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To prove the lemma we consider the following sequence of operations:

w = w0(aa)(bcb
−1c−1)w1

−→ (aa)[bc][cb]−1[w1w0] (permuting)

−→ [bc]a[cb]a[w1w0] (Lemma 1.32)

−→ [b]c[a]c[baw1w0] (regrouping the terms)

−→ [cc]b[a−1]b[aw1w0] (Lemma 1.32 and regrouping the terms)

−→ w0(bbccaa)w1. (Lemma 1.32 and permuting)

The result then follows by relabeling the terms. �

We can thus conclude from the Lemma, by applying it several times if necessary, and then
relabeling, that

(a1a1) · · · (akak)(b1c1b
−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m ) ∼ (a1a1) · · · (ak+2mak+2m).

This finishes the proof of Theorem 1.28.

Exercise 1.10. Throughout this section we have implicitly described an algorithm to reduce
any proper labeling scheme to one in the normal form of Theorem 1.28. Write down this
algorithm explicitly.

Exercise 1.11. Use the algorithm you developed in the exercise above to determine which
surface corresponds to the following labeling schemes:

(1) abacb−1c−1

(2) abca−1cb
(3) abbca−1ddc−1

(4) abcda−1c−1b−1d−1

(5) abcdabdc
(6) abcda−1b−1c−1d−1

7. Triangulated Surfaces

In this section we will introduce the notion of a triangulation on a compact Hausdorff topo-
logical space. We will then show that:

Theorem 1.37. Any triangulated compact connected surface can be obtained from a single
polygonal region by identifying its edges with respect to a proper labeling scheme.

Theorem 1.9 will then follow from Theorem 1.28 and the following result which we will not
prove now (but we intend to come back to it if time permits).

Theorem 1.38. Every compact connected surface is triangulable (i.e., can be triangulated).

We begin with the definition of a triangulation:

Definition 1.39. Let X be a compact Hausdorff topological space.

• A curved triangle in X is a subspace A together with a homeomorphism h : T → A,
where T is a triangular region in the plane. If v ∈ T is a vertex, then h(v) is called a
vertex of A. Similarly, if e ∈ T is an edge, then h(e) is called an edge of A.
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• A triangulation of X is a collection A1, . . . , An of curved triangles of X which cover
X,

∪iAi = X,

and such that if Ai ∩Aj 6= ∅, then either
(1) Ai ∩Aj = {v} is a vertex, or

(2) Ai ∩ Aj = e is an edge, and furthermore, the map h−1
j ◦ hi which maps the edge

h−1
i (e) of Ti to the edge h−1

j (e) of Tj is a linear homeomorphism.

Remark 1.40. By condition (2) in the definition above we mean the that if we pick an ori-
entation on h−1

i (e) then h−1
j ◦ hi induces a choice of orientation on h−1

j (e) for which h−1
j ∩ hi :

h−1
i (e) → h−1

j (e) becomes a positive linear map.

For an example of a triangulation of the sphere, see Figure 19.

TRIANGULATION

LABELING SCHEME

Figure 19.

Exercise 1.12. For each of the following spaces exhibit an explicit triangulation.

(1) A torus
(2) a cylinder
(3) a cone
(4) a projective space
(5) a Möbius band,
(6) a Klein bottle
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A triangulation {A1, . . . , An} of a compact Hausdorff space X induces a labeling scheme,
which will be called the labeling scheme of the triangulation, as follows:

Polygonal Regions: For each curved triangle Ai, let hi : Ti → Ai be the corresponding
homeomorphism defined on the triangular region Ti. The polygonal region we will
consider is the disjoint union of the triangles Ti’s.

Orientation on Edges: Let e ⊂ X be an edge appearing in the triangulation (i.e., it is
the edge of at least one of the curved triangles). Let v and w be the vertices at the
endpoints of e. Choose an orientation on e by declaring it to go from v to w. Then if
h−1
i (e) is an edge of Ti, we orient it from h−1

i (v) to h−1
i (w).

Labels: Let

Λ = {e ⊂ X : e is the edge of (at least) one of the curved triangles}

be the set of edges of the triangulation. Then if h−1
i (e) is an edge of Ti, we associate

to it the label e ∈ Λ.

Example 1.41. Figure 19 exhibits a triangulation on the sphere, and also the labeling scheme
of the triangulation.

Exercise 1.13. For each of the spaces in exercise 1.12, determine the labeling scheme of the
triangulation.

Proposition 1.42. If X is a compact triangulated surface, then the labeling scheme of the
triangulation is proper.

Proof. We need to show that each label appears exactly twice in the labeling scheme. The
arguments needed to do this are intuitively clear. However, the easiest way to make them precise
is by using the notion of fundamental group. Thus, we will sketch the proof now, but leave the
details as an exercise that should be done after the fundamental group is introduced.
The first step is to show that each label appear at least twice in the labeling scheme. Thus,

assume that a label appears only once. This means that there is an edge e which is the edge
of only one curved triangle. Exercise 1.14 bellow shows that this cannot happen. The intuitive
idea is that if x ∈ e, then by removing x we will not “create a hole” in X, but on the other
hand, if we remove any point from an open set in R

2, then we do “create a hole”
The next step is to show that there is at most two appearances of each label. Again this will

follow by a “removing one point trick”. If a label appears more than twice, then there are more
than two triangles which intersect in a single edge. Intuitively, this will mean that there is a
“multiple corner” which cannot be smoothened into an open subset of R2 (see figure 20). The
precise argument is given in exercise 1.15 bellow.

