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Preface

The notion of a fibre bundle is less than eighty years old, and by the year 1950,
the definition of a fibre bundle had been clearly formulated, the homotopy classifi-
cation of fibre bundles was achieved and the theory of characteristic classes of fibre
bundles had been developed by several mathematicians. In 1955, Milnor gave a
construction of a universal fibre bundle for any topological group.

The first goal of this thesis will be to give an introduction to bundles and clas-
sifying spaces, and to give some constructions of classifying spaces. Because of my
background in physics, I have added an application of the Hopf bundle in quantum
mechanics and I have added a section about quantum geometry. Although the ap-
plication is dealing with at least third year bachelor level physics, I hope it to be
understandable for mathematicians as well. This thesis should be understandable
for final year bachelor students or beginning master students in mathematics, who
followed an introduction course in topology.

I do not pretend to state anything original or new in this thesis, and it must
be said that most of the propositions and proofs are already in the used literature.
But although this is true, this bachelor thesis is not just a copy of literature already
available. I made this introduction to the subject in my own way and brought it
in the order I thought appropriate. I have tried to explain parts where most of the
literature steps over and with that to make it more readable for final year bachelor
students. I also tried to add many examples and explanation, which can make the
thesis more fun to read.

I should also note that English is not my native language and that I am not yet
used to writing papers in English. Because of that the number of grammatical
errors could be a little high, and I hope I will be forgiven for that. I do think it is
a good exercise for me to write in English.

I think this thesis deals with a beautiful part of mathematics, that is, a very ab-
stract part in which many other parts of mathematics come together. Although
this part of mathematics can sometimes be hard to understand, because it is so
abstract, it does not have to be hard when explained well. I hope you will enjoy
reading this.

First, I will define and explain Principal G-bundles, in the second section I will
give an example of a bundle, the Hopf bundle, and an application of that bundle
in quantum entanglement. In the third section I will explain and define classifying
spaces. The fifth and sixth section provide two ways of constructing classifying
spaces, using Milnor’s construction and using simplicial techniques. In the final
section, I will give a short and less formal introduction to quantum geometry.
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1. Principal G-Bundles

The aim of this section is to introduce the notion of bundle and principal G-
bundle. This entire thesis is centered around the notion of principal G-bundle,
since a classifying space is a space that classifies (numerable) principal G-bundles
in some way. After giving the definition of a principal G-bundle the definition will
be illustrated with some examples and numberable principal G-bundles will be de-
fined. The next chapter gives the Hopf bundle as example of a principal G-bundle,
and gives an application of the Hopf bundle in Quantum Entanglement.

1.1. Bundles. We will start with the definition of a bundle. One may think of a
bundle as a Base space B together with a fibre F (b) at each point b ∈ B, such that
the fibres are glued together continuously into a bigger space called the total space
E.

Definition 1.1. A bundle ξ is the triple ξ = (E, p,B) with E and B topological
spaces and p an open (in the sense that it sends opens to opens), continuous and
surjective map p : E → B. E is called the total space, B is called the base space
and p is called the projection from E into B. For each b ∈ B, p−1(b) is called the
fibre over b.
We say that ξ is a bundle with fibre F , when for all b ∈ B, the fibre p−1(b) over
b is homeomorphic to F .

Example 1.2. Take as base space the circle, B = S1, and as total space E the
cylinder C = {(h, φ)|h ∈ R, φ ∈ S1)} ' R× S1. Define the projection p : E → B :
(h, φ)→ φ. Then ξ = (E, p,B) = (R× S1, (h, φ)→ φ, S1) is a bundle with as fibre
F the real line R, that is, for each b ∈ B, p−1(b) is homeomorphic to the real line
R.

Example 1.3. The Trivial bundle is the product bundle ξ = (E = B × F, p,B)
with fibre F where p is the trivial projection p : B × F → B : (b, f)→ b.

Definition 1.4. A morphism between bundles (u, f) : (E1, p1, B1)→ (E2, p2, B2)
is a pair of maps u : E1 → E2 and f : B1 → B2 such that p2u = fp1.
Two bundles ξ1, ξ2 are isomorphic when there is an isomorphism g : ξ1 → ξ2,
that is, a morphism g = (u, f) : ξ1 → ξ2 such that there exists a morphism
h = (u2, f2) : ξ2 → ξ1 such that g ◦ h = idξ2 and h ◦ g = idξ1 , or more pre-
cise, u ◦ u2 = idE2 , u2 ◦ u = idE1 , f ◦ f2 = idB2 and f2 ◦ f = idB1

This is to say that two bundles ξ1 = (E1, p1, B1), ξ2 = (E2, p2, B2) are isomor-
phic, when E1 and E2 are homeomorphic, B1 and B2 are homeomorphic, and the

following diagram is commutative:
E2

u,u2←→ E2

↓p1 ↓p2

B
f,f2←→ B2

Definition 1.5. The restriction ξ|A of a bundle ξ = (E, p,B) to a subspace A ⊂ B
is the bundle ξ|A = (p−1(A), pA, A) where pA is the map pA : p−1(A) → A :
pA(a) = p(a).
We call a bundle ξ with fibre F Locally Trivial if for any b ∈ B, there is a neigh-
borhood U of b such that ξ|U is isomorphic to a trivial bundle (U × F, p, U).
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Example 1.6. Take as base space the circle, B = S1, and as total space E the
Moebius-bandM ' {((2+(2s−1) sin(πt)) cos(2πt), (2+(2s−1) sin(πt)) sin(2πt), (2s−
1)cos(πt)) ∈ R3|t ∈ [0, 1], s ∈ [0, 1]}. Then take the projection p : M → S1 :
(s, t) → (cos(2πt), sin(2πt)), then it follows that ξ = (E, p,B) = (M,p, S1) is a
bundle with fibre [0, 1]. This bundle is not trivial, but it is locally trivial, since
it looks locally just like ([0, 0.5] × [0, 1], (s, t) → t, [0, 1]), in fact it is precisely two
times this trivial bundle, glued together in a non-trivial way.

Example 1.7. A vector bundle is a bundle with an additional vector space struc-
ture on each fibre such that a local triviality condition is satisfied. This will be
made precise in the following definition. First, let F denote the field of the real
numbers R, the complex numbers C or the quaternions H.

Definition 1.8. A k-dimensional vector bundle ξ over F is a bundle (E, p,B)
together with a structure of a k-dimensional vector space over F on each fibre p−1(b)
such that the following local triviality condition is satisfied: For each b ∈ B, there
is an open neighborhood U(b) of b and an isomorphism h : U(b)×F k → p−1(U(b))
such that the restriction b × F k → p−1(b) is a vector space isomorphism for each
b ∈ U .

The trivial example of a vector bundle is the k-dimensional product bundle over
a space B, that is, the bundle (B × F k, p, B), where the vector space structure
of F k defines the vector space structure on b × F k = p−1(b). The local triviality
condition is satisfied by letting U = B and h be the identity map.

1.2. The Pull-Back Bundle f∗(ξ). Given a bundle ξ = (E, p,B) and a function
f : B1 → B there is an pull-back bundle of ξ along f with base space B1, called
f∗(ξ). This construction will later on be used to discuss the notion of classification
of bundles over a space B1, using (homopopy classes of) functions f : B1 → B with
B a classifying space. Here we will define this pull-back bundle, so it can be used
later on.

Definition 1.9. The pull-back bundle f∗(ξ) of ξ = (E, p,B) along a function
f : B1 → B is the triple f∗(ξ) = (E1, p1, B1) where E1 is defined by E1 = {(b1, x) ∈
B1 × E|f(b1) = p(x)} and p1 is defined by p1 : E1 → B1 by (b1, x)→ b1.

Proposition 1.10. The induced bundle f∗(ξ) = (E1, p1, B1) of ξ under a function
f is a bundle, and if ξ is a bundle with Fibre F, f∗(ξ) = (E1, p1, B1) is also a bundle
with Fibre F.

Proof. To see that f∗(ξ) = (E1, p1, B1) is a bundle it’s only needed that p1 is
surjective, continuous and open, and since for any b1, the relation p1(b1, x) = b1
holds, it is surjective, and since p is open and continuous, p1 is also open and
continuous.
The fibre of f∗(ξ) over b1, for a given b1 ∈ B1, is given by F = {x ∈ E|f(b1) = p(x)}.
If ξ has fibre F, this fibre is p−1(p(y)) = {x ∈ E|p(y) = p(x)} for any y ∈ E. Choose
y ∈ E such that f(b1) = p(y), then the fibres are homeomorphic, as requested. This
means that if ξ is a bundle with fibre F, f∗(ξ) = (E1, p1, B1) is also a bundle with
fibre F . �

1.3. Principal G-Bundles. We will now continue with the definition of principal
G-bundles: a principal G-bundle is a bundle ξ = (X, p,B) together with a group G
such that X is a principal G-space. This means that the group G acts on the total
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space X, and as we will prove later, that G can be seen as the fibre of the principal
G-bundle. The group G needed is a topological group, what means that there is a
topology defined on G which is compatible with the group operator. This will all
be made precise in the following definitions.

Definition 1.11. A Topological Group G is a set G together with a group struc-
ture and topology on G such that the function (s, t)→ st−1 as a map G×G→ G
is continuous.

Example 1.12. (R,+) is the topological group of the real numbers with standard
addition, where the topology is the Euclidian topology. Since it has t−1 = −t,
G×G→ G : (s, t)→ st−1 = s− t is clearly continuous.

Example 1.13. S1 or more completely (S1, ·) is the topological group consisting
of the elements of S1 ⊂ C, what means that an element can be written e2πiω with
ω ∈ [0, 1] and e2πi0 = e2πi1, where the group structure is given by standard multipli-
cation and it has the Euclidean topology (from C). G×G→ G : (e2πiω1 , e2πiω2)→
e2πiω1(e2πiω2)−1 = e2πi(ω1−ω2) is clearly continuous.

Example 1.14. U(n) is the topological group of n by n unitary(uH = u−1 where
uH is the conjugate transpose of u) complex matrices with matrix multiplication
as group structure, and it gets its topology from the inclusion U(n)→ Cn·n, where
Cn·n has the Euclidian topology. The inverse of u ∈ U(n) is u∗ and G ×G → G :
(s, t)→ u1u

−1
2 = u1u

∗
2 is continuous.

U(1) consists of the complex numbers with norm 1 and standard multiplication,
and has the topology of C. The elements of U(1) are the elements on the unit
circle, and since S1 has the same topology and group structure, U(1) and S1 are
isomorphic.

Example 1.15. SU(n) is the topological group of n by n complex matrices satis-
fying AtA = I and det(A) = 1. Its multiplication is standard matrix multiplication
and it gets its topology from the inclusion SU(n)→ Cn·n.

Definition 1.16. Let G be a topological group. A G-space is a topological space
X together with a continuous right side multiplication X ×G→ X defined from G
on X, satisfying the axioms xe = x and (xg)h = x(gh).
A free G-space is a G-space with the following property: xg = x, x ∈ X and g ∈ G,
implies that g = 1.
A continuous translation-function is a continuous function τ : X∗ → G with
the property that xτ(x, x′) = x′, where X∗ is given by X∗ = {(x, xg) ∈ X ×X|x ∈
X, g ∈ G}.
X is called a principal G-space if X is a free G-space with continuous translation-
function τ : X∗ → G. In this case we denote B = X/G and we say that ξ =
(X, p,B) is a principal G-bundle. Note that this is a fibre bundle with fibre
G(see proposition 1.22).
We call a principal G-bundle trivial if the total space E is homeomorphic to B×G,
where G is the fibre.
We call a principal G-bundle locally trivial if, for each point e ∈ B, there is a
neighborhood of e in E that is homeomorphic to Be×G where Be is a neighborhood
of e in B.
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Proposition 1.17. If τ is a continuous translation-function of a principal G-
bundle ξ = (X, p,B), the following facts hold:

(1) τ(x, x) = 1
(2) τ(x, x′)τ(x′, x′′) = τ(x, x′′)
(3) τ(x, x′)−1 = τ(x′, x)

Proof. Let τ be a continuous translation-function of a principal G-bundle ξ =
(X, p,B).
(1) We know that xτ(x, x′) = x′. Now take x=x’. Then xτ(x, x) = x. Since x∈X,

τ(x, x) ∈ G and X is free, it follows that τ(x, x) = 1
(2) From xτ(x, x′) = x′ and x′τ(x′, x′′) = x′′ it follows that xτ(x, x′)x′τ(x′, x′′) =

x′x′′ thus that xτ(x, x′)τ(x′, x′′) = x′′. Since this is true for all x, x’ and x” it
follows that τ(x, x′)τ(x′, x′′) = τ(x, x′′)

(3) From xτ(x, x′) = x′ and x′τ(x′, x) = x it follows that xτ(x, x′)x′τ(x′, x) = x′x,
thus τ(x, x′)τ(x′, x) = 1. �

A few examples of principal G-bundles will now follow.

