di € Dy (/\kT*M, /\k+1T*M) forms a complex; it is called the de Rham complex.

Note that, from Lemma it follows that for a complex of differential
operators as above, the associated sequence oy, (Py) of principal symbols is a
complex of homomorphisms of the vector bundles 7*FEy on M, i.e., for any
&x € Ty M, the sequence

(Po)(€=) (P1)(€=) (P )(Sz)

0 %d 194 2 74
ED E} E?

is a complex of vector space. In turn, this means that the composition of any
two consecutive maps in this sequence is zero. Equivalently,

Ker(ad(Pk+1)(§m)) C Im(ad(Pk)(gx))'

Definition 1.3.5. A differential complex £ is called an elliptic complex if,
for any &, € Ty M non-zero, the sequence

(Po)(éz) 1 Ud(i)gSZ)

EY 7N gl g2 o)

xT

is exact, i.e.

Ker(0a(Pr+1) (&) = Im(0q(P)(&))-
For a general differential complex £, one can define
Z8(&) = Ker(Py,), BF(E) =Im(Py,),
and the k-th cohomology groups
H*(E&) = z%(&)/ Bk (&).

The space H*(M, P,) defined as above, is called the k-th cohomology group
of the elliptic complex.

Theorem 1.3.6. If & is an elliptic complex over a compact manifold M, then
all the cohomology groups H*(&) are finite dimensional and the resulting Fuler

characteristic
X(E) = (=1)*dim(H"(E))
k

can be expressed in terms of topological invariants of the principal symbols as-
sociated to &.

Example 1.3.7. The De Rham complex of a manifold M is elliptic (see Ex-
ercise . Recall that the resulting cohomology in a degree k, i called the
k-th de Rham cohomology of M, denoted H%;(M). is defined to be the k-th
cohomology of the de Rham complex. According to the above result, the de
Rham cohomology of a compact manifold is finite dimensional. For a simpler
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proof of this result, involving Meyer-Vietoris sequences, we refer the reader to
the book by Thornehaeve-Madsen or the book by Bott and Tu.

Example 1.3.8. Any elliptic operator P € Di(FE, F') can be seen as an elliptic
complex with E® = E, E' = F and E¥ = 0 for other k’s, Py = P. Moreover,
its Euler characteristic is just the index of P. Hence the last theorem seems to
be a generalization of Theorem However, there is a simple trick to go the
other way around. This is explained in the last three exercises of this lecture.

1.4. General tool: Fredholm operators

As we have already mentioned, the aim of these lectures is to understand The-
orem The first few lectures will be devoted to proving that the index of
any elliptic operator (over compact manifolds) is finite; after that we will spend
some lectures to explain the precise meaning of “topological data associated
to the symbol” (and the last lectures will be devoted to some examples). The
nature of these three parts is Analysis- Topology- Geometry.

For the first part- on the finiteness of the index, we will rely on the fact
that indices of operators are well behaved in the framework of Banach spaces.
This is some very general theory that belongs to Functional Analysis, which
we recall in this section. In the next few lectures we will show how this theory
applies to our problem (on short, we have to pass from spaces of sections of
vector bundles to appropriate “Banach spaces of sections” and show that our
operators have the desired compactness properties).

So, for this sectionﬂ we fix two Banach spaces E and F and we discuss Fred-
holm operators between them- i.e. operators which have a well-defined index.
More formally, we denote by L(E,F) the space of bounded (i.e. continuous)
linear operators from E to F and we take the following:

Definition 1.4.1. A bounded operator T": E — F is called Fredholm if Ker(A)
and Coker(A) are finite dimensional. We denote by F(E,F) the space of all
Fredholm operators from E to F.

The index of a Fredholm operator A is defined by

Index(A) := dim(Ker(A)) — dim(Coker(A)).

Note that a consequence of the Fredholmness is the fact that R(A) = Im(A)
is closed. Here are the first properties of Fredholm operators.

Theorem 1.4.2. Let E, F, G be Banach spaces.

(i) If B: E — F and A : F — G are bounded, and two out of the three
operators A, B and AB are Fredholm, then so is the third, and

Index(A o B) = Index(A) + Index(B).

3all the theorem stated in this section are proved in the auxiliary set of notes handed out to
you
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(i) If A E — T is Fredholm, then so is A* : F* — E* andlﬂ
Index(A*) = —Index(A).
(iii) F(E,F) is an open subset of L(E,F), and
Index : F(E,F) — Z
is locally constant.

What will be important for us is an equivalent description of Fredholm
operators, in terms of compact operators. First we recall the following;:

Definition 1.4.3. A linear map T : E — F is said to be compact if for any
bounded sequence {x,} in E, {T'(z,)} has a convergent subsequence.

Equivalently, compact operators are those linear maps 7' : E — F with the
property that T'(Bg) C F is relatively compact, where Bg is the unit ball of E.
Here are the first properties of compact operators.

We point out the following improvement/consequence of the Fredholm al-
ternative for compact operators (discussed in the appendix- see Theorem 77
there).

Theorem 1.4.4. Compact perturbations do not change Fredholmness and do
not change the index, and zero index is achieved only by compact perturbations
of invertible operators.
More precisely:
(i) If K € K(E,F) and A € F(E,F), then A+ K € F(E,F) and Index(A +
K) = Index(A).
(ii) If A € F(E,F), then Index(A) = 0 if and only if A = Ao+ K for some
invertible operator Ay and some compact operator K.

Finally, there is yet another relation between Fredholm and compact oper-
ators, know as the Atkinson characterization of Fredholm operators:

Theorem 1.4.5. Fredholmness= invertible modulo compact operators.
More precisely, given a bounded operator A : E — T, the following are
equivalent:

(i) A is Fredholm.
(ii) A is invertible modulo compact operators, i.e. there exist and operator
B e L(F,E) and compact operators K1 and Ko such that

BA=1+K, AB =1+ K,.
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1.5. Some exercises

We advise you to do the following exercises (in this order): Exercise|1.5.2}
(1.5.9} 1.5.7] , [1.5.12] [1.5.4] [1.5.8| (you should do at least three of them!). The
take home exercise is Exercise [L5.1]

Exercise 1.5.1. This exercise provides another possible (inductive) definition
of the spaces Dy(M). For each f € C*(M), let my € End(C*°(M)) be the
“multiplication by f” operator. The commutator of two operators P and @ is
the new operator [P,Q] = Po@Q — Qo P.

Starting with D_; (M) = 0, show that Dy (M) is the space of linear operators
P with the property that

[P,myf] € Dp_1(M) YfeC®M).

Exercise 1.5.2. Let P € Di(U) and Q € D;(U). Then the composition QP
belongs to Dy; and

or+1(QP) = 01(Q)ok(P).

Exercise 1.5.3. Let V be a vector field on M. Show that 0y : f +— V f :=df-V
is a first order differential operator on M. Show that its principal symbol is given

by o1(P)(,§) = &§(ve)-

Exercise 1.5.4. Show that any differential operator P € Dy (M) can be writ-
ten as

P(¢) = fo+0v(e)
for some unique function f € C°°(M) and vector field V on M.

Exercise 1.5.5. Let P € Dy(M) and Q € D;(M). Show that QP € Dy4(M).
Moreover, 0;4+1(QP) = 0;(Q)o(P). Hint: use reduction to charts.

Exercise 1.5.6. Lemma [I.1.8] gives a different description of the principal
symbol without reference to charts. Show that, actually, for any P € Dyg(M)
and any f € C*°(M) and all p € C*°(M)

(1.4) J@)ox(P)((dp)e) = lim %6 @ P(ete f) ()

Exercise 1.5.7. Recall that at the beginning of section we associated
to a section C' € T'(Hom (E, F')) an operator (denoted by the same letter)
C :T'(E) — I'(F). Show that this construction defines a 1-1 correspondence
between sections of Hom (F, F') and maps from I'( E') to I'(F') which are C*° (M )-
linear.

Exercise 1.5.8. Show that, for any two vector bundles E' and F' over a man-
ifold M, the assignment

U Di(E|v, Flu)
(U C M open) is a sheaf on M.

Exercise 1.5.9. Show that the principal symbol of exterior differentiation
d:T(A*T*M) — T'(A*1T*M) is given by

o1 (d)(z, &) : ANTEM — ANFFITEM, w i i Aw.

®recall that (dy). € Ty M sends X, € ToM to Twp(Xz)
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Exercise 1.5.10. Let V be a finite dimensional complex vector space. Let
v € V\{0}. Show that the complex of linear maps T}, : A*V — A1V, 2 vAz,
is exact.

Deduce that the DeRham complex a manifold is an elliptic complex.

In the following three exercises we explain how to relate ellipticity for elliptic
complexes, and their Euler characteristic, to ellipticity of differential operators,
and their index. We start with a differential complex £ as before and we fix
hermitian inner products on each E¥ and a density on M. This allows us to
talk about the adjoints of Py and to form the Laplacians

Ay := PP, + P._1P;_, : T(E*) — I'(E").
It will be useful to put everything together and consider
E = @®LE* P = ®,P, € Dy(E), A = P*P + PP* = @Ay, € Dog(E).
Exercise 1.5.11.

1. Show that A is self-adjoint (i.e. it coincides with its formal adjoint), and
then deduce that

(1.5) Ker(A) @ Im(A) C T'(E).
(the only thing you have to show here is that the sum inside I'(E) is

direct).
2. Then show that

Ker(A) = Ker(P) N Ker(P*),Im(A) C Im(P) & Im(P*).
and that the map
Ker(A;) 3 s — s mod B¥(€) e HX(E)

is an injection.
3. Finally, show that if (1.5) becomes equality, then also the last inclusion
becomes equality, and the last map becomes an isomorphism.

Exercise 1.5.12. Show that £ is an elliptic complex if and only if A is an
elliptic operator.

From the general properties of elliptic operators (to be developed later in
the course), we will deduce that the inclusion ([1.5|) is actually an equality for
any self-adjoint elliptic operator A. Hence, in this case, x((E)) will be equal to

> (—1)Fdim(Ker(Ay)).
k
To relate this to the index of an operator, we introduce

EY = Op—evenE", B = Bp_oddE", Ay = Dp_evenA € Doa(ET,E7).
Exercise 1.5.13. Show that, if the inclusion (1.5) becomes equality, then
X(€) = Index(AL).






LECTURE 2
Distributions on manifolds

As explained in the previous lecture, to show that an elliptic operator be-
tween sections of two vector bundles E and F,

P:T(M,E)—T(M,F)

has finite index, we plan to use the general theory of Fredholm operators be-
tween Banach spaces. In doing so, we first have to interpret our P’s as oper-
ators between certain “Banach spaces of sections”. The problem is that the
usual spaces of smooth sections I'(M, E') have no satisfactory Banach space
structure. Given a vector bundle F over M, by a “Banach space of sections of
E”, B(M, E), one should understand (some) Banach space which contains the
space I'(M, E) of all the smooth sections of E as a (dense) subspace. One way
to introduce such Banach spaces is to consider the completion of I'(M, E) with
respect to various norms of interest. This can be carried out in detail, but the
price to pay is the fact that the resulting “Banach spaces of sections” have a
rather abstract meaning (being defined as completions). We will follow a differ-
ent path, which is based on the following remark: there is a very general (and
naturalll) notion of “generalized sections of a vector bundle E over M”, hence
a space L'gen(M; E) of such generalized sections (namely the space D'(M, E) of
distributions, discussed in this lecture), so general that all the other “Banach
spaces of sections” are subspaces of I'gen(M; E). The space I'gen(M; E) itself
will not be a Banach space, but all the Banach spaces of sections which will be
of interest for us can be described as subspaces of I'yen (M ; E) satisfying certain
conditions (and that is how we will define them).

Implicit in our discussion is the fact that all the spaces we will be looking
at will be vector spaces endowed with a topology (t.v.s.’s= topological vector
spaces). Although our final aim is to deal with Banach spaces, the general
t.v.s.’s will be needed along the way (however, all the spaces we will be looking
at will be l.c.v.s.’s= locally convex vector spaces, i.e., similarly to Banach spaces,
they can be defined using certain seminorms).

In this lecture, after recalling the notion of t.v.s. (topological vector space)
and the special case of l.c.v.s. (locally convex vector space), we will discuss the
space of generalized functions (distributions) on opens in R™ and then their gen-
eralizations to functions on manifolds or, more generally, to sections of vector

17
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bundles over manifolds. Since t.v.s.’s, l.c.v.s.” and the local theory of general-
ized functions (distributions) on opens in R™ have already been discussed in the
intensive reminder, our job will be to pass from local (functions on opens in R™)
to global (sections of vector bundles over arbitrary manifolds). However, these
lecture notes also contain some of the local theory that has been discussed in
the “intensive reminder”.

2.1. Locally convex vector spaces

We start by recalling some of the standard notions from functional analysis
(which have been discussed in the intensive reminder).

Topological vector spaces

First of all, a t.v.s. (topological vector space) is a vector space V (over C)
together with a topology 7, such that the two structures are compatible, i.e.
the vector space operations

VXV, (v,w)—v+w, CxV =V (\v)— v
are continuous. Recall that associated to the topology 7 and to the origin
0 € V, one has the family of all open neighborhoods of 0:

7(0)={De7T:0e D}.

Since the translations 7, : V' — V', y — y + x are continuous, the topology 7 is
uniquely determined by by 7(0): for D C V, we have
(2.1) DeT <« VYazeD 3 BeT(0)suchthat x+ B C D.

In this characterization of the opens inside V', one can replace 7 (0) by any basis
of neighborhoods of 0, i.e. by any family B(0) C 7(0) with the property that

D e€7(0)= 3 Be€Bsuch that BC D.

In other words, if we knows a basis of neighborhoods B(0) of 0 € V', then we
know the topology 7.

Exercise 2.1.1. Given a family B(0) of subsets of V' containing the origin,
what axioms should it satisfy to ensure that the resulting topology (defined by
(2.1))) is indeed a topology which makes (V,7) into a t.v.s.?

Note that, in a t.v.s. (V,7T), also the convergence can be spelled out in terms
of a (any) basis if neighborhoods B(0) of 0: a sequence (vy,)n>1 of elements of
V converges to v € V, written v,, — v, if and only if:

V B e B(0), I3npg € Zy suchthat v, —v € B Vn>ng.

Of course, this criterion can be used for B(0) = 7 (0), but often there are smaller
bases of neighborhoods B(0) at hand (after all, “b” is just the first letter of the
word “ball”). For instance, if (V,|| — ||) is a normed space, then the resulting
t.v.s. has as basis of neighborhoods

B(0) ={B(0,r) : r > 0},

where

B(0,r)={veV ||| <r}.
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In a t.v.s. (V,7), one can also talk about the notion of Cauchy sequence:
a sequence (v, )p>1 in V' is called a Cauchy sequence if:

VDeT(0) 3 np €Zy such that v, —vy, € D V¥V n,m > np.

Again, if we have a basis of neighborhoods B(0) at our disposal, it suffices to
require this condition for D = B € B(0).

In particular, one can talk about completeness of a t.v.s: one says that
(V,T) is (sequentially) complete if any Cauchy sequence in V' converges to
some v € V.

Locally convex vector spaces

Recall also that a l.c.v.s. (locally convex vector space) is a t.v.s. (V,7T)
with the property that “there are enough convex neighborhoods of the origin”.
That means that

Teonvex(0) := {C € T(0) : C' is convex}
is a basis of neighborhoods of 0 € V' or, equivalently:
V' DeT(0) 3 CeT(0) convex, such that C C D.

In general, l.c.v.s.’s are associated to families of seminorms (and sometimes
this is taken as “working definition” for locally convex vector spaces). First
recall that a seminorm on a vector space V is a map p : V — [0, 00) satisfying

p(v+w) < pv) +p(w), p(hv) = |Alp(v),
for all v,w € V, A € C (and it is called a norm if p(v) = 0 happens only for
v =0).
Associated to any family
P ={piticr
of seminorms (on a vector space V'), one has a notion of balls:

Bi i ={veVip,(v)<r, V1 <k <n},

0] 4eeeyl

defined for all » > 0, i1,...,4, € I. The collection of all such balls form a family
B(0), which will induce a locally convex topology 7p on V (convex because
each ball is convex). Note that, the convergence in the resulting topology is the
expected one:

v, — v in (V,7p) <= pi(v, —v) =0 Viel

(and there is a similar characterization for Cauchy sequences). The fact that,
when it comes to l.c.v.s.’s it suffices to work with families of seminorms, follows
from the following:

Theorem 2.1.2. A t.w.s. (V,T)is al.c.v.s. if and only if there exists a family
of seminorms P such that T = Tp.

Proof Idea of the proof: to produce seminorms, one associates to any C' C V
convex the functional

po(v) =inf {r > 0:2 € rC}.
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Choosingn C' “nice enough”, this will be a seminorm. One then shows that
one can find a basis of neighborhoods of the origin consisting of “nice enough”
convex neighborhoods. ([l

By abuse of terminology, we also say that (V| P) is a l.c.v.s. (but one should
keep in mind that all that matters is not the family of seminorms P but just
the induced topology 7p).

Remark 2.1.3. In most of the examples of l.c.v.s.’s, the seminorms come
first (quite naturally), and the topology is the associated one. However, there
are some examples in which the topology comes first and one may not even
care of what the seminorms are (see the general construction of inductive limit
topologies at the end of this section).

On the other hand, one should be aware that different sets of seminorms
may induce the same l.c.v.s. (i.e. the same topology). For instance, if Py C P is
a smaller family of seminorms, but which has the property that, for any p € P,
there exists pp € Py such that pg < p (i.e. po(v) < p(v) for all v € V), then
P and P, define the same topology. This trick will be repeatedly used in the
examples.

Exercise 2.1.4. Prove the last statement.

Next, it will be useful to have a criteria for continuity of linear maps between
l.c.v.s.’s in terms of the seminorms. The following is a very good exercise.

Proposition 2.1.5. Let (V, P) and (W, Q) be two l.c.v.s.’s and let
AV -W

be a linear map. Then T is continuous if and only if, for any q € Q, there exist
P1y---,Pn € P and a constant C' > 0 such that

q(A(w)) < C - maz{p1(v),...,pn(v)} YveW
Note that we will deal only with l.c.v.s.’s which are separated (Hausdorff).

Exercise 2.1.6. Let (V,P) be a l.c.v.s.,, where P = {p;}ics is a family of
seminorms on V. Show that it is Hausdorff if and only if, for v € V, one has
the imlication:

pi(v) =0 Viel = v=o.

Finally, recall that a Frechet space is a t.v.s. V with the following prop-
erties:

1. it is complete.
2. its topology is induced by a countable family of semi-norms {pi, ps,...}.

In this case, it follows that V' is metrizable, i.e. the topology of V' can also
be induced by a (complete) metric:

d(v,w) = Z L pa(v—w)
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Example 2.1.7. Of course, any Hilbert or Banach space is a l.c.v.s. This
applies in particular to all the familiar Banach spaces such as the LP-spaces on
an open 2 C R”

LP(Q) ={f:Q — C: f is measurable ,/ |fIP < oo},
)

with the norm
11l = ( / )
Q

Recall that, for p = 2, this is a Hilbert space with inner product

(frg) e = /Q /.

Example 2.1.8. Another class of examples come from functions of a certain
order, eventually with restrictions on their support. For instance, for an open
QCR" reZy and K C ) compact, we consider the space

Cr(Q)={0:Q— C:¢is of class C" and supp(¢) C K}.
The norm which is naturally associated to this space is || - ||k, defined by
|9llr e = sup{|o®d()] : x € K, |af <7}

With this norm, Cj,(£2) becomes a Banach space. Note that convergence in this
space is uniform convergence on K of all derivatives up to order r.

However, if we consider r = oo, then C7(2) should be considered with the
family of seminorms {|| - ||k, : r € Z;}. The result is a Frechet space. Note
that convergence in this space is uniform convergence on K of all derivatives.

Yet another natural space is the space of all smooth functions C*°(£2). A
nice topology on this space is the one induced by the family of seminorms

{II ' llxr: K C Q compact,r € Z, }.

Using an exhaustion of € by compacts, i.e. a sequence (Kj),>0 of compacts
with
Q=U,K,, K,CInt(K,+1),
we see that the original family of seminorms can be replaced by a countable
one:
{I- Ml rpr s o7 € Zy }

(using Remark check that the resulting topology is the same!). Hence
C°(Q) with this topology has the chance of being Frechet- which is actually
the case.

Note that convergence in this space is uniform convergence on compacts of
all derivatives.

Example 2.1.9. As a very general construction: for any t.v.s. (locally convex
or not), there are (at least) two important l.c. topologies on the continuous dual:

V*:={u:V — R: uis linear and continuous}.

The first topology, denoted 7;, is the one induced by the family of seminorms

{pv}ve\/a where
pu: VE =R, py(u) = lu(v)].
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This topology is called the weak* topology on V*, or the topology of simple
convergence. Note that u, — w in this topology if and only if u,(v) — wu(v) for
allv e V.

The second topology, denoted 7p, called the strong topology (or of uniform
convergence on bounded sets) is defined as follows. First of all, recall that a
subset B C V is called bounded if, for any neighborhood of the origin, there
exists A > 0 such that B C AV. If the topology of V is generated by a family
of seminorms P, this means that for any p € P there exists A\, > 0 such that

B C By(rp) ={v eV :p(v) <rp}.

This implies (see also Proposition [2.1.5) that for any continuous linear func-
tional u € V*,

pp(u) = sup{|u(v)| : v € B} < 0.

In this way we obtain a family {pp} 5 of seminorms (indexed by all the bounded
sets B), and 7; is defined as the induced topology.

A related topology on V* is the topology 7. of uniform convergence on
compacts, induced by the family of seminorms {pc : C' C V* compact}.

Some explanations (for your curiosity): In this course, when dealing with a par-
ticular l.c.v.s. V, what will be of interest to us is to understand the convergence in
V', understand continuity of linear maps defined on V' or the continuity of maps with
values in V (i.e., in practical terms, one may forget the l.c. topology and just keep in
mind convergence and continuity). From this point of view, in almost all the cases in
which we consider the dual V* of a l.c.v.s. V (e.g. the space of distributions), in this
course we will be in the fortunate situation that it does not make a difference if we
use 75 or 7, on V* (note: this does not mean that the two topologies coincide- it just
means that the specific topological aspects we are interested in are the same for the
two).

What happens is that the spaces we will be dealing with in this course have some
very special properties. Axiomatising these properties, one ends up with particular
classes of l.c.v.s.’s which can be understood as part of the general theory of l.c.v.s.’s.
Here we give a few more details of what is really going on (the references below send
you to the book “Topological vector spaces, distributions and kernels” by F. Treves).

First of all, as a very general fact: for any t.v.s. V, 75 and 7, induce the same
topology on any equicontinuous subset H C V* (Prop. 32.5, pp 340). Recall that H
is called equicontinuous if, for every € > 0, there exists a neighborhood B of the origin
such that

lu(v)| <e, Yve B, VueH.

An important class of t.v.s.’s is the one of barreled space, which we now recall. A
barrel in a t.v.s. V is a non-empty closed subset A C V' with the following properties:

1. A is absolutely convex: |a|A + |G|A C A for all o, 8 € C with |o| + |8 = 1.
2. Ais absorbing: V v €V, 3 r > 0 such that v € rA.

A t.v.s. V is said to be barreled if any barrel in V' is a neighborhood of zero. For
instance, all Frechet spaces are barreled.

For a barreled space V, given H C V*, the following are equivalent (Theorem 33.2,
pp.349):

1. H is weakly bounded (i.e. bounded in the l.c.v.s. (V*,7T5)).

2. H is strongly bounded (i.e. bounded in the l.c.v.s. (V*,Tp)).
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3. H is relatively compact in the weak topology (i.e. the closure of H in (V*,7T;)
is compact there).
4. H is equicontinuous.

Hence, for such spaces, the notion of “bounded” is the same in (V*,7;) and (V*,Tp),
and we talk simply about “bounded subsets of V*. However, the notion of convergence
of sequences may still be different; of course, strong convergence implies weak conver-
gence, but all we can say about a weakly convergent sequence is that it is bounded in
the strong topology. More can be said for a more special class of t.v.s.’s.

A t.v.s. is called a Montel space if V' is barreled and every closed bounded subset
of F is compact. Note that this notion is much more restrictive then that of barreled
space. For instance, while all Banach spaces are barreled, the only Banach spaces
which are Montel are the finite dimensional ones (because the unit ball is compact only
in the finite dimensinal Banach spaces). On the other hand, while all Frechet spaces
are barreled, there are Frechet spaces which are Montel, but also others which are not
Montel. The main examples of Montel spaces which are of interest for us are: the space
of smooth functions, and the space of test functions (discussed below).

For a Montel space V, it follows that the topologies 7. and 7, are the same (Prop.
34.5, pp. 357). From the general property of equicontinuous subsets H mentioned
above, we deduce that on such H’s,

Tl =Tolu.

(also, by the last result we mentioned, H being equicontinuous is equivalent to being
bounded). Taking for H to be the elements of a weakly convergent sequence and
its weak limit (clearly weakly bounded!), it follows that the sequence is also strongly
convergent; hence convergence w.r.t. 7, and w.r.t. 7, is the same. Note that this not
implies that the two topologies are the same: we know from point-set topology that the
notion of convergence w.r.t. a topology 7 does not determine the topology uniquely
unless the topology satisfies the first axiom of countability (e.g. if it is metrizable).

As a summary, for Montel spaces V',

1. the notion of boundedness in (V*,7;) and in (V*,7;) is the same (and coincides

with equicontinuity).
2. 7, and 7, induce the same topology on any bounded H C V*.
3. a sequence in V* is weakly convergent if and only it is strongly convergent.

Inductive limits

As we saw in all examples (and we will see in almost all the other examples),
l.c.v.s.’s usually come with naturally associated seminorms and the topology
is just the induced one. However, there is an important example in which the
topology comes first (and one usually doesn’t even bother to find seminorms
inducing it): the space of test functions (see next section). This example fits
into a general construction of l.c. topologies, known as “the inductive limit”.
The general framework is the following. Start with

X = vector space , X, C X vector subspaces such that X = U, X,
where « runs in an indexing set I. We also assume that, for each «a, we have
given:

7T, — locally convex topology on X,.
One wants to associate to this data a topology 7 on X, so that
1. (X,7)isalcwv.s.
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2. all inclusions 7, : X, — X become continuous.

There are many such topologies (usually the “very small” ones, e.g. the one
containing just () and X itself) and, in general, if 7 works, then any 7/ C T
works as well. The question is: is there “the best one” (i.e. the smallest
one)? The answer is yes, and that is what the inductive limit topology on X
(associated to the initial data) is. On short, this is induced by the following
basis of neighborhoods:

B(0) := {B C X : B — convex such that BN X, € 7,(0) for all a € I},

(show that one gets a l.c. topology and it is the largest one!). One should keep
in mind that what is important about (X,7) is to recognize when a function
on X is continuous, and when a sequence in X converges. The first part is a
rather easy exercise with the following conclusion:

Proposition 2.1.10. Let X be endowed with the inductive limit topology T,
let' Y be another l.c.v.s. and let

A: X =Y
be a linear map. Then A is continuous if and only if each
Aqy = Alx, : Xa =Y
18.
The recognition of convergent subsequences is a bit more subtle and, in

order to have a more elegant statement, we place ourselves in the following
situation: the indexing set I is the set N of positive integers,

XicXoCXgC..., ,X, —closed in Xn+17 T :’Z;’L+1|Xn

(i.e. each (X,,7,) is embedded in (X,+1,7,+1) as a closed subspace). We as-
sume that all the inclusions are strict. The following is a quite difficult exercise.

Theorem 2.1.11. In the case above, a sequence(xy),>1 of elements in X
converges to x € X (in the inductive limit topology) if and only if the following
two conditions hold:

1. 3 ng such that x, z,, € X,, for all m.
2. Ty — x n Xp,.

(note: one can also show that (X, 7T) cannot be metrizable).

2.2. Distributions: the local theory

In this section we recall the main functional spaces on R” or, more generally, on
any open {2 C R™. Recall that, for K C R" and r € N, one has the seminorm
I/, on C(€) given by:

1 llr i = sup{[0°f(2)] : 2 € K, |af <7}.
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£(Q): smooth functions:

One defines

£(2) := C=(Q),

endowed with the locally convex topology induced by the family of seminorms
{Il - llkr}KcQ compactrez, - This was already mentioned in Example
Hence, in this space, convergence means: f, — f if and only if for each multi-
index « and each compact K C Q, 9%f, — 0“f uniformly on K.

As a l.c.v.s, it is a Frechet space (and is also a Montel space).

Algebraically, £(Q) is also a ring (or even an algebra over C), with respect
to the usual multiplication of functions. Note that this algebraic operation is
continuous.

D(Q): compactly supported smooth functions (test functions):

One defines

D(Q) := C(Q),
the space of smooth functions with compact support, with the following topol-
ogy. First of all, for each K C 2, we consider

Ex(Q) := CE(Q),

the space of smooth functions with support inside K, endowed with the topology
induced from the topology of £(2) (which is the same as the topology discussed
in Example, i.e. induced by the family of seminorms {||-||k }rez, . While,
set theoretically (or as vector spaces),

D(Q) = Uk&k(Q)

(union over all compacts K C ), we consider the inductive limit topology on
D(Q) (see the end of the previous section).

Convergent sequences are easy to recognize here: f,, — f in D() if and
only if there exist a compact K such that f, € £k for all n, and f, — f in Ex
(indeed, using an exhaustion of 2 by compacts (see again Example , we
see that we can place ourselves under the conditions which allow us to apply
Theorem .

As al.cv.s., D(Q) is complete but it is not Frechet (see the end of Theorem
2.1.11). (However, it is a Montel space).

Algebraically, D(2) is also an algebra over C (with respect to pointwise
multiplication), which is actually an ideal in £(€2) (the product between a com-
pactly supported smooth function and an arbitrary smooth function is again
compactly supported).

D'(Q): distributions:

The space of distributions on R" is defined as the (topological) dual of the space
of test functions:

D'(Q) := (D))"
(see also Example [2.1.9). An element of this space is called a distribution on
Q. Unraveling the inductive limit topology on D({2), one gets a more explicit
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description of these space. More precisely, using Proposition to recognize
the continuous linear maps by restricting to compacts, and using Proposition
to rewrite the resulting continuity conditions in terms of seminorms, one
finds the following;:

Corollary 2.2.1. A distribution on ) is a linear map
u:Cr(Q) —C

with the following property: for any compact K C €, there exists C' = Cx > 0,
r =rg € N such that

[u(@)] < Clléllxr ¥V ¢ € CF(Q).

As al.c.v.s., D'(U) will be endowed with the strong topology (the topology
of uniform convergence on bounded subsets- see Example ) Note however,
when it comes to convergence of sequences (uy) of distributions, the strong
convergence is equivalent to simple (pointwise) convergence.

In general, any smooth function f induces a distribution uy

o= | fo,
R’ﬂ
and this correspondence defines a continuous inclusion of
i:E(Q) — D'(Q).

For this reason, distributions are often called “generalized functions”, and one
often identifies f with the induced distribution u.

Algebraically, the multiplication on £(2) extends to a £(€2)-module struc-
ture on D'(Q)

E(Q) xD'(2) — D'(Q), (fiu)— fu,
where

(fu)(¢) = u(fo)-

! Explanation (for your curiosity): When it comes to the following notions:

1. bounded subsets of D'(Q),

2. convergence of sequences in D’({),

3. continuity of a linear map A : V — D’'(2) defined on a Frechet space V (e.g. V =
E(QY)).

4. continuity of a linear map A : V — D’(2) defined on a l.c.v.s. V which is the inductive
limit of Frechet spaces (e.g. V = D(Q')).

(notions which depend on what topology we use on D’'(£2)), it does not matter whether we
use the strong topology 7, or the weak topology 75 on D’(Q): the priory different resulting
notions will actually coincide.

For boundedness and convergence this follows from the fact that D(§2) is a Montel space
(Theorem 34.4, pp. 357 in the book by Treves). For continuity of linear maps defined on a
Frechet space, one just uses that, because V is metrizable, continuity is equivalent to sequential
continuity (i.e. the property of sending convergent sequences to convergent sequences) and
the previous part. If V is an inductive limit of Frechet spaces one uses the characterization
of continuity of linear maps defined on inductive limits (Proposition .
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&'(Q2): compactly supported distributions:

The space of compactly supported distributions on €2 is defined as the (topo-
logical) dual of the space of all smooth functions

Q) = (E(Q)*".
Using Proposition to rewrite the continuity condition, we find:

Corollary 2.2.2. A compactly supported distribution on ) is a linear map
u:C*(Q) —C

with the following property: there exists a compact K C Q, C' > 0 andr € N
such that

[u(@)] < Clléllxr ¥V ¢ € CF(Q).

Again, as in the case of D'(Q2), we endow £'(2) with the strong topologyﬂ
Note that the dual of the inclusion D(€2) < £ induces a continuous inclusion

£1(Q) — D'(Q).

Explicitly, any linear functional on C°°(€2) can be restricted to a linear func-
tional on C2°(Q2), and the estimates for the compactly supported distributions
imply the ones for distributions.

Hence the four distributional spaces fit into a diagram

IDHE‘ 9

]

gl - > D/
in which all the arrows are (algebraic) inclusions which are continuous, and the

spaces on the left are (topologically) the compactly supported version of the
spaces on the right.

Supports of distributions

Next, we recall why £'(Q) is called the space of compactly supported distribu-
tions. The main remark is that the assignment

Q— D'(Q)

defines a sheaf and, as for any sheaf, one can talk about sections with com-
pact support. What happens is that the elements in D’'(2) which have com-
pact support in this sense, are precisely the ones in the image of the inclusion
E'(Q) — D'(Q).

Here are some details. First of all, for any two opens 2 C €', one has an
inclusion (“extension by zero”)

D(Q) — D), [ ],

2Explanation (for your curiosity): The same discussion as in the case of D’'(Q) applies also to
E'(QY). This is due to the fact that also £(2) is a Montel space (with the same reference as for
D(2)). Hence, when it comes to bounded subsets, convergent sequences, continuity of linear
maps from a (inductive limit of) Frechet space(s) to £'(€2), it does not matter whether we use
the strong topology 7;, or the simple topology 75 on £'(Q).
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where f is f on © and zero outside. Dualizing, we get a “restriction map”,
D) = D(Q), urs ulg.

The sheaf property of the distributions is the following property which follows
immediately from a partition of unity argument:

Lemma 2.2.3. Assume that Q = U;;, with Q; C R™ opens, and that u; are
distributions on §; such that, for all i and j,

ui|o;nQ; = Ujlone;-
Then there exists a unique distribution u on € such that
ulo, = u;
for all i.
Proof See your notes from the last lecture in the intensive reminder. O

From this it follows that, for any u € D'(Q), there is a largest open Q, C
on which u vanishes (i.e. u|q, = 0).

Definition 2.2.4. For u € D'(2), define its support

supp(u) = Q — Q, = {x € Q : u|y, = 0 for any neighborhood V,, C Q of z}.
We say that u is compactly supported if supp(f) is compact.
Example 2.2.5. For any z € (2, one has the distribution §, defined by

It is not difficult to check that its support is precisely {x}.

Exercise 2.2.6. Show that u € D'(2) has compact support if and only if it is
in the image of the inclusion

E'(Q) — D'(Q).
Derivatives of distributions and Sobolev spaces

Finally, we discuss one last property of distributions which is of capital impor-
tance: one can talk about the partial derivatives of any distribution! The key
(motivating) remark is the following, which follows easily from integration by
parts.

Lemma 2.2.7. Let f € C*™(2) and let uy be the associated distribution.

Let 0% f € C*(R2) be the higher derivative of f associated to a multi-index
o, and let ugay be the associated distribution.

Then uga s can be expressed in terms of uy by:

uge () = (—1)*ug (9°f).
This shows that the action of the operator 0% on smooth functions can be
extended to distributions.

Definition 2.2.8. Fora distribution v on 2 and a multi-index «, one defines
the new distribution d%u on €, by

(0%u)(9) = (=1)"u(8%¢), V ¢ € CZ(Q).
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Example 2.2.9. The distribution u; makes sense not only for smooth func-
tions on 2, but also for functions f : 2 — C with the property that ¢f € L(Q)
for all ¢ € C°(Q) (so that the integral defining uys) is absolutely convergent.
In particular it makes sense for any f € L?(Q) and, as before, this defines an
inclusion
L*(Q) — D'(Q).

We now see one of the advantages of the distributions: any f € L?, although
it may even not be continuous, has derivatives 0“f of any order! Of course,
they may fail to be functions, but they are distributions. In particular, it is
interesting to consider the following spaces.

Definition 2.2.10. For any r € N, @ C R" open, we define the Sobolev space
on {2 of order r as:

H.(Q) := {u € D'(Q): 0%(u) € L*(Q) whenever |a| < r},
endowed with the inner product

<Ua ul>H’r = Z <aau,acxul>L2.

laf<r

In this way, H,(£2) becomes a Hilbert space.

2.3. Distributions: the global theory

The l.c.v.s.’s £(Q2), D(Q), D'(N2) and £'(Q) can be extended from opens 2 C R"
to arbitrary manifold M (allowing us to talk about distributions on M, or
generalized functions on M) and, more generally, to arbitrary vector bundles
E over a manifold M (allowing us to talk about distributional sections of E,
or generalized sections of E). To explain this extension, we fix M to be an
n-dimensional manifold, and let £ be a complex vector bundle over M of rank

p.
E(M; E) (smooth sections):

One defines

E(M; E) :=T'(E),
the space of all smooth sections of £ endowed with the following local convex
topology. To define it, we choose a cover U = {U;};c; of M by opens which
are domains of “total trivializations” of E, i.e. both of charts (U;, k;) for M as
well as of trivializations 7; : E|y, — U; x CP for E. This data clearly induce an
isomorphism of vector spaces

¢i : T(Ely;) — C%(ri(Us))?

(see also subsection below). Altogether, and after restricting sections of E
to the various Us, these define an injection

(Z) : F(E) — HZCOO(RZ(UZ))p = Hzg(RZ(UZ))p
Endowing the right hand side with the product topology, the topology on I'( E')

is the induced topology (via this inclusion). Equivalently, considering as indices
v = (i,1, K,r) consisting of i € I (to index the open U;), 1 <1 < p (to index the
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I-th component of ¢(s|y,)), K C x(U;) compact and r- non-negative integer,
one has seminorms || - ||y on I'(E) as follows: for s € I'(E), restrict it to Uj,
move it to £(k;(U;))P via ¢;, take its [-th component, and apply the seminorm
|- [z of E(ks(U3)):

151l = llé(slv) [l
Putting together all these seminorms will define the desired l.c. topology on
I'(E).

Exercise 2.3.1. Show that this topology does not depend on the choices in-
volved.

Note that, since the cover U can be chosen to be countable (our manifolds
are always assumed to satisfy the second countability axiom!), it follows that
our topology can be defined by a countable family of seminorms. Using the
similar local result, you can now do the following:

Exercise 2.3.2. Show that £(M; FE) is a Frechet space.

Finally, note that a sequence (s,,)m>1 converges to s in this topology if and
only if, for any open U which is the domain of a local chart x for M and of
a local frame {si,...,s,} for E, and for any compact K C U, writing s, =
(fL ... fR), s = (f',..., fP) with respect to the frame, all the derivatives
9%(fL) converge uniformly on K to %(f* (when m — 00).

When E = Cjy; is the trivial line bundle over M, we simplify the notation to
E(M). Asin the local theory, this is an algebra (with continuous multiplication).
Also, the multiplication of sections by functions make £(M, E) into a module
over E(M).

D(M, E) (compactly supported smooth sections)

One defines

D(M,E) :=T.(F),
the space of all compactly supported smooth sections endowed with the follow-
ing l.c. topology defined exactly as in the local case: one writes

D(M,E) =UgEk(M; E),

where the union is over all compacts K C M, and Ex(M; E) C E(M; E) is the
space of smooth sections supported in K, endowed with the topology induced
from E(M; E); on D(M, E) we consider the inductive limit topology.

Exercise 2.3.3. Describe more explicitly the convergence in D(M, E).

Again, when E = Cj; is the trivial line bundle over M, we simplify the
notation to D(M).

D'(M; E) (generalized sections):

This is the space of distributional sections of F, or the space of generalized
sections of E. To define it, we do not just take the dual of D(M, E) as in the
local case, but we first:
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1. Consider the complex density line bundle D = Dj; on M E| All we need to
know about D is that its compactly supported sections can be integrated

3This is the complex version of the density bundle from the intensive reminder. Here is
the summary (the complexified version of what we have already discussed). Given an n-
dimensional vector space V, one defines D,(V), the space of r-densities (for any real number
r > 0), as the set of all maps w: A"V — C satisfying

w(A) = [A"w(§), V£ € A"V,

Equivalently (and maybe more intuitively), one can use the set Fr(V') of all frames of V' (i.e.
ordered sets (e1,...,en) of vectors of V' which form a basis of V). Then D, (V) can also be
described as the set of all functions
w:Fr(V)—C
with the property that, for any invertible n by n matrix A, and any frame e, for the new frame
A(e) one has
w(A(e)) = |det(A4)]"w(e).
Intuitively, one may think of an r-density on V' as some rule of computing volumes of the
hypercubes (each frame determines such a hypercube). For each r, D,(V) is one dimensional
(hence isomorphic to C), but in a non-canonical way. Choosing a frame e of V, one has an
induced r-density denoted
We = |el/\.../\e"|,n
uniquely determined by the condition that w.(e) = 1 (the e'’s in the notation stand for the
dual basis of V*).

For a manifold M, we apply this construction to all the tangent spaces to obtain a line
bundle D, (M) over M, whose fiber at x € M is D.(T.M). For r = 1, Di(M) is simply
denoted D, or Dy whenever it is necessary to remove ambiguities. The sections of D are
called densities on M.

Any local chart (U,x = (z1,...,27)) induces a frame (8/0z%), for T, M with the dual
frame (dx?), for Ty M, for all 2 € U. Hence we obtain an induced trivialization of D, (M)
over U, with trivializing section

|dzy A ... Adzl],
(and, as usual, the smooth structure on D is so that these sections induced by the local charts
are smooth).

An r-density on M is a section w of D,(M). Hence, locally, with respect to a coordinate
chart as before, such a density can be written as

w=feok-|(dryA... Adxp|.

for some smooth function defined on k(U). If we consider another coordinate chart s’ on the
same U then, after a short (but instructive) computation, wee see that f. changes according
to the rule:

[ =1Jac(h)[" fur o b,
where h = x'ok™ ! is the change of coordinates, and Jac(h) is the Jacobian of h. The case r = 1
reminds us of the usual integration and the change of variable formula: the usual integration
of compactly supported functions on an open Q C R" defines a map

/ L C2(Q) - C
Q
and, if we move via a diffeomorphism h : Q — Q’, one has the change of variables formula

/Qf:/Q|Jac(h)|-foh.

Hence, for 1-densities on the domain U of a coordinate chart, one has an induced integration
map

/ T (U, D|y) — C
U
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over M without any further choice, i.e. there is an integral

/M :T(D) — C.

If you are more familiar with integration of (top-degree) forms, you may
assume that M has an orientation, D = A"T*M ® C- the space of C-
valued n-forms (an identification induced by the orientation), and [, is
the integral that you already know. Or, if you are more familiar with
integration of functions on Riemannian manifolds, you may assume that
M is endowed with a metric, D is the trivial line bundle (an identification
induced by the metric) and that [,, is the integral that you already know.
2. Consider the “functional dual” of E:

EY := E* ® D = Hom(E, D),
the bundle whose fiber at x € M is the complex vector space consisting
of all (C-)linear maps E; — D,.
The main point about EV is that it comes with a “pairing” (pointwise
the evaluation map)

<—,—>T(EY)xT(E) - T'(D)

(and its versions with supports) and then, using the integration of sec-
tions of D, we get canonical pairings

(=, <] To(EY) X T(E) = C, (s1,52) /M < 51,8,

We now define
D'(M;E) := (D(M,E"))*
(endowed with the strong topology). Note that, it is precisely because of the
way that EV was constructed, that we have canonical (i.e. independent of any
choices, and completely functorial) inclusions

E(M;E) — D (M;E),
sending a section s to the functional ug :=< -, s >. And, as before, we identify
s with the induced distribution us.
When E = Cy;, we simplify the notation to D'(M).

As for the algebraic structure, as in the local case, D'(M; E) is a module
over £(M), with continuous multiplication

EM) xD'(M;E) — D' (M;E)

(by sending w to [

K

) f+) which does not depend on the choice of the coordinates. For the
global integration map

/ :Te(M,D) — C,
M

one decomposes an arbitrary compactly supported density Q on M as a finite sum Y, w;,
where each w; is supported in the domain of a coordinate chart U; (e.g. use partitions of

unity) and put
w = Wi .

Of course, one has to prove that this does not depend on the way we decompose w as such a
sum, but this basically follows from the additivity of the usual integral.
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defined by
(fu)(s) = u(fs).

E'(M; E) (compactly supported generalized sections):

This is the space of compactly supported distributional sections of E, or the
space compactly supported generalized sections of E. It is defined as in the
local case (but making again use of EV), as

E'(M;E) = (E(M,EY))*.
Note that, by the same pairing as before, one obtains an inclusion
D(M,E) — &' (M,E).
Hence, as in the local case, we obtain a diagram of inclusions

D(M,E) —— &E(M, E) .

| |

&(M,E) —> D'(M, E)

Example 2.3.4.

1. when E = Cj; is the trivial line bundle over M, we have shorten the

notations to D(M), £(M) etc. Hence, as vector spaces,
D(M) =Te(M), E(M) = C*(M),
while the elements of D’(M) will be called distributions on M.

2. staying with the trivial line bundle, but assuming now that M = € is an
open subset of R™, we recover the spaces discussed in the previous section.
Note that, in the case of distributions, we are using the identification
of the density bundle with the trivial bundle induced by the section
|dzt ... dz".

3. when E = CY, is the trivial bundle over M of rank p, then clearly

D(M,Ch,)) =D(M)P, E(M,M x Ch,) = E(M)P.
On the other hand, using the canonical identification between E* and F,
we also obtain
D'(M,Ch,) =D (M)?, & (M,CH,) = E'(M)P.

