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Summary. We show how the (intrinsic) exotic or secondary characteristic classes of
Lie algebroids can be seen as characteristic classes of representations. We present two
alternative ways: The first one consists of thinking of the adjoint representation as a
connection up to homotopy. The second one is by viewing the adjoint representation
as a honest representation on the first jet bundle of a Lie algebroid.

1 Introduction

Noncommutative geometry is usually characterized as the study of noncom-
mutative algebras as if they were algebras of functions of spaces. This is
motivated, of course, by the fact that a classical space (a topological space, a
manifold, a variety, etc.) can be characterized by an appropriate commutative
algebra of functions (continuous functions, smooth functions, rational func-
tions, etc.). In this work, we concentrate on Lie (or differentiable) groupoids,
whose role in noncommutative geometry has been stressed by Alan Connes.

In fact, the kind of noncommutative algebras we will be interested in are
Lie algebroids, which are geometric versions of vector bundles, and are the
infinitesimal approximations to Lie groupoids. These objects are extremely
useful to describe various geometric setups. As important classes of examples
one can mention foliated geometry, equivariant geometry, or Poisson geom-
etry. The example of Poisson geometry is particularly relevant, since it lies
in-between classical (or commutative) geometry and quantum (or noncommu-
tative) geometry. We refer the reader to [4] for an introduction to the subject
and its relation to the noncommutative world.

A fundamental problem, both in geometry and physics, is the study of
global invariants. A Lie algebroid combines an algebraic with a geometric fla-
vor, which makes the study of invariants extremely rich. For example, the
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classical theory of characteristic classes, such as Pontriagin classes or Chern
classes, extends to Lie algebroids. The reason is that the usual Chern-Weil
construction can be defined in the general context of Lie algebroids, as was
explained in [8]. However, the invariants one obtains in this way, are not so
interesting: all these classes are the image (by the anchor map) of the usual
characteristic classes. Much more interesting are the exotic or secondary char-
acteristic classes of Lie algebroids, introduced in [5, 8], and which generalize
the secondary characteristic classes of foliations, introduced in the 70’s by
Bott et al.

The secondary classes for Lie algebroids, take two distinct disguises. On
one hand, Lie algebroids have representations, which are flat Lie algebroid
connections generalizing the flat vector bundles of ordinary geometry. It was
shown in [5] that one can define secondary characteristic classes of represen-
tations of Lie algebroids, much like the characteristic classes of ordinary flat
bundles. On the other hand, every Lie algebroid has an underlying character-
istic foliation, which will be singular in general. Again, similar to the theory
of foliations (see e.g. [3, 11]), it was shown in [8] that one can define intrinsic
characteristic classes of the Lie algebroid.

Recall that in the theory of foliations one can describe the intrinsic sec-
ondary characteristic classes as the characteristic classes of a special repre-
sentation. Namely, the normal bundle to the foliation carries a canonical flat
connection, the Bott connection ([3]), which plays the role of the “adjoint
representation” of the foliation. The purpose of this work is to give a sim-
ilar relation between the intrinsic secondary characteristic classes of a Lie
algebroid and the characteristic classes of a representation. The additional
complication in this case is that, in general, a Lie algebroid does not carry
an adjoint representation. We will give two distinct, alternative, solutions to
this problem. Both solutions consist in giving an appropriate meaning to the
notion of an “adjoint representation” of a Lie algebroid.

In the first solution to our problem, one enlarges the notion of represen-
tation, allowing representations up to homotopy. This was first proposed by
Evans, Lu and Weinstein in [7], where they view the adjoint representation
as a representation up to homotopy, and they use it to construct the most
simple example of a secondary characteristic class, namely, the modular class.
Here, we will see that one can define characteristic classes of representations
up to homotopy, and that for the adjoint representation (up to homotopy)
one obtains the intrinsic secondary characteristic classes of the Lie algebroid.

For the second solution to our problem, we observe that the first jet bundle
of a Lie algebroid has a natural prolonged Lie algebroid structure. Moreover,
this jet Lie algebroid carries a natural, honest, representation, which one can
also view as the “adjoint representation” of the original Lie algebroid. By a
straightforward application of the theory of characteristic classes of represen-
tations, we obtain classes in the Lie algebroid cohomology of the jet bundle.
We then check that these classes are the pull-back of the intrinsic character-
istic classes of the original Lie algebroid.
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The remainder of the paper is organized into three sections. In Section 2,
we recall the constructions of the intrinsic characteristic classes and of the
characteristic classes of representations. In Section 3, we clarify the relevance
of connections up to homotopy to the theory of characteristic classes, and we
recover the intrinsic characteristic classes from the adjoint representation up
to homotopy. In Section 4, we discuss the prolonged Lie algebroid structure on
the jet bundle of a Lie algebroid, and we construct the intrinsic characteristic
classes via the jet adjoint representation.