Example 1.18. The bundle (B × G, p,B) is a principal G-bundle when defined
in the following way: Take the product G-space B × G, where the action from
G on B × G is given by the relation (b, t)g = (b, tg), and let τ be defined by
τ((b, t), (b, t′)) = t−1t′. (Note that b in (b,t’) is the same b as in (b,t): if (b, t)(b′, t′) ∈
(B ×G)∗ then (b′, t′) = (b, t)g = (b, tg) thus b=b’.)
Since G is a group, (b, t)g = (b, t) implies tg = t and that implies that g = 1 thus
B ×G is a free G-space. For this to be a principal G-bundle we have to show that
(b, t)τ((b, t), (b, t′)) = (b, t′). Now, (b, t)τ((b, t), (b, t′)) = (b, t)t−1t′ = (b, tt−1t′) =
(b, t′) as it should be.

Example 1.19. Let G be the group {−1, 1} with multiplication. Let X, the space
that will be a principal G-space, be the n-dimensional sphere X = Sn. Then
X∗ = {(x, x) ∈ X ×X} ∩ {(x,−x) ∈ X ×X} where −x is defined as −x = x · −1.
Since x · ±1 = ±x and X does not contain 0, X is free.
Since τ(x,±x) = ±1, it follows that xτ(x,±x) = ±x as it should be.
Define the base space B = Sn/G. This space is given by two opposite points on the
circle, and when one draws a line through these points, the space is given by the
lines in Rn, and is B = Sn/G ' Pn, the projective space. Thus (Sn, p, Sn/G ' Pn)
as defined above is a principal G-bundle.

Example 1.20. Take as base space the circle S1, and let G be the circle group
S1. The torus is obtained by putting a ’smal’ circle S1 on each point of the ’bigger’
base space S1, and gluing these circles together in the trivial way. The obtained
bundle is clearly a principal S1-bundle, where the action of S1 on the torus is just
multiplication of S1, that is, multiplication by g2 with a point b1g1 on the fibre of
b1 ∈ S1 gives the point b1(g1g2) on the fibre of b1. The construction is illustrated
by figure 1. There, the arrows indicate the direction in which the sides are glued
together.

Example 1.21. The Klein bottle is just a strangely twisted (in the fourth dimen-
sion) torus, but the above construction cannot be carried over to obtain the Klein
bottle. The problem is that the action of G on the Klein bottle cannot be defined
continuously. Figure 2 illustrates the problem. In this figure, a is glued to a′ such
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Figure 1. The Torus as S1-bundle over B = S1.

Figure 2. The Klein Bottle is not an S1-bundle over B = S1,
since the action of G cannot be defined well and continuously,
because there is a twist at a = a′.

that B is just the circle S1, and on each point in B there is a circle G = S1 at-
tached. If we define the action of G on the Klein bottle going ’upwards’, as the
picture indicates, then the action is not well-defined in a = a′. If we define the
action in a = a′, this causes the action to be discontinuous. Therefore, the Klein
bottle is not a principal S1-bundle over S1 in any trivial way, although it is a bundle
over S1 with fibre S1.

Proposition 1.22. Let ξ = (X, p,B) be a principal G-bundle. Then ξ is a bundle
with fibre G.

Proof. Lets find an homeomorphism between p−1(b) and G, for each b. Take an
x ∈ p−1(b) and define u(s) = xs. This is a bijective map u : G → p−1(b)(the
bijectivity is obtained using the group axioms). The inverse is x′ → τ(x, x′), and
since xτ(x, xs) = xs implies τ(x, xs) = s, which is continuous, it follows that u is a
homeomorphism. �

Example 1.23. Let V ectn(B) denote the set of all n-dimensional vector bundles
over a base space B with F = R, and let GLn(R) be the group of invertible n× n
matrices. Let PrincGLn(R)(B) denote the set of all principal GLn(R)-bundles over
B. It can be shown that there is a 1 − 1 correspondence between V ectn(B) and
PrincGLn(R)(B). This means that every n-dimensional real (that is, F = R) vector
bundle can be associated to a principal GLn(R)-bundle. Using this the problem
of computing V ectk(B), can be reduced to the calculation of the set of homotopy
classes of maps from B to BGLn(R), that is, the set [B,BGLn(R)], where BGLn(R)

denotes the base space of GLn(R). In this way V ectk(B) can be ’classified’ by the
set [B,BGLn(R)]. Classifying spaces will be defined in section 3 below.

1.4. Numerable Principal G-Bundles over B × [0, 1].

Definition 1.24. An open covering {Ui}i∈S of a topological space B is called nu-
merable if there is a locally finite partition of unity {ui}i∈S such that u−1

i ((0, 1]) ⊆
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Ui for each i ∈ S.
A principal G-bundle ξ over B is called numerable if there is a numerable open
covering {Ui}i∈S of B such that ξ|Ui is trivial for each i ∈ S.

Proposition 1.25. Let f : B′ → B be a map and let ξ be a numerable bundle over
B, then f∗(ξ) is a numerable bundle over B′.

Proof. Let ξ be numerable over B and take {Ui}i∈S such that ξ|Ui is trivial for
each i ∈ S. We have to show that f∗(ξ)|f−1(Ui) is trivial for each i ∈ S. It is given
that ξ|Ui ' (Ui ×G, p, Ui). Since f∗(ξ)|f−1(Ui) ' f∗(ξ|Ui) ' f∗((Ui ×G, p, Ui)) is
trivial, we are done. �

Proposition 1.26. Let ξ = (X, p,B) be a numerable principal G-bundle, and let
f0, f1 : B1 → B be two homotopic maps. Then f∗0 (ξ) ' f∗1 (ξ).

Proof. f0, f1 : B1 → B are two homotopic maps, what means that there is a
homotopy f : B1 × I → B, I = [0, 1], with f0 = f(−, 0) and f1 = f(−, 1). Define,
for i = 0, 1, the maps εi : B1 → B1 × I by εi(b) = (b, i). We now clearly have
fi = fεi for i = 0, 1, and therefore we have that f∗i (ξ) and ε∗i f

∗(ξ) are isomorphic.
To prove that f∗0 (ξ) is isomorphic to f∗1 (ξ), it is now enough to show that ε∗0(η) is
isomorphic to ε∗1(η), where η is a numberable principal G-bundle with some base
space B1 × I (f∗(ξ) is a bundle of this form).
Let r : B1× I → B1× I be the map r(b, t) = (b, 1). Then rε0 = ε1, and the bundles
ε∗1(η) and ε∗0r

∗(η) are isomorphic.
If we now show that ε∗0r

∗(η) is isomorphic to ε∗0(η), we are done. Since the pullbacks
ε∗0r
∗(η) and ε∗0(η) only use points in B1 × 0 ⊂ B1 × I, it is enough to show that

r∗(η)|B×0 is isomorphic to η|B×0. Using the numerability of η, one can construct
a morphism (g, r) : η → η and this morphism gives rise to a homeomorphism1.
Therefore, r∗(η)|B × 0 is isomorphic to η|B × 0.
This completes the proof, since now ε∗1f

∗(ξ) is isomorphic to ε∗0f
∗(ξ), what means

that f∗0 (ξ) is isomorphic to f∗1 (ξ). �

1See Dale Husemoller, Fibre bundles, New york: Springer-Verlag, 1994. Third edition (first
edition 1966), p. 51-52.
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2. The Hopf Bundle and Quantum Entanglement

The Hopf bundle, sometimes called the Hopf fibration or Hopf map, is named
after Heinz Hopf who studied it an 1931 article. It has a widely variety of physical
applications. I will give a short introduction into the Hopf bundle and I will give
an application in quantum theory. The simplest Hopf-bundle is a bundle h1 =
(S3, p, S2) where the fibre is S1. This means that every point on S2 corresponds to
a circle on S3.

Definition 2.1. The first Hopf bundle h1 is the bundle h1 = (S3, p, S2) with
p : S3 → S2 : (a, b, c, d)→ (2(ac+bd), 2(ad−bc), a2 +b2−c2−d2). We also consider
the action of S1 on S3, for s ∈ S1 where φ is the angle of the point s in S1, by

(x1, x2, x3, x4)s = (x1, x2, x3, x4)


1 0 0 0
0 1 0 0
0 0 cos(φ) − sin(φ)
0 0 sin(φ) cos(φ)


= (x1, x2, x3 cos(φ) + x4 sin(φ),−x3 sin(φ) + x4 cos(φ))

Proposition 2.2. h1 = (S3, p, S2) is a principal S1-bundle.

Proof. First note that (2(ac+ bd))2 + (2(ad− bc))2 + (a2 + b2 − c2 − d2)2 = 4(a2 +
b2)(c2 + d2) + (a2 + b2 − c2 − d2)2 = (a2 + b2 + c2 + d2)2 = 1 so p maps to S2 as it
should do.
To show that the fibre is S1, take a point x = (x1, x2, x3) on S2, then p−1(x) =
{(a, b, c, d) ∈ S3|2(ac + bd) = x1, 2(bc − ad) = x2, a

2 + b2 − c2 − d2 = x3}. Some
calculations can show that this defines a circle.
When the fibre S1 is identified with the circle group, G = S1, it acts on S3 by
rotation. Therefore S3 is a free S1-space with continuous translation-function τ :
S3∗ → S1 that sends (x, x′) to the unique e2πiω ∈ S1 that rotates x to x′.

�

Remark 2.3. There are three other bundles with a sphere Si as base space, Sj as
total space and Sk as fibre.The second Hopf bundle is the bundle h2 = (S7, p, S4)
with fibre S3. The third Hopf bundle is the bundle h3 = (S15, p, S8) with fibre
S7. And of course there is also the trivial Hopf bundle h0 = (S1, p, S1) with
fibre S0 = {1} and multiplication (a, b)1 = (a, b) for (a, b) ∈ S1 ⊂ R2, 1 ∈ S0. The
projection of the trivial Hopf bundle can easily made explicit, namely the identity
map p : S1 → S1 : (a, b)→ (a, b).

In the next subsection, I will give an application of Hopf bundles, and in that
application an explicit projection formula for the second Hopf bundle will be given.
Here I will give a way to understand the first Hopf bundle, by looking to the
base space as CP 1 ' SU(2)/U(1), and I will generalize this bundle to a bundle
(SU(n), p,CPn−1 ' SU(n)/U(n− 1)). First I will introduce a way of constructing
H-bundles using a normal subgroup H ⊂ G and the quotient G/H.

Proposition 2.4. Let G be a topological group and let H be a topological subgroup
H ⊂ G. Then ξ = (G, p,G/H) is a principal H-bundle, where p is the projection
p : G→ G/H : g → g mod H.
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Proof. G is a free H-space by letting H act on G the same way as the elements of
the subgroup H ⊂ G act on elements of the group G. The continuous translation-
function is just the function τ : G∗ → H : (g, g′) → g′−1g, that is, (g, gh) →
h−1g−1g = g. Therefore, ξ = (G, p,G/H) is a principal H-bundle.

�

To define the bundle (SU(2), p,CP 1) and to show that it is a principal U(1)-
bundle, let us define an action of U(1) on SU(2) in the following way:

x(g) =
(
x1,1 x1,2

x2,1 x2,2

)(
g 0
0 1

)
=
(
x1,1g x1,2

x2,1g x2,2

)

for x =
(
x1,1 x1,2

x2,1 x2,2

)
∈ SU(2) and (g) ∈ U(1). Since |(g)| = 1, this is a map

SU(2)×U(1)→ SU(2). We can now define a bundle by h′1 = (SU(2), p, SU(2)/U(1))
which has fibre U(1). The following proposition will prove that this is the first Hopf
bundle.

