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Abstract

In this thesis we will discuss the problem of finding the maximal number of continuous pointwise
linear independent vector fields on spheres in Euclidean space and give a more or less self sustaining
determination of this number. We will discuss and prove both the results on the lower limit by
Hurwitz and Radon and the results on the upper limit by Adams aswell as the prerequisits to set
up the machinery to prove them.





Acknowledgements

First and foremost I want to thank professor Crainic for giving me the oppurtunity to make this
thesis and for all the help he has given me in learning the mathematics and in structuring both the
thesis and the making-of.
Also I want to thank the people with whom I met every week to present each other our theses,
this has been very instructive in the communicational part of the process, and has certainly helped
me in preperation for the presentation of this thesis. Also I want to apologize the them for the
car-wreck that was one of my talks.
On the same note I want to thank my parents who have been a great help in sharing their own
experiences in doing scientific research and the proces of writing a text like this (you are always
behind on any respectable planning, even if you take this into account when making your planning).
Furthermore I want to thank my friends already in their masters, especially Aldo, for fruitfull
discussion on the subject of my thesis and the related subjects. This has certainly helped my
understanding of the mathematics at hand.
At last I want to thank my friends for the exceptionally good atmosphere we put up in the three
year that we studied together. As any one will acknowledge one cannot get anywhere without good
friends, and on that side I can only count myself blessed.





Contents

1 Introduction 1

2 Rough overview of the thesis 2

3 On determining a lower limit 3
3.1 Vector field on the circle and S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Existence of nowhere vanishing vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Existence of nowhere vanishing vector fields II: the Poincare-Hopf Theorem . . . . . . . . . . 7
3.4 Lower limit of number of independent vector fields on Sn and the Hurwitz-Radon Theorem . 10

4 Proving an upper limit for the number of vector fields 15
4.1 Stiefel manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Reducible and co-reducible spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 S-maps and S-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Thom spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Calculations on projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 The final argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 K-Theory 24
5.1 Definition of K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Bott periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 K-Theory as a cohomology theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Another twist on K-Theory: the J-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Stiefel-Whitney classes and Chern classes 28
6.1 Ring properties of cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Stiefel-Whitney classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Chern classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Chern character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Group representiation and relation to K-theory 33
7.1 Group representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Combining group representations with bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 Relation between representations and K-theory and products . . . . . . . . . . . . . . . . . . 37
7.4 A special sequence of virtual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 An important technical result 44
8.1 Calculations of K-Theory of projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Conclusion and outlook 51

A Appendix on general topology 51
A.1 Construction on spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Vector bundles and fibre bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B Appendix on algebraic topology 53
B.1 Homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2 Singular homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.3 Singular cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.4 (Co)homology theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C Appendix on group theory 57

6





1 Introduction

In mathematics, when one introduces a certain object, one often asks the question how much there
are. How many finite fields are there (up to isomorphisms one for every power of a prime), how
many topological spaces are there (a lot), how many compact surfaces are there (two sequences
of countably many ones), et cetera. Sometimes these questions get answered pretty easily (the
number of prime numbers), some get answered but are more difficult to do so (classification of
normal subgroups), and some are not solved up until now (classification of topological manifolds,
anyone?). In this thesis we will look at vector fields on the n-dimensional sphere Sn. These vector
fields live on the tangent bundle of Sn, and hence exhibit some kind of linear structure.

Using this linear structure, we can check if a number of vector fields on Sn are linearly inde-
pendent at a certain point, or linearly independent at every point. We can embed the n-sphere
into Rn+1 and we get the interesting observation that the tangent space at x of Sn really is the n-
dimensional subspace of Rn+1 consisting of all vectors perpindicular to x. In particular every vector
field on Sn can be represented by a continuous function v : Sn → Rn+1 such that 〈x, v(x)〉 = 0. In
this way the linear structure of vector fields becom even more apparent. Now the question ’how
much’ arises, namely the following: what is the maximum number of pointwise linear independent
vector fields on Sn?

Having established an educated guess for the answer, the problem really has two parts: first we
prove that there are in fact that much pointwise linear independent vector fields, and second we
prove that there cannot be more. The educated guess turns out to be that there are ρ(n)− 1 linear
independent vector fields on Sn−1. Here, writing m = (2a + 1)2b+4c with a, b and c integers such
that 0 ≤ b < 4, ρ(m) is defined as ρ(m) = 8c + 2b. Using this educated guess, the first part of
the question is relatively easy and it simply uses more or less linear algebra and has been proven
by Hurwitz and Radon in the 1930’s. When you remember that topology as a well-defined field of
mathematics is born at the beginning of the 20th century, this is fairly early. The answer to the
second part of the problem took some more time and was fully proven by J.F. Adams in 1961. We
will give a more or less self-sustaining solution to the whole problem, discussing some background
and underlying definitions of topology and geometry, though sometimes we will have to concede
that some arguments we just have to assume.
We will also exhibit several corollaries of this problem, for instance we can also determine all the
spheres which are parallelizable, and on which Rn there exist a division algebra. The last question
heuristically means whether there are more algebraic structures like the real numbers, complex
numbers, quaternions and octonians (spoiler: there aren’t).

The reader is assumed to have some knowledge of basic (differential) topology. Insights in the
more involved parts of differential topology and group theory, and in the basics of algebraic topol-
ogy can be found in the appendices.
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2 Rough overview of the thesis

The thesis will be split in two parts: determining a lower limit, and determining an upper limit.
Since the first part does not need any specific definitions, we’ll get right to it in chapter 3. There
we will start by looking at some small cases (S1, S3) and, using these small cases, we will make
connections to other problems. Naturally we will also prove there that there are at least ρ(n)− 1
independent vector fields on Sn−1.
The proof uses the definition of vector fields where we explicitely embed them into Rn, i.e. we
identify a vector field with a continuous function v : Sn−1 → Rn such that 〈x, v(x)〉 = 0 for all x.
With this identification we will construct a specific family of matrices which will induce the desired
vector fields. The structure of this familiy of matrices will come from a set of properties that will
make sure that the vector fields that they induce will be pointwise linear independent. The fact
that we can make a family of ρ(n) − 1 matrices will be a corollary of a result from algebra, the
Hurwitz-Radon Theorem.

The second part (and largest) part of this thesis is devoted to proving there are no ρ(n) vec-
tor fields on Sn−1. This proof will be split in two: first we show that having ρ(n) vector fields on
Sn−1 is equivalent to a more technical property of cohomology and then afterwards we prove that
this property is not true. The technical result here reads as follows:

Theorem 8.1. For any m ≥ 1 the space RPm+ρ(m)/RPm−1 is not co-reducible.

What co-reducible (and reducible) is will be defined later on, but in this specific case we will have
to prove that a certain map cannot have degree 1. We will prove Theorem 8.1 in Chapter 8, while
Chapter 4 will be used to prove that it implies that there a not ρ(n) vector fields on Sn−1.

The argument that links vector fields on spheres and Theorem 8.1 has 4 bullet points:

i) Establishing a fiber bundle X over Sn−1 which has a cross section if and only if there are
ρ(n) independent vector fields on Sn−1

ii) Proving that a certain space Y is reducible if X has a cross section

iii) Defining a certain a duality such that spaces X1 and X2 which are duals of each other satisfy
that X1 is reducible if and only if X2 is coreducible

iv) Proving that Y and RPm+ρ(m)/RPm−1 are duals with respect to that duality for some m

The manifold from point i) will turn out to be the Stiefel-manifold Vρ(n)+1(Rn):

Definition 4.1. The Stiefel manifold is defined by Vk(Rn) = {A ∈ Rn×k : AtA = 11}, the set of
the frames of k orthonormal vectors in Rn.

This manifold codes the correct information, since one can see it as a fiber bundle over Sn−1 that
has a cross-section if and only if there are ρ(n) pointwise linear independent vector fields on Sn−1.
Now with a result in homotopy theory (Proposition 4.22) we will prove the following theorem,
which takes care of ii):

Proposition 4.23. If 2ρ(n) + 2 < n and the projection q : Vρ(n)+1(Rn) → Sn−1 has a cross

section, then there is a map Sn−1 → RPn−1/RPn−ρ(n)−2 which composed with the quotient map
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RPn−1/RPn−ρ(n)−2 → RPn−1/RPn−2 = Sn−1 is a map of degree 1, in particular RPn−1/RPn−ρ(n)−2

is reducible.

The duality which we will use will be called S-duality. Unfortunately a lot of constructions in
Chapter 4 will only work for high enough dimensions, so we will extensively take the suspension of
our space (and maybe take the suspension of that, maybe even more than two times) to increase
the dimension. We now take care of point iii) by

Theorem 4.12. Let X and X ′ be finite CW-complexes that are S-dual to each other. Then X is
S-reducible if and only if X ′ is S-coreducable.

The S here is an unfortunate result of the fact that this dual only works if the dimension of the
space is high enough. It follows that for we can get rid of the S if the space is nice enough, as
stated in theorem 4.8. Finally point iv) gets taken care of by:

Theorem 4.21. Let r denote the order of J(ξk−1) in J(RPk−1). And let p such that rp > n + 1
then RPn/RPn−k is an S-dual of RPrp−n+k−2/RPrp−n−2.

The J that pops up here deals with some kind of stable trivial properties of vector bundles, and
it turns out (in chapter 5) that this J group will be finite. The theorem implies that for every n
we can find a m with ρ(n) = ρ(m) such that RPm+ρ(m)/RPm−1 is S-dual to RPn−1/RPn−ρ(n)−2

(more or less). Now tracing back the bullet points, combined with Theorem 8.1 will result in the
conclusion that there cannot be ρ(n) pointwise linear independent vector fields on Sn−1.

What rests is proving theorem 8.1. We’re going to do this with K-Theory, in which we will pick
the information of vector bundles over a space X and turn it into rings KK(X). We’ll define this
in chapter 5 and also show that maps f : X → Y act nicely on these rings. In particular since
co-reducibility of RPm+ρ(m)/RPm−1 has something to do with maps between spheres, the K-Theory
of spheres and the K-Theory of RPm+ρ(m)/RPm−1, this will come as a great help to prove theorem
8.1.
To enhence the tools we have with K-Theory we will use linear properties of vector bundles to
construct ring homomorphisms on K-Theory. These ring homomorphisms will come from group
representations and will also act nicely with respect to maps f : X → Y . All these properties we
will derive in chapter 7. In that chapter we will also construct a specific ring homomorphism Θ
which will be used throughout the thesis.
The general idea is that in chapter 8 we will calculate the complex K-Theory of CPn/CPk and
from that first the complex K-Theory of RPn/RPk and from that the real K-Theory of RPn/RPk.
We’ll also calculate what Θ will do on all this K-Theories and use this to do prove theorem 8.1. To
ease the calculation of Θ we will also discuss characteristic classes of vector bundles, in particular
Stiefel-Whitney classes and Chern classes, this discussion will take place in chapter 6.

3 On determining a lower limit

In this section we’ll start with looking at some small cases (S1 and S3). With making a short stop
at whether we can find nowhere vanishing vector fields at all on Sn for n odd respectively even, we
finish this section by proving that we can find at least ρ(n)− 1 vector fields on Sn−1.
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3.1 Vector field on the circle and S3

Since the tangent space of an n-dimensional smooth manifold is n-dimensional at every point, we
see that there are at most n independent vector fields on an n-manifold. In particular we see that
there can be at most one linear independent vector field on S1 and at most 3 on S3. On the circle
one can easily write one down as:

v1 : S1 → R2 : (x, y) 7→ (−y, x)

When sketching this vector field we see that this is the vector field which traces the circle counter-
clockwise at constant speed.

On S3 one can also exhaust the whole tangent space with pointwise linear independent vector
fields since we have the following three vector fields:

v1 : S3 → R4 : (x1, x2, x3, x4) 7→ (−x2, x1,−x4, x3)

v2 : S3 → R4 : (x1, x2, x3, x4) 7→ (−x3, x4, x1,−x2)

v3 : S3 → R4 : (x1, x2, x3, x4) 7→ (−x4,−x3, x2, x1)

These vector fields on S1 and S3 share an interesting property of these spheres which they only
share with S7 (and only even in part with S7), namely that they stem from the algebraic structure
of these spheres. When identifying (x, y) ∈ S1 with x+ iy ∈ C (and hence S1 with the unit circle
in C) and (x1, x2, x3, x4) ∈ S3 with x1 + ix2 + jx3 + kx4 ∈ H (and hence identifying S3 with the
Hamilton quaternions of unit length) we see that in both cases v1 represents multiplying with i and
v2 and v3 represent multiplying with j and k respectively.

Seeing that we can find the maximal number of independent vector fields on S1 and S3, we can
ask ourselves for which n we can find precisely n independent vector fields on Sn. For this we have
some definitions:

Definition 3.1. A smooth manifold M is called parallelizable iff the tangent bundle TM is trivial,
i.e. TM is isomorphic to M × Rn.

Definition 3.2. A Lie-group is a smooth manifold G together with a group operation m : G×G→
G such that both m and the map i : G→ G : g 7→ g−1 are smooth.

Intertwining these defintions with vector fields we get the following results:

Proposition 3.3. A smooth manifold M of dimension n is parallelizable if and only if there exist
n pointwise linear independent vector fields.

Proposition 3.4. Any Lie-group is parallelizable.

Proof of Proposition 3.3. Suppose M is parallelizable, then TM ' M × Rn. In that case we can
define vi : M → M × Rn: x 7→ (x, ei). It is clear that these maps are linear independent at each
point m ∈ M , and induce independent vector fields on M , by composing with the isomorphism
M × Rn → TM .
Next suppose that there are n independent vector fields {v1, ..., vn} on M , in that case we construct
an isomorphism from TM to M × Rn by setting vi(m) ' (m, ei) for every m ∈ M and i ∈
{1, ..., n}.
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Proof of Proposition 3.4. We denote the Lie-group by G. We define for any g ∈ G: Lg : G →
G : h 7→ gh. By the group structure this map is bijective, and by the smooth structure it is a
diffeomorphism, since it is smooth by assumption and has smooth inverse Lg−1 .
Now we want to make an isomorphism between G× TeG and TG. From Lg we immediately get a
isomorphism between TeG and TgG, namely the differential of Lg at e. We use all these maps to
patch it together:

Φ : G× TeG→ TG : (g, v) 7→ d(Lg)ev

This Φ establishes an isomorphism between G×TeG and TG, so we see that G is parallelizable.

Now looking at the definition of ρ(n) we can see that the only values of n for which ρ(n) = n (and
which are interesting in this setting) are n = 2, n = 4 and n = 8. These represent S1, S3 and S7

respectively, which in turn represent the elements of unit length of the complex numbers, Hamilton
quaternions and octonians respectively. Now since octonians do not form a group (they are are not
associative), the following result is an important correlary from the result by Adams:

Theorem 3.5. The only values of n for which Sn is parallelizable are n = 1, n = 3 and n = 7.
Furthermore the only Sn which are Lie groups are S1 and S3.

Having constructed some vector fields on small examples we can try to use these to make vector
fields on higher dimensional spheres. The following nice construction helps in doing this:

Proposition 3.6. If Sn−1 has k orthonormal vector fields then Sqn−1 has k orthonormal vector
fields for every integer q ≥ 1.

Proof. Let {v1, ..., vk} be k maps from Sn−1 to Rn such that 〈vi(x), x〉 = 0 and 〈vi(x), vj(x)〉 = δij
for all i, j. Now we can group the coordinates of a vector y ∈ Sqn−1 in groups of n numbers, that is
we have y = (a1x1, ..., aqxq) such that xi ∈ Sn−1 and

∑
i a

2
i = 1. Now define functions Sqn−1 → Rqn

by the following recipe:

v′i : Sqn−1 → Rqn : (a1x1, ..., aqxq) 7→ (a1vi(x1), ..., aqvi(xq))

Now we get that 〈y, v′i(y)〉 =
∑

j a
2
j 〈xj , vi(xj)〉 = 0 and also 〈v′i(y), v′j(y)〉 =

∑
m a

2
m〈vi(xm), vj(xm)〉 =∑

m a
2
mδij = δij , so we see that {v′1, ..., v′k} are k orthonormal vector fields on Sqn−1.

This for instance results in the existence of at least three vector fields on S4k−1 for any integer k.
For S7 we already had 7 by the octoninans, but for S11 we use this as a nice example.
Since the vector fields v1, v2 and v3 are linear maps associated with matrices A1, A2 and A3,
from the defintion we see that v′1, v′2, v′3 are just the linear maps associated with A1 ⊕ A1 ⊕ A1,
A2⊕A2⊕A2 and A3⊕A3⊕A3 respectively. We get the following three vector fields on S11 which
indeed follow to be orthogonal:

v′1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9,−x12, x11)

v′2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x3, x4, x1,−x2,−x7, x8, x5,−x6,−x11, x12, x9,−x10)

v′3 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x4,−x3, x2, x1,−x8,−x7, x6, x5,−x12,−x11, x10, x9)

We’ll look at these maps again when in a few sections we exhibit another way to make three
orthogonal vector fields on S11.
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3.2 Existence of nowhere vanishing vector fields

An important first step to tackle the ultimate problem of finding the maximal number of indepen-
dent vector fields is to ask whether there exists at least one pointwise linear independent vector
field, i.e. a nowhere vanishing vector field on Sn. If n is odd, writing n = 2k − 1, the sphere Sn

lives in 2k-Euclidean space and hence we can easily write down one nowhere vanishing vector field:

v : S2k−1 → R2k : (x1, x2, ..., x2k−1, x2k) 7→ (−x2, x1, ...,−x2k, x2k−1)

So we see that for all odd-dimensional spheres we have a nowhere vanishing vector field, so we see
that there are atleast 1 pointwise linear independent vector fields.

Now if n = 2k and hence even there is a result which is possibly best known by it’s name, namely
the “Hairy Ball Theorem”, which states that every vector field on S2k has a point where it vanishes:

Proposition 3.7. If n is even then there exist no nowhere vanishing vector fields on Sn.

This theorem has many proofs, all using different approaches (combinatorics, differential forms,
homotopy theory), but in my opinion the most intuitive argument (by Milnor [2]) is by using basic
analysis.
First of all we note that by the Stone-Weierstrass Theorem we can approximate a non-vanishing
continuous vector field by a non-vanishing continuously differentiable vector field, so proving that
the latter doesn’t exist implies that the first does not as well.

Proposition 3.7.1. If n is even then there exists no nowhere vanishing continuously differentiable
vector field on Sn.

Proof of Proposition 3.7.1. Suppose we have a nowhere vanishing continuously differentiable vector
field v : Sn → Rn+1, without loss of generality we can set ||v(x)|| = 1 for all x (otherwise we
normalize, which is a smooth operation since ||v(x)|| is never 0). If we set

A = {y ∈ Rn+1|1− ε ≤ ||y|| ≤ 1 + ε}

for some 0 < ε < 1 (hence A is compact), we can expand v onto A by continuing linear over the
rays (i.e. setting v(x) = ||x||v(x/||x||)). Now we use v to define a pertubation of the inclusion of A
into Rn+1:

ft(x) = x+ tv(x)

Now since 〈x, v(x)〉 = 0 for all x ∈ A, we get that ||ft(x)|| = ||x||
√

1 + t2. Now we have the following
claims:

Claim 1. For t > 0 small enough ft is one-to-one and the volume of ft(A) is polynomial in t.

Claim 2. For t > 0 small enough the unit sphere gets mapped into the sphere with radius
√

1 + t2.

Assuming both claims are true we get a contradiction. By the second claim we get that A gets

mapped into {
√

1 + t2(1− ε) ≤ ||x|| ≤
√

1 + t2(1 + ε)}, which has volume
√

1 + t2
n+1

vol(A). Since√
1 + t2

n+1
is not a polynomial when n is even, we get a contradiction with claim 1, hence v has a

zero.
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Proof of Claim 1. Since A is compact and v is continuously differentiable, we get that there
is a c > 0 such that ||v(x) − v(y)|| ≤ c||x − y|| (since all the partial derivates are continuous,
they attain a maximum on A, and taking the maximum of these maxima we get c). Now let
0 < t < 1

c , and suppose that ft(x) = ft(y). We get that x − y = t(v(y) − v(x)) and hence
||x− y|| = |t|||v(y)− v(x)|| ≤ |t|c||x− y|| since 0 < |t|c < 1 we get that x = y, so ft is injective.