2 Secondary characteristic classes of Lie algebroids

In this work we will denote by A a Lie algebroid π : A → M , with anchor

# : A → TM , and Lie bracket [ , ] : Γ (A) × Γ (A) → Γ (A). Underlying the
Lie algebroid we have a (singular) foliation F , which integrates the (singular)
involutive distribution Im #. We recall that the space of A-forms Ω•(A) is
formed by the sections of the exterior bundles Γ (∧•(A∗)), and that the A-

differential

d : Ω•(A) → Ω•+1(A)

is given by the usual Cartan formula:

dω(α0, . . . , αk) =

k+1∑

i=0

(−1)i#αi(ω(α0, . . . , α̂i, . . . , αk))

+
∑

i<j

(−1)i+jω([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αk). (1)

The cohomology of the complex (Ω•(A), d) is the Lie algebroid cohomol-

ogy of A (with trivial coefficients), and is denoted H•(A).

2.1 The Chern-Weil construction

Let us recall briefly the Chern-Weil construction for a Lie algebroid A (see
[5, 8]). In the case A = TM we recover the usual construction.

Given a vector bundle E → M we will consider the E-valued A-forms:

Ω•(A; E) = Ω•(A) ⊗C∞(M) Γ (E).

An A-connection on E is a linear operator ∇ : Ω0(A; E) → Ω1(A; E),
satisfying the Leibniz identity

∇α(fs) = f∇αs + #α(f)s.

It has a unique extension to an operator

d∇ : Ω•(A; E) → Ω•+1(A; E),
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also satisfying the Leibniz identity. Explicitly

d∇ω(α0, . . . , αk) =
k+1∑

i=0

(−1)i∇αi
(ω(α0, . . . , α̂i, . . . , αk))

+
∑

i<j

(−1)i+jω([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αk). (2)

This will be a differential provided the curvature

R∇(α, β) = ∇α∇β −∇β∇α −∇[α,β],

vanishes. If this is the case, we obtain the Lie algebroid cohomology with

coefficients in E, denoted H•(A; E). In general, the curvature will not vanish,
but it will satisfy the Bianchi identity

d∇R∇ = 0, (3)

where on End(E) we take the induced connection from E.
Now the usual trace on End(E) induces a trace

Tr : (Ω•(A; End(E)), d∇) → (Ω•(A), d),

which satisfies d Tr = Trd∇. Hence, we can define the Chern characters by
setting

chk(∇) = Tr(Rk
∇) ∈ Ω2k(A). (4)

and we have:

Lemma 1. The Chern characters chk(∇) are closed A-forms.

A basic fact is that the cohomology class [chk(∇)] ∈ H2k(A) does not
depend on the connection. This can be seen through the Chern-Simons con-
struction, which we also recall briefly in the context of Lie algebroids.

Let ∇0, . . . ,∇l be A-connections on E. Also let

∆l = {(t0, . . . , tl) : ti ≥ 0,

l∑

i=0

ti = 1},

be the standard l-simplex, and denote by p : M ×∆l → M the projection on
the first factor. Then both E and A can be pull-backed to M × ∆l and p∗A
had a natural Lie algebroid structure. We can define a p∗A-connection on p∗E
by forming the affine combination:

∇aff =

l∑

i=0

ti∇i.

The classical integration along the fibers has also an analogue:
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∫

∆l

: Ω•(p∗A) → Ω•−l(A),

which is given explicitly by the formula:

(

∫

∆l

ω)(α1, . . . , αn−l) =

∫

∆l

ω(
∂

∂t1
, . . . ,

∂

∂tl
, α1, . . . , αn−l)dt1 . . . dtl.

We can now define the Chern-Simons transgression by

csk(∇0, . . . ,∇l) =

∫

∆l

chk(∇aff). (5)

With the convention that for l = 0 we set csk(∇) = chk(∇), we obtain the
following lemma:

Lemma 2. The Chern-Simons transgressions satisfy:

d csk(∇0, . . . ,∇l) =

l∑

i=0

(−1)i csk(∇0, . . . , ∇̂i, . . . ,∇l). (6)

The proof is a simple application of integration by parts. We conclude
that for any vector bundle E we have a well defined Chern character

ch(A; E), with components the cohomology classes of chk(∇), for any choice
of A-connection ∇ on E. Whenever there is no confusion, we shall abbreviate
the Chern character to ch(E).

2.2 Characteristic classes of a representation

Let E be a representation of a Lie algebroid A. This just means that E is en-
dowed with a flat A-connection ∇. From the previous paragraph we conclude
immediately that:

Corollary 1. For a representation E of A we have ch(E) = 0.

The vanishing of the Chern character of a representation is the origin of
new secondary characteristic classes. These characteristic classes of a repre-
sentation were first introduced in [5].

From now on, unless otherwise stated, we assume that E is a complex vec-
tor bundle. We choose a hermitian metric g on E. The connection ∇ induces
an adjoint connection ∇g on E, which is defined in the usual way:

#α(g(s1, s2)) = g(∇αs1, s2) + g(s1,∇αs2).

We leave it to reader the easy check that:

Lemma 3. Let ∇, ∇0, ∇1 be connections on E. For any metric g:

chk(∇g) = (−1)kchk(∇),

csk(∇g
0 ,∇g

1) = (−1)kcsk(∇0,∇1).
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For any representation E we fix a metric g on E and we define elements

u2k−1(E,∇) = ik+1 csk(∇,∇g) ∈ Ω2k−1(A),

where i =
√
−1.

Proposition 1. The A-forms u2k−1 are real, closed, and their cohomology
class is independent of the metric.

