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CHAPTER 1

The Classification Problem for Compact Surfaces

1. Introduction

In this Chapter we will introduce and start dealing with the classification problem for compact
surfaces. Giving a complete solution to this problem is one of the main goals of the course. It
will serve as motivation for many of the concepts that will be introduce.
Our approach to the classification problem will be the following:

(1) We will give a list of compact connected surfaces, all of which will be constructed from
a polygonal region in the plane by identifying its edges in pairs.

(2) We will show that any compact connected surface is homeomorphic to one in the list.
(3) We will show that any two surfaces in the list are not homeomorphic to each other.

Parts (1) and (2) will be dealt with in this chapter, while part (3) will be done only after we
introduce the fundamental group and learn how to calculate it (via the Seifert - Van Kampen
Theorem). To be a bit more precise about part (2) in the plan above, what we will show is that
any triangulable compact surface is homeomorphic to one in the list. It turns out that every
compact surface is in fact triangulable, and we hope to come back to this at some point in the
course.

2. Topological Manifolds

The main objects that will be studied in this chapter are topological surfaces, which are simply
2-dimensional topological manifolds.

Definition 1.1. An n-dimensional topological Manifold is a topological space (X,T )
which satisfies the following properties:

(1) X is Hausdorff;
(2) X admits a countable open cover {Ui}i∈N such that each Ui is homeomorphic to an

open set in R
n.

Each open Ui together with a homeomorphism ϕi : Ui → Vi ⊂ R
n will be called a coordinate

chart of X.

Remark 1.2. The second condition in the definition above can be restated as: X is second countable
and each point of X admits an open neighborhood which is a chart. It the follows that X is lo-
cally compact and second countable, and thus metrizable, i.e., the topology of X is induced by a
metric.

Definition 1.3. A surface is a 2-dimensional topological manifold.

Example 1.4 (The Sphere S2). We define the sphere S
2 to be the quotient space obtained from

a square by identifying its border according to the Figure 1. Thus, if we denote the unit interval
[0, 1] by I, then

S
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1− y, 1), and (x, 0) ∼ (1, 1 − x).
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The sphere obtained from a square glueing as indicated in the picture

Figure 1.

Exercise 1.1. (1) Show that S2 is homeomorphic to the standard sphere

{(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1.}

(2) Show that it is a surface.

Example 1.5 (The Torus T2). We define the torus T
2 to be the quotient space obtained from

the unit square by identifying its border according to the Figure 2. Thus,

T
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1, y), and (x, 0) ∼ (x, 1).

a a aa

b

b

b

a

b

Figure 2.

Exercise 1.2. Let S1 = {(x, y) ∈ R
2 : x2 + y2 = 1} be the standard circle.

(1) Show that the torus T2 is homeomorphic to a S
1 × S

1.
(2) Show that it is a surface.

Example 1.6 (The Projective Space P2). We define the projective space P
2 to be the quotient

space obtained from the unit square by identifying its border according to the Figure 3. Thus,

P
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1, y), and (x, 0) ∼ (1− x, 1).

Exercise 1.3. Let D ⊂ R
2 denote the (closed) disk of radius 1.

(1) Show that P
2 is homeomorphic to the quotient space obtained from D by identifying

its border S1 via the antipodal map (Figure 4)

A : S1 → S
1, A(x, y) = (−x,−y).
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Figure 3.

(2) Show that P2 is homeomorphic to the quotient space obtained from the standard sphere
by identifying a point p with its antipodal −p.

(3) Show that P2 is homeomorphic to the space of lines through the origin in R
3.

(4) Show that it is a surface.
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Lines in the space determined by

 their intersections with the sphere 

The relevant information to recover the lines 

Project down (homeomorphically) 

      onto the disc 

The disc on which we still have to glue  

the antipodal points on its circle boundary

Figure 4.

There is a very basic operation which allows us to construct a new manifold out of two given
manifolds.

Definition 1.7. Given two topological manifolds M and N of the same dimension, define
their connected sum, denoted M#N as follows: remove from M and N two “small balls” B1

and B2 and glue M −B1 and N −B2 along the sphere ∂B1 = ∂B2.