Proposition 2.5. The bundle h′1 = (SU(2), p, SU(2)/U(1)) is a principal U(1)-
bundle with base space CP 1, and is isomorphic to the first Hopf bundle.

Proof. The projection p is defined by p : SU(2)→ SU(2)/U(1) : g → G mod U(1),
and since U(1) is a subgroup of SU(2), this proposition also gives us that h′1 =
(SU(2), p, SU(2)/U(1)) is a principal U(1)-bundle.
To show that it is isomorphic to the first Hopf bundle, I will show that SU(2) ' S3,
U(1) ' S1 and CP 1 ' S2.
U(1) is isomorphic to S1 as shown in example 1.14.
SU(2) is homeomorphic with S3, and this can be shown in the following way: an

element of SU(2) is of the form
(
α −β∗
β α∗

)
with α, β ∈ C and α2 + β2 = 1.

This formula defines the sphere S3 ⊂ C2, and since SU(2) gets its topology from
injection Euclidean complex space, S3 and SU(2) are homeomorphic.
S2 and CP 1 are homeomorphic, since CP 1 is given by the complex lines in C2, it
can be seen as the Riemann sphere, and is just the sphere S2 up to homomorphism.
To show that CP 1 ' SU(2)/U(1), CP 1 is given by the complex lines in C2, and
SU(2)/U(1) is given by the 2 by 2 matrices with determinant 1 where the ele-

ments of the form
(
x 0
0 1

)
are glued to a point. Since we can see SU(2) as S3,

SU(2)/U(1) is S3 with the circles U(1) glued to a point, and this is the same as
C2 with the complex lines glued to a point, that is, CP 1 ' SU(2)/U(1).
This completes the proof. �

This first Hopf bundle can be generalized to the bundle (SU(n), p,CPn−1 '
SU(n)/U(n − 1)). This is a bundle with spheres as total space, base space and
fibre only when n ∈ {1, 2} (when n = 1, it is the trivial Hopf bundle (SU(1) '
S1, p, SU(1)/U(0) ' S1/S0)). But for each n ∈ N, it is a principal U(n−1)-bundle,
and for n = 2, it is the first Hopf bundle.



CLASSIFYING SPACES 15

In general, define the action of U(n− 1) on SU(n) by

xg = x


g1,1 . . . g1,n−1 0

...
. . .

...
...

gn−1,1 . . . gn−1,n−1 0
0 . . . 0 1


for x ∈ SU(n) and g ∈ U(n− 1), given by matrix multiplication.

Proposition 2.6. For each n ∈ N, (SU(n), p,CPn−1 ' SU(n)/U(n − 1)) is a
principal U(n− 1)-bundle.

Proof. Since for each n ∈ N, U(n−1) is a subgroup of SU(n), proposition 2.4 gives
us that (SU(n), p, SU(n)/U(n−1)) is a principal U(n−1)-bundle. CPn−1 is given
by the complex lines in Cn, and SU(n) can be injected into Cn in an analogue way
as SU(2) is injected in C2 in proposition 2.5. SU(n)/U(n − 1) is then given in
the same way as an element of CPn−1 is given, and they have the same topology.
Therefore CPn−1 ' SU(n)/U(n− 1). This completes the proof. �

2.1. Quantum Entanglement. We will now discuss an application of the Hopf
bundle h2 in standard non-relative quantum mechanics2. In this application an ex-
plicit projection p will be given. For this some explanation of quantum mechanical
notation is needed, and this explanation will be given first.

We will discuss a qubit state, that is, the quantum state of a two-level system.
An example of a two-level system is a system with only one particle, where this
particle has two possible outcomes upon measuring, for example, spin up and spin
down (what means that it is a spin-1/2 particle). Every other qubit state can be
seen as analogous to the one-particle spin-1/2 system3.
The state of such a qubit system is written as |ψ〉 = α|0〉 + β|1〉, where α, β ∈ C.
Upon measurement there are two possible outcomes, |1〉 (for example, spin up)
with chance |α|2

|α|2+|β|2 and |0〉 (for example, spin down) with chance |β|2

|α|2+|β|2 . In

calculations, |0〉 can be seen as the vector (1, 0)T and |1〉 can be seen as the vector
(0, 1)T , such that |0〉 and |1〉 span the space of possible states. This means that for
this given basis, the qubit state is |ψ〉 = α|0〉+ β|1〉 = (α, β)T .
〈ψ| is just the complex conjugate and transposed |ψ〉, such that 〈ψ||ψ〉 gives the
normal inner product. That means that 〈ψ| = α∗〈0|+ β∗〈1|.

Since the chances |α|2

|α|2+|β|2 and |β|2

|α|2+|β|2 do not change when the state |ψ〉 =
α|1〉 + β|0〉 is multiplied with a constant c ∈ C (and for some other reasons),
the space of the different possible states of the qubit is given by the complex lines
in C2, that is, CP 1.

We will now first translate the theory of the Hopf bundle into the language of
quantum mechanics using h1 and a qubit system as example. Let |ψ〉 = α|0〉+β|1〉

2The applications in this subsection are taken mostly from Dariusz Chruscinski, Geometric
Aspects of Quantum Mechanics and Quantum Entanglement, Journal of Physics: Conference
Series 30, 2006.

3This spin-1/2 system is well-described in David J. Griffiths, Inroduction to Quantum Mechan-
ics, Pearson Education, inc., New Jersey, Second edition, 2005 (first edition 1995), p. 171-177.
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be a normalized state vector of a qubit. The normalization requirement means
that |α|2 + |β|2 = 1 where α, β ∈ C. This formula defines a sphere S3. Now we
will define the bundle h1 on the qubit, that is, the bundle (S3, p,CP 1 ' S2), in
quantum-mechanical terms. This gives in mathematical terms how the possible
α, β ∈ C with |α|2 + |β|2 = 1 can be projected upon the possible states of the qubit.

Definition 2.7. Let hQM1 be the bundle defined by

hQM1 = {S3, pQM , S2}
with

pQM : S3 → S2 : ψ → (〈ψ|σ1|ψ〉, 〈ψ|σ2|ψ〉, 〈ψ|σ3|ψ〉)
where σi are the pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Proposition 2.8. hQM1 = {S3, pQM , S2} is a bundle with fibre S1 and is isomor-
phic to the first Hopf bundle.

Proof. For the first assertion we have to show that pQM is correctly defined. Let
us calculate the projection p(φ):

〈ψ|σ1|ψ〉 = |α|2 〈0|
(

0 1
1 0

)
|0〉+ αβ∗〈1|

(
0 1
1 0

)
|0〉

+ α∗β〈0|
(

0 1
1 0

)
|1〉+ |β|2 〈1|

(
0 1
1 0

)
|1〉

= 0 + α∗β + αβ∗ + 0 = α∗β + αβ∗

and in the same way 〈ψ|σ2|ψ〉 = αβ∗i − α∗βi and 〈ψ|σ3|ψ〉 = |α|2 − |β|2. Further
calculations give, where α = α1 + α2i and β = β1 + β2i, αn, βn ∈ R, that

〈ψ|σ1|ψ〉 = α∗β + αβ∗ = (α1 − α2i)(β1 + β2i) + (α1 + α2i)(β1 − β2i)
= 2(α1β1 + α2β2)

〈ψ|σ2|ψ〉 = αβ∗i− α∗βi = (α1 + α2i)(β1 − β2i)i− (α1 − α2i)(β1 + β2i)i
= 2(α1β2 − α2β1)

〈ψ|σ3|ψ〉 = |α|2 − |β|2 = α1α1 + α2α2 − β1β1 − β2β2

such that

|〈ψ|σ1|ψ〉|2 + |〈ψ|σ2|ψ〉|2 + |〈ψ|σ3|ψ〉|2

= |2(α1β1 + α2β2)|2 + |2(α1β2 − α2β1)|2 + |α1α1 + α2α2 − β1β1 − β2β2|2

=
∣∣∣|α|2 + |β|2)

∣∣∣2 = 1

When we take a = α1, b = α2, c = β1 and d = β2, the projection of this bundle is
the same as the projection of the first Hopf-bundle. Therefore the bundle hQM1 is
isomorphic to the first Hopf bundle and is a bundle with fibre S1.
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�

Remark 2.9. The fact that pQM : S3 → S2 : ψ → (〈ψ|σ1|ψ〉, 〈ψ|σ2|ψ〉, 〈ψ|σ3|ψ〉) is
the projection of the first Hopf bundle, can be physically understood by noticing
that 〈ψ|σ1|ψ〉 can be seen as the chance of measuring ’σ1’ upon measurement when
the state is ψ, 〈ψ|σ2|ψ〉 the chance for measuring ’σ2’, and 〈ψ|σ3|ψ〉 for measuring
’σ3’, where ’σ1’, ’σ2’ and ’σ3’ are the only possibilities. Therefore, these chances
must count op to one, and since the case is symmetric (there is no a priori difference
between σ1, σ2 and σ3), these possible measurements must be equally reached by
possible states, that is, elements of S3. Therefore, pQM constitutes a bundle with
fibre S1.

2.1.1. Composite 2-Qubit System. I will give a second example where a Hopf bun-
dle can help understanding a quantum-mechanical situation. This example also
gives an explicit projection formula for the second Hopf bundle. Here I will work
with a composite 2-qubit system, that is, a two-particle system where both the
particles are two-level systems, as in the normal qubit system. For example, both
are spin-1/2 particles, what means that they can have spin up or spin down upon
measurement.
Such a 2-qubit state can be given by |ψ〉 = α|00〉+β|10〉+γ|01〉+δ|11〉. This means
that upon measurement, there are four possible outcomes |00〉, |10〉, |01〉 and |11〉
(both spin down, one up second down, one down second up, both spin down) with
chances |α|2

|α|2+|β|2+|γ|2+|δ|2 , |β|2

|α|2+|β|2+|γ|2+|δ|2 , |γ|2

|α|2+|β|2+|γ|2+|δ|2 and |δ|2

|α|2+|β|2+|γ|2+|δ|2 .

The state is normalized if ‖α‖2 + ‖β‖2 + ‖γ‖2 + ‖δ‖2 = 1 where α, β, γ, δ ∈ C. This
formula defines S7.
The space of all different possible states is a tensor product of the spaces of different
possible states of each of the two particles, what means that it is CP 1 ⊗ CP 1.
If |ψ1〉 is a state of particle one and |ψ2〉 is a state of particle 2, then the joined
system state is |ψ1ψ2〉 = |ψ1〉 ⊗ |ψ2〉. But in general, a composite 2-qubit state
cannot be written in this way. If a composite 2-qubit state |ψ〉 can be written as
|ψ1ψ2〉 = |ψ1〉 ⊗ |ψ2〉 where |ψ1〉 is a state for the first particle and |ψ2〉 is a state
for the second particle, then it is called a separable state.

Here I will give a criteria for a 2-qubit state to be separable using the bundle
h2. The next proposition gives a good starting criteria to know when a state is
separable.

Proposition 2.10. A 2-qubit state |ψ〉 = α|00〉+β|10〉+ γ|01〉+ δ|11〉 is separable
iff αδ = γβ.

Proof. A 2-qubit |ψ〉 is separable if it can be written |ψ〉 = |ψ1〉 ⊗ |ψ2〉 with |ψ1〉 =
a|0〉 + b|1〉 and |ψ2〉 = c|0〉 + d|1〉 where a, b, c, d ∈ C. This means that a state is
separable iff |ψ〉 = ac|00〉+ bc|10〉+ ad|01〉+ bd|11〉 holds.
If this holds, then αδ = acbd = bcad = βγ.
If, for the proof in the other direction, assume that αδ = βγ. Then, if δ = 0, it
follows that β = 0 or γ = 0. Assume that β = 0, then define b = 0, a = 1, c = α
and d = γ, then |ψ〉 = ac|00〉 + bc|10〉 + ad|01〉 + bd|11〉 holds. It is analogue for
γ = 0.
If α = 0, β = 0 or γ = 0, it can be shown in the same way that |ψ〉 = ac|00〉 +
bc|10〉+ad|01〉+bd|11〉 holds. Therefore we can assume that none of them are zero.
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Let d ∈ C, define a = γ/d, b = δ/d and c = α/a = dα/γ. Now we can prove that
β = bc holds, in the following way: bc = (δ/d)(dα/γ) = αδ/γ = β. Therefore, we
are done. Note that we can choose d ∈ C randomly, because we have a choice to
make what basis we use for the states of the separated particles. �

Let me introduce the operator E : C2 ⊗ C2 → C2 ⊗ C2, defined by

E|ψ〉 = (σ2 ⊗ σ2)(|ψ〉)∗

Using E, let x0 . . . x4 be defined by

x0 = 〈ψ|σ3 ⊗ 1|ψ〉
x1 = 〈ψ|σ1 ⊗ 1|ψ〉
x2 = 〈ψ|σ2 ⊗ 1|ψ〉
x3 = Re(〈ψ|E|ψ〉)
x4 = Im(〈ψ|E|ψ〉)

The next theorem says that the above map |ψ〉 → (x0, x1, x2, x3, x4) defines a
Hopf bundle (S7, p, S4). This means that the projection of the second Hopf bundle
can be given by p : S7 → S4 : |ψ〉 → (x0, x1, x2, x3, x4).