Proof. By (6) and the previous lemma, we find

d csk(∇,∇g) = chk(∇) − chk(∇g)

= chk(∇) − (−1)kchk(∇).

Sine ∇ is flat, both terms vanish. Therefore, the u2k−1’s are closed, and they
are also real by the previous lemma.

If g and g′ are metrics on E, formula (6) gives:

csk(∇,∇g) − csk(∇,∇g′

) = csk(∇g ,∇g′

) − d csk(∇,∇g ,∇g′

).

Therefore, u2k−1 will be independent of the metric provided the A-form
csk(∇g ,∇g′

) is exact. For that we choose a family gt of metrics joining g = g0

to g′ = g1, and define ut ∈ End(E) by gt(e1, e2) = g(ut(e1), e2). Then

csk(∇g ,∇gt) = Tr(ω2k−1
t ),

and all we need to show is that ∂
∂t

Tr(ω2k−1
t ) is an exact form. A simple

computation shows that

∂ωt

∂t
= d∇g (vt) + [ωt, vt],

where vt = u−1
t

∂ut

∂t
. Since d∇g (ω2

t ) = 0, this implies that:

∂ωt

∂t
ω2k−2

t = d∇g (vtω
2k−2
t ) + [ωt, vtω

2k−2
t ].

Now, by the properties of the trace, it follows that

∂

∂t
Tr(ω2k−1

t ) = d Tr(vtω
2k−2
t ),

as desired. ut

We can now introduce:

Definition 1. The characteristic classes of a representation E are the
cohomology classes

u2k−1(E) = [u2k−1(E,∇)] (k = 1, . . . , r),

where r is the rank of E.
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Notice that, if E admits an invariant metric g, then these classes vanish,
so they can be seen as obstructions to the existence of an invariant metric.
The main properties of these classes are:

(i) u2k−1(E ⊕ F ) = u2k−1(E) + u2k−1(F );
(ii) u2k−1(E ⊗ F ) = rank(E)u2k−1(F ) + rank(F )u2k−1(E);
(iii) u2k−1(E

∗) = −u2k−1(E).

We refer to [5] for a proof of these facts. They can also be summarized by
saying that the map Rep(A) → Z × Hodd(A) defined by

E 7→ (rank(E), u1(E), . . . , u2r−1(E)),

is a morphism of *-semi-rings.
Let us consider now the case of a real vector bundle. For these we have:

Proposition 2. Assume that (E,∇) is a real representation of A. If k is even
then u2k−1(E,∇) = 0. If k is odd then, for any metric connection ∇m, the
differential form

(−1)
k+1

2 csk(∇0,∇m) ∈ Ω2k−1(A)

is closed, and its cohomology class equals 1
2u2k−1(E,∇).

Proof. Let ∇m be a metric connection for some metric g, so that ∇g
m = ∇m.

From Lemma 3, we find

csk(∇m,∇g) = (−1)k csk(∇g
m,∇) = (−1)k+1 csk(∇,∇m) .

This, combined with the transgression formula (6), implies

d csk(∇,∇m,∇g) = csk(∇m,∇g) − csk(∇,∇g) + csk(∇,∇m)

= (1 + (−1)k+1) csk(∇,∇m) − csk(∇,∇g),

which proves the proposition. ut

2.3 Intrinsic secondary characteristic classes

In order to motivate the introduction of these characteristic classes let us start
by looking at the special case of regular Lie algebroids.

Let A be a regular Lie algebroid so that the characteristic foliation F
integrating Im # is non-singular. Denote the normal bundle by ν = TM/TF ,
and the kernel of the anchor by K = Ker#. These are both vector bundles,
since A is regular, and they carry canonical flat connections, namely the Bott
connections :

∇αβ = [α, β], β ∈ Γ (K), (7)

∇αX = L#αX, X ∈ Γ (ν). (8)
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This means that we can define intrinsic secondary characteristic classes of A,
by letting:

u2k−1(A) = u2k−1(K) − u2k−1(ν).

Notice that the origin of these secondary classes is the vanishing of the
Chern character of the formal difference K−ν. Now observe that we have the
following short exact sequences of vector bundles:

0 // K // A // TF // 0,

0 // TF // TM // ν // 0.

Hence, the difference K − ν equals the difference A − TM , and we have the
following:

Corollary 2. For any regular Lie algebroid, ch(A − TM) = 0.

Let us now turn to the non-regular case. While the difference K − ν only
makes sense for regular Lie algebroids, the difference A − TM always makes
sense. Also, we can introduce A-connections on A and TM , which are not
flat, but which give rise to a flat connection on the formal difference. These
naturally extend Bott’s basic connections for foliations (see [3]).

Definition 2. A connection (∇̂, ∇̌) on A⊕T ∗M is called a basic connection
if #∇̂ = ∇̌# and if they restrict to the Bott connections on each leaf L of the
characteristic foliation F .

Notice that what is left in the formal difference A − TM is precisely the
Bott part of the basic connection. The vanishing of the corollary above is now
replaced by the following result (see [8]):

Lemma 4. The curvature R of a basic connection vanishes along K⊕ (TF)0.