Note that, as in the local theory, distributions u € D'(M, E) can be re-
stricted to arbitrary opens U C M, to give distributions u|y € D'(U, E|y).
More precisely, the restriction map

D'(M,E) — DU, E|y)
is defined as the dual of the map
D,(Uv EV|U) - D(M7 EV)

which takes a compactly supported section defined on U and extends it by zero
outside U.

Exercise 2.3.5. For a vector bundle E over M,
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1. Show that U — D(U, E|y) forms a sheaf over M.
2. Define the support of any v € D(M, E).
3. Show that the injection

E'(M,E) — D'(M,E)

identifies £'(M, E) with the space of compactly supported distributional
sections (as a vector space only!).

Exercise 2.3.6. Show that D(M, E)isdense in E(M, E), D'(M,E) and £'(M, E)
(you are allowed to use the fact that this is known for trivial line bundles over
opens in R").

Invariance under isomorphisms

Given two vector bundles, E over M and F' over a manifold /N, an isomorphism
h between E and F' is a pair (h, hg), where hg : M — N is a diffeomorphism
and h : £ — F is a map which covers hg (i.e. sends the fiber E, to Fj ()
or, equivalently, the diagram below is commutative) and such that, for each
x € M, it restricts to a linear isomorphism between E, and Fj, ().

_hp.

I

M—N

We now explain how such an isomorphism h induces isomorphisms between
the four functional spaces of E and those of F' (really an isomorphism between
the diagrams they fit in). The four isomorphism from the functional spaces of
FE to those of F' will be denoted by the same letter h,, while its inverse by h*.
At the level of smooth sections, this is simply

he : E(M,E) — E(N,F), hu(s)(y) = h(s(hg " (1)),

which also restricts to the spaces D. At the level of generalized sections, it is
more natural to describe the map

h*:D'(N,F)— D'(M,E),
(and h, will be its inverse). This will be dual of a map
hY : D(FY) — D(EY)
defined by
hY(u)(ex) = ho(u(h(ex))), (ex € Ex),
where we have used the pull-back of densities, hj : Dy po(z) — DMz

The same formula defines h* on the spaces &'

Example 2.3.7. Given a rank p vector bundle £ over M, one often has to
choose opens U C M which are domains of both a coordinate chart (U, k) for
M as well as the domains of a trivialization 7 : E|y — U x CP for E. We
say that (U, k,7) is a total trivialization for E over U. Note that such a data
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defines an isomorphism h between the vector bundle E|y over U and the trivial
bundle x(U) x CP:

ho = k, h(ez) = (k(x),7(ez)).
Hence any total trivialization (U, x,7) induces isomorphisms

h’H,T : D(U7 E‘U) - D(K(U))p7 h’H,T : E(U) E|U) - E(K(U))pa etc.
(see also Example [2.3.4)).

2.4. General operators and kernels

Given two vector bundles, E over a manifold M and F over a manifold NN,
an operator from FE to F' is, roughly speaking, a linear map which associates
to a “section of E” a “section of F”. The quotes refer to the fact that there
are several different choices for the meaning of sections: ranging from smooth
sections to generalized sections, or versions with compact supports (or other
types of sections). The most general type of operators are is following.

Definition 2.4.1. If F is a vector bundle over M and F is a vector bundle
over F', a general operator from F to F is a linear continuous map

P:D(M,E) — D'(N, F).

Remark 2.4.2. Note that general operators are often described with different
domains and codomains. For instance, if F; and F» is any of the symbols &,
D, & or D' (or any of the other functional spaces that will be discussed in the
next lecture), one can look at continuous linear operators

(2.2) P:Fi(M,E) — Fo(M, F).

But since in all cases D C F; and Fo C D’ (with continuous inclusions), P does
induce a general operator

Pyen : D(M, E) — D'(N, F).

Conversely, since D(M, E) is dense in all the other functional spaces that we
have discussed (Exercise [2.3.6)), Pyen determines P uniquely. Hence, saying that
we have an operator ([2.2)) is the same as saying that we have a general operator
Pyen with the property that it extends to F1(M, E), giving rise to a continuous
operator taking values in Fa(M, F).

On the other extreme, one has the so called smoothing operators, i.e. op-
erators which transforms generalized sections into smooth sections.

Definition 2.4.3. If F is a vector bundle over M and F' is a vector bundle
over F', a smoothing operator from E to F'is a linear continuous map
P:E&(M,E)— E(N,F).
We denote by U~°(E, F') the space of all such smoothing operators. When E
and F' are the trivial line bundles, we will simplify the notation to ¥~°°(M).
In other words, a smoothing operator is a general operator P : D(M, E) —
D'(N, F) which
1. P takes values in E(N, F).



36 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

2. P extends to a continuous linear map from £'(M, E) to E(N, F).

A very useful way of interpreting operators is in terms of their so called
“kernels”. The idea of kernel is quite simple- and to avoid (just some) notational
complications, let us first briefly describe what happens when M = U C R™
and N =V C R" are two open, and the bundles involved are the trivial line
bundles. Then the idea is the following: any K € C°°(V x U) induces an
operator

P :DWU) - E(V), K(o /Kya

Even more: composing with the inclusion £(V) — D’ (V), i.e. viewing Pk as
an application

Pk :DU) — D'(V),
this map does not depend on K as a smooth functions, but just on K as a
distribution (i.e. on ugx € D'(V x U)). Indeed, for ¢ € D(U), Pk (), as a
distribution on V, is

ureio 0 [ P = [ Kap)sedds = uh o),
1% VXU
where Y ® ¢ € C®°(V x U) is the map (y,x) — ¥(y)p(z)). In other words, any
KeD(VxU)

induces a linear operator

Pg :D(U) — D'(V), Px(6)(¥) = K(¢ ® o)
which can be shown to be continuous. Moreover, this construction defines a
bijection between D’(V x U) and the set of all general operators (even more,
when equipped with the appropriate topologies, this becomes an isomorphism
of l.c.v.s.’s).

The passing from the local picture to vector bundles over manifolds works
as usual, with some care to make the construction independent of any choices.
Here are the details. Given the vector bundles E over M and F over N, we
consider the vector bundle over N x M:

FREY = pri(F) @ pri(E"),
where pr; is the projection on the j-th component. Hence, the fiber over (y,z) €
N x M is
(FREY) (s =Fy ® E; ® Dy
Note that the functional dual of this bundle is canonically identified with:
(FREY) 2F'XE.
Exercise 2.4.4. Work out this isomorphism. (Hints: the density bundle of
N x M is canonically identified with Dy ® Das; D3y ® Dy =2 Hom(Day, D)
is canonically isomorphic to the trivial line bundle.)

As before, one may decide to use a fixed positive density on M and one on
N, and then replace FX EY by FK E* and FVYX E by F*X E.
Fix now a distribution

KecD(NxMFXREY).
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We will associate to K a general operator
Px :D(M,E) — D'(N, F).
Due to the definition of the space of distributions, and to the identification
mentioned above, K will be a continuous functions
K:DN xM,FVXE) — C.
For ¢ € D(M, FV) and ¢ € D(M, E) we denote by
Yp®¢€DN x M,F¥XE)
the induced section (y,z) — ¥(y) ® ¢(x). To describe Pk, let ¢ € D(M,E)
and we have to specify Pk (¢) € D'(N, F), i.e. the continuous functional
Pk (¢) : D(N,FY) — C.
We define
Pr(9)(¥) :== K(¢ ® ¢).
The general operator Pk is called the general operator associated to the kernel

K. Highly non-trivial is the fact that any general operator arises in this way
(and then K will be called the kernel of Pg).

Theorem 2.4.5. The correspondence K — Py defines a 1-1 correspondence
between

1. distributions K € D'(N x M; FK EV).
2. general operators P : D(M,E) — D'(N, F).
Moreover, in this correspondence, one has
K € &(N x M;FREY) <= P is smoothing.

Note (for your curiosity): the 1-1 correspondence actually defines an isomorphism
of L.c.v.s.’s between

1. D'(N x M; F X EV) with the strong topology.
2. the space L(D(M, E),D'(N, F)) of all linear continuous maps, endowed with
the strong topology.

P — . 6 R > (S ]IQ .

Compute its kernel, and show that this is not a smoothing operator.






LECTURE 3
Functional spaces on manifolds

The aim of this section is to introduce Sobolev spaces on manifolds (or on
vector bundles over manifolds). These will be the Banach spaces of sections we
were after (see the previous lectures). To define them, we will take advantage
of the fact that we have already introduced the very general spaces of sections
(the generalized sections, or distributions), and our Banach spaces of sections
will be defined as subspaces of the distributional spaces.

It turns out that the Sobolev-type spaces associated to vector bundles can
be built up from smaller pieces and all we need to know are the Sobolev spaces
H, of the Euclidean space R™ and their basic properties. Of course, it is not so
important that we work with the Sobolev spaces themselves, but only that they
satisfy certain axioms (e.g. invariance under changes of coordinates). Here we
will follow an axiomatic approach and explain that, starting with a subspace
of D'(R™) satisfying certain axioms, we can extend it to all vector bundles
over manifolds. Back to Sobolev spaces, there is a subtle point: to have good
behaved spaces, we will first have to replace the standard Sobolev spaces H,., by
their “local versions”, denoted H, 1o.. Hence, strictly speaking, it will be these
local versions that will be extended to manifolds. The result will deserve the
name “Sobolev space” (without the adjective “local”) only on manifolds which
are compact.

3.1. General functional spaces

When working on R", we shorten our notations to
E=ER"),D=DR"),D =...
and, similarly for the Sobolev space of order r:
H =HR")Y={uecD :0%clL®: Vo <r}.

Definition 3.1.1. A functional space on R™ is a l.c.v.s. space F satisfying:

1. D C F C D' and the inclusions are continuous linear maps.
2. for all ¢ € D, multiplication by ¢ defines a continuous map mgy : F — F.

Similarly, given a vector bundle E over a manifold M, one talks about functional
spaces on M with coefficients in E (or just functional spaces on (M, E)).

39
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As in the case of smooth functions, one can talk about versions of F with
supports. Given a functional space F on R", we define for any compact K C R™,

Fr ={u e F, supp(u) C K},
endowed with the topology induced from F, and we also define
fcomp = UgFK

(union over all compacts in R™), endowed with the inductive limit topology. In
terms of convergence, that means that a sequence (un) in Fcomp converges to
u € Feomp if and only if there exists a compact K such that

supp(u,) C K Vn, u, —u in F.

Note that Feomp is itself a functional space.
Finally, for any functional space F, one has another functional space (dual
in some sense to Feom ), defined by:

Floe={ueDR") :pueF V¢ecC R}
This has a natural l.c. topology so that all the multiplication operators
Mg : Floc = F, u— ¢pu (u € D)

are continuous- namely the smallest topology with this property. To define it,
we use a family P of seminorms defining the l.c. topology on F and, for every
p € P and ¢ € C*(R™) we consider the seminorm g, 4 on Fioc given by

Gp.p(u) = p(Pu).

The l.c. topology that we use on Fi, is the one induced by the family {g, 4 :
p € P, ¢ € D. Hence, u,, — wu in this topology means ¢u,, — ¢u in F, for all

@’s.
Exercise 3.1.2. Show that, for any l.c.v.s. V, a linear map

A:V — Foe

is continuous if and only if , for any test function ¢ € D, the composition with
the multiplication mg by ¢ is a continuous map mgo A:V — F.

Example 3.1.3. The four basic functional spaces D, &, £, D’ are functional
spaces and

/ /

Dcomp = gcomp = D, (D )comp = (5 )Comp = 5/7
Dloc - gloc - 87 (D/)loc - (gl)loc - D/‘

The same holds in the general setting of vector bundles over manifolds.
Regarding the Sobolev spaces, they are functional spaces as well, but the
inclusions

H’r,com — Hr — Hr,loc
are strict (and the same holds on any open Q2 C R").

The local nature of the spaces Fx is indicated by the following partition of
unity argument which will be very useful later on.
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Lemma 3.1.4. Assume that K C R"™ is compact, and let {n;}jcs a finite
partition of unity over K, i.e. a family of compactly supported smooth functions
on R™ such that Zj nj =1 on K. Let K; = KNsupp(n;). Then the linear map

I:Frx — e Fr, ur (nju)jes

is a continuous embedding (i.e. it is an isomorphism between the l.c.v.s. Fi
and the image of I, endowed with the subspace topology) and the image of I is
closed.

Proof The fact that I is continuous follows from the fact that each component
is multiplication by a compactly supported smooth function. The main obser-
vation is that there is a continuous map R going backwards, namely the one
which sends (uj)jes to > uj, such that Ro I =Id. The rest is a general fact
about t.v.s’s: if I : X - Y, R:Y — X are continuous linear maps between
two t.v.s.’s such that Rol = Id, then I is an embedding and D(X) is closed in
Y. Let’s check this. First, I is open from X to D(X): if B C X is open then,
remarking that
I(B) =I(X)NnRY(B)

and using the continuity of R, we see that I(B) is open in I(X). Secondly, to
see that I(X) is closed in Y, one remarks that

I(X) = Ker(Id — I o R).

Similar to Lemma [3.1.4] we have the following.

Lemma 3.1.5. Let F be a functional space on R™ and let {n; };c1 be a partition
of unity, with n; € D. Let K; be the support of ;. Then

I Froe = Wier Fr;, ur (pin)ier
18 a continuous embedding with closed image.

Proof This is similar to Lemmal[3.1.4]and the argument is identical. Denoting
by X and Y the domain and codomain of I, we have I : X — Y. On the other
hand, we can consider R : Y — X sending (u;)ier to Y, u; (which clearly
satisfies Ro I = Id). What we have to make sure is that, if {K;},cs is a locally
finite family of compact subsets of R™, then one has a well-defined continuous
map

R :1L;Fk, — Foc, (ui)iel = ZUZ

First of all, w = ), u; makes sense as a distribution: as a linear functional on
test functions,

u(¢) = Zui«b)

(this is a finite sum whenever ¢ € D). Even more, when restricted to D,
one finds Ix finite such that the previous sum is a sum overall ¢ € Ix for all
¢ € Dg. This shows that u € D’. To check that it is in Fjoc, we look at ¢u for
¢ € D (and want to check that it is in F). But, again, we will get a finite sum
of ¢u;’s, hence an element in F. Finally, to see that the map is continuous, we
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have to check (see Exercise [3.1.2)) that mg o A is continuous as a map to F,
for all ¢. But, again, this is just a finite sum of the projections composed with
meg. O

3.2. The Banach axioms

Regarding the Sobolev spaces H, on R", one of the properties that make them
suitable for various problems (and also for the index theorem) is that they are
Hilbert spaces. On the other hand, as we already mentioned, we will have to
use variations of these spaces for which this property is lost when we deal with
manifolds which are not compact. So, it is important to realize what remains
of this property.

Definition 3.2.1. (Banach axiom) Let F be a functional space on R". We
say that:

1. F is Banach if the topology of F is a Banach topology.
2. F is locally Banach if, for each compact K C R™, the topology of Fk is
a Banach topology.

Similarly, we talk about “Frechet”, “locally Frechet”, “Hilbert” and “locally
Hilbert” functional spaces on R™, or, more generally, on a vector bundle F over
a manifold M.

Of course, if F is Banach then it is also locally Banach (and similarly for
Frechet and Hilbert). However, the converse is not true.

Example 3.2.2. €& is Frechet (but not Banach- not even locally Banach). D is
not Frechet, but it is locally Frechet. The Sobolev spaces H, are Hilbert. Their
local versions H, 1o are just Frechet and locally Hilbert. The same applies for
the same functional spaces on opens 2 C R™.

Proposition 3.2.3. A functional space F is locally Banach if and only if each
x € R™ admits a compact neighborhood K, such that Fr, has a Banach topology
(similarly for Frechet and Hilbert).

Proof From the hypothesis it follows that we can find an open cover {U; :
i € I} of R™ such that each U; is compact and Fg, 1s Banach. It follows that,
for each compact K inside one of these opens, Fx is Banach. We choose a
partition of unity {7;};c; subordinated to this cover. Hence each supp(n); is
compact inside U;, {supp(n);}ier is locally finite and >, n; = 1.

Now, for an arbitrary compact K, J := {j € I : nj|x # 0} will be finite
and then {n;};cs will be a finite partition of unity over K hence we can apply

Lemma There K; will be inside Uy, hence the spaces Fk; have Banach
topologies. The assertion follows from the fact that a closed subspace of a
Banach space (with the induced topology) is Banach. O

Remark 3.2.4. If F is of locally Banach (or just locally Frechet), then Feomp
(with its l.c. topology) is a complete l.c.v.s. which is not Frechet (hint: Theorem

BLT).
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3.3. Invariance axiom

In general, a diffeomorphism y : R” — R"™ (i.e. a change of coordinates) induces
a topological isomorphism Y, on D’:

X(u)(9) = u(¢pox ).
To be able to pass to manifolds, we need invariance of F under changes of

coordinates. In order to have a notion of local nature, we also consider a local
version of invariance.

Definition 3.3.1. Let F be a functional space on R"™. We say that:
1. F is invariant if for any diffeomorphism y of R"™, x, restricts to a topo-
logical isomorphism
X« F = F.
2. F islocally invariant if for any diffeomorphism x of R"™ and any compact
K C R", x, restricts to a topological isomorphism

Xx* * fK = fx(K)

Similarly, we talk about invariance and local invariance of functional spaces on
vector bundles over manifolds.

Clearly, invariant implies locally invariant (but not the other way around).

Example 3.3.2. Of course, the standard spaces D, £, D/, £ are all invariant
(in general for vector bundles over manifolds). However, H, is not invariant
but, fortunately, it is locally invariant (this is a non-trivial result which will be
proved later on using pseudo-differential operators). As a consequence (see also
below), the spaces H, o are invariant.

Proposition 3.3.3. A functional space F is locally invariant if and only if
for any diffeomorphism x of R™, any x € R™ admits a compact neighborhood
K, such that x. restricts to a topological isomorphism

Xt Fiey = Fy(rc,)-
Proof We will use Lemma in a way similar to the proof of Proposition
Let K be an arbitrary compact and y diffeomorphism. We will check the
condition for K and . As in the proof of Proposition we find a finite
partition of unity {7;};es over K such that each K; = K Nsupp(n;) has the
property that

X Fiey = Fiy)-
We apply Lemma to K and the partition {n;} (with map denoted by I)
and also to x(K) and the partition {x.(n;) =n; o x '} (with the map denoted
I,). Once we show that x.(Fk) = Fy (k) set-theoretically, the lemma clearly
implies that this is also a topological equality. So, let u € F. Then nju € Fk;
hence

X*(ni) ’ X*(U) = X*(nj ’ u) € fx(Kj) C Fk,

hence also

X (1) = Zx*(m) X+ (1) € Fr.
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3.4. Density axioms
We briefly mention also the following density axioms.

Definition 3.4.1. Let F be a functional space on R"™. We say that:

1. F is normal if D is dense in F.
2. F is locally normal if, for any compact K C R", F is contained in the
closure of D in F.

Similarly, we talk about normal and locally normal functional spaces on vector
bundles over manifolds.

Again, normal implies locally normal and one can prove a characterization
of local normality analogous to Proposition [3.2.3] and Proposition [3.3.3

Example 3.4.2. All the four basic functional spaces D, £, D' and &’ are
normal (also with coefficients in vector bundles). Also the space H, is normal.
However, for arbitrary opens 2 C R", the functional spaces H,(€2) (on Q) are
in general not normal (but they are locally normal). The local spaces H; o are
always normal (see also the next section).

The normality axiom is important especially when we want to consider
duals of functional spaces. Indeed, in this case a continuous linear functional
¢+ F — Cis zero if and only if its restriction to D is zero. It follows that the
canonical inclusions dualize to continuous injections

D— F*—T7D.
The duality between Fio. and Feomp can then be made more precise- one has:

(]:IOC)* = (f*)compv (fcomp)* = (-7:*)100

(note: all these are viewed as vector subspaces of D', each one endowed with
its own topology, and the equality is an equality of l.c.v.s.’s).

3.5. Locality axiom

In general, the invariance axiom is not enough for passing to manifolds. One
also needs a locality axiom which allows us to pass to opens 2 C R" without
loosing the properties of the functional space (e.g. invariance).

Definition 3.5.1. (Locality axiom) We say that a functional space F is local
if, as l.c.v.s.’s,

F = Flroc-
Similarly we talk about local functional spaces on vector bundles over manifolds.

Note that this condition implies that F is a module not only over D but
also over £.

Example 3.5.2. From the four basic examples, £ and D’ are local, while D
and &' are not. Unfortunately, H, is not local- and we will soon replace it with
H, 1oc (in general, for any functional space F, Fiq is local).
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With the last example in mind, we also note that, in general, when passing
to the localized space, the property of being of Banach (or Hilbert, or Frechet)
type does not change.

Exercise 3.5.3. Show that, for any functional space F and for any compact
KCR"

(‘;Eloc)K = FKk,
as l.c.v.s’s. In particular, F is locally Banach (or locally Frechet, or locally
Hilbert), or locally invariant, or locally normal if and only if F. is.

With the previous exercise in mind, when it comes to local spaces we have
the following:

Theorem 3.5.4. Let F be a local functional space on R™. Then one has the
following equivalences:

1. F is locally Frechet if and only if it is Frechet.
2. F is locally invariant if and only if it is invariant.
3. F is locally normal if and only if it is normal.

Note that in the previous theorem there is no statement about locally Ba-

nach. As we have seen, this implies Frechet. However, local spaces cannot be
Banach.
Proof (of Theorem In each part, we still have to prove the direct
implications. For the first part, if F is locally Frechet, choosing a countable
partition of unity and applying the previous lemma, we find that Fj,. is Frechet
since it is isomorphic to a closed subspace of a Frechet space (a countable
product of Frechet spaces is Frechet!). For the second part, the argument is
exactly as the one for the proof of Proposition but using Lemma
instead of Lemma [3.1.4l For the last part, let us assume that F is locally
normal. It suffices to show that £ is dense in F: then, for any open U C F,
UNE # 0; but UNE is an open in € (because & — F is continuous) hence,
since D is dense in £ (with its canonical topology), we find U N D # {).

To show that £ is dense in F, we will need the following variation of Lemma
We choose a partition of unity 7; as there, but with n; = u?, u; € D. Let

A - f, X == Hie[f,
(X with the product topology). We define
it A— X, ur (pu);, p:X — A (Ui)iHZMiui-

As in the lemma, these make A into a closed subspace of X. Hence we can
place ourselves into the setting that we have a subspace A C X of a l.c.v.s. X,
which has a projection into A, p : X — A (not that we will omit writing 7 from
now on). Consider the subset

Y =D C X.

Modulo the inclusion A — X, B = ANY becomes £ and p(Y) = B. Also,
since A (or its image by 4) is inside the closed subspace of X which is II; Fg,, we
see that the hypothesis of local normality implies that A C Y (all closures are
w.r.t. the topology of X). We have to prove that A is in the closure of B. Let
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a € A, V an open neighborhood of a in X. We have to show that V N B # 0.
From V' we make V' = p~1(ANV)- another open neighborhood of a in X. Since
A CY, wehave V' NY # (. It now suffices to remark that p(V') c VN B. O

Finally, let us point out the following corollary which shows that, in the case
of locally Frechet spaces, locality can be checked directly, using test functions
and without any reference to Fioc.

Corollary 3.5.5. If F is a functional space which is locally Frechet, then F
is local if and only if the following two (test-)conditions are satisfied:

1. uw € D'(R™) belongs to F if and only if pu € F for all ¢ € C(R™).

2. up, — win F if and only if ¢pu, — ¢ in F, for all p € CX(R™).

Proof The direct implication is clear. For the converse, assume that F is
a functional space which satisfies these conditions. The first one implies that
F = Floc as sets and we still have to show that the two topologies coincide. Let
T be the original topology on F and let 7, be the topology coming from Fi,..
Since F — Floc is always continuous, in our situation, this tells us that 7y, C 7.
On the other hand, Id : (F, 7o) — (F,7) is clearly sequentially continuous
hence, since Fio. is metrizable, the identity is also continuous, hence 7 C Tjc.
This concludes the proof. ]

3.6. Restrictions to opens

The main consequence of the localization axiom is the fact that one can restrict
to opens 2 C R™. The starting remark is that, for any such open €2, there is a
canonical inclusion
Q) c &R c D'(R™)

which should be thought of as “extension by zero outside 2”7, which comes
from the inclusion £'(2) C £'(R™) (obtained by dualizing the restriction map
C*®(R"™) — C*°(9)). In other words, any compactly supported distribution on
Q can be viewed as a (compactly supported) distribution on R™. On the other
hand,

due (), V¢oelCr (), ueD(Q).
Hence the following makes sense:

Definition 3.6.1. Given a local functional space F, for any open 2 C R", we
define

FQ)={ueD(Q):¢puecF Vo €CX(O)},
endowed with the following topology. Let P be a family of seminorms defining
the l.c. topology on F and, for every p € P and ¢ € C2°(2) we consider the
seminorm g, 4 on JF given by

Qp,¢>(u> = p((bu)
We endow F(€2) with the topology associated to the family {g, 4 : p € P,¢ €

Theorem 3.6.2. For any local functional space F and any open £ C R”,
F(Q) is a local functional space on 2 and, as such,
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1. F(Q) is locally Banach (or Hilbert, or Frechet) if F is.

2. F(Q) is invariant if F is.

3. F(Q) is normal if F is.
Proof For the first part, one remarks that F(Q2) x = Fk. For the second part,
applying Theorem to the local functional space F(€2) on €2, it suffices
to show local invariance. IL.e., it suffices to show that for any x : Q@ —
diffeomorphism and x € €2, we find a compact neighborhood K = K, such that
X« is an isomorphism between F(Q)x (= Fk) and F(Q)yk)(= Fyk))- The
difficulty comes from the fact that y is not defined on the entire R™. Fix x and
x. Then we can find a neighborhood €2, of z € Q) and a diffeomorphism y on
R™ such that

Xlo. = xla,

(this is not completely trivial, but it can be done using flows of vector fields, on
any manifold). Fix any compact neighborhood K C ,. Using the invariance
of F, it suffices to show that x.(u) = x«(u) for all u € Fg. But

X+ (u), )Z*(U) eFcD

are two distributions whose restriction to x(€2,) is the same and whose restric-
tions to R™ — x(K) are both zero. Hence they must coincide. For the last
part, since we deal with local spaces, it suffices to show that F(Q) is locally
normal, i.e that for any compact K C Q, Fx(Q) = Frx C F(£) is contained in
the closure of D(Q2). Le., for any u € Fg and any open U C F(£2) containing
u, UND(Q) =# (. But since F is locally normal and the restriction map
r: F — F(Q) is continuous, we have r~1(U) N D # () and the claim follows. (]

Exercise 3.6.3. By a sheaf of distributions F on R” we mean an assignment
which associates to an open € C R™ a functional space F(2) on Q (local or
not) such that:

1. if Qy € Q; and u € F(), then ulq, is in F(Qy). Moreover, the map

F(Q1) = F(Q), urs ulg,.
is continuous.
2. If Q = U;er€ with ©Q; € R™ opens (I some index set), then the map
F(Q) = WierF(), ur (ulg,)ier
is a topological embedding which identifies the l.c.v.s. on the left with
the closed subspace of the product space consisting of elements (u;)icr
with the property that u;o,no, = uj|o,nq, for all i and j.
Show that

1. If F is a local functional space on R"™ then Q — F(Q2) is a sheaf of
distributions.
2. Conversely, if F is a sheaf of distributions on R" then

F = ﬁ(R")
is a local functional space on R and F(Q) = F(Q) for all (s,
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Below, for diffeomorphisms y : 21 — s between two opens, we consider
the induced x. : D'(21) — D'(22).

Corollary 3.6.4. Let F be a local functional space. If F is invariant then,
for any diffeomorphism x : Q1 — Qo between two opens in R™, v, induces a
topological isomorphism

X * f(Ql) — f(QQ)

Proof The proof of 2. of Theorem [3.6.2] when showing invariance under
diffeomorphisms y : @ — Q clearly applies to general diffeomorphism between
any two opens. ]

3.7. Passing to manifolds
Throughout this section we fix

F = local, invariant functional space on R".

and we explain how to induce functional spaces F(M, E) (of “generalized sec-
tions of F of type F”) for any vector bundle E over an n-dimensional manifold
M.

To define them, we will use local total trivializations of E, i.e. triples
(U, k, T) consisting of a local chart (U, ) for M and a trivialization 7 : E|y —
U x CP of E over U. Recall (see Example that any such total trivialization
induces an isomorphism

hir 2 D'(U,Ely) — D' ()P (where Q. = s(U) C R™f]
Definition 3.7.1. We define F(M, E) as the space of all u € D'(M, F) with

the property that for any domain U of a total trivialization of E, hy -(u|y) €
F(Q)P.

We still have to define the topology on F(M, E), but we make a few re-
marks first. Since the previous definition applies to all n-dimensional manifolds:

! Let us make this more explicit. The total trivialization induces

1. alocal frame s1, ..., sp for E'over U. Then, for any s € I'(E) we find (local) coefficients
fs € C°° (), i.e. satisfying

s(x) = Z Fik(z))si(z) for z e U.

2. the local dual frame s*,...,s” of E* and a local frame (i.e. non-zero section on U) of
the density bundle of M, |dzy A ... A z%|. Then, for any ¢ € T'(E"Y) we find (local)
coefficients & € C*°(,), i.e. satisfying

§(x) = Z_&(F»(w))si(w)ldwi A Azgle (z€U).

3. any u € D'(M, E) has coefficients u’ € D’'(Q,), i.e. satisfying
u(€) => wi(&) (E€(U,EY)).

The map hs - sends v to (u1,...,un).
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1. when applied to an open 2 C R” and to the trivial line bundle Cq over
Q, one recovers F(£2)- and here we are using the invariance of F.

2. it also applies to all opens U C M, hence we can talk about the spaces
F(U,E|y). From the same invariance of F, when U is the domain of
a total trivialization chart (U,k,T), to check that u € D'(U, E|y) is in
F(U, E|v), it suffices to check that h, ,(u) € F(£2,)P- i.e. we do not need
to check the condition in the definition for all total trivialization charts.

3. If {U;}ies is one open cover of M and u € D'(M, E), then
ueF(M,E) < uly, € F(U;, Ely,) YViel.
This follows from the similar property of F on opens in R™.

Exercise 3.7.2. Given a vector bundle F over M and U C M, F induces two
subspaces of D'(U, E|y):
1. F(U, E|y) just defined.
2. thinking of F (M, E) as a functional space on M (yes, we know, we still
have to define the topology, but that is irrelevant for this exercise), we
have an induced space:

{ue D'(U,Ely): ¢pu e F(M,E), ¥ ¢eDU)}
Show that the two coincide.

Next, we take an open cover {U; };c; by domains of total trivialization charts
(Ui, K4, 7i). It follows that we have an inclusion

h:F(M,E) — e F(Q,)P.
We endow F (M, E) with the induced topology.

Exercise 3.7.3. Show that the topology on F (M, E) does not depend on the
choice of the cover and of the total trivialization charts.

Theorem 3.7.4. For any vector bundle E over an n dimensional manifold
M, F(M, E) is a local functional space on (M, E).
Moreover, if F is locally Banach, or locally Hilbert, or Frechet (= locally
Frechet since F is local), or normal (= locally normal), then so is F(M, E).
Finally, if F is a vector bundle over another n-dimensional manifold N
and (h, ho) is an isomorphism between the vector bundles E and F', then h, :
D'(M,E) — D'(N, F) restricts to an isomorphism of l.c.v.s.’s

hy: F(M,E) — F(N, F).
Proof We just have to put together the various pieces that we already know
(of course, here we make use of the fact that all proofs that we have given so far

work for vector bundles over manifolds). To see that F(M, E) is a functional
space we have to check that we have continuous inclusions

D(M,E) — F(M,E) — D'(M,E).

We just have to remark that the map h used to define the topology of F(M, E)
also describes the topology for D and D’. To show that F(M, E) is local, one
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uses the sheaf property of F(M, E)jo. (see Exercise where the U;’s there
are chosen as in the construction of A above. This reduces the problem to a
local one, i.e. to locality of F.

All the other properties follow from their local nature (i.e. Proposition
and the similar result for normality, applied to manifolds) and the fact that,
for K C M compact inside a domain U of a total trivialization chart (U, s, 7),
Fr (M, E) is isomorphic to Fx (2)P. O

Corollary 3.7.5. If F is locally Banach (or Hilbert) and normal then, for
any vector bundle E over a compact n dimensional manifold M, F(M,E) is a
Banach (or Hilbert) space which contains D(M, E) as a dense subspace.

Definition 3.7.6. Let F; and F> be local, invariant functional spaces on R™
and R"”, respectively, and assume that F7 is normal. Let M be an m-dimensional
manifold and N an n-dimensional one, and let £ and F' be vector bundles over
M and N, respectively. We say that a general operator

P:D(M,E) — D'(N,F)

is of type (Fy, F2) if it takes values in F» and extends to a continuous linear
operator
Pr, 7, : Fi(M, E) — F2(N, E).

Note that, due to the normality axiom, the extension Pz, 7, will be unique,
hence the notation is un-ambiguous.

3.8. Back to Sobolev spaces

We apply the previous constructions to the Sobolev spaces H, on R™. Let us
first recall some of the standard properties of these spaces:

1. they are Hilbert spaces.

2. D is dense in H,.

3. if s > n/2 + k then Hy, C C*(R") (with continuous injection) (Sobolev’s
lemma).

4. for all » > s and all K C R" compact, the inclusion Hy x — H, ¢ is
compact (Reillich’s lemma).

Also, as we shall prove later, H, are locally invariant (using pseudo-differential
operators and Proposition [3.3.3)). Assuming all these, we now consider the
associated local spaces

Hyloe={ueD :¢ue H,, V¢eD}
and the theory we have developed imply that:

1. H,oc is a functional space which is locally Hilbert, invariant and normal.
2. Ny Hyjoc = €. Even better, for r > n/2 4k, any s € H; 1o is of class C*k.

Hence these spaces extend to manifolds.

Definition 3.8.1. For a vector bundle E over an n-dimensional manifold M,

1. the resulting functional spaces H,.1oc(M, E) are called the local m-Sobolev
spaces of F.
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2. for K C M compact, the resulting K-supported spaces are denoted
H, x(M,E).

3. the resulting compactly supported spaces are denoted H, comp(M, E)
(hence they are U H, (M, E) with the inductive limit topology).

If M is compact, we define the r-Sobolev space of E as
Hr(Mv E) = HT,]OC(M7 E)(: Hr,comp(Mv E))

Corollary 3.8.2. For any vector bundle E over a manifold M,

1. Hy 1oc(M, E) are Frechet spaces.

2. D(M, E) is dense in H, jo.(M, E).

3. if a distribution u € D' (M, E) belongs to all the spaces Hy jo.(M, E), then
it 18 smooth.

4. for K C M compact, Hy (M, E) has a Hilbert topology and, for r > s,
the inclusion

H, x(M,E) — Hy (M, E)

18 compact.

Proof The only thing that may still need some explanation is the compactness
of the inclusion. But this follows from the Reillich’s lemma and the partition
of unity argument, i.e. Lemma [3.1.4]. a

Corollary 3.8.3. For any vector bundle E over a compact manifold M, H,(M, E)
has a Hilbert topology, contains D(M, E) as a dense subspace,

Ny Hyjoc(M, E) = T'(E)
and, for r > s, the inclusion

H.(M,E) — Hs(M,E)
18 compact.

Finally, we point out the following immediate properties of operators. The

first one says that differential operators of order k are also operators of type
(Hra H’r—k) .

Proposition 3.8.4. Forr > k > 0, given a differential operator P € Dy(E, F)
between two vector bundles over M, the operator
P:D(M,E)— D(M,F)
admits a unique extension to a continuous linear operator
P Hypjoo(M,E) — Hy_p joc(M, F).

The second one says that smoothing operators on compact manifolds, viewed
as operators of type (H,, Hy), are compact.

Proposition 3.8.5. Let E and F' be two vector bundles over a compact man-
ifold M and consider a smoothing operator P € W~>°(E,F). Then for any r
and s, P viewed as an operator

P: H.(M,E) — Hy(M,F)

18 compact.



52 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Remark 3.8.6. Back to our strategy of proving that the index of an elliptic
differential operator P € Dy(E, F) (over a compact manifold) is well-defined,
our plan was to use the theory of Fredholm operators between Banach spaces.
We have finally produced our Banach spaces of sections on which our operator
will act:
P.:H.(M,E) — H._(M,F).

To prove that P, is Fredholm, using Theorem [1.4.5| on the characterization of
Fredholm operators and the fact that all smoothing operators are compact, we
would need some kind of “inverse of P, modulo smoothing operators”, i.e. some
kind of operator “of order —k” going backwards, such that PQ —1Id and QP —1Id
are smoothing operators. Such operators “of degree —k” cannot, of course, be
differential. What we can do however is to understand what make differential
operators behave well w.r.t. (e.g.) Sobolev spaces- and the outcome is: it is
not important that their total symbols are polynomials (of some degree k) in &,
but only their symbols have a certain k-polynomial-like behaviour (in terms of
estimates). And this is a property which makes sense even for k-negative (and
that is where we have to look for our Q). This brings us to pseudo-differential
operators ...

Exercise 3.8.7. Show that if such an operator Q : H,_(M, F) — H.(M, E)
is found (i.e. with the property that PQ —1Id and QP —Id are smoothing), then
the kernel of the operator P : I'(E) — I'(F') is finite dimensional. What about
the cokernel?



LECTURE 4
Fourier transform

4.1. Schwartz functions

Recall that L!(R") denotes the Banach space of functions f : R® — C that are
absolutely integrable, i.e., | f| is Lebesgue integrable over R™. The norm on this
space is given by

I = [ 1) do.

Given £ € R™ and = € R", we put
éx=&61x1+ -+ Enn.
For each £ € R", the exponential function
ez e R" — C,
has absolute value 1 everywhere. Thus, if f € L*(R") then e~% f € L'(R") for
all £ € R™.

Definition 4.1.1. For a function f € L'(R") we define its Fourier transform
f=Ff:R*"— C by

(4.1) FfE = [ flx)e ™" da.
R”
We will use the notation Cy(R™) for the Banach space of bounded continuous
functions R™ — C equipped with the sup-norm.

Lemma 4.1.2. The Fourier transform maps L'(R) continuous linearly to the
Banach space Cp(R™).

Proof Let f be any function in L'(R™). The functions fe~* are all dominated
by f in the sense that |fe™%| < |f| (almost) everywhere. Let & € R™; then
it follows by Lebesgue’s dominated convergence theorem that Ff(&£) — F f (&)
if & — &. This implies that Ff is continuous. It follows that F defines a
linear map from L'(R) to C(R™). It remains to be shown that F maps L!(R)
continuously into Cy(R).

53
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For this we note that for f € L*(R") and ¢ € R”,
1O =1 [ @@ )< [ 5@ e de= |1

Thus, sup |Ff| < ||f]l1. It follows that F is a linear map L!(R) — C,(R™) which
is bounded for the Banach topologies, hence continuous. ]

Remark 4.1.3. We denote by Cy(R") the subspace of Cp(R™) consisting of
functions f that vanish at infinity. By this we mean that for any € > 0 there
exists a compact set K C R™ such that |f| < € on the complement R™ \ K. It
is well known that Cy(R™) is a closed subspace of Cj,(R™), thus a Banach space
of its own right.

The well known Riemann-Lebesque lemma asserts that, actually, F maps
LY(R™) into Cp(R™).

The above amounts to the traditional way of introducing the Fourier trans-
form. Unfortunately, the source space L'(R") is very different from the target
space Cy(R™). We shall now introduce a subspace of L'(R") which has the ad-
vantage that it is preserved under the Fourier transform: the so-called Schwartz
space.

Definition 4.1.4. A smooth function f : R™ — C is called rapidly decreasing,
or Schwartz, if for all «, 3 € N,

(4.2) sup |2°9%f(x)| < oo.
rER?

The linear space of these functions is denoted by S(R™).
Exercise 4.1.5. Show that the function
fla) =l

[

belongs to S(z).

Condition (4.2)) for all «, 3 is readily seen to be equivalent to the following
condition, for all N € N,k € N :

vnk(f) = max sup (1+ [[«])V0°f(z)] < oo.
<k geRrn

laf<

We leave it to the reader to check that v = vy defines a norm, hence in
particular a seminorm, on S(R"). We equip S(R") with the locally convex
topology generated by the set of norms vy, for N,k € N.

The Schwartz space behaves well with respect to the operators (multiplica-
tion by) 2 and 9°.

Exercise 4.1.6. Let o, 3 be multi-indices. Show that
z®: f—2%f and 9°:f— 0°f
define continuous linear endomorphisms of S(R™).

Exercise 4.1.7.
(a) Show that S(R™) C L'(R"), with continuous inclusion map.
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(b) Show that
C(R™) c S(R™) ¢ C*(R"),
with continuous inclusion maps.

Lemma 4.1.8. The space S(R™) is a Fréchet space.

Proof As the given collection of seminorms is countable it suffices to show
completeness, i.e., every Cauchy sequence in S(R™) should be convergent. Let
(fn) be a Cauchy sequence in S(R™). Then by continuity of the second inclusion
in Exercise[.1.7] (b), the sequence is Cauchy in C*°(R"). By completeness of the
latter space, the sequence f,, converges to f, locally uniformly, in all derivatives.
We will show that f € S(R") and f,, — f in S(R"). First, since (f,) is Cauchy,
it is bounded in S(R™). Let NV, k € N; then there exists a constant Cn , > 0 such
that vy (fn) < Cn, for all n € N. Let € R”, then from 0* f,,(z) — 0“f(z)
it follows that

(1 + 20 fu(e) — L+ ||lz[)¥0f(x),  as n— oo

In view of the estimates vy (fn) < Cn, it follows that (1 + [|z[|)N 0% f(x)| <
Cn i, for all o with |o| < k. This being true for arbitrary x, we conclude that
vni(f) < Cn . Hence f belongs to the Schwartz space.
Finally, we turn to the convergence of the sequence f,, in S(R"). Let N,k €
N. Let € > 0. Then there exists a constant M such that
n,m > M = vni(fn— fm) < €/2.

Let |a] < k and fix z € R™. Then it follows that
e} e} €
(1+ [0 ful) = 0% fm(2)] < 5

As 0% f, — 0“f locally uniformly, hence in particular pointwise, we may pass
to the limit for m — oo and obtain the above estimate with f,, replaced by f,
for all x € R™. It follows that vy ;(f, — f) < € for all n > M. O

Another important property of the Schwartz space is the following.
Lemma 4.1.9. The space C°(R™) is dense in S(R™).

Proof Fix a function ¢ € C°(R"™) such that 0 < ¢ < 1 and ¢ = 1 on the
closed unit ball in R™. For j € Z define the function ¢; € CZ°(R") by

pi(z) = p(x/7).
Let now f € S(R™). Then ¢;f € C°(R™) for all j € Z;. We will complete the
proof by showing that ¢;f — f in S(R") as j — oo.
Fix N,k € N. Our goal is to find an estimate for vy (¢, f — f), independent
of f. To this end, we first note that for every multi-index 3 we have 9°p;(r) =
(1/7)18198p (/). Tt follows that

1 :
ngp\a%j\ < 5 (GEZy, 0< |8 <E).
Let || < k. Then by application of Leibniz’ rule we obtain, for all z € R™, that

fe o 1 « a—
0 (if ~ D) < llgs(0) - Dog@l+ 5 5 () 10 s

0<pf<La
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The first term on the right-hand side is zero for ||z|| < j. For ||z|| > j it can be
estimated as follows:

|(pj(z) = 1)0 f ()| (1 +sup ) (1 + )7 (1 + [l2])]0% f (2)]
25 (1 + [l])[0 f ()]

We derive that there exists a constant C}, > 0, only depending on k, such that
for every N € N,

<
<

C
vni(pif = f) < TkVN—&-l,k(f)‘
It follows that ¢, f — f in S(R™). O

The following lemma is a first confirmation of our claim that the Schwartz
space provides a suitable domain for the Fourier transform.

Lemma 4.1.10. The Fourier transform is a continuous linear map S(R™) —
S(R™). Moreover, for each f € S(R™) and all « € N"| the following hold.

(a) F(0°f) = (i) F [
(b) F(z*f) = (i0)*F f.

Proof Let f € S(R") and let 1 < j < n. Then it follows by differentiation
under the integral sign that

9 (z) e %% dg = f(@)(—iz;)e™ " dx.
9; Jwrn Rn
The interchange of integration and differentiation is justified by the observa-
tion that the integrand on right-hand side is continuous and dominated by
the integrable function (1 + ||z]|) ™ 'vp410(f) (check this). It follows that
F(—x;f) = 0;F f. By repeated application of this formula, we see that F f is a
smooth function and that (b) holds. Since the inclusion map S(R") — L(R")
and the Fourier transform L!(R™) — Cy(R") are continuous, it follows that F
is continuous from S(R™) to Cu(R™). As multiplication by z® is a continuous
endomorphism of the Schwartz space, it follows by application of (b) that F is
a continuous linear map S(R™) — C*°(R").

Let f € CX(R™) and 1 < j < n. Then by partial integration it follows that

9, f(x)e™ % da = (ig;) (z)e %% dz
Rn R”
so that F(0;f) = (i&)F(f)(§). By repeated application of this formula, it
follows that (a) holds for all f € C°(R™). By density of C°(R") in S(R™)
combined with continuity of the endomorphism 0“ € End(S) and continuity of
F as a map S(R") — C(R") it now follows that (a) holds for all f € S(R"™).

It remains to establish the continuity of F as an endomorphism of S(R™).
For this it suffices to show that £29°F is continuous linear as a map S(R") —
Cy(R™). This follows from £*9°F = F o (—id)*(—iz)” (by (a), (b)) and the fact
that (—i0)® o (—iz)? is a continuous linear endomorphism of S(R™). O

Later on, we will see that it is convenient to write

D® = (~id)®,
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so that formula (a) of the above lemma becomes
F(Df) =& F .
Given a € R" we write T, for the translation R” — R", 2z +— z + a and T

for map C*°(R"™) — C*°(R") induced by pull-back. Thus, T f(z) = f(x + a).

