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Abstract
Kähler manifolds are manifolds with three compatible geometric structures. These are called the
Riemannian structure, the symplectic structure and the complex structure. The main problem in
this thesis is the Thurston-Weinstein problem. The Thurston-Weinstein problem is the problem of
constructing symplectic manifolds with no Kähler structure. The first chapter deals with general
properties of Kähler manifolds. The main result will be a criterion for dimension of some of its coho-
mologygroups. The second chapter will deal with differential graded algebra’s, which is a generalization
of the de Rham-complex. It will show that Kähler manifolds have a property called formality. The
third chapter will look into nilmanifolds, which are quotients of Lie groups. It turns out that the only
nilmanifolds which admit a Kähler structure are tori. The last chapter will give an outlook on the
various ways people have tried to solve the Thurston-Weinstein problem in different situations.
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Chapter 1

Introduction

Most mathematicians study sets equipped with some structure. There are many different kinds of
structures. Examples include the structure of a group, the structure of a partial order, the structure
of a topological space and so on. Some structures generalize others. A normed vector space gener-
alizes the notion of a vector space with an inner product, and a group is the more general version
of an abelian group. This is also the relation between the two main objects of study in this thesis.
A Kähler manifold is a special type of symplectic manifold. One natural question which arises is
the question whether there even exist symplectic manifolds which do not admit a Kähler structure.
This question was first treated by William Thurston in 1976 (see [5]). He attributed the problem to
Alan Weinstein, so it has become known as the Thurston-Weinstein problem. Since Thurston’s first
example, many people have constructed symplectic manifolds which do not admit a Kähler structure.
This thesis will develop the main tools used to prove that certain symplectic manifolds do not admit a
Kähler structure. It also contains some examples of symplectic manifolds carrying no Kähler structure.

The first chapter will start with defining Kähler manifolds. Käler manifolds are smooth manifolds
with a symplectic structure and a complex structure such that the symplectic form and the induced al-
most complex structure are compatible. The complex structure gives rise to new differential operators
∂ and ∂̄. With these new differential operators comes a new cohomologytheory, called the Dolbeault
cohomology. The Dolbeault cohomologygroups have two indices as a consequence of the two differ-
ential operators. The question of how Dolbeault cohomology relates to de Rhamcohomology is given
by Hodge theory, which is the topic of the last subsection of the first chapter. The most important
theorem is that for compact Kähler manifolds there is an isomorphism

Hk(M ;C) '
⊕
p+q=k

Hp,q(M)

which relates de Rhamcohomology to Dolbeaultcohomology. As a consequence, odd de Rhamcohomol-
ogygroups have even dimension. This consequence is used in the first example of a symplectic manifold
with no Kähler structure.

The second chapter generalizes the notion of the exterior derivative on differential forms to differ-
ential graded algebra’s. Differential graded algebra’s are graded algebra’s with a differential which
behaves like the exterior derivative. With any DGA there is are associated cohomologygroups. Ev-
ery reasonable DGA has a minimal model, which has the same cohomology and satisfies some other
conditions. This minimal model is unique and is usually easier to deal with than the DGA itself.
One property a minimal model can satisfy is called formality. The main result of this section is that
compact Kähler manifolds have formal minimal models. Massey products are introduced as a tool
to proof non-formality. The setup of this chapter is based on the book Symplectic Manifolds with no
Kähler Structure by Aleksy Tralle and John Oprea, see [4].
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CHAPTER 1. INTRODUCTION 3

The third chapter looks into a special kind of manifold called a nilmanifold. Nilmanifolds are quotients
of nilpotent Liegroups by discrete subgroups. Their minimal model can be described in terms of only
the Lie algebra associated to the Lie group. This is used in proving that the only nilmanifolds which
admit a Kähler struture are tori. An example is given of an countable family of symplectic nilmanifolds
which are not diffeomorphic to tori and do therefore not admit any Kähler structure.

The last chapter gives an outlook in several different ways in which the Thurston-Weinstein prob-
lem is solved. This chapter doesn’t go in detail as much as the other chapters, but it gives a broad
impression on the versatility of the problem.

The reader is assumed to be familiar with smooth manifolds. If this is not the case, the reader is
advised to study the basic concepts of smooth manifolds before reading this thesis. A good book for
this is Introduction to Smooth Manifolds by John Lee ([1]). For understanding some parts of this thesis
basic knowledge of algebraic topology is required. This can be obtained from Algebraic Topology by
Allen Hatcher ([2]).



Chapter 2

Kähler Manifolds

A Kähler manifold is a smooth manifold equipped with three compatible structures. Before we will go
into structures on manifolds, we will discuss structures on vector spaces. Recall from linear algebra
that an inner product on a real vector space V is a map 〈·, ·〉 : V × V → R satisfying the following
conditions:

• 〈v, w〉 = 〈w, v〉,∀v, w ∈ V (symmetry)

• 〈λv + µu,w〉 = λ〈v, w〉+ µ〈u,w〉,∀λ, µ ∈ R,∀u, v, w ∈ V (linearity in the first argument)

• 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0 (positive definiteness)

The second linear structure is the linear complex structure.
Let V be a real vector space. A linear complex structure on V is a linear map J : V → V such
that J2 = −IdV . The basic intuition behind this definition is that J turns real vector spaces into
complex vector spaces. We can define the multiplication of a vector v by a complex number a+ bı to
be (a+ bı)v = av+ bJ(v). However, we can also let J act like −ı. This last fact will become important
later on. Since complex vector spaces have even real dimensions, V can only admit a linear complex
structure if it is even dimensional.

The third and last linear structure is the linear symplectic structure. A linear symplectic form on
a vector space V is a map ω : V × V → R satisfying the following conditions:

• ω(v, w) = −ω(w, v),∀v, w ∈ V (skew-symmetry)

• ω(λv + µu,w) = λω(v, w) + µω(u,w),∀λ, µ ∈ R,∀u, v, w ∈ V (linearity in the first argument)

• ω(v, w) = 0 ∀w ∈ V if and only if v = 0 (nondegeneracy)

Nondegeneracy can also be characterized differently. A linear symplectic form ω is nondegenerate if
and only if ω∧n 6= 0.
Let V be a vector space equipped with an inner product 〈·, ·〉, a linear symplectic form ω and an linear
complex structure J . The triple (〈·, ·〉, ω, J) is said to be compatible if 〈v, w〉 = ω(v, J(w)) for all
v, w ∈ V .
Because compatible triples have an equation relating them, only two of the structures are needed to
construct the last one. However, not all combinations of two linear structures can be made into a
compatible triple.

Let V be a vector space equipped with a linear symplectic form ω and a linear complex structure
J . Then ω and J are compatible if ω(v, w) = ω(Jv, Jw) for all v, w ∈ V and if ω(v, Jv) > 0 for all
v ∈ V \{0}. If ω and J are compatible, then we can define an inner product 〈·, ·〉 by 〈v, w〉 = ω(v, Jw).
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CHAPTER 2. KÄHLER MANIFOLDS 5

Then 〈·, ·〉 is obviously bilinear and positive definite. It is also symmetric: 〈v, w〉 = ω(v, Jw) =
ω(Jv, J2w) = ω(Jv,−w) = ω(w, Jv) = 〈w, v〉.

Let V be a vector space equipped with an inner product 〈·, ·〉 and a linear complex structure J .
Then 〈·, ·〉 and J are compatible if 〈v, w〉 = 〈Jv, Jw〉 for all v, w ∈ V . If 〈·, ·〉 and J are compatible,
then we can define a linear symplectic form ω by ω(v, w) = 〈Jv,w〉. Then ω(v, Jv) = 〈v, v〉, which
means that ω is nondegenerate. Since ω(v, w) = 〈Jv,w〉 = 〈J2v, Jw〉 = −〈Jw, v〉 = −ω(w, v), ω is
also skew-symmetric.

Lemma 2.0.0.1. Let V be a vector space equipped with a linear symplectic structure ω. Then there
exists a linear complex structure compatible with ω.

Proof. Let g be an arbitrary inner product on V . By nondegeneracy, we get two isomorphisms between
V and V ∗:

g̃ : V → V ∗, g̃(v)(w) = g(v, w)

ω̃ : V → V ∗, ω̃(v)(w) = ω(v, w)

Then define A = g̃−1 ◦ ω̃. Since it is the compostion of isomorphisms, it is an isomorphism. Since
g(Av,w) = g̃(Av)(w) = ω̃(v)(w) = ω(v, w) = −ω(w, v) = −g(Aw, v) = −g(v,Aw), we get A∗ = −A.
Now AA∗ is symmetric ((AA∗)∗ = AA∗) and positive (g(AA∗v, v) = g(A∗v,A∗v) > 0 for v 6= 0). From
linear algebra we know that this implies that AA∗ is diagonalizable. Let

AA∗ = B diag(λ1, . . . , λn) B−1

be the diagonalization. Then define

√
AA∗ = B diag(

√
λ1, . . . ,

√
λn) B−1

and take
J = (

√
AA∗)−1A

With this definition we get JJ∗ = IdV . Since A is skew-adjoint, so is J , so J2 = −JJ∗ = −IdV . This
linear complex structure is compatible with ω:

ω(Jv, Jw) = g(AJv, Jw) = g(JAv, Jw) = g(Av, J∗Jw) = g(Av,w) = ω(v, w)

and for v 6= 0:
ω(v, Jv) = g(Av, Jv) = g(J∗Av, v) = g(

√
AA∗v, v) > 0

This lemma implies that vector spaces which admit linear symplectic structures must be even dimen-
sional.
We want to apply these linear structures to smooth manifolds. We can do this by defining them on
each tangent space. However, we want them to respect the smooth structure of the manifold, so these
linear structures must vary smoothly. This notion of smoothness can be described in two ways. The
first way is in charts.
Let M be a smooth manifold and (U,ϕ) be a chart of M with local coordinates (x1, . . . , xn). If
g = (gx)x∈M is an inner product on every tangent space TxMof M , it can locally be described by
g =

∑
1≤i,j≤n

gijdx
idxj . We call g smooth around a point x ∈ M if there is a chart (U,ϕ) with x ∈ U

such that all local functions gij are smooth. We call g smooth if it is smooth around every x ∈M .
If ω = (ωx)x∈M is a linear symplectic form on every tangent space TxM of M , it can locally be de-
scribed by ω =

∑
i<j

ωijdx
i ∧ dxj . We call ω smooth around a point x ∈ M if there is a chart (U,ϕ)
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with x ∈ U such that all local functions ωij are smooth. We call ω smooth if it is smooth around every
x ∈M .

The second and more natural way to characterize smoothness is in terms of vectorfields. We call
g = (gx)x∈M smooth if g(X,Y ) is a smooth function for all smooth vectorfields X and Y . The same
definition holds for linear symplectic forms: ω = (ωx)x∈M is smooth if ω(X,Y ) is a smooth function
for all smooth vectorfields X and Y . This definition works for linear complex structures as well. We
call J = (Jx)x∈M smooth if J(X) is a smooth vectorfield for every smooth vectorfield X.

Compatibility on vector spaces can be generalized to manifolds. We call two structures on a man-
ifold M compatible if their linear structures are compatible on every tangent space TxM of M .