Proposition 2.11. The bundle (S7, p, S4) with p : S7 → S4 : |ψ〉 → (x0, x1, x2, x3, x4)
is correctly defined and is the second Hopf bundle.

Proof. For p to be correctly defined, x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 1 must hold. This

follows trivially from some calculations using |ψ〉 = α|00〉 + β|10〉 + γ|01〉 + δ|11〉
and ‖α‖2 + ‖β‖2 + ‖γ‖2 + ‖δ‖2 = 1, for example

x0 = 〈ψ|σ3 ⊗ 1|ψ〉

= (α∗〈00|+ β∗〈10|+ γ∗〈01|+ δ∗〈11|)
(

1 0
0 −1

)
⊗
(

1 0
0 1

)
(α|00〉+ β|10〉+ γ|01〉+ δ|11〉)

= (α∗〈00|+ β∗〈10|+ γ∗〈01|+ δ∗〈11|)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (α|00〉+ β|10〉+ γ|01〉+ δ|11〉)

= |α|2 + |β|2 − |γ|2 − |δ|2

Further calculations show that

x1 = 2(α1γ1 + α2γ2) + 2(β1δ1 + β2δ2)
x2 = 2(α1γ2 − α2γ1) + 2(β1δ2 − β2δ1)
x3 = 2RE(−αδ + βγ) = 2(α2δ2 − α1δ1) + 2(β1γ1 − β2γ2)
x4 = 2Im(αδ − βγ) = 2(α1δ2 + α2δ1)− 2(β1γ2 + β2γ1)
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what means that the projection can be written

p : S7 → S4 :
(α1, α2, β1, β2, γ1, γ2, δ1, δ2) → (α2

1 + α2
2 + β2

1 + β2
2 − γ2

1 − γ2
2 − δ21 − δ22 ,

2(α1γ1 + α2γ2) + 2(β1δ1 + β2δ2),
2(α1γ2 − α2γ1) + 2(β1δ2 − β2δ1),
2(α2δ2 − α1δ1) + 2(β1γ1 − β2γ2),
2(α1δ2 + α2δ1)− 2(β1γ2 + β2γ1))

x0, . . . , x4 are all defined in a continuous and open way, and therefore p is continuous
and open.
The projection is surjective and a point on S4 is reached by a sphere S3 on S7. �

The special thing about this bundle, is that we can tell whether the 2-qubit
state is separable, by looking at the bundle. Since x3 = 2RE(−αδ + βγ) and
x4 = 2Im(αδ − βγ)(as one can check with some calculations, see proof of next
proposition), they are both 0 if and only if the state is separable. This is what the
final proposition of this chapter gives us.

Proposition 2.12. A state of a 2-qubit system is separable iff its image under the
Hopf map belongs to the 2-dimensional sphere defined by the intersection of S4 with
the plane x3 = x4 = 0.

Proof. The only thing that is left to be proven is that x3 = 2RE(−αδ + βγ) and
x4 = 2Im(αδ − βγ) hold. Now,

〈ψ|E|ψ〉 = 〈ψ|(σ2 ⊗ σ2)(|ψ〉)∗ =

= 〈ψ|


0 0 0 −i · −i
0 0 −i · i 0
0 −i · i 0 0
i · i 0 0 0

 (|ψ〉)∗

= −α∗δ∗ + β∗γ∗ + β∗γ∗ − α∗δ∗

= −2α∗δ∗ + 2β∗γ∗

x3 = RE(〈ψ|E|ψ〉) = RE(−2α∗δ∗ + 2β∗γ∗) = 2RE(−αδ + βγ)
x4 = IM(〈ψ|E|ψ〉) = IM(−2α∗δ∗ + 2β∗γ∗) = 2IM(αδ − βγ)

Now, x3 = 0 and x4 = 0 clearly hold if and only if αδ − βγ = 0. This completes
the proof. �
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3. Classifying Spaces

3.1. PrincG(B) and KG.

Definition 3.1. Let PrincG(B) be the set of isomorphism classes of numerable
principal G-bundles over B. Denote the isomorphism class of ξ by {ξ}.
For a homotopy class [f ] : X → Y define a function KG([f ]) : PrincG(Y ) →
PrincG(X) by the relation KG([f ]){ξ} = {f∗(ξ)}.
Let H denote the category of all spaces and homotopy classes of maps.

Remark 3.2. The function KG([f ]) : PrincG(Y ) → PrincG(X) is well defined
using homotopy classes of maps [f ] : X → Y to send isomorphism classes of nu-
merable principal G-bundles over Y to isomorphism classes of numerable principal
G-bundles over X, since when f1 and f2 are homotopic, their pull-back bundles
f∗1 (ξ) and f∗2 (ξ) are isomorphic (see proposition 1.26).

3.2. Universal Principal G-Bundles. We will now define when a principal G-
bundle is universal. We will call a principal G-bundle (E, p,B) universal if for any
space X there is a bijection between the homotopy classes of functions from X to
B and isomorphism classes of numerable principal G-bundles over X, or, formally
defined:

Definition 3.3. For each spaceX and for each principalG-bundle ω = (E0, p0, B0),
let φω(X) : [X,B0] → PrincG(X) be defined by the relation φω(X)[u] = {u∗(ω)}.
A principal G-bundle ω = (E0, p0, B0) is universal provided that ω is numerable
and φω : [−, B0]→ PrincG(−) is an isomorphism.
We say that ω = (E0, p0, B0) is universal for G-bundles on finite CW -complexes
provided that ω is numerable and φω : [X,B0] → PrincG(X) is a bijection for all
finite CW -complexes X.

φω : [−, B0] → PrincG(−) is an isomorphism if and only if each function φω :
[X,B0] → PrincG(X) is a bijection for all X. This gives rise to the following
criterium of universality.

Proposition 3.4. Let ω = (E0, p0, B0) be a numerable principal G-bundle. Then
ω is universal if and only if the following are true.

(1) For each numerable principal G-bundle ξ over X there exists a map f : X →
B0 such that ξ and f∗(ω) are isomorphic over X.

(2) If f, g : X → B0 are two maps such that f∗(ω) and g∗(ω) are isomorphic
over X, then f and g are homotopic.

Proof. We will prove that (1) says that φω(X) is surjective and that (2) says it’s
injective.
Now, (1) says that for every numerable principal G-bundle over X, that is, for
every element of PrincG(X), there is a map f : X → B0 such that ξ and f∗(ω)are
isomorphic over X, what means that for every element ξ ∈ PrincG(X), there is an
map f such that φω(X)[f ] = {f∗(ω)} ' {ξ}. This means that (1) says that φω(X)
is surjective.
(2) says that for any element ξ ∈ PrincG(X), if φω(X)[f ] = {f∗(ω)} = {ξ} and
φω(X)[g] = {g∗(ω)} = {ξ}, that then follows that f and g are homotopic, or in
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other words, [f ] = [g]. This means that φω(X) is injective.
�

Later we will prove that this criterium of universality is equivalent to the cri-
terium that the Total space E0 is contractible.

3.3. Definition of a Classifying Space.

Definition 3.5. A classifying space for a topological group G is a Base space B0

of a universal principal G-bundle ω = (E0, p0, B0).

B0 is called a classifying space because it classifies principal G-bundles in the
following sense. For any space X, there is a 1 − 1 correspondence between the
homotopy classes [f ] of maps from X to B0, and the isomorphism-classes {ξ} of
principal G-bundles over X, using the pull-back bundle φω(X)[f ] = {f∗(ω)}. This
means that the bundle ξ = (P, p,X) is reconstructed as the pullback of E0 over B0

via φω(X).

I will first give two examples of bundles that do not make the base space into
a classifying space for the given group, since they are not universal. These exam-
ples will help clarify what is special about classifying spaces.

Example 3.6. Let R be the group of real numbers with addition as group operator,
and let ω = (R⊕R, p : R⊕R→ 1⊕1 : (i, r)→ i),1⊕1) be the principal R-bundle,
where R⊕R ' {(i, r) ∈ {1, 2}×R} is the disjoint union of R and R, 1⊕1 ' {1, 2}
is the disjoint union of two points, and the projection p sends a point (1, r) on the
first line, r ∈ R, to the first point, and sends a point (2, r) on the second line, r ∈ R,
to the second point. This clearly is a principal R-bundle, but it is not universal.
To show this, let X = R be the topological space consisting of the real line, then
there are two functions f0 : X → 1 ⊕ 1 : x → 1 (sending x to the first point)
and f1 : X → 1 ⊕ 1 : x → 2 (sending x to the second point). It is clear that
f∗0 (ω) ' f∗1 (ω) ' (R × R, p : R × R → R : (r1, r2) → r1,R), but f1 and f2 are not
homotopic maps(f1(x) cannot be pulled from the first point to the second point
continuously). There is not 1-1 correspondence between the homotopy classes [f ] of
maps from X to B0, and the isomorphism-classes {ξ} of principal G-bundles over
X, using the pull-back bundle φω(X)[f ] = {f∗(ω)}.

Example 3.7. The principal R-bundle that has the cylinder as total space, ω =
(S1 × R, p : S1 × R → S1 : (φ, r) → φ), S1), is also not a universal bundle. Let
X = S1. There are again two maps f0 : X → S1 : φ→ φ and f1 : X → S1 : φ→ −φ
which constitute isomorphic pull-back bundles f∗0 (ω) ' (S1 × R, p : S1 × R→ S1 :
(φ, r) → φ), S1) ' f∗1 (ω), but the maps f1 and f2 are not homotopic. f1 runs
counterclockwise and f2 runs clockwise, and these maps cannot be homotopic since
the hole in the circle cannot be passed continuously.

Proposition 3.8. Let G be a topological group, and let ξ1 = (E1, p1, B1) and
ξ2 = (E2, p2, B2) be two universal numerable principal G-bundles. Then B1 and
B2 are homotopic equivalent as spaces, and E1 and E2 are homotopic equivalent as
spaces.

Proof. Let ξ1 = (E1, p1, B1) and ξ2 = (E2, p2, B2) be two universal numerable
principal G-bundles. Then there is a unique homotopy class {f} of functions
f : B1 → B2 with f∗(ξ2) ' ξ1, and there is a unique homotopy class {g} of
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functions g : B2 → B1 with g∗(ξ1) ' ξ2.
Since f∗(g∗(ξ1)) ' ξ1, it follows that, when changing f, g up to homotopy, g ◦ f =
idB1 and analoque that f ◦ g = idB2 . Therefore, B1 and B2 are homotopic equiva-
lent as spaces.

An element e1 ∈ E1 can be written e1 = p(e1)τ(p(e1), e1) = b1g1 where b1 ∈ B1

and g1 ∈ G. Then, define i : E1 → E2 : b1g1 → f(b1)g1, and define j : E2 → E1 :
b2g2 → g(b2)g2. Then i ◦ j(b1g1) = i(f(b1)g1) = gf(b1)g1 = b1g1, and therefore
i ◦ j = idE2 . In the same way, j ◦ i = idE1 . Therefore, E1 and E2 are homotopic
equivalent as spaces. �

It is not trivial to see that there exists a classifying space for a group like S1.
At the end of this section a classifying space of S1 and some other examples of
classifying spaces of Lie groups will be given. Before I can do this, another criterium
of universality will be given and proved. General constructions of classifying spaces
for any group will be considered in the next two sections, from which shall follow
that for any topological group, there exists a classifying space.