Lemma 4.1.11. The map T restricts to a continuous linear endomorphism
of S(R™). Moreover, for all f € S(R™),

F(Tif) = €““F(f); Fle " f) =T, Ff.
Exercise 4.1.12. Prove the lemma.

We write S for the point reflection R” — R", z +— —z and S™* for the induced
linear endomorphism of C*°(R"™). It is readily seen that S* defines a continuous
linear endomorphism of S(R™).

Exercise 4.1.13. The map S* defines a continuous linear endomorphism of
S(R™) which commutes with F.

We can now give the full justification for the introduction of the Schwartz
space.

Theorem 4.1.14. (Fourier inversion)
(a) F is a topological linear isomorphism S(R™) — S(R™).
(b) The endomorphism S*FF of S(R™) equals (2m)™ times the identity op-
erator. Equivalently, for every f € S(R™) we have

_L ei{x T n
@) = o [ FHO de @R,

Proof We consider the continuous linear operator 7 := S*FF from S(R")
to itself. By Lemma it follows that

Tol’a = S*foaaof: S*ol‘aofj::l'aoT.

In other words, 7 commutes with multiplication by ¢, for every multi-index
a. In a similar fashion it is shown that 7" commutes with T, for every a € R".

We will now show that any continuous linear endomorphism 7 of S(R™)
with these properties must be equal to a constant times the identity. For this
we use the Gaussian function G(x) = exp(—||z||/2). Let f € C>°(R") and put
@ = G~1f. Then ¢ is smooth compactly supported as well. Moreover, in view
of the formula

1
p@) = o+ [ St d

1
— p(0) +] /0 Dol(tz) dt]z,

we see that there exists a smooth map L : R” — L(R",C) such that ¢(z) =
©(0)+L(x)x for all z € R™. It is easily seen that each component L;(z) is smooth
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with partial derivatives that are all bounded on R". Hence, L;G € S(R"). It
now follows that

T(f) = T(pQ))
= T(¢(0)G)+T(Za:ijG)

J
= (0T (G)+ Y 2T (L;G).
J

Evaluating at x = 0 we find that 7 (f)(0) = ¢f(0), with ¢ the constant 7 (G)(0).
We now use that 7 commutes with translation:

T(f)(x) = [TT(NHN0) = T(T; /)(0) = T £(0) = cf (x).

This proves the claim that 7 = ¢I. To complete the proof of (b) we must show
that ¢ = (2m)™. This is the subject of the exercise below.

It follows from (b) and the fact that S* commutes with F that F has
(2m)~™S*F as a continuous linear two-sided inverse. Hence, F is a topological
linear automorphism of S(R™).

Exercise 4.1.15. We consider the Gaussian function g : R — R given by
1
gla) = e 2",
(a) Show that Fg satisfies the differential equation %}" g=—zFg.
b) Determine the Fourier transform Fg.

(b)
(c) Prove that for the Gaussian function G : R® — R" we have 7 (G) =
(2m)"G.

In order to get rid of the constant (27)™ in formulas involving Fourier inver-
sion, we change the normalization of the measures dz and d¢ on R™, by requiring
both of these measures to be equal to (27r)*”/ 2 times Lebesgue measure. The
definition of F is now changed by using formula but with the new nor-
malization of measures. Accordingly, the Fourier inversion formula becomes,

for f € S(R"),

(4.3) fl@)y= | F)e de.

R

4.2. Convolution

The Schwartz space is also very natural with respect to convolution. In the

following we shall make frequent use of the following easy estimates, for z,y €
Rn

44) A+l + Ny~ < @+ lle+yl) < @+ 2D+ Iy

The inequality on the right is an easy consequence of the triangle inequality.
The inequality on the left follows from the one on the right if we first substitute
—y for y and then, in the resulting inequality, = + y for x.

Assume that f1, fo : R™ — C are continuous functions with

vn(f;) = sup(L+ ||z])V f(z) < oo
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for all N € N (Schwartz functions are of this type). Then it follows that
Ifi(@)] < (1 +||z]))"Nvn(f;) for all z € R™. Therefore,

fiy) fa(x —y) L+ Ny ™M@+ 2 =yl N var (fr)vn (f2)
(L DY =M@+ )™ oar (Fr)vw (£2).

Choosing N = 0 and M > n we see that the function y — fi(y)fo(x —y) is
integrable for every xz € R".

IN A

Definition 4.2.1. For f,g € S(R™) we define the convolution product f g :
R™ — C by

(fxg)(z) = - fy) gz —y) dy.

Lemma 4.2.2.
(a) The convolution product defines a continuous bilinear map
(f.g)— f*g, SR") xSR") — SER").
(b) For all f,g € S(R™),
F(fxg)=FfFg and F(fg) =Ff=Fg.
Proof Let f,g € S(R") and let @ be a multi-index of order at most k. Let

K € N. Then it follows from the above estimates with f; = f and fo = 0%
that

L+ e 1f m)o%g(@ —y)| < @+ gD M@ + 2" varo(FHvan(g)-

We now choose N = K and M > N + n. Then the function on the right-
hand side is integrable with respect to y. It now follows by differentiation under
the integral sign that the function f * g is smooth and that for all a we have
0%(f = g) = f x0%. Moreover, it follows from the estimate that

calf +9) < o ata) [ (L Io)¥ M d.

We thus see that the map (f,g) — f * g is continuous bilinear from S(R") x
S(R™) to S(R™).

Moreover, the above estimates justify the following application of Fubini’s
theorem:

Fpra© = [ ] e —pe s dyda
= / s FWg(e =y de dy

(y)g(z)e “CH) dz dy

(€)-

To obtain the second equality of (b), we use that S*F = FS* is the inverse
to F (by our new normalization of measures). Put ¢ = FS*f and ¢ = FS*g.
Then fg = FpF1p = F(e *1). By application of F we now readily verify that

F(fg) =5 (pxv) =5(p) x S*(¢) = Ff + Fy.

/ f
n R’ﬂ
Ff(&)Fg
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0

Corollary 4.2.3. The convolution product * on S(R™) is continuous bilinear,
associative and commutative, turning S(R™) into a commutative continuous
algebra.

Proof This follows from the above lemma combined with the fact that F :
S(R™) — S(R™) is a topological linear isomorphism. O

Exercise 4.2.4. By using Fourier transform, show that the algebra (S(R™), +, *)
has no unit element.

On S(R™) we define the L?inner product (-, - )72 by

(f9)r2 = f(z)g(x) dx.
Rr

Accordingly, the space L?(R") may be identified with the Hilbert completion
of S(R™).

Proposition 4.2.5. Let f,g € S(R™). Then (Ff,Fg)r2 = (f,g)12. The Fourier
transform has a unique extension to a surjective isometry F : L*(R") —
L?(R™).

Proof We define the function g : R"™ — C by

9(x) = g(—z).
Then g belongs to the Schwartz space, and F(j) = Fg. Moreover,
<f7g>L2 = f * g(O)

By the Fourier inversion formula it follows that the latter expression equals

F(f*g)(&) de = | Ff&)Fg(&) d§ = (Ff, Fg)re.

R™ R"
Thus, F : S(R") — S(R™) is an isometry for (-, -) 2. Since CZ°(R") is dense in
L?(R™), so is S(R™) and it follows that F has a unique continuous linear exten-
sion to an endomorphism of the Hilbert space L?(R™); moreover, the extension
is an isometry. Likewise, S* is isometric hence extends to an isometric endomor-
phism of L?(R"). By density of S(R") in L?(R"™) the composition of extended
maps S*F is a two-sided inverse to the extended map F : L?(R") — L2(R").
Therefore, F is surjective. O

4.3. Tempered distributions and Sobolev spaces

By means of the Fourier transform we shall give a different characterization of
Sobolev spaces, which will turn out to be very useful in the context of pseudo-
differential operators. We start by introducing the notion of tempered distri-
butions.

Definition 4.3.1. The elements of §'(R™), the continuous linear dual of the
Fréchet space S(R™) are called tempered distributions.
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Here we note that a linear functional u : S(R™) — C is continuous if and
only if there exist constants N,k € N and C' > 0 such that

lu(f)| < Cungi(f) forall feSR").

The name distributions is justified by the following observation. By transposi-
tion the continuous inclusions

C(R™) c S(R™) ¢ C*(R")
give rise to continuous linear transposed maps between the continuous linear
duals of these spaces. Here we assume to have the duals equipped with the
strong dual topologies (of uniform convergence on bounded sets). Moreover, as
C2°(R™) is dense in both S(R™) and C*°(R"), it follows that the transposed
maps are injective:

E'(R") — S'(R") — D'(R™).
We note that the transposed maps are given by restriction. Thus, &'(R") —
S'(R") is given by u — u|s(mn). Moreover, the map S'(R™) — D'(R") is given
by v — v[ogo(Rn). In this sense tempered distributions may be viewed as distri-
butions.

We recall that the operators 2% and 9% on D/(R™) were defined through
transposition:
%u=uo(z*), and 0% =wuo(—0)%,

for u € D'(R™).

Exercise 4.3.2. Show that S'(R") is stable under the operators 0% and x®
for all multi-indices a.

We recall that there is a natural continuous linear injection L% (R") —

D'(R"). If p € L2 (R™) then the associated distribution is given by

loc

Frotod)= [ e@fia) do, CEERY —C,
Lemma 4.3.3. The continuous linear injection L>(R™) — D'(R™) maps L*(R")
continuously into S'(R™).

Proof Denote the injection by j. Let ¢ € L?(R") and f € S(R™). Fix N > n/2.
Then

() = [ o) do

IN

/Rn o(x)(1 + H$||)_NVN70(f) da

Cllellzvno(f)

where C' is the L?-norm of (14||¢|) =" . It follows that the pairing (¢, f) — (¢, f)
is continuous bilinear L?(R") x S(R™) — C. This implies that j maps L?(R")
continuously into S'(R"™). O

IN

The inclusion S(R") — L?(R") is continuous. Accordingly, the natural
injection S(R™) — D'(R™) maps S(R™) continuous linearly into S'(R™).
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Exercise 4.3.4. Let s € R. We denote by L2(R") the space of f € L?
with (1 + ||z||)*f € L?(R™). Equipped with the inner product

- / F@)g@ (1 + |le])? de

this space is a Hilbert space.
Show that the continuous linear injection L?(R™) — D’(R"™) maps L2(R")
continuously into S'(R™).

(R™)

loc

The following result will be very useful for our understanding of Sobolev
spaces.

Proposition 4.3.5. The Fourier transform has a continuous linear extension
to a continuous linear map F : S'(R") — S'(R™). For all v € S'(R"™) and
f € S(R™) we have

(Fu, f) = (u, Ff).

The extension to 8'(R™) is compatible with the previously defined extension to

L2(R™).

Remark 4.3.6. It can be shown that C§°(R"), hence also S(R"™) is dense
in §'(R™). Therefore, the continuous linear extension is uniquely determined.
However, we shall not need this.

Proof The Fourier transform F : S(R™) — S(R™) is continuous linear. There-
fore its tranposed F* : u +— woF is a continuous linear map S'(R™) — S'(R").

We claim that F! restricts to F on S(R™). Indeed, let us view ¢ € S(R")
as a tempered distribution. Then by a straightforward application of Fubini’s
theorem, it follows that, for all f € S(R"),

(Flo.f) = (. Ff)

= [et©) [ rareE an e
_ /n/n e~ de f(z) do
(Feo, f)

This establishes the claim. We have thus shown that F has F! as a continuous
linear extension to S'(R™).

It remains to prove the asserted compatibility. Let u € L%(R™). There exists
a sequence of Schwartz functions u,, € S(R") such that u, — u in L*(R") for
n — oo. It follows that Fu, — Fu in L?(R"), hence also in &’(R"), by Lemma
On the other hand, we also have u, — u in S'(R™) by the same lemma.
Hence Flu, — F'u by what we proved above. Since F' = F on S(R") it
follows that Fu, = Flu, for all n. Thus, Fu = Flu. O

From now on, we shall denote the extension of F to §’'(R™) by the same
symbol F. The following lemma is proved in the same spirit as the lemma above.
We leave the easy proof to the reader.
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Lemma 4.3.7. The operators 0%, x®-, T;' and €'®- have (unique) continuous

linear extensions to endomorphisms of S'(R™). For u € S'(R™) we have
0°u=1uo(—0)% zu=uox® Tiu=uoT*, €“u=muoe".

The formulas (a),(b) of Lemma 1.1.10 and the formulas of Lemma 1.1.11 are

valid for f € S'(R™).

Lemma 4.3.8. Letu € &'(R™). Then Fu is a smooth function. Moreover, for
every £ € R", A
Fu(€) = (u,e™").

Proof We sketch the proof. Not all details can be worked out because of time
constraints. Let f € C2°(R"). Then the function ¢ : & — f(£)e™* with values
in the Fréchet space C*°(R") is smooth and compactly supported. This implies
that £ — u(p(§)) is smooth and compactly supported. Now

u(p(§)) = F(E)u(e™)
and since f was arbitrary, we see that @ : £ — u(e™%) is a smooth function.
Furthermore, the integral for Ff may be viewed as an integral of the
C*°(R™)-valued function ¢. This means that in C°°(R") it can be approximated
by C*°(R"™)-valued Riemann sums. This in turn implies that

Fuf) = (wFh
= (] ele) a0

= [ ute(e) a¢

= | f©ule) de
= (&, f)
Since this is true for any f € C2°(R"™), it follows that @ = Fu. O

We recall from Definition 2.2.10 that for » € N the Sobolev space H,(R") is
defined as the space of distributions u € D'(R") such that 9% f € L?(R") for each
o € N" with |a| < r. In particular, taking o = 0 we see that H,.(R") C L*(R").
Hence also H,.(R™) C S'(R™).

Lemma 4.3.9. Letr € N. Then
H,(R") = {u e S'R") | (1+[I¢])" F(u) € L*(R™)}.

Proof Let u € H,(R™) and let a be a multi-index of order at most r. Then
0%u € L*(R™). It follows that

(i€)*Fu = F(0%u) € L*(R").

In view of the lemma below this implies that (1 + ||¢|)"Fu € L?(R™).
Conversely, let u € §’'(R") and assume that (1 + ||¢])"Fu € L?*(R™). Then
Fu is locally square integrable, and in view of the obvious estimate

€% < L+ e, (cer™)
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it follows that (i€)*Fu € L*(R"). We conclude that
0% = S*F((i€)*Fu) € L*(R™).
O

Lemma 4.3.10. Let r € N. There exists a constant C' > 0 such that for all
£ e R,
L+ lE < D 1e;
o] <7

here €0 should be read as 1.

Proof It is readily seen that there exists a constant C' > 0 such that
A+ Vo) <CA+ ),  (teR),

where [t| = 1. Let ¢ € R and assume that k is an index such that || is
maximal. Then ||| < y/n|&|. Hence,

(L+[EN" < (1 +ValgD) < CA+ &) <0 Y 1e).

laf<r

O

Exercise 4.3.11. Show that the Fourier transform maps H,(R") bijectively
onto L2(R™). Thus, by transfer of structure, H,(R™) may be given the structure
of a Hilbert space. Show that this Hilbert structure is not the same as the one
introduced in Definition 2.2.10, but that the associated norms are equivalent.

The characterization of H,(R™) given above allows generalization to arbi-
trary real r.

Definition 4.3.12. Let s € R. We define the Sobolev space Hg(R™) of order
s to be the space of f € S'(R") such that (1 + ||¢])*Ff € L?*(R"), equipped
with the inner product

()= [ FHOFAE (14 €)™ de.

Equipped with this inner product, the Sobolev space H (R™) is a Hilbert
space. The associated norm is denoted by || - ||s.

Exercise 4.3.13. The Heaviside function H : R — R is defined as the char-
acteristic function of the interval [0,00). For R > 0 we define ur to be the
characteristic function of [0, R].

(a) Show that ur, H € S'(R) and that ug — H in S’'(R) (pointwise) as
R — oo.

(b) Determine Fup for every R > 0.

(¢) Show that ugr € Hy(R) for every s < 3, but not for s = 1.

(d) Determine FH and show that H ¢ Hs(R") for all s € R.

Lemma 4.3.14. Let s € R. Then S(R™) C Hs(R"), with continuous inclusion
map. Furthermore, C2°(R"™) is dense in Hg(R™).
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Proof If f € S(R") then Ff € S(R™). Moreover, let N € N be such that
N > s+mn/2. Then N = s+ n/2+ ¢, with € > 0, hence

FROP A+ 1EN? < vwolEN? (L + ) ™.
This implies that f € Hg(R™) and that

1£lls < wwo(FD) I+ )24

Since F : § — S is continuous, it follows from this estimate that the inclusion
map S — Hj is continuous.

For the assertion about density it suffices to show that the orthocomplement
of C2°(R™) in the Hilbert space Hs(R") is trivial. Let u € Hs(R™), and assume
that (u, f)s = 0 for all f € S(R™). This means that

Fu@) FF(E) A+ EN* de=0,  (f € SRM).

R
Therefore, the tempered distribution Fu(€) (1 + ||€]])?* vanishes on the space
F(CP(R™)). The latter space is dense in F(R"™), since C2°(R™) is dense in
S(R™) and F is a topological linear automorphism of S(R™). We conclude that
Fu =0, hence u = 0. ]

We conclude this section with two results that will allow us to define the
local versions of the Sobolev spaces.

Lemma 4.3.15. Let s € R™. Then convolution (f,g) — f*g, S(R") —
S(R™) — S(R™) has a unique extension to a continuous bilinear map S(R™) *
L2(R") — L%(R™).

Proof Let f,g € C°(R™). Then for all z,y € R" we have

T+ Nz f gz =y < A+ )1 f W)L+ [z = yl)*lg(@ — )|

Let ¢ € C°(R™). Then multiplying the above expression by |¢(y)|, followed by
integration against dxdy, application of Fubini’s theorem and of the Cauchy-
Schwartz inequality for the L?-inner product, we find

([l f * g, 0)] < / A+ 1yl)*1f @)l dy llgllzz,s 1@l -

R”

Since this holds for arbitrary ¢ € C°(R™), we obtain

I+ {2l * )2 < 1A+ [yl Fller [lgllL2,s-

The expression on the left-hand side equals ||f * g||z2 ;. Fix N € N such that
s—N < —n. Then the L'-norm on the right-hand side is dominated by Cvy o(f),
with C' equal to the L'-norm of the function (1 + ||y||)*~V. It follows that

1f *9llr2s < Crno(f) l9llL2,s:
As C2°(R™) is dense in both S(R™) and L2(R"), the result follows. O

Lemma 4.3.16. Let s € R, ¢ € S(R") and u € Hs(R™). Then pu € Hg(R™).
Moreover, the associated multiplication map S(R™) x Hg(R™) — Hg(R™) is
continuous bilinear.
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Proof We recall that by definition the Fourier transform F : S(R") — S(R")
is an isometry for the norms || - ||s (from H (R")) and || - |[2 5. From the
above lemma it now follows that the multiplication map S(R") x S(R") —
S(R™) has a unique extension to a continuous bilinear map S(R™) x Hg(R™) —
H(R™). We need to check that this extension coincides with the restriction
of the multiplication map S(R™) x D'(R") — D'(R"). Fix f € S(R™) and
v € CX(R™). Then we must show that (fg,p) = (g, fe) for all g € Hs(R").
By continuity of the expressions on both sides in g (verify this!), it suffices to
check this on the dense subspace CZ°(R"™), where it is obvious. O

In particular, it follows that C2°(R"™)Hs(R™) C Hs(R™). Therefore, we may
define local Sobolev spaces.

Let U C R™ be open, and let s € R. We define the local Sobolev space Hy joc
in the usual way, as the space of distributions u € D’(U) such that yu € Hs(R")
for every x € C°(R™). At a later stage we will prove invariance of the local
Sobolev spaces under diffeomorphisms, so that the notion of Hy 1o can be lifted
to sections of a vector bundle on a smooth manifold.

Exercise 4.3.17. This exercise is a continuation of Exercise [4.3.13l Show that

the Heaviside function H = 1jg ) belongs to Hg1oc(R") for every s < % but
1

not for s = 3.
4.4. Some useful results for Sobolev spaces

We note that for s < ¢ the estimate || f||s < ||f|¢ holds for all f € H;(R™).
Accordingly, we see that

H,(R") C Hs(R"), for s<t,

with continuous inclusion map. We also note that, by the Plancherel theorem
for the Fourier transform, Ho(R") = L?(R"). Accordingly,

(4.5) H,(R™) ¢ L*(R") c H_4(R") (s> 0).

Lemma 4.4.1. Let o € N". Then 9% : 8'(R™) — S'(R") restricts to a contin-
uous linear map Hg(R") — H,_ o (R™), for every s € R.

Proof This is an immediate consequence of the definitions. O

Given k € N we define CJ(R") to be the space of C*-functions f : R" — C
with

sk(f) := max sup |D3 f(x)| < 0.
lo| <k zeRrn

Equipped with the norm s, this space is a Banach space.
Lemma 4.4.2. (Sobolev lemma) Let k € N and let s > k 4+ n/2. Then
Hy(R") C C§(R™)

with continuous inclusion map.
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Proof In view of the previous lemma, it suffices to prove this for £ = 0. We
then have s =n/2 + ¢, with € > 0. Let u € C2°(R"), then

u(z) = - Fu(£)e® dx

= [ e+ I+ e de
From this we read off that u is bounded continuous, and

sup [ul < [fulls (1 + [1€]) 72| 2

It follows that the inclusion C2° C Cj is continuous with respect to the Hy
topology on the first space. By density the inclusion has a unique extension to
a continuous linear map Hy — C}. By testing with functions from S we see that
the latter map coincides with the inclusion of these spaces viewed as subspaces
of §'. O

In accordance with the above embedding, we shall view Hz(R"™), for s >
k+n/2, as a subspace of Cf(R"). We observe that as an important consequence
we have the following result. Put

Hoo(R™) = (] Hs(R™).
seR
Corollary 4.4.3.
(a) Hoo(R™) C Cy°(R™).
(b) Hoo(R™) equals the space of smooth functions f € C°(R"™) with 0*f €
L3(R™), for all « € R™.

Proof Assertion (a) is an immediate consequence of the previous lemma. For
(b) we note that H, C Hy for s < r. We see that Ho(R") is the intersection
of the spaces H,(R"), for r € N. Now use the original definition of H,(R"),
Definition 2.2.10. O

Let V,W be topological linear spaces. Then a pairing of V and W is a
continuous bilinear map 3 : V x W — C. The pairing induces a continuous map
B1:V — W* by f1(v) : w— B(v,w) and similarly a map [y : W — V*; the
stars indicate the continuous linear duals of the spaces involved. The pairing
is called non-degenerate if both the maps 51 and (3 are injective. It is called
perfect if it is non-degenerate, and if (; is an isomorphism V' — W* and (2 an
isomorphism W — V*.

If V is a complex linear space, we denote by V' the conjugate space. This is
the complex space which equals V' as a real linear space, whereas the complex
scalar multiplication is given by (z,v) — Zv.

If V' is a Banach space, the continuous linear dual V* is equipped with the
dual norm || - [|*, given by

[ul* = sup{lu(z)| [ = € V, [|=[| < 1}.

This dual norm also defines a norm on the conjugate space V*.
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If H is a Hilbert space with inner product (-, - ), then the associated norm

| - || may be characterized by
loll = sup |{v,w)]
lwll<1

It follows that v ~— (v, -) induces a linear isomorphism ¢ : H — H* which
is an isometry for the norm on H and the associated dual norm on H*. The
isometry ¢ may be used to transfer the Hilbert structure on H to a Hilbert
structure on H*, called the dual Hilbert structure. It is readily seen that the
norm associated with this dual Hilbert structure equals the dual norm | - ||*
defined above.

Lemma 4.4.4. Let s € R. Then the L*-inner product (-, -) on CZ(R") ez-
tends uniquely to a continuous bilinear pairing Hs(R™) x H_s(R") — C. The
pairing is perfect and induces isometric isomorphisms Hg(R™) ~ H_4(R™)* and

H_(R™) ~ Hy(R™)*.
Proof Let f,g € C(R"). Then

(frg)rz = Fr&)Fg(§) dS

N
= [ FHOO+IED Fa©0 + e de

By the Cauchy-Schwartz inequality, it follows that the absolute value of the
latter expression is at most || f||s|/g]|—s. By density of CZ°(R"™) in Hs(R"™), this
implies the assertion about the extension of the pairing. The above formulas
also imply that

sup (f:9) = Ifls-

geCE (R™),|lgll-s=1
Thus, by density of C2°(R"), the induced map £ : Hs(R") — H_4(R™)* is
an isometry. Likewise, B2 : H_4(R") — H (R™)* is an isometry. From the
injectivity of 3; it follows that (2 has dense image. Being an isometry, G2 must
then be surjective. Likewise, (1 is surjective. ([l

4.5. Rellich’s lemma for Sobolev spaces

In this section we will give a proof of the Rellich lemma for Sobolev spaces,
which will play a crucial role in the proof of the Fredholm property for elliptic
pseudo-differential operators on compact manifolds.

Given s € R and a compact subset K C R”, we define

H, 1 (R") = {u € Hy(R") | suppu C K}.
Lemma 4.5.1. H, x(R") is a closed subspace of Hs(R™).
Proof Let f € C°(R™). Then the space
ft = {ue HyRY) | (u, f) = 0}
has Fourier transform equal to the space of ¢ € L2(R"™) with (p, F f) = 0, which

is the orthocomplement of (1+ ||€]|)"2*F f in L2(R™). As this orthocomplement
is closed in L2(R™), it follows that f is closed in H(R™).
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We now observe that Hgx(R™) is the intersection of the spaces f* for
f € CX(R™) with supp f N K = (. O

Lemma 4.5.2. ( Rellich) Let t < s. Then the inclusion map Hs x(R") —
H(R™) is compact.

To prepare for the proof, we first prove the following result, which is based
on an application of the Ascoli-Arzéla theorem.

Lemma 4.5.3. Let B be a bounded subset of the Fréchet space C(R™). Then
B is relatively compact (i.e., has compact closure) as a subset of the Fréchet
space C(R™).

Proof Boundedness of B means that every continuous semi-norm of C!(R")
is bounded on B. Let K C R" be a compact ball. Then there exists a constant
C > 0 such that supg ||df|| < C for all f € B and each 1 < j < n. Since

1
f@) = 1) = [ o+ ta—p)a—v) i
for all y € x, we see that

[f(y) = f(x)| < Clle —yl|, forall (z,yeK).

It follows that the set of functions B|x = {f|x | f € B} is equicontinuous and
bounded in C(K). By application of the Ascoli-Arzela theorem, the set B|k is
relatively compact in C'(K). In particular, if (fx) is a sequence in B, then there
is a subsequence (fy;) which converges uniformly on K.

Let (fx) be a sequence in B. We shall now apply the usual diagonal proce-
dure to obtain a subsequence that converges in C'(R™).

For r € N let K, denote the ball of center 0 and radius r in R"™. Then
by repeated application of the above there exists a sequence of subsequences
(fk1,;) = (fra,) = -+ ... such that (f, ) converges uniformly on K., for every
reN.

The sequence ( Ik, )jen is a subsequence of all the above sequences. Hence,
it converges uniformly on each ball K,. Therefore, it converges in C(R™). O

Remark 4.5.4. By a slight modification of the proof above, one obtains a
proof of the compactness of each inclusion map C*1(R") «— C¥(R™). This
implies that the identity operator of C°°(R") is compact. Equivalently, each
bounded subset of C*°(R") is relatively compact. A locally convex topological
vector space with this property is called Montel.

If B is a subset of L2(R™) (see Lecture 4) and ¢ € S(R™), we write
p*xB:={¢px*f|fe€ B}
Then ¢ * B is a subset of L2(R").

Lemma 4.5.5. Let s € R and let B C L2(R") be bounded. If ¢ € S(R"), then
the set ¢ x B is a relatively compact subset of C(R™).



70 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Proof In view of the previous lemma, it suffices to prove that f* B is bounded
in C1(R™). For this we note that for each 1 < j < n,

Iaij[w(x ol

= 105p(x =y + [lyl)™ (1 + lyl)*[f ()]
< (=D A+ llz =yl 1950 (z = )L+ lylD*[ £ (Y)]-

The right-hand side can be dominated by an integrable function of ¥, locally
uniformly in x. It now follows by differentiation under the integral sign that
@ * f € CLR™), that 0;(¢ * f) = 0jp » f and that

195 (0 F) @) < T+ 2D lellz2,—s 1 £l 2,6

This implies that the set ¢ * B is bounded in C1(B), hence relatively compact
in C(R™). O

Proposition 4.5.6. Let s >t and let B be a bounded subset of L2(R™) which
at the same time is a relatively compact subset of C(R™). Then B is relatively
compact in L?(R™).

Proof For R > 0 we denote by 1r the characteristic function of the closed

ball B(R) := B(0; R). Then for each r € R, the map f — 1gf gives the
orthogonal projection from L2(R™) onto the closed subspace Li B(R) of functions

with support in B(R). We now observe that the following estimate holds for
every f € L2(R") :

11 = 1R)flI72, = /”z|>R(1 + )72+ D> (O de
< (+ RS2,
Fix M > 0 such that || f||2s < M for all f € B. Then we see that
I =1p)fllpe, <M QA+ R, (f€B)

Let now (fi) be a sequence in B. Then (f;) has a subsequence (fy,;) which
converges in C(R"), i.e., there exists a function f € C(R") such that fi, — f
uniformly on each compact set K C R". Tt easily follows from this that 1g f; is
a Cauchy-sequence in L?(R), for each R > 0. We will show that Jk; is actually
a Cauchy sequence in L?(R"). By completeness of the latter space, this will

complete the proof.
Let € > 0. We fix R > 0 such that

1
M(l + R)t_s < 56.

There exists a constant N > 0 such that
1

i,j > N = |[1rfe, — 1R Sk, |2+ < 3
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It follows that for all 4,5 > N,

kaz - fkj”LQ,t
< Rk = fe ) lzze + 11 = 1R) frllp2,e + (1 = 1r) Syl r2e
< €.

O

Proof of Lemma Let K C R” be compact and let B be a bounded
subset of H, x(R™). Fix a smooth compactly supported function x € C°(R"™)
that is 1 on a neighborhood of K. Then xf = f for all f € B. It follows that

F(B) = o+ F(B),
with ¢ = F(x) € S(R"). By Lemma it now follows that F(B) is both
bounded in L2(R") and a relatively compact subset of C(R"). By the previous
proposition, this implies that F(B) is relatively compact in L?(R"). As F is
an isometry from H;(R") to L?(R"), it follows that B is relatively compact in
Hy(R™). O






LECTURE 5
Pseudo-differential operators, local theory

5.1. The space of symbols

We consider a differential operator P on R™ of the form

(5.1) P=p(z,D;) = Y calz)D;
|la|<d

here we recall that DS = (—i9,)®. The coefficients ¢, are assumed to be smooth
functions on R™. The (full) symbol of P is the function p € C*°(R™ x R™) given
by
p(a,6) = 3 calm)ee.
laf<d
If f € CX(R™), then F(Df) = £*F f, so that by the Fourier inversion formula
we have

D (@) = [ €& d,

where we have written f = Ff. It follows that the action of P on C°(R™) can
be described by

P = [ pw&f© e de

Pseudo-differential operators are going to be defined by the same formula, but
with p from a larger class of spaces of functions, the so-called symbol spaces.
The idea is to make the class large enough to allow a kind of division. This in
turn will allow us to construct inverses to elliptic operators modulo smoothing
operators, the so-called parametrices.

We return to the full symbol p of the differential operator P of degree at
most d considered above. By the polynomial nature of the symbol p in the
&-variable, there exists, for every compact subset K C R™ and all o, 5 € N, a
constant C' = Ck o 3 > 0 such that

laﬁafp(w,ﬁ)\ < C(1+ g1, ((z,§) € K xR").
Exercise 5.1.1. Prove this.

73
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These observations motivate the following definition of the space of symbols
of order d, for d a real number.

Definition 5.1.2. Let U C R" be an open subset and let d € R. The space
of symbols on U of order at most d is defined to be the space of functions
g € C®(U x R") such that for each compact subset K C U and all multi-
indices a, 3, there exists a constant C' = Ck o g such that

090 q(z,8)| < CL+ [, ((2.6) € K xR™).
This space is denoted by S¢(U).

We note that S¢(U) can be equipped with the locally convex topology in-
duced by the seminorms

phor(q) = max sup (1+ [1€])*1020 q(x,¢)],
), BI<k K xR™

for K C U compact and k € N. Moreover, S™(U) is a Fréchet space for this
topology.

Exercise 5.1.3. Show that d; < do implies S (U) C S%(U) with continuous
inclusion map.

We agree to write
S*WU) = UdeRSd(U), ST®(U) = ﬂdeRSd(U).

Then S™>°(U) equals the space of smooth functions f : U x R™ — C such that
for all K C U compact, N € Nand k € N
vickn(f) = max sup (1+ [[€1)N10:0 f (. €)] < oo.
|lal,|BI<k K xR

Moreover, the norms v i v induce a locally convex topology on S~>°(U), which
turn this space into a Fréchet space. Here we note that a function ¢ in the usual
Schwartz space S(R™) can be viewed as the function (z,§) — ¢(£) in ST(U).
The corresponding natural linear map S(R™) — S™>°(U) is a topological linear
isomorphism onto the closed subspace of functions in S™>°(U) that are constant
in the z-variable. More generally, if f € C*°(U) and ¢ € S(R") then the
function

f@e:(x,8) — flx)e§)
belongs to S™>°(U). It can be shown that S™°°(U) is the closure of the sub-

space C®°(U) ® S(R™) generated by these elements. Accordingly, we may view
S7°(U) as a topological tensor product; this is expressed by the notation

S™®(U) = C*(U) @ S(R™).

Exercise 5.1.4. Show that the following functions are symbols on U = R".
What can be said about their orders?

(a) p(z,€) = [[«[I*(1 + [|¢]]?)*, for s € R.
(b) p(z,€) = (1 + [|z]|® + ||€]?)*, for s € R.

Exercise 5.1.5. Let U C R" be an open subset.
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(a) Show that for each av € N™ the operator 9% gives a continuous linear map
SUU) — SUU).

(b) Show that for each multi-index « as above the operator ' restricts to a
continuous linear map S4(U) — S4-1°l(U), for every d € R.

(c) Show that the product map (p, q) — pq restricts to a continuous bilinear
map SY(U) x S¢(U) — S4+¢(U), for all d,e € N. Discuss what happens
ifd=—o0ore=—o0.

Exercise 5.1.6. Let U C R” be an open subset and let P be an elliptic
differential operator of order d on U. This means that its principal symbol
o%(P) does not vanish on U x (R™ \ {0}). Let p the full symbol of P. The
purpose of this exercise is to show that there exists a ¢ € S _d(U ) such that
pg—1 € S™°(U). We first address the local question. Let V' C U be an open
subset with compact closure in U. We write py for the restriction of p to V x R™.
(a) Show that there exists a constant R = Ry > 0 such that p(z,§) # 0 for
ze€Vand £ € R"\ B(0; R).
(b) Show that there exists a smooth function yy € C°(R™) such that the
function g : V' x R™ — C defined by

Q(‘rv 6) = (1 - X(f))p(ﬂi, 6)71
if p(x,£) # 0 and by zero otherwise, is smooth.
(c) With y and ¢ as above, show that ¢ € S~¢(V).
(d) Show that pyq—1¢€ U=>°(V).
(e) Show that there exists a symbol ¢ € S~%(U) such that pg—1 € W=°(U).

The following invariance result will allow us to extend the definition of the
symbol space to an arbitrary smooth manifold. Let ¢ : U — V be diffeomor-
phism between open subsets of R". We define the map ¢, : C®°(U x R™) —
C>®(V x R™) by

euf(y.m) = fle ' (y),neode(e™ (1))

Identifying R™ with its dual R™" by using the standard inner product, we may
view S%(U) as a subspace of C®(U x R™).

Lemma 5.1.7. For every d € R, the map @, restricts to a topological linear
isomorphism S (U) — S4(V).

Proof Put 1) = o' Then, for f € S4M), the function ¢, f is given by
o f(y,m) = fW(y),nodp(¥(y))). The continuity of ¢, follows from checking
that 85‘85 (s f) satisfies the required estimates by a straightfoward but tedious
application of the chain rule combined with the Leibniz rule. Similarly, ¢, is
seen to be continuous linear. O

We define the symbol spaces on a manifold as follows.

Definition 5.1.8. Let M be a smooth manifold and let d € R. A symbol of
order d is defined to be smooth function ¢ : T*M — R"™ such that for each
xg € M there exists a coordinate patch Uy containing xg such that the natural
map Ky : C®(T*U;) — C®(k(U,) x R™) maps o|r-y to an element k.o of
S%(k(Uy)). The space of these symbols is denoted by S%(M).
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Remark 5.1.9. Let ¢ : M — N be a diffeomorphism of smooth manfolds.
Then it follows by application of Lemma that the natural map ¢, :
C>®(T*M) — C*°(T*N), given by

Qo*f(ncp(:c)) = Np(z) o Ty, (l’ €M, Ny(z) € T(Z(x)N)
restricts to a linear isomorphism
0y 0 SUM) =5 SUN).

In this lecture we will concentrate on the local theory of symbols and the
associated pseudo-differential operators. The extension to manifolds will be
rather straightforward, by using invariance and partitions of unity. In particu-
lar, one needs to localize on the x-variable in the symbol space. Accordingly,
given A C U compact and d € R we define

SA(U) = {p € SY(U) | pry(suppp) C A},
where pr; : U x R" — R" is the natural projection map. The union of these

spaces, for A C U compact, is denoted by S¢(U). Here we note that S4(U) C
S%(R™) naturally, by extension by zero outside U x R™.

5.2. Pseudo-differential operators

In this section we will give the definition of the space ¥*°(U) of pseudo-
differential operators on an open subset U C R"™. For this, we first need to
introduce the space ¥~°°(U) of smoothing operators on U. Given a smooth
function K € C>®(U x U), we define the integral operator Tk with integral
kernel K to be the continuous linear operator C2°(U) — C*°(U) given by

Tie () = /U K(a.y) f(y) dy.

We define ¥~ to be the subspace of Hom(CZ°(U),C>(U)) consisting of all
operators of the form T, with K € C*°(U x U). It is readily seen that K — Tk
is injective, and thus provides a linear isomorphism from C*°(U x U) onto
U= (U).

The name smoothing operator is derived from the following observation.
We may extend the definition of Tk to the space &' (U) of compactly supported
distributions on U by the formula

Tru(x) = u(K(zx, -)).

Since x — K(x, - ) is a smooth function on U with values in the Fréchet space
C*(U), and since u : C*°(U) — C is continuous linear, it follows that T (u) is
smooth. Moreover, the map

T : £'(U) — C®(U)

is continuous linear. Conversely, by the Schwartz kernel theorem it follows that
any continuous linear map T : £'(U) — C*°(U) is of the form Tk, with K a
uniquely determined smooth function on U x U. We define ¥~>°(U) to be the
space of all operators of the form Tk, for K € C*°(U x U). Accordingly,

U—>°(U) ~ Hom(&E'(U),C*(U)).
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We proceed to the definition of pseudo-differential operators on U. For ¢ €
ST™°(U) =C>*(U)) ®S(R™) the integral

W) = [ (o) do

is absolutely convergent for every x € U and is readily seen to define a function
W () € C*°(U). More precisely, the following result holds.

Lemma 5.2.1. For all p € S™(U) and o € N*,
() °W () = W(0 +i€)°):
(b) (i)W () = W(O¢').
The map W is continuous linear from S™>°(U) to C*°(U).

Proof The proof is an obvious adaptation of the proof that Fourier transform
maps S(R™) continuously to C*°(R™). O

If p e S4U) and F € S(R™) then it follows by a straightforward application
of the Leibniz rule that the function pF : (z,§) — p(x,&)F (&) belongs to

S=°(U). Moreover, the map (p,F') — pF is continuous and bilinear. These
observations justify the following definition.

Definition 5.2.2. Let p € S%(U). Then we define the operator ¥, : C°(U) —
C>(U) by

~

(52) V(@)= W) = [ e paof©) d.

We note that (p, f) — ¥, f is continuous and bilinear S(U) x C*(U) —
C>(U).
Lemma 5.2.3. The (linear) map p — ¥,, S4R") — Hom(CX(R™), C>®(R"))
18 injective.
Proof Assume that p € S%(R") and ¥, = 0. Then for each z € R” the smooth
function ep, given by & — e%p(x, ) is perpendicular to all functions from
F(CP(R™)) C S(R™). By density of C°(R"™) in S(R™) and the fact that F is a
continuous linear automorphism of S(R™), it follows that F(CZ°(R™)) is dense

in S(R™). Hence, ¢ — €%p(x, £) is perpendicular to all functions from S(R™).
In particular, p, is perpendicular to C°(R™) and it follows that p, = 0. O

If P is a differential operator with smooth coefficients of order d on U then

its full symbol p belongs to S%(U) and
P=y,.
We now generalize the notion of differential operator as follows.
Definition 5.2.4. Let U C R" be an open subset and let d € R. A pseudo-
differential operator of order d on U is a continuous linear operator P : C°(U) —
C>®(U) of the form
P=v,+T,

with p € S4(U) and T € ¥~>°(U). The space of these operators is denoted by
v(U).
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Lemma 5.2.5. Let A C U be compact.

(a) Let p e S™°(U). Then there exists a unique K € C°(U x U) such that
U, = Tx. In particular, ¥, € W~=°(U). If ¥,, vanishes on C°(U \ A)
then prysupp K C A.

(b) Let K € C*°(U x U) be such that pry(supp K) C A. Then there ezists
ap € S™U) such that the integral operator Tx : C*(U) — C*(U)
equals W p,.

Proof Let F,F denote the Fourier transform of a function F' € C®(U) ® S(R™)
with respect to the second component. By straightforward estimation it follows
that 5 is a continuous linear endomorphism of C>°(U) ® S(R™). By application
of Theorem 4.1.14 with respect to the second variable it follows that in fact F»
is a topogical linear automorphism.

We can now prove (a). Let p be as asserted and define

I?(.%’, y) = f2p($7y - .7))
Then K € C®(U)®S (R™). Moreover, by the Fourier inversion theorem we see
that p(z, &) = e 4 Fo(K)(z, —€). We put K = K|yxp. Then for all f € C°(U)
and z € U we have

~

Tgf(x) =Trf(x)= | FoK(z,=£)f(E) d§ = Vpf(z).

]Rn

Uniqueness of K is obvious.

Now assume that ¥, vanishes on C°(U \ A). Then T vanishes on C2°(U \
A). This implies that K is zero when tested with functions from C2°(U x (U\ A)).
Hence, supp K C U x A.

We turn to (b). Let K € C*°(U x U) and assume supp K C U x A. Then
K € C®(U)®S(R"). Applying Proposition 4.2.5 with respect to the second
variable, we see that

TK = \I/pv p(l’,f) = e_igfo(K)( 7_6)'

It is clear that p € S™°(U) = S~>°(U).
g

Exercise 5.2.6. Let U C R" be an open subset, and let K € C>®(U x U).
Show that Tk is a local operator if and only if K = 0.

In particular, it follows that pseudo-differential operators are not local in
general, in contrast to differential operators. In fact, in view of the following
result, differential operators are precisely those pseudo-differential operators
that are local.

Theorem 5.2.7. (Peetre’s theorem) Let P : C(U) — C*(U) be a linear
map such that supp Pf C supp f for all f € C*(R™). Then P is a differential
operator (with bounded degree on every compact subset of U ).

It is remarkable that this result is true without any assumption of conti-
nuity for P. The analogous result is much easier to prove if P is required to
be continuous. From this the above characterization of differential operators
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among the pseudo-differential operators already follows. A proof is suggested
in the following exercise.

Exercise 5.2.8. Let P : C>°(U) — C*(U) be a continuous linear operator
such that for all f € C°(U) we have supp Pf C supp f.

(a) Show that for every a € U the map u, : f — Pf(a) is a distribution
supported by {a}. Hint: use a suitable cut off function.

(b) Let V' C U be an open subset whose closure is compact in U. Show
that there exists a constant d = dy € N such that for every a € V the
distribution u, has order at most d. This means that for every compact
neighborhood K of a there exists a constant Cx > 0 such that

lua(f)| < Cx maxsup |0 f].
laj<d K

(c) Show that there exist uniquely determined constants ¢, (a) € C, for |a] <

d such that

Ua =Y Ca(a)(=0)*0a,

lal<d

where J, denotes the Dirac measure at a (see the exercise below).

(d) Show that the functions ¢, for |a| < k, are smooth on V.

(e) Show that the restriction of P to V is a differential operator of order at
most dy .

Exercise 5.2.9. The purpose of this exercise is to show the following. Let
a € R" and let u € &' (R™) be a distribution with suppu C {a}. Then there
exists a constant £ € N and constants ¢, € C, for a € N, such that

U= Z €ca0%0q.

o] <k

(a) Show that without loss of generality we may assume that a = 0.
(b) Let x € C°(R™) be identically 1 in a neighborhood of 0. Show that

u(xf) = u(f)

for all f € C*°(R").

(c) Let f € C°(R"). Let p be the k-th order (multivariable) Taylor polyno-
mial of f at 0 and let R be the remainder term, so that f = p+ R. Show
that for all o with |a| < k, we have

lim [ *=*4/29* R(x)| = 0.

(d) For € > 0 define x.(z) = x(z/€). Show that
u(xeR) — 0 (e — 0).

(e) Show that u(f) = u(p).
(f) Conclude the proof.
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5.3. Localization of pseudo-differential operators

We turn to the problem of localizing a pseudo-differential operator P € \Ild(U ),
for U C R™ open. More precisely, if x € C:°(U) we denote by M, or simply x,
the operator in End(Cg°(U)) given by multiplication by x, i.e., M, (f) = xf.
The problem is whether M, o P o My is a pseudo-differential operator again, for
ot € C2(U).

It is immediate from the definitions that

My oV, =V g1yp, MyoTk =T(ye1)k:

for p € S4U) and K € C*®(U x U). Moreover, it is also clear that Tk o My, =
Tk (19y)- The answer to the question whether W), 0 M, is pseudo-differential is
provided by the following result.