Definition 2.0.0.2. A Riemannian manifold (M, g) is a manifold M together with a smoothly varying
inner product gx on the tangent space TxM . A smoothly varying inner product is called a Riemannian
metric.

All smooth manifolds admit Riemannian structures. For our purposes, this will be the least important
structure of Kähler manifolds. The next structure is the symplectic structure, which will be our main
concern.

Definition 2.0.0.3. An almost symplectic form is a smoothly varying linear symplectic form ωx on
each tangent space TxM . Since it is skew-symmetric, bilinear and smooth, it is a 2-form. An almost
symplectic form is called symplectic if it is closed. The pair (M,ω) is called a symplectic manifold.

Symplectic structures are more rare than Riemannian structures. The first reason for that is that only
even dimensional manifolds can admit a symplectic structure.

Example 2.0.0.4. The 2-sphere S2 admits a symplectic structure. If we see S2 as an embedded
submanifold S2 ⊂ R3, then the symplectic form is given by ωx(v, w) = x · (v × w). Here the ·
means the dot product in R3 and × denotes the cross product in R3. A useful identity involving the
dot product and the cross product is given by a · (b × c) = c · (a × b). With this identity we find
ωx(v, x × v) = ||x × v||2. Here x × v ∈ TxS

2 and ||x × v||2 = 0 if and only if v = 0. Hence ω is
nondegenerate. Since ω is a 2-form and S2 is two dimensional, ω is closed. Hence ω is a symplectic
form. 4

This example does not generalize to higher dimensions. To prove there are no higher dimensional
symplectic spheres, we need a lemma.

Lemma 2.0.0.5. Let (M,ω) be a compact symplectic manifold. Then H2(M) 6= 0.

Proof. Proof by contradiction. Suppose that H2(M) = 0, then all closed 2-forms are exact. In
particular the symplectic form ω is exact, so ω = dα for some 1-form α. Since ω is nondegenrate, ω∧n

is a volume form. By Stokes’ theorem, we get

0 6=
∫
M

ω∧n =

∫
M

ω∧ω∧(n−1) =

∫
M

dα∧ω∧(n−1) =

∫
M

d(α∧ω∧(n−1)) =

∫
∂M

α∧ω∧(n−1) =

∫
∅

α∧ω∧(n−1) = 0

From this contradiction we conclude that ω represents a nontrivial cohomologyclass.

This lemma can easily be generalized to any even dimension up to the dimension of the manifold.
Since spheres have only nontrivial cohomology in dimension 0 and in the dimension of the manifold,
there are no symplectic spheres of dimension > 2.
The last structure on a manifold is the complex structure.

Definition 2.0.0.6. Let M be a smooth manifold. An almost complex structure on M is a smoothly
varying complex structure Jx on the tangent space TxM .
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The name ’almost complex’ suggests that there is also something called a complex structure. This is
indeed true.

Definition 2.0.0.7. A complex manifold is a topological manifold M together with a maximal atlas
of charts (U,ϕ) between open subsets of M and Cn which cover M and for which the transition maps
are holomorphic.

Any complex manifold can be made into a real smooth manifold by identifying Cn ' R2n. One could
expect that every complex manifold has an almost complex structure. This is indeed the case, and it
is even canonical.

Theorem 2.0.0.8. Let M be a complex manifold. Then M has a canonical almost complex structure
J .

Proof. Let (U,ϕ) be a chart, with z1, . . . , zn as local coordinates, where zj = xj + ıyj . Then define J
on U by

J

(
∂

∂xj

)
=

∂

∂yj
, J

(
∂

∂yj

)
= − ∂

∂xj

We want to show that this is a well-defined global almost complex structure. Consider two charts (U,ϕ)
and (V, ψ), with local coordinates z1, . . . , zn and w1, . . . , wn, where zj = xj + ıyj and wj = uj + ıvj .
The almost complex structure as defined in the chart (U,ϕ) will be denoted by J1 and the almost
complex structure as defined in the chart (V, ψ) will be called J2. By the Cauchy-Riemann equations,
we see that on the overlap U ∩ V they agree:

J2

(
∂

∂xj

)
= J2

( n∑
k=1

∂uk
∂xj

∂

∂uk
+
∂vk
∂xj

∂

∂vk

)

=

n∑
k=1

∂uk
∂xj

∂

∂vk
− ∂vk
∂xj

∂

∂uk

=

n∑
k=1

∂vk
∂yj

∂

∂vk
+
∂uk
∂yj

∂

∂uk

=
∂

∂yj

= J1

(
∂

∂xj

)

J2

(
∂

∂yj

)
= J2

( n∑
k=1

∂uk
∂yj

∂

∂uk
+
∂vk
∂yj

∂

∂vk

)

=

n∑
k=1

∂uk
∂yj

∂

∂vk
− ∂vk
∂yj

∂

∂uk

=

n∑
k=1

−∂vk
∂xj

∂

∂vk
− ∂uk
∂xj

∂

∂uk

= − ∂

∂xj

= J1

(
∂

∂yj

)
We conclude that J1 = J2, so the almost complex structure is well-defined globally.
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This theorem shows that every complex structure gives rise to an almost complex structure. The
converse, however, may not be true. To distinguish the complex manifolds from the other almost
complex manifolds, we have the following definition:

Definition 2.0.0.9. Let M be a manifold with an almost complex structure J . Then we call J
integrable if it is induced by some complex structure on M .

The three geometric structures described in this section combine nicely into a structure called the
Kähler structure.

Definition 2.0.0.10. A Kähler manifold is a smooth manifold with a complex structure and a symplec-
tic structure such that the induced almost complex structure and the symplectic form are compatible.

Remark 2.0.0.11. There are several equivalent definitions of a Kähler manifold, each from a different
point of view. The definition above emphasizes the symplectic structure and the complex structure
since that is the most natural one for the purpose of this thesis.

Definition 2.0.0.12. A symplectic manifold (M,ω) of dimension 2n satisfies the hard Lefschetz
property if the map

[ω]j : Hn−j(M)→ Hn+j(M)

[α] 7→ [ω ∧ α]

is an isomorphism for all 1 ≤ j ≤ n

The hard Lefschtetz theorem states the following:

Theorem 2.0.0.13. Let (M,ω) be a compact Kähler manifold. Then (M,ω) satisfies the hard Lef-
schetz property.

A proof of this theorem can be found in [8].

2.1 Complex forms

In this section, we will work with an almost complex manifold (M,J). The almost complex structure
is not necessarily integrable, unless stated otherwise.

Definition 2.1.0.1. The complexified tangent bundle of M is the bundle TM ⊗ C. The almost
complex structure extends to TM ⊗ C by:

J(v ⊗ z) = J(v)⊗ z, ∀v ∈ TM, z ∈ C

Since J2 = −IdTM , J has eigenvalues ı and −ı. Hence the complexified tangent bundle is the direct
sum of subbundles T1,0 and T0,1 which are given by

T1,0 ={v ∈ TM ⊗ C | J(v) = ıv}
={v ⊗ 1− Jv ⊗ ı | v ∈ TM}

T0,1 ={v ∈ TM ⊗ C | J(v) = −ıv}
={v ⊗ 1 + Jv ⊗ ı | v ∈ TM}

These linear subspaces both come with a natural projection:

π1,0 : TM ⊗ C→ T1,0, v ⊗ z 7→ 1

2
(v ⊗ z − Jv ⊗ ız)

π0,1 : TM ⊗ C→ T0,1, v ⊗ z 7→ 1

2
(v ⊗ z + Jv ⊗ ız)
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for which π2
1,0 = π1,0 and π2

0,1 = π0,1 and which combine into an isomorphism

(π1,0, π0,1) : TM ⊗ C ∼−→ T1,0 ⊕ T0,1

Just like the tangent space, the cotangent space also admits a complexification.

Definition 2.1.0.2. The complexified cotangent bundle of M is the bundle T ∗M ⊗ C. The almost
complex structure extends to TM∗ ⊗ C by

J(α⊗ z) = α ◦ J ⊗ z, ∀α ∈ T ∗M, z ∈ C

Similarly to the tangent bundle, the complexified cotangent bundle is the direct sum of subbundles
T 1,0 and T 0,1 which are given by

T 1,0 =T ∗1,0 = {α ∈ T ∗M ⊗ C | α ◦ J = ıα}
={α⊗ 1− α ◦ J ⊗ ı | α ∈ T ∗M}

T0,1 =T ∗0,1 = {α ∈ T ∗M ⊗ C | α ◦ J = −ıα}
={α⊗ 1 + α ◦ J ⊗ ı | α ∈ T ∗M}

These linear subspaces also come with a natural projection:

π1,0 : T ∗M ⊗ C→ T 1,0, α⊗ z 7→ 1

2
(α⊗ z − α ◦ J ⊗ ız)

π0,1 : T ∗M ⊗ C→ T 0,1, α⊗ z 7→ 1

2
(α⊗ z + α ◦ J ⊗ ız)

which combine into an isomorphism

(π1,0, π0,1) : T ∗M ⊗ C ∼−→ T 1,0 ⊕ T 0,1

Elements of T1,0 are called J-holomorphic tangent vectors, while elements of T0,1 are called J-antiholomorphic
tangent vectors. Similarly, elements of T 1,0 are called J-holomorphic 1-forms and elements of T 0,1 are
called J-antiholomorphic 1-forms. This allows us to define

Λn,m(T ∗M ⊗ C) = (ΛnT 1,0) ∧ (ΛmT 0,1)

Λk(T ∗M ⊗ C) = Λk(T 1,0 ⊕ T 0,1) =
⊕

n+m=k

Λn,m(T ∗M ⊗ C)

Now Ωn,m(M) consists of all sections of Λn,m(T ∗M ⊗ C). Its elements are called differential forms of
type (n,m). Complex valued k-forms are sections of Λk(T ∗M ⊗ C). The set of all complex valued
k-forms is denoted by Ωk(M ;C). For k = n+m we have the natural projections

πn,m : Λn,m(T ∗M ⊗ C)→ Λk(T ∗M ⊗ C)

These projections give rise to new differential operators:

Definition 2.1.0.3. Let (M,J) be an almost complex manifold. Then we define the differential
operators ∂ and ∂̄ to be

∂ = πn+1,m ◦ d : Ωn,m(M)→ Ωn+1,m(M)

∂̄ = πn,m+1 ◦ d : Ωn,m(M)→ Ωn,m+1(M)

If M is a complex manifold and J is the induced almost complex structure, then these differential
operators have a more concrete description in local coordinates. Let (U,ϕ) be a chart with local
coordinates (z1, . . . , zn) and zj = xj+ıyj . Then we define dzj = 1

2 (dxj+ıdyj) and dz̄j = 1
2 (dxj−ıdyj).

Similarly, we define ∂
∂zj = 1

2 ( ∂
∂xj −ı

∂
∂yj ) and ∂

∂z̄j = 1
2 ( ∂
∂xj +ı ∂

∂yj ). Then locally for any smooth function
f we get

∂f =

n∑
j=1

∂f

∂zj
dzj and ∂̄f =

n∑
j=1

∂f

∂z̄j
dz̄j
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A function f ∈ C∞(M,C) is J-holomorphic if df ◦J = ıdf . Equivalently, it is J-holomorphic if ∂̄f = 0.
A function f ∈ C∞(M,C) is J-antiholomorphic if df ◦J = −ıdf . Equivalently, it is J-antiholomorphic
if ∂f = 0.
With these definitions it is possible to give some examples of Kähler manifolds.