3.4. Contractibility and Universality. The next proposition gives a criterium
for a numerable principalG-bundle to be universal. It says that a bundle is universal
if the total space is contractible. This criterium is much easier to use in explicit
examples then the criterium given before, such that we can easily see when a bundle
is universal.

Proposition 3.9. Let η = (E, p,B) be a numerable principal G-bundle. If E is
contractible, η is universal and B is a classifying space.

Remark 3.10. The inverse, that when ξ is universal and B is a classifying space, E
is contractible, is also true. This can be proven in the following way. Proposition
3.8 has as a corollary that if there is a universal principal numerable G-bundle with
a contractible total space E, then all universal principal numerable G-bundles have
a contractible total space. In the next section a construction of a universal principal
numerable G-bundle will be given for any group G, and it can be shown that this
construction constructs a contractible total space. Therefore, for any topological
group G, all universal principal numerable G-bundles have a contractible total
space, what means that the inverse of proposition 3.9 is also true.

For proving proposition 3.9, the following lemma is necessary:

Lemma 3.11. A numerable principal G-bundle over B with contractible fibre has
the property: If a section over A ⊂ B can be extended to a neighborhood V =
τ−1(0, 1] of A ⊂ τ−1(1), where τ : B → [0, 1] is continuous, then it can be extended
over B. This possibility to be extended to a neighborhood V = τ−1(0, 1] of A ⊂
τ−1(1) is called the section extension property or SEP.

Dold gave a proof of this lemma in an 1962 article4. The proof is very technical
and extensive and there is no need to give it here.

Proof. (of proposition 3.9)I will give the proof Dold gave in the 1962 article5. The
proof will first show that for any X φη : [X,B]→ PrincG(X) is surjective and then

4Albrecht Dold, Partitions of unity in the Theory of Fibrations, 2.7, p. 229
5Same, 7.5, p. 249
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that it is injective. He does this in a way you could expect; he first proves that if η
is a universal principal G-bundle, then for an arbitrary principal G-bundle ζ, there
is a bundle map ζ → η, that is, ζ can be construed as the pullback of η over this
map. Then he shows that if f0, f1 : X → B induce equivalent bundles, then there
is a homotopy between f0 and f1.
He writes Eη for the total space of a principal G-bundle η, and in the same way Bη
and pη as the base space and the projection.

Assume Eη is contractible. Let ζ be an arbitrary principal G-bundle, and define a
new bundle (ζ, η) over X = Bζ as follows. The fibre (ζ, η)x of (ζ, η) over x ∈ X
consists of all admissible maps (bundle maps) of ζx into η; clearly (ζ, η)x ≈ Eη
(these maps are determined by the image of one point). The local product struc-
ture in ζ gives a local product structure in (ζ, η). In fact, (ζ, η) is the associated
bundle of ζ with fibre Eη on which G operates by (g, e)→ eg−1, e ∈ Eη, g ∈ G. In
particular, (ζ, η) is numerable if ζ is numerable.
A section s in (ζ, η) over V ⊂ X associates, in a continuous fashion, with every
v ∈ V a map sv : ζ → η, i.e., a section s over B is the same as a bundle map
ζ|V → η.
If Eη is contractible and ζ is numerable then p(ζ,η) : E(ζ,η) → X has the section
extension property [see lemma 3.11]. In particular, (ζ, η) admits a section, i.e., ζ
admits a bundle map ζ → η. This shows φη(X) is surjective.
If f0, f1 : X → B induce equivalent bundles ζi = f∗i ζ, i = 0, 1, let si : ζ → η be the
induced bundle maps, and h : ζ0 → ζ1 an equivalence. Define ζ = ζ0 × [0, 1] (this
is a bundle over X × [0, 1]; cf. Steenrod 11.1), and a partial map of ζ,

s : ζ|X × ([0,
1
2
∪ 1

2
, 1])→ η,

s (z, t) =
{
s0(z) for t < 1

2
s1h(z) for t > 1

2 , z ∈ Eζ0

View s as a section of (ζ, η) over X × ([0, 1
2 ∪

1
2 , 1]). Since this set is a halo around

X× ({0}∪{1})(cf. 2.1 [in Dold; A halo around A ⊂ B is a subset V of B such that
there exists a continuous function τ : B → [0, 1] with A ⊂ τ−1(1), V ⊂ τ−1(0)]; take
τ(x, t) = |2t− 1|), there exists a global section S in (ζ, η) which agrees with s over
X×({0}∪{1}), i.e, there exists a bundle map S : ζ → η which over X× ({0}∪{1})
agrees with s. On the base, we then have Bs : X × [0, 1] = Bζ → Bη, a homotopy
between f0 and f1. Therefore φη(X) is injective.

�

3.5. A few examples: Classifying Spaces of Lie Groups. Some examples of
classifying spaces of Lie groups will now follow. A Lie group is a differentiable
manifold that obeys the group properties and that satisfies the condition that the
group operations are differentiable. Our first example of a Lie Group is R under
addition.

Example 3.12. Take G = {R,+} the Lie-group of the real line under addition.
Define EG = R and BG = 1. Take ω = (EG, p, BG) = (R, p, {1}). Since R is
contractible, this defines a classifying space. Let X be a space, then the only
function f : X → BG is the trivial one, and the only isomorphism-class of principal
G-bundles over X is the trivial {ξ} = (X × R, p,X).
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The next two examples give classifying spaces of the Lie Groups Z and Z2.

Example 3.13. Take G = Z and take as the total space the real line R. Z acts
free on R by standard multiplication. Therefore BG = R/Z = S1 is a classifying
space of the Lie group Z.

Example 3.14. Take G = Z2 and take as total space the space EG = S∞. Since
S∞ is still a contractible space, the bundle (S∞, p, BG) is universal where the
base space BG is EG = S∞/Z2, which is the same as the infinite dimensional real
projective space RP∞. RP∞ is a classifying space of the Lie group Z2.

The final example will give a classifying space of the circle group, seen as U(1).

Example 3.15. Take G = U(1) and define EG = S∞ = limn→∞ Sn, the infi-
nite dimensional sphere in Euclidean complex space (it therefore has an Euclidean
topology). We can let U(1) act freely on S∞ by rotation. Since S∞ is a contractible
total space (generally Sn is contractible in n−1 dimensions, what means that S∞ is
contractible in all dimensions), the bundle (S∞, p, S∞/U(1)) is universal and gives
rise to a classifying space of U(1) : S∞/U(1) is given by the complex lines in C∞
and is CP∞, what means that the space CP∞ is the classifying space of the circle
group U(1).
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4. Milnor’s Construction

It is not trivial from the definition of a classifying space, that there is a classifying
space for every topological group G. This is nonetheless true. In this section
and in the next I will give two constructions of classifying spaces for an arbitrary
topological group G.
The Milnor’s construction constructs a topological space EG out of an arbitrary
group G. This topological space EG is a G-space and BG ≡ EG/G is a classifying
space, where the bundle is given by ωG = (EG, p, BG). EG will now be defined.

4.1. The Construction.

Definition 4.1. The total space EG in Milnor’s construction is the space

EG = (G ∗G ∗ · · · ∗G ∗ . . . )/ ∼ (an infinite join)

defined as follows: an element of EG is written 〈x, t〉 ∈ EG and stands for

〈x, t〉 = (t0x0, t1x1, . . . , tnxn, . . . )

where xi ∈ G and ti ∈ [0, 1] such that there are only a finite number of ti 6= 0 and
such that

∑
0≤i ti = 1. The equivalence ∼ is defined by 〈x, t〉 ∼ 〈x′, t′〉 provided

that ti = t′i for all i, and if ti = t′i > 0, xi = x′i. In other words, two elements are
the same if they have the same t, and for each i where ti is not 0, they have the
same xi. That means that when ti is zero, it does not matter what xi is.
Define a right action of G on EG by 〈x, t〉g = 〈xg, t〉, what means that

(t0x0, t1x1, . . . , tnxn, . . . )g = (t0x0g, t1x1g, . . . , tnxng, . . . )

We must now define a topology on EG. For this, define two families of functions:
let

ti : Eg → [0, 1] : (t0x0, t1x1, . . . , tnxn, . . . )→ ti

and

xi : ti−1(0, 1]→ G : (t0x0, t1x1, . . . , tnxn, . . . )→ xi

Note that xi is not defined for i when ti = 0, because xi does not matter there.
Now, let EG be the space with the smallest topology such that each function ti :
Eg → [0, 1] and xi : ti−1(0, 1]→ G is continuous, where ti−1(0, 1] has the subspace
topology.
Let

BG ≡ EG/G

and let the bundle be defined by

ωG = (EG, p, BG).

In the next proposition says that ωG = (EG, p, BG) is a numerable principal
G-bundle.

Proposition 4.2. ωG = (EG, p, BG), as obtained in Milnor’s construction, is a
numerable principal G-bundle.
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Proof. There are several things to show here. First I will show that the topology on
EG is well defined and that G acts on it freely. After that I will give a continuous
translation-function τ , what means that ωG = (EG, p, BG) is a principal G-bundle.
Finally I will show that it is numerable.
Since the set EG is a set, it has several topologies, one of them the discrete topology,
that is, all subsets of EG as topology. In this topology, ti and xi are continuous, so
there is a topology in which these functions are continues. The topology on EG is
well defined as being the smallest topology having this property.
Since (t0x0, . . . , tkxk, . . . ) ∈ EG implies that there is an i such that ti 6= 0, it follows
that, for g ∈ G, if (t0x0, . . . , tkxk, . . . )g = (t0x0, . . . , tkxk, . . . ), then xig = xi, where
xi ∈ G, and this is only possible if g = 1. So G acts freely on EG.
Define τ , for an i (for example the smallest i) such that ti 6= 0, as

τ : {(〈x, t〉, 〈x, t〉g) ∈ EG × EG|〈x, t〉 ∈ EG, g ∈ G} → G

τ(〈x, t〉, 〈x′, t〉) = xi(〈x, t〉)−1xi(〈x′, t〉)

Then

〈x, t〉τ(〈x, t〉, 〈x′, t〉) = 〈x, t〉xi(〈x, t〉)−1xi(〈x′, t〉)
= 〈t0x0x

−1
i xig, . . . , tnxnx

−1
i xig, . . . 〉

= 〈x, t〉g = 〈x′, t〉

Consequently, ωG = (EG, p, BG) is a principal G-bundle.

Finally, to show that ωG is numerable, define the map ui : BG → [0, 1] with
the property that uip = ti on EG. Since ti(ag) = ti(a) for any g ∈ G, ui is unique
and well-defined. Now define

wi : BG → [0, 1]

wi(b) = max(0, ui(b)−
∑
j<i

uj(b))

For b ∈ B, let m be the smallest i such that ui(b) 6= 0, and let n be the largest(since
there only a finite number of ti 6= 0, this is possible). Then we have

∑
m≤i≤n ui(b) =

1. Then um(b) = wm(b) and BG is covered by the open sets w−1
i (0, 1]. For i > n

and for all b′ with
∑

0≤i≤n ui(b
′) > 1

2 , we have wi(b′) = 0. Since ui(b) = 0 for n < 1,
it follows that the set consisting of all these b′, Nn(b), is an open neighborhood of
b such that Nn(b) ∩ w−1

i (0, 1] is empty for i > 1. The open covering {wi(0, 1]} is
locally finite. For it to be a partition of unity, replace wi with vi = wi/

∑
j wj .

Hence ωG = (EG, p, BG) is numerable. �

What is left to be shown is that this bundle ωG = (EG, p, BG) is universal.
Before I do this, I will give some examples to clarify the Milnor’s construction in
some specific cases of a group G. For this examples, I will now define the subspaces
EG(n) ⊂ EG and BG(n) ⊂ BG.