Now we can use the change of variables theorem to get:

vol(ft(A)) =

∫
ft(A)

1dy =

∫
A
| det(Dft(x))|dx

Now since Dft(x) = 11 + tDv(x) and the fact that the determinant of a finite dimensional matrix
is a polynomial in its entries we get that det(Dft(x)) = 1 + tσ1(x) + ...+ tkσk(x). Here all the σi’s
are polynomials of all the partial derivatives of v and hence continuous in x. Now choosing t small
enough we have that det(Dft(x)) > 0 for all x ∈ A and we get:

vol(ft(A)) =

∫
A
|det(Dft(x))|dx =

∫
A

det(Dft(x))dx =

∫
A

k∑
i=0

tiσi(x)dx =

k∑
i=0

tk
[∫

A
σi(x)dx

]
Proof of Claim 2. When t is small enough, such that the determinant of Dft(x) always stricly
positive and hence Dft(x) is always non-singular (see the proof of Claim 1), we get with the
Inverse Function Theorem that ft maps opens to opens. That means that when we restrict ft as a
map from Sn to Bn+1√

1+t2
that we have that ft(S

n) is open in the larger sphere. On the other hand

Sn is compact so we get that the image is also compact and hence closed in the larger sphere. Since
the codomain is connected, we see that since the image is both open and closed in the codomain,
is has to be the whole codomain, so ft(S

n) = Bn+1√
1+t2

.

Having proven that Hairy Ball Theorem we can now conclude that there exists a nowhere vanishing
vector field on Sn if and only if n is odd.
Strickly speaking we suffice with this proof since we only talk abou spheres, however there is
another, more deep, result from which we can conclude the same and can also be used for more
general spaces. This result will be the subject of the next section.

3.3 Existence of nowhere vanishing vector fields II: the Poincare-Hopf Theorem

The Poincare-Hopf Theorem gives a strict requirement for when there is a nowhere vanishing vector
field on a manifold, namely via the Euler characteristic. It follows that a compact manifold has
a nowhere vanishing vector field if and only its Euler characteristic is zero. We will show this by
using a triangulation of a given space, but any compact manifold is triangulizable, so this method
checks out. We start by defining the Euler-characteristic for a CW-complex M :

Definition 3.8. The Euler characteristic if defined by χ(M) =
∑

i(−1)i#i-cells.

Remark: Strictly speaking the χ is defined using the homology groups of M , but it turns out that
the result is the same, in particular χ(M) is independent of the specific CW-decomposition of M .

Example 3.9. Since the sphere Sn has a 0-cell and a n-cell we have χ(S2n+1) = 0 and χ(S2n) = 2.
The oriented close surface of genus g has a 0-cell, a 2-cell and 2g 1-cells, so χ(Σg) = 2− 2g.
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The projective space RPn as a cell in every dimension up to and including n, so χ(RPn) = 0 if n
is odd and χ(RPn) = 1 if n is even.

Now the Poincare-Hopf Theorem states the following:

Theorem 3.10. Let M be a compact orientable manifold, then there exists a nowhere vanishing
vector field on M if and only if χ(M) = 0.

It is immediately clear that this implies the Hairy Ball Theorem.

In this section we will give a rough proof of this theorem. A more precise proof can be found
in several books on smooth manifolds (i.e. Guillaume & Pollack), or in [3]. First we define the
mapping degree of a map between orientable manifolds. For this we take a map f : M → N with
M and N compact orientable manifolds of the same dimension and y ∈ N a regular value for f . In
that case we know that f−1(y) is a discrete set of points on a compact manifold and hence finite
and we then define:

deg(f, y) =
∑

x∈f−1(y)

sign(df)x

Here sign(df)x must be understood as sign(det(dfx)) with respect to the positively oriented basis.
The following lemma will be frequently used to show that degrees are invariant under extensions:

Lemma 3.11 (Extension Lemma). Let M be a n+ 1-dimensional manifold with boundary and N
be a n-dimensional manifold, furthermore let f : ∂M → N be a map and y ∈ N a regular value of
f . If f has an extension F : M → N then deg(f, y) = 0.

Using this lemma we can for instance prove that the degree of two homotopic maps g0 and g1

with common regular value agree. Here we use that the map from M × {0, 1} → N defined as
g(·, 0) = g0 and g(·, 1) = g1 has an extension to M × [0, 1] in the homotopy map between g0

and g1 and hence deg(g, y) = 0. But since ∂(M × [0, 1]) = M × {1} − M × {0} we see that
deg(g, y) = deg(g1, y)− deg(g0, y) = 0.
Now this notion allows us to define the mapping degree even if y is not a regular value of f : we
find a g homotopic to f which has a regular value at y and compute the degree there. All in all
we get a function deg(f, ·) : N → Z. Now when looking at neighbourhoods around regular values
(which lay dense in N) one can prove that this function is locally constant, and hence constant if
M and N are connected and in that case we set deg(f) = deg(f, y).

Next we define the index of a zero of a vector field, which we will first do in Rn. Suppose we
have a vector field V : Rn → Rn for which V (0) = 0 and we have a closed disk D around 0 such
that the only zero of V on D is 0. Then we have a function ∂D → Sn−1 : x → V (x)/|V (x)|. We
define index of the zero then as the degree of this map. It follows from the Extension Lemma that
the degree does not depend on the chosen disk.
If we now have a vector field with discrete zeroes, then we choose charts around those zeroes and
use the same construction (the answer is independent of the choice of charts). We will denote the
index of a zero x of a vector field V by Indx(V ).

Next suppose that we have a disk D containing some zeroes x1, ..., xk of V . Punching open disks Di

such that Di∩{x1, .., xk} = {xi} from D, we see that we can extend V (x)/|V (x)| from ∂(D−∪iDi)
to the whole of D−∪iDi, and hence from the extension lemma we see that the degree of V (x)/|V (x)|
on ∂D is equal to the sum of the indices of the zeroes. We’ll use this to prove one of the important
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constructions on vector fields, namely:

Lemma 3.12. Let x be a zero of a vector field V and U a neighbourhood of x in M containing no
other zero than x. Let D be a closed disk in U whose interior contains x. There exists a vector field
V1 that equals V outside of D with only finitely many zeroes in D, all of which are non-degenerate.
Any such V1 satisfies

∑
x∈V −1(0) Indx(V ) =

∑
x∈V −1

1 (0) Indx(V1).

Proof. From partitions of unity we get that there is a bump function ρ : M → R such that
ρ|M−D = 0 and ρ is 1 in a neighbourhood around x. Without loss of generality we can assume U
to be a chart domain. Let a ∈ Rn and in coordinate representation we define V1(z) = V (z) + ρ(z)a
on U and V1(z) = V (z) outside U . If a is small enough then V1(z) can only be zero when ρ = 1,
and if we now choose a such that −a is a regular value of V in coordinate representation, then we
have that the zeroes of V1 will be non-degenerate and still of finite number. Now since ρ has to be
0 on ∂D we have that V and V1 agree on the boundary and we have:∑

x∈V −1(0)∩D

IndxV = deg((V/|V |)∂D) = deg((V1/|V1|)∂D) =
∑

x∈V −1(0)∩D

IndxV1

Since V and V1 are the same outside of U , the indeces of the zeroes outside U are also the same
and hence the sum of all the indeces is also the same.

Doing this trick around all the degenerate zeroes we have the following corollary:

Corollary 3.13. If V is a vector field with only finitely many zeroes then there is a vector field
W with only finitely many zeroes which are all non-degenerate such that

∑
x∈V −1(0) IndxV =∑

x∈W−1(0) IndxW .

Another finding in local coordinates is that if we have a non-degenerate zero x that IndxV =
sign((dV )x), so in the last corollary we have

∑
x∈W−1(0) IndxW =

∑
x∈W−1(0) sign((dV )x).

Now since we saw that degrees do only depend on homotopy classes we see that if we group
zeroes of two vector fields V and W in a smart away together in disks D that the degree of V/|V |
and W/|W | will be the same on ∂D (using the linear structure of TM we see that two V and
W are homotopic via the homotopy tV + (1− t)W ), so we see that under weak assumptions that∑

x∈V −1(0) IndxV does not depend on the vector field V , as long as it has a finite number of zeroes.
Next up we’ll construct a vector field such that the sum equals the Euler characteristic of M , and
then this fact shows that if we have a vector field with no zeroes then χ(M) = 0.

Given a trianugulation T (which is finite since M is compact) we construct the vector field VT
in the following way. Given a simplex ∆n in M we set that VT has a zero in the center of ∆n and
the flow lines flow from the center of ∆n to the centers of the ∆n−1-simplices that make up the
boundary of ∆n and we extend the vector field in between, see the picture below.
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Figure 1: The vector field VT

Now from the picture it’s clear that the zero in the center of a simplex ∆i is a saddle which sends
flow lines out in a i-dimensional hyperplane and recieves it from the other higher dimensional
simplices. Hence a intuitive argument from analysis shows that the index of the zero is (−1)i. Now
we get: ∑

x∈V −1
T (0)

IndxVT =
∑
i

∑
x center of i-simplex

(−1)i =
∑
i

(−1)i#i-cells = χ(M)

Hence for any vector field with a finite number of zeroes we have
∑

x∈V −1(0) IndxV = χ(M).
As promised, from this fact it follows that if M admits a nowhere vanishing vector field than
χ(M) = 0 since, of course, for that vector field the sum over zeroes is the empty sum so it is equal
to zero.
On the other hand if χ(M) = 0 we know that VT has the same number of zeroes with index +1 as
zeroes with index −1. Now we can homotope VT such that the zeroes are paired together such that
that every zero of index +1 is in a chart domain together with 1 zero of index −1 and no other
zeroes and vice versa. Now we can do the opposite of the splitting lemma and merge the zeroes,
effectively cancelling each other and we’re left with no zeroes at all. More stricly we see that if we
take a disk around a pair of such zeroes, we have a degree 0 map on the boundary of that disk and
we can extend that map onto the whole disk, leaving no zeroes behind.

So we see that it is necessary and sufficient to have χ(M) = 0 for a compact manifold M to
have a nowhere vanishing vector field.
Since χ(Sn) = 1 + (−1)n, we see that this also proves that there is a nowhere vanishing vector field
on Sn if and only if n is odd.
Now we continue with trying to up this lower limit if n is odd.

3.4 Lower limit of number of independent vector fields on Sn and the Hurwitz-
Radon Theorem

Having proven that there is always at least one nowhere vanishing vector field on Sn when n is odd,
we can now ask ourselves how many independent ones we can find. To end up at the best positive
result for this, we make a small detour to algebra. It follows that the number of linear independent
vector fields on Sn−1 is closely related to bilinear maps Rn × Rk → Rn.
First we choose orthonormal bases {e1, ..., en} ⊂ Rn and {e1, ..., ek} ⊂ Rk. These give rise to inner
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products 〈·, ·〉 on Rn and Rk, which in turn give rise to norm maps N both Rn → R and Rk → R set
by N(x) =

√
〈x, x〉. Now suppose that we have a bilinear map ? : Rn × Rk → Rn, which satisfies

N(x ? y) = N(x)N(y)

and
x ? e1 = x.

Using the properties we set on our maps (in particular the result that N(ei + ej)
2 = 2 if i 6= j)

and the properties of inner-product spaces (namely 〈x, y〉 = N(x+ y)2−N(x)2−N(y)2) we obtain
that for i 6= j:

〈x ? ei, x ? ej〉 = N(x ? ei + x ? ej)
2 −N(x ? ei)

2 −N(x ? ej)
2

= N(ei + ej)
2N(x)2 −N(x)2N(ei)

2 −N(x)2N(ej)
2

= (2− 1− 1)N(x)2 = 0

In particular for i = 1 we get that 〈x, x ? ej〉 = 0. Now defining vi : Sn−1 → Sn−1 by vi(x) = x ? ei
for i = 2, ..., k we see that we get k − 1 pointwise independent smooth vector fields on Sn−1.
On the other hand if we have k− 1 independent vector fields, we can make them orthonormal and
hence construct from it in much the same manner a bilinear form Rn × Rk → Rn upholding the
same rules as before. So we see that there is a very natural correspondence between bilinear forms
of this sort and vector fields on spheres.

An other equivalent question from algebra is for which triples (i, j, k) we can find formulas of
the form

(x2
1 + ...+ x2

i )(y
2
1 + ...+ y2

j ) = (z2
1 + ...+ z2

k)

where z1, ..., zk are bilinear in ~x and ~y. An example of this is the formula

(x2
1 + x2

2)(y2
1 + y2)2 = (x1y1 − x2y2)2 + (x2y1 + x1y2)2

which comes from the multiplication of complex numbers. Since these sorts of equations boil down
to N(x)2N(y)2 = N(z)2 with z bilinear in x and y we can make from such an equation a bilinear
form Ri × Rj → Rk. It is clear that such a bilinear function satisfying N(x)N(y) = N(x ? y) gives
rise to such a multipication of squares, so we again get a correspondence. Now the last represen-
tation of the problem is called the Hurwitz-Radon Theorem which deals with finding such tuples
(i, j, k) and states that (n, ρ(n), n) is such a triple, hence there are ρ(n)−1 independent vector fields
on Sn−1. Since all these deal with linear vector fields and hence matrices, we prove this by using
the fourth way to represent the problem: families of matrices. The goal here is to find matrices
such that multiplication with these matrices induce pointwise linear independent vector fields on
Sn−1.

The first property that we want to set on our matrices is that 〈x,Ax〉 = 0 for all x, since then
the map x 7→ Ax is a vector field on Sn−1. The following lemma identifies these matrices as the
skew-symmetric matrices:

Lemma 3.14. For every matrix A we have 〈x,Ax〉 = 0 for all x if and only if A+At = 0.

Proof. Suppose that 〈x,Ax〉 = 0 for all x. Now for arbitrary x, y we have:

〈x, (A+At)y〉 = 〈x,Ay〉+ 〈Ax, y〉 = 〈x,Ax〉+ 〈x,Ay〉+ 〈y,Ax〉+ 〈y,Ay〉 = 〈(x+ y), A(x+ y)〉 = 0
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Since this is for all x, y it follows that A+At = 0. On the other hand if A+At = 0 we get for all x:

2〈x,Ax〉 = 〈x,Ax〉+ 〈Ax, x〉 = 〈x, (A+At)x〉 = 0

We want to use these skew-symmetric matrices to make ρ(n)−1 pointwise linear independent vector
fields on Sn−1. That means that first of all that we also require them to be nowhere vanishing.
This can be made sure of if we set that the matrices we look at are also orthogonal. The inde-
pendent part can be made sure of by wanting all vectors to form an orthonormal system at every
point, that is, if {A1, ..., Ak} is our family of matrices to make the vector fields, that {A1x, ..., Akx}
form an orthonormal system for every x ∈ Sn−1. In particular this means that for i 6= j that
〈Aix,Ajx〉 = 〈x,AtiAjx〉 = 0 for every x so by the virtue of Lemma 3.14 we have AtiAj +AtjAi = 0,
which by skew-symmetry of Ai and Aj is equivalent to saying AiAj = −AjAi. Now putting all
these together we can put a precise definition of the families of matrices we want:

Definition 3.15. A Hurwitz-Radon family of matrices (H-R family) is a set of n × n-matrices
{A1, ..., Ak} such that:

i) Ai = −Ati for all i (skew-symmetry)

ii) AtiAi = −A2
i = 11 for all i (orthogonality)

iii) AiAj = −AjAi for all i 6= j (mutual orthogonality)

Now having made the definition we can formuate the final theorem which will give the biggest
prositive result to the problem:

Theorem 3.16. For every n ≥ 2 there exists a H-R family of ρ(n)− 1 n× n-matrices.

By the previous discussion this theorem has the corollary that there are at least ρ(n)− 1 pointwise
linear independent smooth vector fields on Sn−1:

Corollary 3.17. For every n ≥ 2 there exist ρ(n)− 1 continuous vector fields on Sn−1 which are
pointwise linear independent.

Proof of Corollary 3.17. For fixed n we take the H-R family {A1, ..., Aρ(n)−1} we get by virtue
of theorem 3.16. Now set vi : Sn−1 → Rn to be vi(x) = Aix. This family of vector fields are
smooth and hence continuous and pointwise linear independent since {v1(x), ..., vρ(n)−1(x)} form
an orthonormal system for all x by the definition of the Ai’s.

The following construction for the proof of Theorem 3.16 is by Geramita and Pullman [4]

Proof of Theorem 3.16. First we define the following 2× 2-matrices:

R =

(
0 1
−1 0

)
, P =

(
0 1
1 0

)
, Q =

(
1 0
0 −1

)
Now we have the following base cases:

Claim 1.

i) {R} is a H-R family of ρ(2)− 1 2× 2-matrices
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ii) {R⊗ 112, P ⊗R,Q⊗R} is H-R family of ρ(4)− 1 4× 4-matrices

iii) {112 ⊗R⊗ 112, 112 ⊗ P ⊗R, Q⊗Q⊗R, P ⊗Q⊗R, R⊗ P ⊗Q, R⊗ P ⊗ P, R⊗Q⊗ 112} is a
H-R family of ρ(8)− 1 8× 8-matrices

From these base cases we can inductively grow our families using these steps:

Claim 2. Suppose {A1, .., As} is a H-R family of n× n-matrices, then:

i) {R⊗ 11n} ∪ {Q⊗Ai|i = 1, ..., s} is a H-R family of s+ 1 2n× 2n-matrices

ii) If {B1, ..., B7} is the H-R family of 8× 8-matrices of Claim 1.iii) then {R⊗ 118n}∪
{P ⊗ 118 ⊗Ai|i = 1, ..., s} ∪ {Q⊗Bj ⊗ 11n|j = 1, ..., 7} is a H-R family of 16n× 16n-matrices
of order s+ 8.

iii) {Ai ⊗ 11b|i = 1, ..., s} is a H-R family of nb× nb-matrices of order s

Both claims follow repeatedly using the properties of R, P and Q together with (A⊗B)(C ⊗D) =
(AB)⊗ (CD) and (A⊗B)t = At ⊗Bt.

That we can now build a H-R family of ρ(n) − 1 n × n-matrices follows from the following ar-
guments. First we note that Claim 1 takes responsibility for n = 2, 4, 8 and then combining Claims
1.iii) and 2.i) we get n = 16 (ρ(16) = ρ(8) + 1). Now we have ρ(16k) = ρ(k) + 8 so repeatedly
using Claim 2.ii) gives us families of ρ(n)− 1 n× n-matrices for all n = 2t. Now for b odd we have
ρ(kb) = ρ(k) so at last we can use claim 2.iii) to finish the deal.

This construction is somewhat mysterious, but it follows from puzzeling with R, Q and P . For
instance when looking at property i) for a H-R family we see that R is antisymmetric and Q, P
and 112 are symmetric, so R acts as ‘odd’ and Q and P act as ‘even’. Since we want something
‘odd’ we must have an odd number of R’s (or add an even number of R’s in the follow-up claim).
The same thing works for property ii) since −R2 = Q2 = P 2 = 112

2 = 112.
The most important part however is checking part iii). Here we use RQ = −QR, RP = −PR
and PQ = −QP whereas all the other pairs (e.g. RR or Q112) are commutative. Again we want
to effectively pick up one minus-sign. So making this construction boils down to trying a lot of
combinations of tensor products and finding the right one (or let somebody else find it).

The most interesting cases are the cases which we cannot solve by guessing (n = 2, 4, 8, which
are the multiplication tables for complex numbers, quaternions and octonians respectively), but
these are either quite empty (when n is odd), not very interesting (n = 6 which is just R ⊗ 113,
equivalently for just taking an odd multiple of n = 2, 4, 8), or for very big n (since the most inter-
esting part of the construction is in going to n = 16 and multiplying with 16). The downside of very
big n is that the matrices will become big, but also that since ρ(n) goes about logarithmically, the
matrices will become very empty with mostly 0’s, since the number of entries grows quadratically.
We can however compare the cases we’ve guessed from the algebraic structure with those from the
construction of the theorem. For n = 2 we see that they argree, but this ain’t that hard since the
tangent space of S1 is one dimensional. For n = 4 we recall the results of the quaternionic strucutre
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and get the following result:

v1 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 v2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 v3 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


Q⊗R =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 R⊗ 112 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 P ⊗R =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


(NB: Here we identify the functions vi with the matrix that they come from)
So we see that they do not exactly coincide, but they are the same up to some minus signs. So we
see that they induced two different though very similar multiplication rules on R4.