For surfaces, it means that we remove two small disks and we glue the remaininig spaces along
the bounday circles (Figure 5). We can describe this operation with more details:

Remove an Open Disk: We remove from M and N an open subset D1 and D2 each of
which is homeomorphic to an open disk in R

2.
Glue along the Boundary: We fix a homeomorphism ϕ : ∂D1 → ∂D2 and we take the

quotient space

M#N = (M −D1)
∐

(N −D2)/ ∼

where x ∼ y if and only if x = y or x ∈ ∂D1, y ∈ ∂D2, and ϕ(x) = y.
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make holes 

glue

Figure 5. Connected Sum

Example 1.8. The connected sum of two tori is the double torus T2. Repeating the operation
of connected sum, one obtains all tori with arbitrary number of holes (see Figure 6 for the g = 2):

Tg = T# . . .#T
︸ ︷︷ ︸

g times

.

Figure 6. Double Torus.

Similarly, one considers the connected sum of h copies of P2:

Ph = P
2# . . .#P

2

︸ ︷︷ ︸

h times

.

Exercise 1.4. Show that the connected sum M#S2 of any surface M with the sphere S2 is
homeomorphic to M itself.

We could, in principal, consider more surfaces by considering other examples of connected
sums (for example of a torus with a projective space), but as we will soon see, we have already
obtained a complete list of all compact connected surfaces:

Theorem 1.9. Any compact connected surface is homeomorphic to one of the following:

(1) A sphere S
2,

(2) A connected sum of Tori (plural of Torus) Tg, with g ∈ N, or
(3) A connected sum of projective spaces Ph, with h ∈ N.
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3. The Basic Building Blocks: Polygonal Regions

In this section we will show how to construct surfaces out of polygonal regions of the plane,
by identifying its edges in pairs. Intuitively, a polygonal region is a subset of the plane which
“looks like” in Figure 7. Let us explain how to make this precise.
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Figure 7. Polygonal Region.

• Fix a circle in R
2, pick n+1 points on it and order them in counterclockwise direction

{p0, . . . , pn}.
• For each 0 < i ≤ n consider the line passing through pi−1 and pi. It divides R

2 into
two half-planes. Let Hi be the half-plane which contains all the other points pj.

• Let P be the set
P = H1 ∩H2 ∩ · · · ∩Hn.

Definition 1.10. An n-sided polygonal region of the plane is any subset of R2 obtained by
the “recipe” above.

Associated to a polygonal region will will use the following notation:

Vertices: The points pi will be called vertices of P . The set of all vertices of P will be
denoted by V (P ).

Edges: The line segment joining pi−1 and pi will be denoted by ei, and will be called an
edge of P . The set of all edges of P will be denoted by E(P )

Border: The union of all edges of P will be denoted by ∂P and will be called the border
of P .

Interior: The complement of ∂P in P will be denoted by Int(P ) and will be called the
interior of P .

It will also be important to introduce orientations on the edges of a polygon, and to specify
what a “map” between edges is (this is how we will be able the make precise the notion of
“glueing one edge to another”).
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Definition 1.11.

(1) Let L ⊂ R
2 be a line segment. An orientation of L is a choice of ordering of its

end points. Such an orientation will be represented by an arrow, and we will say that
L is a line from a to b (Figure 8).

(2) If L is a line from a to b, and L′ is a line segment from c to d, then a positive

linear map from L to L′ is the homeomorphism h : L → L′ which associates to
x = (1− t)a+ tb ∈ L the point h(x) = (1− t)c+ td.
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x

h(x)

the linear transformation h

Figure 8. Positive Linear Maps.

4. Glueing the Edges of a Polygonal Region

Since we will be considering (disjoint unions of) polygonal regions with several identifications
on the borders, we must find a convenient way of keeping track of such “glueing procedures”.
For this, we will introduce the concept of labels:

Definition 1.12. A labeling of a polygonal region P is a map E(P ) → Λ from the set of
edges of P to a set Λ, whose elements will be called labels.

Given a polygonal region along with: (1) a labeling of its edges, and (2) an orientation on
edge, we consider the space

X = P/ ∼

where

• If p ∈ Int(P ), then p is equivalent only to itself, i,e,m p ∼ p;
• If ei and ej are edges with the same label, we let h : ei → ej be a positive linear map
and we set

x ∈ ei ∼ h(x) ∈ ej .

In this case we say that X was obtained from P by glueing its edges together according to the
orientation and the labeling.
We remark that we also allow X to be obtained from a finite disjoint unit of polygonal regions

with identifications on the edges. Thus X may be either connected or disconnected. As an
illustration of spaces obtained in this way, consider the following examples:

Example 1.13. The disk can be obtained from a triangle with two labels (a and b) and orien-
tations on the edges as shown in the Figure 9 below.