Example 2.1.0.4. 1. The easiest example of a Kähler manifold is Cn. The identity is a global
chart, so it is a complex manifold. We can canonically identify TzCn ' Cn. For coordinates

zj = xj + ıyj and wj = uj + ıvj the Riemannian metric is given by g(z, w) =
n∑
j=1

xjuj + yjvj ,

while the symplectoc structure is given by ω0(z, w) =
n∑
j=1

xjvj − yjuj .

2. The standard symplectic structure on Cn is invariant under the action of Z2n. Hence on the

torus T2n = Cn�Z2n we get a symplectic form. Let π : Cn → T2n be the projection, then then
symplectic form is uniquely determined by π∗ω = ω0.

3. A Riemann surface (M,J) is a complex manifold of complex dimension 1, so it has real dimension
2. Since any manifold admits a Riemannian metric, we can always choose a Riemannian metric
g. However, it can only be compatible with J if g(x, y) = g(Jx, Jy) always holds. Now define
a new Riemannian metric g̃ by g̃(x, y) = g(x, y) + g(Jx, Jy). This new Riemannian metric is
J-invariant. Now ω(x, y) = g(Jx, y) defines a nondegenerate 2-form. Since the real dimension of
M is 2, dω vanishes. Hence (M,J, g̃, ω) is a Kähler manifold.

4. The complex projective space CPn has a symplectic form compatible with the induced almost
complex structure, which is called the Fubini-Study form. The construction of the Fubini-Study
form begins with a 2-form on Cn+1\{0}. This 2-form is given by ω̃ = ı

2∂∂̄log(| · |2). We can
construct CPn as the space of orbits of the action of C\{0} on Cn+1\{0}. Since ω̃ is invariant
under this action, it gives rise to a 2-form on CPn. If π is the projection Cn+1 → CPn, then the
Fubini-Study form ω is uniquely determined by π∗ω = ω̃.

4

2.2 Dolbeault cohomology

Let (M,J) be an almost complex manifold. For all f ∈ C∞(M,C), the relation df = ∂f + ∂̄f holds.
However, this relation doesn’t need to hold for k-forms with k > 0.

Theorem 2.2.0.1. Let M be a complex manifold with induced almost complex structure J . Then
d = ∂ + ∂̄.

Proof. Let (U,ϕ) be a chart of M , with local coordinates z1, . . . , zn. Then dz1, . . . , dzn, dz̄1, . . . dz̄n
forms a basis for Ω1(M ;C). Here dzj = 1

2 (dxj + ıdyj) and dz̄j = 1
2 (dxj − ıdyj). This basis splits the

forms of type (1, 0) from those of type (0, 1), since

T 1,0 = C− Span{dzj | 1 ≤ j ≤ n} and T 0,1 = C− Span{dz̄j | 1 ≤ j ≤ n}

Now let α ∈ Ωl(M), then we can write locally

α =
∑

k+m=l

∑
|I|=m,|J|=k

αIJdzI ∧ dz̄J

for some αIJ ∈ C∞(U ;C). Here I = {i1, . . . , im} and J = {j1, . . . , jk} are multi-indices and dzI =
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dzi1 ∧ · · · ∧ dzim . Hence we get

dα =
∑

k+m=l

∑
|I|=m,|J|=k

dαIJdzI ∧ dz̄J

=
∑

k+m=l

∑
|I|=m,|J|=k

(∂ + ∂̄)αIJdzI ∧ dz̄J

=
∑

k+m=l

∑
|I|=m,|J|=k

∂αIJdzI ∧ dz̄J + ∂̄αIJdzI ∧ dz̄J

=∂

( ∑
k+m=l

∑
|I|=m,|J|=k

αIJdzI ∧ dz̄J
)

+ ∂̄

( ∑
k+m=l

∑
|I|=m,|J|=k

αIJdzI ∧ dz̄J
)

=∂α+ ∂̄α

Remark 2.2.0.2. This argument may seem to hold for any almost complex manifold. However, for
non-integrable almost complex structures, it is not possible to find local coordinates z1, . . . , zn which
induce such a splitting in the space of 1-forms. It turns out that an almost complex structure J is
integrable if and only if d = ∂ + ∂̄. This is part of the Newlander-Nirenberg theorem. For a proof, see
[6].

Let α ∈ Ωk,l(M), then

0 = d2α = (∂ + ∂̄)(∂ + ∂̄)α = ∂2α+ ∂∂̄α+ ∂̄∂α+ ∂̄2α

Since ∂2α ∈ Ωk+2,l(M), ∂∂̄α+ ∂̄∂α ∈ Ωk+1,l+1(M) and ∂̄2α ∈ Ωk,l+2(M), we must have ∂2 = ∂̄2 = 0
and ∂∂̄ = −∂̄∂. This means that these new differential operators square to zero. Hence we can define
cohomologygroups associated to these differential operators.

Definition 2.2.0.3. We define the Dolbeault cohomologygroup of type (l,m) to be

H l,m(M) =
Ker(∂̄ : Ωl,m(M)→ Ωl,m+1(M))

Im(∂̄ : Ωl,m−1(M)→ Ωl,m(M))

With these two cohomology theories one may wonder what the relation is between them. The answer
to that will be that they are very strongly related. Before we are able to prove that, we will have to
take a look at Hodge theory.

2.3 Hodge Theory

Let M be a compact Kähler manifold of dimension 2n with Riemannian metric g, symplectic form ω
and (integrable) almost complex structure J . Recall that g induces an isomorphism g̃ : TM → T ∗M
given by

g̃(v)(w) = g(v, w), ∀v, w ∈ TxM , x ∈M

Hence we can define an inner product on the cotangent bundle, which we will also denote by g

g(α, β) = g(g̃−1(α), g̃−1(β)), ∀α, β ∈ Ω1(M)

We can extend this inner product to an inner product on Ωk(M) for arbitrary k. To do this, first
note that the pure wedges span Ωk(M). Therefore, we only need to define the inner product on pure
wedges and extend linearly. On pure wedges, this inner product is defined to be

g(α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk) = det((g(αi, βj))1≤i,j≤k)
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Every orientable Riemannian manifold has a canonical volume form on it. If x1, . . . , x2n is a positively
oriented coordinate frame, then the Riemannian metric can be expressed as g =

∑
1≤i,j≤2n

gijdx
idxj ,

where (gij) is a symmetric positive definite matrix. The volume form is locally given by

volg =
√
det(gij)dx

1 ∧ · · · ∧ x2n

Definition 2.3.0.1. The Hodge star operator ? : Ωk(M) → Ω2n−k(M) is the unique operator which
satisfies the equation

α ∧ ?β = g(α, β)volg

for all α, β ∈ Ωk(M). Since we are more interested in complex forms, we want to extend this to
complex forms. Hence we extend ? to be complex linear. In the complex case, we define the Hodge
star operator ? : Ωp,q → Ωn−q,n−p to be the unique operator which satisfies the equation

α ∧ ?β = g(α, β)volg

To simplify notation, we will write ?̄β = ?β. One interesting identity is that for k-forms α we have
?̄?̄α = (−1)kα. Using this Hodge star operator, we can define an inner product on the space of all
complex valued differential forms. This inner product is given by

〈α, β〉 =

∫
M

α ∧ ?̄β

With respect to this inner product, we can define an adjoint operator to the exterior derivative, which
we will denote by d∗. By Stokes’ theorem, we find for α ∈ Ωk(M ;C) and β ∈ Ωk+1(M ;C) that

0 =

∫
M

d(α ∧ ?̄β) =

∫
M

dα ∧ ?̄β + (−1)k
∫
M

α ∧ d?̄β = 〈dα, β〉+ 〈α, (−1)k ?−1 d ? β〉

From this we conclude that d∗ = − ? d?. This allows us to define the Laplace-de Rham operator ∆d,
which is given by ∆d = dd∗ + d∗d. If we follow the same procedure for ∂̄, we find ∂̄∗ = − ? ∂? and we
define ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄.

Definition 2.3.0.2. A k-form α is called harmonic with respect to d if ∆dα = 0. The space of all
harmonic forms of degree k will be denoted by Hk(M ;C). The space of all harmonic forms with respect
to ∂̄ will be denoted by Hp,q(M).

Both ∆d and ∆∂̄ are elliptic differential operators. Such operators have the property that they split
Ωk(M ;C) in a nice way. We will present the following theorem without proof. For more information
about elliptic differential operators and the proof of the theorem, see [7] chapters 1 and 4 or [8] chapters
4 and 5.

Theorem 2.3.0.3. Let P : Γ(E) → Γ(F ) be an elliptic differential operator on a compact manifold.
Then

Γ(E) = Ker(P )⊕ Im(P ∗) and Γ(F ) = Ker(P ∗)⊕ Im(P )

If we apply this theorem to ∆d, we see that for compact Kähler manifolds

Ωk(M ;C) = Hk(M ;C)⊕∆dΩ
k(M ;C)

And if we apply the theorem to ∆∂̄ , we see that for compact Kähler manifolds

Ωp,q(M) = Hp,q(M)⊕∆∂̄Ωp,q(M)
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Theorem 2.3.0.4. Let M be a compact Kähler manifold. Then any element in the de Rham coho-
mologygroup has a unique harmonic representative. Hence we get the isomorphism

Hk(M ;C) ' Hk(M ;C)

Proof. Since ∆d = dd∗ + d∗d, we can split

∆dΩ
k(M ;C) = d(Ωk−1(M ;C)) + d∗(Ωk+1(M ;C))

Take α ∈ d∗(Ωk+1(M ;C)), so α = d∗β for some β ∈ Ωk+1(M ;C) and assume that dα = 0. Then

0 = 〈dd∗β, β〉 = 〈d∗β, d∗β〉 = 〈α, α〉

so α = 0. This means that we get

Ωk(M ;C) = Hk(M ;C)⊕ d∗(Ωk+1(M ;C))⊕ d(Ωk−1(M ;C))

In particular, the only cohomology comes from Hk(M ;C). What is left is to show that harmonic
k-forms are closed but not exact. Take α ∈ Hk(M ;C). Then

0 = 〈∆dα, α〉 = 〈dd∗α, α〉+ 〈d∗dα, α〉 = 〈d∗α, d∗α〉+ 〈dα, dα〉

Hence dα = d∗α = 0. Suppose α = dβ for some β ∈ Ωk−1(M ;C), then

〈α, α〉 = 〈dβ, α〉 = 〈β, d∗α〉 = 0

Hence the only exact element of Hk(M ;C) is 0.

The same argument holds for Dolbeault cohomology. Hence

Hp,q(M) ' Hp,q(M)

Definition 2.3.0.5. The conjugate differential operator dc is defined by conjugating the differential
operator d with the (integrable) almost complex structure J

dc = J−1 ◦ d ◦ J

Lemma 2.3.0.6. The conjugate differential operator is given by dc = −ı(∂ − ∂̄).