What we also can do is compare the results of this process for S11 with the three vector fields
we found earlier, recall them to be:

v′1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9,−x12, x11)

v′2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x3, x4, x1,−x2,−x7, x8, x5,−x6,−x11, x12, x9,−x10)

v′3 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (−x4,−x3, x2, x1,−x8,−x7, x6, x5,−x12,−x11, x10, x9)

If we calculate the vector fields that we get with this tensor product, it follows that we get:

v1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (x7, x8, x9, x10, x11, x12,−x1,−x2,−x3,−x4,−x5,−x6)

v2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (x10, x11, x12,−x7,−x8,−x9, x4, x5, x6,−x1,−x2,−x3)

v3 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) 7→ (x4, x5, x6,−x1,−x2,−x3,−x10,−x11,−x12, x7, x8, x9)

The differences are interesting, since v1 and v2 really scramble up the coordinates while v′1, v′2 and
v′3 are more grouped. This is really the difference between taking direct sums and tensor product
of matrices: recall that v′i is the linear map from Ai ⊕ Ai ⊕ Ai (with Ai the result from S3) while
vi is the map Ai ⊗ 113. The natural question that arises now since we have two sets of vector
fields is whether they are independent of each other, i.e. if we can make more that three pointwise
independent vector fields from combining the two sets. It turns out that we cannot do this. For
instance if we plug in e1 we get:

v3(e1) = −e4 = −v′3(e1)

So we see that adding v3 to the set {v′1, v′2, v′3} adds an independence in a point. Similarly we get:

v2(e5) = e8 = v′3(e5)

v1(e8) = −e5 = v′3(e8)

So we see that adding v1, v2 or v3 to the set {v′1, v′2, v′3} results in an independence in a point,
which is the desired result since ρ(12) − 1 = 3, so finding a fourth pointwise independent vector
field would be a problem.

Just on a sidenote we see that we make these H-R families of a lot of tensor products of R, P
and Q. Now these matrices also pop-up in quantum mechanics in the discussion of spin systems.
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Now since an m-coupled spin system has normalized states made up out of tensor products of |↑〉i
or |↓〉i for all indices i = 1, ...,m, it effectively lives on S(2m−1). Now since multiplying with an odd
number does not change much, in all the effective cases (Sn−1 with n a power of two) the vector
fields constructed in this manner coincide with coupled spin-operators, which are one of the most
elementary examples of quantum mechanical systems.

4 Proving an upper limit for the number of vector fields

In this section we’ll talk about how to prove that there cannot be ρ(n) independent vector fields
on Sn−1. We’ll see that this is equivalent to another problem (Theorem 8.1), and the rest of the
thesis will be devoted to proving this equivalent problem. First we’ll start with some defintions.

4.1 Stiefel manifold

The Stiefel manifold will be of particular interest since it turns out to be a fiber bundle that has
a cross-section exactly when there are a certain number of vector fields on a sphere (see Theorem
4.2). This gives the link between multiple maps (a number of vector fields) and only one map
between manifolds.
Since we work with continuous vector fields which can be formed into continuous orthonormal
frames by Gram-Schmidt, it is natural for us to look at the manifold of orthonormal frames, that
is:

Definition 4.1. The Stiefel manifold is defined by Vk(Rn) = {A ∈ Rn×k : AtA = 11}, the set of
the frames of k orthonormal vectors in Rn.

One can realise Vk(Rn) as the quotient O(n)/O(n− k), more or less by deleting the last n− k rows
from elements of O(n). More specific we know that any two orthonormal k-frames in Rn can be
deformed in each other via an orthonormal transformation, so we see that O(n) acts on Vk(Rn).
Seeing O(n − k) as the subgroup of O(n) that acts on the n − k vectors perpindicular to a given
k-frame, we see that O(n− k) acts trivially on Vk(Rn) and hence Vk(Rn) ' O(n)/O(n− k). Since
V1(Rn) is the set of vectors in Rn of length 1, it follows V1(Rn) = Sn−1. Denoting A ∈ Vk(Rn)
by A = (v1, ..., vk) we can define p : Vk(Rn) → Vl(Rn) by (v1, ..., vk) 7→ (v1, ..., vl) (for l ≤ k), in
particular if l = 1 we see that Vk(Rn) is a fiber bundle over Sn−1. Some specific cases of this are
V2(Rn) which consists of tuples of two orthonormal vectors, hence V2(Rn) = TSn−1 and Vn(Rn)
which is by definition equal to O(n).

The Stiefel manifold is connected to vector fields in the following natural way:

Theorem 4.2. There are k orthogonal vector fields on Sn−1 if and only if Vk+1(Rn) has a cross-
section.

Proof. If we have orthogonal vector fields v1, ..., vk then for every x ∈ Sn−1 we have that {x, v1(x), ..., vk(x)}
is a orthonormal set. Now defining s : Sn−1 → Vk+1(Rn) by s(x) = (x, v1(x), ..., vk(x)) we see that
this is a well-defined function for which ps = idSn−1 , so Vk+1(Rn) has a cross-section.

On the other hand if we have a cross-section s : Sn−1 → Vk+1(Rn), we set functions v1, ..., vk
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from Sn−1 to Rn such that s(x) = (x, v1(x), ..., vk(x)) (just project the i’th coloumn of s to a
vector of Rn, the first coloumn is fixed by the fact that s is a cross-section). Now that means
that 〈vi, vj〉 = δij and 〈x, vi〉 = 0 for all i so we get that all the vi’s are vector fields on Sn−1 and
furthermore {v1, ..., vk} is an orthonormal set of vector fields.

4.2 Reducible and co-reducible spaces

In this section we’ll discuss the defintion of reducible and co-reducible spaces. This will give us the
possibility to formulate a theorem that is equivalent to proving that there are no ρ(n) vector fields
on Sn−1 (Theorem 8.1).

Definition 4.3. A space X is reducible if there is a n ∈ N and f : Sn → X such that f∗ : H̃i(S
n)→

H̃i(X) is an isomorphism for all i ≥ n.

Definition 4.4. A space X is co-reducible if there is a n ∈ N and g : X → Sn such that g∗ :
H̃ i(Sn)→ H̃ i(X) is an isomorphism for all i ≤ n.

In short it means that (co)-reducible spaces act like a sphere for all intents and purposes in either
low or high dimensions. For certain CW-complexes we can refine this defintion to make it more
intuitive:

Lemma 4.5. Let X be a n-dimensional CW-complex with only 1 n-cell and let v be the quotient
map X → X/Xn−1 = Sn. Then X is reducible if and only if there is a map f : Sn → X such that
vf ' 11Sn (i.e. has degree 1).

Proof. Suppose X is reducible, since Hn(X) = Z (since there is only 1 n-cell), and Hk(X) = 0 for
k > n we know that the map f that induces an isomorphism f∗ must be a map f : Sn → X. Now
we have the following diagram / exact sequence:

H̃n(Sn)

f∗ ∼=
��

(vf)∗

%%

0 = H̃n(Xn−1) // H̃n(X)
v∗ // H̃n(Sn) // H̃n−1(Xn−1)

At once we see that v∗ is injective and hence it is not the zero-map (since H̃n(X) 6= 0). Now
H̃n−1(Xn−1) is a free group (in fact it is Zk with k the number of n − 1-cells), which means that
the kernel of the map Z = H̃n(Sn) → H̃n−1(Xn−1) and hence the image of v∗ can only be 0 or Z.
Since v∗ is not the zero-map this means that the image is non-trivial and hence has to be Z, so we
see that v∗ is an isomorphism, and we see that (vf)∗ is an isomorphism and hence vf is homotopic
to the identity.
On the other hand if such a f exists we can chase the same diagram and see that f∗ is an isomorphism
of the Hn’s, and since X is n-dimensional we immediately have Hk(X) = 0 for k > n, so f∗ certainly
is an isomorphim of the Hk’s for k > n.

Lemma 4.6. Let X be a CW-complex such that Xn = Sn (i.e. X can be decomposed as having
among others 1 0-cell, no cells of dimension 1, ..., n − 1 and 1 n-cell) and let u : Sn → X be the
inclusion. Then X is co-reducible if and only if there is a map g : X → Sn such that gu ' 11Sn (i.e.
has degree 1).
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Proof. The proof uses the same arguments as in the previous lemma, only now with induced maps
on cohomology.

The equivalent problem to the non-existence of ρ(n) vector fields on Sn−1 now becomes:

Theorem 8.1. For any m ≥ 1 the space RPm+ρ(m)/RPm−1 is not co-reducible.

Seeing that RPm+ρ(m)/RPm−1 satisfies the requirements for Lemma 4.6, we see that we want to
prove that there is no map f : RPm+ρ(m)/RPm−1 → Sm such that the composition:

Sm = RPm/RPm−1 i−→ RPm+ρ(m)/RPm−1 f−→ Sm

is homotopic to the identity.

The rest of this chapter is devoted to showing that this is indeed an equivalent problem.

4.3 S-maps and S-duality

Since we’re going to talk about reducible and co-reducible spaces, we want to establish some kind
of duality between spaces such that one is “sort of” reducible if and only if its dual is “sort of”
coreducible (the “sort of” being the point of talking in this section). This is done by developing
the notion of S-maps, and it will follow that under not too strong assumptions if X and X ′ are
S-duals to each other then X is S-reducible if and only if S-coreducible. Furthermore we will see
that S-(co)reducibility and (co)reducibility will coincide if enough homotopy groups of the space
under consideration are trivial.

We denote by [X,Y ] the set of homotopy classes of maps between two spaces X and Y . Since
we can suspend a map f : X → Y to a map Sf : SX → SY , and since this operation behaves
nicely with respect to homotopy classes we find maps [X,Y ]→ [SX,SY ]. Now if [SX,SY ] would
be equal to [X,Y ] for any X, Y we would spare ourselves some work, but unfortunately it isn’t.
However we can look at the sequence

[X,Y ]→ [SX,SY ]→ [S2X,S2Y ]→ ...

From the fact that [SkX,SkY ] ' [X,ΩkSkY ] and that maps to loopspaces exhibit a canonical
group structure (juxtaposition of paths), which is abelian for k ≥ 2, we have that the maps
[SkX,SkY ]→ [Sk+1X,Sk+1Y ] become homomorphisms between abelian groups when k ≥ 2, now
we get:

Definition 4.7 ([11, Def 2.1, p.215]). We denote by {X,Y } the direct limit of the sequence of
abelian group [S2X,S2Y ]→ [S3X,S3Y ]→ ..., an element of {X,Y } is called an S-map from X to
Y .

Since starting at either [X,Y ] or [SX,SY ] does not matter here, we see that indeed {X,Y } =
{SX, SY }, so we found our invariant under supsending. It follows that one can actually make sure
that [X,Y ] = {X,Y } under suitable assumptions:

Theorem 4.8 ([11, Thm 2.2, p.206]). If X is a CW-complex of dimension n and Y is an r-connected
space, such that n− 1 < 2r − 1 then the natural function [X,Y ]→ {X,Y } is a bijection.
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Recall that here r-connected means that πi(X) = 0 for all 0 ≤ i ≤ r.
In short this means that if we blow up our spaces big enough (i.e. making sure that all the interest-
ing stuff happens in the higher dimension parts), eventually we’ll get to a bijection between [X,Y ]
and {X,Y }.

Now we define the duality what we’re looking for. Note that if we have a function u : X ∧X ′ → Sn

and a map f : Z → X ′ we get a map uZ(f) : X ∧ Z → Sn defined by uZ(f)(x, z) = u(x, f(z))
(which is well-defined under suitable choices of base-points). On the other hand we can do the
same construction with a map g : Z → X, which we will call uZ(g). Since these operations be-
have nicely with respect to homotopy-classes (and hence S-classes), we get two homomorphisms
uZ : {Z,X ′} → {X ∧ Z, Sn} and uZ : {Z,X} → {Z ∧X ′, Sn}. The usual case discussed is when
Z = Sk, in which case we will call uZ and uZ , uk and uk respectively. Now X and X ′ share nice
properties if these homomorphisms are isomorphisms, so we have the following definition:

Definition 4.9. An n-duality is a map u : X ∧ X ′ → Sn such that uk and uk are isomorphisms
for all k. If such an u exists, we call X the n-dual of X ′. Furthermore we call X an S-dual of X ′

is some suspension of X is n-dual to some suspension of X ′ for some n.

Since taking arbitrary suspensions will come back more times, we make a small linguistic definition:

Definition 4.10. Two spaces X and Y are of the same S-type if SmX and SnY are homotopy
equivalent for some m,n ∈ N.

The main motivation for the defintion of n-duality is the following example, which was the first
example of n-dual spaces:

Theorem 4.11. [12] Let X be a finite subcompex of Sn and let X ′ be a subset of Sn − X such
that X ′ is homotopy equivalent to Sn −X. Then X and X ′ are n-duals.

Now from playing with diagrams one can now come to the following conclusion:

Theorem 4.12. Let X and X ′ be finite CW-complexes that are S-dual to each other. Then X is
S-reducible if and only if X ′ is S-coreducable.

Proof. This is a result of diagram chasing the result of a very involved statement in cohomology
theory. See [11, Thm 8.4, p.216]

This framework allows us to make statements about the coreducibility of spaces given that some
other space is reducible. The only thing that we want is a tool to compute S-duals. For this we
need a new type of space, which we will introduce in the next section.

4.4 Thom spaces

In this section we will describe a certain kind of spaces made out of vector bundles, which turn out
to be nice since they give a link between properties of vector bundles and the S-duality of certain
spaces. We’ll use these spaces afterwards to calculate S-duals of spaces RPn/RPk.

For this section X is a differentiable manifold and ξ is a vector bundle over X. Now since ev-
ery fiber of ξ is a vector space, we intuitively can take the sphere or disk of every fiber. One
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can make this precise by making a smooth function from E(ξ), the total space of ξ, to R which
restricts to a (non-trivial) metric on every fiber. This metric can be constructed from taking every
trivialization (or an atlas of trivialization), taking the (canonical) metric on the trivialization, and
sum all of those via a partition of unity. The exact construction is beyond the scope of this thesis
but we can assure ourselves that choosing different atlases will yield homeomorhic results, so we
define:

Definition 4.13. Let ξ be a vector bundle of rank n over X. Then the disk bundle D(ξ) is the fiber
bundle over X that satisfies that every fiber is homeomorphic to Dn and that D(ξ) is a subbundle
of ξ (seeing ξ as a fiber bundle). The sphere bundle is defined by S(ξ) = ∂D(ξ) and the Thom
space T (ξ) is defined by T (ξ) = D(ξ)/S(ξ).

Remark: If we have a bundle metric on ξ, the sphere and disk bundle are just all element in ξ
with length equal to 1 and less or equal then 1 respectively. In this sense one could also define S(ξ)
just like D(ξ) but then setting all fibers homeormophic to Sn−1. At last it follows that while the
exact form of D(ξ) is dependent on choices, the homeomorphism class is not.

Example 4.14 (Trivial bundle over X). If ξ = X×Rn, then D(ξ) = X×Dn and S(ξ) = X×Sn−1.

From standard analysis we know that the open ball in n dimensions is homeomorphic to Rn, or
more suggestive: Dn − Sn−1 ' Rn. Now in the same way we have that if X is compact that
D(ξ)− S(ξ) ' E(ξ) and hence the one-point compactifications of both spaces are homeomorphic.
Now since the one-point compactification of D(ξ) − S(ξ) is just D(ξ)/S(ξ). We get the following
proposition:

Proposition 4.15. If X is compact and ξ is a real vector bundle over X then T (ξ) is homeomorphic
to the one-point compactification of E(ξ).

This also shows why isomorphic vector bundles ξ and ξ′ have the same Thom space, since in
particular the isomorphism is a homeomorphism between E(ξ) and E(ξ′), so the one-point com-
pactifications are also homeomorphic.
Recalling that (X × Y )+ = X+ ∧ Y + we use the previous proposition to get the following lemma:

Lemma 4.16. For ξ and η two real vector bundles over compact spaces we have T (ξ × η) =
T (ξ) ∧ T (η).

Now denoting θn as the trivial n-dimensional bundle over a space X, we have that ξ ⊕ θn over X
is isomorphic to ξ×Rn over X ×{p}, so we get the following important proposition in the context
of S-types:

Proposition 4.17. The Thom space T (ξ ⊕ θn) is homeomorphic to Sn(T (ξ)).

Proof. From the fact that ξ⊕θn is isomorphic to ξ×Rn we have that T (ξ⊕θn) is homeomorphic to
T (ξ × Rn) which is equal to T (ξ) ∧ T (Rn) by the previous lemma. Now T (Rn) is just (Rn)+ = Sn

so we have T (ξ ⊕ θn) ∼= T (ξ) ∧ Sn which is homeomorphic to Sn(T (ξ)).

In particular we see that throwing a trivial bundle to our vector bundle does not change the S-type
of the Thom space. Furthermore we have that if X and T (ξ) are S-duals if and only if X and
T (ξ ⊕ θn) are S-duals for some n ∈ N.
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Now the point of establishing Thom spaces is that they come in quite handy in determining S-
duals, which follows from the following theorem:

Theorem 4.18 ([11, Thm 3.7, p.208]). If ξ and η are two vector bundles over a closed differentiable
manifold such that ξ ⊕ η ⊕ τ(X) is trivial over X (where τ(X) is the tangent bundle of X), then
T (ξ) and T (η) are S-duals.

Proof. This theorem will follow from the following claim:

Claim. Let ν be a normal bundle of a compact manifold X. Then the Thom space T (ν) is
an S-dual of X/∂X.

Proof of the Claim. We will not prove this, the interested reader can look at [11, Thm 3.6,p.208]

Now let X, ξ and η as in the assumptions of the theorem. We can now look at D(ξ) which on it’s
own is a compact differentiable manifold, such that ∂D(ξ) = S(ξ) and hence D(ξ)/∂D(ξ) = T (ξ).
Since paths on D(ξ) are paths that run through X and the linear spaces attached at the same
time we see that the tangent bundle to D(ξ) is π∗(ξ ⊕ τ(X)). Since ξ ⊕ η ⊕ τ(X) is trivial, we
intuitively see that η is normal to ξ⊕ τ(X) and hence π∗(η) is a normal bundle of D(ξ). Now since
π : D(ξ)→ X is a homotopy equivalence (in very much the same way that a disk and a point are
homotopy equivalent) we see that T (π∗(η)) and T (η) are homotopy equivalent and then from the
claim it follows that T (η) and T (ξ) are S-duals.

Since we now have a tool to calculate S-duals we will use this in next section to determine S-duals
of spaces of the kind RPn/RPk.

4.5 Calculations on projective spaces

Using the link between Thom spaces and S-duals we will show that spaces of the form RPn/RPk

are actually Thom spaces and then use the results of the preceding section to calculate S-duals of
these spaces.

We see RPk as the quotient of Sk under x ∼ −x. We denote by ξk the line bundle over RPk

defined by the quotient of Sk × R by (x, y) ∼ (−x,−y). This bundle is also called the tautological
line bundle, which can be seen by the other definition of ξk. Since RPk is the set of lines in Rk+1

through the origin, one can look at the set:

{(l, v); v ∈ l} ⊂ RPk × Rk+1.

This has an obvious projection to RPk and this makes it into a line bundle over RPk. It turns out
that this is exactly the same bundle as ξk, so intuitively speaking ξk sticks to every line l ∈ RPk

the line l itself as linear space.

Now we can set mξk = ξk ⊕ · · · ⊕ ξk (m times) and get that E(mξk) is homeomorphic to Sk × Rm
under the quotient (x, y) ∼ (−x,−y). In the same manner we have D(mξk) = Sk × Dm and
S(mξk) = Sk × Sm−1 modulo the same relation. In particular we see that [x, y] ∈ D(mξk) (the
equivalence class of (x, y) ∈ Sk ×Dm) then [x, y] ∈ S(mξk) if and only if ||y|| = 1. Now we have
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the following oberservation:

Proposition 4.19. The Thom space T (mξk) and the truncated projetive space RPm+k/RPm−1

are homeomorphic.