Example 1.14. As we have seen in Figure 1 the sphere can be obtained from a square with to
labels and orientations on the edges.
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a a

b

X  =

homeomorphism

Figure 9. The Disk

Example 1.15. In Figure 10 we illustrate the fact that since we allow X to be obtained
by glueing the edges of more than one polygonal regions, it follows that X is not necessarily
connected.

d

a

a

b c c

d

e

d

a

a

b c

d

ef

Figure 10. X can be connected or disconnected.

Finally, in order to keep track of the orientations of the edges along with the labels, we will
now introduce the notion of a labeling scheme. Let ek is an edge of P with label aik . If ek is
oriented from pk−1 to pk, then we put en exponent +1 on aik . If ek is oriented from pk to pk−1,
then we put an exponent −1 on aik . Then P , its labels, and the orientations on its edges is
totally specified up to a homeomorphism which respects the quotient space X by the symbol

w = aǫ1i1a
ǫ2
i2
· · · aǫnin , ǫi = ±1.

Definition 1.16. The symbol w = aǫ1i1a
ǫ2
i2
· · · aǫnin will be called a labeling scheme for P with

respect to its labels and orientations.

In Figure 11 are some examples of how to go back and forth from a (disjoint union of) polygonal
regions with labels and orientations to labeling schemes.

5. Operations on Labeling Schemes

It is important to note that we are interested in the quotient space X obtained from a polyg-
onal region by gluing its edges and not on the labeling scheme itself. With this in mind, we will
now introduce some operations we can perform on the labeling scheme (or equivalently on the
polygonal region) which will leave the resulting quotient space unchanged.

I) Cutting: The operation of cutting is described at the level of labeling schemes as
follows. Suppose that w = aǫ1i1 · · · a

ǫp
ip
a
ǫp+1

ip+1
· · · aǫnin is a labeling scheme and let b be a
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c
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Labeling Scheme

Reconstructing the
Polygonal Region

Labeling Scheme

Reconstructing the
Polygonal Region

−1w = a babw = a bab−1

bb

a

a

w = a ccbb−1 −1

−1w = ad a c
−1 −1

Figure 11. Labeling Schemes.

label which does not appear elsewhere in the scheme. Then we may replace w by a pair
of labeling schemes

w1 = aǫ1i1 · · · a
ǫp
ip
b, and w2 = b−1a

ǫp+1

ip+1
· · · aǫnin .

For a geometric interpretation see the Figure 12.
II) Glueing: The reverse operation of cutting is known as glueing. In terms of the

labeling scheme it can be described as follows: If

w1 = aǫ1i1 · · · a
ǫp
ip
b, and b−1a

ǫp+1

ip+1
· · · aǫnin

are labeling schemes, and the label b only appears where it is indicated above, then we
may replace w1 and w2 by the labeling scheme w = aǫ1i1 · · · a

ǫp
ip
a
ǫp+1

ip+1
· · · aǫnin .

CUTTING

GLUEING

b b

P Q1 Q2

Figure 12. Cutting & Glueing

Before we go on with the description of the operations, let us take a small break to write down
more formally the result of cutting and glueing:
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Proposition 1.17. Suppose that X is obtained by glueing the edges of n polygonal regions
with labeling scheme

w1 = y0y1, w2, . . . , wn.

Let b be a label that does not appear in the scheme. If both y0 and y1 have length at least 2, then
X can also be obtained by n+ 1 polygonal regions with labeling scheme

y0b, b
−1y1, w2, . . . , wn.

Exercise 1.5. The purpose of this exercise is to prove the proposition above. Denote by
P1, . . . , Pn the original n polygonal regions and by Q0, Q1, P2, . . . Pn the n+1 polygonal regions
obtained by cutting P1. Denote also by X = (

∐n
i=1 Pi)/ ∼ the space obtained by glueing the

edges before cutting, and by Y = (Q0
∐

Q1
∐n

i=2 Pi)/ ∼ the space obtained after performing
the cutting operation. Consider the obvious map

Φ : Q0

∐

Q1

n∐

i=2

Pi −→
n∐

i=1

Pi.