Proposition 5.3.1. Let p € SYU) and let v € CX(U). Then there exists a
q € CYU) such that

U, oMy =0,

Proof Let f € C(U). Then F(¢f) = F(¢) x F(f) so that
Vo Myf(e) = [ epa @ PIE) de

— [ [e=pe0dte - 0ftc) dc ag

— [ [e=pmite - 0ftc) de dc

~

/ / el pa, & + Q) 1(€) F(C) d€ d¢
/ e q(x,Q)f(C) dC,

where
(53) 0,0 = [ e+ O BE) de.

Note that all of the above integrals are absolutely convergent, because 1Z and ]?
are Schwartz functions. We will finish the proof by showing that ¢ belongs to
S4(U). More precisely, we will show that the map (p,) — ¢ defined by
is continuous bilinear S%(U) x S(R™) — S4(U).

Let K C U be compact, and k£ € N. Then for multi-indices «, 8 of order at
most k, for z € K and &, € R" we have

10520, [p(z, € + QU = 1020 p)(x, & + O)I|$(€)]
(1 + N+ <IN+ l1El) ™ ke s (PIvavo(P)
(L 1S+ el m =N e 1 (o) ().

7

IN

IN
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By application of the Leibniz rule, we now see that there exists a constant
C > 0, only depending on K, k, N, such that

10907 [ p(, & + Q) (€)]]
< CAHCHEVI + lelpZEH=Npd | (p)vno(h).

Choosing N such that 2k + |d| — N < —n, we see that in (5.3) differentiation
under the integral sign is allowed, and leads to the estimate

1k (@) < Cud s vno®@),  ((2.€) € K x R™),

with C’ a constant only depending on K,k and N. As ¢ 12 is continuous in
S(R™), the result follows. O

5.4. The full symbol

The formula gives rise to an interesting characterization of ¢ which we
shall now describe. We recall that U is an open subset of R™.

If N is a countable set and v — d, a real-valued function on N, then by
lim, o d, = —00 we mean that for every m € R there exists a finite subset
F C N such that v e N\ F = d, < m.

Definition 5.4.1. Let N be a countable set, and v — d,, a real-valued function
on N with d, — —oo for v — oo. Let p, € S%(U), for each v € N, and let
p € S¥(U). Then

(5'4) b~ Z bv
veN

means that for every d € R there exists a finite subset Fy C A such that for
every finite subset ' C N with F' D> Fj,

p— Zpl, € Sd(U).

veF

We observe that if a symbol p’ € S°°(U) has the same expansion, then it
follows that p — p’ € S4(U) for all d, hence p — p' € S™°(U). We thus see that
the asymptotic expansion determines p modulo S~°(U).

The symbol g of may now be characterized modulo S~°°(U) as follows.

We note that the operator J¢' maps S4(U) continuous linearly to S4~Iol(U7).

Lemma 5.4.2. Let p € SYU) let o € C2(U) and let the symbol ¢ € S4(U)
be defined as in . Then

1
g~ > o1 D= 9.
aeNn

Proof By the multi-variable Taylor formula with remainder term, we have,
for M € N,
P+ = 3 S 00p(,C) + Rulz.6,0),

al
|| <M
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with remainder term given by

1
65)  Rul60 =35 [ (=0Y0M (e )] .
This leads to

9(z,¢) = D qale, Q)+ qu(x,Q),
jal<M
where

]Rn
and where

alga(z,) = / e €02 p(w, €) (€) dg
— 9ple, Q) F N EF W) ()
= 9¢p(z,¢) Dgy(z).
Thus, to complete the proof, it suffices to show that
(5.6) qu € ST,

Let K C U be compact. Then by differentiation under the integral sign in
, application of the Leibniz rule, and a straightforward estimation of the
resulting integrals we see that there exists a constant C' > 0 only depending on
K, M,k such that for all multi-indices «, § with |a|,|f] < k and all z € K <
&,¢ € R we have

10907 Ry (2,€,0)]
< O+ g sup (L4 ¢ + ¢ MTDBI L ().

We now observe that for 0 <t <1 we have
(14 11 + )T < (14 g )= MDA (1 4 gl AHa,
so that
10907 Ry (2,€,0)]
< C(L+ ¢ DI (1 (g IH2FEDTF v (p).
Now put

(2.0 = [ Raslo.6,0)(6) de

Fix N € N such that |d| +2(M + 1) + k — N < —n. Then by the usual method
we infer that there exists a constant C’ > 0, only depending on K, k, N such
that ~

Hick (@) < €t par () vivo(9)

The result follows.

Remark 5.4.3. From the estimate at the end of the proof we see that the
map (p, 1)) — qpr is continuous bilinear from S4(U) x C2(U) to S~ M+ (U).
In this sense, the asymptotic expansion for ¢ depends on (p, ) in a continuous
bilinear fashion.
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Using the asymptotic expansion above, we can now derive an important
theorem. We begin by a useful sharpening of Proposition Given an open
subsets V' C U of R", we define the restriction map p — py from S4(U) to
SUV) by py(x, &) = p(x,€), for x € V and &€ € R™. Thus,

pv = plvxrr.

In the following we will use the notation V' € U to indicate that V' has compact
closure in U.

Proposition 5.4.4. Let p € SYU). Let U' € U be an open subset and let
€ C(U) be equal to 1 on an open neighborhood of ¢l (U'). Then there exists
a symbol g € SUU) such that

(a) Wg=WpoMy;
(b) qur —pur € ST(U).

Proof Define ¢ as in (5.3)). Then (a) is valid, and we have the asymptotic

expansion from Lemma Since D% = 0 on U’, except when o = 0, we
see that gy ~ pyr, or, equivalently, that (b) holds. O

Theorem 5.4.5. The map p — V¥, induces a linear isomorphism
SUU)/S™(U) = wU) /¥~ (U).

Proof From the definition of ¥¢(U) it follows that p ~— ¥, induces a surjective
linear map S4(U) — W4(U)/¥~°°(U). We must show that its kernel equals
S=°°(U). Thus, let p € S4(U) and assume that ¥, € ¥=°(U). Then ¥, = Tk
for a smooth function K € C°(U x U). We must show that this implies that
p € ST°(R™). By using a partition of unity we see that it suffices to show that
xp € ST(R") for all x € C°(U). Now Uy, = M, 0¥, = Tiyg1x- Thus, to
prove the theorem, we may assume from the start that there exists a compact
subset A C U such that suppp C A x U and supp K C A x U.

We now have that p € S4(U) c S¢(R™), so that p also defines a pseudo-
differential operator ‘Tlp : CP(R") — CP(R™). Of course, \Tlp restricts to ¥, on
ce ().

Fix an open subset U’ € U. Then it suffices to show that pyr € S™°(U’).
To prove this, we select a cut off function ¢ € C°(U) which equals 1 on an
open neighborhood of ¢l (U’). Then

(5.7) Vo My =W,0 My = TK(l@d)) e U>(R").
As K(1®1)) is compactly supported with support in U x U, it follows that

(5.8) Tr(ey) = Yr

for a symbol r € ST®(R").
On the other hand, by the above proposition applied with R™ in place of U,
we see that

(5.9) T, My =,
with a symbol ¢ € S4(R™) that has the property that gy — pyr € S™(U").
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From , and we see that Elr = ‘Ilq, so that r — ¢ = 0, by

Lemma [5.2.5} This implies that
pu — v = pur — qu € ST(U).
Hence pyr € S~°°(U’) and the proof is complete. O

Definition 5.4.6. The inverse of the linear isomorphism of Theorem [5.4.5
denoted

o WU/ UX(U) — SUU)/ST(U),
is called the (full) symbol map.

This symbol map is the appropriate generalization of the symbol map for
differential operators. Just as the latter symbol map cannot be extended nat-
urally to differential operators on manifolds, the present symbol map does not
allow a coordinate invariant extension to manifolds either. Just as in the case
of differential operators, there is an appropriate notion of principal symbol of
order d, which can be extended to the setting of manifolds.

Definition 5.4.7. The principal symbol map o¢ of order d is defined to be
the following map induced by the symbol map:

(5.10) ol vl U) /v U) — SYU)/STHU).
Corollary 5.4.8. The principal symbol map is a linear isomorphism.

5.5. Expansions in symbol space

The construction of parametrices for elliptic pseudo-differential operators will
make use of a recurrence that is based on the following remarkable lemma.

Lemma 5.5.1. LetU C R" be open. Let {d;};>0 be a sequence of real numbers
with dj — —o00 as j — oo. Assume that for each j a symbol p; € S (U) is given.
Then there exists a symbol p € SY(U), where d = maxd;, such that pry(suppp)
is contained in the closure of the union of the sets pr(suppp;), for j >0, and
such that

(5.11) p~Y p in SYU).
j=0

The symbol p is uniquely determined modulo S=°(U).

Proof The uniqueness assertion is an immediate consequence of the meaning
of .

For the existence, we note that by using partitions of unity on U we can
reduce to the local situation where a compact subset A C U is given such that
pj € Sij (U). It then suffices to establish the existence of a symbol p € S%(U)
such that is valid.

Taking suitable groups of terms we readily see that it suffices to consider
the case that the sequence d; is strictly decreasing. Then d = djy.
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Fix x € C°(R™) with the property that x(§) =0 for ||£]| < 1 and x(§) =1
for ||€|| > 2. For t > 0 we define the function x; : (z,§) — x(t§) (constant in
the x-variable). Note that supp x; N (U x B(0;¢71)) = 0.

We will select a sequence t; of positive real numbers with t; — 0 and define

oo
Pi= ) Xt;Pj-
7=0

The sum is locally finite with respect to the variable &, hence defines a smooth
function U x R™ — C. Moreover, pry (supp p) is contained in A. We claim that it
is possible to select a sequence {t;} such that for every [ € N and all o, 3 € N
the series

> (1 + 1IN 020] [, ]

J=l
converges uniformly on U xR"™. The proof of this claim is deferred to two lemmas
below. Let {t;} be as claimed, then the proof can be finished as follows. From
the above claim about convergence, it follows that the series

= Z Xt;Pj

>l

convergences absolutely in the symbol space Sl‘f{(U ), relative to its continuous

seminorms. By completeness, this implies that r; € Sff((U ). In particular it
follows that p = rg € S4(U). Now

-1 -1
(5.12) P=Y_pi=> (x —Lpj+m
=0 =0

The second sum defines a function with compact &-support, hence belongs to
S=°°(U). Since r; € S%(U), it follows that the difference on the left-hand side
of (5.12)) belongs to S%(U). This implies ((5.11)). O

To establish the claim of the above proof we need the following.

Lemma 5.5.2. Let j >0, a, 8 € N". Then there exists a constant C;j, 5 > 0
such that

(5.13) 1059 Dap)(, O] < Clap(1 + €M),
for all (z,&) e U' xR™ and all 0 < t < 1.

Proof The estimate is trivially valid in the area ||¢|| < ¢!, where x; = 0.
By definition of the symbol space, it is also valid in the area ||£|| > 2¢t~!, where
x¢ = 1. Thus, it remains to establish an estimate of the above type in the area
t=1 < ||¢|| < 2t71, with a constant independent of ¢, z, &.

The estimate then follows by application of Leibniz’ formula and bookkeep-
ing, as follows. The expression on the left-hand side of may be estimated

by a sum of binomial coefficients times the expression |95 ( 8gXt6? TTpi)(, ).
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With the notation (9, x); = (07x)(t£) the mentioned expression becomes
e X e X p )

by application of the chain rule,

02 (O xd o) (@ O = 102300050, sl €) |
(5.14) < C;',a,»y 1l 1+ ||§”)dr|/3|+h\’
with a constant independent of ¢, z,¢. From ¢ < 1 and ||¢]| < 2t~ it follows
that

thl = 3h(3¢=1)=hl < 3hl(1 4 2¢=1) bl < 311 4 |1 g) 1.

Substituting this in (5.14)) we infer that the estimate (5.13)) is valid in the area
considered. O

Lemma 5.5.3. (Claim) There exists a sequence {t;} of real numbers with
tj — 0 such that for every | € N and all o, 3 € N the series

>+ D020 [, ps]
J=l
converges uniformly on U x R™.
Proof Let j > 0. Then we may select ¢; > 0 such that
Ciap(l+t; )5 " <277

for all «, 8,1 with |a| + |8] + 1 < j. It follows that, for all such «, 3,1 and all
(z,€) € U' x R™ with [[¢]| > ¢;!,

10207 aup)(@,8)] < Chap(l + [l€))4 17
< Cap(l+ NG+ |jg)hI5
< Cap(L+t1)5 %1+ g1
< 279 (14 ||gphiel,

On the other hand, if ||| < tj_l, then xy, (z,£) = x(t;§) = 0. We conclude that
for all o, 8,1 with |a|+|8|+1 < j and all (z,&) € U x R™ the following estimate
is valid ,

1050 Dapy) (. )] < 277 (1 + ¢y~ 1A,
This implies the claim. O



LECTURE 6
Pseudo-differential operators, continued

6.1. The distribution kernel of a pseudo-differential operator

Let U C R™ be an open subset. If p € Sd(U), then the associated pseudo-
differential operator ¥, : C°(U) — C*°(U) may be viewed as a continuous
linear operator C°(U) — D'(U). Hence, by the Schwartz kernel theorem, the
operator ¥, has a (uniquely determined) distribution kernel K, € D'(U x U).
By this we mean that the pseudo-differential operator is given by

(Wpf.9) = (Kp,g@ [),  (f,9€CZU)).

It turns out that the kernel K, can be quite easily determined, without reference
to the Schwartz kernel theorem.

The idea is to extend the formula of Lemma 5.2.4 to the more general setting
with p € S™(U). Fourier transform with respect to the second variable defines
a linear map

Fa: CX(U x R") — CX(U) ® S(R™)
which is readily verified to be continuous. The transposed of this map is a
continuous linear map [C°(U) ® S(R™)]" — D’'(U x R™) which we denote by F»
as well. Via the bilinear pairing
S™U) x [C2(U)®S(R™)] — C

defined by integration, the space S (U) is mapped continuously and injectively
into [C°(U) ® S(R™)]'. Via composition with this injection, the Fourier trans-
form F; gives a a continuous linear map

Fo 1 S™U) — D' (U x R™).

We note that on C2°(U xR) this map coincides with the usual Fourier transform
in the second variable. Of course, this justifies the use of the notation F3 for it.

Proposition 6.1.1. Let p € S4U). The distribution kernel K, € D'(U x U)
of ¥, is given by the formula

(6.1) K,(z,y) = Fop(xz,y — z) (in distribution sense).

87
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Remark 6.1.2. The phrase ‘in distribution sense’ should be interpreted as
follows. The formula is well defined for p € C°(U x R™) and can be rewritten
in such a way that it extends continuously to the space of distributions. Indeed,
since for a compactly supported smooth function p the transform Fop is a
smooth function, Fop(z,y — z) = L*(Fap)(x,y), with L the map (z,y) —
(z,y —z) from U x R™ to U x R™. The map L is smooth with smooth inverse
L= : (z,9) — (x,y + z), hence is a diffeomorphism.
For all f,g € C*°(U x R™) with supp g compact, we have

(L*f,9) = <f7 L™"g),
by substitution of variables, so that (L*f, -) = L= ((f, -)). We thus see that
the operator L; ! := L1 € End(D'(U >< ]R”)) is the unique continuous linear
extension of the operator L* € End(C*°(U x R™)). Accordingly, the above
formula should be read as:
(6.2) Ky = L (Fa(p)uxu.
Proof Let ge CX(U) and f € C°(U). Then

(0.0, (f) = / 9(2)0, f(z) da

- // e p(r, €) F(€) d du
- / / 9(@)p(@, OF (T (&) dé du

= [ | s@Fla )1z nt) d da
= f2p7 h>7
where h(z,y) = g(z)f(y +x) = L™ (g ® f)(z,y). It follows that

{9, Wp(f)) = (Fa(p), L™ (9 © ) = (L Falp) g ® f)-
This implies that ¥, = Tk, with K = L7 F(p)|uxu. O

Proposition 6.1.3. Let p € S™(U). Then the distribution kernel K, of ¥, is
smooth on the complement of the diagonal diag (U) in U x U.

Proof The diagonal diag (U) is the pre-image of R™ x {0} under the map
L : U xR" — U x R" Therefore, it suffices to show that Fop is smooth
outside R™ x {0}. For this it suffices to show that (1 ® ¢)Fap is smooth for all
P € C(R™) with 0 ¢ supp ¢. By the usual formulas for the Fourier transform
of a differentiated function, we derive that

(6.3) (1@ ¥)Fap = [1@ [lyl 7" ¢] Fo((—2) D),

for every N € N, where A¢ denotes the Laplace operator in the £-variable. Now
Aév maps S4(U) to S4=2N(U). If k € N and d — 2N < —n — k, it is readily seen
that 7> maps S92¥(U) continuously to C¥(U x R™). Thus, for such N the
distribution on the right-hand side of belongs to C¥(U x R™). As the left-
hand side is independent of N, it follows that (1®1)Fap belongs to C¥(U x R™)
for every k € N. The result follows. O
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Corollary 6.1.4. Let P € 4(U). Then the distribution kernel of the operator
P, denoted Kp € D'(U x U), is smooth outside the diagonal diag (U).

Proof By definition, there exist p € S4(U) and K € C*(U x U) such that
P =W, +Tk. Now Kp = K, + K. O

Exercise 6.1.5. Let k € N and assume that d < —n—k. Let p € S%(U). Show
that the distribution kernel K, of ¥, belongs to C?(U x U).

In the sequel we shall use the notation Kp for the distribution kernel of
a pseudo-differential operator P on U. The operator P is said to be properly
supported if the maps pr; : supp Kp — U are proper, for j = 1,2. Recall that
a continuous map ® : X — Y between locally compact Hausdorff spaces is
proper if and only if the preimage ®~1(A) is compact for each compact subset
A C Y. Thus, the requirement that P is properly supported is equivalent to the
requirement that the intersections (A x U)Nsupp (Kp) and (U x A)Nsupp (Kp)
are compact, for each compact subset A C U.

The following lemma asserts that modulo a smoothing operator any pseudo-
differential operator may be represented by a properly supported one, with
kernel supported arbitrary close to the diagonal.

Lemma 6.1.6. Let P € U(U) and let Q be an open neighborhood of the
diagonal in U x U. Then there exists a q € SUU) such that U, is properly
supported with supp K, C Q such that P — P, € ¥~>°(U).

For the proof of this lemma, we need a generality about partitions of unity.

Lemma 6.1.7. Let X be a paracompact locally compact Hausdorff space. Let
Q be an open neighborhood of the diagonal diag (X) in X x X. Then for every
open cover U of X there exists a locally finite refinement V such that for all
v,V eV

VNV £0=VxV' cQ.

Proof Let U be an open cover of X. Then there exists an open cover W of
X, finer than U, such that W x W C Q for all W € W. By paracompactness
of X, we may assume that W is locally finite. For each z € X there exists an
open neighborhood V, such that V, is contained in every W € W containing
x, whereas it has empty intersection with every W € W not containing x. Let
V be a locally finite refinement of {V,},cx. Let V,;V’ € V have a point z in
common. Then z € W for some W € W. Now V. C W and V' C W so that
VxV CcWxWcCQ. O

Corollary 6.1.8. Let X be a smooth manifold and let ) be an open neigh-
borhood of the diagonal diag (X)) in X x X. Then for every open covering U of
X there exists a partition of unity {1;}icr, subordinate to U, such that for all
i,j €1,

supp v; Nsupp ¥; # ) = supp1; x supp ¢; C .
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Proof of Lemma Let {%;}ier be a partition of unity on U as in the
preceding corollary. Then the operators P;; := My, W), M, are all of the form
W, with gij € S%U). The kernel of P;; equals K;; := (1; ® ¢;)Kp, hence
has support inside supp; x supp ;. If suppt; N suppey; = 0 then Kj; is
smooth outside the diagonal and supported outside the diagonal, hence smooth
everywhere. On the other hand, if supp ¢; N supp ¢; # () then K;; has support
contained in €.

Let J be the set of (i,j) € I x I with supp; Nsupp); # 0. We note that
prysupp gi; C supp ), so that the collection of sets clprysupp ¢;; for (i,7) € J
is locally finite. It follows that

q:= Z 4ij

(i,5)eJ

is a symbol in S%(U). We note that

K = Z Kij
(6,5)eIX I\
is a locally finite sum of smooth functions on U x U, hence a smooth function of

its own right. It is now straightforward to verify that ¥, = ¥, + Ty . Moreover,
the kernel K, is given by the locally finite sum

Ky= Y Ky
(i,9)eJ
It follows that supp K C ). We will finish the proof by showing that ¥, is
properly supported. Let A C U be compact. The set J4 of (i,j) € J with
suppt; N A # ( is finite. As (A x U) N supp K, is contained in the union of
the sets supp ; x supp; for (i,j) € Ja, it follows that (A x U) N supp K, is
compact. The compactness of (U x A) N K is proved in a similar manner. [

Exercise 6.1.9. Let P: C(U) — C*°(U) be a linear operator such that for
each x,v € C°(U) the operator M, o Po My is a pseudo-differential operator
in 4(U). Show that P € W(U).

Exercise 6.1.10. Let P € \I/d(U) be properly supported.
Show that for every compact subset K C U there exists a compact subset
K' C U such that P maps C2(U) to C(U).

Exercise 6.1.11. Let P € U¥(U) be properly supported.
Show that the operator P has a unique extension to a continuous linear
operator C*°(U) — C*(U).

6.2. The adjoint of a pseudo-differential operator

Let U C R™ be an open subset. It is a well known fact that the space C°(R"™)
is reflexive. By this we mean that the natural map j : C2°(R"™) — D/(R") is a
topological linear isomorphism. Here D'(R™) is equipped with the strong dual
topology, and so is the dual of D'(R™).
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Accordingly, if T : C°(U) — D'(U) is a continuous linear map, then the
transposed T" may be viewed as a continuous linear map C°(U) — D'(U).
According to this definition,

(Tf.g)=(f,T'g),  (f,g€CXU)).

Lemma 6.2.1. The distribution kernel Kr¢ (which exists by Schwartz’ theo-
rem) of the adjoint map can be expressed in terms of the kernel K by

KTt(xay) = KT(y, l‘), (($7y) e U x U)

Of course, this equality should be interpreted in the sense of distributions.
Let 7: U x U — U x U be defined by 7(z,y) = (y,x), then the above equality
should be read as

KTt = ’T*(KT).

Proof Put K = Kt and K! = 7,(K7). Then the integral operator 7" with
distribution kernel K is given by

(T'(f).9) = (K' 9o f)=(K (g f) = (K fog) = (fTg).
This shows that 7' = T and that K' = K. O

It follows from the above proof that if K and K are distributions in D’ (U x
U) related by K' = 7.(K), then the associated operator Tk is the adjoint of
Tk . As each pseudo-differential operator P € W (U) has a distribution kernel,
we do not have to invoke the reflexivity of the space C2°(U) to establish the
existence of the adjoint operator P!. However, the above reasoning puts the
existence of an adjoint operator in a general framework.

In the following proposition an important role is played by the continuous
linear map e!P=%) ¢ End(S'(R*")), defined by

fo€<Dx’85> = eiiéoj:,

where F denotes the Fourier transform &'(R*") — S’'(R?"). For details we refer
to the appendix to this lecture. For a proper understanding of the proposition

below, we mention that e{P=%) maps S¢(U) continuously into S%(U). Moreover,
for each p € S4(U),

1 1
D0, k _
el 5>p~§ M(Dx,@g) = g a!D;“@g‘.
k>0 aenn

Proposition 6.2.2.
(a) Let p € S4U). Then
U=,  with g=eP%p"  pY(2,8) =p(z,—0).

(b) Let P € Y4(U). Then Pt € W(U). If p € S4(U) represents the full symbol
of P, then the full symbol of P! is given by the expansion

—1)lel
(P )~ Y I pegpta, )

aeNn
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Remark 6.2.3. Here we recall that the full symbol of P? is defined modulo
S7°(U) hence is completely determined by the given expansion.

Proof Since pr;(p) has compact closure, p defines a tempered distribution on
R?" = R™ x R". We denote the variables in R?" by (z,¢) € R"® x R™. The Fourier
transform of R?" defines a continuous linear isomorphism S(R?") — S(R?").
We agree to denote the (dual) variables on the Fourier transform side by (Z, é)
Let F; denote the Fourier transform with respect to the first variable z (or Z)
and F; the Fourier transform with respect to the second variable £ (or £ ). Then
both partial Fourier transforms F;, F2 are readily seen to be topological linear
automorphisms of S(R?") and we have

(6.4) F=FoF.

By transposition we see that all these remarks extend to tempered distributions.
In particular, Fop € S’(R?") and we see that the kernel K, = L1 Fop of v, is
a tempered distribution as well. Let

Kl =7.K, q=F;"L.(K}).

Then ¢ is a tempered distribution on R?". We will show that actually ¢ € S¥(U).
Then by it follows that ¥, has kernel Klﬁ hence is the transposed of V.
We note that Foq = L.7.L;'Faop. Applying F; to both sides, and using
(16.4) we see that
Fq= AL L F Fp.
To understand the composition of operators acting on Fp, we note that
FiLorn LA Fi = Fi(Loro LY, Fi = [Fi (LoTo LY A

Now Lo7o LY (z,y) = (z +y, —y). It follows that for f € S(R?*") we have

FMLoroL Y Rf@E) = [ R é-d)ds
= / eim_ié’?flf(:c, —é) dx
T
= ¢ 85 f(2.6),
where we have used the notation Ss for the map (x,§) — (z,—&). By transpo-
sition we now see that

[Fr (LoTo L) F)' = €45,
so that A
Fq = €Sy, Fp = FleP%pY],
see appendix to this lecture. This proves the identity (a).
We turn to (b). Let P € ¥4(U) and let p € S%(U) represent its symbol.
There exists a symbol p’ € S%(U) such that P’ = VU, is properly supported
and such that P — P/ =T € U=, It follows that p — p’ € S™°(U), so that

p’ represents the symbol of P as well. The adjoint of T has a smooth kernel,
hence belongs to ¥~°°. Thus, it suffices to show that P’ has an adjoint which is a
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pseudo-differential operator with the required symbol. We thus see that without
loss of generality we may assume that P equals ¥, and is properly supported.
Let {1;} be a partition of unity on U. Then each P; := My, o ¥, is properly
supported and of the form P; = ¥, with symbol p;(z,§) = v¥;(x)p(x,§). Let
K be the distribution kernel of P;, then K; = (1; ® 1)K p. From the fact that
P is properly supported, it follows that the collection of subsets pry(supp K)
is locally finite in U. We also note that p = > i P with locally finite sum.
It follows from (a) that Pjt = W,,, where q; = e(Dz:0¢)
each ¢; has an asymptotic expansion of the form
1 a o (_lﬂa| a o
q; = Z aDa:af [pj(xa _g)] = Z al Dacagpj(xa —5)

a€eNn a€ENn

p; . This implies that

We note that prq(suppg;) C pry(K;); hence the collection pr;(supp (g;)) is
locally finite.
We define
(-l
al

Ga(@,§) := D3 0¢pj(x, =€)

This sum is locally finite in the z-variable, hence defines an element of S(U).
Let ¢ € S%(U) be a symbol with

qn~ }E: do-
aeN"™
Then ¥, € ¥4(U). We claim that ¥, — Wl € U, To see this, let ¢ € C(U).
Then M, 0¥, has symbol pq and
t t
MpoWh =3 MyoWhoMy, =% MUy =Wy o,
J J
which is a finite sum. Since ¢q ~ Zj ¢gq; by construction, it follows that
MyoWy — MyoWh € U=(U) for all p € C°(U). This implies that ¥, — ¥l €
U~>°(U) and the proof is complete. O

Exercise 6.2.4. Let P be a differential operator of order d on U with full
symbol p. Show by direct calculation that the full symbol ¢ of the transposed
operator P! is given by the formula

—1)lel
w6 = Y C peogpta ).

aeN™

Show that the terms in the above series are zero for |o| > d.

Let P € U4(U). We define the conjugate P of P by the formula

P(f)=P(f), (feC=)).
It is readily seen that the kernel of P is given by Kp = Kp (which should be
interpreted in the sense of distributions). If p € S%(U) then it is readily verified
that

\I’p — \Ijﬁ\/
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Exercise 6.2.5. Verify this.

Thus, @p is a pseudo-differential operator. In general it follows that the
conjugate of any pseudo-differential operator P is a pseudo-differential operator
again. Moreover, its full symbol is given by

U(P)(l‘7§) = U(P)(x7 _5)
We now define the adjoint P* of P by P* = P!. Then it is readily checked that

<Pfag>L2 = <fa P*g>L27 (f?g € CSO(U))
where we have used the notation (f,g);2 = (f,g) for the usual sesquilinear
pairing.

Corollary 6.2.6. Let P € U(U). Then the adjoint P* belongs to $4(U) and
its full symbol is given by
* 1 aga DY
a(P*)~ ) —D2oga(P)
acN"

Proof This follows from the discussion preceding this corollary, combined
with Proposition O

Corollary 6.2.7. Let P € W4(U). Then P extends uniquely to a continuous
linear operator E'(U) — D' (U).

Proof The transposed P! is a pseudo-differential operator, hence defines a
continuous linear operator C°(U) — C*°(U). Its transposed (P*)! is a continu-
ous linear operator &'(R™) — D'(R™). Clearly, it restricts to P on C2°(U). This
establishes existence. Uniqueness follows by density of C°(U) in £'(U). O

6.3. Pseudo-locality

In the sequel our view-point will be that a pseudo-differential operator on a
manifold M is an integral operator with distribution kernel K on M x M, with
K smooth away from the diagonal, whereas along the diagonal the operator is
described as in the local setting.

If F is a smooth vector bundle on a smooth manifold M, then by I'"*°(E) we
denote the space of generalized sections of E. Let u € I'"°°(E) be a generalized
section. Then wu is said to be smooth on an open subset U C M if yu € I'*°(E)
for all x € C°(U). The generalized section u is said to be smooth at a point
x € M if their exists an open neighborhood U > z such that u is smooth on U.
The singular support of u, denoted singsupp (u), is defined to be the subset of
x € M such that u is not smooth at x. Clearly, singsupp u is a closed subset of
M.

Definition 6.3.1. Let E,F be vector bundles on a smooth manifold M. A
linear operator T': I',*°(E) — I'"°°(F) is said to be pseudo-local if

singsupp 7w C singsupp u, for all weTl_ *(FE).

Corollary 6.3.2. Let P € W4(U). Then the operator P : &' (U) — D'(U) is
pseudo-local.
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Proof The adjoint operator P has a distribution kernel K € D'(U x U) which
is smooth outside the diagonal of U.

Let u € &'(R™) have singular support equal to A. Then A is contained in
supp u, hence compact. Let x € R™ \ A. Then there exist open neighborhoods
Uy of x and Uy of A in U such that Uy N Uy = (). Let ¢ € C°(Uy). Then it
suffices to show that ¢V, (u) is smooth. Fix ¢ € C°(Usy) such that ¢ = 1
on an open neighborhood of A. Then (1 — ¢)u is in C°(R™) hence P((1 —
Y)u) € C°(U). Thus, it suffices to show that ¢ P(¢u) is smooth. The function
k:(z,y) — @(x)Y(y)K(x,y) is smooth on U x U, since ¢ ® 9 is supported in
Uy x Us € U x U\ diag (U).

Moreover, for all f € C°(R"™) we have

(pP(Yu), f)

= (Tx(u), f),

where T}, denotes the integral operator with smooth kernel k. It follows that

pP(yu) = Tj(u).
Since T} (u) is smooth, the result follows. O
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Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric n X n matrix with complex
entries and with Re (A, &) > 0 for all £ € R™. Here (-, -) denotes the standard
bilinear pairing C" x C® — C. The function

(6.5) 21 (469

is bounded on R"™. Moreover, every derivative of is polynomially bounded.
Hence, multiplication by the function defines a continuous linear endomor-
phism M (A) of the Schwartz space S(R™). As the operator M (A) is symmetric
with respect to the usual pairing S(R™) x S(R™) — C defined by integration, it
follows that M (A) has a unique extension to a continuous linear endomorphism
S'(R") — S'(R™).

Clearly, M(A) leaves each subspace L?(R"), for s € R, invariant and re-
stricts to a bounded linear endomorphism with operator norm at most 1 on
it.

We define E(A) to be the unique continuous linear endomorphism of &'(R™)
such that the following diagram commutes

SR SR
F1 T]—'
SE®Y =2 SR

As F restricts to a topological automorphism of S(R™) and to an isometric
automorphism isomorphism from H(R") onto L2(R"), it follows that F(A)
restricts to a bounded endomorphism of Hg(R™) of operator norm at most 1.
Furthermore, E(A) restricts to a continuous linear endomorphism of S(R"™).

If ¢ € S(R™), then clearly 0, M (tA)p + (A, §) M (tA)p = 0. By application
of the inverse Fourier transform, we see that for a given function f € S the
function f; := E(tA)f satisfies:

Oift = —(AD,D)f;, where — (AD, D)= ZAijajai.
ij

We note that fy = f, so that f; may be viewed as a solution to the associated
Cauchy problem with initial datum f.
For obvious reasons, we will write

E(tA) — E7t<AD,D>

from now on. The purpose of these notes is to derive estimates for &/ which are
needed for symbol calculus.

Lemma 6.4.1. The operator ¢/AP:P) . S'(R") — S'(R™) commutes with the
translations T, translations and the partial differentiations 0;, for a € R™ and
1<j<n.

Proof This is obvious from the fact that translation and partial differentia-
tion become multiplication with a function after Fourier transform; each such
multiplication operator commutes with M (A). O
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Lemma 6.4.2. Assume that A is non-singular. Then the tempered function

T e~ AZ2)/2 pos Fourier transform

F(emAnal/2) = ¢(A)e (BE4)/2
with ¢(A) a non-zero constant.

Remark 6.4.3. It can be shown that ¢(A) = (det A)~'/2, where a suitable
analytic branch of the square root must be chosen. However, we shall not need
this here.

Proof For v € R" let 0, denote the directional derivative in the direction v.
Thus, 0, f(z) = df (x)v. Then the tempered distribution f given by the function
x — exp(—(Ax,z)/2) satisfies the differential equations 0,f = —(Av,x)f. It
follows that the Fourier transform fsatisﬁes the differential equations (v, & >J?:
—8Avafor all v € R", or, equivalently, 0, f = —(Bwv, &) f. This implies that the
tempered distribution

o= 6(36,5)/2f
has all partial derivatives equal to zero, hence is the tempered distribution
coming from a constant function c(A). O

Proposition 6.4.4. For each k € N there exists a positive constant Cy > 0
such that the following holds. Let A be a complexr symmetric n X n-matriz with
ReA > 0. Let f € S(R) and let x € R™ be a point such that the distance d(z)
from x to suppu is at least one. Then

(6.6) e AP f(2)] < Cpd(x) * | A+ olax, sup | D f1.

Proof The function e_<A5’5>]?in S(R™) depends continuously on A and hence,
so does e!4DP:D) £ We may therefore assume that A is non-singular.

As e~ 4D:D) commutes with translation, we may as well assume that z = 0.
We assume that f has support outside the unit ball B in R™.

For each j let €1; denote the set points y on the unit sphere S = 9B with
|(y,ej)| > 1/2y/n. Then the U; form an open cover of S. Let {1;} be a partition
of unity subordinate to this covering and define x; : R™\ {0} — R by x;(y) =
¥ (y/|lyll). Then each of the functions f; = x; f satisfies the same hypotheses as
f and in addition, [(y,e;)| > |y|/2/n for y € supp f;. As f =3, f;, it suffices
to prove the estimate for each of the f;. Thus, without loss of generality, we
may assume from the start that there exists a unit vector v € R™ such that

[(y, v)| > |y|/2+/n for all y € supp f.
‘We now observe that

e—(AD,D)f(O) _ /€—<A€,£>]?(§) d¢ = c/e—<By,y>/4 f(y) dy,

where B = A~!. The idea is to apply partial differentiation with the directional
derivative 04, to this formula. For this we note that

2
(v, )

e~ (Buy)/4 — _ Oppe Byy)/4
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on supp f, so that, for each j > 0,
e UPPIf(0) = e / e BRI (v, )" 0acl £ (y) dy
=[PP (v, )T 0a,) 11(0).

By using the Sobolev lemma, we find, for each natural number s > n/2, that
e= AP p0)] < ¢ max D= APP (v, )7 Da,) £l 2

- C'Imlzlee ADD) D (v, )" Da0)? f 12

< C'max||[D*((v, ) Ou0) f| 12

la|<s
By application of the Leibniz rule and using that |[(v,y)| > |ly||/2v/n and ||y|| >
d > 1 for y € supp f, we see that, for j > 2n,
e AP £(0)] < Ol AP d™?*7T max sup |D*f|.
lof<s+j
We now take j = s + k to obtain the desired estimate. ([l

Our next estimate is independent of supports.

Lemma 6.4.5. Let s > n/2 be an integer. Then there ezists a positive con-
stant with the following property. Let A € M,,(C) be symmetric with Re A > 0.
Then for all f € S(R™) and all z € R™,

=P f(2)] < C'max | D [ 2.
la|<s

Proof By the Sobolev lemma we have
PP f@)] < Cmax | DUl
S

|a|<

= Cmax|le” (ADD)Y o £
lal<s

< Cmax D% 2
|| <s
O

Corollary 6.4.6. Let s > n/2 be an integer and let C > 0 be the constant of
Lemma[6.4.5. Let K C R"™ a compact subset. Let A € M,(C) be symmetric
and Re A > 0. Then for every f € Ci(R"), the distribution e~ ADD) ¢ 4 g
continuous function, and

e~ APD) £(2)] < C \/vol (K) lr;l‘z?;suMDaf\, (x € R™).

Proof We first assume that f € C9(R™) with K’ compact. Then by straight-
forward estimation,

D% fl 2 < vol (K) sup | D f|
and the estimate follows with K’ instead of K. Let now f € Cg¢(R™). Then
by regularization there is a sequence f, € Cg° (R"), with K, — K and f, —
f in C*(R™). By the above estimate, the sequence e~ ¢AP:P)f, is Cauchy in
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C(R™). By passing to a subsequence we may arrange that the sequence already
converges to a limit ¢ in C'(R™). By continuity of e~ (4P in §'(R™) it follows
that ¢ = e 4D:D) £ The required estimate for ¢ now follows from the similar
estimates for e=AD:D) £ by passing to the limit for n — co. O

In the sequel we shall frequently refer to a principle that is made explicit in
the following lemma.

Lemma 6.4.7. Let L : S'(R") — S'(R™) be a continuous linear endomor-
phism. Let V,W be linear subspaces of S'(R™) equipped with locally convex
topologies for which the inclusion maps are continuous. Assume that C°(R"™)
is dense in V and that W is complete. If L maps C°(R™) into W, and the
restricted map Lo : C°(R™) — W is continuous with respect to the V-topology
on the first space, then L(V) C W.

Proof The restricted map Lo has a unique extension to a continuous linear
map L : V — W. Thus, it suffices to show that L; = L on V. Fix ¢ € S(R").
Then, the linear functional (-, ) is continuous on W. It follows that the linear
functional p on C2°(R™) given by u(f) = (L1 f,¢) is continuous linear for the
V-topology.

From the assumption about the continuity of L is follows that the functional
v: f— (Lf,p) is continuous for the §'(R™) topology. In particular, this implies
that v is continuous for the V-topology.

As p=v on CX(R™) and C(R") is dense in V' it follows that L; = L on
V. O

If p € N we denote by C}(R™) the Banach space of p times continuously
differentiable functions f : R" — C with max|, <, sup |D“ f| < oo.

Proposition 6.4.8. Let s > n/2 be an integer. Then there exists a constant
C > 0 with the following property. For each symmetric A € M,,(C) with Re A >
0 and all f € C¥(R™) the distribution e~ ‘AP f is continuous and

le”“UPP ()] < Ol A|I* max sup D 1.

For x with d(x) := d(x,supp f) > 1 the stronger estimate is valid.

Proof As in the proof of the previous corollary, we first prove the estimate
for f € C°(R™). By translation invariance we may as well assume that x = 0.

We fix a function x € CZ°(R"™) which equals 1 on the unit ball and has
support contained in K = B(0;2) and such that 0 < x < 1. Then the desired
estimate follows from combining the estimate of Corollary for x f with the
estimate of Proposition with £ =0 for (1 — x)f.

By density of C2°(R") in C2(R") it follows that e~ APP) maps C3(R™)
continuously into C,(R™), with the desired estimate (apply Lemma [6.4.7). As
CZ(R™) is not dense in C}(R™) we need an additional argument to pass to the
latter space.

Let x be as above, and put x,(z) = x(x/n). Then it is readily seen that
Xnf — fin S'(R"). Hence e~ (AD:D) £ e=(AD.D) £ in S/(R™). Tt follows by ap-
plication of Proposition [6.4.4] that for each compact subset K C R™ the sequence
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e~{ADD) £ 11 is Cauchy in C(K). This implies that e~ (4P-P) £ converges to a
limit ¢ in the Fréchet space C(R™). In particular, ¢ is also the limit in S'(R™)
so that e~ {4D:D) f — o is a continuous function.

We now note that by application of the Leibniz rule,

sup [D° fo| < sup [D*f| + O(1/n).

Hence the desired estimate for f follows from the similar estimate for f, by
passing to the limit. O

Theorem 6.4.9. Let s > n/2 be an integer and let k € N. Then there exists
a constant Cy, > 0 with the following property. For each symmetric A € M,,(C)
with ReA > 0 and all f € C§s+2k(R”) the function e ‘APD) £ s continuous,
and

1 .
e PP f(@) = 3 (~(AD, D)V f(@) < Cill A|l* max sup |D*(AD, D).

j<k‘7'

Proof Let Ri(A)f(z) denote the expression between absolute value signs
on the left-hand side of the above estimate. We first prove the estimate for a
function f € C°(R™). The function

filw) = e AP (z)
is smooth in (¢,z) € [0,00) x R™ and satisfies the differential equation

Ocfr(z) = —(AD, D) fi(z).

By application of Taylor’s formula with remainder term with respect to the
variable t at t = 0, we find that

. 1 1
file) = Yoo - = [ =0 o) an

|
J<k )!
This leads to

1

1
mmm@::%_mﬁa—m*emamﬁmwﬁ

1 1
- =T /0 (1= t)k=1 ¢=HADDY(_(AD, D) f(a) dt.

By estimation under the integral sign, making use of Proposition [6.4.8, we now
obtain the desired estimate for f € C2°(R"™). For the extension of the estimate to
C25+2k(R™) and finally to C’fswk (R™) we proceed as in the proof of Proposition
6.4.8 O
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6.5. The exponential of a differential operator in symbol space

Let K be a compact subset of R” and let d € R. Then the space of symbols
S,“é (R™) is a subspace of the space of tempered distributions &'(R?"*) with con-
tinuous inclusion map. Indeed, if p € SE&(R™), then for all ¢ € S(R") we have

(p,p) = /R%p(xyf) o(x,§) dr d§

IN

[ I e 10 + (o D ol )] o

< C H%,O(P) V|d|+n+1,0(90)7

with C' > 0 only depending on n, K and d.
We consider the second order differential operator

Thus, with notation as in the previous section, (D, 0¢) = —(AD, D), where

. 0o I,
A:z<In 0 ),

with I, the n X n identity matrix. The matrix A is complex, symmetric, and
has real part equal to zero, hence fulfills all conditions of the previous section.
Moreover, its operator norm || Al| equals 1.

In the rest of this section we will discuss the action of e(P=%) on S&(R™).
The following lemma is obvious.

Lemma 6.5.1. For each k € N,
Dx, O¢) = Z Daaf
|a]= e '

In particular, (Dy,0¢) defines a continuous linear map S4(R™) — S4=k(R"),
preserving supports.

Theorem 6.5.2. Let k € N. Then
1
(6.7) Pl — 3" — DI,
lal<k

originally defined as an endomorphism of S'(R™), maps SE(R™) continuous
linearly into S**(R™). In particular, e!P=%)
map SEL(R™) — SIRM).

restricts to a continuous linear

Before turning to the proof of the theorem, we list a corollary that will be
important for applications.

Corollary 6.5.3. Let p € SE(R™). Then etP=%)p € S4R") and

1
ePrdlp S | —DROEp

aeN?
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We will prove Theorem through a number of lemmas of a technical
nature. The next lemma will be used frequently for extension purposes.

Lemma 6.5.4. Let K C U be compact and let d < d'. Then the space CR°.(R")
is dense in S,%(U) for the topology of S%(U).

Proof Letp € SE(U). Select ¢ € C2°(R™) such that ¢ = 1 on a neighborhood
of 0. Put ¢, (§) = ¢ (§/n) and

pn(l’, f) = ¢n(§)l’(9€7 5)

Then by an application of the Leibniz rule in a similar fashion as in the proof
of Lemma 4.1.9, it follows that I/,Cgvk(pn —r) —0asn— oo, for each k € N. O

The expression (6.7]) is abbreviated by Ry(D). It will be convenient to use
the notation

CR(R*™) == {f € CZ(R*") | supp f C K x R"}.

Lemma 6.5.5. Let k € N. Then for each d < k the map Ry(D) maps SE(R™)
continuous linearly into Cy(R?™).