Proof. Let α ∈ Ωp,q(M). Then dc acts on α as follows:

dcα =J−1dJα

=ıp−qJ−1dα

=ıp−qJ−1(∂ + ∂̄)α

=ıp−qJ−1∂α+ ıp−qJ−1∂̄)α

=ıp−qı−p−1+q∂α+ ıp−qı−p+q+1∂̄)α

=− ı(∂ − ∂̄)α

Lemma 2.3.0.7. For the Laplace-de Rham operators the following equality’s hold:

∆d = ∆dc = 2∆∂ = 2∆∂̄
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Proof. The proof of this lemma involves the introduction of several new operators and many commu-
tation relations. It can be found in [8].

As a consequence of theorem 2.3.0.3, the Laplace-de Rham operator ∆d is a bijection between ∆dΩ
k(M ;C)

and itself. The inverse is called the Green operator associated to d and will be denoted by Gd. An
immediate consequence of the previous lemma is that

Gd = Gdc =
1

2
G∂ =

1

2
G∂̄

Theorem 2.3.0.8. The de Rham cohomologygroups and the Dolbeault cohomologygroups of any Kähler
manifold are related by

Hk(M ;C) '
⊕
p+q=k

Hp,q(M)

and the Dolbeault cohomologygroups satisfy

Hp,q(M) ' Hq,p(M)

Proof. Since all elements of Hk(M ;C) and Hp,q(M) have unique harmonic representatives, the first
statement is equivalent to the statement that

Hk(M ;C) '
⊕
p+q=k

Hp,q(M)

The isomorphism is given by (π0,k, . . . , πk,0). To see this, let α ∈ Hk(M ;C). Then by lemma 2.3.0.7
and the fact that ∆∂̄ preserves bidegree,

∆dα = ∆d(π
0,k + · · ·+ πk,0)α = 2∆∂̄π

0,kα+ · · ·+ 2∆∂̄π
k,0α

Hence α is harmonic if and only if all of its components are harmonic.
For the second part, it suffices to show that Hp,q(M) ' Hq,p(M). Let α ∈ Hp,q(M), then ∆∂̄α = 0.
Conjugating this equation yields ∆∂̄α = ∆∂ᾱ = ∆∂̄ᾱ = 0 by lemma 2.3.0.7. Hence the map α 7→ ᾱ
maps Hp,q(M) to Hq,p(M). It is its own inverse, so it really is an isomorphism.

Corollary 2.3.0.9. Let M be a compact Kähler manifold. Then the odd Bettinumbers bk = dim(Hk(M))
are even.

Proof. Let k be an odd integer. Then

bk =dim(Hk(M))

=
∑
p+q=k

dim(Hp,q(M))

=
∑
p< k

2

dim(Hp,k−p(M)) + dim(Hk−p,p(M))

=
∑
p< k

2

dim(Hp,k−p(M)) + dim(Hp,k−p(M))

=2
∑
p< k

2

dim(Hp,q(M))

Hence bk is even.
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This is the first result which distinguishes Kähler manifolds from general symplectic manifolds. If we
find a symplectic manifold with an even bettinumber bk for some odd k, then the manifold cannot
admit a Kähler structure.

Example 2.3.0.10. Let ω0 = dx1∧dx2 +dx3∧dx4 be the standard symplectic form on R4. Consider

the manifold M = R4
�Γ, where Γ is the discrete group of affine transformations generated by

g1 : (x1, x2, x3, x4) 7→ (x1 + 1, x2, x3, x4)

g2 : (x1, x2, x3, x4) 7→ (x1, x2 + 1, x3, x4)

g3 : (x1, x2, x3, x4) 7→ (x1, x2, x3 + 1, x4)

g4 : (x1, x2, x3, x4) 7→ (x1 + x2, x2, x3, x4 + 1)

The fact that M is indeed a manifold follows from the quotient manifold theorem, see [1], theorem 7.10.
This theorem says that if the action of a Lie group to a manifold is smooth, free and proper, then the
quotient is again a manifold. Smoothness of the action is trivial. For the other two properties, we first
extend Γ to a Lie group G by taking linear combinations of g1, g2, g3 and g4. Now G is diffeomorphic
to R4, so Γ acts on G. Since Γ is a subgroup of G, the action is free. Let ϕ : G × G → G × G,
(g, h) 7→ (gh, h) be the map of the action of G onto itself. Then ϕ is invertible, with smooth and
therefore continuous inverse. Since ϕ−1 is continuous, it sends compact subsets to compact subsets,
so ϕ is proper. Hence the restricted action to the action of Γ on G is proper as well.
Clearly g∗ω0 = ω0 for any g ∈ Γ. Hence there is a unique symplectic form ω on M for which π∗ω = ω0.
Therefore, we have constructed a symplectic manifold (M,ω). Its fundamental group is given by
π1(M) = Γ. To see why this is the case, first remark that R4 is the universal cover of M . Then we
define xg : I → M to be the path π(tg(0)). From the universal lifting property (see [2]), we see that
all paths are homotopic to exactly one of these x′gs.

The first homologygroup is given by Γ�[Γ,Γ], see [2]. The generators g1, g2, and g3 commute among

themselves and g4 commutes with g1 and g3. However, g−1
4 g−1

2 g4g2 = g1, so [Γ,Γ] is the free group
generated by g1. This means that H1(M ;Z) ' Z3, so b1 = 3. By corollary 2.3.0.9, M does not admit
any Kähler structure. 4



Chapter 3

Differential graded algebra’s

3.1 Minimal models

Definition 3.1.0.1. A graded algebra is an algebra A with a decomposition A =
⊕
i

Ai into homoge-

neous subspaces Ai such that Ai ·Aj ⊂ Ai+j .

Elements of Ai are called homogeneous elements of degree i. The degree of a homogeneous element
x ∈ A is denoted by |x| = i. A graded algebra is commutative if x · y = (−1)|x||y|y · x for all homoge-
neous elements x, y ∈ A.

Any algebra together with the trivial grading A = A0 is a graded algebra. A more insightful ex-
ample is a polynomial algebra over an arbitrary field with the usual grading. Such a polynomial is
not commutative in the graded sense however. An important example will be the free algebra ΛV of
a graded vector space V =

⊕
i

V i. This is the polynomial algebra on even elements and the exterior

algebra on odd elements. Since commutativity of even elements is the same as usual commutativity,
the free algebra is commutative in the graded sense.

Definition 3.1.0.2. A commutative differential graded algebra over a field k, or k −DGA for short,
is a commutative graded algebra A over a field k together with a differential d : Ai → Ai+1 which
satisfies the following conditions:

• d(a · b) = d(a) · b+ (−1)|a|a · d(b)

• d2 = 0

The exterior derivative d on the space of all differential forms Ω∗(M) of a manifold M is the main
example of a DGA. We will use this later to describe properties of manifolds, which is our main
concern. One problem is that this space is usually very big. To capture the essential information
about a manifold without dealing with such a big space, we instead study the cohomology associated
to it. Elements which vanish under the differential are called closed, and elements in the image of the
differential are called exact.

Definition 3.1.0.3. The nth cohomologygroup Hn(A, d) of a k −DGA (A, d) is defined to be:

Hn(A, d) =
Ker(d : An → An+1)

Im(d : An+1 → An)

16
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Since d2 = 0 we know that Im(d : An+1 → An) ⊂ Ker(d : An → AN+1), so this is well defined. In all
cases we will be interested in, this group will have the structure of a finite dimensional vector space.
Elements in the cohomologygroup will be denoted by [x], where x is a representative.

Definition 3.1.0.4. Let (MA, d) and (A, dA) be k −DGA’s. Then (MA, d) is a model for (A, dA) if
there exists a algebra homomorphism ϕ : MA → A which intertwines the differentials and for which
ϕ∗ : Hn(MA, d)→ Hn(A, dA), [x] 7→ [ϕ(x)] defines an isomorphism.

Such a homomorphism is called a DGA homomorphism.
A generating set of an algebra A is a set X such that A is spanned by all elements of the type x1 · · · · ·xn
for n ∈ N and xi ∈ X for 1 ≤ i ≤ n.

Definition 3.1.0.5. Let (MA, d) be a model of (A, dA). Then it is called a minimal model if (MA, d)
is a free algebra of some graded vector space V =

⊕
i

V i and if there exists an ordering on a generating

set X = {xα | α ∈ I} such that xα < xβ implies |xα| < |xβ | and such that dxβ contains only generators
xα < xβ . Since |dxβ | = |xβ |+ 1, there is no term in dxβ which is linear in the generators xα.

Theorem 3.1.0.6. Let (A, dA) be a k −DGA for which H0(A, dA) = k, H1(A, dA) = 0 then (A, dA)
has a minimal model.

Proof. To prove the theorem, we construct a minimal model step-by-step. First, we define M(0) =
M(1) = Q. Now let Z0 be a space of closed elements in A0. Then define ϕ0 : M(0)

∼−→ Z0 to be a
vector space splitting of the natural projection.

Next, we define M(2) = M(1) ⊗ ΛH2(A, dA). Let Z2(A) be the space of closed elements in A2.
We set d(H2(A, dA)) = 0 and extend ϕ1 to ϕ2 by a vector space splitting ϕ2 : H2(A, dA)

∼−→ Z2 and
extending freely. We will continue in this manner to construct the minimal model. Note thatM(2) is
minimal and that ϕ2 induces an isomorphism in cohomology up to degree 2 and is injective in degree 3.
This last statement is trivial, since M(2) doesn’t contain any elements of degree 3. For the induction
step, we assume the following:

1. M(n) is minimal

2. ϕn induces isomorphisms on cohomology up to degree n.

3. ϕn induces an injection on cohomology in degree n+ 1.

For any natural number k, we will denote the space of closed elements of Ak by Zk(A), and the space
of closed elements of M(n)k by Zk(M(n)). There is a natural projection from Zk(A) to Hk(A, dA)
by taking the cohomologyclass. Let α : Hn+1(A, dA) → Zn+1 and β : Hn+2(A, dA) → Zn+2(M(n))
be two vector space splittings of this natural projection. Denote by γ a vector space splitting of
d : An+1 → An+2.
We define V n+1 = Coker((ϕn)∗ : Hn+1(M(n), d) → Hn+1(A, dA)) and Wn+1 = Ker((ϕn)∗ :
Hn+2(M(n), d) → Hn+2(A, dA)). Now we can go on with our construction and define M(n + 1) =
M(n)⊗ Λ(V n+1 ⊕Wn+1). We also define the differential

d(v) =


dM(n)(v) if v ∈M(n)

0 if v ∈ V n+1

β(v) if v ∈Wn+1
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as well as the homomorphism ϕn+1:

ϕn+1(v) =


ϕn(v) if v ∈M(n)

α(v) if v ∈ V n+1

γ(ϕn(β(v))) if v ∈Wn+1

With these definitions, it is easy to check that M(n + 1) is minimal and that ϕn+1 commutes with
the differential. It also induces an isomorphism in cohomology up to degree n + 1 and an injection
in degree n + 2. Hence, by induction M(n) satisfies these conditions for all natural numbers n. We
conclude that (MA = ∪n∈NM(n), d) is a minimal model of (A, dA).