Proof. We will define a map from Sk × Dm → Sk+m that factors through both quotients into a
map D(mξk)→ RPk+m such that D(mξk)− S(mξk)→ RPk+m − RPm−1 is a homeomorphism.
We define f : Sk × Dm → Sk+m by f(x, y) = (y, (1 − ||y||2)x) (here we see Sk+m as a subset of
Rm×Rk+1 such that (x, y) ∈ Sk+m if and only if ||x||2+||y||2 = 1). Now we see that f(Sk×Sm−1) =
Sm−1 and f−1(Sm−1) = Sk×Sm−1. Also we see that f(−x,−y) = −f(x, y), so taking the quotient
with the anti-podal equivalence relation on both sides we get an induced map g : D(mξk)→ RPk+m.
Working back through the quotients we see that g(S(mξk)) = RPm−1 and g−1(RPm−1) = S(mξk).
Now we see that since f is a smooth and invertible function for ||y|| 6= 1 we get that f : Sk× D̊m →
Sk+m−Sm−1 is a homeomorphism. Since the quotients on both sides factor very nicely through f
on this subdomain (i.e. the quotient on the domain links things if and only if the image get linked
by the quotient on the codomain), we see that g : D(mξk)− S(mξk)→ RPk+m − RPm−1 is also a
homeomorphism.
So we see that D(mξk)− S(mξk) ∼= RPk+m − RPm−1, so in particular we get that their one-point
compactifications must also be homeomorphic, so we get that T (mξk) ∼= RPk+m/RPm−1.

Now since we can establish spaces of the form RPn+k/RPk as operations on vector bundles over
RPk−1, in the light of Lemma 4.18 we want to determine τ(RPk−1). We have the following result,
which is a paraphrase of [11, 4.8, p.17]:

Proposition 4.20. The vector bundles τ(RPk−1)⊕ θ1 and kξk−1 are isomorphic.

Using this we will work towards proving a result on S-dualities between projective spaces. This
result will mention a certain group, namely the group J(RPk−1). This group will be thorougly
discussed in chapter 5, but the relevant results are:

Theorem 5.7. For every finite CW-complex X, J(X) is a finite group.

Theorem 5.8. Let ξ and η be two vector bundles over X. If S(ξ) and S(η) have the same homotopy
type, T (ξ) and T (η) are homotopy equivalent. In particular if J(ξ) = J(η) then T (ξ) and T (η)
have the same S-type.

The result on S-duality of projective spaces now reads:

Theorem 4.21. Let r denote the order of J(ξk−1) in J(RPk−1). And let p such that rp > n + 1
then RPn/RPn−k is an S-dual of RPrp−n+k−2/RPrp−n−2.

Proof. Since J(rpξk−1) = J(0) we know that for the trivial bundle θrp and rξk−1 induces the
same Thom-space up to S-type and hence we know that since we want to establish an S-duality
between spaces we can treat rpξk−1 like it’s trivial. Now we can fill in Theorem 4.18 with ξ =
(n− k + 1)ξk−1 ⊕ θ1 and η = (rp− n− 1)ξk−1. We get:

ξ ⊕ η ⊕ τ(RPk−1) = (n− k + 1)ξk−1 ⊕ (rp− n− 1)ξk−1 ⊕ θ1 ⊕ τ(RPk−1) = rpξk−1,

hence ξ⊕η⊕ τ(RPk−1) is trivial for all intents and purposes and T (ξ) and T (η) are S-duals of each
other. So plugging in η and ξ we have T (ξ) = T ((n−k+1)ξk−1⊕θ1) and T (η) = T ((rp−n−1)ξk−1).
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By the remark made before about taking the direct sum with trivial bundles, we have that from
the fact that T (ξ) and T (η) are S-duals we see that T ((n − k + 1)ξk−1) and T ((rp − n − 1)ξk−1)
are S-duals.
If we now plug in the results into proposition 4.19 we get that T ((n − k + 1)ξk−1) ∼= RPn/RPn−k

and T ((rp− n− 1)ξk−1) ∼= RPrp−n+k−2/RPrp−n−2, hence we get the desired result.

4.6 The final argument

In this section we will piece together all the steps into a proof that having no ρ(n) vector fields
on Sn−1 is equivalent to Theorem 8.1. First we recall the nice construction that results in a free
increase of the dimension from the previous chapter:

Proposition 3.6. If Sn−1 has k orthonormal vector fields then Sqn−1 has k orthonormal vector
fields for every integer q ≥ 1.

Next we’re going to work towards a statement on reducibility of a shunted projective space (spaces
of the form RPn/RPk). First we construct a map θ from RPn−1 to O(n), namely the map that sends
[x] (x ∈ Rn − {0}) into the matrix that represents reflexion through the hyperplane perpindicular
to x (note that this yields the same for [x] as for [λx] and hence is well-defined). Explicitely we
get: θ([x])y = y − 2 y·xx·xx. This map is compatible with the inclusions of RPn−k−1 in RPn−1 and
O(n− k) in O(n):

RPn−k−1

��

θ // O(n− k)

��

RPn−1

��

θ // O(n)

��

RPn−1/RPn−k−1 // O(n)/O(n− k) = Vk(Rn)

so we get a map θ from RPn−1/RPn−k−1 to O(n)/O(n− k) = Vk(Rn).

Now it follows that this map θ induces isomorphisms between the lower dimensional homotopy
groups of the Stiefel manifold and the truncated projective space:

Proposition 4.22. [11, Prop 9.2, p.217] For i < 2n − 2k − 1 the induced homomorphism θ∗ :
πi(RPn−1/RPn−k−1)→ πi(Vk(Rn) is an isomorphism.

Now from this it follows that we have that πn−1(RPn−1/RPn−ρ(n)−2) and πn−1(Vρ(n)+1(Rn)) are
isomorphic via θ∗ when n is such that n − 1 < 2n − 2(ρ(n) + 1) − 1 i.e. if 2ρ(n) + 2 < n (which
only fails for n = 1, 2, 3, 4, 6, 8, 16). Using this we get the following proposition:

Proposition 4.23. If 2ρ(n) + 2 < n and the projection q : Vρ(n)+1(Rn)→ Sn−1 has a cross section

s, then there is a map f : Sn−1 → RPn−1/RPn−ρ(n)−2 which composed with the quotient map p :
RPn−1/RPn−ρ(n)−2 → RPn−1/RPn−2 = Sn−1 is a map of degree 1, in particular RPn−1/RPn−ρ(n)−2

is reducible.
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Sn−1 s //

f

''

Vρ(n)+1(Rn)
q

// Sn−1

RPn−1/RPn−ρ(n)−2

θ

OO
p

77

Proof. Suppose we have a cross-section s : Sn−1 → Vρ(n)+1, i.e. qs = 11Sn−1 . Then by the previous

remark we have a function f : Sn−1 → RPn−1/RPn−ρ(n)−2 such that θ∗[f ] = [θ ◦ f ] = [s], i.e.
θ ◦f ' s So q ◦ θ ◦f ' q ◦ s = 11Sn−1 and hence deg(q ◦ θ ◦f) = 1. Now if q ◦ θ is in fact the quotient
map, then we know that f is the desired map such that the composition has degree 1.

RPn−1

θ

��

π1 // RPn−1/RPn−ρ(n)−2

θ

��

p
// Sn−1

O(n)
π2 // Vρ(n)+1(Rn)

q

77

Claim. The function q ◦ θ and the quotient map p : RPn−1/RPn−ρ(n)−2 → Sn−1 coincide.

Proof of the claim: Since θ : RPn−1/RPn−ρ(n)−2 → Vρ(n)+1(Rn) is defined as the induced map

from the map θ : RPn−1 → O(n) under the quotients on both sides, we can go over step up in the
diagram and prove equality there. So if we denote π1 as the quotient RPn−1 → RPn−1/RPn−ρ(n)−2

and π2 as the quotient O(n) → Vρ(n)+1(Rn), we want to prove that q ◦ π2 ◦ θ = p ◦ π1. Now

p ◦ π1 is just the quotient from RPn−1 to RPn−1/RPn−2 = Sn−1, which is defined by (p ◦ π1)[x] =
(1 − 2x2

1,−2x1x2, ...,−2x1xn) (where [x] is represented by x ∈ Sn−1). Now on the other hand
(q ◦ π2 ◦ θ)[x] is the vector reflxe1, where reflx is reflection through the hyperplane perpindicular to
x, which is given by e1 − 2x1

||x||2x which is e1 − 2x1x if we denote [x] by some x ∈ Sn−1, and hence

we see that q ◦ π2 ◦ θ = p ◦ π1, and hence q ◦ θ = p and the claim is proven.

We’ll use this proposition in the following theorem to obtain the final result:

Theorem 4.24. If there are ρ(n) orthonormal vector fields on Sn−1 then there is an integer m ≥ 1
with ρ(m) = ρ(n) such that RPm+ρ(m)/RPm−1 is coreducible.

Proof. If there are ρ(n) orthonormal vector fields on Sn−1 then by proposition 3.6 there are ρ(n)
vector fields on Sqn−1, so then by theorem 4.2 we have a cross-section of Vρ(n)+1(Rqn). If we now

let q such that qn > 2ρ(qn)+2 we have by proposition 4.23 that RPqn−1/RPqn−ρ(qn)−2 is reducible.
If we choose q to be odd we have ρ(qn) = ρ(n) so we get that RPqn−1/RPqn−ρ(n)−2 is reducible.
Now let r be the order of J(rξρ(n)) in J(RPρ(n)−1). Then we fill in theorem 4.21 with ′n′ = qn− 1
and ′k′ = ρ(n) + 1, so we want p such that rp > qn, so m = rp− qn ≥ 1. If we let p be divisible by
2n, then we have that m is an odd multiple of n (since q is odd) and hence ρ(n) = ρ(m). Now theo-
rem 4.21 gives us that RPm+ρ(n)/RPm−1 = RPm+ρ(m)/RPm−1 is an S-dual of RPqn−1/RPqn−ρ(n)−2

and hence we get that RPm+ρ(m)/RPm−1 is S-coreducible.

Now in the light of theorem 4.8 we get that RPm+ρ(m)/RPm−1 is m−1-connected, so if we make m
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large enough (though still such that m is an odd multiple of n), we get that RPm+ρ(m)/RPm−1 is
S-coreducible if and only if it is coreducible, since then maps from arbitrary suspensions and maps
from the space itself are interchangible. So we see that RPm+ρ(m)/RPm−1 is coreducible for some
m such that ρ(m) = ρ(n).

Now since using Gram-Schmidt, we can make a family of pointwise indepent vector fields into a
family of orthonormal vector fields, and hence we have now reduced the problem of the upper limit
to proving theorem 8.1. The rest of the thesis will discuss various elements which will be needed
to set up the machinery to prove it, and of course we will prove it.

5 K-Theory

We’re going to prove Theorem 8.1 with K-Theory, a way to turn spaces X into rings KK(X) by
looking at the number of different K-vector bundles over X. In this section we will discuss the
basics of K-theory.

5.1 Definition of K-Theory

In this section we’ll cover the basic definition of K-theory and also set it up as a cohomology theory
(a short description of cohomology theories can be found in the appendix).
First we recall the following construction for semi-groups:

Definition 5.1. For an abelian semigroup A we define K(A) to be the abelian group A × A/∆
where ∆ is the subsemigroup consisting of all elements of the form (a, a).

Remark: Since ∆ and A × A are only semigroups, a priori we only know that K(A) is merely a
semigroup but we have ((a, b)+∆)+((b, a)+∆) = (a+ b, a+ b)+∆ = 0+∆, so we have an inverse
so K(A) is a group. Also we note that K(A) is the smallest group such that we can inject A in
it via a semigroup homomorphism. In particular we have that whenever it is defined, the group
operation of A conincides with the group operation of K(A).

Since effectively we only add inverses for elements that don’t already have them we also know
that for every semigroup homomorphism A → G (where G is a group) there is a unique group
homomorphism K(A)→ G.

Let X be some manifold. On the set of vector bundles over X we have the direct sum opera-
tion ⊕. Since E⊕F ' E′⊕F if E ' F , ⊕ also induces an operation on VectK(X). Here VectK(X)
is the set of isomorphism classes of K-vector bundles over X (for K some field, most times either
R or C). In fact ⊕ induces a semigroup structure on VectK(X).

Definition 5.2. ForX a manifold we defineK(X) to beK(VectC(X)) andKO(X) to beK(VectR(X)).

Remark: When we make general statements on K-Theory, independent of which field we use, we
will also use the notation KK(X) for K(VectK(X)).

Now a map f : X → Y gives us a map f∗ : VectK(Y ) → VectK(X) by taking a vector bundle
E ∈ VectK(Y ) and setting the fiber f∗(E)x to be equal to the fiber Ef(x). Since f∗ is a semigroup
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homomorphism, it extends to a group homomorphism f∗ : K(Y )→ K(X) in the complex case and
f∗ : KO(Y )→ KO(X) in the real case.

Next we define the most used formulation of K-theory namely reduced K-theory. Having estab-
lished the induced map between K(X) and K(Y ) we define:

Definition 5.3. For a pointed space (X,x0) we set K̃K(X) to be the kernel of the map i∗ :
KK(X)→ KK({x0}) where i : {x0} → X is the inclusion.

Remark: Since vector bundles over a point are identified by just their rank (since all are of the
form Kk), we see that K({x0}) = Z and KK(X) = K̃K(X)⊕ Z.

Since we see that the functors K and KO induce maps that go the other way around (i.e. the
induced maps of a map X → Y go from KK(Y ) to KK(X), in terms of category theory: K and
KO are contravariant functors), we strive to make both into generalized cohomology theories. The
first step is to define for positive n: K−n(X) = K(SnX) and KO−n(X) = KO(SnX). This may
seem arbitrary, but it follows that in this way we can actually make the exact sequence of the pair
work, and also define K+n, but more of that in a minute. The next parts will be devoted to give
an overview of how one makes K-Theory into a generalized cohomology theory.

5.2 Bott periodicity

To make the functors K̃ and K̃O into a cohomology theory, we also want to define Kn for positive
n’s. A priori we don’t know how to do this since the minus first suspension is not really something.
The solution comes in the form of Bott periodicity. Heuristically it says that the isomorphisms
classes of the lower order K-groups are actually isomorphic to those that come before them, in a
stringent periodic pattern. Reversing this pattern we can construct higher order K-groups, i.e. Kn

for n > 0. The results are the following:

Theorem 5.4. [5, Thm 2.4.9.,p77] For any space X the rings K(X) and K(S2X) are isomorphic.
In particular up to isomorphism class we have K−n = K−n+2.

Theorem 5.5. For any space X the rings KO(X) and KO(S8X) are isomorphic. In particular
up to isomorphism class we have KO−n = KO−n+8.

These theorems follow from the results that K(S2 × X) ' K(X) ⊕ K(S2) and KO(S8 × X) '
KO(X)⊕KO(S8) (c.f. [5, Cor 2.2.3, p.46]). Also it follows that K̃(X×Y ) ' K̃(X ∧Y )⊕ K̃(X)⊕
K̃(Y ) (here X ∧ Y is the smash product of X and Y , cf. the appendix), and combining both
oberservations one gets the desired results.

5.3 K-Theory as a cohomology theory

From Bott periodicitiy it follows that K−n+2 = K−n. Reversing this periodicity, we can define Kn

for n > 0. Also we define relative K-Theory by setting Kn(X,Y ) = K̃n(X/Y ). Having established
the higher (and lower) order groups of the K-Theory of a space and the relative groups we can
look at the other elements of the axioms for a cohomology theory. Excision and additivity (see the
appendix on cohomology theories) are more or less clear, excision since for open sets U we have
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X/A ' (X − U)/(A − U) and additivity since vector bundles on seperate components of a space
really do not communicate with each other. The exact sequence of the pair is more involved, but
follows from [5, Prop 2.4.4.,p.71]. The fact that complex K-Theory has period 2 means that the
exact sequence of the pair really comes down to the following cyclic exact sequence:

K̃1(X) → K̃1(A) → K̃1(X/A)
↑ ↓

K̃0(X/A) ← K̃0(A) ← K̃0(X)

Using all these we see that complex K-Theory is actually a generalized cohomology theory. It is
uniquely determined on CW-complexes by the axioms and by the following values on spheres:

n mod 2 0 1

K̃(Sn) Z 0

All these steps also work for real K-Theory, only that there we have a periodicity of 8. In that case,
the values on spheres are a bit messier and they are given by:

n mod 8 0 1 2 3 4 5 6 7

K̃O(Sn) Z Z2 Z2 0 Z 0 0 0

5.4 Another twist on K-Theory: the J-group

In this section we will discuss another functor that has to do with vector bundles: the J-group.
It is closely related to K-Theory, but will have some nice features that will come in very handy in
the last part of this thesis. The J-group really goes around structures induced by a vector bundle
ξ: the sphere bundle S(ξ), the disk bundle D(ξ) and the Thom space T (ξ) as discussed in section
4.4. The nice feature of the J-group is that when two vector bundles have the same value in the J-
group, their Thom spaces have the same S-types. The definition of the J-group now goes as follows:

Just like in K-Theory we first define a equivalence relation on vector bundles: two (real) vec-
tor bundles ξ and η over X are stable equivalent if and only if ξ ⊕ θm and η ⊕ θn are isomorphic
for some m,n ∈ N. Now from [11, Thm 3.8,p.105] it follows that we can identify the equivalence

classes with elements from K̃O(X).
Doing more or less doing the same trick on the induced sphere bundles we construct the J-group.
That is:

Definition 5.6. We define J(X) as the set of equivalence classes of VectR(X) under the relation
that ξ ∼ η if and only if S(ξ ⊕ θm) and S(η ⊕ θn) are fibre homotopic for some m,n. We denote
the J-class of ξ by J(ξ).

Obviously we have the surjection K̃O(X)→ J(X) and this induces a well-defined group structure
on J(X). This also shows that J(Sk) is finite for k 6≡ 0 mod 4, since then it is either the trivial
group or Z2. As mentioned before we will use (or more precisely: have used in chapter 4) the
J-group to show that for every vector bundle ξ there is a number r such that T (rξ) is trivial.

That such an r exists follows from the following theorem, which will be the talking point for
the remainder of this section:
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Theorem 5.7. For every finite CW-complex X, J(X) is a finite group.

Proof. For X = S4n this follows from discussion on the J-homomorphism from stable homotopy
theory. This homomorphism is related to a construction on maps on spheres and gives a map
J : πr(SO(n)) → πr+n(Sn). It follows that we can identify K̃O(Sr+1) with some πr(SO(n)) and
then J(Sr+1) becomes isomorphic to the image of J (hence the name J(X)). That this is image is
indeed finite has been a source of a lot of research and [7, Thm 3.7, p.144] proves that it is indeed
finite, although in the last remaining case (i.e. looking at S4t) it grows very rapidly, for instance
J(S8) = Z240.

So we know that J(Sk) is always finite. To use this to show that it is also finite for finite CW-
complexes we note that any finite CW-complex is just beginning with some points and taking the
mapping cone of some map from Sn to what you already have a certain amount of times. In
particular let say we have some space X and add a n-cell. That means we have a attachment map
f : Sn−1 → X and then we get a map Sn−1 → X → C(f) where C(f) is the mapping cone of f
(which is X with the n-cell attached). It gives rise to the so-called Puppe-sequence:

Sn−1 f−→ X
i−→ C(f)→ Sn

Sf−−→ SX
Si−→ SC(f)→ ...

Now a so-called topological half-exact functor is a functor F from a category of spaces (all topological
spaces, CW-complexes, etc.) to an abelian category (most often abelian groups), such that the
Puppe sequence turns into an exact sequence:

F (Sn−1)→ F (X)→ F (C(f))→ F (Sn)→ ...

It turns out that J is such a functor and hence we get the above exact sequence with the J groups.
Now supposing that J(X) is finite we see that since there are only finite groups in the sequence,
that J(C(f)) is also finite. So indeed we see that when we do this procedure a finite amount of
times it follows that J stays finite so indeed for a finite CW-complex X we have that J(X) is a
finite group.

Having shown that J(X) is finite for finite CW-complexes, we show an important theorem to use
this in the discussion on Thom-spaces:

Proposition 5.8. Let ξ and η be two vector bundles over X. If S(ξ) and S(η) have the same
homotopy type, T (ξ) and T (η) are homotopy equivalent. In particular if J(ξ) = J(η) then T (ξ)
and T (η) have the same S-type.