Proof Let s> n/2 be an integer. Let f € C,%f’c(R2"). Then by Theorem

RUDIf @8] < C max - sup D20 (De 00" f (2. 9)

< O max  sup [DITOIYf(x,€)]
Mol +I81<25 =k oxn

< sup (14 [|¢[))** V/Cé,25+2k(f)

k max
| +IB1<2s,]v|=k KKxRn

< G Vlcé,2s+2k(f)'
It follows that the map Ry (D) is continuous Cg°, (R27) — Cy(R?™), with respect
to the S,%(R")—topology on the first space, for each d < k.
Let now d < k and fix @ with d < d’ < k. Then by density of CR°,(R*")
in S&(R?") for the S,‘g (R2™)-topology, it follows by application of Lemma
that Rj(D) maps SE(R™) to Cy(R") with continuity relative to the S¢ (R™)-

topology on the domain. As this topology is weaker than the original topology
on SE(R™), the result follows. O

Lemma 6.5.6. Letd € R and assume that k > |d|. Let s be an integer > n/2.
Then there exists a constant C' > 0 such that for all f € Cg.(R") and all

(z,€&) € R?"™ with ||€|| > 4 we have

(6.8) |Ri(D) f(2,€)] < C(L+|ENF 1 50k (f)-

Proof Let x € C°(R") be a smooth function which is identically 1 on the
unit ball of R™, and has support inside the ball B(0;2). For ¢ > 0 we define
the function y; € C°(R™) by x¢(£) = x(t71€). Then x;(¢) is identically 1 on
B(0;t) and has support inside the ball B(0;2t). We agree to write ¢ = 1—x and
Py (€) = p(t71€). In the following we will frequently use the obvious equalities

sup |0 x| =t~ sup|9¢x|,  sup|dfa| =t~ sup |9,
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Let f € C,%?C(IR{"). Then f is a Schwartz function, hence e(P=9%) f is a Schwartz
function as well, and therefore, so is Ri(D)f. For ¢ > 0 we agree to write
fe(2,8) = x¢ (&) f(z,t) and gi(x, &) = Ye(§)) f (2, ). Then f = f; + g¢. From now
on we assume that (z,&) € R?", that ||| > 4 and t = 1[|¢|.

We will complete the proof by showing that both the values |Ry (D) fi(x, &)|
and |Ri(D)g:(z,€)| can be estimated by C’V,Cé72s+k(f) with C" > 0 a constant
independent of f,x,£. We start with the first of these functions. As f; has
support inside B(0;2t) = B(0;]|£]|/2), it follows that d(&,supp fr) > ||£]|/2 > 2.
In view of Proposition [6.4.4] it follows that there exists a constant Cy > 0, only
depending on k, such that

|Re(D) f(z,8)| = [|eP=%) f(z,¢)|

< C 2)~F max up | D26”? f

> k(”f”/ ) o |,3|E;28 ks p| T g(Xt )‘

< CL(1+ —k max sup |07 e D202 ,
< Gl 11€11) o+ |51 40| <25+K p| e Xt Lz O f]

with C}, > 0 independent of f, x and &. For n € supp x; we have ||n| < ||£]|/2,
so that

10 (m) DEOE F(y,m)| < CReT 1B 4 Iyl oy ()
< O+ €N/ i ()
< O (L 1€ 2 ()-
It follows that
|R(D) fo(w, &) < C"(1+ €)' 1 oo ()
We now turn to g;. By application of Theorem [6.4.9|it follows that

| Bk (D)(g:) (2, €)

< Dy max sup|Dg0g (Do, 0)" (vrf)]

< D, max sup 8'7+6 ¢tDa+fyf
F ol 181 <25, lvI=k [0 (e DF )

To estimate the latter expression, we concentrate on

(6.9) 02 (D™ ) ()],

for y € K and n € R™. Since +(n) equals zero for ||n|| <t = ||€||/4 and equals 1
for ||n|| > 2t = ||€]|/2, we distinguish two cases: (a) ||£]||/4 < ||n]| < [|£]|/2 and

(b) [Inll = [I€1l/2.

Case (a): the expression can be estimated by a sum of derivatives of the
form

(O ) DSTVOL fy,mls (2 =7+ 0),
with suitable binomial coefficients. Now

(07 ) DI fy,m)| < Dt (@ ()™ 2l o o ()
< DY@+ e @+ lgnd=elvd o on (F)
Dy'(1+ Hf”)d_kVi%,szrzk(f)'

IN
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Case (b): we now have that equals |D§+78g+ﬁf(y, n)|, and can be esti-
mated by

IN

DT f) () + D 5o ()
)

(1

(1+ H77H)|d|_k’/i%,25+2k(f
1+ H§H/2)d_kV/%,2s+2k(f)
D(1+ H§||)d_k’/lcé,25+2k(f)-

ININ A

Collecting these estimates we see that

|[Ri(D)gi(, €)] < D'(1+ [I€1D)1 7 v o (),
with D’ > 0 a constant independent of f,z and &. O

Corollary 6.5.7. Let d,k and s be as in the above lemma. With a suitable
adaptation of the constant C' > 0, the estimate holds for all (z,&) € R?™.

Proof It follows from Lemma and its proof that there exists a constant
Cy > 0 such that |Rg(D)f(x,€)| < 01V%725+2k(f). We now use that

(14 [l 4=* > sldI=+
for all ¢ with |¢|| < 4. Hence, the estimate (6.8) holds with C' = 5¥=14Cy for
1€l < 4. 0

Corollary 6.5.8. Let d € R and m € N. Then there exist constants C > 0
and 1 € N such that for all f € CF(R") and all (z,§) € R?" we have

(6.10) |Rin(D) f (2, €)] < CL+ (€)™ o (f)-

Proof Let s be as in the previous corollary. Fix k& € N such that |d| — k <

d —m. Let now C’ > 0 be constant as in the previous corollary. Then for all
f € CF.(R") we have

[Re(D)f (2, 6)] < C"(1L+ €N 1k agsam (), ((w,6) € R™).
On the other hand,

Rn(D) — Ry(D) = Z (Dy, Oc)’

k<j<m

is a continuous linear operator S (R™) — S,‘é_k(R"). In fact, there exists a
constant C” > 0 such that

|Ryn (D) f(f(2,€) — Re(D) f(2,€)] < C" (1 + [|E1N"* 1 g_a(f)

for all f € SL(R") and (z,&) € R?™. The result now follows with C = C’ + C”
and with [ = max(2s + 2m, 2m — 2). O

After these technicalities we can now finally complete the proof of the main
theorem of this section.
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Completion of the proof of Theorem Let k € N, let a, 8 € N” and
put m = k — |3]. Then by the previous corollary, applied with d — || in place
of d there exist constants C' > 0 and I € N such that for all f € CR° (R") and

all (z,€) € R?",
[Ru(D)f(x,€)] < (1+ [l€l)* 1w 7 ).

Moreover, by definition of the seminorms,

18l o
v DR F) < vty ()
for all f € CR(R"). Combining these estimates and using that Ry(D) com-

mutes with Dg@? , we find that

D20/ R(D) f(,€)] = Ri(D)[D30; fl(x,€)
d
< Cvkiyialris ()
for all f € C (R") and (z,§) € R2",

It follows from the above that for each d’ € R the map

Rk+1(D) . C;%?C(Rn) N Sd'—(k-‘rl)(Rn)
is continuous with respect to the S,‘é, (R™)-topology on C,%?C(R”). In particular,
this is valid for d' = d + 1. As CR°(R") is dense in SE(R™) with respect to the
topology of S,‘é“(R”), it follows by application of Lemma [6.4.7| that Ry1(D)
maps SE(R™) into SF(R™) with continuity relative to the S¢ (R™)-topology

on the first space. As this topology is weaker than the usual one, we conclude
that Rgy1(D) : SE(R™) — S4=F(R™) is continuous. Now

Rp41(D) — Rp(D) = (Dy, 9)*

is continuous S(R™) — S9=*(R") as well, and the result follows. O







LECTURE 7
Pseudo-differential operators, continued

7.1. The symbol of the composition

In this section we will investigate the composition P o Q of two pseudo-differential
operators P, € U(U); here U C R" is an open subset. We first assume that
P=3,and Q =¥, withp € S4(U) and ¢ € S¢(U), where d, e € R. In general
the operator ) maps C°(U) to C*°(U), but not to C2°(U). For the composi-
tion to exist we therefore require that the projection pr;(supp ¢) has compact
closure A in U. Then ¥, maps C°(U) to CP(U) and PoQ is a well-defined
continuous linear operator C°(U) — C*(U).

Proposition 7.1.1. Let p € SYU) and q € S¢(U). Then ¥,0¥, = V,., with
re Sd+e(U) given by
(7.1) r(x,€) = e Pr%)p(z, )q(y, n)ly=am—e-
In particular, pry(suppr) C pr;(suppp) and
1., a
aeNn

As a preparation we prove the following result.

Lemma 7.1.2. The Fourier transform of the function u : R** — C, (z,€) —

€% (which defines a tempered distribution) is given by Fu(i, &) = e %%,

Proof Let Q:={z € C|Rez > 0}. For z €  the function v, : > e °/2
defines a function in S(R). By checking the Cauchy-Riemann equations relative
to the variable z, using differentiation under the integral sign, we see that for
T € R, the Fourier transform

Fo.(2) = / e eI gy
R
depends holomorphically on z € Q. For z € RN we find, by the substitution
of variables  — 2=/, that Fv,() = 2~ Y/2Fuv; (2~ /%), hence
(7.2) Fu (&) = 27 V2 %/22,
107
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By analytic continuation in z the latter formula is valid for all z € Q, provided
the branch of z — z'/2 over Q which is positive on RN is taken. If f € S(R)

then by continuity of z — (Fuv,, f) = (v, Ff) we conclude that formula (7.2
remains valid for z € Q \ {0}, provided the continuous extension of the fixed
branch of the square root is taken. In particular we find that

Fui(2) = o Ti/4 ez’f:2/2, Fo_i(2) = eTi/4 e—z‘g:fé’/z'

We now turn to the function u. Let a : R?® — R?" be the linear map defined
by a(z,§) = (z + &z —€)/v2. Then

[a*u)(2, &) = 2 = T wi(g)v-ila)):

j=1

Therefore,

Flau)(@,€) = [[ €77 = [a"u)(=2,¢).

j=1

By orthogonality of a we have that Foa* = a* o F on §(R), hence also on S’'(R),

and the result follows. O

We also need an extension of the convolution product in order to be able
to convolve tempered distributions with Schwartz functions.

Lemma 7.1.3. The convolution product * : S(R") x S(R™) — S(R") has a
unique extension to a continuous bilinear map S(R™) x §'(R") — S'(R™). For
this extension, denoted by * again,

F(f xu) =Ff Fu, (f € S(R"), u e S'(R")).

Proof The multiplication map (f,u) — fu, S(R") x §'(R") — S'(R") is
readily seen to be continuous bilinear. Define ¥ = F 1o % o (F x F). Then ¥ is
continuous bilinear and extends the convolution product on S(R™), by Lemma
4.2.2(b). Uniqueness of the extension follows by density of S(R") in &'(R™). O

As a final preparation for the proof of Proposition we need the follow-
ing lemma.

Lemma 7.1.4. Let u € C®°(R?") be defined by u(z,€) := e %%, Then
ePed) f — s f  forall feS(R™).
Proof In view of the definition of the operator e(P+:%) ¢ End(S(R?")) (see Sec-

tion 6.4), this follows immediately by applicaton of Lemmas and O

Proof of Proposition We will first prove the result under the as-
sumption that both p and ¢ are smooth and compactly supported. Then
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p,q € C(R™). Let f € C2°(U). Then

0,0, f]() = / / €@ (z, €) [ f](y) dy d

— ///el TV p(, €) q(y, n) f(n) dn dy dé
= [ )T d,

where
(7.3) r(a,n) = / / FEDED (g €) gy, ) dedy.

Here we note that all integrands are compactly supported and continuous, so
all integrals are convergent, and the order of the integrations is immaterial. For
each (z,m) € R*™ we define R, : R*" — C by

Ran(y, &) = p(x,€)q(y; n)-

Then R, ;, is smooth and compactly supported. Moreover, can be rewrit-
ten as r(z,n) = [u* Ry,)(x,n), with u(y,&) = e %Y. In view of Lemma [7.1.4) -
above, this implies that

r(a,n) = [P0 Ry ) (2,m) = D% p(a, €)q(y, n)ly=r.=n,
which in turn gives (|7.1)).
Fix a compact subset K C U. Our next step is to extend the validity of ([7.1))
to (p,q) € SL(U) x S&(U). We will do this by using a continuity argument.
For p,q € S(U) we observe that, for each (x,7) € R™ x R", the function

(y,€) — p(z,€)q(y,n) belongs to S°(U) again, and we define the function
p(p,q) : U xR" — C by

(7.4) p(p, q)(x,€) = ePr%p(z, ©)q(y, n)ly=am—e-

In view of the lemma below, p has values in S°°(U) and maps SE(U) x Sg(U)
continuous bi-linearly to S ¢(U). Fix f € C2°(U). Then in view of the remark
below Definition 5.2.2 follows that

(7'5) (pv Q) = \Ilp(p,q)(f)

maps SE(U) x SE(U) continuous bi-linearly to C*(U), for all d,e € N.

On the other hand, for all d € N the map (r,g) — W,(g) is continuous
bilinear from S&(U) x C2°(U) to C(U) and by composition it follows that for
all d,e € N the map

(7.6) (P, q) — ¥ ¥,(f)

is continuous bilinear from S,%(U) x Sg(U) to C2(U). By the first part of the
proof the maps and are equal on Cg° (U) x Cg° (U). By density of
O (U) in S,%(U) for the SdH topology and in Sg(U) for the S¢t!-topology,
it follows that the equality extends to S&(U) x S&(U).

It follows that U,oW, = W, on CP(U), for all p € SE(U) and ¢ €
Sk (U)-
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Now assume more generally that p € S4(U) and that ¢ € S¢(U). Then by
using a partition of unity we may write p as a locally finite sum p = Zj Dj,
with p; € S4(U), and pry(suppp;) a locally finite collection of subsets of U.
For each j we have V). oW, = W, with r; given in terms of p; and ¢ as in
. In particular this implies that prq(suppr;) C prq(suppp;). It follows that
{pri(suppr;)} is a locally finite collection of subsets of U. Therefore, r =}, 7;

defines a symbol in S9T¢(U). Clearly, r satisfies || and U,o0W, = U,. O

Lemma 7.1.5. Let K C U be a compact subset. Then the map p defined by
maps SE(U) x Sg(U) continuous bilinearly to S,‘é“(U).

Proof By continuity of the map ePv%) : SL(U) — S4R") (see Theorem
6.5.2 there exist constants C' > 0,k € N, such that

(1 + €D [eP=% fl(x, &) < Cvg k()

for all f € SL(U), x € K and € € R™. Let p € S&(U) and q € S¢(U). Then
by application of the above estimate to f = fo : (v,€) — p(z,€)q(y,n), and
observing that

(1 + )~ VK g (fom) < VR (PIVEK(0),

we find the estimate

(7.7) L+ 1€~ <Ip(p, @) (2, €)| < Cvg 1 (PIVi (),

for all (z,&) € U x R™. (Note that the expression on the left-hand side vanishes
for x € U\ K. ) We now observe that for a, 3 € N” we have

o g
o= S (o) () )rexelnerota
a1tas=a
Br+pB2=p
Combining this with (7.7) we find that for every [ € N there exists a constant
C; > 0, only depending on [, such that

d d
Vicjrle/)(p, q) <CC V}C,k+l(p) Vlec,kH(Q)-

The asserted continuity follows. ([

Exercise 7.1.6. Give a proof of Proposition 6.2.2 based on the idea of con-
tinuous extension used in the above proof.

We recall that a pseudo-differential operator Q € W¢(U) has an operator
kernel Kg € D'(U x U) and is said to be properly supported if and only if the
projection maps pry, pry : supp (Kg) — R" are proper.

If B C U is compact then so is A := pr;(Kg N pry (B)) and it is easily
verified that @ maps C¥(U) into CF(U). Hence, @ is a continuous linear
endomorphism of C°(U). Thus, for any P € W4 (U) the composition PoQ is a
well defined continuous linear operator C°(U) — C*°(U).
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Theorem 7.1.7. Let P € ¥4(U) and Q € V*(U) be properly supported. Then
PoQ belongs to We(U). Moreover, the full symbol of PoQ is given by

1
o(PoQ)~ Y L00(P) Dio(Q)
aeNn
Proof In view of Lemma below, there exist symbols p € S(U) and ¢ €
S¢(U) such that P = ¥, and Q = ¥,. Let Kp € D'(U x U) be the distribution
kernel of P. Let {1;} be a partition of unity on U. Let p; = v;p; then P = Zj P;,
with P; = W,.. For each j the set A; := prQ(prl_l(supp ;) N supp Kp) is
compact and contained in U. Hence, there exists a x; € Cg°(U) with x; = 1 on
Aj. It follows that Pjo M, has kernel (¢; ® x;)Kp = (¢; ® 1) Kp hence equals
Pj. Therefore, Ppo = Ppoj, where Q = MXj OQ = \I/qj, with q; = Xj4- It
follows that PjoQ = V.., with r; € Sd+e(U) expressed in terms of p; and g; as
in formula (7.3). In particular, pry(supp (r;)) C supp¢;, so that r =, r; is a
locally finite sum defining an element of S%+¢(U). We now have that

U, =) PioQj=Y PjoQ=PoQ.
J J

on C°(U). From the construction, it follows that ¢; = ¢ on an open neighbor-
hood of supp #;, so that for all & € N we have

9¢p; Dyaj = 9¢p;D3q.
This implies that
1 1
SRV D) E-CONTE Db DET T
aeN™ 4 aeN™  j
1
= 2 %Dl
a€eN?
The result follows. OJ

Lemma 7.1.8. Let T € W=°°(U) be properly supported. Then there exists a
r € ST(U) such that T = V,.

Proof Let K be the integral kernel of T'. Fix a partition of unity {¢;} on U.
Then Kj(z,y) = v;(z) K (x,y) defines a smooth function with compact support
contained in prfl(supp ;) Nsupp K. By Lemma 5.2.5 (see also its proof) there
exists a p € S7°°(U) with pry(suppp) C pry(t;) such that Tk, = ¥,.. The
locally finite sum Zj p;j defines an element p € S7°°(U), and it is clear that
Uy =2V, =>;Tk; = Tk on C°(U). O

Lemma 7.1.9. Let d € RU {oc} and let P € W4(U) be properly supported.
Then there exists a p € SY(U) such that P = ¥,

Proof In view of the above lemma we may assume that d > —oo. Then by
Lemma 6.1.6 we may rewrite P as P = W, + T, with ¢ € S4(U) and T € ¥~
and with ¥, and hence also T properly supported. By the previous lemma
there exists a 7 € S7°°(U) such that 7' = ¥,. The lemma now follows with
p=q+r. g
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We can now deduce the important result that the principal symbol behaves
multiplicatively.

Corollary 7.1.10. Let P € V4(U) and Q € V¢(U) be properly supported.
Then PoQ belongs to Wite(U). Moreover, the principal symbol of PoQ of
order d + e is given by

o™ (PoQ) = 0 (P)o(Q).

7.2. Invariance of pseudo-differential operators

In order to be able to lift pseudo-differential operators to manifolds, we need to
establish invariance under diffeomorphisms. For this it will turn out to be useful
to have a different characterization of properly supported pseudo-differential
operators.

We recall the definition of the (Fréchet) space C*°(R™) ® S(R") = S~°(R")
given in the text before Exercise 5.1.4. Note that S(R™) may be identified with
the (closed) subspace of functions in C°(R™) ® S(R") that are constant in the
x-variable.

For ¢ € C*®°(R") ® S(R") the integral

W) = [ () do

is absolutely convergent for every z € X and defines a function W(p) €
C*°(R™). Moreover, by Lemma 5.2.1 the transform W is continuous linear from
C>®(R") ® S(R") to C=(R™).

We now define a more general symbol space as follows. We write (x, &, y) for
points in R3" ~ R™ x R" x R” and denote by % the space of smooth functions
R3” — C such that for all compact L C R" and all k € N,

(78) vl (r):= max sup  (1+[¢)/A70200 0l r (., y)| < .

’ o, 1B, 7Sk xR xK
Note that the symbol space S¢(R") may be viewed as the subspace of X% con-
sisting of functions that are constant in the y-variable.

Let now r € X% Then for each f € S(R") the integral

)= [ (a6 0)f ) dy

converges absolutely and defines a function in C*(R"™) ® S(R™). Moreover, the
map f +— r(-, f) is continuous for the obvious topologies.

The definition of pseudo-differential operator may now be extended to sym-
bols in ¥¢ by putting

(19) W@ =Wl )= [ [ g ) ) dyds

Note that if r is independent of the variable %, then r € S¢(R") and by carrying
out the integration over y we see that (7.9)) equals

[ e ot de
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which is compatible with the definition given before. In fact, we have not really
extended our class of operators. For L C R™ a compact subset, let E% be the
closed subspace of ¢ consisting of all functions r € 2% with suppr C KxR*x K.
Moreover, let ¢ be the union of the spaces E%, for K C R™ compact.

Proposition 7.2.1. Letr € E%. Then

p(xa 5) = e<Dy78§>’r($7 57 y)|y:x
belongs to SUR™), and ¥, = V,. In particular, ¥, belongs to W(R™) and its
full symbol is given by
1
o) ~ 3 DR (€ p) e
aeNn
To prepare for the proof we introduce the space
C,%?C(R?’") = {p € C(R*) | suppp C K x R™ x K}.

The following lemma is proved in the same fashion as Lemma 4.1.9.

Lemma 7.2.2. Let d > d. Then C,%f’c(R3") is dense in $¢ for the I
topology.

Proof of Proposition For r € Z% and fixed z € R" the function
re : (y,€) — r(x, & y) belongs to SY(R™). Moreover, = — 7, is a smooth map
R" — S&L(R"), supported by K and it follows that

z — elPvde) (1)
is a smooth map R" — S,%(R”). The function p = p(r) is given by the formula

p(r)(x,&) = P (r,) (x,€).

It is readily seen that 7 ~— p(r) is a continuous linear map L& — S (R™).
Fix f € CZ(R"). Then both r — W,(f) and r — W, (f) are continuous

linear maps £¢ — C°(R"), for every d € R. As C’,%‘jc(R‘g") is dense in $¢ for
the X%+ 1_topology, it suffices to prove the identity ¥, (f) = Wy (f) for every
p € CF (R®™).

Thus, let p € C,%?C(R?’") be fixed. Then

v, (f) = / / K@D (2, €, ) f(y) dy dé
_ / / Gy (4 €) / e F(n) d dy d

~

= /62"’“19(96,77)10(77) dn,
with

p(,m) = / / e i@ (4 ) dyde.
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Write u(y, £) = e~%Y, then it follows that

plz,n) = (u*ra)(z,m)
P00 (y,1)|y=2
= p(r)(z,n).
All assertions now follow. d

Corollary 7.2.3. Let p € S.(R"). Then ¥, is properly supported if and only
if there exists a r € E% such that

v, =1, on CX(R"™).
For any such r the d-th order principal symbol of p is represented by the symbol
("'E7 5) = ’r("’r7 57 x)'

Proof The only if part as well as the statement about the principal symbol
follows from Proposition above. For the if part, assume that W, is properly
supported. Let IC be a compact subset of R™ such that suppp C K x R™. Let
K, be the distribution kernel of ¥,,. Then K x R"™ Nsupp K, is compact, hence
contained in a product of the form K x K’, with K’ C R"™ compact. Let V be
any open neighborhood of K’ in R™. Then there exists a x € C2°(U) which is
identically one on a neighborhood of K'. It follows that the ¥, = ¥, o M, on
C2°(R™). This implies that for all f € C°(R"),

Up(f)(z) = Up(xf(x))
_ / (i, ) F(x f)(€) de

¢Ep(z, €) / e (y) f(y) dy de
= (),
with r(z,&,y) = p(z, &) x(y). =

We now turn to the actual proof of the invariance. Given two points z,y €
R™, we denote the line segment from x to y by [z,y]. Thus,
[z,y] ={z+tly—z) [t [0,1]}.
We agree to write M, (R) for the space of n x n-matrices with real entries, and
GL (n,R) for the subset of invertible matrices.
Lemma 7.2.4. Let U be an open subset of R™.

(a) There exists an open neighborhood Q2 of the diagonal diag (U) in U x U
such that (xz,y) € Q@ = [z,y] C U.

(b) If Q is any such neighborhood, and if f : U — R™ is a smooth map, then
there exists a smooth map T :  — M, (R) such that

f) = flz) =T(x,y)y—=z),  (r,y ).

(¢) Any continuous map T : Q@ — M, (R) with property (b) satisfies T(x,x) =
df (x) for allx € U.



LECTURE 7. PSEUDO-DIFFERENTIAL OPERATORS, CONTINUED 115

Proof Themap a:[0,1] x (U xU) — R"™ given by a(t,z,y) = =+ t(y — x) is

continuous and maps [0, 1] x diag (U) to U. The preimage a~!(U) of U under

a is open in [0,1] x U x U and contains [0, 1] x diag (U). By compactness of

[0,1] it contains a subset of the form [0, 1] x Q with © an open neighborhood

of diag (U) in U x U. For (x,y) € Q we have [z, y] = a([0,1] x {(z,y)}) C U.
Let f be as in (b). Then

1
f) - f(z) = /0 Ouf(x + tly — x)) dt = Tz, y)(y — ),
with .
T(x,y) = /0 df (x + t(y — x)) dt.

Clearly, T is a smooth map @ — M, (R).
Let now T : Q — M, (R) be any continuous map satisfying property (b).
Then for each v € R™ we have

df (z)v = %E)I(l) t U f(x+tv) — flx)] = %1_% T(x,x +tv)v =T(z,x)v.
([l

If o : M — N is a diffeomorphism of smooth manifolds, and P : C°(M) —
C>°(M) a continuous linear operator, then the push-forward of P by ¢, de-
noted ¢« (P), is defined to be the continuous linear operator ¢, (P) : C°(N) —
C*°(N) given by

pu(P)(f) = P(fop)op™".
Proposition 7.2.5. Let ¢ : U — V be a smooth diffeomorphism between
open subsets of R™, with inverse 1. Let Q be an open neighborhood of diag (V')
in VxV and assume that T : Q@ — GL(n,R) is a smooth map such that
Y(y) —Y(z) =T(x,y)(y — x) for all (z,y) € Q (such a pair Q, T exists). Let K
be a compact subset of U such that p(K) x ¢(K) C Q.

(a) For every d € N and r € S, the function ¢.(r) : R3 — C defined by

(,m,) = (W (@), T(a,y) 0,9 (y)) | det dyp(y)| | det Tz, y)|
on KK x R" x IC, and by ¢«(r) = 0 elsewhere, belongs to Ei(IC)‘
(b) For every d € N, the map 1 +— ¢.(r) is continuous linear L% — Eg(,c).
(c) For every d € N and all r € X4,
SO*(\IIT) = qj(,@*(?")'
(d) The principal symbol of p.(¥,) is represented by the symbol
(2,€) = r(¥(z), dp(¥ ()", Y ().

Proof The proof of (a) and (b) is straightforward, be it somewhat tedious.
Fix f € C°(V). Then the equality . (V,)(f) = ¥, (y(f) is equivalent to

(7‘10) \Ilr(f °© 90) oth = \Ilap*(r)(f)

The map 7 +— W,.(f o ) 09 is continuous linear X% — C(U) and so is the map
7= " (Vge(p), for every d € N. Now C,%‘”C(R%) is dense in ¥ for the X4F1-
topology. Therefore, it suffices to prove the equality |i forall r € CF° L(R3).
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Fix r € O (R*") and let x € U. Then
V(o)) = [ [0 r(w(a),6.2) Flp() ded
= [ [ i), wiw) F(0) | det do)| dyds
= [ [ e ), 6 w) Fo) |detduly)] dé dy
// Yo (r) (@, m,y) fy) dndy

50* (r (l’
This establishes (c).
For (d) we note that T'(z, z) = di(z) so that the principal symbol of ¥, ;)
is given by

(2,€) = pu(r)(2, & x) = (v (), dib(2) €, ¥(2)).
Now use that di(x)~! = dh((x)). O

Theorem 7.2.6. Let ¢ : U — V be a diffeomorphism of open subsets of R™.
Then the following assertions are valid.
(a) For each d € RU {—o0} and all P € W4(U) the operator .(P) belongs
to (V).
(b) Let the principal symbol of P be represented by p € SUU). Then the
principal symbol of p.(P) is represented by

() : (2. €) = ple ™ (2), dp(p™H (2))"€).
Proof Lety :V — U be the inverse to ¢ and let €2, T be as in the statement
of Proposition First, assume that d = —oo and let P € ¥~°°(U). Then P

is an integral operator Tk with integral kernel K € C*°(U xU). Let f € C>(V)
and x € V, then by substitution of variables

o(P)(f)() = / K(b(z), 2)f(p(2) dz
- / K((x), ¥(y))] det dw(y)| £(y)dy

from which we see that ¢, (P) is the integral transformation with smooth inte-
gral kernel K € C*°(V x V) given by

K(z,y) = K(¥(2), 9 (y)) | det dy(y)|.

We now assume that d € R and that P € ¥4(U). Then by Lemma 6.1.6 we may
write P = W, + T, with T € U=°(U) and p € S%(U) such that ¥, is properly
supported and has distribution kernel K, supported inside Qy := (o x )~ H(Q).
Since ¢, (T) is a smoothing operator by the first part of the proof, it suffices to
show that ¢.(¥,) € U4(V). For this we proceed as follows.

Let {x;} be a partition of unity on U such that suppx; x supp x; C Qu
for every j. For each j we select an open neighborhood U; of supp x; with
Uj x Uj C Qu and a function x; € C2°(U;) which is identically 1 on supp x;-
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Then P; = Pjo MX; +T7;, with T; a smoothing operator supported in supp x; xU;
and with Pjo M, = W,, where ;(z,&,y) = x;(z)p(=, §)X;(y)-

We now observe that K; = supp X is compact and that ¢(K;) x ¢(K;) C Q.
Morover, r; € Z%j. It follows that ¢.(¥,;) = U, ¢,
kernels of the operators 7} form a locally finite set, so that T = Zj T; is
a smoothing operator. Hence, so is ¢.(T"). The sum Zj P, is locally finite,
and therefore so is Q = >, ¢.(F;;). Hence @ € Ue(V). We conclude that

0« (P) = Q4. (T) is a pseudo-differential operator on V of order d. Its principal
symbol equals the principal symbol of (), which is represented by the symbol
q € S4(V) given by

q(a:,f) = Z@*(Tj)(xagvx)

)- The supports of the

= > (@), de($(@)'€, v (x))
J
= Y pi(W(x), de(())"€)
J
= p(v(x), dp((2))'€) = @u(p) ().

7.3. Pseudo-differential operators on a manifold, scalar case

In view of the results of the previous section we can now extend the notion of
a pseudo-differential operator to a smooth manifold M of dimension n.

Definition 7.3.1. Let d € RU {—o00}. A pseudo-differential operator P of
order d on M is a continuous linear operator C°(M) — C°°(M) given by
a distribution kernel Kp € D/(M x M,Cy; X Dy;) such that the following
conditions are fulfilled.

(a) The kernel Kp is smooth outside the diagonal of M x M.
(b) For each a € M there exists a chart (U, k) containing a such that the
operator P, : C°(k(U)) — C*(k(U)) given by

Pe(f)(6(@)) = P(for)(x),  (x€U)
belongs to W (k(U)).

Remark 7.3.2. Of course, by the Schwartz kernel theorem, each continu-
ous linear operator P : C°(M) — C°°(M) is in particular continuous linear
C*(M) — D'(M), hence given by a distribution kernel Kp € D'(M x M, Dy ®
Car). In the above formulation, the existence of the kernel is demanded in order
not to rely on the kernel theorem.

Condition (a) asserts that K p has singular support contained in the diagonal
of M, whereas condition (b) stipulates that the singularity along the diagonal
is of the same type as that of the kernel of a pseudo-differential operator on R".
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If p: M — N is a diffeomorphism then by the nature of the definition the
map ¢, : WY(M) — U(N) is readily seen to be a linear isomorphism. Be-
fore proceeding we will show that the definition of pseudo-differential operator
coincides with the old one in case M is an open subset of R™.

Lemma 7.3.3. Let M be an open subset of R™ and let P : C°(M) — C*>°(M)
be a continuous linear operator with distribution kernel Kp. Then the following
statements are equivalent.

(1) Conditions (a) and (b) of the above definition are fulfilled.
(2) P is a pseudo-differential operator in the sense of Definition 5.2.4.

Proof Clearly (2) implies (1), since M can be taken as the coordinate patch.
We assume (1) and will prove (2).

We first assume that d = —oo. Then requirements (a) and (b) of Definition
[7.3.3] guarantee that Kp is smooth on all of M, hence that P is an integral
operator with smooth kernel Kp € I'*°(M x M,Cp; W Dys). Thus, P is an
operator in W~ in the sense of Definition

We now assume that d € R. By Lemma 6.1.6 each a € M has an open
neighborhood U, in M such that the operator P, : C>°(U,) — C*(U,) given
by f — (Pf)|y, may be written as P, = ¥, + T, with p, a symbol in ¥¢(U,)
and with T,, € ¥~°°(U,) a smoothing operator.

By paracompactness of M there exists a partition of unity {x;} on M such
that for each j the support of x; is contained in some set Uy, as above. We put
P; = Po;, pj = pa; and Tj = Tj,,;. Then P; = ¥, + Tj. For each j we choose
a X;' € C*(Uj) such that X;' = 1 on an open neighborhood of supp x;. Then
X;i(1 = xj) = 0so0Tj := ijPM(lfx;) has kernel [x; ® (1 — ;)] p which is
smooth. The supports of these kernels form a locally finite collection, so that
T'" =73, T} is a smoothing operator.

Moreover, we may write

MonPoMX; :\I/qj —i—MonT'joMX;,

with ¢; € Se(M) supported by supp ;. It follows that ¢ = Zj g; is a locally

finite sum and defines an element of S%(M). Moreover, the smooth kernels of
the operators My, o T} OMX; are locally finitely supported in M x M so that

the operators sum up to a smoothing operator T. For f € C°(M) we now have
that

Pf= Z X POGH +T'(f) = Uo() + T(f) +T'(f)

j
and (2) follows. O

If M is a smooth manifold, P : C*(M) — C*°(M) a continuous linear
operator, and U C M an open subset, we agree to write Py for the operator
C*(U) — C*=(U) given by

Pyf=(Pfluv.  (feCU)).

The following results are now easy consequences of the definitions.
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Exercise 7.3.4. If K € D'(M x M) is the distribution kernel of P, then the
restriction K|y is the distribution kernel of Py.

Exercise 7.3.5. Let M be a smooth manifold, and U C M an open subset.
Then for each P € W¥(M), the operator Py belongs to ¥4(U).

In the sequel we shall make frequent use of the following results.

Lemma 7.3.6. Let P € V(M) and let x € C>®(M).
(a) Let p € C°(M) be such that suppv Nsupp x = 0. Then
My oPoMy e W >(M).
(b) Let x' € C°(M) be such that X' =1 on an open neighborhood of supp x.
Then
A{Xo})—-ﬂfxoljoﬂ4xle qrﬁm(ﬁl)
Likewise, Po My, — My o Po M, € U=(M).
(c) Let {P;} is a collection of operators from WI(M) such that the supports

supp Kp; of the distribution kernels form a locally finite collection of
subsets of M x M. Then

ZP]- e wd(M).

Proof Let Kp denote the distribution kernel of P. The distribution kernel K’
of the operator M, o P oM, equals K = (x ® ¥)Kp. Since x ® ¢ = 0 on an
open neighborhood of the diagonal in M x M, the kernel K’ is smooth. Hence
(a).

We turn to (b). There exists a function ¢ € C°°(M) such that ¢ = 1 on an
open neighborhood of supp x and such that ¥’ = 1 on an open neighborhood of
supp . It follows that (1 — x) and ¢ have disjoint supports. Hence

MyoP — MyoM, = Myo(MyoPoM_y) €V >(M).
The second statement of (b) is proved in a similar way.

It remains to prove (c). Let Q@ =}, P;. Then @ is a well defined continuous
linear operator CZ°(M) — C°°(M) with distribution kernel Ko =} Kp,. On
the complement of the diagonal in M x M the kernel K¢ is a locally finite
sum of smooth functions, hence a smooth function. Let a € M. There exists
a coordinate patch U 3 a whose closure in M is compact. The collection J of
indices j for which supp Kp, N (U x U) # 0 is finite. It follows that the kernel
of Qu equals

Kqluxu = ZKPj\UxU = ZKP]-U-
JjeJ Jje€J
Hence, Qu equals the finite sum },.; Pju and belongs to ve(U). Tt follows
that Q € We(M). O

Exercise 7.3.7. Let M be a smooth manifold, and P : C°(M) — C*>(M)
a continuous linear operator with a distribution kernel that it smooth outside
the diagonal in M x M. Let {U;} be an open covering of M. If Py, € V4(U;)

for each j, then P € W4(M).
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The following result indicates that pseudo-differential operators modulo
smoothing operators behave like sections of a sheaf.

Lemma 7.3.8. Let {U;} be an open covering of the manifold M.

(a) Let P,Q € V(M) be such that Py, = Qu, for all j. Then P — @Q €
U=°(M).

(b) Assume that for each j a pseudo-differential operator P; & \I/d(Uj) is
gwen. Assume furthermore that P; = P; on C°(U; N Uj) for all indices
i, with U; N Uj # 0. Then there exist a P € WI(M) such that Py, —

Pj € W=°°(Uj) for all j. The operator P is uniquely determined modulo
W=°(M).

Proof Let Kp and K¢ denote the distribution kernels of P and @, respectively.
Then Kp|y,xu; and Kqly;xu, are the distribution kernels of Py, and Qu;,
respectively. It follows that Kp_g = Kp — K is smooth on each of the sets
U;xUj, hence on the diagonal of M x M. As Kp_g is already smooth outside the
diagonal, it follows that Kp_¢ is smooth on M x M. Hence, P—Q € W~°°(M).

We turn to (b). Let Q = U;U; x U;. Then Q is an open neighborhood of
the diagonal in M x M. Let K; € D'(U; x U;) denote the distribution kernel of
Pj. Let U;; :=U;NU; # (). Then from the assumption it follows that K; = K;
on (U; x U;) N (Uj x Uj) = Usj x Uyj. From the gluing property of the sheaf D’
on (2 it follows that there exists a K € D’(2) such that K = K; on U; x U; for
all j.

We will now use a cut off function to extend K to all of M x M, leaving it
unchanged on an open neighborhood of the diagonal. Let {x,} be a partition
of unity of M, subordinate to the covering {U;}. For each v we select j(v) such
that supp x, C Uj(,) and we fix a function X, € Ce°(Uj()) which is identically
1 on an open neighborhood of supp x,. The functions x, ® x|, form a locally
finitely supported family of functions in C2°(€2). Put

P ::ZXV®X;/‘
14

Let £ € M and let N, be the finite collection of indices v with x € supp ¢,,.
Then the functions x/,, for v € N, are all 1 on a common open neighborhood
Vz of z in M. Moreover, ) . X equals 1 on an open neighborhood U, of z
in M. It follows that ¢» =1 on U, x V.. Hence, vy = 1 on an open neighborhood
of the diagonal in M x M. Put P =} M,, o Pj,)o M, . Then P is a pseudo-
differential operator on M with kernel equal to

Ep=Y (xv®X,)Kp, = VK.

v

For each j € U we have that Py, has kernel
Kplu;xv; = vK|uxu; = VK.

It follows that Kp — Kp, is smooth on U; x Uj, hence Py, — P; € W=°(Uj).
The uniqueness statement follows from (a). O
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In fact, with a bit more effort it can be shown that ¥¢/¥ = defines a sheaf
of vector spaces on M. More precisely, for two open subsets U C V of M the
map P +— Py, ¥4(V) — ¥4(U) induces a restriction map W4(V)/U~®(V) —
U(U)/U~®°(U) which we claim to define a sheaf. The following exercise pre-
pares for the proof of this fact.

Exercise 7.3.9. Let 2 be smooth manifold, and let {€2;};c; be an open cover
of 2. Assume that for each pair of indices (¢,j) with Q;; := ;N Q; # 0 a
smooth function g;; € C*°(£2;5) is given such that

gij+gjk+gkj:0 on Qijk ::QiﬂQjﬂQk

for all 4, j, k with §;; # 0. Show that there exist functions g; € C*°(U;) such
that g; — g; = gi; for all 4,j. Hint: select a partition of unity {¢a}aca on Q
which is subordinate to the covering {€2;}. Thus, a map j : A — J is given such
that supp ¥o C Uj(q)- Now consider g; := > ¥agjj(a)-

Exercise 7.3.10.

(a) Show that with the restriction maps defined above the assignment U +—
U(U)/U~=°(U) defines a presheaf on M.

(b) Show that U +— W4(U)/W~>°(U) satisfies the restriction properety of a
sheaf.

(c) Use the previous exercise combined with the arguments of the proof of
Lemmato show that U + W4(U)/W~°°(U) has the gluing property.

7.4. The principal symbol on a manifold

We will now extend the definition of principal symbol of a pseudo-differential
operator to the setting of a manifold M. Let 7 : T*M — M denote the cotangent
bundle of M.

First we consider a coordinate patch U of M. Let x : U — U’ be a diffeomor-
phism onto an open subset U’ of R™. We consider the induced diffeomorphism
T*k : T*U — U x (R")* ~ U’ x R™ given by

T* k(&) = (k(x), ExoTuw™ ),  (x €U, & € TEM).
Pull-back by the inverse of T*k induces a linear isomorphism
Ky : C°(T*U) — C®(U' x R™).
For d € RU{—o00} we define
SUU) = {p € C=(T"V) | u(p) € SYU")}-

It follows from Lemma 5.1.6 that this space is independent of the choice of k.

Definition 7.4.1. We define S¢(M) to be the space of smooth functions p :
T*M — C with the property that for each a € M there exists a coordinate
patch U containing a such that p|p-y € SH(U).

If p: M — N is a diffeomorphism of manifolds, then it follows from
the above definition that the induced linear isomorphism ¢, : C®(T*M) —
C>®(T*N) maps S%(M) onto S¥(N). Moreover, if Q@ C M is an open subset
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then the restriction map C®°(T*M) — C®(T*Q), p — p
S4Q).

If 2 is an open subset of M, and K C ) a compact subset, we define S,%(Q)
to be the space of p € S%(Q) with suppp C 7~ (K). Finally, we define S&(Q) to
be the union of the spaces S,%(Q), for I C 2 compact. We note that elements
of S4(Q) may be viewed as elements of S¢(M) by defining them to be zero on
T* M\ T*Q.

If (U,k) is a chart of M, then the map ky : C®°(T*U) — C*®(k(U) x R™)

induces a linear bijection

7+ maps S¢(M) to

ke s SUUY/STHU) = SUR(U)) /ST (K(U)).
The following definition is justified by Theorem (b).

Definition 7.4.2. Let U be a coordinate patch of M. We define the map
ol W(U) — SYU)/STHU) by

reog(P) = Uﬁ(U)(“*P)a

for k a coordinate system on U. (Here GZ(U) denotes the principal symbol map
of S4(k(U)), defined in Definition 5.4.7.)

If U € M is open, then the restriction map p +— p|r-o induces a map
S4M)/S4H (M) — SUQ)/S?1(Q), which we shall denote by o + oq. The
support of an element o € S¢(M)/S%1(M) is defined to be the complement of
the largest open subset 2 C M such that o = 0.

Lemma 7.4.3. Let d € R. There exists a unique linear map o : W4(M) —
SU(M)/S¥1(M) such that for every coordinate patch U C M we have

o!(P)u = ofi(Py).

Proof Uniqueness of the map follows from the fact that an element o €
S4(M)/S?1(M) is completely determined by its restrictions to the sets of an
open covering of M. We will establish existence by using a partition of unity.

Let x; be a partition of unity on M such that for each j, the support ; of
X; is contained in a coordinate patch U;. We define

(NTd P — ZU?]J,((M,[Z,J. OP)UJ-)
J

Here we note that the term corresponding to j may be viewed as an element
of S4(M)/S?1(M) with support contained in K;. In particular, the sum is
locally finite and defines an element of S%(M)/S4~Y(M). Let P € W¥(M) and
let (U, k) be a chart of M. We will show that ¢4(P)y = o@(Py).

Let ¢ € C2°(U). Then it suffices to show that ¥5%(P)y = ¢l (Py). From
the definition given above it follows that ¥¢?(P)y = 6%(¢P)y. Let J be the
finite collection of indices for which supp; Nsuppt # 0. For each j € J we
fix a function x; € C2°(U; N U) which equals one on supp ¢¢;. Then it follows
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that
w&d(P)U = Z Ugj (szpj oPUj)
Jj€J
= Yo My, o Py )
JjeJ
= Ug(z Mz/”lbj OPUj OMXj)'
jeJ
Now modulo smoothing operators from ¥~>°(U) we have
ZMwwj oPUj OMXj = Z Mwaj oPU = Mw OPU.
Jj€J JjeJ
Hence,
Y5 (P)y = ofy(My o Py) = vofi(FPy).
The result follows. l

Theorem 7.4.4. The principal symbol map o : V(M) — S4(M) /S (M)
induces a linear isomorphism
o WM /U (M) =5 84M) /ST M),

Proof We will first establish surjectivity. Let p € S¢(M). Let x; be a
partition of unity on M such that for each j the support of x; is contained in a
coordinate patch Uj;. For each j there exists an operator P; € \I/d(Uj) such that
Uzj(Pj) = py, + ST 1(Uj). For each j we select a function X; € C2°(Uj) such
that X;' =1 on an open neighborhood of supp x;. Then

P=3 MyoPjoM,
J

defines an element of W¢(M). We will show that o?(P) = p + S~ 1(M). Let
Y € C(M) have support inside a coordinate patch U. Then it suffices to
show that ¢Yo?(P) = ¢p + S (M). Let o' € C2°(U) be identically one on a
neighborhood of supp ¥. Then

Yol(P) = 4ofi(Py) = of(My o PyoMy)

= Z U([i](M¢Xj oPU onx)
J

= Z O'[%(waj o PU o MIZ)/X;-)
J

d
- Z 00, (Myx; o Py o Myryr)
J

= > xp+ STHM) = gp+ STH(M).
;

It remains to be established that o¢ : (M) — S4(M)/S? (M) has kernel
equal to W4=1(M). Clearly, the latter space is contained in the kernel. Con-
versely, let P € W¥(M) and assume that o?(P) = 0. Then it follows that
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o (Py) = 0 for each coordinate patch U. In view of Corollary 5.4.8 it follows
that Py € W9 Y(U) for each coordinate patch U. This in turn implies that
P € 9% 1(M) by Definition [7.3.1] O

7.5. Symbol calculus on a manifold

In this section we will discuss results concerning the principal symbols of ad-
joints and products of pseudo-differential operators on the manifold M. The
proofs of these results will consist of reduction to the analogous local results.