Definition 4.3. For every n, the subspaces EG(n) ⊂ EG and BG(n) ⊂ BG are the
subspaces such that (t0x0, t1x1, . . . ) ∈ EG(n) provided that ti = 0 for i > n, with
p(EG(n)) = BG(n).
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Example 4.4. Take G = Z2. Then the elements of EG(1) are of the form (t01̂, t11̂),
(t00̂, t11̂), (t01̂, t10̂) and (t00̂, t10̂), where t0, t1 ∈ [0, 1] and t0 + t1 = 1 and 1̂, 0̂
are the elements of Z2. These four forms of elements constitute four line pieces,
and these four line pieces are glued together by the relations (01̂, 11̂) = (00̂, 11̂),
(01̂, 10̂) = (00̂, 10̂), (11̂, 01̂) = (11̂, 00̂) and (10̂, 01̂) = (10̂, 00̂). Therefore, EG(1) is
just S1 up to homeomorphism and the action of Z2 on EG(1) = S1 is given by the
identity and the antipodal map. The space BG(1) is given by S1/Z2 ' RP 1 ' R,
the real line. S1 is not contractible in one dimension, so this bundle (S1, p, RP 1)
is not universal.
In the same way, the space EG(n) is just the n-sphere Sn up to homeomorphism,
and the action of Z2 on EG(n) = Sn is given by the identity and the antipodal
map. The space BG(n) is given by the real lines in Rn: BG(n) = RPn. Sn is
contractible in n− 1 dimensions.
The Total space EG is S∞ and the Base space BG is BG = RP∞ and the corre-
sponding bundle (S∞, p, RP∞ ' S∞/Z2) is contractible in all dimensions and thus
universal.

Example 4.5. Take G = S1. Then the elements of EG(1) are of the form
(t0x0, t1x1) where x0, x1 ∈ S1 and t0, t1 ∈ [0, 1] such that t0 + t1 = 1, and
this is glued together by, for any x0, x1, x

′
0, x
′
1 ∈ S1, (0x0, 1x1) = (0x′0, 1x1) and

(1x0, 0x1) = (1x0, 0x′1). The space EG(1) is just S3 up to homeomorphism, and
the action from G on S3 is given by the standard multiplication with eiδ ∈ S1. The
base space is BG(1) ' S3/S1 ' CP 1, the projective space of (complex) lines in C2,
which is homeomorphic to S2.
The space EG(n) is just S2n+1 up to homeomorphism, and the action is the stan-
dard multiplication. The space BG(n) is CPn, the n-dimensional projective space.
S2n+1 is contractible in 2n dimensions.
The space EG is S∞ and BG is CP∞, and the corresponding bundle is universal.

4.2. Universality. We will now prove that the bundle as obtained in Milnor’s
construction is universal for any group G.

Proposition 4.6. ωG = (EG, p, BG), as obtained in Milnor’s construction, is uni-
versal.

Proof. As proof I will give two lemmas, this proposition will follow trivially from
the lemmas. The first lemma gives that the first criterium of proposition 3.4 is met,
and the second lemma gives that the second criterium of proposition 3.4 is met. �

Lemma 4.7. Let ωG = (EG, p, BG) be the principal G-bundle that comes from
Milnor’s construction. Then, for each numerable principal G-bundle ξ over a space
B, there exists a map f : B → BG such that ξ and f∗(ωG) are isomorphic principal
G-bundles.

Proof. It is enough to show that there is a G-morphism (g, f) : ξ → ωG, for then
ξ and f∗(ωG) are isomorphic6. I will first show that there is a countable partition
of unity {un}0≤n on B such that ξ|u−1

n (0, 1] is trivial for n ≥ 0. After that I will
define g and with that f , such that (f, g) will prove the lemma.
Let {vi}i∈T be a partition of unity on B, such that ξ is trivial over each v−1

i (0, 1].

6This is shown in Dale Husemoller, Fibre bundles, New york: Springer-Verlag, 1994, Third
edition (first edition 1966), chapter 4, 4.2 (p. 44).
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This is possible since ξ is numerable. For each b ∈ B, we denote the finite set of
i ∈ T with vi(b) > 0 by S(b), and for each finite subset S of T we denote the open
set of b ∈ B such that vi(b) > vj(b) for each i ∈ S, j ∈ T − S, by W (S). Let
us : B → [0, 1] be the continuous map defined by

us(b) = max[0, min
i∈S,j∈T−S

(vi(b)− vj(b))]

Then W (s) = u−1
s (0, 1].

Now let #S denote the number of elements in S. I claim that if #S = #S′, that
then W (S)∩W (S′) is empty. If S = S′ this is trivial, if not, then S−S′ and S′−S
are both non-empty. Let i ∈ S − S′ and let j ∈ S′ − S. Let B ∈ W (S) ∩W (S′),
then vi(b) > vj(b) because b ∈ W (S) and vj(b) > vi(b) because b ∈ W (S′), which
is a contradiction.
Now denote Wm and wm(b) by

Wm =
⋃

#S=m

W (S) and wm(b) =
∑

#S=m

uS(b)

Then we have w−1
m (0, 1] = Wm. Let um(b) = wm(b)/

∑
0≤n wn(b), then the family

{un} is the desired partition of unity since u−1
n (0, 1] = Wn. Since ξ|v−1

i (0, 1] is
trivial, ξ|u−1

S (0, 1] is trivial, what means that ξ|Wn is trivial because ξ|W (S) is
trivial and Wn is a disjoint union.

Now lets find a G-morphism (g, f) : ξ → ωG to prove the lemma. Let, as we
just proved that exists, {un}0≤n be a countable partition of unity on B such that
ξ|u−1

n (0, 1] is trivial for n ≤ 0. Let hn : u−1
n (0, 1] × G → E(ξ|u−1

n (0, 1]) ⊂ E(ξ) be
an isomorphism defining the locally trivial character of ξ(it has this character since
{un} exists as it does). Now define g : E(ξ)→ EG by the relation

g(z) = (u0p(z)(qoh−1
0 (z)), . . . , unp(z)(qnh−1

n (z)), . . . )

where qn : Un × G → G is the projection on the second factor. If for a z ∈ E(ξ),
the map h−1

n is undefined, we have un(pz) = 0 what means that the map g is well
defined. Since, for each s ∈ G, hn(zs) = hn(z)s and p(zs) = p(z),the relation
g(zs) = g(z)s holds. The map induces f : B → BG, using the projection maps p,
and (g, f) : ξ → ωG is a bundle morphism. �

Lemma 4.8. Let ωG = (EG, p, BG) be a universal principal G-bundle that comes
from Milnor’s construction. Let f0, f1 : X → BG be two maps such that f∗0 (ωG)
and f∗1 (ωG) are isomorphic. Then f0 and f1 are homotopic.

Proof. First we will consider several maps, after which we can define a G-morphism
(k, f) : ξ × [0, 1] → ωG with f |X × 0 = f0 and f |X × 1 = f1, what will prove the
lemma.
Let EodG denote the subspace of all (x, t) ∈ EG with t2i+1 = 0 for all i ≥ 0, and let
EevG denote the subspace of all (x, t) ∈ EG with t2i = 0 for all i ≥ 0. Let BodG be the
subspace p(EodG ) and let BevG be the subspace p(EevG ). Define the linear functions
αn by

αn : [1− (1/2)n, 1− (1/2)n+1]→ [0, 1]
αn(t) = 2n+1t− 2n+1 + 2



CLASSIFYING SPACES 31

Then αn(1 − (1/2)n) = 0 and αn(1 − (1/2)n+1) = 1. We define the homotopy
hods : EG → EG by hods (x, t) = (x′, t′) such that hods (x, t)y = hods (xy, t) with, for
s ∈ In = [1− (1/2)n, 1− (1/2)n + 1],

x′i =

 xi 0 ≤ i ≤ n
xn + j i = n+ 2j − 1 for 0 < j <∞
xn + j i = n+ 2j for 0 < j <∞

t′i =

 ti 0 ≤ i ≤ n
αn(s)tn−j i = n+ 2j − 1 for 0 < j <∞
(1− αn(s))tn−j i = n+ 2j for 0 < j <∞

and for s=1 the relation (x′, t′) = (x, t). This is well defined for s = 1−2n ∈ In∩In−1

as it should be. The homotopy is continuous since it is continuous on the locally
finite open covering of v−1

i (0, 1], where {vi} is the partition of unity. The maps
hods : EG → EG induce gods : BG → BG such that (hods , g

od
s ) : ωG → ωG is a homo-

topy of bundle morphisms. Note that hod0 (EG) = EodG and god0 = BodG . By a similar
construction we get (hevs , g

ev
s ) : ωg → ωG where hev0 = EevG and gev0 = BevG .

Now I claim that the bundles ωG, (god0 )∗ωG and (gev0 )∗ωG are all isomorphic. This
follows from (hod1 , g

od
1 ) = (hev1 , g

ev
1 ) = 1 and the fact that when there is a homotopy

ft from a space B′ to a space B with ξ a numerable principal G-bundle over B, the
principal G-bundles f∗0 (ξ) and f∗1 (ξ) are isomorphic.

For the final part of the proof, let ξ be any numerable principal G-bundle isomor-
phic to f∗0 (ωG) and f∗1 (ωG). Then f0 is homotopic to god0 f0 and f1 is homotopic
to gev0 f1. Consequently, when changing f0 and f1 up to homotopy, we can assume
that f0(X) ⊂ BodG and f1(X) ⊂ BevG .
Now we define the G-morphism (k, f) : ξ × [0, 1] → ωG with f |X × 0 = f0 and
f |X × 1 = f1. For k we have

k(z, 0) = (t0(z)x0(z), 0, t2(z)x2(z), 0, . . . )
k(z, 1) = (0, t0(z)x0(z), 0, t3(z)x3(z), . . . )

and we prolong this to k : E(ξ)× I → EG by the function

k(z, s) = ((1− s)t0(z)x0(z), st0(z)x0(z), (1− s)t2(z)x2(z), st3(z)x3(z), . . . )

Since, for y ∈ G, ti(zy) = ti(z) and xi(zy) = xi(z)y, we have k(zy, s) = k(z, s)y.
Then the map k(z, s) induces a map f : X × I → BG such that f(b, 0) = f0(b) and
f(b, 1) = f1(b). This proves the lemma. �

The conclusion is that, for any G, the bundle ωG = (EG, p, BG) which arises
from Milnor’s construction is universal, which means that BG is a classifying space.





CLASSIFYING SPACES 33

5. Simplicial Techniques

In this section I will provide constructions of classifying spaces using simplicial
techniques. First, I will give an appropriate criterium of universality, then sim-
plicial objects will be defined, after which universal principal G-bundles can be
constructed.

The following proposition is a characterization of the classifying spaces, given by
Steenrod7.

Proposition 5.1. Let G be a topological group, and let ξ = (E, p, Z) be a principal
G-bundle. Then ξ is a universal bundle for G-bundles on finite CW -complexes if
and only if πi(E) = 0 for all i.

Remark 5.2. If E is itself a finite CW -complex, πi(E) = 0 is equivalent with E being
contractible, what means that ξ = (E, p, Z) is universal not only for G-bundles on
finite CW -complexes, but for all G-bundles (proposition 3.9).

5.1. Simplicial Objects.

Definition 5.3. Let Ord be the category whose objects are finite sets ordered by a
transitive ≤ relation, and whose morphisms are the order-preserving set maps. The
objects of Ord are called 0, 1, 2, . . . , where 0 = {0}, 1 = {0, 1}, 2 = {0, 1, 2},. . . and
are ordered by inclusion. The order-preserving property of the morphisms means
that for a morphism f , if x ≤ y, then f(x) ≤ f(y).

Two kinds of morphisms, face maps and degeneracy maps, will now be defined.
All morphisms in Ord are compositions of these maps (see proposition 5.5). There-
fore when considering the morphisms in Ord, we only have to consider the face and
degeneracy maps.

Definition 5.4. The injections δi : n→ n+ 1, called face maps, are defined, for
j ∈ n = {0, . . . , n} and i ∈ n+ 1, by

δi(j) = j if j < i

δi(j) = j + 1 if j ≥ i
That means that δi maps n to n + 1 injectively, preserving order and omitting
i ∈ n+ 1 from its range.
The surjections εi : n→ n− 1, called degeneracy maps, are defined, for j ∈ n =
{0, . . . , n} and i ∈ n− 1, by

εi(j) = j if j ≤ i
εi(j) = j − 1 if j > i

That means that ε maps n to n − 1 surjectively, preserving order and mapping i
and i+ 1 to i.

Note that there are n+ 2 face maps δi from n to n+ 1, and n degeneracy maps
εi from n to n− 1.

7Steenrod, N., ”The topology of fibre bundles“, Princeton University Press, Princeton, 1951,
p. 102.
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Proposition 5.5. All morphisms in Ord can be written as a composition of face
and degeneracy maps.