�

Exercise 1.14 (To be done after the definition of homotopy). Let T be a triangle and x ∈ T
be a point in one of the edges of T and let U be any neighborhood of x. Show that any loop in
U −x is homotopic to a constant path. Conclude that x does not have any neighborhood which
is homeomorphic to an open set of R2.

Exercise 1.15 (To be done after the Seifert van Kampen Theorem). Consider the space
obtained by glueing together k triangles along a common edge e, with k > 2 (Figure 20 shows
the case when k = 3). Let x ∈ e be a point in this common edge. Show that any neighborhood
U of x contains a possibly smaller neighborhood V ⊂ U such that V −x is homotopy equivalent
to a bouquet of k − 1 circles. Conclude by computing the fundamental group of V − x that x
does not have any neighborhood which is homeomorphic to an open subset of R2.

Proposition 1.43. If X is a compact triangulated surface, then X is homeomorphic to the
space obtained from

∐
Ti by glueing its edges according to the labeling scheme of the triangulation.
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e

Figure 20.

Exercise 1.16. Consider the map h :
∐

Ti → X obtained by putting together all of the maps
hi : Ti → Ai ⊂ X. Consider the space X ′ obtained by identifying two points p and q of

∐
Ti if

and only if h(p) = h(q). Show that X ′ is homeomorphic to X.

Proof. Let us denote Y the quotient space obtained from
∐

Ti by identifying it edges
with respect to the labeling scheme of the triangulation. It is an immediate consequence of the
exercise above, that h factors through a continuous map f : Y → X, i.e.,

∐

i Ti

��

h

""E
E

E
E

E
E

E
E

Y
f

// X.

Moreover, since h is surjective, it follows that f is also surjective. Thus, in order to prove the
proposition, it suffices to show that f is injective (because Y is compact and X is Hausdorff).
Let us denote by [p] ∈ Y the equivalence class – with respect to the labeling scheme of the

triangulation – of a point p in
∐

Ti. Assume that f([p]) = f([q]), for some p 6= q. Then,
by definition, it follows that h(p) = x = h(q). Thus, either x belongs to some edge e of the
triangulation on X, in which case it is clear that [p] = [q], or x is a vertex. In this case, in order
to show that [p] = [q] (so that f is injective) we must verify that the identification of p with q is
“forced” as a consequence of the identification of the edges of the triangles Ti’s (see also exercise
1.20).
Suppose that Ai and Aj intersect at a vertex v. What we need to show is that we can find a

sequence

Ai = Ai1 , Ai2 , . . . Aim = Aj ,

such that Aik intersects Aik+1
on a common edge which contains v as its endpoint (as illustrated

in Figure 21). This is the content of the following exercise.
�

Exercise 1.17. Given v, define two curved triangles Ai and Aj with vertex v to be equivalent
if we can find a sequence Aik as above. Use the “remove the one point trick” to show that
if there is more that one equivalence class of curved triangles with vertex v, then v does not
have any neighborhood in X which is homeomorphic to an open set of R2, and thus X is not a
surface.

We now are ready to finish the proof of Theorem 1.37. What we will show is that we may
glue the triangles Ti together in order to obtain the desired polygonal region. In fact, start by
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Ai = Ai1

Aj = Aim

Aim-1

Ai2

Figure 21.

choosing one of the triangles, say T1. If Ti is another triangle which has a label on one of its
edges which is equal to a label of T1, then (after possibly flipping Ti) we may glue both triangles
together. The effect of this is to reduce the original number of triangles by two, at the expense
of adding one polygonal region (which in this case has 4 sides) which we denote by P1. Next,
we look at the edges of P1. If one of the triangles Tj , with j 6= 1, i, has a label equal to one of
the labels of P1, then, after flipping Tj if necessary, we may glue it to P1 obtaining in this way
a new polygonal region P2. We continue this process as long as we have two polygonal regions
containing edges that have a common label.
At some point we will reach a situation where either we obtain the polygonal region Pn+1 that

we were looking for, or we obtain more then one disconnected polygonal region in which none
of the labels appearing in one of them appear also in the other region. However, it is easy to see
that this cannot happen, for in this case the quotient space X will necessarily be disconnected.

Exercise 1.18. Determine the space obtained from the following labeling schemes:

(1) abc, dae, bef, cdf .
(2) abc, cba, def, dfe−1.

Exercise 1.19. Show that the projective space P
2 can be obtained from two Mobius bands

by glueing them along there boundary.

Exercise 1.20. Let X be the space obtained from a sphere by identifying its north and south
poles (X is not a surface). Find a triangulation on X such that the labeling scheme of the
triangulation determines a sphere (i.e., the surface obtained by glueing the edges of the triangles
with respect to the labeling scheme of the triangulation is homeomorphic to a sphere). Conclude
that two non-homeomorphic compact Hausdorff spaces can have triangulations which induce the
same labeling scheme. (We remark that this exercise gives an example of a triangulated space
for which the map f from the proof of Proposition 1.43 is not injective.)