Our first goal is to understand the behavior of the principal symbol under
left and right composition with multiplication by smooth functions. Let xy €
C>®(M) and p € S4(M), then the function 7*(x)p : T:M > & — x(z)p(&)
belongs to S¥(M) again. Indeed, this is an easy consequence of the analogous
property in the local case. Accordingly, the space S¢(M) becomes a C°°(M)-
module and we write xp for 7*(x)p. As S9~1(M) is a submodule, it follows that
the quotient S4(M)/S?1(M) is a C°°(M)-module in a natural way.
Lemma 7.5.1. Let P € V(M) and x,v» € C®(M). Then MyoPoMy €
U(M) and

o (M, o PoMy) = xpo(P).

Proof The first assertion is a straightforward consequence of the definition
and the fact that

(MXOPOMdJ)U == Mx|UOPUOMw|U

for every open subset U C M.
Let now U C M be a coordinate patch. Then

o' (MyoPoMy)y = of((MyoPoMy)y)
= o (My o PyoMyy)
= (vt (Py) = [xo(P)]u.
The result follows. ]

Our next goal is to understand the symbol of the adjoint of a pseudo-
differential operator relative to a smooth positive density dm on M. We assume
such a density to be fixed for the rest of this section.

Given two smooth functions f € CX(M) and g € C*°(M), we agree to
write

(f.g)= /Mf(w)g(:r) dm(z).

The above pairing has a unique extension to a continuous bilinear pairing
CSO(M) X 'D/(M) — C.

Lemma 7.5.2. Let P € W(M). Then there exists a unique continuous linear
operator R : E'(M) — D'(M) such that

(Pf,g)=C(f,Rg), forall f,geCZM).
The operator R belongs to V(M) and has principal symbol given by
0! (R)(&:) = 0¥(P)(~&),  (z €M, & € TIM).



LECTURE 7. PSEUDO-DIFFERENTIAL OPERATORS, CONTINUED 125

Proof The operator P : f ~— (Pf)dm is continuous linear from C°(M)
to I'°°(Dyy), where Djs denotes the density bundle on M. It follows that
the transposed P! : £'(M) — D'(M, Dyy) is continuous linear, hence of the
form u — R(u)dm with R a uniquely determined continuous linear operator
E'(M) — D'(M). Clearly the operator R satisfies

(Pf,g)=((Pf)dm,g) = (f,P'g)=(f.(Rg)dm) = ([, Rg).

Moreover, the operator R is uniquely determined by this property. It remains
to be shown that R € W¢(M). For this we first note that R has the distribution
kernel Kp € D'(M x M,Cy; X Dys) given by

Kr(z,y)(dm(z) ©1) = Kp(y, z)(dm(y) @ 1),

with Kp € D'(M x M,Cy; X Dyy) the distribution kernel of P. Of course this
equality should be interpreted in distribution sense. From the smoothness of
K p outside the diagonal, it follows that K is smooth outside the diagonal. Let
now U C M be a coordinate patch, with associated coordinate system « : U —
U’ C R™. Then there exists a unique strictly positive function J € C*°(U’) such
that k.«(dm) = J dx. Let f,g € C°(U), then it follows that

(fdm,Rg) = (Pf,9g)
(Fx(Pf); hixg fix(dm))
(ke (Py)ksf, JExg dx)
= (uf e (P ] d)
(o (f dm), J ™ ks (Po) [T w4 (9)])-

From this we conclude that
H*(RU) = MJ—I o/i*(PU)t OMJ.

In view of Lemma 5.4.2 and Proposition 6.2.2 it now follows that x.(Ry) €
U(U") with principal symbol given by

ol (ke (Ru))(w,6) = o (My10ri(Py)' o My)(w,€)
= J(@)"' (@) (ke (Pv)) (@, =€) = 0 (ru(P0)) (w, —£).
We conclude that Ry € W4(U) with principal symbol given by
ot (Ru)([Tnk]'€) o (re(Ru)) (K(m), €)
= o¥(ru(P))(k(m), =€) = ofs (Pu)(=[Tmr]'€),
for allm e U, £ € R™. g

We will end this section by discussing the principal symbol of the composi-
tion of two properly supported pseudo-differential operators.

From the similar local property of principal symbols, it follows that multi-
plication induces a bilinear map

SHUM)/STHM) x SE(M)/SHM) — SHHe(M) /ST (M)
for all d,e € RU{—o0}.
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Theorem 7.5.3. Let P € W4(M) and Q € W¢(M) be properly supported.
Then PoQ belongs to We(M) and has principal symbol given by

(7.11) o (PoQ) = 0%(P) o%(Q).

Proof We first consider the case that e = —o0, i.e., @) is a smoothing operator.
We will show that in this case Po(@ is smoothing. Let K € D'(M x M,Cy X
Dyy) be the distribution kernel of Po Q. Let a be a point of M, U a coordinate
patch containing a and ¢ € C°(U) a function with ¢ (a) # 0. Then it suffices
to show that (1 ® ¥)K is smooth. The latter requirement is equivalent to the
requirement that Po(Q o M, be smoothing. Now this can be seen as follows.
Since @ is proper, there exists a compact subset K C M such that the supp (1®
VYK C K x supqu Fix a non-vamshlng smooth density dm on M. We may
write Kg = KQ( ® dm), with KQ € D'(M x M). Then the map kg :

IN(Q( -, 2)Y(2z) is smooth from M to CR°(M). It follows that the map k : z —
P(kg(z)) is smooth from M to C*°(M). For each f € C°(M) we have

PoQuif) / Ro(-,2)i(2) f()d7]
- / PIRo(-, 202/ (2) dz
M
= /k:(z)f(z)dz
M

which implies that P o @ o M, has the smooth integral kernel (z,y) — k(z)(z)(1®
dm). We conclude that Po (@ is smoothing whenever @ is.

Combining the above with Lemma[7.5.2) we see that P o (@ is also a smooth-
ing operator whenever P is.

It remains to consider the case of arbitrary d,e € R. We will first show that
PoQ is a pseudo-differential operator of order d + e. Let K C M be compact.
Then there exists a compact subset ' C M such that supp Kg N (M x K) C
K’ x K and a compact subset K" C M such that supp KpN(M xK') € K" xK'.
Then @ maps Cg°(M) continuous linearly into C9(M) and P maps the latter
space continuous linearly into Cy% (M). It follows that the composition Po@Q
is continuous linear CR(M) — C%(M). This implies that R = Po(Q is a
continuous linear map C°(M) — C(M).

Let 1; be a partition of unity on M such that each ; is supported in
a coordinate patch. Then by Lemma (c) it suffices to show that each
operator R; = Ro My, belongs to wdte(M). We fix j for the moment, put
=1 and let U = U, be a coordinate patch containing supp . There exists
a compactly supported function x € C°(U) such that x = 1 on an open
neighborhood of supp 1. Now M(;_,y o Q o My, is smoothing, so by the first part
of the proof its left composition with P is smoothing as well. Put

Qj = MyoQo My,

Then it suffices to show that Po@Q; belongs to W4+¢(M). We select ¢’ € C°(U)
such that ¢' = 1 on an open neighborhood of supp x and x’ € C°(U) such that
x' = 1 on an open neighborhood of supp ¢/’. Then M;_,/ o P o My, is smoothing,
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and by the first part of the proof, so is [Mi_y/ o Po My/]Q;. Put
Pj = My oPoMy.
Then P = Pj + My_ys o Po My hence it suffices to show that P;o(Q; belongs

to W4te(M). As the distribution kernels of the operators Pj, Q; are contained
in supp X’ X supp )’ C U x U, this result follows from the local result, Theorem

We conclude that Po@Q € WU¥+¢(M). By application of Corollary [7.1.10

we obtain that

o™ (PjoQ)) = o’ (P})a(Qy).
From the above it follows furthermore that PoQ oMy, = Pjo(); modulo a
smoothing operator, hence

Yo (PoQ) = o™ (ProQ)) = o¥(P))ot(Qy)
= Xjvixvot(P)o(Q) = ¥ (P)o(Q).
This holds for every j. The identity (7.11]) follows. 0

Exercise 7.5.4. Let P € W4(M).

(a) Show that P has a unique extension to a continuous linear map &'(M) —
D'(M).
(b) Show that the extension is pseudo-local.

Exercise 7.5.5. Let dm be positive smooth density on M and let P € We(M).
(a) Show that there exists a unique P* € W4(M) such that

(Pf,g)=(f,Pg) forall fgeCXM).
(b) Show that the principal symbol of P* is given by
o?(P*) = 0d(P).






LECTURE 8
Operators between vector bundles

8.1. Operators on manifolds

In this section we shall extend the definition of pseudo-differential operator to
sections of vector bundles on a smooth manifold M. We start by recalling the
notion of a smooth kernel or smoothing operator between vector bundles on
manifolds.

Let M and N be smooth manifolds, and let 7 : F — M and np : FF — N
be smooth complex vector bundles over M and N respectively.

We fix a positive smooth density dy on M, i.e., a smooth section of the
density bundle Dy on M that is positive at every point of M. For the definition
of the density bundle and the integration of its sections, see Lecture 2.

The exterior tensor product F' X E is the vector bundle on N x M defined
by

FXRE :=pr)(F) ®pry(E);

here pry, pry denote the projections of N x M to N and M, respectively. Let
k be a smooth section of the bundle X E* on N x M and let f € I'?(M, E).
For every x € N we may view y — k(z,y)f(y) dy as a compactly supported
density on M with values in the finite dimensional linear space F,. By using a
partition of unity it is readily seen that the integral of the mentioned density

depends smoothly on x. Accordingly, we define the complex linear operator
T:T®(M,E) —T°(N,F) by

Tf(z) = /M Kew) o) dy (v € M).

Any T of the above form is called a smooth kernel operator or smoothing

operator from I'°°(M, E) to I'*°(N, F). Obviously, for such an operator the

Schwartz kernel K7 € D'(N x M, F X EV) is smooth and given by the formula
Kr(z,y) = k(z, y)pra(dy).

In terms of local trivializations of the bundles, 7" is given by matrices of scalar
smoothing operators. More precisely, this may be described as follows.

129
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We recall that a trivialization of E over an open subset U of M is defined
to be a vector bundle isomorphism 7 : By — U x CF, with k the rank of E.

A frame of F over an open subset U of M is an ordered set si,...,s; of
sections in I'*°(U, E) such that si(x),..., sg(z) is an ordered basis of the fiber
E,, for every x € U. Given a choice of frame s1, ..., s, we have a vector bundle
isomorphism o : U x C¥ — Ey given by (x,v) +— ais1(z) + - - - + agsg(zx). The
inverse 7 of ¢ is a vector bundle isomorphism Ey — U x CF, i.e., a trivialization
of E over U.

Conversely, if 7 : Eyy — U x CF is a trivialization of the bundle, then there
exists a unique frame si,...,8; of E over U, to which 7 is associated in the
above manner, i.e.,

Tlaisi(z) + -+ + agsp(x) ] = (z,a), ((x,a) € U x Ch).

Assume that F trivializes over the open subset U C M and that F’ trivializes
over the open subset V' C N. Then the operator Ty : I'®°(U, E) — I'™°(V, F)
given by

Tvu(f) =T Hlv,  (feTZU E)),
has Schwartz kernel equal to Kpr3(dy)|v«u. Let s1,...,si be a local frame for
E over U and 11, ..., alocal frame for F' over V, then Ty is given by

TU,V(Z fls;) = T;(ﬂ)%
J

with T]Z uniquely determined smoothing operators C°(U) — C*°(V). Con-
versely, any such collection of smoothing operators defines a smoothing opera-
tor from I'°(U, E) to C®(V, F). Let t', ..., t! be the frame of F'* over U dual to
t1,. ..ty de., (t'(y),ti(y)) = 0} for all y € V. Then we note that the Schwartz

kernel of TJZ equals

(K (z,y),t'(r) ® s;(y)) pra (AY) (2,y)-

The space of smooth kernel operators from E to F' is denoted by V~>°(E, F).
Since any positive smooth density on M is of the form ¢(y)dy, with ¢ a strictly
positive smooth function, the space W~>°(E, F') is independent of the particular
choice of the density dy.

Let Cjs denote the trivial line bundle M x C. Then the space W=°°(Cys, Cyy)
may be identified with the space of smoothing operators C°(M) — C*(M),
which we previously denoted by ¥=>°(M).

We shall now give the definition of a pseudo-differential operator between
smooth complex vector bundles E, F — M. We first deal with the case that F
and F are trivial bundles on an open subset U € M. Thus, E = U x CF and
F = U x C'. Then we have natural identifications (U, E) ~ C°(U,CF) ~
C(U)*, and similar identifications for F. Accordingly, we define V(U E, F) =
V4(Ey, Fy) € Hom(T(U, E), T>=(U, F)) by

U By, Fy) := M, (V4(U)),

the linear space of [ x k matrices with entries in W¢(U). With these identifica-
tions, the action of an element P € W¢(Ey, Fi;) on a section f € T°(U, E) is
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given by
Pi= Y Pyt
1<j<k

Assume that 7 and 7 are bundle automorphisms of the trivial bundles £ =
U x CF and F = U x C!, respectively. Thus, 7 is a map of the form (z,v)
(z,ye(x)v) with v : U — GL (k,C) a smooth map, and 7 is similarly given
in terms of smooth map vp : U — GL (/,C). Then we have an induced linear
automorphism 7, of T°(U, E) ~ C°(U)* given by

(e« f)(2) = yB(2) f(2),  (z€U)

Likewise, we have an induced linear automorphism 7 of I'*°(U, F'), and, ac-
cordingly, an induced linear automorphism 7, of Hom(I'*°(U, E),T'(U, F)).
The latter is given by 7.(Q) = Trs o QoTE:, or

m(@Q)(f) =7rQ(g' f),  (fETX(UE)~CXU)").

It follows by component wise application of Lemma 7.5.1 that 7, maps the linear
space V(Ey, Fy) isomorphically onto itself.

The last observation paves the way for the definition of W4(U, E,F) =
U(Ey, Fyy) when E and F are smooth complex vector bundles on M that admit
trivializations over an open subset U C M. Let 7 : E — E' = U x C* and
7F 1 F'— F' = U x C! be trivializations; let 7g, : (U, E) — I'*(U, E') be the
induced map, and let 7p, : (U, F) — I'*°(U, F’) be defined similarly. Then
we define U¢(U, E, F) to be the space of linear maps Q : T®°(U, E) — I'™°(U, F)
such that

(8.1) 7(Q) == ThoQorg) € VYU, E', ).

This definition is independent of the particular choice of the trivializations for
FEy and Fy, by the observation made above.

Definition 8.1.1. Let E, F be smooth vector bundles on a manifold M and
let d € R. A pseudo-differential operator of order at most d from F to F is
a continuous linear operator P : I'°(E) — I'*°(F) with distribution kernel
Kp e D'(M x M,F X EV) such that the following conditions are fulfilled.

(a) The kernel Kp is smooth outside the diagonal of M x M.

(b) For each a € M there exists an open neighborhood U C M on which F
and F' admit trivializations and such that the operator Py : I'°(U, E) —
I'®(U,F), f — Pf|y belongs to ¥¢(Ey, Fy).

The space of such pseudo-differential operators is denoted by W(E, F).

It follows from the above definition that the space ¥¢(E, F) transforms nat-
urally under isomorphisms of vector bundles. More precisely, let ¢ : M7 — My
be an isomorphism of smooth manifolds, and let ¢r : F4 — FE» be a com-
patible isomorphism of smooth complex vector bundles 7g, : £y — M; and
T, : Eo — Ms. Here the requirement of compatibility means that the pair
(¢E, @) is an isomorphism of F; and Es in the sense of Lecture 2, §3. The iso-
morphism g induces a linear isomorphism ¢p, : ['°(Mi, E1) — T'2°(My, Es),

given by pp.f = @Eofogo_l.
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Likewise, let ¢ : Fy — F5 be an isomorphism of vector bundles F; — M;
which is compatible with ¢. Then we have an induced linear isomorphism @p, :
(M, Fy) — I'°°(My, F»). Moreover, the map

Px : HOHI(FEO(Ml, El), FOO(Ml, Fl)) — HOIH(F?O(MQ, EQ), FOO(MQ, FQ))
given by p.(Q) = pryoQo @E}k restricts to a linear isomorphism
pr : WMy, By, Fy) —> UMy, By, F).

We note that it also follows from the above definition that if £ and F' admit triv-
ializations 75 : E — E' = U x CF and 7 : F — F' = U x CF, respectively, then
7. maps W4(U, E, F) linearly isomorphically onto (U, E', F') ~ M, x(¥4(U)).
Indeed, by the previous remark and the remark below , it suffices to prove
this for E = M x C*¥ and F = M x Cl. In this case

Hom(I';°(E), C*(F)) ~ M; ,(Hom(C* (M), C*(M))).

If P € Hom(I'®(E), C>®(F)), then P € W(E, F) in the sense of Definition
if and only if all its components P;; belong to U(M) in the sense of Definition
7.3.1.

Remark 8.1.2. The straightforward analogues of Exercise 7.3.4 and 7.3.5,
Lemma 7.3.6, Exercise 7.3.7, Lemma 7.3.8, Exercise 7.3.10 are valid for opera-
tors from W¢(E, F), by reduction to trivial bundles and the scalar case, along
the lines discussed above. We leave it to the reader to check the details.

It follows from Definition B.I.1] and the corresponding fact for scalar opera-
tors that W~°°(E, F) equals the intersection of the spaces W¢(E, F), for d € R.

8.2. The principal symbol, vector bundle case

In this section we shall discuss the definition and basic properties of the prin-
cipal symbol for a pseudo-differential operator between smooth complex vector
bundles g : E — M and g : I — M. We first concentrate on the definition
of the appropriate symbol space.

Let 7y : H — M be a vector bundle. We agree to write

I*(T*M,H)={f e C®(T*M,H) |VYx € M : f(T;M)C H,}.
There is a natural identification of this space with the space of sections of the
pull-back 7*H of the vector bundle H under the map 7 : T*M — M, so that
(T*M,H) ~ T'>°(T*M,n*H), but we shall not need this. If H is trivial of
the form H = M x CV, then the elements of I'™°(T*M, H) are precisely the

functions of the form &, — (z, f(&)) with f € C®°(T*M,CN). It follows that
I°(T*M, H) ~ C®(T*M,C"). Accordingly, we define
SUM,H) :={f e T®(T*M, V) |Vj: fj € SUM)} ~ S4M)N.

Let 7: H; — Hs be an isomorphism of two vector bundles on M. Then the

map
Te : I°(T*M, Hy) — T'°°(T* M, Hy),
defined by
(&) = (f(&)), (v €M, & e Ty M),
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is a linear isomorphism. Assume now that 7 is a bundle automorphism of the
trivial bundle H = M x CN. Then 7 has the form 7(z,v) = (z,7,(v)), with
x +— 7, a smooth map M — GL (N, C). It follows that the linear automorphism
T of I°(T* M, H) ~ C=(T*M)" is given by

Te([)(&e) = 7 (f (&)

It is readily checked that this map restricts to a linear automorphism of the
symbol space S4(T*M, H).

Now assume the bundle H is trivializable and let 7/ : H — H' = M x CV
be a trivialization. Then we define S¢(M, H) := 7,154 (M, H'). This definition
is independent of the particular choice of the trivialization 7, in view of the
preceding discussion.

Definition 8.2.1. Let H — M be a complex vector bundle. For d € R U
{—00}, we define the symbol space S¢(M, H) to be the space of sections p €
I'°°(T*M, H) such that for every open neighborhood U on which H admits a
trivialization, the restriction py := p|r+«y belongs to Sd(U, Hy).

Clearly, for p € I'™(T*M, H) to belong to S%(M,H) is suffices that for
every a € M there exists an open trivializing neighborhood U such that py €
S4U, Hy).

We also note that for ¢ € C°°(M) multiplication by 7*¢ € C°°(T*M) maps
S4(T*M, H) linear isomorphically to itself. Accordingly, S?(M, H) becomes a
C°(M)-module. Tt follows that the quotient

S4/84-Y (M, H) == S4(M, H) /S (M, H)

is a C°°(M )-module as well.

Let U C M be open and let K C U be compact. Then we write SE(U, Hy)
for the subspace of S%(U, Hyy) consisting of p with support in K in the sense that
pu\x = 0. Equivalently, this means that the function p : T*U — Hy vanishes
on (U \ K). The extension of such a function to 7"M by the requirement
u(&z) = 0, € Hy for every & € T*M \ T*U belongs to S,%(M, H). Accordingly,
we have a linear injection

SE(U, Hy) — S(M, H).

Let S4(U, Hy) denote the union of the spaces Si(U, Hy), for K C U compact.
Then S4(U, Hy) < S¢(M, H). Accordingly, we have an induced linear injection

S¢(U,Hy)/S¢ (U, Hy) < SI(M,H)/S{ (M, H).

We will now see that the definition of the principal symbol map can be
generalized to the context of bundles. Let E, F' be two complex vector bundles
on M. The principal symbol map associated with \I'd(E, F) will be a map

o?: UM, E, F) — S%(M,Hom (E, F))/S* (M, Hom (E, F)).
Here Hom (F, F') is the vector bundle on M whose fiber at x € M is given by
Hom (E, F), = Home(Ey, Fy).
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If U € M is an open subset on which both F and F' admit trivializations
10 : By — U x CF and 75 : Fy — U x C!, then the bundle Hom (E, F) admits
the trivialization

7 : Hom (E, F)y — U x Hom(CF,C)
given by
TI(T> = (TF)ac oTo (TE)gl.
Let ¢ : E — F be a vector bundle homomorphism. Then the map ¢ : z

vz € Hom(E,, F,) defines a smooth section of the bundle Hom (E, F'). Using
trivializations we readily see that the map ¢ +— ¢ defines a linear isomorphism

Hom(E, F) — I'™°(Hom (E, F)).

Initially we will give the definition of principal symbol for trivial bundles.
Assume that £ = M x C¥ and F = M x C' so that Hom (E,F) = M x
Hom(CF, C!) ~ M; (C). Then

Sd(M?HO7m<E7F)) = Ml,k(sd(M))
and, accordingly,
S%(M, Hom (E, F))/S* (M, Hom (E, F)) =~ M (S*(M) /S (M)

In this setting of trivial bundles, we define the principal symbol map o = 0%7 r
component wise by

o¥(P)ij =0 (Py), (1<i<l, 1<j<k).

Assume now that 7p and 7F are automorphisms of the trivial bundles £ and
F, respectively and let 7 be the induced automorphism of Hom (E, F'). We
denote by 7, the induced automorphisms of \Ild(E, F) and of the quotient space
S4(M,Hom (E, F))/S*' (M, Hom (E, F)).

Lemma 8.2.2. For every P € V4(E, F),
o ((P)) = Tu(0?(P)).
Proof We observe that for f € I'°(E) ~ C>®(M)* we have

(r(P)f)i = Z(TFJ:)Z'TPTS(TL:;)ijj
7,8,
so that by Lemma 7.5.1
o (ru(P)ij) = > _(TF)ir(15") 550" (Prs)

8

= Z(TF)ir(TE_l)sjUd(P)rs

= (no’(P))y.
This implies that O'd(T*(P))ij = O'd(T*(P)ij) = (T*Ud(P))ij- u
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If E and F admit trivializations 75 : E — F' = M xCFand 7 : F — F' =
M x C! we define the principal symbol map 0’%" » on W4(E, F) by requiring the
following diagram to be commutative

Vi(E, F) RLN vHE, F')
(82) U%,Fl lgél’pl
S4/84=1(M,Hom (E, F)) =~ 8/841(M,Hom (E', F")).

Finally, we come to the case that £ — M and F — M are arbitrary complex
vector bundles of rank k and [ respectively.

Lemma 8.2.3. Let P € VY(E, F). Then there exists a unique
o(P) = 0t » € SU(M, Hom (, F))/5%~ (Hom (, F))
such that for every open subset U C M on which both E and F' admit trivial-
1zations,
(8.3) o (P)u = 0%y, (P0).

Proof Uniqueness is obvious. We will establish existence. Let {U;} be an
open cover of M consisting of open subsets on which both £ and F' admit
trivializations. We may assume that {U;} is locally finite and that {¢;} is a
partition of unity on M with supp; C U; for all j. Given P € UY(E,F) we
define o%(P) by

Ud(P) = ija%U].,FUj (PU])
J

As this is a locally finite sum, it defines an element of S%(M, H)/S4Y(M, H).
It remains to verify (8.3)) for an open subset U on which E and F' admit trivi-
alizations 7i7. With 0%(P) as just defined we have

ol(P)y = Z?/leUU%Uj,FUj(PUj)Unt
j

= Z ¥ilu o, 7, (Po)uny,
j

= > ¥ilv ok, m (P0)
J

- U%U,FU(ZMWWOPU)
J
= O’%U,FU(PU)
U

Definition 8.2.4. Let P € \I/d(E, F). The d-th order principal symbol of P is
defined to be the unique element o¢(P) € S¢/S9=1(M, Hom (E, F)) satisfying
the properties of Lemma [8.2.3

Obviously, P — o%(P) is a linear map. As should be expected, it follows
from the above definition that the principal symbol map behaves well under
bundle isomorphisms. Consider isomorphisms 75 : 1 — Fo and 7 : F1 — Fb
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of vector bundles on M. Then the definitions have been given in such a way
that the following diagram commutes

WM, By, F) 25 S0, Hom (Ev, F1))/S%} (M, Hom (E:, FY))
(8.4) ) [
d
VUM, Ey, F) 7= S%M,Hom (Es, Fy))/S% 1 (M,Hom (Fs, Fy))

The local version of this result is true because of the local requirement (8.2)).
The global validity follows by the uniqueness part of the characterization of the
symbol map in Lemma [8.2.3

Lemma 8.2.5. Let 1, x € C®(M). Then, for all P € V4(E, F),
o (My o PoM,) = 1hxo?(P).

Proof For trivializable bundles F and F' the result is a straightforward con-
sequence of the analogous result in the scalar case. Let U be any open subset
of M on which both F and F admit trivializations. Then

o (MyoPoM)y = ofi(MyyoPyoMyy)
= (Wloxlvod(Pv)
= (¥xa’(P)),-
The result follows. O

Theorem 8.2.6. The principal symbol map o® induces a linear isomorphism

vE, F) /v YE,F) — S%M,Hom (E, F))/S*(M,Hom (E, F)).

Proof If E,F are trivial, then the result is an immediate consequence of
the analogous result in the scalar case. If E, F are trivializable, the result is
still true in view of the commutativity of the diagram . Let now E, F be
arbitrary complex vector bundles on M and put H = Hom (F, F'). We must
show that the principal symbol map o? : W4(E, F) — S4(M, H)/S* (M, H)
has kernel 9~1(FE, F) and is surjective. Let P € W4(E, F), then 0%(P) = 0
if and only if for every open subset U C M on which both £ and F' admit a
trivialization, ad(P)U = 0. The latter condition is equivalent to O'Id](PU) = 0,
hence by the first part of the proof to Py € Wi 1(Ey, Fy). It follows that
kero? = W1 (E, F).

To establish the surjectivity, let p € S%(M, H) and let [p] denote its class
in the quotient S(M, H)/S4=Y(M, H). Let {U;} be an open cover of M such
that both E and F' admit trivializations over Uj, for all j. We may choose the
covering such that there exists a partition of one, {¢;}, with supp; C U; for
all j. By the first part of the proof, there exists for each j a pseudo-differential
operator P; € \Ild(EU].,FUj), such that

o(P;) = [plu, € SY(U;, Hy,)/ S (U, Hy,).

For each j we fix x; € C2°(Uj) such that x; = 1 on supp ¢;. Then My, o Pjo My,
is a pseudo-differential operator in W¢(E, F') with distribution kernel supported
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by supp 1; x supp x;. It follows that the distribution kernels are locally finitely
supported. Hence

P = ZM’l/JjOPjOMXj
J

is a well-defined pseudo-differential operator in wd(E,F ). Let U be any rela-
tively compact open subset of M on which both E and F' admit trivializations,
then

J

o (P)y =) (o (Py)), = Z?/)le[P]U = [plu,

with only finitely many terms of the sums different from zero. It follows that
o%(P) = [p]. We have established the surjectivity of the principal symbol map. O]

8.3. Symbol of adjoint and composition

We now turn to the behavior of the principal symbol when passing to adjoints.
Let £ — M and F' — M be complex vector bundles on M of rank k& and I,
respectively. Let E* and F* be the dual bundles of F and F' respectively. We
recall that £V := E* @ Dy and FY = F* ® D), with D) the density bundle
on M.

Lemma 8.3.1. Let V,W be finite dimensional complex linear spaces, and let
L be a one-dimensional complex linear space. Then the map T — T ®1;, defines
a natural isomorphism

Home(V, W) ~ Home(V ® L,W ® L).
Proof Straightforward. O

Corollary 8.3.2. The map
Hom (F*,E*), 2T, — T, ®Ip,,, € Hom (FY,EY),
defines a natural isomorphism of vector bundles.
Given p € S¢(M,Hom (E, F)), we define p¥ : T*M — Hom (FV, EV) by
P/ (&) = p(=&)" ® Iy,

for x € M and &, € T} M. Then clearly, p¥ € S¢(M,Hom (FV, EV)). The map
p — p" is readily seen to define a linear isomorphism

S4(M,Hom (E, F)) — S%(M,Hom (F",EV),

for every d € R U {—o0}. Moreover, p¥V = p for all p. Accordingly, we have an
induced linear isomorphism

54/89=Y(M,Hom (F, F)) — §¢/8%Y(M,Hom (F", EY)),

denoted by o+ oV.

Let P € V4(E, F). As P is a continuous linear operator I'*(E) — I'®(F),
its adjoint P! is a continuous linear operator from the topological linear dual
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I>°(F) = &(FV) to the topological linear dual I'°(FE)" = D'(EY). We recall
that the natural continuous bilinear pairing I'*°(E"Y) x T'°(FE) — C defined by

(f9) = /M(f, 9)

induces a natural continuous linear embedding I'*°(EY) — D'(E"). Likewise,
we have a natural continuous linear embedding I'°(FY) «— &'(FV).

Lemma 8.3.3. Let P ¢ V4E,F). The adjoint P! restricts to a continuous
linear map TX(FY) — T°(EY). The restricted map is a pseudo-differential
operator in W(FV EV) with principal symbol given by

ol(P') = o%(P)".

Proof Let U C M be an open subset. Then it is readily seen from the
definitions that (P!)y = (Py)t and that (6%(P)V)y = (6*(P)y)Y = o%(Py)V.
Therefore the result is of a local nature, and we may as well assume that F and
F admit trivializations on M. Let eq,...,e; be a frame for E and let fi,..., f;
be a frame for F. Let e!,...,eF be the dual frame for the dual bundle E*:
ie., (e e;) = &, for all 1 < 4,5 < k. Similarly, let L. ., f" be the dual
frame for the dual bundle F*. Let dm be choice of smooth positive density on
M, then {dm} constitutes a frame for the density bundle Dj;. It follows that
eldm,...,e"dm is a frame for EV and fldm, ..., f'dm a frame for FV.

Let P € W4(E,F). The operator P has components P;; relative to the
frames {e;} and {f;}. Given ¢, 9 € C°(M), we have

VPijp = (b, P(pe)).
The components of the adjoint operator P! are given by

@(P")ji(p)dm = (g, P* (¢ f1dm)).
Integrating the densities on both sides of the equality over M we find that

(pdm, (P')jiv)) = (P(pe’), v f'dm) = (Py(p), ddm).
This implies that (P');; equals the adjoint of P;; in the sense of Lemma 7.5.2.
Hence, P* € ¥¢(FV EY) and

ol (P)ji(&) = o' (P)ij(—&) = (0U(P)V (&) ;-
The result follows. O

Let P € W4(E, F). Then it follows by application of the lemma above that
P extends to a continuous linear map £'(F) — D'(F). Indeed, the extension
equals the adjoint of the map P! : T°(FY) — I'™°(EVY). The extension is unique
by density of I'°°(E) in &'(E).

It follows from the definitions that if the distributional kernel K p has sup-
port S C M x M, then the distributional kernel of the adjoint operator P! has
support St = {(y,x) € M x M | (x,y) € S}. In analogy with the scalar case,
the operator P is said to be properly supported if the restricted projection maps
prj]5 : S — M are proper, for j = 1,2. Thus, if P is properly supported, then
so is P'. In this case P® maps I'°(FV) continuous linearly into T'°(EVY), and
we see that P extends to a continuous linear operator D'(E) — D/(F).
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Lemma 8.3.4. Let P € \Ild(E, F) be properly supported. Then the continuous
linear operator P : D'(E) — D/(F) is pseudo-local, i.e., for all u € D'(E) we
have

singsupp (Pu) C singsupp u.

Proof Let a € M \ suppu. Then there exists an open neighborhood O 3 a
with O Nsuppu = 0. Let ¢ € C°(O) be equal to 1 on a neighborhood of a. By
paracompactness of suppu there exists a smooth functions x € C*°(M) such
that Y = 1 on a neighborhood of suppu and such that supp Nsuppx = 0.
It follows that T := My 0 Po M, is a properly supported smoothing operator.
Hence v Pu = Y P(xu) = Tu is smooth. It follows that Pu is smooth in a
neighborhood of a. 0

As in the scalar case, modulo a smoothing operator each pseudo-differential
operator can be represented by a properly supported one.

Lemma 8.3.5. Let Q C M x M be an open neighborhood of the diagonal.
Then for each P € \I/d(E, F) there exists a properly supported Py € \I/d(E,F)
with supp Kp, C Q such that P — Py € V~°(E, F).

Proof The proof is an obvious adaptation of the proof of Lemma 6.1.6. By
Lemma 6.1.7 there exists a locally finite open covering {U;};c; of M such that
for all 4,5 € J, Uy NU; # 0 = U; x U; C Q. There exists a partition of unity
{1;} with ¢; € C°(Uj). For each j we choose a x; € Co°(U;) which equals 1
on an open neighborhood of supp ;. We now define

Py=) My oPolMy,.
jeJ
The j-th term in the above sum is a pseudo-differential operator of order d with
distribution kernel supported in supp; x supp x;. As this is a locally finite
collection of sets, it follows that Py € \I/d(E, F). Moreover, the distribution
kernel of Py has support contained in the union of the sets U; x U; which is
contained in Q.
Since supp ¢; Nsupp (1 — x;) = 0, the operator

T’j = ij oPoMl_Xj

is a smooth kernel operator, with smooth kernel supported inside the set U; x M.
Since these sets form a locally finite collection in M x M, the sum T = ) ;T

is a well defined smoothing operator in ¥~°°(E, F'). It is now readily checked
that P — Py = T. 0

We end this section with a discussion of the composition of two properly
supported pseudo-differential operators. To prepare for this, we will first study
the product of bundle-valued symbols. Let Fq, Fo, F3 be complex vector bun-
dles on M. Given p € S4M,Hom (E1, E>) and ¢ € S¢(M,Hom (E», E3) we
define gp : T*M — Hom(E1, E3) by

qp : T;M D& Q(fx) O p(fx) € Hom (E].v ES):ca

where o, denotes the composition map from Hom (E;, E3), x Hom (Fs, E3), to
Hom (E1, E3),.
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Lemma 8.3.6. The assignment (p,q) — qp defines a bilinear map
S“’/(M7 Hom (E1, Es)) x S¢(M,Hom (Es, E3)) — Sd+e(M, Hom (E1, E3)).

Proof The bilinearity of the assignment as a map into I'*°(T* M, Hom (E1, E3))
is obvious. We will prove the remaining assertion that the assignment has image
contained in S4te.

If U is an open subset of M, then for p € S%(M,Hom (Fy, Ep)) and ¢ €
S¢(M,Hom (E2, E3)) we have (¢p)u = qupu. Therefore, the result is of a local
nature, and we may as well assume that each E; admits a trivialization, for
J =1,2,3. For each such j, let e;1,..., e, be a frame for E;. Then the symbol

p has components pg, € S4(M) given by

(61‘ eloc Zpﬁa &x 623

for all x € M and &, € T M. leevvlse, the symbol ¢ has components ¢,5 €
S¢(M) given by

( 626 Zq'yﬁ gx 637

It follows that the vy-component of q(ﬁx) (&z)(e1a(x)) relative to the basis
{e3y(x)} of Es, is given by

ko
a = Z 4~BPBa-
B=1

This shows that gp € S+¢(M, Hom (E4, F3)). O
It follow from this lemma that the product map induces a bilinear map
S4/89=1 (M, Hom (E, E»)) x S¢/S*~Y (M, Hom (E;, Es3))
N Sd+e/Sd+efl(]w?Hoinl(El7 E3))
denoted (o1, 02) — 0207.
We now turn to the composition of pseudo-differential operators. If P €
\IJd(El, E,) is a properly supported pseudo-differential operator then P maps

I'°(E4) continuous linearly to I'S°(Es). Thus, if Q € ¥¢(Esy, E3) then the com-
position Qo P is a well-defined continuous linear operator I'°(E;) — I'*°(E3).

Theorem 8.3.7. Let P € V(Ey, Ey) and Q € V¢(FEsy, E3) be properly sup-
ported. Then the composition Qo P is a properly supported pseudo-differential
operator in Wte(Ey, E3) with principal symbol given by

(8.5) e (Q o P) = 0°(Q)o%(P).

Proof We first assume that d = e = —o0 so that both P and ) are smoothing
operators and will show that Qo P is a smoothing operator. For this it suffices
to be shown that the kernel of Qo P is smooth at each point (a,b) € M x M.
Let U and W be relatively compact open neighborhoods of a and b on which
both E and F admit trivializations. Let x € C2°(U) be equal to 1 on an open
neighborhood of a and let ' € C2°(W) be equal to 1 on an open neighborhood
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of b. Then the kernel of M,s0Q o P oM, equals the kernel of (Jo P on an open
neighborhood of (b,a), so that it suffices to show that M, 0cQoPoM, is a
smoothing operator.

Let A be a compact subset of M such that supp Kp C AxU, and supp Kg C
W x A. Let {V;} be a finite cover of A by open subsets of M on which each of
the bundles E, F' admits a trivialization. Let ¢; € C2°(V;) be functions such
that Zj 1; = 1 on an open neighborhood of A. For each j, let w; € CX(V;) be
such that w;- =1 on an open neighborhood of supp ¢;. Then

MyoQoPoM,=> Q0P
i

where Q; = M,/ 0Qo ng_ and Pj = My, o P o M,. It suffices to show that each
of the operators () o P; is smoothing. Fix j. Let eq1,...,e1x, be a frame of E;
onU, es1,...,e, aframe of E; on V; and e31, ..., e3x, a frame of K3 on W. Let
Pjgo be the components of P; : I'2°(U, Ey) — I'2°(Vj, E) relative to the first
two frames, and let Q)j,5 be the components of Q; : I'2°(V;, Eo) — I'e®(W, E3)
relative to the second pair of frames. These components are scalar smoothing
operators. The components of Qjo Pj : I'2°(U) — I'e®(W) are given by

(QjoPi)ya =Y Qjyso Piga
3

As all operators in this sum are smoothing, it follows that Q; o P; : I'2°(U, Ey) —
I'2°(W, E3) is smoothing. As @) o P; vanishes on the complement of supp x and
has image contained in Cg°(W), it follows that Q; o P; is a smoothing operator.

We now assume that d € R and e = —oo and will show that Qo P is
smoothing. Let U C M be a relatively compact open subset on which each of
the bundles Ej, for j = 1,2,3 admits a trivialization. Let x € C2°(U) then it
suffices to show that M, oQo P is smoothing. Let ¢» € C2°(U) be such that
1 = 1 on an open neighborhood of supp x. Then M, o Q differs from M, o Q) o My,
by a smoothing operator, hence, by the first part of the proof it suffices to show
that M, oQoMyoP is smoothing. Let x' € C®(U) be such that X’ = 1
on an open neighborhood of supp x. Then M, 0cQoMyoP = Qoo Py, where
Qo = M, oQoMy and Py = M,soP. As P is properly supported, there exists
a compact subset B C M such that supp KpNU C M C U x B. Let {V;} be a
finite open cover of B such that the bundle E; admits a trivialization on each of
the sets Vj. Let ¢; € C2°(V;) be such that >~ +; = 1 on an open neighborhood
of B. Then Py = Zj P;, where P; = PyoMy,. It suffices to show that each
operator (Qpo P; is smoothing. Fix j, let e11,...,e1 %, be a frame of E; on
Vj, let ea1,...ea, be a frame of Fy on U and e3q, ..., €3, a frame of E3 on U.
Then in terms of components of the operators Qo : I'e°(U, E2) — I'°(U, E3) and
P; : TX(Vy, Er) — I'e°(U, Es) the operator Qoo Pj : I'°(V;, Eqp) — I'e°(U, E3)
has components given by

ko

(8.6) (Qoo Pj)ya = Z(QO)W o (P}) a
=1
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The operators (P})s, are smoothing with kernels whose compact supports are
contained in U x Vj. Extending these kernels with value zero outside their
supports, we obtain kernels on M x M such that the identities still hold for
the associated scalar operators. As (Qo) 3 € ¥¢(M) for all v, 3 and (Pj)ga €
U=>°(M) for all a,f3, it follows from Theorem 7.5.3 that all components of
Qoo Pj are smoothing operators. Hence, Qg P is smoothing. We conclude
that Q) o P is smoothing.

Likewise, if e = —o0o and d € R, then ) o P is a smoothing operator. To see
this we may either imitate the argument in the previous part of the proof, or
combine the result of that part with Lemma [8:3.3]

Finally, we discuss the case that e, d are arbitrary. We will show that Qo P €
Ui+e(Fy, E3). Let U be an open subset of M on which each of the bundles
E;, for j = 1,2,3 trivializes. Let x € C°(U); then it suffices to show that
My 0QoP € W¥e Let x' € C2°(U) be such that x’ = 1 on supp x. Then M, o Q
equals Qo := M, o Q o M, modulo a smoothing operator, hence by the first part
of the proof it suffices to show that Qg o P belongs to U¥*¢. The latter operator
equals Qoo My o P for 1) € C°(U) such that ) = 1 on an open neighborhood
of supp x’. Let ¢’ € C°(U) be equal to 1 on an open neighborhood of supp v,
then My o P equals Py := My o P oMy modulo a smoothing operator, hence
it suffices to show that Qqo Py € Ui ¢(Ey, E3). As the supports of the kernels
of Qo and Py are contained in U x U, it suffices to show that (Qo)y o (FPo)v €
V(B ), (Bs)o).

Thus, to show that Qo P belongs to W4T¢(E;, E3) we may as well assume
that Fq, Eo, E5 are trivial on M from the start. In this situation, \Ild(El, Es) ~
My, 1, (P4(M)) and V¢(Ey, E3) ~ My, (P¢(M)). Moreover, the composition
Q@ o P has components

(QoP)ya =Y QypoPsa.
B

It follows by application of Theorem 7.5.3 that these components belong to
Wte(M) and have principal symbols given by

o (QoP)ya) = Y 0(Qyp) 00" (Ppa).
8

It follows that
oT(Qo P)ya = (0°(Q)0(P))

Yo
whence .

We now assume to be in the general situation again. It remains to be shown
that R := Qo P is properly supported. Let A C M be compact. Then there
exists a compact subset B C M such that supp Kp N (M x A) C B x A. There
exists a compact subset C' C M such that supp Ko N (M x B) C C' x B. It now
easily follows that supp KrN (M x A) C C x A. Thus, pry|supp k5 : sSupp Kr —
M is proper. The properness of pry|supp k5 is established in a similar way. [

Exercise 8.3.8. Let P € W¢(E, F). Show that the following two assertions
are equivalent.
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(a) The operator P is properly supported.
(b) The operator P maps I'>°(E) continuous linearly to I'2°(F') and its ad-
joint P! maps I'°(FY) continuous linearly to I'S°(EY).

8.4. Elliptic operators, parametrices

We assume that £ — M and F' — M are complex vector bundles on M of rank
k and [, respectively.
The symbol space S°(M, End (F)) has a distinguished element 1 given by

1p:TiM > ¢, — I, € End(E),, (x € M).

Likewise, S°(M,End (F)) has a distinguished element 1p.
A symbol p € S4(M,Hom (E, F)) is said to be elliptic (of order d) if there
exists a symbol ¢ € S~¢(M, Hom (F, E) such that

pq—1p € STYM,End (F)), and g¢p—1g € S~ (M,End(E)).
For the classes [p] € S¢/59! and [¢] € S=¢/S~9~! this means precisely that

[pllgl = [1r], and [q][p] = [1E].

Thus, the notion of ellipticity factors to the quotient space S¢/S%1.

Definition 8.4.1. A pseudo-differential operator P € W¥(E, F) is said to be
elliptic if its principal symbol o%(P) € §¢/S4=1 (M, Hom (E, F')) is elliptic.

The notion of ellipticity of a pseudo-differential operator generalizes the
similar notion for a differential operator.

Lemma 8.4.2. Letd € N and let P be a differential operator of order d from
E to F. Then the following assertions are equivalent.

(a) P is elliptic as differential operator;
(b) P is elliptic as a pseudo-differential operator in W(E, F).

Proof Let p be the principal symbol of P as a differential operator. Then
p € I'°(T*M,Hom (E, F)) and for each x € M, the map { — p(z,§) is a
Hom(E,, F,)-valued polynomial function on T, M* that is homogeneous of de-
gree d. By using local trivializations of F and F one sees that p is a symbol in
S4(M,Hom (E, F)), and that its class in S¢/S9! is the principal symbol of P
in the sense of pseudo-differential operators.

Now assume (a). This means that p(z, ;) is an invertible homomorphism
E, — F, for every x € M,& € TxM \ {0}. Let x : T*"M — R be a smooth
function such that © : suppxy — M is proper and such that y = 1 on a
neighborhood of M; as usual we identify M with the image of the zero section
in 7" M. The existence of such a function can be established locally (relative to
M) by using an atlas of M, and globally by using a partition of unity subordinate
to this atlas.