A simple procedure to obtain basic connections is as follows. One chooses
an ordinary connection ∇̄ on A, and defines A-connections on A and on TM
by the formulas:

∇̂αβ = ∇̄#βα + [α, β], ∇̌αX = ∇̄Xα + [#α, X ]. (9)

One checks readily that the pair ∇ = (∇̂, ∇̌) is a basic connection.
Now we can define our characteristic classes. We pick a basic connection ∇

and a metric connection ∇m (i.e., ∇m preserves some metric g on A⊕T ∗M).

Definition 3. The intrinsic characteristic classes of A are the cohomol-
ogy classes

u2k−1(Ad A) = 2[(−1)
k+1

2 csk(∇,∇m)] ∈ H2k−1(A),

where 1 ≤ 2k − 1 ≤ 2r − 1, and k is an odd integer.
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The fact that these classes are well-defined and independent of any choices,
is similar to the proof of the same fact for the characteristic classes of repre-
sentations, given in the previous paragraph. We refer to [8] for details.

The notation u2k−1(Ad A) suggests that these are the characteristic classes
of the adjoint representation of A. To which extent this is true, is the main
subject of this paper, and will be discussed in the next sections. Before we do
that, we look at the intrinsic characteristic class of lowest degree.

Example 1. The modular class of a Lie algebroid was introduced in [14], and
further discussed in [7, 9, 15]. We recall here the construction given in [7].
Consider the line bundle QA = ∧rA ⊗ ∧mT ∗M . On this line bundle we have
a flat A-connection ∇ defined by:

∇α(α1 ∧ · · · ∧ αr ⊗ µ) =

r∑

j=1

α1 ∧ · · · ∧ [α, αj ] ∧ · · · ∧ αr ⊗ µ+

α1 ∧ · · · ∧ αr ⊗L#αµ, (10)

whenever α, α1, . . . , αr ∈ Γ (A) and µ ∈ Γ (∧mT ∗M).
Assume first that QA is trivial. Then we have a global section s ∈ Γ (QA)

so that
∇αs = θs(α)s, ∀α ∈ Γ (A).

Since ∇ is flat, we see that θs defines a section of Γ (A∗) which is closed:
dθs = 0. If s′ is another global section in Γ (QA), we have s′ = fs for some
non-vanishing smooth function f on M , and we find

θs′ = θs + d log |f |.
Therefore, we have a well defined cohomology class

mod(A) ≡ [θs] ∈ H1(A)

which is independent of the section s. If the line bundle QA is not trivial one
considers the square L = QA ⊗ QA, which is trivial, and defines

mod(A) =
1

2
[θs],

for some global section s ∈ Γ (L). The class mod(A) is called the modular

class of the Lie algebroid A.
Now we have proved in [5, 8] that

u1(Ad A) =
1

2π
mod(A). (11)

This gives a geometric interpretation of u1(Ad A) as an obstruction class. In
fact, as was argued in [7] one can think of global sections of QA (or QA⊗QA)
as “transverse measures” to A. The modular class is trivial iff there exists a
transverse measure which is invariant under the flows of every section α ∈
Γ (A). Therefore, the modular class (i.e., the class u1(Ad A)) is an obstruction
lying in the first Lie algebroid cohomology group H1(A) to the existence of a
transverse invariant measure to A.
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3 Characteristic classes and connections up to homotopy

3.1 Non-linear connections

As we have mentioned before, for a general Lie algebroid, there is no ad-
joint representation. One way around this difficulty is to relax the notion of
connection.

Let π : A → M be a Lie algebroid and let E = E1 ⊕E0 be a super-vector
bundle over M . We consider R-linear operators

Γ (A) ⊗ Γ (E) → Γ (E), (α, s) 7→ ∇αs,

which satisfy the identity

∇α(fs) = f∇αs + #α(f)s,

for all f ∈ C∞(M), and preserve the grading. We will say that ∇ is a non-

linear connection if ∇α is local in α. This is a relaxation of the C∞(M)-
linearity that one usually requires.

A non-linear differential form is an anti-symmetric, R-multilinear map

ω : Γ (A) × · · · × Γ (A) → C∞(M),

which is local. Many of the usual operations on forms don’t use C∞(M)-
linearity. For example, we have a de Rham operator d : Ω•

nl(A) → Ω•+1
nl (A).

We can also consider E-values non-linear forms, which we denote by Ω•
nl(A; E).

The Chern-Weil and all other constructions of Section 2.1 immediately
generalize to non-linear connections provided we use non-linear forms. For
example, the usual super-trace on End(E) induces a super-trace

Tr : (Ω•
nl(A; End(E)), d∇) → (Ω•

nl(A), d),

and we obtain the Chern characters of the non-linear connection

chk(∇) = Tr(Rk
∇) ∈ Ω2k

nl (A).

As before, the Chern characters chk(∇) are closed, non-linear A-forms, and up
to a boundary these classes do not depend on the connection. This, of course, is
because the Chern-Simons construction also generalizes to this setting, giving
a non-linear version of the Chern-Simons transgressions csk(∇0, . . . ,∇l)
which still satisfy equation (5), which is now a equality between non-linear
forms.