Proof. The first statement follows from the fact that a homotopy equivalence can be extended to
a homotopy equivalence between D(ξ) and D(η) and hence to the quotients, T (ξ) and T (η). The
second statement follows from the first since Sm(T (ξ)) = T (ξ⊕ θm) and Sn(T (η)) = T (η⊕ θn) are
homotopy equivalent since S(η ⊕ θn) and S(ξ ⊕ θm) are supposed to be homotopy equivalent.

Now since J(X) is finite for all finite CW-complexes, for all ξ ∈ VectR(X) there is an r such that
J(rξ) = J(0), so in particular it follows that T (kξ) and T (θm) have the same S-type. This puts an
end to the gap we have left in the proofs in chapter 4.
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6 Stiefel-Whitney classes and Chern classes

In this section we will give some background on the algebraic structure of cohomology, in particular
the total cohomology ring H∗ and use this to discuss some characteristic classes of vector bundles.
These classes will be used throughout this thesis to ease arguments which prove or disprove equal-
ities in K-theory. In this section we will use notation and definitions (singular simplices, cochains,
etc) which can be found in the appendix.

6.1 Ring properties of cohomology

We recall that if we have a singular simplex σ : ∆k → X we can find a induced simplex ∆l → X
(for l ≤ k) by looking at σ|[v1,...,vl]. This will induce a product map on the cochains with coefficients
in a group G (that is C•(X;G)) as follows:

Definition 6.1. For φ ∈ Ck(X;G) and ψ ∈ C l(X;G) the cup product φ ^ ψ ∈ Ck+l(X;G) is
defined by:

(φ ^ ψ)(σ) = φ(σ|[v1,...,vk])ψ(σ|[vk,...,vk+l])

The fact that we can take this product on the cochains to a product in cohomology follows from
this lemma:

Lemma 6.2. For φ ∈ Ck(X;G) and ψ ∈ C l(X;G) we have δ(φ ^ ψ) = δφ ^ ψ + (−1)kφ ^ δψ.

Proof. Since φ lives in Ck(X;G), ψ in C l(X;G) and φ ^ ψ in Ck+l(X;G), we need to plug in a
k+l+1 simplex in δ(φ ^ ψ), a k+1 simplex in δφ and a l+1 simplex in δψ. So for σ : ∆k+l+1 → X
we have the following results:

(δφ ^ ψ)(σ) =
k+1∑
i=0

(−1)iφ(σ|[v0,...,v̂i,...,vk+1])ψ(σ|[vk+1,...,vk+l+1]) =
k+1∑
i=0

(−1)i(φ ^ ψ)(σ|[v0,...,v̂i,...,vk+l+1])

(−1)k(φ ^ δψ)(σ) =

k+l+1∑
i=k

(−1)iφ(σ|[v0,...,vk])ψ(σ|[vk,...,v̂i,...,vk+l+1]) =

k+l+1∑
i=k

(−1)i(φ ^ ψ)(σ|[v0,...,v̂i,...,vk+l+1])

Now we see that there is some overlap in the sums, namely we do i = k and i = k+ 1 in both. But
when we look good at the i = k + 1 case of the first sum and the i = k sum of the second, we see
that they cancel each other, so we get:

(δφ ^ ψ + (−1)kφ ^ δψ)(σ) =
k+l+1∑
i=0

(−1)i(φ ^ ψ)(σ|[v0,...,v̂i,...,vk+l+1])

= (φ ^ ψ)

(
k+l+1∑
i=0

(−1)iσ|[v0,...,v̂i,...,vk+l+1]

)
= (φ ^ ψ)(∂σ)

= δ(φ ^ ψ)(σ)

So indeed we see that δ(φ ^ ψ) = δφ ^ ψ + (−1)kφ ^ δψ.
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We now see that a product of two cocycles is again a cocycle, since δ(φ ^ ψ) = φ ^ 0±0 ^ ψ = 0.
Furthermore the product of a cocycle and a coboundary (or the other way around) is again a
coboundary since φ ^ δψ = ±δ(φ ^ ψ) if φ is a coboundary (i.e. if δφ = 0) and δφ ^ ψ = δ(φ ^
ψ) if ψ is a coboundary. All in all we get:

Definition 6.3. The cupproduct on cohomology is the induced map of the cupproduct on cochains,
that is we define:

^: Hk(X;G)×H l(X;G)→ Hk+l(X;G)

by {φ}^ {ψ} = {φ ^ ψ}.

It is clear that this product acts cute with respect to the group-structure of cohomology (in that is
satisfies the properties of a ring), so we can define the following ring:

Definition 6.4. The cohomology ring of a space X (with coefficients in G) is the ring

H∗(X;G) = (⊕nHn(X;G),+, ·).

We denote elements with formal sums
∑

i αi with αi ∈ H i(X;G), so that the group-structure of
cohomology gives (

∑
i αi) + (

∑
i βi) =

∑
i(αi + βi). The product is defined as: (

∑
i αi) · (

∑
i βi) =∑

k

∑k
l=0(αl ^ βk−l).

We’ll finish this section with an important example:

Proposition 6.5. [8, Thm 3.12, p.212] The total cohomology of the real projective space is given by
H∗(RPn;Z2) ' Z2[α]/(αn+1) and H∗(RP∞;Z2) ' Z2[α] (with the generator α ∈ H1(RPn;Z). In
the complex case we have H∗(CPn;Z) ' Z[α]/(αn+1) and H∗(CP∞;Z) ' Z[α] (for some generator
α ∈ H2(CPn;Z)).

6.2 Stiefel-Whitney classes

Having esthablished the structure of the total cohomology ring, we can talk about Stiefel-Whitney
class of a real vector bundle ξ over a space X. The idea is that we attach to every vector bundle a
label which will be an element of H∗(X;Z2), such that this labelling has some nice properties (in
particular we can distinguish some non-isomorphic vector bundles). We will stick to this axiomatic
approach and thoroughly believe that such a labelling exists. In fact it does, and the construction
of it can be found in chapter 8 of the book by Milnor and Stasheff [9].

Theorem 6.6. There is a unique way to associate to any integer i ≥ 0 and any real vector bundle
ξ of any space X an element wi(ξ) ∈ H i(X;Z2), such that the following axioms hold:

Axiom 1: w0(ξ) = 1 ∈ H0(X;Z2) and wi(ξ) = 0 if i > n where n is the rank of ξ.

Axiom 2: If a map f : X → Y is covered by a bundle map from ξ to η (a vector bundle over Y ) then
wi(ξ) = f∗wi(η).

Axiom 3: If ξ and η are vector bundles over the same base space then:

wk(ξ ⊕ η) =
k∑
i=0

wi(ξ) ^ wk−i(η)
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Axiom 4: For the line bundle ξ1 over RP1 we have w1(ξ1) 6= 0.

Definition 6.7. We define the i’th Stiefel-Whitney class of a vector bundle ξ to be wi(ξ) and the
total Stiefel-Whitney class of ξ to be

w(ξ) = 1 + w1(ξ) + w2(ξ) + ... ∈ H∗(X;Z2)

Remark: we can also formulate the theorem as that there is a unique map w from the real vec-
tor bundles over any space X to H∗(X;Z2) as above. In that case the third axiom reduces to
w(ξ ⊕ η) = w(ξ)w(η).

From the four axioms we can derive the following properties of the Stiefel-Whitney class:

Proposition 6.8. If ξ and η are isomorphic then wi(ξ) = wi(η).

Proof. If ξ and η are isomorphic, the identity map X → X is covered by the isomorphism between
ξ and η. In particular we get wi(ξ) = 11∗(wi(η)) = wi(η).

Proposition 6.9. If ε is a trivial bundle then wi(ε) = 0 for i > 0.

Proof. If ε is trivial, there is a bundle map from a vector bundle over a point to ε. Since a point
has no cohomology for i > 0, we get that the pullback must map to zero, so wi(ε) = 0.

A direct consequence of the last proposition:

Proposition 6.10. If ε is trivial then wi(ε⊕ η) = wi(η).

Proposition 6.11. Let ξ be a vector bundle of rank n. If ξ has k cross-sections which are pointwise
linear independent then:

wn−k+1(ξ) = wn−k+2(ξ) = ... = wn(ξ) = 0

Proof. Using a Riemannian metric we can split ξ in a trivial k-bundle ε induced by the cross-sections
and ε⊥ which has dimension n−k (see [9, Thm 3.3, p.28]), now the preceding proposition says that
wi(ξ) = wi(ε

⊥) and then the first axiom says that it is zero is i > n− k.

6.3 Chern classes

Where the Stiefel-Whitney classes will work for real vector bundles, we’ll use Chern classes for
complex vector bundles. Just as before we will give an axiomatic description of these classes and
use these with the confidence that it uniquely describes a labelling. The construction of Chern
classes can be found in chapter 14 of Milnor and Stasheff [9]. Also we note that since complex
bundles are somehow even dimensional real bundles all stuff now happens in the even dimensional
cohomology-groups and the classes run up to twice the complex dimension of the bundles. Also
since complex vector bundles are orientable, we now choose coefficients in Z instead of in Z2. We
get the following definiton:
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Theorem 6.12. There is a unique way to associate to any integer i ≥ 0 and any complex vector
bundle ξ over any space X an element ci(ξ) ∈ H2i(X;Z) such that the following axioms hold:

Axiom 1: c0(ξ) = 1 and ci(ξ) = 0 for i > n where n is the dimension of ξ.

Axiom 2: If a map f : X → Y is covered by a bundle map from ξ to η (a complex vector bundle over
Y ) then ci(ξ) = f∗(ci(η)).

Axiom 3: If η and ξ are both complex vector bundles over X then:

ck(ξ ⊕ η) =
k∑
i=0

ci(ξ) ^ ck−i(η)

Axiom 4: For the tautological complex line bundle λ1 over S2 = CP1 the element c1(λ1) is the generator
of H2(S2;Z) = Z.

Definition 6.13. For a complex vector bundle η the i’th Chern class is defined as ci(η) while the
total Chern class of η is defined by:

c(η) = 1 + c1(η) + c2(η) + ... ∈ H∗(X;Z)

Remark: just like with the Stiefel-Whitney classes one could also prove the unique existence of c.
In that case the third axiom reduces to c(ξ ⊕ θ) = c(ξ)c(θ).

We note that the axioms for both classes are very much alike. For this reason the following
proposition are proven by using the exact same steps as in the real case:

Proposition 6.14. If ξ and η are isomorphic then ci(ξ) = ci(η).

Proposition 6.15. If ε is a trivial bundle then ci(ε) = 0 for i > 0.

Proposition 6.16. If ε is trivial then ci(ε⊕ η) = ci(η).

Now both in the real and complex case we have that if two vector bundles are isomorphic then they
have the same Stiefel-Whitney classes or the Chern class. In particular w and c factor to maps
w : VectR(X)→ H∗(X;Z2) and c : VectC(X)→ H∗(X;Z). Now we can also just look at just just
the first class and restrict to line bundles. We get maps

w1 : Vect1
R(X)→ H1(X;Z2)

and
c1 : Vect1

C(X)→ H2(X;Z).

The set of line bundles form a group if we put on it the tensor product as group operation. Since
the cocycle-maps of line bundles are just real or complex functions which do not attain zero, we can
always invert them and since tensor product of 1× 1-matrices and normal multiplication coincide
we see that we always can invert line bundles with respect to the tensor product. Now for line
bundles ξ and η we also have the formulas c1(ξ⊗ η) = c1(ξ) + c1(η) and w1(ξ⊗ η) = w1(ξ) +w1(η)
(depending on whether they are complex or real of course), so we see that in this setting c1 and w1

are group homomorphisms. However it becomes a lot more fun due to this theorem:
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Theorem 6.17. [6, Prop 3.10, p.86] If X has the homotopy type of a CW-complex, then c1 and
w1 are isomorphisms between the isomorphism classes of real/complex line vector bundles and
H1(X;Z2)/H1(X;Z).

Remarks: In particular this theorem means that for every α ∈ H1(X;Z2) we can find a real line
bundle ξ with w1(ξ) = α and for every β ∈ H2(X;Z) we can find a complex line bundle η with
c1(η) = β. Also this theorem implies that isomorphism classes of line bundles are characterised by
their Stiefel-Whitney or Chern class.

6.4 Chern character

Having discussed the Chern classes we now introduce the notion of Chern character, an algebraic
tool which will induce a ring homomorphism between K-theory of a space X and its homology.
We will define it for line bundles, will invoke the desired algebraic structure on it to get a defini-
tion of direct sums of line bundles and finally will discuss an important tool in the discussion of
vector bundles. It is understood that since we work with Chern classes here, all bundles are complex.

Definition 6.18. For line bundles ξ we define chq(ξ) ∈ H2q(X;Q), the 2q-dimensional part of the

Chern character, as c1(ξ)m

m! .
Note that we want to divide by integers to do this, hence why switch to cohomology with coefficients
in Q. Just like before we define the Chern character of ξ by ch(ξ) =

∑
q chq(ξ). In doing so we

spot that in terms of formal power series we have ch(ξ) = ec1(ξ).

We strive to have ch(ξ⊕η) = ch(ξ)+ch(η) and ch(ξ⊗η) = ch(ξ)ch(η). In this light if ξ = η1⊕· · ·⊕ηn
with ηi a line bundle we have no other choice than to define:

Definition 6.19. If ξ is a sum of line bundles, that is ξ = η1 ⊕ · · · ⊕ ηn with ηi line bundles we
define:

ch(ξ) = ch(η1) + · · ·+ ch(ηn) = ec1(η1) + · · ·+ ec1(ηn)

Now we have defined the Chern character for any direct sum of vector bundles. The next question
is whether we can define it thoroughly for vector bundles which are not of that form. It turns out
we can, although we cheat ourselves into the previous case with the so called ’Splitting Principle’:

Theorem 6.20. For any complex vector bundle ξ over a paracompact space X there is a space Y ,
and a map p : Y → X such that:

i) The induces map on cohomology p∗ : H∗(X;Z)→ H∗(Y ;Z) is injecitve

ii) The pullback bundle p∗(ξ) splits in line bundles, that is p∗(ξ) = η1 ⊕ · · · ⊕ ηn with ηi line
bundles over Y .

In particular we can use this to define the Chern character for any vector bundle ξ over a paracom-
pact space X (note that about all spaces discussed in this thesis are paracompact), in particular
we set:

ch(ξ) = (p∗)−1(ch(p∗(ξ)))

Now formally from we can describe the Chern character is a different way. Supposing that ξ is of
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rank k and we have elements x1, ..., xk ∈ H2(X;Z2), such that:

c1(ξ) =
∑
i

xi

c2(ξ) =
∑
i1<i2

xi1xi2

c3(ξ) =
∑

i1<i2<i3

xi1xi2xi3

...

In that case we can, writing the polynomial
∑

iX
k
i as a polynomial Qk(σ1, ..., σk) in the elementary

symmetric polynomials, get the following result:

ch(ξ) =
∑
k

Qk(c1(ξ), ..., ck(ξ))

When we write the first terms out we then get this:

ch(ξ) = rk(ξ) + c1(ξ) +
1

2
(c1(ξ)2 − 2c2(ξ)) +

1

6
(c1(ξ)3 − 3c1(ξ)c2(ξ) + 3c3(ξ)) + ...

Practically it follows that up to pullbacks we can find these xi’s using the Splitting Principle and
hence this formula checks out.
Now from the defintion with p∗ it is easy to see that ch(ξ ⊕ η) = ch(ξ) + ch(η) in particular since
it is so for sums of line bundles and hence by the Splitting Principle for all bundles. On the other
hand the identity c1(ξ ⊗ η) = c1(ξ) + c1(η) (and hence exp(c1(ξ ⊗ η)) = exp(c1(ξ)) exp(c1(η))) for
line bundles now extends to the identity ch(ξ ⊗ η) = ch(ξ)ch(η) for any two vector bundles ξ and
η. In particular we see that ch is a semi-ring homomorphism from VectC(X) to H∗(X;Q), and
hence extends to a ring homomorphism K(X) → H∗(X;Q). The last important property of this
character that we will use is the following:

Proposition 6.21. [10, Prop 2.3, p.345] If H∗(X;Z) has no torsion, then ch is injective.

7 Group representiation and relation to K-theory

In this section we will discuss representations of groups and how they communicate with the K-
theory. We will construct a certain kind of representations that when used on K-Theory bring to
the surface a certain part of the structure of the K-Theory of projective spaces, which we will use
to prove Theorem 8.1. We’ll start with the definition of representations:

7.1 Group representations

Definition 7.1. A representiation of a group G on a vector space V (over a field K) is a group
homomorphism α : G → GL(V ), where GL(V ) is the group of invertible linear transformations of
V . In the case that V is finite dimensional one can (and we will) identify GL(V ) with GL(n,K),
the space of invertible n× n-matrices with entries in K.
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We will discuss the relation between representations and K-theory. Since K-theory talks about
equivalence classes of isomorphic bundles, we will also introduce a notion of isomorphic represen-
tations:

Definition 7.2. Two representations α : G→ GL(V ) and β : G→ GL(W ) are isomorphic if there
is a vector space isomorphism λ : V →W such that for every g ∈ G we have λ ◦α(g) ◦ λ−1 = β(g).

If we look at representation as mapping into matrix groups, we see that two representations
α : G→ GL(n,K) and β : G→ GL(n′,K′) are isomorphic if there is an invertible n× n′-matrix A
with entries in K (which then has to be equal to K′) such that α(g) = Aβ(g)A−1 for all g ∈ G, in
particular we get n = n′ and K = K′.

In the remainder we will only look at representations into finite dimensional vector spaces and
for that we also fix our field K. In particular every representation will be a map G→ GL(n,K) for
some n.
On representations we have a semi-group structure, namely that if we have representations α : G→
GL(V ) and β : G→ GL(W ) we can define α⊕ β : G→ GL(V ⊕W ) by (α⊕ β)(g) = (α(g), β(g)).
Using the same construction as with K-theory we can construct the group-extension of this semi
group (though only the representations into matrix groups):

Definition 7.3. We denote by A′K(G) the set of all equivalence classes of representations G →
GL(n,K) for some n ∈ N, and by F ′K(G) the free abelian group generated by the elements of A′K(G).
By T ′K(G) we denote the subgroup of F ′K(G) generated by the elements {α⊕ β} − {α} − {β} with
α and β representations in A′K(G). The group of virtual representations is defined as K ′K(G) =
F ′K(G)/T ′K(G).
Since we have a semigroup-homomorphism of the semigroup of representations to Z (namely the
degree-map that sends f : G→ GL(n,K) to n), which passes through all quotients, this extends to
a group homomorphism K ′K(G)→ Z which is called the virtual degree map.

7.2 Combining group representations with bundles

Now that we have defined representations, we want them to fit into the algebraic structure of vector
bundles just like continuous maps. In particular we want to define various composition. Here we use
the notation α for a represenation GL(n,K)→ GL(n′,K′), β for a respresentation G→ GL(n,K),
f for a continuous map Y → Z, g for a continuous map X → Y and ξ for a K-vector bundle of
rank n over Y . Now first we define the following, more easy, compositions:

i) the representation α · β is just the composition of maps.

ii) the map f · g is also just the composition of maps.

iii) the vector bundle ξ ·g we define by the pullback bundle that is ξ ·g = g∗(ξ) (i.e. ‘precomposing’
the vector bundle with the map g, hence the notation).

iv) the vector bundle α · ξ is the vector bundle defined by composing the cocycle-maps of ξ with
the representation α (c.f. the appendix on vector bundles)

Next we define more involved compositions, which will be the most interesting in the arguments to
come. We again denote by f a map, by η a vector bundle, by κ an element of KK(X), by α and β
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representations and by θ a virtual representation:

Lemma 7.4. It is possible to define compositions θ · α, θ · η and κ · f so that θ · α lies in the right
K ′K(G) (i.e. if θ maps into K-matrices θ · α should be an element of K ′K(G)) and θ · η and κ · f are
elements of the right KK(X) (that is, if θ maps into K-matrices then θ · η should be in KK(X) and
if κ ∈ KK(X) then κ · f ∈ KK(X)) such that the following holds:

i) Each composition is linear in the first factor

ii) They reduce to β ·α, α ·η and η ·f if we replace elements of the quotient groups with elements
of the underlying semi-groups

iii) The following associativity formulas hold:

(θ · β) · α = θ · (β · α)

(θ · η) · f = θ · (η · f)

(θ · α) · ξ = θ · (α · ξ)
(κ · g) · f = κ · (g · f)

iv) If α = 11 then θ · α = θ and if f = 11 then κ · f = κ.