We define the smooth function ¢ € I'°(T*M, Hom (F, E)) by

9(&) = 1 - x(&)p&)™"  (v€ M, & e T;M).
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By a local analysis we readily see that ¢ € S~¢(M, Hom (F, E)). Moreover, from
the definition of ¢ it follows that

q(&)p(&s) — Ip, = X(&)1E,, and p(&:)q(&s) — Ik, = X (&)1, -

This implies that gp — 15 € ST>°(E, E) and pg — 1p € S™°°(F, F'). Hence (b)
follows.

Conversely, assume that (b) holds. Let p be the principal symbol of the dif-
ferential operator P introduced above. Then [p] = o%(P) in the sense of pseudo-
differential operators, hence there exists a ¢ € S~%(M,Hom (F, E)) such that
[q][p] = [1£] and [p][q] = [1F]. It follows that there exists a7 € S~!(M,End (E))
such that

q(&)p(&e) = 1, +1(&), (reM, & eTyM).

Fix « € M, and choose norms on the finite dimensional spaces T M and
End(E;). Then it follows that

0(E)p() —1p, = O+ &N (&l — o).

This implies that det(q(&;)p(€z)) — 1 for [|&;|| — oo. Hence, p(§;) is an in-
vertible element of Hom(FE,, Fy) for ||£,| sufficiently large. By homogeneity of
p|r:ar this implies that p(£;) is invertible for all £ € T;M \ {0}. As this holds
for any x € M, the operator P is elliptic as a differential operator. ]

Corollary 8.4.3. Let P € VY(E, F) be properly supported and elliptic. Then
there exists a properly supported Q € W~ F,E) such that QP —I € V~Y(E, E)
and PQ — I € U~Y(F, F).

Proof By Deﬁnitionthere exists a ¢ € S~%/S~9~1(M,Hom (F, E)) such
that o?(P)q = [1g] and 0%(p)q = [1r]. By Theorem there exists a @ €
U—4(F, E) with 0~%(Q) = ¢q. By Lemma there exists such a @) such that
in addition @) is properly supported. It now follows from Theorem that
c%(QoP) = [1g] and 6°(PoQ) = [1p]. As [1g] is the principal symbol of the
identity operator I : T°(E) — I'°(E), it follows that Qo P—1g € V~Y(E, E),
by Theorem Likewise, Po@Q — Ip € U~®(F, F). O

The above corollary has the remarkable improvement that () may be adapted
in such a way that QP — I and PQ — I become smooth kernel operators. The
proof of this fact is based on the following principle involving series of pseudo-
differential operators. That principle in turn is the appropriate generalization
of the similar principle for symbols, as formulated in Lemma 5.5.1.

We put

V(E,F)= | v4E,F).
deR

Definition 8.4.4. Let {d;} be a sequence of real numbers with lim; .., d;j =
—o00. Let Qj € W% (E, F), for j € N. Let Q € V(E, F). Then

Q~> Q
=0
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means that for each d € R there exists an N € N such that for all £k > N

k
Q- Q€ VYE,F).
j=0
Theorem 8.4.5. Let {d,},cn be a sequence of real numbers with lim, oo d,, =
—o0 and let for each v € N a pseudo-differential operator Q, € W% (E,F) be
given. Then there exists a properly supported Q € V(E, F') such that

(8.1) Q~> Q.
v=0

The operator Q is uniquely determined modulo V~°(E, F).

Proof If Q' is a second pseudo-differential operator with this property, then
it follows from the definition of ~ that Q — Q' belongs to V(E, F) for every d.
Hence, Q@ — Q' € ¥~°°(E, F) and uniqueness follows.

Let d = max,, d,. In view of Lemma, it suffices to establish the existence
of an operator Q € V¢(E, F) such that

First we consider the case that M is an open subset of R™ and that F and
F are trivial of the form E = M x C*¥ and F = M x C'. Then ¥(E,F) =
M p(¥(M)). Let 1 < i <land 1 < j < k. For every v € N there exists a
symbol (g,);; € S% (M) such that

(QV)U = \IJ(QV)ij'
By Lemma 5.5.1 there exists a symbol ¢;; € S¢(M) such that

gij ~ Y (@)ij-
veN
Let Q € U4(E, F) be the pseudo-differential operator with Qij = Yy, for all
1<¢<1,1<j<k. Then Q satisfies .
‘We now turn to the case that both F and F' admit trivializations 75 : £ —
E' =M xCFand 77 : F — F' = M x C'. Then by the first part of the proof
there exists a P € U(E', F') such that

P~ Z T*(Qu)'
veN
Put Q = 7, '(P), then Q satisfies (8.1). It remains to establish the general
case.

Let {U;}cs be an open cover of M such that both bundles E and F' admit
trivializations on Uj, for every j € J. We may select such a cover with the
additional property that it is locally finite and that there exists a partition of
unity {t;};cs such that suppe; C U; for all j € J. By the first part of the
proof there exists for each j an operator Q; € \I!d(EUj,FUj) such that

Qj ~ Z(QV)U]' .
veN

Clearly, for all 4,j such that Uj; := U; N U; # 0, both operators (Q;)y,, and
(Qj)u,; have the expansion _ (Qy)u,;- This implies that the difference of these
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operators belongs to ¥~>°(U,;). By the gluing property for U/ U~ see Exer-
cise 7.3.10 and Remark it follows that there exists a Q € W¢(E, F) such
that Qu, — Q; € ¥~°(Ey,, Fy,) for all j. It follows that for all j we have

Qu, ~ > _(Q)u;-

veN
This implies (8.1)). O

Theorem 8.4.6. Let E, F be two complex vector bundles on a manifold M. Let
P c VY(E, F) be a properly supported elliptic pseudo-differential operator. Then
there exists a properly supported pseudo-differential operator Q € \I/*d(F7 E)
such that

(8.2) QP -1 €V (E,E).
The operator Q is uniquely determined modulo W~°°(F, E) and satisfies
(8.3) PQ—1e€ VU (FF).

Remark 8.4.7. An operator (Q with the above properties is called a parametriz
for P.

Proof It follows from Corollary that there exists a properly supported
operator Qo € V~¢(F,E) such that QoP — I € Y~ (E,E) and PQo — I €
U~YE,E). Put R = I — QoP. Then R is properly supported. It follows
that R*¥ € W~F(E, E). Hence, there exists a pseudo-differential operator A €
UO(E, E) such that

A~ iRk.
k=0

It is now a straightforward matter to verify that A(/ — R) — I € ™" for all
n € N. It follows that A(I —R)—1 € U=, Put Q = AQp. Then Q € V~4(F, E)
is properly supported and

QP —T=AQyP—I1=A(I—-R)—1€ VU ®(E E).

This shows the existence of () such that . We will show that @ also satisfies
(8.3). Put B = QP — I. Then B is a properly supported smoothing operator
in Y~°(E, F). By what we proved so far there exists a properly supported
operator P; € W4(E, F) such that P1Q — I € U~°(F, F). The operator C :=
PiQ — I is properly supported. We now observe that PiQP = P(I + B) =
P+ PB, and that P,QP = (I+C)P, = P, +CP,. Hence P — P, € U=®(E, F)
and we conclude that D := PQ —1 € W~°°(F, F'). This establishes the existence
of Q.

To establish uniqueness, let Q' € ¥~4(F, E) be a properly supported oper-
ator with the same property as Q. Then E := Q'P — I is smoothing. It follows
that

Q-Q=Q(PQ)-QD-Q=EQ-QD

is a smoothing operator. O
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Corollary 8.4.8. Let P € \I/d(M, E, F) be a properly supported elliptic pseudo-
differential operator. Then for all u € D'(E) we have

singsupp u = singsupp Pu.
In particular, if Pu is smooth, then u is smooth.

Proof Since P is pseudo-local, singsupp Pu C singsuppu. Let Q € ¥—% be
a properly supported parametrix for P. Then QP — I is a properly supported
smoothing operator, hence QQPu — w is smooth. Since @ is pseudo-local, it
follows that singsupp u C singsupp (QPu) C singsupp Pu. O

Remark 8.4.9. Let P : I'*°(E) — I'*°(F) be a differential operator of order
d. Then by locality of P is follows that (Pf,g) = 0 for all f € I'>°(F) and
g € TS°(FV) such that supp f Nsuppg = 0. This implies that the distribution
kernel of P is supported by the diagonal of M x M. In particular, P is properly
supported. It follows that the above corollary applies to elliptic differential
operators.






LECTURE 9
The index of an elliptic operator

9.1. Pseudo-differential operators and Sobolev space

We recall the definition of the Sobolev space H (R"™), for every s € R, from
Definition 4.3.12, The Sobolev space Hs(R™) comes equipped with the inner
product that makes F an isometry from H(R™) to L2(R"). The associated
norm on Hg(R") is denoted by || - ||s. Since Fourier transform is an isometry
from L?(R") to itself, we see that

(0.1) Hy(R") = L*(R")

as Hilbert spaces. We recall that for s < ¢ we have H;(R") C Hg(R") with
continuous inclusion. The intersection of these spaces, denoted H(R™), and
equipped with all Sobolev norms || - ||s, is a Fréchet space.

We note that for all s € RU{oo} we have C2°(R"™) C Hy(R") C D'(R") with
continuous inclusion maps. Thus, the following lemma implies that Hs(R"™) is
a local space in the sense of Lecture 3, Definition 3.1.1.

Lemma 9.1.1. Let s € R U {oo}. Then the multiplication map (o, f) —
My(f), SR™")xS"(R™") — S’ (R™), restricts to a continuous bilinear map S(R™) x
H(R"™) — Hg(R™).

Remark 9.1.2. This should have been the statement of Lemma 4.3.19, at
least for s < 0o, and a proof should have been inserted.

Proof It suffices to prove this for finite s. It follows from Lemma 7.1.3 that
F(My(f)) = F(e) = F(f). Since F is a topological linear isomorphism from
S(R™) onto itself, and from H,(R™) onto L2(R"), the result of the lemma is
equivalent to the statement that convolution defines a continuous bilinear map
S(R™) x L2(R™) — L%(R"). This is what we will prove.

Let ¢, f,g € S(R™). Then for all {,n € R™ we have

(9-2) (L [1€ = nl) (L + l1€)* < (L + [Iml)*,
149
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hence

(g, ¢ * f)]
< / | 9(&)pn)f(&—n)| dnd§
< / eI+ 1] / (&)1 + €)1 £(€ — m)| (L + 1€ — nl)® dédn
<

/Iw(n)l (L + [l dn lI£1lz2llgll 2 -

by the Cauchy-Schwartz inequality for the L?-inner product. Let N € N be
such that |s| — N < —n; then there exists a continuous seminorm vy on S(R"™)

such that for all p € S(R™),

lom)| (1 + [nlD" < wn (@) (L + [Inl) N (p e RM).
We conclude that

g, 0 NIl < Con (@)l fllzzllglir2

with C' = [(1+ ||n]))!*I=" dn a positive real number. Now this is valid for all g
in the dense subspace S(R™) of the space L? ((R"), whose dual is isometrically
isomorphic to L2(R"). Therefore,

lp* flliz < Con(@) ez (o, f € SR)).

By density of S(R") in L2(R") it now follows that the convolution product has
a continuous bilinear extension to a map S(R") x L2(R") — L2(R™). The latter
space is included in §'(R™) with continuous inclusion map. Hence the present
extension of the convolution product must be the restriction of the convolution
product S(R") x §'(R™) — S’(R™). O

As said, it follows from the above lemma that Hs(R™) is a functional space.
In view of the general discussion in Lecture 3 we may now define the local
Sobolev space as follows.

Definition 9.1.3. Let U C R" be open and let s € R U co. The local Sobolev
space Hg 10c(U) is defined to be the space of f € D'(U) with the property
that ¢ f € Hy(R") for all ¢ € C2°(R™). The space Hs(R"™) is equipped with the
locally convex topology induced by the collection of seminorms vy : f — |[¢ f]|s,
for ¢ € C(U).
The space L2 (U) is defined in a similar fashion. In view of (9.1),
LIOC(U) = HO,IOC(U)y

including topologies. Since H4(R™) is a Hilbert space, if follows from the theory
developed in Lecture 3 that H; 1o.(U) (with the specified topology) is a Fréchet
space.

It follows from the Sobolev lemma, Lemma 4.3.16, that C°(R") C Hy C
C*°(R™) with continuous inclusion maps. This in turn implies that

Hoo,loc(U) = COO(U)7

including topologies.
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The Sobolev spaces behave very naturally under the action of pseudo-
differential operators.

Lemma 9.1.4. Let K C R™ be a compact subset, and let —d,s € R U {oco}.
Then the map
(P f) = Wp(f), SE(R™) x CZ(R™) — CRE(R™),
has a unique extension to a continuous bilinear map
SR(R™) x Hy(R") — Hy—qxc(R")

Proof It suffices to prove this for s,d finite, which we will now assume to
be the case. Uniqueness follows from density of C2°(R") in Hs(R™). Thus, it
suffices to establish existence. Given p € S,%(R”), let F1p denote the Fourier

transform of the function (z,£) — p(x, &) with respect to the first variable. If
a € N then

L+ 1)~ Fip(n, €)] (L + (11D~ 05p) (n, &)
< vol(K) sup [(1+[1¢[)~0op(x, )]

It follows that for every N € N there exists a continuous seminorm py on
SL(R™) such that

L+l A+ D~ Fip, )] < un(p),  ((0,€) € R™),
for all p € SEL(R™).
Let now p € SE(R") and f,g € C°(R™). Then it follows that

@ 0f) = [ [ g7 deds
— [ [ gl 7€) drde

— / / 3 — m)Fup(n, €) F(€) dn de.

We obtain
(g, ¥pf)

[ B9 -+ lle = b=l ~ ) (@ + el T dean
03 < [ sup F50.€) dn gla—el 1

where
Fp(n,€) = [Fip(n, I+ 1€ —nl) (1 + g~
< |Fp0, I+ €D~ A+ Il
< (1 N pn(p).
In the above estimation we have used with s — d in place of s. Fix N such

that |s —d| — N < —n. Then combining the last estimate with (9.3) we see that
there exists a constant C > 0 such that for all f,g € C°(R") and p € SEL(R™),

(g, Up )| < C un(P)llglla—sll fs-
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The space C2°(R™) is dense in the Hilbert space Hy_s(R™) whose dual is iso-
metrically isomorphic with H,_g(R™). This implies that

195(Hlls—a < Cun@)Ifllss (0 € SER™), f € CE(R™)).

it follows that the map (p, f) — V,(f) has a continuous bilinear extension
B: SL(R"™) x Hs(R") — Hs_q(R"). Since 3 maps the dense subspace SE(R™) x
C2°(R™) into the closed subspace H_g x(R™) it follows that 4 maps continuous
bilinearly into this closed subspace as well. O

The local Sobolev spaces behave very naturally under the action of pseudo-
differential operators as well.

Proposition 9.1.5. Let P € V%(U) be properly supported, d € R U {—oc}.
Then for every s € R U {oo} the operator P : D'(U) — D'(U) restricts to a
continuous linear operator Ps : Hg 10c(U) — Hs_g 10c(U).

Proof By Lemma 7.1.9 there exists a p € S%(U) such that P = ¥,. Let
1 € C°(U) and put B = supp 9. Then it suffices to show that the operator @ :=
My, o P is continuous linear from H; 1o.(U) to Hy_g(R™). We note that Q = ¥,
where ¢ € S4(U) c S4(R") is given by g = 1p. Since P is properly supported,
there exists a compact subset K of U such that the kernel of @) has support
contained in Bx K. Let x € C2°(U) be such that x = 1 on an open neighborhood
of K. Then Q = Qo M, on C*(U), hence on D'(U), hence on Hy 10c(U). Put
A = supp x. Then M, is continuous linear Hy 1oc(R™) — H, 4(R™). Moreover,
by Lemma VU, is continuous linear H, 4(R") — Hy_4 g(R™). Therefore,
Q = V40 M, is continuous linear Hy 1oc(R™) — Hs_q(R™). O

9.2. Sobolev spaces on manifolds

In the previous section we have seen that the local Sobolev spaces are functional
in the sense of Lecture 3. In order to be able to extend these spaces to manifolds,
we need to establish their invariance under diffeomorphims. We will do this
through characterizing them by elliptic pseudo-differential operators, which are
already known to behave well under diffeomorphisms. A first result in this
direction is the following.

Proposition 9.2.1. Let s € R, and let P € V*(U) be a properly supported
elliptic pseudo-differential operator. Then

H00(U) = {f € D'(U) | Pf € Lip(U)}-

Proof If f € Hoc(U) then f € D'(U) and Pf € Hyjoc(U) = L2 .(U). This
proves one inclusion. To prove the converse inclusion, we use that by Theorem
8.4.6 applied with M = U and E = F = Cy, there exists a properly supported
Q € V¥(U) such that Qo P = I + T, with T'€ ¥~°°(U) a properly supported
smoothing operator. If f € D'(U) and Pf € L% _(U) = Hpjoc(U), then QPf €
H 1oc(U) and Tf € C®°(U) C H 10c(U). Hence, f = QPf—Tf € Hy 10.(U). O
By combination of the above result with the following lemma, it can be
shown that the local Sobolev spaces behave well under diffeomorphisms.
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Lemma 9.2.2. Let U C R™ be an open subset and let d € R. There exists a
properly supported elliptic operator in W(U).

Proof Let d be finite. Then the function p = pg : R?® — C defined by
p(x,€) = (14 [|€]|>)%? belongs to the symbol space S4(R™). Since pgp_q = 1,
the operator R = ¥,,, € U¢(R") is elliptic. Its restriction P = Ry to U belongs
to W4(U) and has principal symbol [(pg)y] hence is elliptic as well. By Lemma
8.3.5 there exists a properly supported Py € W4(U) such that P — Py is a
smoothing operator. Hence, Py has the same principal symbol as P and we see
that P, is elliptic. ]

Let ¢ : U — V be a diffeomorphism of open subsets of R™. This diffeomor-
phism induces a topological linear isomorphism

(9.4) 0. : D(U) — D (V).

Theorem 9.2.3. Let ¢ : U — V be a diffeomorphism of open subsets of R™
and let s € RU{o0}.

(a) The map restricts to a linear isomorphism

Pxs - Hs,loc(U> - s,loc(v)-
(b) The isomorphism @5 is topological.

Proof It suffices to prove the result for finite s, the result for s = oo is then
a consequence.

We will first obtain (a) as a consequence of Proposition and Lemma
By the latter lemma there exists a properly supported elliptic operator
P € V4U). Let P' = ¢,(P). Then P’ € ¥4(V) and P'p.(f) = p«(Pf) for all
f € D'(U). The principal symbol of P’ is given by ¢%(P") = ¢.(c?(P)), hence
elliptic. Therefore, P’ is elliptic. The kernel of P’ has support contained in
(¢ x ¢)(supp Kp), hence is properly supported.

By a straightforward application of the substitution of variables formula, it
follows that ¢, restricts to a topological linear isomorphism L2 (U) — L& (V).
Let now f € D'(U). Then

f GHS,IOC(U) — Pf€L2 (U) <= w«(Pf) GLIZOC(V)

loc
= Pouf) € Lin(V) <= ¢u(f) € Hytoe(V).

This proves (a). In order to prove (b) we need characterizations of the topology
on Hj 1o that behave well under diffeomorphisms. These will first be given
in two lemmas below. The present proof will be completed right after those
lemmas. ]

Lemma 9.2.4. Lets > 0 and let P € W*(U) be properly supported and elliptic.
Then the topology on Hy 1,c(U) is the weakest locally convex topology for which
both the inclusion map j : Hs 10c(U) — L2 (U) and the map P : Hg 1o.(U) —

loc
2 .
Ly (U) are continuous.

Proof For the topology on Hg 1o.(U) the mentioned maps j and P are con-
tinuous with values in L2 _(U). Let V be equal to Hy 1o.(U) equipped with the
weakest locally convex topology for which j and P are continuous. Then we
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must show that the identity map V' — Hj 1,c(U) is continuous. Let ¢ € C°(U);
then it suffices to show that the map M, : V' — Hy(R") is continuous.
Let Q € Y=5(U) be a properly supported parametrix for P. Then

1=QP+T,

with 7" € ¥~°°(U) a properly supported smoothing operator. Let A = supp .
There exists a compact subset B C U such that the intersections of both
supp K¢ and supp K7 with A x U are contained in A x B. Let ¢ € C°(U) be
such that ¢» = 1 on an open neighborhood of B. Then M,0Q = My,0Q o My
and My oT = My oT o My,. We now see that, for all f € Hg 10c(U),

pf =My (QP +T)(f) = MeQMyPf + M,TM,f.

As Myo@Q and MyoT define continuous linear maps Ho(R") = L*(R") —
H,(R™), by Lemma 9.1.4, it follows that there exists a constant C' > 0 such
that

leflls < CllePfllo + [l f1lo),
for all f € H; 10c(U). The seminorms f — |[@Pf|lo and f — || f|o are contin-
uous on V. Hence, M, : V — Hy(R") is continuous. O

We will also need a characterization of the topology of Hj o by duality,
which is invariant under diffeomorphisms for all negative s. Let D = Dgn
denote the density bundle on R™. Then we have the natural continuous bilinear
pairing (-, ) : C°(R") x I'*(R™, D) — C given by

(fiv) = fv.

Rn

This pairing induces a continuous injection of the space C2°(R"™) into the topo-
logical dual D'(R™) of I'2°(R™, D). This pairing also induces a continuous injec-
tion of I'°(R™, D) into D'(R™, D) ~ C°(R™)". We note that the map g — gdz
defines a topological linear isomorphism C°(R™) — I'°(R", D) and extends
to a continuous linear isomorphism D/(R™) — D'(R™, D). For s € R, the im-
age of the Sobolev space Hg(R™) under this isomorphism, equipped with the
transferred Hilbert structure, is denoted by H(R", D).

By transposition, the inclusion I'S°(R", D) — Hg(R"™, D) induces a continu-
ous linear map H(R", D)’ — D'(R™) which is injective by density of T'S°(R™, D)
in Hg(R", D). Of course the induced map is given by u — u|pegn,py-

The perfectness of the pairing of Lemma 4.3.18 can now be expressed as
follows.

Lemma 9.2.5. Let s € R. The image of the injection Hy(R™, D)" — D'(R")
equals H_s(R™). The associated bijection Hs(R™, D) — H_4(R™) is a topologi-
cal linear isomorphism.

More generally, if U C R™ is an open subset, we define Hy comp(U, D) to
be the image of H comp(U) in D'(U, D) under the map f — fdm, equipped
with the topology that makes this map a topological isomorphism. The natural
inclusion I'®(U, D) — Hy comp(U, D) induces a continuous linear injection

Hs,comp(Ua D)/ — D,(U)

Here, the space on the left is equipped with the strong dual topology.
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Corollary 9.2.6. Lets € R. Then the image of Hs comp(U, D) in D'(U) equals
H_;10c(U). The associated bijection Hg comp(U, D) — H_g10c(U) is a topologi-
cal linear isomorphism.

Proof Let j: Hycomp(U) — D'(U) denote the natural linear injection. Let
p € CX(M). Then for all u € Hy comp(U)" we have

M@oj(u) :j(UOMSp).

The map u +— uoM, is continuous linear H comp(U) — Hs(R™)". It follows
that u — Myoj(u) = j(Myu) is continuous linear Hj comp(U) — H_s(R™).
Since this holds for all ¢, it follows that j is continuous linear Hy comp(U) —
H_;10c(U) as stated.

Conversely, let X C U be compact. Let K’ be a compact neighborhood of
K in U. Then H, xc(R™) is contained in the closure of CR9(R™) in Hy(R™). Let
v € H_g10c(U) and let ¢ € C°(U) be such that ¢ = 1 on a neighborhood of K'.
Then M,v € H_4(R™), hence, M,v = j(ky(v)) for a unique k,(v) € Hg(R™)'.
Moreover, the map ky, : H_g10c(R") — Hs(R™)" is continuous linear by the
above lemma. The restriction of k,(v) to CR9(R"™) is independent of the choice
of ¢, and therefore so is the map ki : v — ky(v)|n, - The map kg is continuous
linear. Moreover, if K1 C Kg are compact subsets of U then ki, (v) = ki, (v)|K1.
It follows that there exists a unique linear map k : H_;10c(U) — Hy comp(U)'
such that ka(v) = k(v)|a for all v € H_;16.(U) and all A C U compact. As
all the k4 are continuous, it follows that k is continuous. Now jok =1 and it
follows that j defines a continuous linear isomorphism from Hg comp(U)" onto
H —s,loc(U)' U

Completion of the proof of Theorem [9.2.3] First assume that s >
0. Let P € ¥5(U) be a properly supported elliptic operator, and let P’ =
v«(P) be as in part (a) of the proof. Then by Lemma the topology
of Hy(U) is the weakest locally convex topology for which both the inclusion
ju + Hy(U) — L _(U) and the map P : Hy(U) — L% _(U) are continuous.
Likewise, the topology on H(V') is the weakest for which both the inclusion
map jv : Hy(V) — L2 (V) and P': Hy(V) — L% (V) are continuous. The map
o« L} (U) — L (V) is a topological linear isomorphism and the following
diagrams commute:

P

HS(U) j—U> LIZOC(U) HS(U) - LIQOC(U)
Pxs | l P Pxs | l ©x
. P/
HS(V) J—V) ngoc(v) HS(V) - LIQOC(V)

It follows that ¢, is a topological linear isomorphism.

This proves (b) for s > 0. We will complete the proof by proving (b) for
s < 0, using the duality expressed in Lemma[0.2.5] We put ¢t = —s, so that ¢ > 0.
By the validity of (b) for s > 0 it follows that the map ¢, : D'(U) — D'(V),
restricts to a topological linear isomorphism ¢y @ Ht comp(U) — Htcomp(V).
On the other hand, the map @, restricts to the topological linear isomorphism
0y 1 CX(U) — CX(V) given by f + fop~!. The map f — fdx defines
a topological linear isomorphism from D'(U) to D'(U, D). Likewise, g +— gdy
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defines a topological linear isomorphism from D'(V') to D'(V, D). Now
pe(fdz) = ou(f)pu(dr) = Myp.(f)dy,

where J : V — (0,00) is the positive smooth function given by

J(y) = |det Dp(o™ ).

The map M defines a topological linear automorphism of D'(V') and restricts
to a topological linear isomorphism of Hy(V'). We conclude that ¢, defines a
topological linear isomorphism D'(U, D) — D'(V, D) and restricts to a topo-
logical linear isomorphism @ : Ht comp(U, D) — Hycomp(V, D). Its restriction
to T'°(U, D) is given by fdx — Mj(p~1)*(f)dy, hence defines a topological
linear isomorphism I'°(U, D) — I'?°(V, D). By taking transposed maps in the
commutative diagram

Ht,comp(Ua D) — Ht,comp(V> D)

T T
rew,n)y  — IV, D)

we obtain the commutative diagram

D'(U) & D'(V)
T T
Ht,comp(Ua D)/ — Ht,comp(‘/a D),

Here the bottom arrow is the transpose of a topological linear isomorphism,
hence a topological linear isomorphism of its own right.

In view of Lemma([0.2.5] and using s = —t, we see that ¢, : D'(U) — D'(V)
restricts to a topological linear isomorphism @.s : Hg 1oc(U) — Hg 1oc(V). O

In particular, it follows from Theorem [9.2.3|that Hj 1o is an invariant local
functional space in the terminology of Lecture 3. It follows that for E a complex
vector bundle on a smooth manifold the spaces of sections H comp(M, E) and
Hg1oc(M, E) are well defined locally convex topological vector spaces. More-
over, the first of these spaces is contained in the second with continuous inclu-
sion map, and the second space is a Fréchet space.

Lemma 9.2.7. Let s,t € R and let s <t. Then Hyoo(M, E) C Hyoc(M, E)
with continuous inclusion map. If M is compact, this inclusion map is compact.

Proof Let {U;};cs be a cover of M by relatively compact open coordinate
patches on which the bundle E' admits a trivialization. Passing to a locally
finite refinement, we may assume that the index set J is countable. Let ¢; be
a partition of unity subordinate to the cover. For each j € J we write K; =
supp ¢;. Then the map f — (¢;f);jcs defines a continuous linear embedding

HS,IOC(Ma E) — H HS,Kj (U]7 E))
Jj€J
for every s € R. Via a trivialization of £ over U; we may identify H, f; (Uj, E) ~

H&Kj(Uj)k. As .FL;KJ.(UJ‘)’c C H; k; (Uj)*, for s < t, with continuous inclusion
map, the first assertion of the lemma follows.
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If M is compact, we may take the covering such that the index set J is finite.
Then by the above reasoning and application of Rellich’s lemma, Lemma 4.5.2,
it follows that the following diagram commutes, and that the inclusion map
represented by the vertical arrow on the right is the finite direct product of
compact maps:

Hy(M,E) — Hje] H57Kj (Uj’ E)
T T
H,(M,E) — HjEJHt,Kj(Uj,E).
As the maps represented by the horizontal arrows are embeddings, it follows
that the inclusion Hy(M, E) — H (M, E), represented by the vertical arrow on
the left, is compact as well. O

We define
Hoo,loc(M7 E) - USER Hs,loc(Ma E)
equipped with the weakest topology for which all inclusion maps Hog 10c(M, E) —
Hj 10c(M, E) are continuous. Then by an argument similar to the one used in the

proof of the above lemma, it follows from the corresponding local statement (see
9.1.5)), that Hoo 10c(M, E) = T'°(M, E), as topological linear (Fréchet) spaces.

Theorem 9.2.8. Let E, I be vector bundles on the smooth manifold M. Let
d € RU{—o0} and s € RU{oo}. Finally, let P € W(E, F) be properly supported.
Then P : D'(M,E) — D'(M, F) restricts to a continuous linear operator Ps :
Hs,loc(M7 E) - S—d,lOC(M7 F)

Proof First assume that d = —o0, so that P is a properly supported smooth-
ing operator. Then P is continuous linear D'(M, E) — T'*°(M, F'). Since the
inclusion Hy joo(M,E) — D'(M, E) is continuous linear, it follows that the re-
striction Py : Hy joc(M, E) — I'*°(M, F) = Hog joc(M, F) is continuous linear.

Now assume that {U;};cs is a cover of M with relatively compact open
coordinate patches. By paracompactness, we may assume that J is countable
and that the cover is locally finite. Let {¢;} be a partition of unity subordinate
to this cover. For each j € J we select a function x; € C¢°(Uj) such that x; =1
on an open neighborhood of supp ¢;. Put P; := My, 0 Po M,,. Then it follows
that

Tj = My, o P~ P,

is a properly supported smoothing operator. The supports of the kernels of T}
form a locally finite set, hence T' =) ;Tjisa well-defined smoothing operator.

Moreover, P, = > ;Pjisa well-defined operator in W¢(E, F), which is properly
supported by local finiteness of the cover {U;}. Moreover,

P=P +T,

so T is properly supported. By the first part of the proof, T' maps Hg joc (M, E)
continuously into C°°(M, F'), hence also continuously into Hs_4(M, F). Thus,
it suffices to show that P, is continuous linear Hy joc(M, E) — Hs_g10c(M, F).
Let ¢ € C°(M). Then it suffices to show that M, o P, is continuous linear
Hg 1oo(M,E) — Hy_q g(M, F), where B = supp . Now M, 0 P, = Zj M, o Pj,
the sum extending over the finite set of j for which supp; N B # 0. Thus,
it suffices to establish the continuity of (Pj)s : Hsoc(M, E) — Hs_g10c(M, F).
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This is equivalent to the continuity of (P;)y; : Hs10c(Uj, E) — Hs_g10c(Uj, F)
which by triviality of the bundles Ey; and Fy; follows from the local scalar
result, Proposition [9.1.5 O]

Lemma 9.2.9. Let M be a smooth manifold, and E — M be a vector bundle.
For every s € R the natural pairing T (M, E) x T*°(M, EV) — C has a unique
extension to a continuous bilinear pairing

Hs,comp(Ma E) X H—s,loc(Ma Ev) — C.
Moreover, the pairing is perfect, i.e., the induced maps
Hs,comp(M7 E) - H—s,loc(M7 E\/)I) H—s,loc(Ma EV) - Hs,comp(Ma E)/
are topological linear isomorphisms.

Proof The proof will be given in an appendix. O

9.3. The index of an elliptic operator

We are now finally prepared to show that every elliptic operator between vector
bundles E, F' over a compact manifold M has a well defined index.

Theorem 9.3.1. Let E, F be vector bundles over a compact manifold M. Let
d € R and let P € WY(E, F) be elliptic. Then the transpose P € W (FY, EY)
1s elliptic as well.

The operator Poo : T°(M,E) — I'*°(M, F) has a finite dimensional kernel,
and closed image of finite codimension.

For all s € R the operator Ps : Hg(m,E) — Hs_4(M,F) is Fredholm and
has index

index Ps = index (Px).

In particular, the index is independent of s.

Proof Let p € S%M,Hom (F, F)) be a representative of the principal symbol
o%(P). Then the principal symbol of P! is represented by

pV : ($7€) = p(ﬂ?, _f)* ® IDI-

Since p is elliptic, pV is elliptic as well, and we conclude that P? is elliptic.

Since M is compact, the spaces Hgs(M, E) and Hs(M, F) carry a Banach
topology. Let Q € V—%(F, E) be a parametrix. Then QP = Ig + T, with T €
U~>(E, E) a smoothing operator. The operator 7' is continuous Hy(M, E) —
C*°(M,E), hence continuous Hs(M,E) — Hsy1(M,E). As Ho 1 (M, E) —
H (M, E) with compact inclusion map, it follows that Ts : Hs(E) — Hs(FE)
is a compact operator. It follows that Qs_q0 Ps = (Ig)s + Ts, hence P has
left inverse Qs_4 modulo a compact operator. Likewise, from PQ — Ip =
T € U~°°(F, F) we see that the operator Ps has right inverse Q;_4 modulo a
compact operator. This implies that P, is Fredholm. In particular, ker Ps is
finite dimensional.

Since ker P, C ker Ps; and ker P C I'°(M, E) by the elliptic regularity
theorem, Corollary 8.4.8, it follows that ker Py = ker Py, for all s € R. In
particular, ker P, is finite dimensional.
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Likewise, (P!)s : Hs(M,FV) — H,_4(M,E") is Fredholm, (ker P!)., is
finite dimensional and ker(P!); = ker(P!), for all s.
We consider the natural continuous bilinear pairing

(9.5) (f.9) = (f,9), T®(M,E) xI*(M,E") — C.
The operator P! : (M, FV)) — I'*°(M, EV) satisfies
(9.6) (Pf,h) = (f.P'h)

for all f € (M, E) and h € I°°(M, FV). The natural bilinear pairing
extends uniquely to a continuous bilinear pairing Hy(M, E)x H_s(M,EV) — C,
which is perfect by Lemma[9.2.9] The map P; is the continuous linear extension
of P:T°(M,E) — I'*°(M,F) to a map Hy(M,E) — Hs_q(M, F). Similarly,
P! extends to a continuous linear map (P')q_s : Hy_s(M,FY) — H_s(M, EV).
By density and continuity, the identity implies that more generally,

<(Pt)dfsf7g> = <f7 Psg>
for all f € Hy_s(M,F) and g € Hy(M, E). In other words,

(Py)' = (P")g—s.
This implies that ker(Ps)" = ker(P!)4_s = ker(P?)oo.
The annihilator of im Py in Hy_s(M, FY) relative to the natural pairing
Hy g(M,F)x Hy_(M,FY) — C
equals ker(Ps)! hence ker(P!)o. By perfectness of the pairing, it follows that
(ker P')oo =~ {u€ Hy o(M,F) |u=0 on im Ps}

~ [y (M, F)/im (B)].
Since P is Fredholm, its image is closed and of finite codimension. Hence
ker(P?) s =~ coker (Ps)* and it follows that

index (P,) = dim ker Py, — dim ker(P").

We will complete the proof by showing that ker(P?),, ~ (coker Py, )*, naturally.
For this we note that by the elliptic regularity theorem, Theorem 8.4.8,

im (Ps) NT°°(M, F) = im Px.
Since I'°(M, F') C H,_q(M, F) with continuous inclusion map, and since im (Ps)
is closed in Hg_4(M, F), it follows that im (Ps) is closed in I'*°(M, F'). The an-
nihilator of im P in (M, F)" = D'(M,F") equals the kernel of (P!)_« :
D'(M,FV) — D'(M,EV), which in turn equals ker(P'),, by the elliptic regu-
larity theorem. This implies that

ker(P') o =~ [[°°(M, F)/im (Ps)]'.

As the first of these spaces is finite dimensional, P,, has finite dimensional
cokernel, and ker(P!)y, =~ [[°°(M, F)/im (Ps)]*. O

For obvious reasons, the integer index (Py) is called the index of P and
will more briefly be denoted by index (P). The following result asserts that the
index depends on P through its principal symbol.
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Lemma 9.3.2. Let M be compact, and E,F complex vector bundles on M.
Let P,P' € VY(E, F) be elliptic operators. Then

0%(P) = ¢%(P') = index (P) = index (P').

Proof From the equality of the principal symbols, it follows that P—P' = Q €
UI=1(E, F). Let s € R. The operator Q maps Hs(M, E) to H,_q,1(M, F). The
latter space is contained in Hy_4(M, F'), with compact inclusion map. It follows
that @) is compact as an operator Hy(M, E) — Hs_4(M, F'). We conclude that
P, — P! is compact, hence index (Ps) = index (P}). O



LECTURE 10
Characteristic classes

At this point we know that, for an elliptic differential operator of order d,
P:T(E)—T(F)
its analytical index
Index(P) = dim(Ker(P)) — dim(Coker(P))
is well-defined (finite) and only depends on the principal symbol
o4(P):m"E — 1*F

(where m : T*M — M is the projection). The Atiyah-Singer index theorem
gives a precise formula for Index(P) in terms of topological data associated to
Ud(P)v

Index(P) = (—1)" /T _ ch(oa(P)TATM & C).

The right hand side, usually called the topological index, will be explained in
the next two lectures. On short, the two terms “ch” and “T'd” are particular
characteristic classes associated to vector bundles. So our aim is to give a short
introduction into the theory of characteristic classes.

The idea is to associate to vector bundles F over a manifold M certain
algebraic invariants which are cohomology classes in H*(M) which “measure
how non-trivial F is”, and which can distinguish non-isomorphic vector bundles.
There are various approaches possible. Here we will present the geometric one,
which is probably also the simplest, based on the notion of connection and
curvature. The price to pay is that we need to stay in the context of smooth
manifolds, but that is enough for our purposes.

Conventions: Although our main interest is on complex vector bundles,
for the theory of characteristic classes it does not make a difference (for a large
part of the theory) whether we work with complex or real vector bundles. So,
we will fix a generic ground field F (which is either R or C) and, unless a clear
specification is made, by vector bundle we will mean a vector bundle over the
generic field F.

Accordingly, when referring to C*°(M), TM, QP(M), X (M), H*(M) with-
out further specifications, we mean in this lecture the versions which take into

161
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account F; i.e., when F = C, then they denote the algebra of C-valued smooth
functions on M, the complexification of the real tangent bundle, complex-valued
forms, complex vector fields (sections of the complexified real tangent bundle),
DeRham cohomology with coefficients in C. Also, when referring to linearity
(of a map), we mean linearity over F.

10.1. Connections

Throughout this section F is a vector bundle over a manifold M. Unlike the case
of smooth functions on manifolds (which are sections of the trivial line bundle!),
there is no canonical way of taking derivatives of sections of (an arbitrary) E
along vector fields. That is where connections come in.

Definition 10.1.1. A connection on F is a bilinear map V
X(M) x T(E) - T(E), (X,s)— Vx(s),
satisfying
Vix(s) = fVx(s), Vx(fs) = fVx(s) + Lx(f)s,
forall fe C®(M), X € X(M), s e T'(E).

Remark 10.1.2. In the case when FE is trivial, with trivialization frame

e={ey,...,e },

giving a connection on F is the same thing as giving an r by r matrix whose
entries are 1-forms on M:

w = (W])ij € Mo(QN()).
Given V, w is define by

Vi(er) =D wl(X)e;.
j=1

Conversely, for any matrix w, one has a unique connection V on F for which
the previous formula holds: this follows from the Leibniz identity.

Remark 10.1.3. Connections are local in the sense that, for a connection V
and x € M,
Vx(s)(x) =0

for any X € X (M), s € I'(E) such that X = 0 or s = 0 in a neighborhood U of
x. This can be checked directly, or can be derived from the remark that V is a
differential operator of order one in X and of order zero in f.

Locality implies that, for U C M open, V induces a connection VY on the
vector bundle E|¢ over U, uniquely determined by the condition

Vx(s)lo = Vg, (50)-

Choosing U the domain of a trivialization of E, with corresponding local frame
e ={e1,...,e.}, the previous remark shows that, over U, V is uniquely deter-
mined by a matrix

0= (67):; € M. (QY(U)).
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This matrix is called the connection matrix of V over U, with respect to the
local frame e (hence a more appropriate notation would be 0(V,U, e)).

Proposition 10.1.4. Any vector bundle E admits a connection.

Proof Start with a partition of unity n; subordinated to an open cover {U;}
such that E|y, is trivializable. On each E|y, we consider a connection V* (e.g.,
in the previous remark consider the zero matrix). Define V by

Vx(s) := Z Vx|, ) (75)-

O

Next, we point out s slightly different way of looking at connections, in terms
of differential forms on M. Recall that the elements w € QP(M) (p-forms) can
be written locally, with respect to coordinates (z1,...,x,) in M, as

(10.1) w= Z flie da, coodwgy,
i1yl

with fi1-%-smooth functions while globally, they are the same thing as C°°(M)-
multilinear, antisymmetric maps

w: X(M)x...x X(M)— C®(M),

~
p times

where X'(M) is the space of vector fields on M.
Similarly, for a vector bundle FE over M, we define the space of E-valued
p-differential forms on M

QOP(M;E) = T(APT*M ® E).

As before, its elements can be written locally, with respect to coordinates
(z1,...,oy) in M,

(102) n= Z dﬂ?il .. dajip ® eil’“"ip‘
11 yeenylp
with et local sections of E. Using also a local frame e = {ey,...,e,} for

E, we obtain expressions of type
Z f;lw'ﬂpdwil c. dxip X e;.
01 yeenipsi
Globally, such an 7 is a C°°(M )-multilinear antisymmetric maps

w: X(M) % ... x X(M) - T(E).

p times
Recall also that

QM) = P ar(m)
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is an algebra with respect to the wedge product: given w € QP(M), n € Q4(M),
their wedge product w A n € QPT4(M), also denoted wn, is given by
(10.3)

(W/\U) (le s 7XP+Q) = Z Sign(a)w(xo(1)7 s 7Xa(p))'n(Xa(p+1)7 R Xo(p+q))7

where the sum is over all (p, ¢)-shuffles o, i.e. all permutations o with o(1) <

.<o(p)and o(p+1) < ... < o(p+ q). Although this formula no longer
makes sense when w and n are both F-valued differential forms, it does make
sense when one of them is F-valued and the other one is a usual form. The
resulting operation makes

AM, E) =P r(M,E)

into a (left and right) module over Q(M). Keeping in mind the fact that the
spaces (2 are graded (i.e are direct sums indexed by integers) and the fact that
the wedge products involved are compatible with the grading (i.e. QP A Q7 C
QP+ we say that Q(M) is a graded algebra and Q(M, E) is a graded bimodule
over Q(M). As for the usual wedge product of forms, the left and right actions
are related byE|

wAn=(-1)PnAw YweQP(M),neQI(ME).
In what follows we will be mainly using the left action.
Finally, recall that Q(M) also comes with DeRham differential d, which
increases the degree by one, satisfies the Leibniz identity
d(w An) = d(w) An+ (=1)w A d(n),

where |w| is the degree of uEl, and is a differential (i.e. dod =0). We say that
(Q(M) is a DGA (differential graded algebra). However, in the case of Q(M, E)
there is no analogue of the DeRham operator.

Proposition 10.1.5. Given a vector bundle E over M, a connection V on E
induces a linear operator which increases the degree by one,

dy : Q*(M,E) — Q*"(M, E)
which satisfies the Leibniz identity
dy(w An) = d(w) An+ (=1)¥lw A dg(n)

for allw € Q(M), n € QM,E). The operator V is uniquely determined by
these conditions and
dv (s)(X) = Vx(s)
for all s € Q°(M,E) =T(E), X € X(M).
Moreover, the correspondence V <« dy s a bijection between connections
on E and operators dy as above.

mportant: this is the first manifestation of what is known as the “graded sign rule”: in
an formula that involves graded elements, if two elements a and b of degrees p and ¢ are
interchanged, then the sign (—1)P? is introduced

2Note: the sign in the formula agrees with the graded sign rule: we interchange d which has
degree 1 and w
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Instead of giving a formal proof (which is completely analogous to the proof
of the basic properties of the DeRham differential), let us point out the explicit
formulas for dv, both global and local. The global one is completely similar to
the global description of the DeRham differential- the so called Koszul formula:
for w € QP(M), dw € QPTY(M) is given by

dn)(X1,.. ., Xp1) = > (U)X, X, X0, Xy X, X))
1<j
p+1 .
(10.4) + Z D Ly, (X, Xy oo, X))

Replacing the Lie derivatives Lx, by Vx,, the same formula makes sense for
n € Q(M, E); the outcome is precisely dy(n) € QPH1(M, E). For the local de-
scription we fix coordinates (x1,...,x,) in M and a local frame e = {ey,...,e,}
for . We have to look at elements of form . The Leibniz rule for dy
implies that

dy(n) = Z (—1)Pda;, ... dx;, @ dv(eil,-.‘,’ip)
i1yip

hence it suffices to describe dy on sections of E. The same Leibniz formula
implies that it suffices to describe dy on the frame e. Unraveling the last
equation in the proposition, we find

(10.5) dv(e;) = ngej,
j=1

where 6 = (0;)” is the connection matrix of V with respect to e.

Exercise 10.1.6. Let V be a connection on £, X € X(M), s e T'(E), z € M
and v : (—€,€) — M a curve with v(0) = z, 7/(0) = X,. Show that if X, =0
or s = 0 along 7, then

Vx(s)(xz)=0.

Deduce that, for any X, € T, M and any section s defined around x, it makes
sense to talk about Vi, (s)(z) € E;.