Remark 3.1.0.7. The theorem above also holds in the case that H1(A, dA) 6= 0. However, to prove
the more general case is way more complicated while it doesn’t give much more insight. For the whole
proof, I refer the reader to [9].

This theorem shows the existence of minimal models of spaces satisfying some reasonable conditions.
However, with existence always comes the question of uniqueness: Given a DGA, is its minimal model
unique up to isomorphism? To answer this question, we first need a lemma:

Lemma 3.1.0.8. Let (M = ΛV, d) and (M(n) = Λ
⊕
i≤n

V i), d) be two minimal DGA′s with the natural

inclusion ın :M(n) ↪→M. Then Hn+2(C(ın)) ' V n+1. Here C(ın) denotes the the algebraic mapping
cone of ın. (see Appendix)

Proof. Let (a, b) be an element of C(ın). Then (a, b) is closed if and only if da = 0 and db = −a. Hence
for any b ∈M, there can be only one a ∈M(n) for which (a, b) is closed. Because of this, the second
coordinate captures all the necessary information about the pair. If b ∈Mn+1, we can uniquely write
it as b = b1 + b2, where b1 ∈ V n+1 and b2 ∈M(n)n+1. Define

θ : Zn+2(C(ın))→ V n+1, (a, b) 7→ b1

Let v ∈ V n+1. Then θ(−dv, v) = v, so θ is surjective. Now we want to find the kernel of θ. To do this,
we note that θ(d(a, b)) = θ(−da, a + db) = 0 for any (a, b) ∈ (C(ın))n+1, since a ∈ M(n)n+2 trivially
and db ∈ M(n)n+2 since d(V n+1) ⊂ M(n)n+2. Hence Im(d : (C(ın))n+1 → (C(ın))n+2) ⊂ Ker(θ).
Now let (a, b) ∈ Ker(θ), then b ∈ M(n)n+1, so (−b, 0) ∈ M(n)n+2 and d(−b, 0) = (a, b). Hence
Ker(θ) = Im(d), which means that θ∗ : Hn+2(C(ın))→ V n+1 is an isomorphism.

This lemma allows us to prove uniqueness of minimal models.

Theorem 3.1.0.9. Let ϕ :M→N be a map between minimal DGA′s which induces an isomorphism
ϕ∗ in cohomology. Then ϕ is an isomorphism.

Proof. Since both DGA′s are minimal, M(0) = N (0) and ϕ induces an isomorphism. Assume induc-
tively that ϕ induces an isomorphism M(n)→ N (n). Consider the following diagram:

. . . Hn+1(M(n)) Hn+1(M) Hn+2(C(ıM) Hn+2(M(n)) Hn+2(M) . . .

. . . Hn+1(N (n)) Hn+1(N ) Hn+2(C(ıN ) Hn+2(N (n)) Hn+2(N ) . . .

By induction hypothesis the first and the fourth vertical arrows are isomorphisms. Since ϕ induces
isomorphisms in cohomology, the second and fifth vertical arrows are isomorphisms as well. The five
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lemma (see Appendix) states that the third vertical arrow is also an isomorphism. By the previous
lemma, if M = ΛV and N = ΛW , ϕ induces an isomorphism V n+1 → Wn+1. Since M(n + 1) =
M(n)⊗ΛV n+1 and N (n+ 1) = N (n)⊗ΛW , we get an induced isomorphismM(n+ 1)→ N (n+ 1).
By induction, we conclude that ϕ is an isomorphism.

Corollary 3.1.0.10. The minimal model of a DGA is unique up to isomorphism.

Proof. LetM and N be two minimal models of A, with homomorphisms ϕM and ϕN . Define ψ :M→
N such that ϕM = ϕN ◦ψ. Since ϕM and ϕN induce isomorphisms in cohomology, ψ also induces an
isomorphism in cohomology. By the previous theorem, we conclude that ψ is an isomorphism.

3.2 Homotopy invariance

Let X,Y be two topological spaces and f, g : X → Y two maps between them. We always assume
maps between topological spaces to be continuous. Then we say that f is homotopic to g, denoted
f ' g, if there exists a map H : X × I → Y such that

H(x, 0) = f(x) and H(x, 1) = g(x)

holds for all x ∈ X. Here I is the unit interval [0, 1]. A pointed topological space is a pair (X,x), where
X is a topological space and x ∈ X a point. A basepoint preserving homotopy between two pointed
topological spaces (X,x) and (Y, y) is a homotopy H between X and Y for which H(x, t) = y for all
t ∈ I. We want to find a similar notion for DGA′s. To do this, we note that there is an equivalent
way of defining homotopy. We define two maps λ0, λ1 : Y I → Y by

λ0(τ) = τ(0) and λ1(τ) = τ(1)

Where Y I denots the space of maps I → Y . Then f ' g if and only if there exists a map K : X → Y I

such that
λ0 ◦K = f and λ1 ◦K = g

This formulation allows us to define homotopy for DGA′s. We will define homotopy for minimal
DGA′s. Let M = (ΛX, d̃) be a minimal model. Then we define MI = (ΛX ⊗ ΛX̃ ⊗ ΛdX̃, d), where
the differential d is extended to generators of ΛX ⊗ ΛX̃ ⊗ ΛdX̃ by

dxi = d̃xi, d(x̃i) = dx̃i and d(dx̃i) = 0

The degrees are given by |x̃i| = |xi| − 1 and |dx̃i| = |x̃i|+ 1 = |xi|.
A derivation of degree k on a graded differential algebra X is a map ρ : Xn → Xn+k for which

ρ(a · b) = ρ(a) · b+ (−1)k|a|a · ρ(b)

The differential is an example of a derivation. It has degree 1. OnMI , we can define another derivation
of degree −1. We denote it by i and on generators it is given by

i(xj) = x̃j , i(x̃j) = i(dx̃j) = 0

This new derivation i also satisfies i2 = 0. We define a new map θ = id+ di. Then

θ(a · b) = (id+ di)(a · b)
= i(d(a) · b) + (−1)|a|i(a · db) + d(i(a) · b) + (−1)|a|d

= id(a) · b+ (−1)|a|+1(d(a) · ib) + (−1)|a|(i(a) · db) + a · idb
+ di(a) · b+ (−1)|a|+1(i(a) · db) + (−1)|a|(d(a) · ib) + a · dib
= id(a) · b+ a · idb+ di(a) · b+ a · dib
= θ(a) · b+ a · θ(b)
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Hence θ is a derivation of degree 0. For every degree of x there is a N such that θN = 0 on that degree.
Hence we can define

eθ =

∞∑
n=0

θn

n!

without any concerns about convergence. Its inverse is given by

e−θ =

∞∑
n=0

(−θ)n

n!

Hence eθ is an automorphism of MI . Since θ commutes with d, so does eθ. We define the maps
λ0, λ1 :M→MI by

λ0(xi) = xi and λ1(xi) = eθxi

With these maps we can define homotopy for DGA′s.

Definition 3.2.0.1. Let M and N be two minimal DGA′s and f, g : M → N two maps between
them. Then f is DGA-homotopic to g if there exists a DGA-homomorphism H :MI → N such that

H ◦ λ0 = f and H ◦ λ1 = g

Remark 3.2.0.2. There is also a notion of based DGA-homotopy’s. That involves augmentations,
which we will not deal with here. For more information, see [4].

If x is closed, then eθ reduces to eθ = 1 + di. Hence, we get

H(λ1(x) = H(λ0(x) +H(dx̃)

g(x) = f(x) + dH(x̃)

g(x)− f(x) = dH(x̃)

Since the difference g(x) − f(x) is exact, DGA-homotopic maps induce the same homomorphism
on cohomology. This reminds us of homotopy’s between general topological spaces, where the same
statement applies. This is no coincidence. The next theorem shows the connection between the two
types of homotopy. For a proof, see [10].

Theorem 3.2.0.3. Homotopic maps between smooth manifolds induce homotopic DGA-homomorphisms
of their minimal models.

To simplify notation, we will write x′i = λ1(xi) and we introduce

Ω =

∞∑
n=1

(id)n

n!

such that x′i = xi + dx̃i + Ω(xi).

Lemma 3.2.0.4. With these notations, we get the equality (Λ(xi, x̃i, dx̃i), d) = (Λ(xi, x
′
i, x̃i), d).

Proof. We only need to show that dx̃i can be obtained from the generators {xi, x′i, x̃i}. The minimal
DGA′s are built up in stages, so if xi is in the first stage, then Ω(xi) = 0, so dx̃i = x′i − xi. Now
assume inductively that dx̃j can be obtained through stage k, and take xi from stage k + 1. Then
dx̃i = x′i − xi −Ω(xi). But by induction Ω(xi) can be obtained. Hence we can obtain dx̃i as well.

Lemma 3.2.0.5. Let f :M→ A be a DGA homomorphism. Now extendM to M̃ =M⊗V such that
d(V ) ⊂M, where V = 〈x1, . . . , xk〉 for some generators {x1, . . . , xk} of degree n. Then we can extend
f to a DGA homomorphism f̃ : M̃ → A if and only if [f(dxi)] = 0 ∈ Hn+1(A) for all 1 ≤ i ≤ n.
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Proof. First assume that such an extension f̃ exists. Then f(dxi) = df(xi), so [f(dxi)] = 0. Now
assume that [f(dxi)] = 0, then f(dxi) = da for some a ∈ A. Hence we can define f̃(xi) = a. This
construction extends f and intertwines the differentials.

The extension which is used in the lemma above is called an elementary extension or an Hirsch
extension. Now consider the following homotopy commutative diagram

M A

M̃ B

f

i ϕ

g

Being homotopy commutative means that f ◦ ϕ ' i ◦ g. Here M̃ =M⊗ V as before.

Theorem 3.2.0.6. There exist extensions f̃ : M̃ → A and H̃ : M̃I → B if and only if all cohomolo-
gyclasses of the form

[(−f(dxi), g(xi)−H(Ω(xi)))] = 0 ∈ Hn+1(C(ϕ))

are zero. Here C(ϕ) denotes the algebraic mapping cone of ϕ (see Appendix).

Proof. Since λ1(xi) = λ0(xi) + dx̃i + Ω(xi), we get dΩ(xi) = dλ1(xi)− dλ0(xi) = (λ1 − λ0)(dxi). By
definition of DGA homotopy, we get Hλ0 = ϕf and Hλ1 = gi. Hence it follows that

d(−f(dxi), g(xi)−H(Ω(xi))) = (df(dxi), dg(xi)− dH(Ω(xi))− ϕf(dxi))

= (f(d2xi), g(dxi)−H(dΩxi)− ϕ(f(dxi)))

= (0, g(dxi)−H(λ1 − λ0)dxi − ϕ(f(dxi)))

= (0, g(dxi)− g(dxi) + ϕ(f(dxi))− ϕ(f(dxi)))

= (0, 0)

Now assume that the extensions f̃ and H̃ exist. Then

d(f̃(xi), H̃(x̃i)) = (df̃(xi), dH̃(x̃i) + ϕ(̃f(xi)))

= (−f̃(dxi), H̃(dx̃i) + ϕ(f̃(xi)))

= (−f(dxi), g(i(xi))− ϕ(f̃(xi))−H(Ω(xi)) + ϕ(f̃(xi)))

= (−f(dxi), g(i(xi))−H(Ω(xi)))

Hence if both extensions exist, then [(−f(dxi), g(xi)−H(Ω(xi)))] = 0 ∈ Hn+1(C(ϕ)).
Now assume that [(−f(dxi), g(xi) −H(Ω(xi)))] = 0 ∈ Hn+1(C(ϕ)). Then there exists (a, b) ∈ C(ϕ)
for which d(a, b) = (−da, db+ϕ(a)) = (−f(dxi), g(xi)−H(Ω(xi))). This means that da = f(dxi) and
db+ ϕ(a) = g(xi)−H(Ω(xi)). Hence we define f̃(xi) = a. By lemma 3.2.0.4, define

H̃ |M= H

H̃(xi) = ϕ(x̃i)

H̃(x′i) = g(xi)

H̃(x̃i) = b

Then H̃ intertwines the differentials and extends H, so we have constructed both extensions.