From now on, we let (E, ∂) be a super-complex of vector bundles over the
manifold M ,

(E, ∂) : E0

∂
// E1

∂oo . (12)
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We consider also a non-linear connection ∇ on E such that ∇α∂ = ∂∇α for
all α ∈ Γ (A). The notion of connection up to homotopy [7] on (E, ∂)
is obtained by requiring linearity up to homotopy. In other words we require
that

∇fαs = f∇αs + [H∇(f, α), ∂],

where H∇(f, α) ∈ Γ (End(E)) are odd elements which are R-linear and local
in α and f .

We say that two non-linear connections ∇ and ∇′ are equivalent (or
homotopic) if, for all α ∈ Γ (A), we have

∇′
α = ∇α + [θ(α), ∂],

for some θ ∈ Ω1
nl(A; End(E)) of odd degree. In this case, we write ∇ ∼ ∇′.

There are two basic properties of this equivalence relation which we state as
our next two lemmas.

Lemma 5. A non-linear connection is a connection up to homotopy if and
only if it is equivalent to a (linear) connection.

Proof. Assume that ∇ is a connection up to homotopy. Let Ua be the domain
of local coordinates xk for M over which the bundle A trivializes, and denote
by {e1, . . . , er} a basis of local sections. We define a local linear connection

∇a
X = ∇X + [ua(X), ∂],

where ua ∈ Ω1
nl(A|Ua

; End(E)) is given by

ua(
∑

k

fkek) = −
∑

k

H∇(fk, ek),

for all fk ∈ C∞(Ua). Next we take {φa} to be a partition of unity subordinate
to an open cover {Ua} by such coordinate domains and set

∇′
α =

∑

a

φa∇a
α, u(α) =

∑

a

φaua(α).

Then ∇′ = ∇ + [u, ∂] is a connection equivalent to ∇. ut
Lemma 6. If ∇0 and ∇1 are equivalent connections, then ch(∇0) = ch(∇1).

Proof. Let ∇0 and ∇1 be connections such that ∇1 = ∇0 + [θ, ∂]. A simple
computation shows that

R∇1 = R∇0 + [d∇0θ + Q, ∂] , (13)

where Q(α, β) = [θ(α), [θ(β), ∂]]. Let us denote by Z ⊂ Ω•
nl(A; End(E)) the

space of non-linear forms ω with the property that [ω, ∂] = 0, and by B ⊂ Z
the subspace consisting of element of the form [η, ∂] for some non-linear form
η. Since we have

[∂, ωη] = [∂, ω]η + (−1)|ω|ω[∂, η],

we see that ZB ⊂ B, hence (13) implies that Rk
∇1 ≡ Rk

∇0 modulo B. The
desired equality follows now from the fact that Tr vanishes on B. ut
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Observe now that if ∇ is a linear connections on (E, ∂), then the Chern
characters chk(∇) are linear differential forms, whose cohomology classes are
the components of the Chern character ch(E) = ch(E0) − ch(E1). Hence, an
immediate consequence of the previous two lemmas is the following:

Proposition 3. If ∇ is a connection up to homotopy on (E, ∂), then

chk(∇) = Tr(Rk
∇),

are closed differential forms whose cohomology classes are the components of
the Chern character ch(E).

The Chern-Simons transgressions forms of non-linear connections are non-
linear forms, and they satisfy the obvious properties. We list here the relevant
properties:

Lemma 7. Let ∇, ∇0, ∇1 be non-linear connections. Then:

(i) If ∇0 and ∇1 are connections up to homotopy then csk(∇0,∇1) are linear
differential forms;

(ii) If ∇0 ∼ ∇1, then csk(∇0,∇1) = 0;
(iii) For any metric g:

chk(∇g) = (−1)kchk(∇) and csk(∇g
0,∇g

1) = (−1)kcsk(∇0,∇1).

Proof. Part (i) follows from the fact that Chern characters of connections up
to homotopy are differential forms.

For part (ii) we observe that the affine combination ∇aff used in the defi-
nition of csk(∇0,∇1) is equivalent to the pull-back ∇̃0 of ∇0 to M ×∆1, since
∇aff = ∇̃0 + t[θ, ∂]. But chk(∇̃0) vanishes so, by Lemma 6, we conclude that
csk(∇0,∇1) = chk(∇aff) = 0.

Finally, if g is a metric on E, a simple computation shows that R∇g =
−R∗

∇, where ∗ denotes the adjoint (with respect to g). Then (iii) follows from

the equality Tr(C∗) = Tr(C), for any matrix C. ut

3.2 Characteristic classes of representations up to homotopy

A representation up to homotopy is a super-vector bundle (E, ∂) with
a connection up to homotopy which is flat. We are now ready to extend the
construction of the characteristic classes of representations to representations
up to homotopy. Again, the origin of these classes is the following vanishing
result, which is an immediate consequence of Proposition 3.

Corollary 3. If (E, ∂) is a representation up to homotopy, then ch(E) = 0.

For any representation up to homotopy (E, ∂,∇), we choose a metric g on
E and we consider the forms:

u2k−1(E, ∂,∇) = ik+1 cs(∇,∇g) ∈ Ω2k−1(A).
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Proposition 4. Let (E, ∂,∇) be a flat representation up to homotopy. Then:

(i) The differential forms u2k−1(E, ∂,∇) are real and closed, and the induced
cohomology classes do not depend on the choice of the metric.