Proof. Let f : k → l be an order-preserving map, where k, l ∈ Ord.
First assume l > k. Then there is a trivial injection I : k → l, I(j) = j, defined
by I = δl ◦ δl−1 ◦ · · · ◦ δk+2 ◦ δk+1(this sends (0, 1, . . . , k) → (0, 1, . . . , k,−) →
(0, 1, . . . , k,−,−) → · · · → (0, 1, . . . , k,−, . . . ) and therefore injects k trivial into l
using face maps). If there is a map f ′ : l → l that is a composition of face and
degeneracy maps such that f ′ ◦ I = f , the problem is solved for l > k. Therefore,
the case l > k is reduced to the case where k = l.

Now, let k = l. If f(0) = 0, let f0 : l → l : j → j be the identity map. If
f(0) = i0 > 0, let for all a ∈ {1, . . . i0}, xa be the biggest i0 elements (ordered
x1 > x2 > · · · > xa) for which f(xi) = f(xi + 1) and xa = xa′ only when a = a′.
Let f0 : l → l be defined by first letting a degeneracy map send x1, x1 + 1 to the
same spot, then letting a face map ommit the current place of 0 from its range, and
continu doing this for x2, x3, . . . and 1, 2, . . . , until 0 is in place. Then f0(0) = f(0)
and f0(j1) = f0(j2) only when f(j1) = f(j2).
Now assume f0, . . . , fi is defined such that fi ◦ · · · ◦ f0(b) = f(b) for b ∈ {0, . . . , i}
and fi ◦ · · · ◦ f0(b)(j1) = fi ◦ · · · ◦ f0(b)(j2) only when f(j1) = f(j2). We will now
define fi+1 : l→ l. If fi ◦ · · · ◦ f0(i+ 1) = f(i+ 1), let fi+1 be the identity map. If
f(i+1)−fi◦· · ·◦f0(i+1) = −1, let fi+1 = δlεf(i+1). If f(i+1)−fi◦· · ·◦f0(i+1) > 0,
let xi0+1, . . . , xi1−1 be the next few biggest elements for which f(xi+1) = f(xi+1+1)
and let fi+1 be defined by first letting a degeneracy map send xi+1, xi+1 + 1 to
the same spot, then letting a face map omit the current place of i + 1 from its
range, and continu doing these two things for xi + 2, . . . and i + 1, . . . , until
i + 1 is in place. Then fi+1 ◦ · · · ◦ f0(j1) = f(j1) for j1 ∈ {0, 1, . . . , i + 1} and
fi+1 ◦ · · · ◦ f0(j1) = fi+1 ◦ · · · ◦ f0(j2) only when f(j1) = f(j2). Then, by induction,
fl ◦ · · · ◦ f0 = f , what means that f can be written as composed of face and degen-
eracy maps in the case that k = l.

Now assume k > l. Then we can use degeneracy maps to define a surjection
J : k → l, that has the property that J(j1) = J(j2) only when f(j1) = f(j2).
Then again, the problem is reduced to the case where k = l, since finding an
composition in face and degeneracy maps of f ′ : l → l where f ′ ◦ J = f , is now
enough. Therefore, all morphisms in Ord can be written as compositions of face
and degeneracy maps. �

Now, let C be any category. A simplicial object in C is a functor A from Ord
to C.

Definition 5.6. Let C be any category. A simplicial object A in C is a contravari-
ant functor from Ord to C, that is, a mapping that associates to each object i ∈ Ord
an object A(i) in C and associates to each morphism f : i→ j, for i, j ∈ Ord a mor-
phism A(f) : A(i)→ A(j) such that A(idX) = idA(X) and A(g ◦ f) = A(f) ◦A(g)
for f : i → j and g : j → k, for i, j, k ∈ Ord(contravariant functors reverse the
direction of composition).
Explicitly this means that for every n ∈ Ord and for each face map δ : n→ n+ 1,
there is a map A(δi) : A(n+ 1)→ A(n) and for each map ε : n→ n− 1, there is a
map A(εi) : A(n− 1)→ A(n).
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If B is a covariant functor from Ord to C, what means that B(g ◦ f) = B(g) ◦B(f)
for f : i → j and g : j → k , then B is called a co-simplicial object in C. What
follows explicitly is that, where B(n) is associated with an object n ∈ Ord, there
is a map B(δi) : B(n) → B(n + 1) for each face map δi : n → n + 1 and a map
B(εi) : B(n)→ B(n− 1) for each degeneracy map εi : n→ n− 1.

5.2. Construction of BG for a Discrete Group G. Here I wil give a simplicial
construction of a base space BG for any discrete group G.

This construction starts with choosing a point to be the 0-skeleton of BG. Next,
we add an oriented loop for each element x ∈ G. We then attach 2-simplexes (tri-
angles) to kill each relation of the form xy = z with x, y, z ∈ G. This means we
have a 2-simplex corresponding to each pair (x, y).
In the same way, we attach n-simplexes (the n-dimensional analogue of a trian-
gle) for each n corresponding to the n-tuple (x1, x2, . . . , xn) where x1x2 . . . xn = y.
Having done this, it is not hard to see that πi(E) = 0 for all i.
I will now define a simplicial set NG based on this construction, to describe it in
simplicial terms. Later, BG will be the geometric realization of NG.

Definition 5.7. Let NG be the simplicial set from Ord to Sets, with

NG(0) = a point
NG(1) = G

NG(2) = G×G
NG(p) = Gp = G× · · · ×G (p factors)

and

NG(δi) : Gp → Gp−1 i = 0, . . . , p
NG(δ0)(x1, . . . , xp) = (x2, . . . , xp)
NG(δp)(x1, . . . , xp) = (x1, . . . , xp−1)
NG(δi)(x1, . . . , xp) = (x1, . . . , xixi+1, . . . , xp)

and

NG(εi) : Gp−1 → Gp i = 0, . . . , p
NG(ε0)(x1, . . . , xp−1) = (1, x1, . . . , xp)
NG(εi)(x1, . . . , xp−1) = (x1, . . . , xi, 1, xi+1, . . . , xp−1)

We will now define the geometric realization of a simplicial space. Since a sim-
plicial set can be made into a topological space by giving it the discrete topology,
a geometric realization of a simplicial set is also possible. We will use the next
definition to make the geometric realization BG of the simplicial set NG.

Definition 5.8. Let X be a simplicial space from Ord to TopologicalSpaces.
Define a co-simplicial space ∆ from Ord to TopologicalSpaces, by

∆(i) = ∆i,
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where ∆i us the Euclidian n-simplex, and

∆(δi) : ∆n−1 → ∆n, i = 0, . . . , p
∆(δi)(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

and

∆(εi) : ∆n → ∆n−1, i = 0, . . . , p
∆(εi)(t0, . . . , tn) = (t0, . . . , ti−1 + ti, . . . , tn)

both in barycentric coordinates, that means, coordinates that are defined by the
vertices of the simplex.
Define |X|, the geometric realization of X, by

(
∐
n

(X(n)×∆n))/ ∼

which is the quotient space of the topological sum (disjoint union) of the spaces
X(n)×∆n where the equivalence is defined by

(x,∆(f)(t)) ∼ (X(f)(x), t)

for x ∈ X(m), t ∈ ∆n and f : n→ m any morphism in Ord.

Now take the simplicial NG as defined above. This is a simplicial space with
the discrete topology, that is, with the collection of all subsets of NG as topology.
That is what the next definition says.

Definition 5.9. Define

BG = |NG| = the geometric realization of NG

That means that

BG = (
∞∐
p=0

(Gp ×∆p))/ ∼

where ∼ means equivalence via face and degeneracy maps. This means that

BG = point ∪ (a 1-simplex for each x ∈ G)
∪ (a 2-simplex for each pair (x, y) ∈ G×G) ∪ . . .

with the 2-simplex (x, y) glued to the 1-skeleton by (x, y) = xy and in the same
way with the n-simplex glued to the (n− 1)-skeleton by (x1, . . . , xn) = x1 · · · · · xn,
for each n.

5.3. Construction of BG for a Topological Group G. The construction of BG
for a discrete group G as given above carries almost completely over to the case
where G is a topological group. The only difference is that now we topologize G
with its given topology instead of the discrete topology. This means that Gp×∆p in
BG = (

∐∞
p=0(Gp ×∆p))/ ∼ has the product topology obtained from the topology

of G and the standard topology of ∆i. This construction gives us, with ∼ gluing
via the maps δi and εi, that

BG = |NG| =
(
(?×∆0)

∐
(G×∆1)

∐
(G×G×∆2)

∐
. . .
)
/ ∼
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5.4. Construction of PG and EG = |PG|. To prove that BG = |NG| is a
classifying space for G-bundles, we will construct a simplicial space PG such that
(|PG| , π, |NG|) is a universal principal G-bundle.

Definition 5.10. Define the simplicial space PG from Ord to TopologicalSpaces
by

PG(n) = Gn+1

where the degeneracy and face-maps are given by

PG(δi) : Gp+1 → Gp, i = 0, . . . , p
PG(δi)(x0, . . . , xp) = (x0, x1, . . . , xi−1, xi+1, . . . , xp)

and

PG(εi) : Gp+1 → Gp+2, i = 0, . . . , p
PG(εi)(x0, . . . , xp) = (x0, . . . , xi, xi, . . . , xp)

Now there is a map

π : PG→ NG

sending

G
π−→ ?,G×G π−→ G,G3 π−→ G2, . . .

given by

π(x0, . . . , xp) = (x0x
−1
1 , x1x

−1
2 , . . . , xp−1x

−1
p )

The next proposition says that (PG, π,NG) is a principal G-bundle. This is an
important step in proving that the bundle of geometric realizations of PG and NG
is also a principal G-bundle. Proposition 5.12 will give us that (|PG| , π, |NG|) is a
universal principal G-bundle, and hence that |NG| is a classifying space, when G
is a Lie group.

Proposition 5.11. (PG, π,NG) is a principal G-bundle.

Proof. First we will show that π is correctly defined.
For π to be a morphism of simplicial spaces, π has to commute with δi and with
εi, so we must check that

πPG(δi) = NG(δi)π for all maps δi
πPG(εi) = NG(εi)π for all maps εi

Therefore, for i 6= 0, p, we compute

πPG(δi)(x0, . . . , xp) = π(x0, . . . , xi−1, xi+1, . . . , xp)

= (x0x
−1
1 , . . . , xi−1x

−1
i+1, . . . , xp−1x

−1
p )

= (x0x
−1
1 , . . . , xi−1x

−1
i xix

−1
i+1, . . . , xp−1x

−1
p )

= NG(δi)(x0x
−1
1 , . . . , xp−1x

−1
p ) = NG(δi)π(x0, . . . , xp)
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and for i = 0, p, we compute

πPG(δ0)(x0, . . . , xp) = π(x1, . . . , xp)

= (x1x
−1
2 , . . . , xp−1x

−1
p )

= NG(δ0)(x0x
−1
1 , . . . , xp−1x

−1
p ) = NG(δ0)π(x0, . . . , xp)

Computations for εi are analogue to this and are left to the reader.
G acts free on the right on PG, for (x0, . . . , xp) ∈ PG(p), x ∈ G, by

(x0, . . . , xp) · x = (x0x, . . . , xpx)

Since xi ∈ G, xix = xi means that x = 1 what means that (x0, . . . , xp) · x =
(x0, . . . , xp) implies x = 1, PG is a free G-space.
Define the continues translation function τ : PG∗ = {(x, xg) ∈ PG × PG|x ∈
PG, g ∈ G} → G by

τ((x0, . . . , xp), (x′0, . . . , x
′
p)) ≡ x−1

0 x′0

It then follows that (x0, . . . , xp)τ((x0, . . . , xp), (x′0, . . . , x
′
p)) = (x0, . . . , xp)x−1

0 x0g =
x0, . . . , xp)g.
Therefore, (PG, π,NG) is a principal G-bundle.

�

What is left to be shown is that (|PG| , π, |NG|) is a principal G-bundle and
that |PG| is contractible. It can be shown that (|PG| , π, |NG|) = (EG, π,BG)
is a universal principal G-bundle, when G is a topological group with reasonable
topology, for example, when G is a Lie group(This is shown by Segal8). I will not
prove this here.

Proposition 5.12. For any Lie group G, (|PG| , π, |NG|) = (EG, π,BG) is a
universal principal G-bundle and hence BG is a classifying space.