Corollary 3.2.0.7. If ϕ induces an isomorphism on cohomology, then the extensions f̃ and H̃ exist.
If ϕ is also surjective and ϕ ◦ f = g, then f̃ can be constructed in such a way that f̃ ◦ i = f and
ϕ ◦ f̃ = g.
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Proof. Note that there is a long exact sequence of cohomologygroups:

. . . Hn(A) Hn(B) Hn+1(C(ϕ)) Hn+1(A) . . .
ϕ∗ j∗ p∗

where j and p are the natural inclusion and natural projection. Since ϕ∗ is an isomorphism, Hn(C(ϕ)) =
0. Hence by the theorem both extensions exist.
Now suppose that ϕ is surjective and that ϕ ◦ f = g. Then the original homotopy H can be cho-
sen to satisfy H(y) = ϕ(f(y)), H(λ1(y)) = g(y) and H(ỹ) = 0 for all generators y ∈ M. Since
λ1(y) = y+dỹ+Ω(y), these equations imply that H(Ω(y)) = 0. Therefore (−f(dxi), g(xi)−H(Ω(xi)))
reduces to (−f(dxi), g(xi)). Hence [(−f(dxi), g(xi))] = 0, so there exists (a, b) such that d(a, b) =
(−da, db + ϕ(a)) = (−f(dxi), g(xi). This means that da = f(dxi) and db + ϕ(a) = g(xi). Since ϕ
is surjective, there exists an a′ ∈ A for which ϕ(a′) = b. Then g(xi) = ϕ(a + da′) and we define
f̃(xi) = a+ da′, which then satisfies f̃ ◦ i = f and ϕ ◦ f̃ = g.

Theorem 3.2.0.8. Let (A, dA) and (B, dB) be two DGA′s with minimal models (MA, d1) andMB , d2).
Then any DGA homomorphism f : (A, dA) → (B, dB) can be lifted to a DGA homomorphism
F : (MA, d1)→ (MB , d2) completing the following homotopy commutative diagram:

(MA, d1) (MB , d2)

(A, dA) (B, dB)

F

ϕA ϕB

f

Proof. The minimal model is built up out of Hirsch extensions. Hence each extension has the same
structure as M̃ in the previous corollary. That means that we can apply the corollary to each extension,
with ϕ = ϕB . Then we take F to be the limit of all those extended maps. This limit is understood as
follows. All elements ofMA are obtained after a finite amount of Hirsch extensions. Hence how F acts
on an element is determined and fixed after a finite amount of Hirsch extensions. Since the diagram is
homotopy commutative after all finite extensions, the resulting diagram is homotopy commutative.

The map F is called a model for f .

3.3 Formality

Definition 3.3.0.1. A minimal DGA (ΛV, d) is called formal if there is a DGA homomorphism
ϕ : (ΛV, d)→ H∗(ΛV, d) which induces an isomorphism in cohomology.

This definition seems quite abstract and vague. We therefore would like to have some other equivalent
definition. This definition is provided by the following theorem:

Theorem 3.3.0.2. A minimal DGA (ΛV, d) is formal if and only if V decomposes into a direct sum
V = C ⊕ N such that d vanishes on C, d is injective on N and every closed element in the ideal
generated by N is exact.

Proof. Assume that we can decompose V = C ⊕N such that the conditions in the theorem are met.
Then the ideal of N doesn’t add any cohomology, since all of it’s closed elements are exact. On the
other hand, all elements of C are closed. Hence we can define the DGA map

ϕ : V i → Hi(ΛV, d),

{
ϕ(c) = [c], for c ∈ Ci

ϕ(n) = 0, for n ∈ N i
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which we extend freely to ΛV . This map clearly induces an isomorphism in cohomology, so we only
have to check that it intertwines the differentials. On C, ϕ ◦ d = d ◦ ϕ = 0 since d vanishes on C as
well as on H∗(ΛV, d). Now let n ∈ N i. Since ϕ vanishes on N i, d(ϕ(n)) = 0. We can decompose
dn = x + y, where x ∈ C and y ∈ Ideal(N). Since d vanishes on C, we get 0 = d2n = dx + dy = dy.
Since y is a closed element in Ideal(N), it is exact, say y = dz. This means that x = d(n − y), so
ϕ(d(n)) = [x] = 0. We see that ϕ is a DGA homomorphism between (ΛV, d) and H∗(ΛV, d), so (ΛV, d)
is formal.
For the other implication, assume that (ΛV, d) is formal. Let ϕ : (ΛV, d) → H∗(ΛV, d) be the DGA
homomorphism which induces an isomorphism in cohomology. Recall from the construction of minimal
models in theorem 3.1.0.6 that we definedM(n+ 1) =M(n)⊗Λ(V n+1⊕Wn+1). By theorem 3.1.0.9,
(ΛV, d) is isomorphic to the constucted minimal model. Hence we will identify the two. The differential
vanishes on V n+1 and is injective on Wn+1. To induce an isomorphism in cohomology, ϕn+1 has to be
injective on V n+1 and zero on Wn+1. Since the differential is zero in H∗(ΛV, d), ϕn is surjective. We
define C =

⊕
i

V i and N =
⊕
i

W i. Now d is zero on C and injective on N . If we take a closed element

n in Ideal(N), then ϕ(n) = 0. Therefore ϕ∗([n]) = 0, but since ϕ∗ is an isomorphism, [n] = 0. Hence
all closed elements in the ideal generated by N are exact.

It may seem like all DGA′s are formal, but this is not the case. To prove that there are non-formal
DGA′s, we take a look at Massey products. The first kind of Massey product is the triple Massey
product, which will be constructed below.

Let (A, d) be a DGA and let [a] ∈ Hp(A, d), [b] ∈ Hq(A, d) and [c] ∈ Hr(a, d), with representa-
tives a, b and c. Suppose that

[a] · [b] = 0 ∈ Hp+q(A, d) and that [b] · [c] = 0 ∈ Hq+r(A, d).

That means that there are x12 ∈ Hp+q−1(A, d) and x23 ∈ Hq+r−1(A, d) such that

dx12 = (−1)pa · b and dx23 = (−1)qb · c.

Then we can take y = (−1)pa · x23 + (−1)p+q−1x12 · c. This element will be closed by construction.
Hence it defines a cohomologyclass [y] ∈ Hp+q+r−1. Unfortunately, this cohomologyclass is dependent
on choice of representatives. To see this, we take three different representatives ã = a + da′ ∈ [a],
b̃ = b+ db′ ∈ [b] and c̃ = c+ dc′ ∈ [c]. The corresponding change will be:

dx̃12 = (−1)pa · b+ (−1)pa · db′ − (−1)p−1da′ · b− (−1)p−1da′ · db′

= (−1)pa · b+ d(a · b′ − (−1)p−1a′ · b− (−1)p−1a′ · db′)

and

dx̃23 = (−1)qb · c+ (−1)qb · dc′ − (−1)q−1db′ · c− (−1)q−1db′ · dc′

= (−1)qb · c+ d(b · c′ − (−1)q−1b′ · c− (−1)q−1b′ · dc′)

Hence we can make the choices

x̃12 = x12 + a · b′ − (−1)p−1a′ · b− (−1)p−1a′ · db′

x̃23 = x23 + b · c′ − (−1)q−1b′ · c− (−1)q−1b′ · dc′

With these new choices we get

ỹ =(−1)p(a+ da′) · (x23 + b · c′ − (−1)q−1b′ · c− (−1)q−1b′ · dc′)
+ (−1)p+q−1(x12 + a · b′ − (−1)p−1a′ · b− (−1)p−1a′ · db′) · (c+ dc′)

=y + a ·X1 + c ·X2 + dX3
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for some X1, X2 and X3. Hence the indeterminancy in [y] lies in the ideal generated by [a] and [c].
Let π : H∗(A, d)→ H∗(A, d)/([a], [c]) denote the projection into the quotient of the cohomologygroup
by the ideal generated by [a] and [c]. Then we can define the triple Massey product as follows:

Definition 3.3.0.3. Let (A, d) be a DGA, and let [a] ∈ Hp(A, d), [b] ∈ Hq(A, d) and [c] ∈ Hr(A, d)
satisfying the conditions

[a] · [b] = 0, [b] · [c] = 0

the we define the triple Massey product by

〈[a], [b], [c]〉 = π([y])

As mentioned before, triple Massey products are not the only kind of Massey products. There are
quadruple Massey products, quintuple Massey products and so on. They are all defined similarly as
the triple Massey product, but they require one more condition to be defined. For the definition of
the quadruple Massey product, the triple Massey products not only have to vanish but they have to
vanish simultaneously.

Definition 3.3.0.4. Let (A, d) be a DGA and let [a] ∈ Hp(A, d), [b] ∈ Hq(A, d), [c] ∈ Hr(A, d) and
[d] ∈ Hs(A, d) such that the Massey products

〈[a], [b], [c]〉 and 〈[b], [c], [d]〉

are defined. Then the Massey products vanish simultaneously if there are choices of representatives
such that both representatives of their triple Massey products y and z are exact.

Definition 3.3.0.5. Let (A, d) be a DGA and let [a] ∈ Hp(A, d), [b] ∈ Hq(A, d), [c] ∈ Hr(A, d) and
[d] ∈ Hs(A, d) such that the Massey products

〈[a], [b], [c]〉 and 〈[b], [c], [d]〉

are defined and vanish simultaneously. Take x13 and x24 such that

dx13 = y and dx24 = z

Then we can define w ∈ Ap+q+r+s−2 as follows:

w = (−1)pa · x24 + (−1)p+q−1x12 · x34 + (−1)p+q+r−1x13 · d

This element will be closed by construction. Hence we define the quadruple Massey product as the set
of all cohomologyclasses [w] that we can obtain by this construction.

We will now go back to the main topic of this section, which is formality. There is a really nice
connection between Massey products and formal spaces, which will be clear with the following theorem:

Theorem 3.3.0.6. Let (ΛV, d) be a formal minimal DGA. Then it is possible to make uniform choices
such that all Massey products are exact.