10.2. Curvature

Recall that, for the standard Lie derivatives of functions along vector fields,
Lixy) = LxLy(f) — Ly Lx(f).

Of course, this can be seen just as the definition of the Lie bracket [X,Y]
of vector fields but, even so, it still says something: the right hand side is a
derivation on f (i.e., indeed, it comes from a vector field). The similar formula
for connections fails dramatically (i.e. there are few vector bundles which admit
a connection for which the analogue of this formula holds). The failure is
measured by the curvature of the connection.
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Proposition 10.2.1. For any connection V, the expression
(10.6) kv(X,Y)s = VxVy(s) = VyVx(s) = Vixy|(s),

is C°(M)-linear in the entries X,Y € X (M), s € T'(E). Hence it defines an
element

ky € T(A’T*M @ End(E)) = Q*(M; End(E)),

called the curvature of V.

Proof It follows from the properties of V. For instance, we have
VxVy(fs) = Vx(fVy(s)+ Ly(f)s)
= fVxVy(s)+ Lx(f)Vy(s) + Lx(f)Vy(s) + Lx Ly (f)s,
and the similar formula for VxVy (fs), while
Vix,y)(fs) = fVixy)(s) + Lixy(f)s.

Hence, using L(xy] = LxLy — Ly Lx, we deduce that

kV(Xa Y)(fS) = ka(X7 Y)(S)a
and similarly the others. O

Remark 10.2.2. One can express the curvature locally, with respect to a local
frame e = {e1,...,e,} of E over an open U, as

ky(X,Y)ei = Y k(X,Y)e;,
j=1

where kg(X,Y) € C°°(U) are smooth functions on U depending on X,Y €

X (M). The previous proposition implies that each klj is a differential form (of
degree two). Hence kv is locally determined by a matrix

k= (k)ij € M,(Q2(U)),

called the curvature matrix of V over U, with respect to the local frame e. Of
course, we should be able to compute £ in terms of the connection matrix 6.
This will be done as bit later.

There is another interpretation of the curvature, in terms of forms with
values in ££. While V defines the operator dy which is a generalization of the
DeRham operator d, it is very rarely that it squares to zero (as d does). Again,
kv measure this failure. To explain this, we first look more closely to elements

K € QP (M, End(E)).
The wedge product formula ([10.3|) has a version when w = K and n € Q4(M, E):

(K/\n)(Xla cee 7XP+Q) - Z Sign(o—)K(Xoﬂ% RS Xa(p))(n(XU(p—i-l)? RN Xo(p+q)))7

Any such K induces a linear map

K :Q(M,E) — Q*"P(M,E), K(n) =K An.
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For the later use not also that the same formula for the wedge product has
an obvious version also when applied to elements K € QP(M, End(E)) and
K' € Q4(M, End(E)), giving rise to operations

(10.7) A QP(M, End(E)) x Q4M, End(E)) — QPTY(M, End(E))

which make Q(M, End(F)) into a (graded) algebra.

Exercise 10.2.3. Show that K is an endomorphism of the graded (left) Q(M)-

module Q(M, E) i.e., according to the graded sign rule (see the previous foot-
notes):

~

K(wAn) = (~1)™w A K1),
for all w € Q4(M).
Moreover, the correspondence K +— K defines a bijection
QP (M, End(E)) = Endg(M) (QM,E))

between QP(M, End(E)) and the space of all endomorphisms of the graded
(left) Q(M)-module (M, E) which rise the degree by p.

Finally, via this bijection, the wedge operation becomes the compo-
sition of operators, i.e.

—

KANK'=KoK'
for all K, K' € Q(M, End(E)).
Due to the previous exercise, we will tacitly identify the element K with
the induced operator my. For curvature of connections we have
Proposition 10.2.4. IfV is a connection on E, then
d% =dy ody : Q*(M,E) — Q*"*(M, E)
s given by
d3(n) = ky An

for alln € Q*(M; E), and this determines ky uniquely.
Proof Firs of all, dy is Q(M)-linear: for w € QP(M) and n € QP(M, E),
dy(wAn) = dy(dw) A+ (=1)PwAdy(n)

= [d*(w) An+ (=1)P"d(w) Adv(n)] + (=1)P[d(w) A ds () + (=1)Pw A dS (1)

= wAdv(n).

Hence, by the previous exercise, it comes from multiplication by an element
k € Q*(M). Using the explicit Koszul-formula for dy to compute d3, on I'(E),
we see that d%(s) = kv A s for all s € I'(E). We deduce that k = ky. O

Exercise 10.2.5. Let # and k be the connection and curvature matrices of V
with respect to a local frame e. Using the local formula ((10.5)) for dy and the

previous interpretation of the curvature, show that

Kl =dol = " 0F nol,
k

or, in a more compact form,

(10.8) k=do—0n0|
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10.3. Characteristic classes

The local construction of characteristic classes is obtained by gluing together
expressions built out of connection matrices associated to a connection. Hence
it is important to understand how connection matrices change when the frame
is changed.

Lemma 10.3.1. Let V be a connection on E. Let e = {e1,...,er} be a local
frame of E over an open U and let 0 and k be the associated connection matrix
and curvature matriz, respectively. Let e’ = {e€],...,e.} be another local frame
of E over some open U’ and let 8’ and k' be the associated connection and
curvature matrix of V. Let

9= (g]) € Mp(C(UNT")
be the matriz of coordinate changes from e to €, i.e. defined by:

T
, .
_ J
€ = E :giej
=1

over UNU'. Then, on UNU’,

0 = (dg)g~" + 909"

Proof Using formula (10.5|) for dy we have:
dy(e}) = dv(d_gier)
1

= > dlghe+> g0 em,
l lym

where for the last equality we have used the Leibniz rule and the formulas
defining 6. Using the inverse matrix ¢g~! = (95)i,j we change back from the

frame e to € by e; =, ﬁéwi and we obtain
=i lym—j
dy(ef) =Y dlghgle; + > g0y Ge).
l?j l7m7j
Hence

@), = "dghg +_ g g,
l lm

i.e. the first formula in the statement. To prove the second equation, we will
use the formula (refinvariance) which expresses k in terms of . We have

do' =d(dg- g+ g0g~") = —dgd(g™") + d(9)0g " + gd(0)g~" — gbd(g™).
For 6/ A 0" we find
dgg~t Nd(g)gt +dggt NglgTt + gbg Tt AdggTt + gfg™t A gbgT.

Since
g tdg=d(g "g) —d(g g = —d(g )y,
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the expression above equals to
—dgd(g™") + d(9)09~" — g0d(g™") + gwwg .
Comparing with the expression for df’, we find
K=do —0' N =g(dd—0N0)g = ghkg™ .
O

Since the curvature matrix stays the same “up to conjugation”, it follows
that any expression that is invariant under conjugation will produce a globally
defined form on M. The simplest such expression is obtained by applying the
trace:

Tr(k)=> ki € Q*(U).

Indeed, it follows immediately that, if &’ corresponds to another local frame ¢’
over U’, then Tr(k) = Tr(k’) on the overlap U NU’. Hence all these pieces glue
to a global 2-form on M:

Tr(ky) € Q*(M).

As we will see later, this form is closed, and the induced cohomology class in
H?(M) does not depend on the choice of the connection (and this will be, up
to a constant, the first Chern class of E). More generally, one can use other
“invariant polynomials” instead of the trace. We recall that we are working

over the field F € {R, C}.
Definition 10.3.2. We denote by I,.(IF) the space of all functions
P:M.(F)—F

which are polynomial (in the sense that P(A) is a polynomial in the entries of
A), and which are invariant under the conjugation, i.e.

P(gAg™") = P(A)
for all A € M,.(F), g € GI,.(F).

Note that I,.(F) is an algebra (the product of two invariant polynomials is
invariant).

Example 10.3.3. For each p > 0,
Y, My (F) = F, ¥£,(A) =Tr(AP)

is invariant. One can actually show that the elements with 0 < p < r generate
the entire algebra I.(F): any P € I.(F) is a polynomial combination of the
¥,’s. Even more, one has an isomorphism of algebras

I(F) = F[S0, 51, ...,5,].

Example 10.3.4. Another set of generators are obtained using the polynomial
functions

op: M, (F) =T
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defined by the equation
det(I +tA) = ap(A)P.
p=0

For instance, oy = X is just the trace while 0,(A) = det(A). One can also
prove that

I.(F) = Flog,01,...,0p].

Remark 10.3.5. But probably the best way to think about the invariant
polynomials is by interpreting them as symmetric polynomials, over the base
field F, in r variables x1, ...z, which play the role of the eigenvalues of a generic
matrix A. More precisely, one has an isomorphism of algebras

IT(F) = Sym]l“[xh e 7'7;7‘]

which associates to a symmetric polynomial S the invariant function (still de-
noted by S) given by

S(A) = S(xz1(A), ...,z (A)),

where z;(A) are the eigenvalues of A. Conversely, any P € I,.(F) can be viewed
as a symmetric polynomial by evaluating it on diagonal matrices:

P(zy,...,z,) = P(diag(z1,...,x)).
For instance, via this bijection, the 3,’s correspond to the polynomials
Sp(T, .. mp) = Y (i),
i
while the ,’s correspond to
op(T1,...,2p) = Z Ty oo Ty,
11<...<ip

With this it is now easier to express the X’s in term of the o’s and the other
way around (using “Newton’s formulas”: 1 = o1, 3o = (01)% — 209, U3 =
(01)3 — 30102 + 303, etc.).

From the previous lemma we deduce:

Corollary 10.3.6. Let P € I.(F) be an invariant polynomial of degree p.
Then for any vector bundle E over M of rank r and any connection V on E,
there exists a unique differential form of degree 2p,

P(E,V) € Q*(M)
with the property that, for any local frame e of E over some open U,
P(E,V)|u = P(k) € 9*(U),
where k € M,(Q*(U)) is the connection matriz of V with respect to e.

The following summarizes the construction of the characteristic classes.
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Theorem 10.3.7. Let P € I,.(F) be an invariant polynomial of degree p. Then
for any vector bundle E over M of rank r and any connection V on E, P(E,V)
is a closed form and the resulting cohomology class

P(E) := [P(E,V)] € H*(M)

does not depend on the choice of the connection V. It is called the P-characteristic
class of E.

This theorem can be proven directly, using local connection matrices. Also,
it suffices to prove the theorem for the polynomials P = ¥,,. This follows from
the fact that these polynomials generate I,.(F) and the fact that the construction

I,(F) 5 P— P(E,V) € QM)

is compatible with the products. In the next lecture we will give a detailed
global proof for the ¥,’s; the price we will have to pay for having a coordinate-
free proof is some heavier algebraic language. What we gain is a better under-
standing on one hand, but also a framework that allows us to generalize the
construction of characteristic classes to “virtual vector bundles with compact
support”. Here we mention the main properties of the resulting cohomology
classes (proven at the end of this lecture).

Theorem 10.3.8. For any P € I.(F), the construction E — P(E) is natural,
1.€.
1. If two vector bundles E and F over M, of rank r, are isomorphic, then
P(E) = P(F).
2. If f: N — M is a smooth map and

£ H* (M) — H*(N)

is the pull-back map induced in cohomology, then for the pull-back vector
bundle f*FE,

P(f*E) = [*P(E).

10.4. Particular characteristic classes

Particular characteristic classes are obtained by applying the constructions of
the previous section to specific polynomials. Of course, since the polynomials
Y, (and similarly the o,’s) generate I(FF), we do not loose any information if
we restrict ourselves to these polynomials and the resulting classes. Why don’t
we do that? First, one would have to make a choice between the X,’s or o,’s.
But, most importantly, it is the properties that we want from the resulting
characteristic classes that often dictate the choice of the invariant polynomials
(e.g. their behaviour with respect to the direct sum of vector bundles- see
below). Sometimes the ¥,’s are better, sometimes the o,’s, and sometimes
others. On top, there are situations when the relevant characteristic classes are
not even a matter of choice: they are invariants that show up by themselves
in a specific context (as is the case with the Todd class which really shows up
naturally when comparing the “Thom isomorphism” in DeRham cohomology
with the one in K-theory- but that goes beyond this course).
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Here are some of the standard characteristic classes that one considers. We
first specialize to the complex case F = C.

1. Chern classes: They correspond to the invariant polynomials

1 \?
()
with 0 < p < r. Hence they associate to complex vector bundle F rank r a
cohomology class, called the p-th Chern class of E:
cp(E) € H¥(M) (0<p<r).
The total Chern class of F is defined as
c(E)=co(E)+c1(E)+...+c(E) € HV"(M);

it corresponds to the inhomogeneous polynomial

1
c(A) =det(I + %A)

For the purpose of this lecture, the rather ugly constants in front of o),
(and the similar constants below) are not so important. Their role will be to
“normalize” some formulas so that the outcome (the components of the Chern
character) are real, or even integral (they come from the cohomology with
integral coefficients; alternatively, one may think that they produce integrals
which are integers). If you solve the following exercise you will find out precisely
such constants showing up.

Exercise 10.4.1. Let M = CP! be the complex projective space, consisting
of complex lines in C? (i.e. 1-dimensional complex vector subspaces) in C2.
Let L C CP! x C? be the tautological line bundle over M (whose fiber above
l € CP! is I viewed as a complex vector space). Show that

c1(L) € H*(CPY)
is non-trivial. What is its integral? (the element a := —ci(L) € H?(CP') will

be called the canonical generator).

Here are the main properties of the Chern classes (the proofs will be given
at the end of the section).

Proposition 10.4.2. The Chern classes of a complex vector bundle, priory
cohomology classes with coefficients in C, are actually real (cohomology classes
with coefficients in R). Moreover,

1. The total Chern class has an exponential behaviour with respect to the
direct sum of vector bundles i.e., for any two complex vector bundles FE
and F' over M,

(E®F)=c(E)c(F)
or, component-wise,

G(EGF)= Y c(B)e;(F),
i+j=p
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2. If E is the conjugated of the complex vector bundle E, then
cx(E) = (—1)ken(E).

Remark 10.4.3. One can show that the following properties of the Chern
classes actually determines them uniquely:

C1: Naturality (see Theorem [10.3.8]).

C2: The behaviour with respect to the direct sum (see the previous proposi-
tion).

C3: For the tautological line bundle L, ¢;(L) = —a € H?*(CP!) (see the
previous exercise).

2. Chern character: The Chern character classes correspond to the in-

variant polynomials
Chy, = ! Ly by
Pl 2mi P

Hence Ch), associates to a complex vector bundle £ a cohomology class, called
the p-th component of the Chern character of E:

Chy(E) € H*(M).

They assemble together into the full Chern character of F, defined as
Ch(E) =Y _Chy(E) € H"(M);

p=>0

it corresponds to the expression (which, strictly speaking is a powers series and
not a polynomial, but which when evaluated on a curvature matrix produces a
finite sum):

Ch(A) = Tr(e zmi).

Note that Ch(FE) are always real cohomology classes; this follows e.g. from
the similar property for the Chern classes, and the fact that the relationship
between the ¥’s and the ¢’s involve only real coefficients (even rationall). Here
is the main property of the Chern character.

Proposition 10.4.4. The Chern character is additive and multiplicative i.e.,
for any two complex vector bundles E and F over M,

Ch(E & F) = Ch(E) + Ch(F), Ch(E® F) = Ch(E)Ch(F).

3. Todd class: Another important characteristic class is the Todd class
of a complex vector bundle. To define it, we first expand formally

t
7 ZBo+Blt+Bgt2+....
1—e"
(the coefficients By, are known as the Bernoulli numbers). For instance,

1 1
BozlaBlziaBQZ

1
—,B3=0,By=——,¢t
67 3 , D4 3076C7
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(and they have the property that By = 0 for k-odd, k > 3 and they have vari-
ous other interesting interpretations). For r-variables, we expand the resulting
product

"y
T:= Hg=11_7€l—xi =To+Ti(xy,...,zp) + To(z1, ... 20) + ...
where each T} is a symmetric polynomial of degree k. We proceed as before
and define

1

k
Ta(E) = () TLE) € B,

The Todd class of a vector bundle F is the resulting total characteristic class

Td(E) =Y _ Tdy(E) € H(M).
k
Again, Td(FE) are real cohomology classes and T'd is multiplicative.

4. Pontryagin classes: We now pass to the case F = R. The Pontryagin
classes are the analogues for real vector bundles of the Chern classes. They
correspond to the polynomials

1 2k
Pk = <27_[_> 02k,

for 2k < r. The reason we restrict to the o’s of even degree (2k) is simple: the
odd dimensional degree produce zero forms (see below). Hence pj associates to
a real vector bundle F of rank r a cohomology class, called the k-th Pontryagin
class of E:

pr(E) € H™(M) (0 <k <r/2).
They assemble together into the full Pontryagin class of F, defined as
P(E) = po(E) + p1(E) + ... + p[;) € H*(M).

2
The Pontryagin class has the same property as the Chern class: for any two
real vector bundles,
p(E @ F) = p(E)p(F).
The relationship between the two is actually much stronger (which is expected
due to their definitions). To make this precise, we associate to any real vector
bundle F its complexification

EQC:=FE®rC= {61+i62 te1,6e9 EE,}.
Proposition 10.4.5. For any real vector bundle F,

_ [ CVFpu(B) ifl =2k
CZ(E@’C)_{O i — %k

Finally, one can go from a complex vector bundle F to a real one, denoted
ER, which is just E vied as a real vector bundle. One has:

Proposition 10.4.6. For any complex vector bundle E,

pO(E]R) — pl(E]R) —|—p2(E]R) — ... = (CQ(E) + Cl(E> +.. )(C()(E) - Cl(E) +.. )
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5. The Euler classs: There are other characteristic classes which are,
strictly speaking, not immediate application of the construction from the pre-
vious section, but are similar in spirit (but they fit into the general theory of
characteristic classes with structural group smaller then GL,). That is the case
e.g. with the Euler class, which is defined for real, oriented vector bundles F
of even rank r = 2[. The outcome is a cohomology class over the base manifold
M:

e(E) € H*(M).
To construct it, there are two key remarks:

1. For real vector bundles, connection matrices can also be achived to be
antisymmetric. To see this, one choose a metric (-,-) on E (fiberwise an
inner product) and, by a partition of unity, one can show that one can
choose a connection V which is compatible with the metric, in the sense
that

L (s1,52) = (Vx(s1),52) + (s1, Vx(s2))

for all s1,s9 € I'(E). Choosing orthonormal frames e, one can easily
show that this compatibility implies that the connection matrix 6 with
respect to e is antisymmetric.

2. With the inner product and V as above, concentrating on positively
oriented frames, the change of frame matrix, denoted g in the previous
section, has positive determinant.

3. In general, for for skew symmetric matrices A of even order 2I, det(A) is
naturally a square of another expression, denoted Pf(A) (polynomial of
degree [):

det(A) = Pf(A)2.

For instance,

0 a b ¢

—-a 0 d e | _ 2
det b o—d 0 f = (af + cd — be)“.

—c —e —f 0

Moreover, for g with positive determinant,

Pf(gAg—") = Pf(A).

It follows that, evaluating Pf on connection matrices associated to positive
orthonormal frames, we obtain a globvally defined form

Pf(E,V) e Q¥(M).

As before, this form is closed and the resulting cohomology class does not
depend on the choice of the connection. The Euler class is

l
e(E) = <217T> PF(E, V)| € B (M),
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Note that, since det is used in the construction of p;(F), it follows that

n(E) = e(E)?.

10.5. Proofs of the main properties

The proofs of the main properties of the characteristic classes (Theorem
Proposition Proposition and Proposition ) are based on
some basic constructions of connections: pull-back, direct sum, dual, tensor
product.

Pullback of connections and the proof of Theorem [10.3.8; For
Theorem we need the construction of pull-back of connections: given a
vector bundle E over M and a smooth map f : N — M then for any connection
V on FE, there is an induced connection f*V on f*FE. This can be described
locally as follows: if e is a local frame e of E over U and 6 is determined by the
connection matrix (with respect to e) € then, using the induced local frame f*e
of f*E over f~1(U), the resulting connection matrix of f*V is f*6 (pull back
all the one-forms which are the entries in the matrix ). Of course, one has to
check that these connection matrices glue together (which should be quite clear
due to the naturality of the construction); alternatively, one can describe f*V
globally, by requiring

(10.9) (f*V)x(f78)(@) = Vigp),(x,) () (f (), = €N

where, for s € I'(E), we denoted by f*s € I'(f*E) the section = — s(f(z)); for
the right hand side, see also Exercise [10.1.6

Exercise 10.5.1. Show that there is a unique connection f*V on f*FE which
has the property (10.9). Then show that its connection matrices can be com-
puted as indicated above.

With this construction, the second part of Theorem is immediate:
locally, the connection matrix of f*V is just the pull-back of the one of V,
hence we obtain P(FE, f*V) = f*P(E,V) as differential forms. The first part
of the theorem is easier (exercise!).

Direct sum of connections and the proof of Proposition
For the proof of the behaviour of ¢ with respect to direct sums (and similarly
for the Pontryagin class) we need the construction of the direct sum of two
connections: given connections V° and V! on E and F, respectively, we can
form a new connection V on £ @ F":

Vx (52, s1) = (V& (s), Vi (s1)).

To compute its connection matrices, we will use a local frame of £ ® F' which
comes by putting together a local frame e for E and a local frame f for F' (over
the same open). It is then clear that the connection matrix 6 for V with respect
to this frame, and similarly the curvature matrix, can be written in terms as
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the curvature matrices 6%, i € {0,1} for E and F' (with respect to e and f) as

6% 0 K0 0
o=( o )+=(0 &)

Combined with the remark that

0
det(I+t< A0

0 Al )) = det(I +tAY) det(I +tA")

for any two matrices A° and A', we find that
(E® F,V) = c(E,V)e(F, V")

(as differential forms!) from which the statement follows.

Duals/conjugations of connections and end proof of Prop. [10.4.2
For the rest of the proposition we need the dual and the conjugate of a con-
nection. First of all, a connection V on E induces a connection V* on E*
by:

Vx(s%)(s) :=Lx(s"(s)) — s"(Vx(s)), Vsel'(F),s" €T'(EY).

(why this formula?).
Exercise 10.5.2. Show that this is, indeed, a connection on E*.

Starting with a local frame e of E, it is not difficult to compute the connec-
tion matrix of V* with respect to the induced dual frame 6*, in terms of the
connection matrix 6 of V with respect to e:

9* — _et

(minus the transpose of #). Hence the same holds for the curvature matrix.
Since for any matrix A

det(I +t(—A") = det(I — tA) = > (=1}t o (A),
we have o3 (—A') = (—1)¥oy(A) from which we deduce
Ck(E*> = (—1)kck<E).

Similarly, any connection V on E induces a conjugated connection V on
E. While E is really just E but with the structure of complex multiplication
changed to:
z-v:=2%v, (2€C,vek)
V is just V but interpreted as a connection on E. It is then easy to see that
the resulting connection matrix of V is precisely 6. Since for any matrix A,

1 — 1
I+ —A)=det(l - —A
det( + o ) de ( omi )7

we have ¢ (A) = (—1)¥c,(A) and then
Ck(E) = (—1)kck(E).

Finally, note that for any complex vector bundle E, E* and E are isomorphic
(the isomorphism is not canonical- one uses a hermitian metric on E to produce
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one). Hence ci(E*) = ¢x(F). Comparing with the previous two formulas, we
obtain -

cr(E) = (1) cx(E) = (1) ex(E)
which shows both that ¢ (E) is real as well as the last formula in the proposition.

Tensor product of connections and the proof of Proposition|10.4.2
The additivity is proven, as above, using the direct sum of connections and the
fact that for any two matrices A (r by r) and A’ (r' by /),

0 A
For the multiplicativity we need the construction of the tensor product of two
connections: given V% on F and V! on F, one produces V on E® F by requiring
Vx(s®s') = Vi (s") @ s' + 5% @ Vi (sh)
for all 8% € T'(E), s' € T'(F). Frames e and f for £ and F induce a frame
e f={ei®@fp:1<i<r,1<p<y¢'}for E®QF (ris the rank of E and 7’

of F'). After a straightforward computation, we obtain as resulting curvature
matrix

Tr ( 40 )k = Tr(AF) +Tr(A").

k=KoL + I,k
where I, is the identity matrix and, for two matrices A and B, one of size r and
one of size ', A ® B denotes the matrix of size rr’ (whose columns and rows
are indexed by pairs with (i, p) as before)

(A® B} = AlBL.
Remarking that Tr(A ® B) = Tr(A)Tr(B), we immediately find
TT(€A®I+I®B) — TT(@A)TT(EB)

from which the desired formula follows.

Complexifications of connections and the proof of Proposition
For this second part, i.e. when [ is odd, it suffices to remark that,
for £ ® C, it is isomorphic to its conjugation then just apply the last part of
Proposition[10.4.2] For [ even we have to go again to connections and to remark
that a connection V on a real vector bundle E can be complexified to give a
connection V€ on E ® C: just extend V by requiring C-linearity. Comparing
the connection matrices we immediately find that

2k
B0 = () B = (-1Fnu(E)

Proof of Proposition [10.4.6; The main observation is that, for any
complex vector bundle F, one has a canonical isomorphism

ERrC=E®EFE
defined fiberwise by
v+ vV—1lw — (v +iw,v —iw),
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where /—1 is “the 7 used to complexify Fg). Hence
c(Er ® C) = ¢(E)c(E)

and, using the formulas from Proposition and from end of Proposition
[10.4.2] the desired formula follows.

10.6. Some exercises

Here are some more exercises to get used with these classes but also to see some
of their use (some of which are rather difficult!).

Exercise 10.6.1. Show that, for any trivial complex vector bundle T' (of ar-
bitrary rank) and any other complex vector bundle F,

c(EaT)=cE).
Exercise 10.6.2. (the normal bundle trick). Assume that a manifold N is

embedded in the manifold M, with normal bundle v. Let 73y be the tangent
bundle of M and 7n the one of N. Show that

c(ta)|n = e(rv)e(v).
Exercise 10.6.3. For the tangent bundle 7 of 5™ show that
p(r) =1.

Exercise 10.6.4. Show that the the tautological line bundle L over CP! (see
Exercise|10.4.1)) is not isomorphic to the trivial line bundle. Actually, show that
over CP! one can find an infinite family of non-isomorphic line bundles.

Exercise 10.6.5. Let L C CP" x C™*! be the tautological line bundle over
CP"™ (generalizing the one from Exercise [10.4.1]) and let

a:= —ci(L) € H*(CP").

/ a’ = 1.
Ccp”

Deduce that all the cohomology classes a,a?,...,a" are non-zero.

Show that

Exercise 10.6.6. This is a continuation of the previous exercise. Let 7 be
the tangent bundle of CP"- a complex vector bundle (why?), and let 7 be the
underlying real vector bundle. We want to compute ¢(7) and p(7r).

Let L+ C CP" x C"*!' be the (complex) vector bundle over CP" whose
fiber at | € CP" is the orthogonal I+ C C"*! of | (with respect to the standard
hermitian metric).

1. Show that
Hom(L,L)=T', Hom(L, LY )& T = L*®...® L,
~—_—————
n+1

where T* stands for the trivial complex vector bundle of rank .
2. Show that
72 Hom(L,L"Y).
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3. Deduce that
o(r) = (L+ )™, plre) = (1+a?)"™.
4. Compute Ch(T).

Exercise 10.6.7. Show that CP* cannot be embedded in R
(Hint: use the previous computation and the normal bundle trick).

Exercise 10.6.8. Show that CP?°!? cannot be written as the boundary of a
compact, oriented (real) manifold.

(Hint: first, using Stokes’ formula, show that if a manifold M of dimen-
sion 4] can be written as the boundary of a compact oriented manifold then

Sy pi(Tar)) = 0).

Exercise 10.6.9. Show that CP?°'° can not be written as the product of two
complex manifolds of non-zero dimension.

(Hint: for two complex manifolds M and N of complex dimensions m and
n, respectively, what happens to Chy,in(Tarxn) € H*™F20(M x N)?).

10.7. Chern classes: the global description and the proof of The-
orem [10.3.7

In this section we look closer at the Chern character, which shows up naturally
in the context of the Atiyah-Singer index theorem. We start by giving a slightly
different dress (of a more global flavour) to the discussion of characteristic
classes from the previous lecture and we prove Theorem The algebraic
formalism that we use is known as “Quillen’s formalism”. It has the advantage
that it applies (with very litlle changes) to other settings (in particular, it can
be addapted easily to non-commutative geometry).

Although we concentrate on the Chern character (which uses the invariant
polynomials ¥,), most of what we say in this section can be carried out for
arbitrary invariant polynomials (see also the comments which follow Theorem
1037,

This section can (and should) be viewed as a global presentation of the
Chern classes already discussed (including proofs). There are three ingredients
that we need. The first two have already been discussed

e the algebra Q*(M, End(E)) of differential forms on M with coefficients
in End(E), and the wedge product which makes it into a (graded)
algebra.

e a connection V on E and the associated curvature, interpreted globally
as an element

kv € Q*(M, End(E)).

The last ingredient is a global version of the trace map. Due to the invari-
ance of the usual trace map of matrices, it follows that it does not really depend
on the choice of the basis; hence any finite dimensional (complex) vector space
V' comes with a trace map

Try : End(V) — C
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which can be computed via a (any) basis e; of V; the any T' € End(V) has a
matrix representation 7' = (/) and Try(T) = Y, ti. This map has “the trace
property” (an infinitesimal version of invariance):

(10.10) Tryv([A, B]) = 0,

for all A, B € End(V'), where [A, Bl = AB — BA.

Since T'ry is intrinsec to V, it can be applied also to vector bundles: for
any vector bundle F, the trace map (applied fiberwise) is a vector bundle map
from End(E) to the trivial line bundle. In particular, one has an induced map,
which is the final ingredient:

e The trace map:
(10.11) Tr:Q%(M;End(E)) — Q*(M).
Exercise 10.7.1. Show that Tr has the graded trace property:
Tr([A,B]) =0,
for all A € QP(M; End(FE)), B € Q4(M; End(FE)), where [A, B] are the graded

commutators:
[A,B]=AANB—(—1)P"B A A.
and A is here the wedge operation on Q(M, End(E)) (see (10.7)).

Putting things together we find immediately:

Proposition 10.7.2. For a connection V on E,
1 1)’
_ _ P 2p
Chy(E,V) = o < 2m> Tr(ky) € QP(M).

Hence, using the wedge product and the usual power seria development to
define formally the exponential map

exp: Q(M,End(E)) — Q(M, End(E)),
the Chern character can be written as
Ch(E,V) = Tr(e” 7).

Next, we explain the relationship between these ingredients; putting ev-
erything together, we will obtain the proof of Theorem [10.3.7| (for the Chern

classes). The plan is as follows:

e show that the connection V on E induces a connection V on End(E).
e show that Tr : Q*(M; End(E)) — Q*(M) is compatible with d¢ and d.
e show that kv is dg-closed.

Lemma 10.7.3. Given a connection V on E, there is an induced connection
V on End(E), given by

Vx(T)(s) = Vx(T(s)) = T(Vx(s)),
forall X € X(M), T e I'(End(E)), s € I'(E). Moreover, the induced operator
de : QP(M; End(E)) — QP (M; End(E))
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s given by

(10.12) dg(K) = [dv, K]

where, as in Ezercise we identify the elements in K € Q*(M; End(E))

with the induced operators K and we use the graded commutators
[dv,K]=dyo K — (-1)P’K ody

In particular, dg also satisfies the Leibniz identity with respect to the wedge

product on Q(M, End(E)).

Proof First one has to check that, for X € X(M), T € T'(End(E)), Vx(T) €
I'(End(E)), i.e. the defininig formula is C°°(M)-linear on s € I'(E):
x(T)(fs) = Vx(T(fs))—T(Vx(fs))
= fVx(T(s) + Lx(HT(s)] — [[T(Vx(s)) + Lx (f)T(5)]
= fVx(T)(s).

The identities that V have to satisfy to be a connection are proven similarly.
For the second part, we first have to show (similar to what we have just checked)
that, for K € QP(M, End(E)),

"= [dy, K] € Q"TY(M, End(E)).

More porecisely, unraveling the identifications between the elements K and the
operators K, we have to show that

K :=dyoK — (-1)’K ody : Q*(M, E) — Q****Y(M, E)
is Q(M)-linear, i.e.
K'(wnn) = (=P A K ()
for all w € QP(M), n € Q(M, E). writing out the left hand side we find
dv (K (wAn)) = (~1)k(d(w A1)
which is (using the Q(M)-linearity of K and the Leibniz identity for dy):
[(~1)PMld(w) A K (n) + (~1) Do A dg (K (n))] -
—[(=1)Pld(w) A K (n) + ()PP A K (dy (1))
which equals to
(~) PG A [dy (K () = (17K (dv (n)),

i.e. the right hand side of the formula to be proven. Hence we obtain an
operator

D : QP(M; End(E)) — QP (M; End(E)), D(K) = [dv, K],
and we have to prove that it coincides with dg. By a computation similar
to the one above, one shows that D satisfies the Leibniz identity. Hence it
suffices to show that the two coincide on elements T' € I'(End(E)). They are

both elements of Q'(M, End(E)) hence they act on X € X(M), s € I'(E) and
produce sections of E. For dg (1) we obtain

dy (T)(X)s = Vx(T(s)) = T(Vx(s))
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while for D(T') we obtain

D(T)(s)(X) = (dvoT—T d )(X)(S)]

Il
—
/\
\_/
~—
/-\
\_/
/-\
/\

»
S—
—~
>
N—

From the second part of the proposition we immediately deduce:
Corollary 10.7.4. (Bianchi identity) dg(kv) = 0.

We can now return to the issue of the relationship between the trace map
and the DeRham differential.

Proposition 10.7.5. For any connection V, the trace map Tr : Q*(M; End(E)) —

Q*(M) satisfies
Trodg=doTr.

Proof Consider
G :=Trodg—doTr: Q% (M, End(E)) — Q'H(M, End(E)).

By a computations similar to the previous ones (but simpler), one check the
graded Q(M)-linearity of ®:

PwAK)=(-1)¥wAd(K).

Hence to show that ® is zero, it suffices to show that it vanishes on elements
T € I'(End(FE)). Le., we have to show that, for all such 7’s and all X € X (M),

Tr(Vx(T)) - Lx(Tr(T)) = 0.

This can be checked locall, using a local frame e = {e;} for E. Such a local
frame induces a local frame {e}} for End(E) given by €j(e;) = e; and zero on

the other eg’s. If the matrix corresopnding to 7' is {tf} (T(e:) = 3, tgej), for
T := Vx(T) we have:

;) = vauzej) - ZT(@? (X)e;)

where {9? } is the connection matrix. Writing this out, we find the matrix

thek )= > 0I(X)th + Lx(tF).
J

corresponing to T

We deduce that
Tr(Vx(T)) = Lx( Zt’ = Lx(Tr(T)).
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Corollary 10.7.6. For any connection V on FE,
Tr(k%) € Q*P(M)
is closed.
Proof From the previous proposition,
dTr(k%) = Tr(dg(k%)).
Due to the Leibniz rule for d¢, and the Bianchi identity (the previous corollary)
we find dg (k%) = 0. O
Finally, we prove the independence of the connection.
Proposition 10.7.7. For any vector bundle E over M, the cohomology class
(Tr(k)] € H*(M)
does not depend on the choice of the connection V.

Proof Let V’ be another connection. The expression
R(X)s = Vy(s) — Vx(s)
is then C°°(M)-linear in X and s, hence defines an element
R € QY (M, End(E)).
Related to this is the fact that the difference
R=dy —dy : Q*(M,E) — Q*T\(M, E)

is Q(M)-linear (in the graded sense). This follows immediately from the Leibniz
rule for dy and dys. Our notation is not accidental: R and R correspond to
each other by the bijection of Exercise (why?). In what follows we will
not distinguish between the two.
The idea is to join the two connections by a path (of connections): for each

t € [0, 1] we consider

V=V +1tR
and the induced operators

dyt = dy + tR.
Computing the square of this operator, we find

1
kyt = ky + t[dy, R] + t*R* = ky + tdg(R) + t2§[R, R

from which we deduce
d
@(kvt) = d@(R) + t[R, R] = d@t(R)

Using the Leibniz identity,
d i— —i
) =D kG e (R)KS,

hence, using the fact that Tr is a graded trace,

%(Tr(k%») = pTr(Ig: dge(R)).
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Using again the Leibniz and Bianchi identity,
d -1
C(Tr(kE) = pdlTr(ke R))

Integrating from 0 to 1 we find

! 1
Tr(k?,) — Tr(k) = dlp /0 Tr(k R)),

i.e. the two terms in the left hand side differ by an exact form, hence they
represent the same element in the cohomology group. U






LECTURE 11

K-theoretical formulation of the Atiyah-Singer index
theorem

11.1. K-theory and the Chern character

For a manifold M we denote by Vb(M) the set of isomorphism classes of vector
bundles over M. Together with the direct sum of vector bundles, is an abelian
semi-group, with the trvial 0-dimensional bundle as the zero-element.

In general, one can associate to any semi-group (S, +) a group G(S), called
the Grothendick group of S, which is the “smallest group which can be made
out of S”. For instance, applied to the semigroup (N, +) of positive integers,
one recovers (Z,+). Or, if S is already a group, then G(S) = S.

Given an arbitrary semi-group (S,+), G(S) consists of formal differences

[z] = [v]

with x,y € S, where two such formal differences [x] — [y] and [2/] — [y] are equal
if and only if there exists z € S such that

(11.1) sy =2 +y+z
More formally, one defines
G(S) =5x5/~,

where ~ is the equivalence relation given by: (z,y) ~ (2/,y) if and only if there
exists a z € S such that holds. Denote by [z,y] the equivalence class of
(z,y). The componentwise addition in S x S descends to a group structure on
G(S): the zero element is [0, 0], and the inverse of [z,y] is [y, z]. For x € S, we
define

2] := [z,0] € G(S),

and this defines a morphism of semigroups S — G(S) (find the universal prop-
erty of G(S)!). Also, since

[,y] = [(z,0)] = [(y,0)] = [2] = [y],
187
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we obtain the representation of G(S) mentioned at the beginning. Note that
there is a canonical map:

i:S— G(S),z— [z,
which is a morphisms of semi-groups.
Exercise 11.1.1. Show that G(S) has the following universal property: for

any other group G and any morphism ig : S — G of semi-groups, there is a
unique morphism of groups, ¢ : G(S) — G such that ig = ¢ 0.

Definition 11.1.2. Define the K-theory group of M as the group associated

to the semi-group Vb(M) of (isomorphism classes) of vector bundles over M.

Exercise 11.1.3. Is the map i : Vb(M) — K (M) injective? (hint: you can
use that the tangent bundle of S? is not trivial).

One may think of K (M) as “integers over M”. Indeed, natural numbers are
in bijection with isomorphism classes of finite dimensional vector spaces. Since
vector bundles can be viewed as families of vector spaces indexed by the base
manifold M, isomorphism classes of vector bundles play the role of “natural
numbers over M”, and K (M) the one of “integers over M”.

Note also that the tensor product of vector bundles induces a product on
K (M), and K(M) becomes a ring.

Theorem 11.1.4. The Chern character induces a ring homomorphism
Ch: K(M) — H® (M), [E] — [F]+ Ch(E) — Ch(F).
Proof The compatibility By the additive property of the Chern character,
Ch:Vb(M) — H®"(M)

is a morphism of semi-groups hence by the universality of K (M) (see Exercise
[11.1.1), it induces a morphism of groups K (M) — H®"(M). This is precisely
the map in the statement. The compatibility with the produtcs follows from
the multiplicativity of the Chern character. O

Remark 11.1.5. One can show that, after tensoring with R,
Ch®zR: K(M)®zR — H®"(M)

becomes an isomorphism.

11.2. K-theory and the Chern character with compact supports

Next, we discuss K-theory with compact supports. We consider triples

(11.2) C=(FE,aF)
where E and F' are vector bundles over M and
a:F— F

is a vector bundle morphism with compact support, i.e. with the property that

supp(C) :={zx € M : oy : E; — F, is not an isomorphism}
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is a compact subset of M. We denote by L;(M) the set of equivalence classes
of such triples. If C' = (E', o/, F') is another one, we say that C and C are
homotopic, and we write

c=cc

if there exists a smooth family Cy = (Ey, oy, F}), indexed by t € [0, 1], of triples
(still with compact supports), such that

Co=C,C=C".

More precisely, we require the existence of a triple C = (E, a, F ) over M x [0, 1]
(with compact support), such that C is the restriction of C' via ig : M —
M x [0,1], io(x) = (x,0) and C" is the restriction of C' via iy : M — M x [0,1],
i1(x) = (z,1).

Finally, we introduce a new equivalence relation ~ on Lq(M):

C~C =CaT=CaT
for some triples 7" and 7" with empty support.

Definition 11.2.1. Define the K-theory of M with compact supports as the
quotient

chct(M) = Ll(M)/ ~ -
For C € Li(M), we denote by [C] the induced element in Kcpet(M).

With respect to the direct sum of vector bundles and morphisms of vector
bundles, Kcpet(M) becomes a semi-group.

Exercise 11.2.2. Show that K¢pct(M) is a group. Also, when M is compact,
show that

Kepet (M) — K(M), [(E,a, F)] — [E] - [F]
is an isomorphism of groups.

Example 11.2.3. Given an elliptic operator P : I'(E)) — I'(F) of order d over
a compact manifold M, its principal symbol

o4(P):m"E — *F
(where m: T*M — M is the projection) will induce an element
(T*E,04(P), " F)] € Kepet(T*M).

Next, we discuss the Chern character on Kepei(M). We start with an ele-
ment

C = (E,a,F) ELl(M)

Lemma 11.2.4. There exists a connection VE onb E and V¥ on F and a
compact L C M such that a is an isomorpism outside L and

o (VE)Y=VF on M- L.



190 BAN-CRAINIC, ANALYSIS ON MANIFOLDS

Note that, here,
(V) x(s) = a 'V ().
Proof Let V¥ be any connection on F. We will construct V. For that we

first fix an arbitrary connection V on E (to be changed). Let K be the support
of @ and L a compact in M with

K cInt(L) C L.
Then o*(V!) is well-defined as a connection on U := M — K. The difference
Vx(s) = a*(VF)x(s)
is C*°(U)-linear in X and s, hence defines a section
0 € T(U,T*M ® End(E)).

From the general properties of sections of vector bundles, for any closed (in M)
A C U, we find a smooth section

0 e T(M, T*M ® End(E))
such that .
0la=0|a.
We apply this to A = M — Int(L) and we define V¥ by
VE(s) = Vx(s) — 0(X)s.
O

Theorem 11.2.5. For any pair of connections VE and VI as in Lemma

Ch(C, V¥ V) .= Ch(E,VF) — Ch(F,VT) € Qeper( M)

is a closed differential form on M with compact support and the induced coho-
mology class

Ch(C) := [Ch(C, V", V)] € Hoo (M)
does not depend on the choice of the connections. Moreover, Ch induces a group
homomorphism

Ch : Kepet(M) — HEM(M), [C] — Ch(C).

cpct
Proof The naturality of the Chern character implies that
Ch(C,VF V) y—r = Ch(E|y—r,a*(VF |m—1)) — Ch(F|p—1, VF |m—1) = 0.

Hence Ch(C,VF,VT) is a closed from with compact support. To see that
the cohomology class does not depend on the choice of the connections, we
addapt the argument for the similar statement for the Chern character of vector
bundles; see the proof of Proposition [I0.7.7] With the same notations as there,
another pair of connections as in Lemma will be of type

v+ RF, VF + RF
with
RE ¢ QY (M, End(E)), R € QY (M, End(F))
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and the two new connections correspond to each other via a outise some com-
pact L' (which may be different from L). Let K = LU L. We apply the
construction in the proof of Proposition [10.7.7| and we obtain

Chy(E,VE) — Chy(E, V¥ + RF) = d(w¥)

for some form w? which has compact support, and similarly for F. Looking
at the explicit formulas for wgp and wr, we see immediately that wg — wp has
compact support.

Finally, to see that C'h induces a map in the K-theory with compact sup-
port, we still have to show that if (E,«, F) = (E',d/, F’) then they have the
sama Chern character (in cohomology). But this follows by an argument simialr
to the last one, because the equivalence = means that the two triples can be
joined by a smooth family of triple (Ey, ay, Fy), t € [0, 1] (fill in the details!). O

11.3. The K-theoretical formulation of the Atiyah-Singer index
theorem

Next, we give an outline of the K-theoretical formulation of the index theorem.
First of all

Definition 11.3.1. Let M be a compact n-dimensional manifold. The topo-
logical index map is defined as

Ind; : Kept(T*M) — R, Index([C]) = (—1)" Ch(C)r*(Td(TcM)),
T*M
where 7 : T*M — M is the projection.

A few explanations are in order. First of all, Tc M is the complexification
of the tangent bundle of M. Secondly,

Ch(C) € Hept(T* M), 7 (Td(TEM)) € H(T*M)

hence their product is a cohomology class with compact support. Finally, T* M
has a canonical orientation: any coordinate chart (U,x = (z1,...,2,)) on M
induces a coordinate chart on T« M:

T°U > yi(dz1)g + - .- + yn(dzp)z — (1, .91, .-, Un);

moreover, the resulting atlas for T*M is oriented and defines the canonical
orientation of T*M. In particular, we have an integration map

/ P Hiy(TTM) — R,
*M

which kills all the cohomology classes except the ones in the top degree 2n
(dim(T*M) = 2n).

Next, we discuss the analytic index. We have already seen that the index
of an elliptic pseudo-differential operator only depends on its principal symbol.
However, what happens is the following:
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1. For an elliptic pseudo-differential operator P of degree d, Index(P) only
depends on
[04(P)] € Kept(T™M).
2. Any element in K¢t (T*M) can be represented by the principal symbol
of an elliptic operator.

Hence there is a unique map
Ind, : Kept(T"M) — Z
with the property that, for any elliptic pseudo-differential operator of degree d,
Ind,([oq4(P)]) = Index(P).
Definition 11.3.2. The map Ind, is called the analytic index map.

With these, we have the following formulation of the Atiyah-Singer index
theorem.

Theorem 11.3.3. On any compact manifold M, Ind; = Ind,.
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