Show that:

(1) Φ induces a well defined map ϕ : Y → X, i.e., if q ∼ q′, then Φ(q) ∼ Φ(q′).
(2) ϕ is continuous (use the definition of the quotient topology).
(3) ϕ is injective, i.e., if Φ(q) ∼ Φ(q′), then q ∼ q′.
(4) ϕ is surjective.
(5) X and Y are both compact and Hausdorff.
(6) ϕ is a homeomorphism.

With only the operations of cutting and gluing we can now easily understand how to construct
the connected sums of tori (and projective spaces) out of polygonal regions with identification
on the borders:

Example 1.18 (The Double Torus T
2). Let P be the 8-sided polygonal region with labeling

scheme w = aba−1b−1cdc−1d−1. In order to see that X = P/ ∼ is homeomorphic to a double
torus, we will apply the cutting and glueing operations described above (see Figure 13). Thus we
first cut P into two 5-sided polygonal regions Q1 and Q2, with labeling schemes w1 = aba−1b−1e
and w2 = e−1cdc−1d−1 respectively. Now, it is clear that after identifying the vertices of Q1

correspond to the endpoints of e, we obtain the usual representation of the torus as a quotient
of the unit square, but with an open disk removed. The edge e then becomes the border of the
open disk. The same is obviously true also for Q2. Thus, if we now apply the glueing operation,
what we obtain is the quotient of two copies of the torus, both with an open disk removed by
identifying the border of the disk. This is precisely the construction of the connected sum.

Exercise 1.6. Show that Tg is obtained from a 4g-sided polygonal region with labeling scheme

w = (a1b1a
−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ).

Example 1.19. A similar argument as the one presented above shows that for h > 1, Ph can
be obtained from a 2h-sided polygonal region with labeling scheme

w = (a1a1) · · · (ahah).

We now continue to describe the rest of the operations that may be performed on the labeling
scheme. We suggest that you convince yourself that each of these operations leave the quotient
space unchanged.
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Figure 13. Connected Sum of Two Tori.
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Figure 14. Connected Sum of Two Projective Spaces.

Definition 1.20. Let w1, w2, . . . , wn be a labeling scheme and let y be a string of labels that
appears in the labeling scheme (it may appear in more that one place of the scheme). We will
say that y is a removable string if
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(1) all labels of y are distinct, i.e., y = aǫ1i1 · · · a
ǫk
ik

with aip 6= aiq for all ip 6= iq, and

(2) the labels of y do not appear elsewhere (outside of y) in the labeling scheme, i.e., for
all 1 ≤ p ≤ k, if aip appears in the labeling scheme, then it belongs to the string y.

III) Unfolding Edges: If y is a removable string of a labeling scheme, then we may
replace y by a label that does not appear elsewhere in the scheme. Geometrically, this
can be interpreted as replacing a sequence of edges (a “folded line segment”), by a
single edge (a line segment) (See Figure 15).

IV) Folding Edges: The reverse operation to unfolding edges is that of folding edges
described by: replace all appearances of a single label by a removable string of labels.

UNFOLDING

FOLDING

b

c

a1

a2

a3 a1

a2

a3

b

c

a a

Figure 15. Fold/Unfold

V) Reversing Orientations: We may change the the sign of the exponent of all occur-
rences of a single label in the labeling scheme. In order to understand why the quotient
space is left unchanged, recall that we are identifying the points on two oriented edges
with the same label by means of a positive linear map. Note that if the orientation on
both edges are reversed, the identification remains unchanged.

VI) Cyclic Permutation: It is clear that if instead of writing the labeling scheme of a
polygonal region by starting with the label on the edge e1, we decide to start with the
label on a different edge and then continue in the same counterclockwise direction, then
the quotient space X is unchanged. We may think of this as performing a rotation on
the polygonal region. The effect on the labeling scheme is to take a cyclic permutation
of its labels

aǫ1i1 · · · a
ǫn
in

−→ aǫ2i2 · · · a
ǫn
in
aǫ1i1 .

VII) Flip: We may replace a labeling scheme by its formal inverse:

w = aǫ1i1 · · · a
ǫn
in

−→ a−ǫn
in

· · · a−ǫ1
i1

.

Geometrically this corresponds to flipping the polygonal region as in Figure 16 (and
then performing a cyclic permutation if necessary) .

Remark 1.21. The operations of permutation and flipping should be thought of as instances of
the same phenomena. If may apply any Euclidean transformation of the plane (i.e., translations,
reflections and rotations) to our original polygonal region, the resulting object will be again a
polygonal region whose quotient space is homoemorphic to the original one.