Proof. By theorem 3.3.0.2 we can decompose V as V = C ⊕ N such that d vanishes on C and all
closed elements in the ideal generated by N are exact. Hence, if the equation dx = y has a solution
for x ∈ V , then we can write x = c+n, where c ∈ C and n ∈ (N). But since dc = 0, we find a solution
of the equation for n ∈ (N). Consider the triple Massey product 〈[a], [b], [c]〉 represented by

y = (−1)pa · x23 + (−1)p+q−1x12 · c
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Then we can take x12, x23 ∈ (N), so y ∈ (N). But since y is a closed element in the ideal generated
by N , is is exact.
This argument also holds for higher order Massey products, since we can choose x13 and x24 in (N) as
well, so w = (−1)pa · x24 + (−1)p+q−1x12 · x34 + (−1)p+q+r−1x13 · d will also be in (N) and therefore
exact. We can do this for all higher order Massey products. Hence with these choices of representatives
all Massey products are exact.

This theorem allows us to prove that a DGA is not formal. If we can find a Massey product for which
all representatives are not exact, then the DGA can not be formal.

Example 3.3.0.7. Let V be the free algebra generated by a, b, x1 and x2. Then (ΛV, d) is a DGA
with

|a| = |b| = 2, |x1| = |x2| = 3, da = db = 0, dx1 = a2, dx2 = a · b.

The Massey product 〈[a], [a], [b]〉 is given by

〈[a], [a], [b]〉 = [a · x2 − x1 · b]

Since this Massey product has degree 5 and all elements of degree 4 are closed, it can not be exact.
Hence this is an example of a minimal DGA which is not formal. 4

Lemma 3.3.0.8. Let M be a compact Kähler manifold and let α ∈ Ωk(M) such that dα = dcα = 0.
Assume that α = dβ or α = dcβ for some β ∈ Ωk−1(M). Then there exists a γ ∈ Ωk−2(M) for which
α = ddcγ = −dcdγ.

Proof. Consider the case that α = dβ for some β ∈ Ωk(M). By theorem 2.3.0.4 α has no harmonic
part. Hence α = Gd∆dα = Gd(dd

∗ + d∗d)α = Gddd
∗α. By lemma 2.3.0.7 α has no dc-harmonic part

either, so α = Gdcd
c(dc)∗α. Since dc and d∗ commute (see [8]), we get α = Gddd

∗Gdcd
c(dc)∗α =

ddcd∗GdGdc(d
c)∗α = ddc(d∗GdGdc(d

c)∗α) = ddcγ. In the case α = dcβ the same argument can be
applied.

Theorem 3.3.0.9. Compact Kähler manifolds are formal.

Proof. LetM be a compact Kähler manifold and define Ωc(M) = Ker(dc) andHdc(M) = H∗(Ω∗(M), dc).
If [α] ∈ Hdc(M), then dcdα = −ddcα = 0, so dα ∈ Hdc(M). Hence (Hdc(M), d) is a DGA. By lemma
3.3.0.8 we see that dα = dc(−dγ), so d = 0 on Hdc(M). Let p : Ωc(M) → (Hdc(M), d) be the pro-
jection. Then we want to show that p induces an isomorphism p∗ on cohomology. Let [α] ∈ Hdc(M).
Then by lemma 3.3.0.8 we get dα = ddcγ, so d(α− dcγ) = 0. This means that [α− dcγ] ∈ H∗(Ωc, d),
and p∗[α− dcγ] = [α]. Hence p∗ is surjective.
Suppose that p∗[α] = 0, then α = dcβ. By lemma 3.3.0.8, α = ddcγ, so [α] = 0. Hence p∗ is injective,
so it is an isomorphism.
Let i : (Ωc(M), d) → (Ω∗(M), d) be the inclusion. Then we want to show that i induces an isomor-
phism i∗ on cohomology. Let α ∈ H∗(Ω∗(M), d), then by lemma 3.3.0.8 we get dcα = ddcγ. Now
define β = α + dγ, then dcβ = dcα + dcdγ = ddcγ − ddcγ = 0. hence [β] ∈ Ωc(M) and i∗[β] = [α], so
i∗ is surjective.
Suppose that i∗[α] = 0, then α = dβ. By lemma 3.3.0.8, α = ddcγ, so [α] = 0. Hence i∗ is injective, so
it is an isomorphism. Since these maps both induce an isomorphism on cohomology, and since d = 0
on Hdc(M), we get

H∗(Ω∗, d) ' H∗(Ωc(M), d) ' H∗(Hdc(M), d) ' Hdc(M)
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By theorem 3.2.0.8 we can lift these DGA homomorphisms completing the following commutative
diagram:

M1 M2 M3

Hdc(M) (Ωc(M), d) (Ω∗(M), d)

ϕ1

F G

ϕ2 ϕ3

p i

By theorem 3.1.0.9, F and G are actually isomorphisms. Hence there is a map from the minimal model
M3 of (Ω∗(M), d) to H∗(M3) inducing an isomorphism on cohomology.



Chapter 4

Nilmanifolds

Nilmanifolds are a certain type of quotient of Lie groups. Before we go into nilmanifolds, some general
properties of Lie groups will be discussed. The Lie algebra will turn out to be of vital importance for
the minimal model of nilmanifolds. Therefore the Lie algebra and the interplay between Lie groups
and Lie algebra’s will also be addressed.

4.1 Lie groups and Lie algebra’s

Recall the definition of a Lie group.

Definition 4.1.0.1. A Lie group is a set with a group structure and the structure of a smooth manifold
such that all group operations are smooth.

Lie groups need not be connected. Sometimes it is useful to assume that a Lie group is connected.
The next theorem deals with this.

Theorem 4.1.0.2. Let G be a Lie group and denote the connected component of the identity by G0.
Then G0 is a normal subgroup of G

Proof. The image of connected components under continuous maps is again connected. Hence the map

i : G→ G, g 7→ g−1

sends connected components to connected components. Since it sends e tot e, it must send G0 to G0.
For the same reason, the map

m : G×G→ G, (g, h) 7→ gh

sends G0 ×G0 to G0. Because G0 is closed under inversion and multiplication, it is a subgroup.
To see that G0 is a normal subgroup, take an arbitrary h ∈ G. Then the map

ch : G0 → G, g 7→ hgh−1

is continuous and sends e to e. Hence it maps G0 to G0, so G0 is a normal subgroup of G.

A Lie group action is an action of a Lie group which is smooth. Important examples of Lie group
actions are actions of G on itself. They are given by

Lg : G→ G, h 7→ gh

Rg : G→ G, h 7→ hg−1

Adg : G→ G, h 7→ ghg−1

27
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These actions are called the left action, the right action and the adjoint action. These actions extend
to TG by their push forward. In other words, the map v 7→ (Lg)∗v defines an action on TG, and the
same holds for Rg and Adg. Since Adg preserves the identity, we get an action on the finite dimensional
vector space TeG given by (Adg)∗. We will write gv for (Lg)∗v and vg for (Rg−1)∗v.

Definition 4.1.0.3. A Lie algebra is a vector space g over a field k together with a binary operation
[·, ·] : g× g→ g which satisfies the following conditions:

• [v, w] = −[w, v],∀v, w ∈ g (skew-symmetry)

• [λu+ µv,w] = λ[u,w] + µ[v, w], ),∀λ, µ ∈ k, ∀u, v, w ∈ g (linearity in the first argument)

• [[u, v], w] + [[v, w], u] + [[w, u], v] = 0, ),∀u, v, w ∈ g (Jacobi identity)

The binary operation is called the Lie bracket.

Every element of a Lie algebra induces a linear map, called the adjoint map. It is given by

adv : g→ g, adv(w) = [v, w]

Given a Lie algebra g, we can find a basis {X1, . . . , Xn}. With respect to this basis, we can always
express the Lie bracket explicitly by [Xi, Xj ] =

∑
k

ckijXk. The symbols ckij are called the structure

constants of the Lie algebra with respect to the basis {X1, . . . , Xn}. The concepts of Lie groups and
Lie algebra’s are strongly related. A vector field X on G is invariant under left translations or simply
left invariant if

(dLg)h(Xh) = Xgh

The set of all left invariant vector fields is denoted by Lie(G). It is closed under the usual Lie bracket
on vector fields, so the pair (Lie(G), [·, ·]) is a Lie algebra. The map

Lie(G)→ TeG, X 7→ Xe

is an isomorphism of vector spaces. Because of this, Lie(G) is usually identified with TeG.
The relation between Lie groups and Lie algebra’s also goes the other way.

Lemma 4.1.0.4. Let G be a Lie group, g = TeG its Lie algebra and let x ∈ g. Then there exists a
unique Lie group homomorphism γx : R→ G such that

γ̇x(0) = x

Proof. We first prove uniqueness. Since γx is a Lie group homomorphism, we get γ̇x(t) = γx(t)γ̇x(0) =
γ̇x(0)γx(t). Let vx be the left invariant vector field such that vx(e) = x. Then γx is the integral curve
of vx. Hence γx is uniquely defined and exists locally.
Now we prove global existence. Let ϕtx be the flow of vx. Since vx is left invariant, so is ϕtx, which
means that gϕtx(h) = ϕtx(gh). Now γx(t) = ϕtx(e), so γx(t + s) = ϕt+sx (e) = ϕsx(ϕtx(e)) = ϕsx(γx(t)) =
γx(t)ϕsx(e) = γx(t)γx(s). Hence it can be extended to any t ∈ R.

The map γx is called the one parameter subgroup of G corresponding to x.

Definition 4.1.0.5. Let G be a Lie group and g = TeG its Lie algebra. Then the exponential map
exp : g→ G is given by

exp(x) = γx(1)
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From this definition it follows that d0exp : g → TeG = g is the identity. Hence from the inverse
function theorem we conclude that exp is a local diffeomorphism between neighborhoods of 0 ∈ g and
e ∈ G.
With these concepts and properties of Lie groups and Lie algebra’s settled, we can go on to define
nilmanifolds.

Definition 4.1.0.6. Let G be a group. Then the lower central series of G is a series

G = G0 . G1 . . . .

where Gn+1 = [Gn, G] is the subgroup generated by all commutators xyx−1y−1 with x ∈ Gn and
y ∈ G. If the lower central series ends in {e} after finitely many steps, then G is called nilpotent.

Definition 4.1.0.7. A compact nilmanifold is a compact manifold of the type N�Γ, where N is a
simply connected nilpotent Lie group and Γ is a discrete subgroup.

A discrete subgroup Γ of G for which G�Γ is compact is called a lattice.

4.2 Chevalley-Eilenberg complex

Let g be a Lie algebra with basis {X1, . . . , Xn}. Denote the dual of g by g∗ and the dual basis by
{x1, . . . , xn}. Let Λg∗ be the free graded algebra generated by g∗, such that all elements of g∗ have
degree 1. Then we can define a map δ on g∗ by

δxk(Xi, Xj) = −xk([Xi, Xj ]) = −ckij

and extend it on Λg∗ as a graded derivation. That means that for wedge products the relation

δ(x ∧ y) = δ(x) ∧ y + (−1)|x|x ∧ δy

is satisfied. More explicitly, the differential is given by

δxk = −
∑
i,j

ckijdxi ∧ dxj

The requirement that δ2 = 0 is equivalent to the Jacobi identity. This equivalence follows from a
simple calculation.