(ii) If ∇ ∼ ∇′, then u2k−1(E, ∂,∇) = u2k−1(E, ∂,∇′).
(iii) If ∇ is equivalent to a metric connection (i.e., a connection which is

compatible with a metric), then all the classes u2k−1(E, ∂,∇) vanish.

Proof. If we use Proposition 3 and Lemma 7, the proof of (i) is analogous to
the proof of Proposition 1, and so we omit it. To prove (ii), we observe that the
non-linear version of the transgression formula (5) gives, for any connection
∇0,

d csk(∇,∇0,∇g) = csk(∇0,∇g) − csk(∇,∇g) + csk(∇,∇0)

d csk(∇g ,∇0,∇g
0) = csk(∇0,∇g

0) − csk(∇g ,∇g
0) + csk(∇g ,∇0).

Adding up these two relations, we conclude that the class u2k−1(E, ∂,∇)
equals the cohomology class of

ik (csk(∇,∇0) + csk(∇0,∇g
0) + csk(∇g

0,∇)) ,

for any connection ∇0. On the other hand, if ∇′ is equivalent to ∇, Lemma 7
(ii) gives:

csk(∇,∇0) − csk(∇′,∇0) = d csk(∇,∇′,∇0).

Hence, we conclude that

u2k−1(E, ∂,∇) = ik [csk(∇,∇0) + csk(∇0,∇g
0) + csk(∇g

0 ,∇)]

= ik [csk(∇′,∇0) + csk(∇0,∇g
0) + csk(∇g

0,∇′)]

= u2k−1(E, ∂,∇′),

which proves (ii).
Finally, (iii) follows from (i) and (ii). ut

In the real case, we obtain the analogue of Proposition 2. The proof is
entirely similar.

Proposition 5. Assume that E is a real vector bundle. If k is even then
u2k−1(E, ∂,∇) = 0. If k is odd, then for any connection ∇0 equivalent to ∇,
and any metric connection ∇m,

(−1)
k+1

2 csk(∇0,∇m) ∈ Ω2k−1(A)

is a closed differential form whose cohomology class equals 1
2u2k−1(E, ∂,∇).

In this way we have extended the theory of secondary characteristic classes
of representations to representations up to homotopy. Note that the construc-
tion presented here actually works for connections which are flat up to homo-
topy, i.e., whose curvature forms are of the type [−, ∂]. Moreover, this notion
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is stable under equivalence, and the characteristic classes will only depend on
the equivalence class of ∇ (cf. Proposition 4 (ii)).

Note also that, as in [6] (and following [2]), there is a version of our discus-
sion for super-connections ([13]) up to homotopy. Some of our constructions
can then be interpreted in terms of the super-connection ∂ + ∇.

If E is regular in the sense that Ker∂ and Im ∂ are vector bundles, then
so is the cohomology H•(E, ∂) = Ker∂/ Im∂, and any connection up to ho-
motopy ∇ on (E, ∂) defines a linear connection on H•(E, ∂). Moreover, this
connection is flat if ∇ is, and the characteristic classes u2k−1(E, ∂,∇) coin-
cide with the classical characteristic classes of the flat vector bundle H•(E, ∂)
(see [2, 10]). In general, the classes u2k−1(E, ∂,∇) should be viewed as invari-
ants of H•(E, ∂) constructed in such a way that no regularity assumption is
required.

3.3 Intrinsic classes via representations up to homotopy

Let us turn now to the adjoint representation of a Lie algebroid A. The case
of a regular Lie algebroid, considered at the start of Section 2.3, suggests that
one should look at the formal difference A − TM . This can be made precise,
by working up to homotopy. We consider the super-vector bundle

Ad(A) : A
#

// TM,
0oo (14)

with the flat connection up to homotopy ∇ad given by:

∇ad
α β = [α, β], ∇ad

α X = [#α, X ],

for which the homotopies are H(f, α)(β) = 0 and H(f, α)(X) = X(f)α, for
all α, β ∈ Γ (A), X ∈ X(M), f ∈ C∞(M).

The following result shows that the characteristic classes of the adjoint
representation up to homotopy, as in the previous paragraph, coincide with
the intrinsic characteristic classes we have discussed in Section 2.3.

Theorem 1. For any Lie algebroid A and any k:

u2k−1(Ad A) = u2k−1(A, ∂,∇ad).

Proof. The clue is the following proposition relating the basic connections we
have discussed in Section 2.3, to the adjoint connection.

Proposition 6. If a linear connection ∇ on A is equivalent to the adjoint
connection ∇ad then it is a basic connection.

Assuming the proposition holds, by Lemma 5 there exists a basic connec-
tion ∇ equivalent to ∇ad. Fixing also a metric connection ∇m, we find:
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u2k−1(Ad A) = 2[(−1)
k+1

2 csk(∇,∇m)] (by Definition 3),

= u2k−1(A, ∂,∇ad) (by Proposition 5),

which proves the theorem.
Proof of Proposition 6. The condition that ∇ is equivalent to ∇ad means

that there exists some θ ∈ Ω1
nl(A; End(A ⊕ TM)) of odd degree such that:

∇α = ∇ad
α + [θ(α), ∂]

for all α ∈ Γ (A). Writing ∇ = (∇̂, ∇̌), this condition translates into:

∇̂αβ = [α, β] + θ(α)#β,

∇̌αX = [#α, X ] + #θ(α)X.