Finally, for completeness and also for further reference, we describe two operations that are
obtained by composing the operations of cutting/glueing with that of folding/unfolding:
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b

b

a a

a

a

b b

FLIP

(UN)FLIP

Figure 16. Flip/Unflip

VIII) Cancel: We may replace a labeling scheme of the form y0aa
−1y1 by y0y1 provided

that a does not appear elsewhere in the labeling scheme, and both y0 and y1 have length
at least 2. Geometrically, this operation is represented by the sequence of diagram in
Figure 17.

IX) Uncancel: Under the same conditions as above, we may reverse the operation of
canceling by replacing a scheme y0y1 by the labeling scheme y0aa

−1y1, as indicated in
Figure 17.

It should clear that the operations above leave the quotient space X unchanged. Thus, it is
natural to pose the following definition:

Definition 1.22. Two labeling schemes are equivalent if one can be obtained from the other
by applying the operations (I) - (IX) described above.

Exercise 1.7. Show that this defines an equivalence relation on the set of all labeling schemes.

Example 1.23. We have seen that the Klein bottle is the quotient of the unit square by the
identification whose labeling scheme is aba−1b. Let us prove that the Klein bottle is homeomor-
phic to the connected sum of two projective spaces:

aba−1b −→ abc & c−1a−1b (cutting)

−→ cab & b−1ac (permuting and flipping)

−→ cabb−1ac (glueing)

−→ caac (canceling)

−→ aacc (permuting).

6. Geometric Surfaces

In this section we will consider surfaces which are obtained from a polygonal region by iden-
tifying it edges in pairs. We wil then show that every such surface is homeomorphic to one in
the list given in Theorem 1.9.

Definition 1.24. A compact and connected topological surface X is called a geometric sur-

face if it can be obtained from a polygonal region by glueing its edges in pairs.
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Figure 17. Cancel/Uncancel

The remainder of this section will be dedicated to proving the following theorem:

Theorem 1.25 (Classification of Geometric Surfaces). Let X be a geometric surface. Then
X is homeomorphic to one of the following: S

2, Tg, or Ph (for some g, h ∈ N).

The idea of the proof is to consider labeling schemes which give rise to geometric surfaces
(known as proper labeling schemes) and then to show that any proper labeling scheme can be
put into a normal form by means of the operations introduced in the last section.

Definition 1.26. A labeling scheme w1, . . . , wm (for m polygonal regions) is called a proper

labeling scheme if each label appears exactly twice in the scheme.

Remark 1.27. We note that if we start with a proper labeling scheme, then by applying
any of the operations introduced in the preceding section gives rise to another proper labeling
scheme.

We can now restate Theorem 1.25 into a more algebraic form:

Theorem 1.28 (Normal Forms of Proper Labeling Schemes). Let w be a proper labeling scheme
of length greater or equal to 4 (of a single polygonal region). Then w is equivalent to one of the
following labeling schemes:

(1) aa−1bb−1,
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(2) abab,
(3) (a1b1a

−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ), or
(4) (a1a1)(a2a2) · · · (ahah).

Remark 1.29. Of course, in the list above (1) is a sphere, (2) is a projective space, (3) is a
connected sum of tori, and (4) is a connected sum of projective spaces.

The first step in the proof of Theorem 1.28 is to distinguish between two classes of proper
labelings that will then be treated separately:

Definition 1.30. Let w be a proper labeling scheme for a single polygonal region. If every
label of w appears one with an exponent +1 and once with exponent −1 we say that w is of
torus type. Otherwise, we say that w is of projective type.

We begin by dealing with labeling schemes of projective type:

Proposition 1.31. Let w be a labeling scheme of projective type. The w is equivalent to a
labeling scheme of the following form:

w ∼ (a1a1) · · · (akak)w1,

where w1 is a labeling scheme of torus type.

The proof of this proposition will follow from the following lemma:

Lemma 1.32. If w is a proper labeling scheme of the form w = [y0]a[y1]a[y2], where each [yi]
is a string of labels (which may be empty), the w is equivalent to a labeling scheme of the form

w ∼ aa[y0y
−1
1 y2].

Proof. We separate the proof into two cases:
Case 1: [y0] = ∅. In this case w = a[y1]a[y2].

• If [y1] is empty, then we are done.
• If [y2] is empty, the we proceed as follows:

w = a[y1]a −→ a−1[y−1
1 ]a−1 (flipping)

−→ a−1a−1[y−1
1 ] (permuting)

−→ aa[y−1
1 ] (reversing orientation of a).