Proof. All three follow from the extension property of semi-group homomorphisms to group homo-
morphisms. In particular a represenetation α ∈ F ′K(G) induces a semi-group homomorphism on
F ′K(G) namely Rα : F ′K(G)→ F ′K(G) defined as Rα(β) = β · α. This extends to a group homomor-

phism R̃α : K ′K(G)→ K ′K(G) and we set θ · α as R̃α(θ). The same construction we do for θ · η and
for κ · f (the last one coming from VectK(X)). All the properties now follow from the properties of
the underlying multiplication of the semi-groups.

Now we know how we can compose a vector bundle with a (virtual) representation of the appropriate
dimension. What we want however is that we get some sort of (virtual) representation that we can
put on any bundle (or element of the K-theory) without thinking about the rank of the bundle.
This will be done by making a sequence {θn}n of virtual representations of GL(n,K). We can’t
however take any sequence of representations, since we want the elements to communicate nicely
such that the whole operation is linear. With this in mind we make the following definition. First
let:

pr1 : GL(m,K)×GL(n,K)→ GL(m,K)

pr2 : GL(m,K)×GL(n,K)→ GL(n,K)

be projections onto the first and second entries. It is clear that these are representations.

Definition 7.5. A sequence Θ = {θn}n of virtual representations is additive if we have:

θm+n · (pr1 ⊕ pr2) = (θm · pr1) + (θn · pr2)

In short an additive sequence preserves the structure of a direct sum, at least for the obvious pro-
jections. It follows that just having it for the projections will actually give this property for any
construction one wants to do with such a sequence:
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Lemma 7.6. If Θ is an additive sequence then for any two K-bundles ξ and η over X of rank m
and n respectively we have:

θm+n · (ξ ⊕ η) = (θm · ξ) + (θn · η)

Proof. From ξ and η we can construct the bundle ξ× η with cocycle-maps mapping into the group
GL(m,K)×GL(n,K). Now from projection it is clear that pr1 · (ξ× η) = ξ and pr2 · (ξ× η) = η so
that we have (pr1⊕pr2) · (ξ×η) = ξ⊕η. Using the various arithmatic rules derived in the previous
lemma’s we now get:

θm+n · (ξ ⊕ η) = θm+n · ((pr1 ⊕ pr2) · (ξ × η))

= (θm+n · (pr1 ⊕ pr2)) · (ξ × η)

= (θmpr1 + θnpr2) · (ξ × η)

= θm · (pr1 · (ξ × η)) + θn · (pr2 · (ξ × η))

= θm · ξ + θn · η

Much the same construction can be used to show that θm+n · (α⊕ β) = (θm · α) + (θn · β) for any
representations α : G→ GL(m,K) and β : G→ GL(n,K).
This all results into the following lemma on composing additive sequences with itself and with
elements of the K-theory. Here we use the notation Ψ, Φ and Θ for additive additive sequences, α
for a representation G→ GL(n,K), ξ for a bundle of rank n, κ for an element of KK(X) and f for
a continuous map:

Lemma 7.7. There are compositions Φ ·Θ, Φ ·α and Φ ·κ such that Φ ·Θ is an additive sequence,
Φ · α lies in K ′K(G) and Φ · κ lies in KK(X) and the following properties hold:

i) Each composition is bilinear in the two factors

ii) (Φ ·Θ)n = Φ · θn, when we see α as an element of K ′K(G) we have Φ ·α = φn ·α and if we see
ξ as an element of KK(X) Φ · ξ = φn · ξ.

iii) The following associativity formulas hold:

(Ψ · Φ) ·Θ = Ψ · (Φ ·Θ)

(Φ · κ) · f = Φ · (κ · f)

(Φ ·Θ) · κ = Φ · (Θ · κ)

iv) We denote by 11 the additive sequence with n’th entry the identity map GL(n,K)→ GL(n,K)
then:

11 ·Θ = Θ

Φ · 11 = Φ

11 · κ = κ

Proof. We construct Φ · Θ from Φ · θn as imposed by ii), and just as in the previous lemma we
construct Φ · θn as the extension of a semi-group homomorphism that sets Φ · α = φn · α. The
same goes for constructing Φ ·κ. These are bilinear since we assume Θ to be additive. Since all the
relations hold in the semi-group setting, they also hold for the final result.
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In particular the last associativity equation shows that a sequence Θ of virtual representations
induces a group homomorphism Θ : KK(X)→ KK(X) that is natural for continuous maps.

7.3 Relation between representations and K-theory and products

Now that we know that we can intertwine the additive structures of representations and K-Theory,
we also want to intertwine the multiplicative structure.

On vector bundles we have the notion of tensor products, i.e. we have a semigroup homomor-
phism:

⊗ : VectK(X)×VectK(X)→ VectK(X).

This map extends to a map
⊗ : KK(X)×KK(X)→ KK(X)

for which we get:

Proposition 7.8. The triple (KK(X),⊕,⊗) is a commutative ring with unit the trivial line bundle.

Also if we have two representations α : G → GL(V ) and β : G → GL(W ) we get a representation
α⊗β : G→ GL(V ⊗W ) set by (α⊗β)(g) = α(g)⊗β(g), this also makes K ′K(G) into a commutative
ring with unit the representation G→ GL(1,K) g 7→ 1.
Now we can do the same discussion as with the sum:

Definition 7.9. A sequence Θ of virtual representations is called multiplicative if we have:

θmn · (pr1 ⊗ pr2) = (θm · pr1)⊗ (θn · pr2)

Just as with the direct sum we can now extend this multiplicative property to representations and
bundles:

Lemma 7.10. If Θ is a multiplicative sequence then for any two representations α : G→ GL(m,K)
and β : G→ GL(n,K) then:

θmn · (α⊗ β) = (θm · α)⊗ (θn · β)

Furthermore if ξ and η are two bundles over X with rank m and n then:

θmn · (ξ ⊗ η) = (θm · ξ)⊗ (θn · η)

Now if Θ is also an additive sequence, then we can linear extend computations from representa-
tions to virtual representations to sequences and from bundles to elements of the K-theory, so we get:

Lemma 7.11. If Θ is both additive and multiplicative then we have:

Θ · (ψ ⊗ φ) = (Θ · ψ)⊗ (Θ · φ)

Θ · (κ⊗ λ) = (Θ · κ)⊗ (Θ · λ)
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All these definitions will function to make sense of the following proposition which will serve as the
main tool of setting up the proof of Theorem 8.1

Proposition 7.12. An additive sequence sequence Θ = {θn} with θn ∈ K ′K′(GL(n,K)) induces a
group homomorphism:

Θ : KK(X)→ KK′(X)

given by κ 7→ Θ · κ. This map has the following properties:

i) It is natural with respect to continuous maps, that is the following diagram is commutative

KK(X)
Θ // KK′(X)

KK(Y )
Θ //

f∗

OO

KK′(Y )

f∗

OO

ii) If the sequence Θ is also multiplicative then Θ is a ring homomorphism (i.e. it preserves
products)

iii) If θ1 has virtual degree 1 then Θ maps the unit in KK(X) into the unit of KK′(X).

Proof. The first two items follow from the previous lemmas. For iii) we note that the unit in KK(X)
is the trivial bundle X × K. Since this map has trivial cocycles we get that any representation of
degree 1 maps this into again trivial cocycle. Since this property extends to virtual representations
of virtual degree 1, hence we see that if θ1 has virtual degree 1 we get that θ1(X × K) = X × K′.
So we see that indeed the unit gets mapped into the unit

We’ll finish this part with some simple examples:

Example 7.13. Consider the following homomorphisms:

i) The injection of real matrices into complex matrices:

cn : GL(n,R)→ GL(n,C)

ii) The injection of the complex matrices into the real matrices:

rn : GL(n,C)→ GL(2n,R)

Where an entry a+ bi gets mapped into a 2× 2-block

(
a −b
b a

)
.

iii) The conjugation map:
tn : GL(n,C)→ GL(n,C)

Where tn(M) = M (i.e. if Mij = a+ bi then tn(M)ij = a− bi).

These homomorphisms form sequences c = {cn}, r = {rn} and t = {tn}, which are all additive and
apart from c are also multiplicative.
We see that if we first to c to some matrix M ∈ GL(n,R) we get a ’complex’ matrix with only
real entries. If we then apply r we get effectively that every entry becomes a diagonal 2× 2-block
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with itself on the diagonal, so we see that rc(M) = M ⊕M . On the other hand if we first do r

and then c we see that an entry a+ bi gets mapped into a (complex) 2× 2-block

(
a −b
b a

)
, which

via diagonlization (with the matrix O =

(
−i 1
i 1

)
) is seen to be equivalent to the 2 × 2-block(

a+ bi 0
0 a− bi

)
which is the direct sum of the original entry and its conjugate, so we see that for

any M ∈ GL(n,C) we get that cr(M) 'M ⊕M .
Now using the last proposition we get group homomorphisms:

c : KO(X)→ K(X)

r : K(X)→ KO(X)

t : K(X)→ K(X)

of which the first and the last are ring homomorphisms. Using the calculations in the matrix-setting
we get that also in the K-theory-setting we get rc = 2 (i.e. rc(κ) = κ + κ) and cr = 1 + t. The
first one is clear while the second follows from the fact that the conjugation-matrix which links
cr(M) and M ⊕M (the O discussed above) is independent of M , and hence the equivalence of the
matrices gets transported to a equality in the K-theory-sense.

7.4 A special sequence of virtual representations

In this section we will discuss a special sequence of representations. This sequence, when trans-
formed into a group homomorphism on K-theory will have certain nice properties as will become
clear in proposition 7.15. We will use these properties fairly often in the parts to come. The setup
of the sequences can be with any underlying field, but here we will restrict ourselves to R and C.
The required properties of the sequences read as follows:

Proposition 7.14. For every k ∈ Z and K = R or K = C there is a sequence Ψk
K of virtual

representatioins such that:

i) ψkK,n is a virtual representation of GL(n,K) over K with virtual degree n.

ii) The sequence Ψk
K is both additive and multiplicative.

iii) ψkK,1 is the k’th power of the identity representation of GL(1,K) (where we use the tensor
product on representations as multiplication)

iv) Recalling the sequence c of Example 7.13 we have Ψk
C · c = c · ψkR.

v) Ψk
K ·Ψl

K = Ψkl
K .

vi) Let G be a topological group and let θ be a virtual representation of G over K then the
following formula holds for the character χ : χ(Ψk

K · θ)g = χ(θ)gk.

vii) For any n ψ1
K,n is the identity representation, ψ0

K,n is the trivial representation of degree n,

while ψ−1
K,n is the representation defined by ψ−1

K,n(M) = (MT )−1.

Proof. We recall the r’th exterior product Er(V ) of a vector space V , in particular for finite dimen-
sional vector spaces. In that case, if we fix a basis v1, ..., vn of V , we generate Er(V ) by the elements
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vi1 ∧ · · · ∧ vir for 1 ≤ ik ≤ n imposing multilinearity and anti-symmetry. In particular a basis for
Er(V ) are the elements vi1∧· · ·∧vir for i1 < i2 < · · · < ir, and hence Er(V ) is a n!

r!(n−r)! -dimensional
vector space. Now if we have a linear map A from V to itself, we can take it over to a linear map
ErA from Er(V ) to itself, simply by imposing ErA(vi1∧· · ·∧vir) = (Avi1)∧· · ·∧(Avir). In particu-

lar we get a group homomorphism (and hence representation): ErK : GL(n,K)→ GL
(

n!
r!(n−r)! ,K

)
.

Since we only do stuff on the generators (not doing specific things depending on K) it is clear that
writing m = n!

r!(n−r)! we get ErC·cn = cm·ErR (this of course acts as a prelude to proving property iv)).

We’re going to put these ErK’s to act just like taking all basis elements to the power k. We do
it in the following way: since the function

∑n
i=1(xi)

k is symmetric, we can write it in terms of
the symmetric polynomials σ1 up to σn (σ0 is excluded since it only induces a constant term), in
particular we get:

n∑
i=1

(xi)
k = Qkn(σ1, ..., σn)

for some polynomial Qkn. Now we define for k ≥ 0:

ψkK,n = Qkn(E1
K, ..., E

n
K)

evaluating Qkn in the ring K ′K(GL(n,K)).

For k = −1 we set ψkK,n by precisely what we want to have, namely ψ−1
K,n(M) = (MT )−1, and

to finish of for k > 1 we define ψ−kK,n = ψkK,n · ψ
−1
K,n (it is clear that is this defintion if well-defined,

since (MT )−1 has the same dimensions as M). Having made the definition, we go over the desired
properties:

Claim 1. (property i)): ψkK,n has degree n.

Proof. For k ≥ 0 we plug in the identity matrix and look at what dimensions the outcome is. This
coincides with plugging in xi = 1 in the defining polynomial, and looking at what comes out, we
get that degψkK,n =

∑n
i=1 1k = n.

Claim 2. (property vii)): ψ1
K,n is the identity, while ψ0

K,n is the trivial represetation of degree n

and ψ−1
K,n is given by ψ−1

K,n(M) = (MT )−1.

Proof. The statement about k = −1 is true per definition. For k = 1 we note that Q1
n(σ1, ..., σn) =

σ1 and hence ψ1
n = E1

n. Since E1(Rn) = Rn we see that E1
n is the identity and hence ψ1

n is aswell.
For k = 0 we note that

∑n
i=1(xi)

k = n and hence Q0
n is just the constant term n, and hence

ψ0
K,n = n = ⊕n1, i.e. sending everything to the n-fold direct sum of 1, hence to the identity
n× n-matrix.

Claim 3. (property iii)): ψkK,1 is the k’th exterior power of the identity representation.

Proof. For k ≥ 0 we get that when n = 1 we get Qk1(σ1) = σk1 and hence ψkK,1 = (E1
K)k and since

E1
K = 11GL(1,K) the claim follows. For k = −1 we see that since every 1 × 1-matrix is symmetric

(it really is a number) we get that ψ−1
K,1(M) = M−1 and hence the multiplicative inverse of the

identity representation. The claim for k < −1 follows by defintion ψkK,1 for such k’s and the results
for k = −1 and k ≥ 0.
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Claim 4. (property iv)): Ψk
C · c = c ·Ψk

R.

Proof. Since complexification commutes with exterior products and sums, this follows for k ≥ 0
from the above note on ErK and c. For k = −1 it is clear and hence k < −1 follows from the
defintion of Ψk for k < −1.

Next we note that the character χ(α) of a representation α : G → GL(n,K) is given by χ(α)g =
Tr(αg). We have χ(α⊕ β) = χ(α) + χ(β) and χ(α⊗ β) = χ(α)χ(β). The following claim we leave
without proof (it involves a lot of intricacies with matrices which I do need think is interesting to
write here, though it does act as a motiviation for the definition of ψkK,n)

Claim 5. [1, Prop 4.3, p. 613]: For any matrix M ∈ GL(n,K) we have: χ(ψkK,n)M = Tr(Mk).

We use this claim for the following:

Claim 6. For every representation α : G → GL(n,K) and each g ∈ G we have χ(ψkK,n · α)g =

χ(α)gk.

Proof. We have
χ(ψkK,n · α)g = χ(ψkK,n)(αg),

since αg ∈ GL(K, n) we use the previous claim and get:

χ(ψkK,n)(αg) = Tr((αg)k) = Tr(α(gk)) = χ(α)(gk)

We note that this property extends to virtual representations by definition of virtual representa-
tions, and hence prorperty vi) follows.
Using the characterization of the behaviour of the character on this represenations, we’ll prove the
perhaps most important property of this sequence:

Claim 7. (property ii)): The sequence Ψk
K is additive and multiplicative.

Proof. Recall that pr1 : GL(m,K) × GL(n,K) → GL(m,K) and pr2 : GL(m,K) × GL(n,K) →
GL(n,K) are the representations that just project to the first respectively second factor.
We want to prove:

a) ψkK,m+n · (pr1 ⊕ pr2) = (ψkK,m · pr1) + (ψkK,n · pr2)

b) ψkK,mn · (pr1 ⊗ pr2) = (ψkK,m · pr1)⊗ (ψkK,n · pr2)

We first check that the characters coincide. In particular using the previous claims we get:

χ[ψkK,m+n · (pr1 ⊕ pr2)]g = χ(pr1 ⊕ pr2)gk

= χ(pr1)gk + χ(pr2)gk

= χ(ψkK,m · pr1)g + χ(ψkK,n · pr2)g

= χ[(ψkK,m · pr1) + (ψkK,n · pr2)]g,
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when we look at case a), if we look at case b) we get:

χ[ψkK,mn · (pr1 ⊗ pr2)]g = = χ(pr1 ⊗ pr2)gk

= χ(pr1)gk · χ(pr2)gk

= χ(ψkK,m · pr1)g · χ(ψkK,n · pr2)g

= χ((ψkK,m · pr1)⊗ (ψkK,n · pr2))g

The fact that the representations are equal when the characters are the same follows from looking
at it restricted to compact subgroups. The exact argument can be found in [1, Prop 4.5, p.614].

Now we just have to check property v) and that is the last part of the proof:

Claim 8. (property v)): Ψk
K · ψlK,n = ψklK,n.

Proof. We again just check the characters and use the same argument as above to see that then
the equality of the representations follow. We have:

χ(Ψk
K,n · ψlK,n)M = χ(ψlK,n)Mk (Claim 6)

= Tr(Mkl) (Claim 5)
= χ(ψklK,n)M (Claim 5)

Having checked that this definition satisfies all the properties we have finished the proof of Theorem
7.14.

Having constructed these representation, we can discuss what they do in K-Theory:

Proposition 7.15. The sequences Ψk
K induce operations Ψk

K : KK(X) → KK(X) on the real or
complex K-theory of some space X such that:

i) Ψk
K commutes with continuous maps, that is, the following diagram commutes:

KK(X)
Ψk

K // KK(X)

KK(Y )
Ψk

K //

f∗

OO

KK(Y )

f∗

OO

ii) Ψk
K is a homomorphism of rings with units

iii) If ξ is a line bundle over X then Ψk
Kξ = ξk

iv) The operations Ψk
R and Ψk

C commute with complexification, that is, the following diagram
commutes:

KO(X)
Ψk

R //

c

��

KO(X)

c

��

K(X)
Ψk

C // K(X)
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v) Ψk
K ◦Ψl

K = Ψkl
K

vi) For κ ∈ K(X) we have chq(Ψk
Cκ) = kqchq(κ) where chq(κ) ∈ H2q(X;R) is the 2q-dimensional

component of the Chern character of κ.

vii) Ψ1
K and Ψ−1

R are the identity functions, Ψ−1
C = t where t is the operation of Example 7.13, while

Ψ0
K is the function that maps a bundle over X to the trivial bundle of the same dimension.

Proof. We see that i) and ii) follow directly from i) and ii) of Proposition 7.14. Part iii) follows
from iii) of 7.14 since a line bundle has cocycle-maps in GL(1,K) and tensor products on both side
coincide. The same holds for iv) and v), in that it follows from iv) respectively v) of 7.14 using the
arithmatic lemmas. The proof of the parts about Ψ1

K and Ψ0
K of vii) follow directly from vii) of

7.14 while the part about Ψ−1
K follows from discussion about the map M 7→ (MT )−1.

Here we note that since O(n) is a deform rectract of GL(n,R) since it’s a maximal compact sub-
group, any real bundle is equivalent to a bundle with cocyle-maps in O(n) ⊂ GL(n,R) where
(MT )−1 = M . In the complex case we have the same but now with U(n) so if we have a complex
vector bundle we get an equivalent one with cocyle-maps mapping into U(n) ⊂ GL(n,C) where
(MT )−1 = M , so we see that the claim follows.