If we restrict, over a leaf L of A, the first connection to Ker#|L and the second
connection to ν(L), the terms involving θ vanish. Therefore, both ∇̂ and ∇̌
restrict over a leaf to the Bott connections. On the other hand, we compute:

#∇̂αβ = #[α, β] + #θ(α)#β

= [#α, #β] + #θ(α)#β = ∇̌α#β.

Hence, ∇ = (∇̂, ∇̌) is a basic connection. ut

Notice that Proposition 6 gives some further geometric insight to the no-
tion of a basic connection. Moreover, in the regular case, it is easy to check
that a linear connection is basic iff it is equivalent to the adjoint connection.

4 Jets and characteristic classes

In the previous section we saw that the adjoint representation is a represen-
tation only up to homotopy, and we used this fact to show how the intrinsic
classed can be seen as classes of representations. In this section we consider a
different interpretation of the adjoint representation, as a honest representa-
tion. The price to pay is that we have to work on the jet Lie algebroid.

4.1 The jet of a Lie algebroid

Let us explain that for any Lie algebroid A, each jet bundle JkA inherits a
natural Lie algebroid structure. This construction of the jet Lie algebroid can
be traced back to the works of Kumpera, Libermann and Spencer (see [1] and
references thereof).

Let π : E → M be a vector bundle. For each non-negative integer k, we
will denote by πk : JkE → M the vector bundle of k-order jets of sections of
E. If l < k, we denote by πk

l : JkE → J lE the canonical projection. Since
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J0E = E we have πk
0 = πk. If α ∈ Γ (E) is a section of E, we will denote by

jkα the induced section of JkE. For basic facts on jet bundles we refer the
reader to [12]. Although we will assume that 0 ≤ k < ∞, many constructions
below hold if k = ∞.

Our first observation is the following:

Proposition 7. If A is a Lie algebroid, there exists a unique Lie algebroid
structure on JkA such that:

(i) For any section α ∈ Γ (A) the anchors are related by:

#jkα = #α.

(ii) For any sections α, β ∈ Γ (A) the Lie brackets are related by

[jkα, jkα] = jk([α, β]).

Proof. First we prove uniqueness. Property (i) clearly defines (uniquely) the
anchor as the composition # ◦ πk , where πk : JkA → A is the canonical
projection. So let [ , ] be a Lie algebroid bracket on JkA with anchor # =
# ◦ πk. The sections of JkA are generated over C∞(M) by sections of the
form jkα, where α ∈ Γ (A). Using the Leibniz identity, we obtain:

[g1j
kα1, g2j

kα2] = g1g2[j
kα1, j

kα2]+

+ g1#α1(g2)j
kα2 − g2#α2(g1)j

kα1. (15)

This shows that, if (ii) also holds, then [ , ] is uniquely determined.
Since uniqueness holds, it remains to show every point x ∈ M has a

neighborhood U where such a Lie bracket exists. So let (x1, . . . , xm) be local
coordinates on a open set U ⊂ M , over which the bundle A trivializes. Let
{e1, . . . , er} be a basis of sections of A|U . For a multi-index I = (i1, . . . , im)
of non-negative integers, we set |I | = i1 + · · · + im and denote by xI the
monomial (x1)i1 · · · (xm)ir . The sections defined by

eI
a =

1

|I |! j
k(xIea), 1 ≤ a ≤ m, |I | ≤ k,

form a generating set of sections for JkA|U . A basis can be obtained by con-
sidering, for example, multi-indices I with i1 ≤ i2 ≤ . . . im. Now we can define
a Lie bracket satisfying (ii), by setting

[eI
a, eJ

b ] =
1

|I |!|J |!j
k([xIea, x

Jeb]),

and requiring the Leibniz identity to hold. ut



Exotic Characteristic Classes of Lie Algebroids 17

For the jet adjoint representation, to be introduced in the next section, we
will be interested in the case of J1A. So let us give the local expression for
the structure constants of the jet Lie algebroid J1A. Let (x1, . . . , xm) be local
coordinates on a open set U ⊂ M , over which the bundle A trivializes. Let
{e1, . . . , er} be a basis of sections of A|U . The Lie algebroid A has structure
functions Bi

a and Cc
ab defined by

#ea = Bi
a

∂

∂xi
, [ea, eb] = Cc

abec,

where we have used the convention of summing over repeated indices. Now, we
have an induced basis {ea, ei

a} of J1A so that, for every local section s ∈ Γ (A),

j1s(x) = sa(x)ea +
∂sa

∂xi
(x)ei

a.

Explicitly, the section ei
a is given by:

y 7→ j1((xi − yi)ea)|x=y.