• If both [y1] and [y2] are not empty, the we apply the operations described in Figure 18.

Case 2: [y0] 6= ∅. Again we exclude the most trivial case first. If both [y1] and [y2] are empty,
then w = [y0]aa and a permutation brings w to the desired form. Assume now that either [y1]
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Figure 18. Case 1

or [y2] are non-empty. Then:

w = [y0]a[y1]a[y2] −→ [y0]ab & b−1[y1]a[y2] (cutting)

−→ [y−1
0 ]b−1a−1 & a[y2]b

−1[y1] (flipping and permuting)

−→ [y−1
0 ]b−1[y2]b

−1[y1] (glueing and canceling)

−→ b−1[y2]b
−1[y1y

−1
0 ] (permuting)

−→ b−1b−1[y−1
2 y1y

−1
0 ] (case 1)

−→ [y0y
−1
1 y2]bb (flipping)

−→ aa[y0y
−1
1 y2] (permuting and relabeling).
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�

Exercise 1.8. Write the algebraic sequence of arguments presented in the proof of case 1,
and make diagrams to describe the geometric sequence of arguments presented in case 2 of the
proof.

Proof (of Proposition 1.31). Let w be a labeling scheme of projective type. Then there
is at least one label of w which appears twice with the same sign. Thus,

w = [y0]a[y1]a[y2]

and by using the lemma, we obtain that w is equivalent to aa[y0y
−1
1 y2]. If [y0y

−1
1 y2] is of torus

type then we are done. Otherwise, there is a label b is [y0y
−1
1 y2] which appears twice with the

same sign, and thus we may assume that w is equivalent to

w ∼ aa[z0]b[z1]b[z2].

We apply the lemma again, this time to the labeling scheme [aaz0]b[z1]b[z2], to obtain that

w ∼ bbaa[z0z
−1
1 z2].

If [z0z
−1
1 z2] is of torus type we are done. Otherwise we continue this process which will end as

soon as we have put w into the desired form w ∼ (a1a1) . . . (akak)w1 with w1 a labeling scheme
of torus type. �

Remark 1.33. We can conclude from Proposition 1.31 that if w is a proper labeling scheme,
then either: (1) w is of torus type, or (2) w is of the form (a1a1) . . . (akak)w1 with w1 a labeling
scheme of torus type, or (3) w is of the form (a1a1) . . . (akak) in which case we are done (X is
a connected sum of projective spaces).

We must now examine how to reduce w to a simpler form when w is of the form (1) or (2).

Exercise 1.9. Show that if w is a proper labeling scheme of length 4, then w must be
equivalent to one of the following labeling schemes:

aabb, abab aa−1bb−1, aba−1b−1

From now on we assume that w has length greater then 4, and moreover, that it is irreducible,
i.e., it does not contain any adjacent terms having the same label, but opposite signs (in which
case we could perform the operation of canceling to reduce the length of w). In this case we
have the following lemma:

Lemma 1.34. Suppose that w is a proper labeling scheme of the form w = w0w1, where w1 is
an irreducible scheme of torus type. Then w is equivalent to a scheme of the form w0w2, where
w2 has the same length as w1, and has the form:

w2 = aba−1b−1w3,

where w3 is of torus type or is empty.

Proof. We will divide the proof of this lemma into several steps.

Step 1: We may assume that w is of the form

w = w0[y1]a[y2]b[y3]a
−1[y4]b

−1[y5],

where some of the strings of labels [yi] may be empty.

To see this we proceed as follows. Let a be the label in w1 whose occurrences are as close
as possible (with the minimal amount of labels in between them). If a appears first with an
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exponent −1, then we revert the orientation of both appearances of a. Next, let b be any label
in between a and a−1. Then, since a and a−1 are the closest labels to each other in w1, it follows
that either b−1 appears after a−1, in which case we are done, or b−1 appears in front of a, in
which case we simply exchange the labels of b and a.

Step 2: (1st Surgery) w is equivalent to

w ∼ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5].