As for vi), we will only prove it in the case of a sum of line bundels, since with the Splitting
Principle we can always reduce to that case by iv). So if ξ = η1 ⊕ · · · ⊕ ηn we have:

ch(ξ) = ec1(η1) + · · · ec1(ηn); chq(ξ) =
1

q!
[c1(η1)q + · · · c1(ηn)q]

Now using the fact that both ch and Ψk
C are ring homomorphisms and part iii) we get:

ch(Ψk
Cξ) = ch(Ψk

C(η1 ⊕ · · · ⊕ ηn))

= ch((Ψk
Cη1)⊕ · · · ⊕ (Ψk

Cηn))

= ch(ηk1 ⊕ · · · ⊕ ηkn)

= ch(η1)k + · · ·+ ch(ηn)k

= ekc1(η1) + · · · ekc1(ηn)

And when looking at the q’th component we see:

chq(Ψk
Cξ) =

1

q!
[(kc1(η1))q + ...(kc1(ηn))q] =

kq

q!
[c1(η1)q + ...+ c1(ηn)q] = kqchq(ξ)

We will finish this part of the chapter with an example to see how these operations come to life on a
particular space. First though we note that we can also define operations on the reduced K-theory.
Since that is defined such that KK(X) = K̃K(X)⊕KK(point) = K̃K(X)⊕ Z and since on a point
all vector bundles are trivial, we see that the operations must act on the reduced part, so we can
all the same talk about the operations Ψk

K on K̃K(X). On the even dimensional spheres (which are
the most interesting cases of spehres since there the K-theory is isomorphic to Z) the operations
then become as follows:

Proposition 7.16. The operations Ψk
C : K̃C(S2q) → K̃C(S2q) and (for q even) Ψk

R : K̃R(S2q) →
K̃R(S2q) are given by Ψk

K(κ) = kqκ.
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Proof. The proof of the complex case follows directly from:

Claim 1. the map chq : K̃C(S2q)→ H2q(S2q;Q) is injective.

Using this claim we get from Proposition 7.15.vi) that:

chq(kqκ) = kq(chqκ) = chq(Ψk
Cκ)

Since chq injective we get that Ψk
Cκ = kqκ.

If q is even the real case follows from the following claim:

Claim 2. the map c : Z = K̃O(S4t)→ K̃(S4t) = Z is injective.

We will use this on the following consequence of 7.15.iv):

c(Ψk
R(κ)) = Ψk

C(c(κ)) = kqc(κ) = c(kqκ)

Injectivity of c now implies that Ψk
R(κ) = kqκ.

Proof of Claim 1. This is a direct consequence of Proposition 6.21.

Proof of Claim 2. We know that c sends the generator 1 of K̃O(S4t), namely the trivial real
bundle, to a certainly non-trivial complex bundle. So c(1) 6= 0 and hence c is injective. It follows
from Bott’s work that c(1) = 1 if t is even and c(1) = 2 if t is odd.

This example, apart from being an example of how the operations work out, is also indicative for
the parts to come, where we will mostly derive properties in complex K-theory and use maps like
c and r to derive results in real K-theory. This order of work is a result of the easiness of complex
K-theory as compared to the messy properties of real K-theory (in particular on the spheres).

8 An important technical result

Having set up the machinery we can now prove the theorem that we reduced to in chapter 4 to
prove that there are no ρ(n) vector fields on Sn−1. The statement reads as follows:

Theorem 8.1. For any m ≥ 1 the space RPm+ρ(m)/RPm−1 is not co-reducible.

Recall that we saw earlier that RPm+ρ(m)/RPm−1 not being co-reducible is equivalent to proving
that we cannot find a map g : RPm+ρ(m)/RPm−1 → Sm such that g precomposed with the inclusion
Sm = RPm/RPm−1 → RPm+ρ(m)/RPm−1 has degree 1.

8.1 Calculations of K-Theory of projective spaces

In this part we’ll calculate the K-Theory of projective spaces, in particular the complex K-Theory of
CPm/CPn and the real and complex K-Theory of RPm/RPn. Establishing rigid generator-relation-
forms of these groups we’ll then show that a map g as described above cannot exist.
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To ease the choice of generators with going from complex to real we first prove the following lemma:

Lemma 8.2. Let ξk be the tautological real line bundle over RPk and let ηk be the tautological
complex line bundle over CPk and π : RP2n−1 → CPn−1 be the obvious projection. Then cξ2n−1 =
π∗ηn−1 (as elements of K(RP2n−1)).

Proof. The case n = 1 is trivial and hence we see that H2(RP2n−1;Z) = Z2 and we have c1π
∗ηn−1 =

π∗c1ηn−1 6= 0. We know that complex line bundle are classified by their first Chern class and
since Z2 has only one non-zero element we hence have to show that cξ2n−1 is not trivial. For
this we look at rcξ2n−1, from Example 7.13 it follows that rcξ2n−1 = ξ2n−1 ⊕ ξ2n−1. We know
that w(ξ2n−1) = 1 + x with x the generator of H1(RP2n−1;Z2) and hence we have w(rcξ2n−1) =
(1 +x)2 = 1 +x2 ∈ H∗(RP2n−1;Z2). If cξ2n−1 were to be trivial, then rcξ2n−1 would be aswell and
then w(rcξ2n−1) would be 1, which it obviously isn’t so we see that cξ2n−1 = π∗ηn−1

Using these line bundles we’ll define the following elements of the K-Theories to use in the upcoming
calculations. For clarity we’ll drop the index (though we should certainly not forget about it!) and
define:

λ = λn = ξn − 1 ∈ K̃O(RPn)

µ = µn = ξη − 1 ∈ K̃(CPn)

ν = νn = cλn ∈ K̃(RPn)

Having defined these special elements of the K-Theories we now start the fun part with calculating
the complex K-Theory of CPm/CPn:

Theorem 8.3. K(CPm) is the polynomial ring Z[µ]/(µm+1), i.e. the polynomial ring generated
by µ with coefficients in Z with the relation µm+1 = 0. The projection CPm → CPm/CPn maps
K̃(CPm/CPn) isomorphically onto the subgroup of K(CPm) generated by µn+1, ..., µn. In either
case the ring homomorphisms Ψk

C are given by:

Ψk
C · µs = ((1 + µ)k − 1)s

If k is negative we see (1 + µ)k as the formal power series 1 + kµ + k(k − 1)/2µ2 + ... which is a
finite sum since µm+1 = 0.

Proof. Since by Proposition 6.21 ch is injective we will use the structure ofH∗(CPm;Q) ' Q[x]/(xn+1)
to prove things for ch(K(CPm)) and then conclude the same things for K(CPm).
We denote by x be the generator of H∗(CPm;Z) (and hence also a generator of H∗(CPm;Q)). Since
the line bundle ηm has Chern class 1 + x, we have ch(ηn) = ex and hence we have Z[ex]/(xm+1) ⊂
ch(K(CPm)).
Now from the exact sequence of the pair in K-Theory we have the exact sequence:

0→ ch(K(CPm,CPm−1))→ ch(K(CPm))→ ch(K(CPm−1)→ 0.

While CPm/CPm−1 = S2m we get that:

ch(K(CPm,CPm−1) = Z[xm]/(xm+1) = Z[(ex − 1)m]/(xm+1) ⊂ Z[ex]/(xm+1)
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Now the suppose by induction hypothesis that ch(CPm−1) = Z[ex]/(xm) (the case m = 1 is trivial),
we get that Z[ex]/(xm+1) is a subgroup of ch(K(CPm)) which contains ch(K(CPm,CPm−1) and
maps onto ch(K(CPm−1), so we know that Z[ex]/(xm+1) is a subgroup of ch(K(CPm)) for which
the short exact sequence works, hence it must be the whole group and we get:

ch(K(CPm)) = Z[ex]/(xm+1) = Z[ex − 1]/(xm+1) = Z[ch(µ)]/((ch(µ))m+1)

so plugging back with ch−1 we see that K(CPm) = Z[µ]/(µm+1).

Now since the exact sequence of the pair K̃(CPm/CPn)→ K(CPm)→ K(CPn) becomes:
K̃(CPm/CPn)→ Z[µ]/(µm+1)→ Z[µ]/(µn+1), the result for K̃(CPm/CPn) is clear.

As for Ψk
C we know that Ψk

C(η) = ηk since η is a line bundle, now using the ring homomorphism
properties of Ψk

C we get:

Ψk
C(µs) =

(
Ψk

C(µ)
)s

=
(

Ψk
C(µ+ 1)−Ψk

C1
)s

= ((1 + µ)k − 1)s

We will now use the complex K-Theory of the complex projective spaces to calculate the com-
plex K-Theory of the real projective spaces. To do this we will extensively use the projection
π : RP2n+1 → CPn.
This map factors to maps ω′ : RP2n+1/RP2s+1 → CPn/CPs and ω : RP2n+1/RP2s → CPn/CPs.
Using these maps we will define generators of the complex K-Theory of real projective spaces.
First we note that we define µ(s+1) for the element of K̃(CPn/CPs) that gets mapped to µs+1 in
K(CPn) (see the preceding theorem). Now we set ν ′(s+1) = ω′∗µ(s+1) ∈ K̃(RP2n+1/RP2s+1) and
ν(s+1) = ω∗µ(s+1) ∈ K̃(RP2n+1/RP2s). Now is clear from the defintions that the induced maps
from RP2n+1 → RP2n+1/RP2s → RP2n+1/RP2s+1 maps ν ′(s+1) to ν(s+1) to νs+1, which should act
as a justification for the notation. Using these elements as generators, we get the following result
on the complex K-Theory of the real projective space:

Theorem 8.4. Let n = 2t for some integer t and let f = b1
2(m− n)c, then K̃(RPm/RPn) = Z2f .

In the case that n = 0 we can describe K(RPm) by the generator ν and the relations ν2 = −2ν and
νf+1 = 0. Otherwise K̃(RPm/RPn) is generated by ν(t+1) and the projection RPm → RPm/RPn

maps K̃(RPm/RPn) isomorphically onto the subgroup of K(RPm) generated by νt+1.
If n = 2t − 1 we have K̃(RPm/RPn) = Z ⊕ K̃(RPm/RPn+1) where the factor Z is the subgroup
generated by ν ′(t) while the second factor comes from the projection RPm/RPn → RPm/RPn+1.
Furthermore the operations Ψk

C are given by:

i) Ψk
Cν

(t+1) =

{
0 if k even

ν(t+1) if k odd

ii) Ψk
Cν
′(t) = ktν ′(t) +

{
1
2k

tν(t+1) if k even
1
2(kt − 1)ν(t+1) if k odd

Proof. The main calculation of the ring structure comes from spectral sequences, which is beyond
the scope of this thesis. For this part one can look at [1, Thm 7.3, p.622]. We can however discuss
the relations of the ring K(RPm). For this we first detour into real vector bundles. Since real line
bundles are identified by their first Stiefel-Whitney class, we have that for the tautological line
bundle ξ over RPm that ξ2 = 1. This follows since by definition w1(ξ) 6= 0 and H1(RPm) = Z2,
so w1(ξ2) = 2w1(ξ) = 0 = w1(1), so we get ξ2 = 1 and hence (λ + 1)2 = 1 or λ2 = −2λ. Now
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applying c we get c(λ2) = c(−2λ), that is (cλ)2 = −2c(λ) and hence ν2 = −2ν. On the other hand
we know that νf+1 is the image of ν ′(f+1) ∈ K̃(RPN/RP2f+1) from the canonical quotient. Now
since 2f + 1 ≥ n we see that has to get mapped to zero since we pound the vector bundle down to
something trivial (indeed k = f + 1 is the smallest number such that 2k − 1 ≥ m, so the order of
ν is exactly f + 1).
We also note that the identity K̃(RPm/RPn) = Z⊕K̃(RPm/RPn+1) follows from the exact sequence
of the pair (RPm/RP2t−1,RP2t/RP2t−1), and hence from the exact sequence (which in this case
ends with zeroes by results from the spectral sequence):

0→ K̃(RPm/RP2t)→ K̃(RPm/RP2t−1)→ K̃(RP2t/RP2t−1) = K̃(S2t) = Z→ 0

Next for the operations Ψk
C we note that for a line bundle η we have Ψk

Cη = ηk, on the other hand
we already noted that for the tautological line bundle ξ we have (cξ)2 = 1, so we get:

Ψk
C(cξ) =

{
1 if k even
cξ if k odd

Plugging in the defintion of ν this means that:

Ψk
C(1 + ν) =

{
1 if k even

1 + ν if k odd
,

therefore using the fact that Ψk
C is a ring homomorphism:

Ψk
C(ν) =

{
0 if k even
ν if k odd

,

so in particular we have:

Ψk
C(νs) =

{
0 if k even
νs if k odd

Since K̃(RPm/RP2t) maps isomorphically into K(RPm) the result for Ψk
Cν

(t+1) follows from the
above.

Now for ν ′(t). We know that since it has to land in the appropriate group we have Ψk
Cν
′(t) =

aν ′(t) + bν(t+1) for some a and b. First we push it through the induced map from the injection
p : RP2t/RP2t−1 → RPm/RP2t−1, which only leaves the aν ′(t), in particular we have:

Ψk
C(p∗ν ′(t)) = p∗(Ψk

C(ν ′(t))) = ap∗(ν ′(t))

But now RP2t/RP2t−1 = S2t and we know by Proposition 7.16 that on S2t the operations are given
by multiplication with kt, hence we see that a = kt.
Next we project onto RPm/RP2t−2. By definition ν ′(t) gets mapped into ν(t) while using the
structure of K̃(RPm/RP2t−2) we have that ν(t+1) = −2ν(t). Now using the this and the preceding
results on Ψk

C(ν(t)) we get:

Ψk
C(ν(t)) = (kt − 2b)ν(t) =

{
0 if k even

ν(t) if k odd

Since K̃(RPm/RP2t−2) = Z2f+1 , we solve for b and get:

b ≡
{

1
2k

t if k even
1
2(kt − 1) if k odd

mod 2f

Since K̃(RPm/RP2t) = Z2f and hence the modulo 2f does not matter the result follows.
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Now at last we calculate the real K-Theory of the real projective space. This will get quite messy
and the results follows from more shady arguments, but since it gets more involved it is particulary
useful in proving Theorem 8.1.
First we define φ(m,n) to be integers s such that n < s ≤ m and s ≡ 0, 1, 2 or 4 mod 8. Note that we
have the identities φ(m,n) = φ(m, 0)−φ(n, 0) and φ(8t, 0) = 4t. Then we have the following results:

Theorem 8.5. Assume n 6≡ −1 mod 4. Then we K̃O(RPm/RPn) = Z2f where f = φ(m,n).
If n = 0 then KO(RPm) can be described by the generator λ and the relations: λ2 = −2λ and

λf+1 = 0. Otherwise the projection RPm → RPm/RPn maps K̃O(RPm/RPn) isomorphically onto
the subgroup of KO(RPm) generated by λg+1 where g = φ(n, 0).
In the case that n ≡ −1 mod 4 we have:

K̃O(RPm/RP4t−1) = Z + K̃O(RPm/RP4t)

Here the second factor is induced by the projection RPm/RP4t−1 → RPm/RP4t, and the first factor
is the subgroup generated by some element λ′(g) (again g = φ(n, 0) = φ(4t, 0)). The operations Ψk

R
are as follows:

i) Ψk
Rλ

(g+1) =

{
0 if k even

λ(g+1) if k odd

ii) Ψk
Rλ
′(g) = k2tλ′(g) +

{
1
2k

2tλ(g+1) if k even
1
2(k2t − 1)λ(g+1) if k odd

The element λ′(g) has properties which are very much alike the properties of ν ′(t) in Theorem
8.4. The exact construction of this element is tideous and can be found in [1, Lemmata 7.5-7.7,
pp.625-628].

Proof. As for the ring structure, this again follows from arguments from spectral sequences, see [1,
Thm 7.4,p.625].
Since Proposition 7.16 also works in the real case for multiples of 4 (which we have here since we
will project to RP4t/RP4t−1 = S4t, the proof of the formulas for the operations are similar to the
proof of Theorem 8.4.

8.2 Proof of Theorem 8.1

Now having a representation for K̃O(RPm+ρ(m)/RPm−1) we will use this to disprove that there is a

map RPm+ρ(m)/RPm−1 f−→ Sm such that the composition Sm = RPm/RPm−1 i−→ RPm+ρ(m)/RPm−1)
f−→

Sm has degree 1. The argument that we will use only works for m a multiple of 8 but denoting
m = (2a + 1)2b the result for b ≤ 3 can be proven with so called Steenrod operations which are
beyond the scope of this thesis (the interested reader can look at [13]).
Now we look at φ(m+ ρ(m),m), hence the number of integers s such that m < s ≤ m+ ρ(m) and
s ≡ 0, 1, 2 or 4 mod 8. Identifying m = (2a+ 1)2c+4d with 0 ≤ c ≤ 3 such that ρ(m) = 2c + 8d, we
split the range up is the section m+ 1 ≤ s ≤ m+ 8, m+ 9 ≤ s ≤ m+ 16, ..., m+ 8(d− 1) + 1 ≤
s ≤ m + 8d and m + 8d + 1 ≤ s ≤ m + 8d + 8. Now apart from the last section all sections have
4 ’good numbers’ in it since m is a multiple of 8, namely m + 8t + 1, m + 8t + 2, m + 8t + 4 and
m + 8t + 8 (for t = 0, ..., d − 1), while in the last section we have m + 8d + 2t for 0 ≤ t ≤ c as
the ’good numbers’. So we see that in total we have 4d + c + 1 ’good numbers’ between m and
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m+ ρ(m), so we get φ(m+ ρ(m),m) = 4d+ c+ 1 = b+ 1.

Next suppose we have a composite:

Sm = RPm/RPm−1 i−→ RPm+ρ(m)/RPm−1)
f−→ Sm

This induces a sequence in K-Theory:

K̃O(Sm)
f∗−→ K̃O(RPm+ρ(m)/RPm−1)

i∗−→ K̃O(Sm)

Since m ≡ 0 mod 8 we have K̃O(Sm) = Z and by Theorem 8.5 we have K̃O(RPm+ρ(m)/RPm−1) =

Z⊕Z2b+1 . Now we choose a generator γ for K̃O(Sm), while we note that the factors of K̃O(RPm+ρ(m)/RPm−1)
are generated by λ′(g) and λ(g+1) where in this case g = 1

2m. In particular we get:

K̃O(Sm)

∼=
��

f∗
// K̃O(RPm+ρ(m)/RPm−1)

∼=
��

i∗ // K̃O(Sm)

∼=
��

Z
∼=
��

f∗
// Z⊕ Z2b+1

∼=
��

i∗ // Z
∼=
��

〈γ〉 f∗
// 〈λ′(g), λ(g+1)|2b+1λ(g+1) = 0〉ab

i∗ // 〈γ〉

Now supposing that fi has degree 1, we’d have i∗f∗ = 11∗ = 11, so we’d have i∗f∗(γ) = γ.
We determine the structure of i∗ and f∗. They are characterised by i∗(λ′(g)), i∗(λ(g+1)) and f∗(γ).
Since λ(g+1) has degree 2b+1 and since Z has apart from 0 no elements with finite order, we have
i∗(λ(g+1)) = 0. On the other hand we can write f∗(γ) = M1λ

′(g) + Nλ(g+1) and i∗(λ′(g)) = M2γ
and we want to determine the integers M1, M2 and N . Using the fact that i∗f∗(γ) = γ we get:

γ = i∗f∗(γ) = i∗(M1λ
′(g) +Nλ(g+1)) = M1M2γ

So we see that M1M2 = 1 and hence M1 = M2 = ±1. Now on the other hand we have f∗(Ψk
Rγ) =

Ψk
R(f∗(γ)). Using Proposition 7.16 (and the fact that m ≡ 0 mod 8) this becomes:

f∗(Ψk
Rγ) = f∗(k

m
2 γ),

while using the structure of f∗ we have:

Ψk
R(f∗(γ)) = Ψk

R(±λ′(g) + λ(g+1)),

and
f∗(k

m
2 γ) = ±k

m
2 λ′(g) + k

m
2 Nλ(g+1)

Using Theorem 8.5 we can get rid of the Ψk
R and get:

Ψk
R(±λ′(g) + λ(g+1)) = ±k

m
2 λ′(g) ± 1

2

(
k

m
2 − ε

)
λ(g+1) + εNλ(g+1),

where ε is 0 if k is even and 1 if k is odd. Now plugging all this together we get:

±k
m
2 λ′(g) + k

m
2 Nλ(g+1) = ±k

m
2 λ′(g) ± 1

2

(
k

m
2 − ε

)
λ(g+1) + εNλ(g+1),
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and scrambling all the terms we get:(
N ∓ 1

2

)(
k

m
2 − ε

)
λ(g+1) = 0,

that is: (
N ∓ 1

2

)(
k

m
2 − ε

)
≡ 0 mod 2b+1

If a suitable function f exists this equation should hold for all k. To show that it doesn’t suppose
we have a k such that:

k
m
2 − ε ≡ 2b+1 mod 2b+2

in that case we’d have: (
N ∓ 1

2

)(
k

m
2 − ε

)
=

(
N ∓ 1

2

)
(2b+1 + t2b+2)

= 2b+1

(
N ∓ 1

2

)
(1 + 2t)

= 2b (2n∓ 1) (1 + 2t)

= 2b (2n+ 4nt∓ 1∓ 2t)

= 2b+1 (n+ 2nt∓ t)∓ 2b

≡ 2b mod 2b+1

6≡ 0 mod 2b+1

So the last part will be finding such a k. The answer comes from number theory:

Lemma 8.6. If n = (2a+ 1)2f with f ≥ 1 then 3n − 1 ≡ 2f+2 mod 2f+3.