A straightforward computation using properties (i) and (ii) of Proposition 7,
gives the structure functions for J1A:

[ea, eb] = Cc
abec +

∂Cc
ab

∂xi
ei

a, (16)

[ea, ei
b] = Cc

abe
i
c +

∂Bi
a

∂xj
ej

b, (17)

[ei
a, ej

b] = Bj
aei

b − Bi
be

j
a. (18)

There are similar formulas for the higher jet Lie algebroids JkA.
Note that the characteristic foliations of A and JkA coincide. Also, it is

easy to check that the Lie algebroid structure on JkA makes the projections
πk

l : JkA → J lA into Lie algebroid homomorphisms.
The operation of taking jets is functorial: if φ : A1 → A2 is a Lie algebroid

homomorphism then jkφ : JkA1 → JkA2 is also a homomorphism of Lie
algebroids, and we have a commutative diagram:

JkA1

jkφ
//

πk
l

��

JkA2

πk
l

��

J lA1

jlφ
// J lA2

If a Lie algebroid A → M integrates to a Lie groupoid G ⇒ M , then
the jet Lie algebroid JkA integrates to the jet Lie groupoid JkG ⇒ M : the
arrows of JkG are the k-order jets of bisections of G, and the operations
are the obvious ones. This groupoid structure, makes the natural projection
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πk
l : JkG → J lG into a Lie groupoid homomorphism, and the map of bisections

jk : B(G) → B(JkG) into a group homomorphism. Also, if Φ : G1 → G2 is a
Lie groupoid homomorphism, then it induces a Lie groupoid homomorphism
jkΦ : JkG1 → JkG2 of the associated jet groupoids and, for each pair of
indices, we have a commutative diagram:

JkG1

jkΦ
//

πk
l

��

JkG2

πk
l

��

J lG1

jlΦ
// J lG2

4.2 The jet adjoint representation

We saw above that the adjoint representation of a Lie algebroid A is a repre-
sentation only up to homotopy. It turns out that we can also view the adjoint
representation A as a honest representation of J1A.

Proposition 8. There is a unique representation ∇ of J1A on the bundle A,
such that for any sections α, β ∈ Γ (A):

∇j1αβ = [α, β]. (19)

Proof. First we observe that there exists at most one connection satisfying
(19). In fact, the sections of J1A are generated over C∞(M) by sections of
the form j1α, where α ∈ Γ (A). Hence, any J1A-connection ∇ is determined
by its values on sections of this form. In particular, if ∇ satisfies (19), we find:

∇gj1αβ = g[α, β],

so uniqueness holds.
Since uniqueness holds, existence will follow if we show that every point

x ∈ M has a neighborhood U where there exists a connection satisfying (19).
Again, we let (x1, . . . , xm) be local coordinates on a open set U ⊂ M , over
which the bundle A trivializes, and we let {e1, . . . , er} be a basis of sections
of A|U . Using the notation above, we define a connection in A|U by

∇ea
eb = Cc

abec, ∇ei
a
eb = −Bi

bea.

This connection clearly satisfies (19).
Finally, this connection is flat, since we have:

R(j1α, j1β)γ = [α, [β, γ]] − [β, [α, γ]] − [[α, β], γ] = 0,

which implies that R ≡ 0. ut
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4.3 Intrinsic classes via jet representations

For the jet adjoint representation ∇j1

, which is a representation of the Lie
algebroid J1A on A, we can take its characteristic classes (see Section 2.2),
which we denote by

u2k−1(A,∇j1

) ∈ Ω2k−1(J1A).

Now, the Lie algebroid morphism π1 : J1A → A determines a pull-back map
(π1)∗ : Ω•(A) → Ω•(J1A), which preserves differentials. Hence, we also have
a map at the level of cohomology:

(π1)∗ : H•(A) → H•(J1A).

We have:

Theorem 2. The intrinsic characteristic classes of A pull-back to the char-
acteristic classes of the jet adjoint representation:

u2k−1(A,∇j1

) = (π1)∗u2k−1(Ad A).

Proof. For a section α of J1A we will denote by π1
∗α the induced section of

A. If ∇ is a A-connection on a vector bundle E, then we have a pull-back
J1A-connection on E, denoted (π1)∗∇, and which is defined by the formula

(π1)∗∇αs = ∇π1
∗
αs,

for any sections α ∈ Γ (J1A) and s ∈ Γ (E). If we twist the connection ∇ by
a metric g in E, then its pull-back is the twisted pull-back connection:

(π1)∗∇g = ((π1)∗∇)g .

Also, it follows from the definitions of the Chern-Simmons transgressions, that
we have:

csk((π1)∗∇0, . . . , (π1)∗∇l) = (π1)∗ csk(∇0, . . . ,∇l).

Now, all this is still true even for non-linear connections. For example, the
adjoint connection up to homotopy ∇ad pulls-back to the jet adjoint connec-
tion ∇j1

:
∇j1

= (π1)∗∇ad.

Note that this example shows that a non-linear connection can pull-back to a
linear connection.

These remarks immediately yield the theorem. In fact, we have:

u2k−1(A,∇j1

) = ik+1 csk(∇j1

, (∇j1

)g)

= ik+1 csk((π1)∗∇ad, ((π1)∗∇ad)g)

= ik+1 csk((π1)∗∇ad, (π1)∗(∇ad)g)

= (π1)∗(ik+1 csk(∇ad, (∇ad)g)

= (π1)∗u2k−1(A, ∂,∇ad) = (π1)∗u2k−1(Ad A),

where the last equality holds by Theorem 1. ut
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