8Segal, G., Classifying spaces and spectral sequences. Inst. des Hautes Etudes Scientifiques,
Publ. Math., 34, 105-112.
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6. Quantum Geometry

In my eyes, where mathematics becomes more and more abstract, it also be-
comes more and more beautiful. Durdevich wrote in an introduction to Quantum
Geometry that

Quantum geometry is a new branch in mathematics. It introduces a
completely new concept of a space, by unifying methods of classical ge-
ometry with non-commutative C∗-algebras and functional analysis, and
incoprorating(sic) into geometry various ideas from quantum physics.

I think this means that there are ways to generalize the concepts in this thesis, into
more abstract and with that more beautiful forms of geometry.
In this final section we will take some steps towards generalizing our concepts of
G-bundles and classifying spaces in quantum geometry, following some introduction
papers of Micho Durdevich. We will continue in a somewhat less formal way then
the previous chapters, for two reasons. Firstly, my main source, Durdevich, writes
in an informal way, and secondly, this informal way is best to get a good picture and
short introduction of what Quantum geometry and Quantum classifying spaces are.
This means that not everything that is stated will be proved. Although somewhat
less formal, I will try to stay consistent and complete in what I say.

First Quantum spaces will be explained, then Quantum Groups and Quantum
bundles will be explained and the section will end with the notion of a Quantum
Classifying space.

6.1. Quantum Spaces. Quantum geometry deals with quantum spaces and has
the classical concept of a space as a special case. The classical concept of a space is
a collection of points equipped with an additional structure. Quantum spaces are
not interpretable in this way; in general, Quantum spaces have no points at all, but
rather something like intervals or indistinguishable points.
An interesting potential application of Quantum geometry in physics is to provide
a mathematical coherent description of the physical space-time, where quantum ge-
ometry might help to unify gravity (general relativity) and quantum theory. This
is because in Quantum theory, the space has no real points either, only intervals

with a certain(very small, probably
√

γh
c3 ) length.

Quantum spaces are described by certain non-commutative complex *-algebras,
that is, certain complex sets (of functions) with algebraic operations on them and
a *-operation (for example, standard complex conjugation), which do not need to
be commutative. When the algebras are commutative, we are back in the classical
geometry. I will explain what I just said in two conceptual steps: first I will trans-
late geometry into commutative algebra language, and then do non-commutative
generalizations.

6.1.1. Geometry in Commutative Algebra Language. A definition of an algebra and
of a character will now be given. Later on, characters will play the role in an algebra
that points play in a space.

Definition 6.1. An algebra is a vector space V over a field F with a multiplication.
The multiplication must be distributive and, for every f ∈ F and x, y ∈ V , it must
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satisfy f(xy) = (fx)y = x(fy).
A Banach algebra is an algebra V over a field F such that V is a Banach space
(that is, a complete vector space with a norm ‖·‖).
A C∗-algebra is a Banach algebra with an operator ∗ which satisfies the following
axioms:

(x∗)∗ = x

x∗y∗ = (yx)∗

x∗ + y∗ = (x+ y)∗

(cx)∗ = cx∗

‖aa∗‖ = ‖a‖2

where x, y ∈ V and c ∈ C, with c standard complex conjugation.
A character of a C∗-algebra is a ∗-homomorphism k : V → C, that is, a morphism
from the algebra into the complex numbers, which satisfies the following axioms:

k(x+ y) = k(x) + k(y)
k(cx) = ck(x) for c ∈ C
k(xy) = k(x)k(y)
k(x∗) = k(x)∗

k 6= 0

where x, y ∈ V .

We will now show how some geometrical concepts are translated into the lan-
guage of algebra. First, let us define the unitary commutative C∗-algebra A = C(X)
for a topological space X. This can be seen as a translation of the concept of a
compact topological space into the language of algebra.

Definition 6.2. Let X be any compact topological space. Define the unitary
commutative C∗-algebra A = C(X) as the C∗-algebra of continuous complex-
valued functions on X. The algebraic operations in A are the standard multiplica-
tion an addition of functions. The *-operation is the standard complex conjugation.
The norm is the maximum norm ‖f‖ = maxx∈X |f(x)|. It is commutative and it is
unitary, that is, it has identity elements, namely the 1 map (x→ 1) for multiplica-
tion and the 0 map (x→ 0) for addition.

The classical theorem of Gelfand an Naimark characterizes the algebras A =
C(X), as unitary commutative C∗-algebras:

Proposition 6.3. Gelf-Naimark Theorem. For every unitary commutative C∗-
algebra A there exists an up to homeomorphisms unique compact topological space
such that A ' C(X).

Let us now give a translation of the concept of a point into the language of
algebra. For every element x ∈ X, define kx : A → C by k(f) = f(x). Since f is
continuous and complex valued, it is easy to check that kx satisfies the axioms of a
character and therefore kx is a character. This means that for every point x ∈ X,
there is a character kx.
Conversely, that for every character there is a point, let us consider an arbitrary
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character k : A → C. Since k(f + g) = k(f) + k(g), k cannot be a constant (it is
not 0) and must depend on the function. Since k(cf) = ck(f) must also hold, k is
linear in C. Since k(fg) = k(f)k(g), it can only be that k depends on the function
in a very direct way. The character must be of the form k(f) = f(x) for an x ∈ X.
Therefore k = kx.
Therefore, there is a bijection between points of X and characters of A. We can
now talk about characters in the commutative unitary C∗-algebra A in the same
way as we can talk about points of a compact topological space X.

We will now give a translation of the concept of a continuous map. A uni-
tary *-homomorphism will play this role in algebra. First, we will define a *-
homomorphism:

Definition 6.4. Let A and B be two *-algebras. A *-homomorphism is an
algebraic homomorphism Φ : A→ B which satisfies Φ(a∗) = Φ(a)∗.

Consider two compact topological spaces X and Y , and denote by A and B the
C∗-algebras of continuous functions over X and Y respectively.
For any continuous map F : X → Y , define the map ΦF : B → A by composition
ΦF (g) = g ◦ F . Then ΦF sends a map from Y to C to a map from X to C using
the map F : X → Y . Since it satisfies ΦF (g∗) = g∗ ◦ F = (g ◦ F )∗ = Φ(g)∗ it is a
∗-homomorphism.
Conversely, consider an arbitrary unitary ∗-homomorphism Φ : B → A. This sends
a map from Y to C to a map from X to C in a way satisfying the axioms of a
*-homomorphism. It can be shown that Φ is always of the form Φ = ΦF for a
uniquely determined continuous map F : X → Y , and this can be understood by
seeing that this is the only way for Φ to use the map from X to C to get a map
from Y to C in a way it satisfies Φ(a∗) = Φ(a)∗.
This means there is a natural bijection between continuous maps from X to Y , and
unitary ∗-homomorphisms from B to A. Properties of the map F are reflected as
properties of ΦF and vice versa. For example, F is surjective iff ΦF is injective and
F is injective iff ΦF is surjective.
If C is the C∗-algebra of continuous functions on the direct product X×Y , then the
natural identification C ↔ A⊗B holds, where ⊗ is the C∗-algebraic tensor product.

The concept of a compact topological group9 can be translated in the follow-
ing way. Let X be a compact topological group. Then X is a compact topological
space with a group structure, such that the product map X ×X → X is continu-
ous. The topological space is represented by a commutative unitary C∗-algebra A
and the product map is represented by the ∗-homomorphism Φ : A → A × A, as
described above. The first group axiom, associativity of the product, is equivalent
to the co-associativity property (φ⊗ id)φ = (id⊗φ)φ, and it can be shown that the
remaining two group axioms (existence of the identity element and of the inverse)
are equivalent to the single assumption that the elements of the form aφ(b) and
φ(b)a, where a, b ∈ A, span two everywhere dense linear subspaces of A⊗A.

9Originally characterized in the paper by S.L. Woronowicz, Compact Quantum Groups, Syme-
tries quantiques (Les Houches, 1995), 845–884, North-Holland, Amsterdam, 1998.
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The following table is a mini dictionary between geometry and algebra, as given
by Durdevich. I discussed the most important translations above, the other ones I
will not use here.10:

Compact topological space X Unitary commutative C∗-algebras
X =compact topological space A = C(X) = {complex continuous

functions on X}
Points x ∈ X Characters k = kx of A
Continuous maps between com-
pacts X any Y ↔ B

unitary ∗-homomorphisms from B
to A

The direct product X × Y The C∗-tensor product A⊗B
Symmetries of X Automorphisms of A
Group structure on X Coproduct map Φ : A→ A⊗A
Probability measures on a metriz-
able compact X

Positive normalized linear func-
tionals on A

Locally-compact/noncompact
topological spaces

Non-unitary commutative C∗-
algebras

Measure theory Commutative von Neuman alge-
bras

X =Compact smooth manifold A = C∞(X) = {complex smooth
functions on X}

Vector bundles over X Finite projective modules over A
Vector fields on X Hermitian derivations on A
Differential forms on X Graded-differential algebra

Ω(X) ⊂ C(Ξ, A)

6.1.2. Non-Commutative Generalizations. The second main conceptual step con-
sists in non-commutative generalizations. This means that the reformulated clas-
sical geometry (reformulated in the language of algebra) will be generalized by
relaxing the assumption of commutativity of the algebra A = C(X), by allowing A
to be the appropriately chosen non-commutative C∗-algebra. Having done this we
arrive at quantum spaces, the main objects of study in quantum geometry.
The elements of these non-commutative C∗-algebras are intuitively interpreted as
continuous functions over quantum spaces. In contrast to classical geometry, is the
existence of quantum spaces implicit, as they generally appear in the formalism
only via the corresponding C∗-algebras.

6.2. Quantum Groups. A compact quantum group will now be defined. As can
be expected from the translations above, the group structure is described by a
*-homomorphism φ : A→ A⊗A.

Definition 6.5. A compact quantum group G is a quantum space G together with
a group structure which is described by a ∗-homomorphism φ : A → A ⊗ A such
that the diagram

A
φ−→ A⊗A

↓φ ↓id⊗φ

A⊗A φ⊗id−→ A⊗A⊗A

10blah
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is commutative, and such that

A⊗A = {
∑

aφ(b)|a, b ∈ A}

A⊗A = {
∑

φ(b)a|a, b ∈ A}

Remark 6.6. The two criteria φ : A → A ⊗ A must fulfill are the criteria stated
above in the discussion of the translation of the concept of a compact topological
group to the language of algebra and are in the case of a commutative C∗-algebra
(that is, when the quantum space G is commutative, when we are back at the
classical case) equivalent to the standard group axioms.

6.3. Quantum Principal G-Bundles. Quantum principal G-bundles can be de-
fined using quantum groups, and the main geometrical idea is the same as in classi-
cal theory, namely that of a fibered space on which the structure group acts freely
on the right, so that the fibres are the orbits of this action.
Let the quantum principal G-bundle and the structure group be represented by
C∗-algebras B and A respectively. The right action of G on P , the total quantum
space, is represented by a ∗-homomorphism F : B → B⊗A, such that the diagram

B
F−→ B ⊗A

↓φ ↓id⊗φ

B ⊗A B⊗id−→ B ⊗A⊗A
is commutative. The classical condition that the structure group is acting freely on
the bundle is expressed by the density condition

B ⊗A = {
∑

bF (q)|b, q ∈ B}

6.4. Quantum Classifying Spaces. The construction of classifying spaces can be
incorporated in the quantum context. Let G be a compact quantum group, that is,
an abstract structure which is determined by a noncommutative C∗-algebra whose
elements represent continuous complex-valued functions on the compact quantum
group. For any such compact quantum group G, it is possible to construct a
quantum space BG and a quantum principal G-bundle EG over EB , such that it is
universal in the following sense: every quantum principal bundle P over a quantum
space M can be obtained as a pull back of the bundle EG, via a classifying map
from M to BG. The classification exists in the fact that there is a bijection between
homotopy classes of quantum principal G-bundles P over M and homotopy classes
of classifying maps from M to BG.
In the classical case, we had isomorphism classes of classical bundles P over M , not
homotopy classes of them, as we have in the quantum case. The explanation is that
in classical geometry homotopic bundles over the same space, and with the same
group structure, are always isomorphic, what is not the case in quantum geometry.
There are homotopic but not isomorphic quantum spaces and bundles.
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