Note that this thus is the case k = 3. Also note that since the exponent of k is m/2 we have
m = 2n and hence m = (2a + 1)2b = (2a + 1)2f+1 and hence b = f + 1. We may use this lemma
since m ≡ 0 mod 8 and hence b ≥ 3.

Proof. We will prove by induction. But first note that since 32 ≡ 1 mod 8 we know that 32n ≡ 1
mod 8 and hence 32n + 1 ≡ 2 mod 8. Now we will use induction on the statement:

3(2f ) − 1 ≡ 2f+2 mod 2f+4

The case f = 1 is true since 3(21) = 8 and hence certainly 8 mod 32. Now suppose that it is true
for some f then:

3(2f+1) − 1 = (32f − 1)(32f + 1)

Now using the induction hypothesis 32f − 1 = 2f+2 + x2f+4 and by the note above we have
32f + 1 = 2 + y23 so:

3(2f+1) − 1 = (2f+2 + x2f+4)(2 + y23)

= 2f+3 + x2f+5 + y2f+5 + xy2f+7

≡ 2f+3 mod 2f+5

Now we know that 3(2f+1) − 1 ≡ 2f+3 mod 2f+5 and hence certainly it holds that 3(2f+1) ≡ 1 mod
2f+3.
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Next using this result we see that 3(2a)2f ≡ 1 mod 2f+3.

Now multiplying with an extra 3(2f ) we get:

3(2a+1)2f ≡ 3(2f ) mod 2f+3

So in particular we get that:

3(2a+1)2f − 1 ≡ 3(2f ) − 1 mod 2f+3

By the first argument in this proof we now get that 3(2f ) − 1 ≡ 2f+2 mod 2f+3 (mod 2f+3 or mod
2f+4 does not matter here) and hence:

3n − 1 = 3(2a+1)2f − 1 ≡ 2f+2 mod 2f+3

So we see that the case k = 3 indeed yields the desired contradiction, so we see that there is no map
f : RPm+ρ(m)/RPm−1 → Sm such that fi has degree 1 and this concludes the proof of Theorem
8.1.

9 Conclusion and outlook

Now recalling from chapter 4 that if there would we some m such that RPm+ρ(m)/RPm−1 would
be co-reducible if there were some n such that there would be ρ(n) pointswise independent vector
fields on Sn−1, we see that this can never happen and hence we find that there are exactly ρ(n)− 1
pointwise independent vector fields on Sn−1 and we have case closed.

One can wonder if we can use this proof and it’s ideas to determine the maximum number of
vector fields on any manifold M . This turns out to be not completely the case since we extensively
used that the tangent space of the sphere can be very well described within Euclidean space. In
particular the connection between vector fields and Theorem 8.1 is something that is really specific
to the case with spheres.

We can however always make some statements on the number of vector fields. In particular using
the Poincare-Hopf Theorem we can always determine whether there is one nowhere vanishing vec-
tor field at all, cutting off the search very early if χ(M) 6= 0. Also we recall the statement on the
Stiefel-Whitney class of a vector bundle and the number of independent vector fields (proposition
6.11). To use this one can determine w(TM) and then look how many of the top elements are zero.
In particular if wi(TM) 6= 0 (i > 0) then we know that there are at most dim(M)− i vector fields
on M . So while the ideas of this thesis do not fully come in use for general M , some statements
made in this text can be used to at least determine an upper and lower bound.

A Appendix on general topology

A.1 Construction on spaces

This section will give a quick overview of non-trivial constructions on spaces which will be used in
the text. This list turns out to be one, namely:
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Definition A.1. Given two pointed spaces (X,x0) and (Y, y0) we define the smash product X ∧Y
by:

X ∧ Y = (X × Y )/(X × {x0} ∪ ({x0} × Y ))

A.2 Vector bundles and fibre bundles

We assume that the reader has some knowledge of the basics of differential topology (charts, atlases,
smooth maps, etc.), but we will recall some facts about vector and fibre bundles because they are
heavily used throughout the text.

Definition A.2. A fibre bundle over a (connected) topological space X with fibre F is a topological
space E with a surjective continuous map π : E → X such that:

i) For every x ∈ X we have that Ex = π−1(x) ' F , that is, on every point of X we have
attached a copy of F .

ii) There is an open cover {Ua}a∈A of X such that for every a ∈ A there is a homeomorphism
Φa between π−1(Ua) and Ua × F , such that the first factor of Φa(y) is equal to π(y).

In the case that F is a linear space, we get the notion of a vector bundle, for which the second
property gets a bit more refined:

Definition A.3. A vector bundle over a (connected) topological space X with fiber some linear
space V is a topological space E with a surjective continuous map π : E → X such that:

i) For every x ∈ X we have that Ex = π−1(x) ' V

ii) There is an open cover {Ua}a∈A such that for every a ∈ A there is a homeomorphism Φa

between π−1(Ua) and Ua×V such that for every x ∈ Ua, Φa restricts to a linear isomorphism
between Ex and {x} × V .

Remarks:

i) When V = Rk, E is called a real vector bundle, and when V = Ck, E is called a complex
vector bundle.

ii) When V = R or V = C, E is called a real respectively complex line bundle.

iii) One could also do this in the smooth sense, in which case we want X, F and E to be smooth
manifolds and all maps to be smooth and all homeomorphisms to be diffeomorphisms.

Now one could ask when two vector bundles are related or the same. For this we define the following:

Definition A.4. Let f : X → Y be a continuous map and E and F be vector bundles over X and
Y respectively. A vector bundle homomorphism between E and F covering f is a map f : E → F
such that
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i) The following diagram commutes:

E
f
//

πE
��

F

πF
��

X
f
// Y

i.e. that f maps a fiber Ex into the fiber Ff(x).

ii) The map f |Ex : Ex → Ff(x) is linear.

When f is a homeomorphism then it is called a vector bundle isomorphism.

If we have a vector bundle E (with fiber V ), we get a cover {Ua} and maps Φa : π−1(Ua)→ Ua×V .
Taking two of those maps Φa and Φb we get maps:

Φab = Φa ◦ Φ−1
b : Uab × V → Uab × V

(where Uab = Ua ∩Ub). Since the Φ’s map take a fibre Ex into {x} × V and are fibrewise linear we
get that:

Φab(p, v) = (p, φab(p)v)

for some φab(p) ∈ GL(V ). Now since Φab is continuous it follows that φab : Uab → GL(V ) is also
continuous. The collection {φab} is called the (Čech) cocyle of E. This cocyle satisfies the prop-
erty that φabφbcφca(p) = 11 for every p in Ua ∩ Ub ∩ Uc. Also it follows that if two vector bundles
have isomorphic cocyles (i.e. all maps differ by a fixed invertible matrix), that they’re isomorphic
themselves. So we see that cocycles are a way to describe vector bundles.

Now we want to freely play with these cocycles, so we also that for any open cover {Ua}a∈A
with maps φab : Uab → GL(V ) satisfying φabφbcφca(p) = 11 for any p ∈ Ua ∩ Ub ∩ Uc we have a
vector bundle with cocycle {φab}. It follows that we can actually do this:

Theorem A.5. Given a open cover {Ua}a∈A with maps φab : Uab → GL(V ) satisfying φabφbcφca(p) =
11 for any p ∈ Ua ∩Ub ∩Uc, there is a vector bundle E over X with fibre V which has cocycle-maps
{φab}.

Proof. We set E = (
⊔
a∈A Ua × V )/ ∼ where ∼ is an equivalence relation set by Ua × V 3 (p, v) ∼

(p, v′) ∈ Ub×V when v = φab(v
′). That this is an equivalence relation follows from the assumption

on φab. That E is a vector bundle over X with cocycles φab follows more or less directly.

In particular if we have a group homomorphism ρ : GL(V )→ GL(W ) and a vector bundle E over X
with fibres V we get a vector bundle F over X with fibres W by looking at the cocycles φab of E and
setting the cocycles of F on ρ ◦ φab. It follows that ρ(φab)ρ(φbc)ρ(φca) = ρ(φabφbcφca) = ρ(11) = 11,
so we can use the previous theorem to make F .

B Appendix on algebraic topology

In this apppendix we will recall homotopy groups, singular homology and singular cohomology and
state the definition of generalized (co)homology theories.
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B.1 Homotopy groups

Homotopy groups measure how extremely a certain space X is formed. While the most used ex-
ample, the fundamental group π1 consisting of homotopy classes of paths, is particulary easy to
compute, the higher order homotopy groups are harder to determine, though they still encode
valuable information about a space.
The discussion centers about maps f : (In, δIn) → (X,x0), i.e. f(y) = x0 for any y ∈ δIn. Two
such maps, f0 and f1, are homotopic there is a map F : In × I → X such that F (·, 0) = f0 and
F (·, 1) = f1 and f(δIn, t) = x0 for any t ∈ I. Maps being homotopic is an equivalence relation,
and we denote [f ] for the equivalence class of a map f . Set-theoretically we now have:

Definition B.1. The n’th homotopy group of X at x0 is defined by

πn(X,x0) = {[f ], f : (In, δIn)→ (X,x0)}

The group operation comes from concaternation of maps from In. So let [f ] and [g] be two elements
of πn(X,x0) we define:

(f ? g)(s1, ..., sn) =

{
f(2s1, s2, ..., sn) if 0 ≤ s1 ≤ 1

2
g(2s1 − 1, s2, ..., sn) if 1

2 ≤ s1 ≤ 1

It follows that the homotopy class of this map does not depend on the choice of f and g, so it
induces a group operation on πn(X,x0).
We note that when n > 1 we have ’enough space’ to exchange f and g, so for n > 1 πn(X,x0) is
abelian. Also when X is path-connected, the isomorphism class of πn(X,x0) does not depend on
x0 and we just call it πn(X)
The homotopy groups satisfy: πi(S

n) = 0 for i < n and πn(Sn) = Z, but πi(S
n) for i > n turn

out to be a messy state of affairs, so we define another, less intuitive, but more computable way to
describe the shape of a space.

B.2 Singular homology

Singular homology is a way to describe how many holes a space X has. Just like homotopy groups
it is an algebraic invariant (i.e. homotopy equivalent spaces have isomorphic homology groups)
which measures how the space is formed, but it is much more computable. While homotopy groups
have the downside that the higher order ones are very hard to compute, homology groups will
turn out to have the property that for a n-dimensional CW-complex X we have Hi(X) = 0 for
i > n. First we let ∆n = {(t0, ..., tn) ∈ Rn+1|

∑
i ti = 1 and ti ≥ 0}, the smallest convex subset

of Rn+1 containing all basis vectors ei. In very much the same way we can also define it to be
∆n = [v0, ..., vn] where [v0, ..., vn] is the smallest convex subset containing all vi (for {vi}i linearly
independent). It we forget one vi, say [v0, ..., v̂i, ..., vn], it is understood that we get a ∆n−1-simplex.
Now a singular n-simplex is a map σ : ∆n → X and we let Cn(X;G) be the group generated by
all maps σ with coefficients in an (abelian) group G, that is the group of formal sums

∑
i niσi with

ni ∈ G and σi : ∆n → X. There is a boundary map ∂n : Cn(X;G)→ Cn−1(X;G) defined by:

∂n(σ) =
∑
i

(−1)iσ|[v0,...,v̂i,...,vn]
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Here it is understood that σ|[v0,...,v̂i,...,vn] can be seen as a map ∆n−1 → X. Also we define C−1 to
be the trivial group and hence ∂0 = 0.

Now ∂2 = 0 and we define the n’th homology group by

Hn(X;G) = ker(∂n)/im(∂n−1).

We can also put an extra G between C0(X;G) and 0, and replace ∂0 with first a map ε : C0(X;G)→
G that sends

∑
i niσi to

∑
i ni and then the zero map G→ 0. Since ε∂1 = 0 we define the reduced

homology by:
H̃0(X;G) = ker(ε)/im(∂0)

while H̃n(X;G) = Hn(X;G) for n > 0. It follows that H̃0(X;G)⊗G = H0(X;G).

We can also define relative homology. Here we ’forget’ about a subset A and define Cn(X,A;G) =
Cn(X;G)/Cn(X;A). Since ∂ factors through it to maps ∂n : Cn(X,A;G) → Cn−1(X,A;G) we
define the n’th relative homology group by Hn(X,A;G) = ker∂/im∂.

Now it follows that singular homology has the following properties:

Proposition B.2 (additivity). If X is made up of connected components Xa then Hn(X;G) =
⊕aHn(Xa;G).

Proposition B.3 (functoriality). For any map f : X → Y there is a map f∗ : Hn(X;G) →
Hn(Y ;G) satisfying (fg)∗ = f∗g∗ and 11∗ = 11. Furthermore if f ' g then f∗ = g∗. In particular it
is a (covariant) functor from spaces to groups.

Here we first put a map f] on Cn(X;G) which sends a simplex σ to the simplex fσ ∈ Cn(Y ;G).
This map satisfies ∂f] = f]∂ and hence factors through the quotients into maps f∗ : Hn(X;G) →
Hn(Y ;G).

Proposition B.4 (long exact sequence of the pair). A pair (X,A) with A ⊂ X induces the exact
sequence of the pair

· · · → Hn(A;G)→ Hn(X;G)→ Hn(X,A;G)→ Hn−1(A;G)→ · · · .

Proposition B.5 (excision). Given subspaces Z ⊂ A ⊂ X such that the closure of Z is contained
in the interior of A, the inclusion (X − Z,A− Z)→ (X,A) induces isomorphisms

Hn(X − Z,A− Z;G)→ Hn(X,A;G)

for all n. In particular if we have an open cover {A,B} of X the inclusion (B,A ∩ B) → (X,A)
induces isomorphisms

Hn(B,A ∩B;G)→ Hn(X,A;G)

for all n.

We also note that H̃i(S
n;G) = G for i = n and 0 otherwise, and this in principal induces all the

values for any CW-complex.

Having defined singular homology we also define the degree of a map f : Sn → Sn. Since
Hn(Sn;Z) = Z the induced map f∗ is multiplication by some d ∈ Z, that is f∗(n) = dn, and
we define deg(f) = d = f∗(1). It follows that deg(f) = deg(g) if and only if f and g are homotopic.
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B.3 Singular cohomology

Cohomology is the dual of homology. This means that there is no real new information, but some
information gets shuffeld in such a way that we can more easily read it, just like when we ditched
homotopy for homology.
We define Cn(X;G), the group of singular n-cochains with coefficients inG to be Hom(Cn(X;Z), G),
that is group homomorphisms from Cn(X;Z) toG. I.e. a n-cochain ψ takes a n-chain σ to ψ(σ) ∈ G.
This closely relates the construction of the dual of a vector space. The boundary map δ is defined
as the dual of ∂, that is δψ(σ) = σ(∂σ). Since δ2 is the dual of ∂2 = 0 we see that δ2 = 0 and we
define the n’th cohomology group by Hn(X;G) = ker(δ)/im(δ). Relative and reduced cohomology
are defined in the same manner. More or less all properties of homology come over to cohomology,
but now that everything is contravariant and hence all the arrows flip:

Proposition B.6 (additivity). If X is made up of connected components Xa then Hn(X;G) =
⊕aHn(Xa;G).

Proposition B.7 (functoriality). For any map f : X → Y there is a map f∗ : Hn(Y ;G) →
Hn(X;G) satisfying (fg)∗ = g∗f∗ and 11∗ = 11. Furthermore if f ' g then f∗ = g∗. In particular it
is a contravariant functor from spaces to groups.

Proposition B.8 (long exact sequence). A pair (X,A) with A ⊂ X induces the exact sequence of
the pair

· · · → Hn−1(A;G)→ Hn(X,A;G)→ Hn(X;G)→ Hn(A;G)→ · · · .

Proposition B.9 (excision). Given subspaces Z ⊂ A ⊂ X such that the closure of Z is contained
in the interior of A, the inclusion (X − Z,A− Z)→ (X,A) induces isomorphisms

Hn(X − Z,A− Z;G) ' Hn(X,A;G)

for all n. In particular if we have an open cover {A,B} of X the inclusion (B,A ∩ B) → (X,A)
induces isomorphisms

Hn(B,A ∩B;G) ' Hn(X,A;G)

for all n.

Also we again have that H̃ i(Sn;G) = G for n = i and 0 otherwise.

B.4 (Co)homology theories

Having defined singular (co)homology, we note that most of the time we calculate (co)homology of
a space X by using the various propositions and the values on spheres. This axiomatic approach
leads to the notion of generalized (co)homology theories, where we leave the propositions in tact,
but vary the values on spheres:

Definition B.10. A generalized homology theory is a sequence of covariant functors hn from the
category of pairs (X,A) to the category of abelian groups, together with a natural transformation
∂ : hn(X,A)→ hn−1(A) (using the notaton A for (A, ∅) such that:
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i) A map f : (X,A) → (Y,B) induces a map f∗ : hn(X,A) → hn(Y,B) such that (fg)∗ = f∗g∗
and 11∗ = 11.

ii) If (X,A) is a pair and U is a subset of X such that U ⊂ Å, then the inclusion (X−U,A−U)→
(X,A) induces isomorphisms hn(X − U,A− U)→ hn(X,A).

iii) If X =
⊔
aXa, then hn(X) ' ⊕ahn(Xa)

iv) Each pair (X,A) induces a long exact sequence via the inclusion i : A → X and j : X →
(X,A): · · · → hn(A)

i∗−→ hn(X)
j∗−→ hn(X,A)

∂−→ hn−1(A)→ · · ·

Since the last axiom induces strategies to calculate the groups hn for a CW-complex if one knows
hi(S

n), a homology theory is normally characterised by the values on spheres.
Also we note that sometimes one demands that hn({x0}) = 0 for all n 6= 0, to ’normalize’ the
results, but some interesting homology theories do to satisfy this axiom, so we obmit it here.

Flipping the direction of the arrows we also get the definition of a generalized (sometimes called
extraordinary) cohomology theory:

Definition B.11. A generalized cohomology theory is a serie of contravariant functors hn from the
category of pairs (X,A) to the category of abelian groups, together with a natural transformation
δ : hn(A)→ hn+1(X,A) (using the notation hn(A) for hn(A, ∅)) such that:

i) A map f : (X,A)→ (Y,B) induces a map f∗ : hn(Y,B)→ hn(X,A) such that (fg)∗ = g∗f∗

and 11∗ = 11.

ii) If (X,A) is a pair and U is a subset of X such that U ⊂ Å, then the inclusion (X−U,A−U)→
(X,A) induces isomorphisms hn(X − U,A− U)→ hn(X,A).

iii) If X =
⊔
aXa, then hn(X) ' ⊕ahn(Xa)

iv) Each pair (X,A) induces a long exact sequence via the inclusion i : A → X and j : X →
(X,A): · · · → hn−1(A)

δ−→ hn(X,A)
j∗−→ hn(X)

i∗−→ hn(A)→ · · ·

C Appendix on group theory

This section is dedicated to a specific construction of a group from a sequence of groups. For this
let {Gi}i∈N be a sequence of groups with homomorphisms fi : Gi → Gi+1. From these we can make
homomorphisms fij : Gi → Gj for i < j defined as fij = fj−1 ◦ · · · ◦ fi. We have fii = 11Gi and
fik = fjk ◦ fij . Now we have:

Definition C.1. The direct limit of Gi, lim−→Gi is defined by: lim−→Gi = ⊕iGi/ ∼ where for gi ∈ Gi
and gj ∈ Gj we have gi ∼ gj if and only if there is a k ≥ max(i, j) such that fik(gi) = fjk(gj).

Heuristically this means that we have a lot of groups, where each maps into the next and that
identify two elements of two groups if there evantually map into the same element.
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