We may assume that [y1] 6= ∅ (or else there is nothing to prove). Then, we perform the
following operations:

w = w0[y1]a[y2]b[y3]a
−1[y4]b

−1[y5]

−→ [y2]b[y3]a
−1[y4]b

−1[y5]w0c & c−1[y1]a (permuting and cutting)

−→ [y4]b
−1[y5]w0c[y2]b[y3]a

−1 & ac−1[y1] (permuting)

−→ [y4]b
−1[y5]w0c[y2]b[y3]c

−1[y1] (glueing)

−→ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5]. (permuting and relabeling)

Step 3: (2nd Surgery) w is equivalent to

w ∼ w0a[y1y4y3]ba
−1b−1[y2y5].

First of all, assume that w0, y1, y4, and y5 are all empty. Then

w ∼ a[y2]b[y3]a
−1b−1

and the result follows by permuting and relabeling.
Now assume that at least one of the strings w0, y1, y4, or y5 is non-empty. Then, we can

perform the following sequence of operations:

w ∼ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5]

−→ a[y2]b[y3]a
−1c & c−1[y1y4]b

−1[y5]w0 (permuting and cutting)

−→ [y3]a
−1ca[y2]b & b−1[y5]w0c

−1[y1y4] (permuting)

−→ [y3]a
−1ca[y2][y5]w0c

−1[y1y4] (glueing)

−→ w0c
−1[y1y4y3]a

−1ca[y2y5] (permuting)

−→ w0a[y1y4y3]ba
−1b−1[y2y5]. (relabeling)

Step 4: (3nd Surgery) w is equivalent to

w ∼ w0aba
−1b−1[y1y4y3y2y5].
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We perform the following sequence of operations:

w ∼ w0a[y1y4y3]ba
−1b−1[y2y5]

−→ [y1y4y3]ba
−1c & c−1b−1[y2y5]w0a (permuting and cutting)

−→ a−1c[y1y4y3]b & b−1[y2y5]w0ac
−1 (permuting)

−→ a−1c[y1y4y3][y2y5]w0ac
−1 (glueing)

−→ w0aba
−1b−1[y1y4y3y2y5]. (permuting and relabeling)

�

The following graph summarizes the results that we have obtained so far:

aa−1bb−1 or aba−1b−1 // Done!

Torus Type

length =4
22fffffffffffffffffffffffffff

length≥4

Lemma 1.34
// (a1b1a
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1 ) · · · (agbga
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(1)
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(2)
//
w = (a1a1) · · · (akak)w1

with w1 of torus type
Lemma

1.34
// (a1a1) · · · (akak)(b1c1b

−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m ) // ???

length =4
// aabb−1 ∼ abab // Done!

w = (a1a1) · · · (ahah) // Done!

Remark 1.35. The three arrows coming out of w correspond to remark 1.33, while the cases
where the length of w is equal to 4 follow from exercise 1.9.

Thus, in order to conclude the proof of Theorem 1.28 we need to describe what the connected
sum of tori and projective spaces correspond to, i.e., to reduce

w = (a1a1) · · · (akak)(b1c1b
−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m )

to its normal form. This follows from the following lemma:

Lemma 1.36. If w = w0(aa)(bcb
−1c−1)w1 is a proper scheme, then

w ∼ w0(aabbcc)w1.

Proof. We will make use repeatedly of Lemma 1.32 which states that

[y0]a[y1]a[y2] ∼ aa[y0y
−1
1 y2].
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To prove the lemma we consider the following sequence of operations:

w = w0(aa)(bcb
−1c−1)w1

−→ (aa)[bc][cb]−1[w1w0] (permuting)

−→ [bc]a[cb]a[w1w0] (Lemma 1.32)

−→ [b]c[a]c[baw1w0] (regrouping the terms)

−→ [cc]b[a−1]b[aw1w0] (Lemma 1.32 and regrouping the terms)

−→ w0(bbccaa)w1. (Lemma 1.32 and permuting)

The result then follows by relabeling the terms. �

We can thus conclude from the Lemma, by applying it several times if necessary, and then
relabeling, that

(a1a1) · · · (akak)(b1c1b
−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m ) ∼ (a1a1) · · · (ak+2mak+2m).

This finishes the proof of Theorem 1.28.

Exercise 1.10. Throughout this section we have implicitly described an algorithm to reduce
any proper labeling scheme to one in the normal form of Theorem 1.28. Write down this
algorithm explicitly.

Exercise 1.11. Use the algorithm you developed in the exercise above to determine which
surface corresponds to the following labeling schemes:

(1) abacb−1c−1

(2) abca−1cb
(3) abbca−1ddc−1

(4) abcda−1c−1b−1d−1

(5) abcdabdc
(6) abcda−1b−1c−1d−1