Definition 4.2.0.1. Let g be a Lie algebra. Then (Λg∗, δ) is called the Chevalley-Eilenberg complex
associated to g.

Theorem 4.2.0.2. Let N�Γ be a nilmanifold. Then the Chevalley-Eilenberg complex associated to the

Lie algebra of N is isomorphic to the minimal model of N�Γ

Proof. The proof of this theorem can be found in [4].

Let N�Γ be a nilmanifold of dimension 2n and let n be the Lie algebra of N . Suppose that n is r+1-step
nilpotent, so n = n0 ⊃ · · · ⊃ nr+1 = 0, where ni+1 = [ni, n]. We assume r > 0, which holds if and
only if n is not commutative. Choose a vector space complement ai such that ni = ni+1 ⊕ ai. Then
n = a0 ⊕ · · · ⊕ ar. Hence we can write

Λkn∗ =
∑

Λi0,...,ir

where
Λi0,...,ir = Λi0a∗0 . . .Λ

irar

Of course, ij must be smaller or equal to nj = dim(aj).
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Lemma 4.2.0.3. In this decomposition, H1(Λn∗, δ) is equal to Λ1,...,0.

Proof. Obviously, no element of degree 1 is exact. Hence only closedness needs to be proven. Note
that

δα(Xi, Xj) = −α([Xi, Xj ])

This means that δα = 0 if and only if α vanishes on n1, which only occurs when α ∈ a0.

Lemma 4.2.0.4. Any closed 2-form σ can be decomposed as σ = σ1 + σ2, where σ1 ∈ Λ1,...,1 and
σ2 ∈

∑
Λi0,...,ir−1,0.

Proof. Let σ be a closed 2-form and decompose it as σ = σ1 + σ2 such that σ2 is the part in∑
Λio,...,ir−1,0. Let X,Y ∈ n and Z ∈ nr. Then Z will be in the center of n, so [X,Z] = [Y,Z] = 0.

Hence
δσ(X,Y, Z) = −σ([X,Y ], Z) = −σ1([X,Y ], Z)

Since [X,Y ] ∈ n1, this is zero for all X,Y ∈ n if and only if σ1 ∈ Λ1,...,1.

By theorem 4.2.0.2, H∗(Λn∗, δ) ' H∗(N�Γ). Denote the isomorphism by ϕ. Suppose now that N�Γ is

a Kähler manifold. By theorem 2.0.0.13, [ω]j is an isomorphism between Hn−j(N�Γ) and Hn+j(N�Γ).
Hence the same must hold for ϕ([ω]j) = Ωj . Choose a basis λ1, . . . , λnr of Λ0,...,0,1. Then we can write

Ω =
∑
i

βi ∧ λi + Ω2

for some βi ∈ Λ1,0,...,0 and Ω2 ∈
∑

Λi0,...,ir−1,0. By nondegeneracy the βi’s must be linearly indepen-
dent, so we can extend it to a basis (βj)1≤j≤n0

of Λ1,0,...,0.

Lemma 4.2.0.5. Every σ ∈ Λ2n−1n is closed. If σ is exact, then is is divisible by β1 ∧ · · · ∧ βn0
.

Proof. Let bi = a0 ⊕ · · · ⊕ ai. For α ∈ Λi0,...,ir , each term of δα belongs to Λj0,...,jr , where for some
k > 0 we have jk = ik − 1 and j0 + · · ·+ jk−1 = i0 + · · ·+ ik−1 + 2. Hence, is i0 + · · ·+ ir = 2n− 1,
then i0 + · · ·+ ik−1 ≥ dim(bk−1)− 1, so j0 + · · ·+ jk−1 ≥ dim(bk−1) and δσ = 0. Hence σ is closed.
If i0 + · · · + ir = 2n − 2, then any term must satisfy j0 + · · · + jk−1 = dim(bk−1), so in particular
j0 = n0. Therefore σ ∈

∑
Λn0,...,ir , so it is divisible by β1 ∧ · · · ∧ βn0

.

Theorem 4.2.0.6. Let M be a compact nilmanifold. If it admits a Kähler structure, then it is
diffeomorphic to a torus.

Proof. Assume that M is not diffeomorphic to a torus. Then its Lie algebra is noncommutative, hence
the assumptions on top of this page hold. Using the previous lemmata it suffices to show that [Ω]n−1

is not an isomorphism. Suppose σ ∈ Λ2n−1n∗ is divisible by λ1 ∧ · · · ∧ λnr but not by β ∧ · · · ∧ βnr ,
then [σ] is not in the image of [Ωn−1]. To prove this, we have to show that every α ∈ Λ1,0,...,0 does
not differ from σ by a form divisible by β1 ∧ · · · ∧ βnr .
Decompose Ωn−1 as Ωn−1 = γ1+γ2, where γ1 ∈ Λn0−2,n1,...,nr and γ2 ∈

∑
Λn0−1,i1,...,ir+

∑
Λn0,i1,...,ir .

Each term in γ1 is divisible by λ1 ∧ · · · ∧ λnr , so it is also divisible by β1 ∧ · · · ∧ βnr . Since α ∧ γ2 is
divisible by β1∧· · ·∧βnr , Ωn−1∧α is divisible by β1∧· · ·∧βnr , so [σ] is not in the image of [Ω]n−1.

This theorem gives us another instrument to show that a given symplectic manifold does not admit a
Kähler structure.

Example 4.2.0.7. Let H(1, p) be the group of (p+ 2)× (p+ 2) matrices of the formIp A C
0 1 b
0 0 1
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where Ip is the p × p identity matrix, A and C are p × 1 matrices and b is a real number. This
group is called the general Heisenberg group. It is nilpotent and the subgroup of matrices with

integral coefficients Γ(p) is a lattice. Hence Mp = H(1, p)�Γ defines a nilmanifold. We use the global
coordinates Ip X Z

0 1 y
0 0 1


If La denotes left multiplication by a ∈ H(1, p), then L∗a(dX) = dX, L∗a(dy) = dy and L∗a(dZ−Xdy) =
dZ −Xdy. Therefore {dX, dy, dZ −Xdy} forms a basis for the Lie algebra of H(1, p). With this, we
can define a new manifold G(p, q) = H(1, p) × H(1, q). Since this is the product of two nilpotent
groups, it is nilpotent as well. Again the integral matrices Γ(p, q) form a lattice in G(p, q). Therefore

M(p, q) = G(p, q)�Γ(p, q) is a nilmanifold. The fact that it is indeed a manifold follows from the

quotient manifold theorem. We denote the projection G(p, q)→M(p, q) by π. We define the 2-form

ω = dX1 ∧ (dZ1 −X1dy
1) + dX2 ∧ (dZ2 −X2dy2) + dy1 ∧ dy2

where dXi∧(dZi−Xidyi) =
∑
j

dXi
j∧(dZij−Xi

jdy
i). It is easy to check that ω is closed and nondegen-

erate, hence symplectic. It is also invariant under left multiplication, so there exists a symplectic form
ω̃ on M(p, q) such that π∗ω̃ = ω. The fundamental group of M(p, q) is given by Γ(p, q) for the same
reason as in example 2.3.0.10. This is not abelian for p > 0 or q > 0. Hence for p > 0 or q > 0 M(p, q)
is not diffeomorphic to a torus, so this construction yields a countably infinite amount of symplectic
manifolds with no Kähler structure. 4



Chapter 5

Outlook

The Thurston-Weinstein problem is still studied by many mathematicians. This chapter will briefly
cover some of the methods used in constructing symplectic manifolds without Kähler structure. It also
covers some conjectures that mathematicians are still working on. Since this is an outlook, all sections
can be read separately.

5.1 Solvmanifolds

Definition 5.1.0.1. A solvable group is a group G which has a finite series of subgroups

{e} = G0 / G1 / · · · / GN = G

for which Gi�Gi−1
is abelian for 1 ≤ i ≤ N .

For all nilpotent groups the lower central series satisfies the property, so all nilpotent groups are
solvable.

Definition 5.1.0.2. A compact solvmanifold is a compact manifold of the form G�Γ, where G is a
solvable simply connected Lie group and Γ is a lattice.

Since any nilpotent group is sovable, all nilmanifolds are solvmanifolds. Before we can go on about
the structure of solvmanifolds, we have to introduce the concept of a fiber bundle.

Definition 5.1.0.3. A fiber bundle is a structure (E,F,B, π), where E, F and B are topological
spaces and π : E → B is a continuous surjection satisfying the following property:
For all x ∈ E there exists a neighborhood U ⊂ B of π(x) such that there is a homeomorphism
ϕ : π−1(U)→ U × F for which the following diagram commutes:

π−1(U) U × F

U

ϕ

π
p1

where p1 : U × F → U is the canonical projection. Here E is called the total space, F is called the
fiber, B is called the base space and π is called the projection map. The fiber bundle is often denoted
by

F → E → B

32
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A smooth fiber bundle is a fiber bundle where E, F and B are smooth manifolds and all maps involved
are smooth.
The Mostow structure theorem shows that any solvmanifold has the structure of a fiber bundle. For
the proof of the theorem, see [13].

Theorem 5.1.0.4. Let G�Γ be a solvmanifold and let N be the maximal connected nilpotent subgroup
of G. Then:

1. NΓ is a closed subgroup of G.

2. N ∩ Γ is a lattice in N .

3. G�NΓ is a torus

4. G�Γ is the total space of the fiber bundle

N�N ∩ Γ = NΓ�Γ→
G�Γ→

G�NΓ

This bundle is called the Mostow bundle.

Definition 5.1.0.5. A solvmanifold G�Γ is called completely solvable if the Lie algebra g associated
to G satisfies the condition that all adjoint maps adv have only real eigenvalues.

Just as in the case of nilmanifolds, solvmanifolds have an associated Chevalley-Eilenberg complex
(Λg∗, δ). However, for solvmanifolds the Chevalley-Eilenberg complex does not have to be minimal.
Hence we can not generalize theorem 4.2.0.2 for arbitrary solvmanifolds. For solvmanifold that are
completely solvable, Hattori’s theorem is a weakened version of theorem 4.2.0.2. The proof of this
theorem can be found in [12].

Theorem 5.1.0.6. Let G�Γ be a completely solvable compact solvmanifold, then there exists a DGA

homomorphism ϕ : (Λg∗, δ)→ Ω∗(G�Γ) which induces an isomorphism on cohomology.

This theorem shows that some properties of nilmanifolds can be generalized to solvmanifolds under
certain conditions. This raises the question whether this is also the case for theorem 4.2.0.6. In four
dimensions, the theorem indeed generalizes:

Theorem 5.1.0.7. Let M be a compact 4-dimensional solvmanifold. If it admits a Kähler structure,
then it is diffeomorphic to a torus.

The proof of this theorem can be found in [4]. This seems promising for the case of manifolds of
arbitrary dimension. However, it is still not known if this holds for all dimensions. This is called the
Benson-Gordon conjecture.

Conjecture Any compact solvmanifold which carries a Kähler structure is diffeomorphic to a torus.

5.2 Symplectic Hodge structure

Let (M,ω) be a symplectic manifold of dimension 2n. Recall that ω induces an isomorphism ω̃ :
TM → T ∗M given by

ω̃(v)(w) = ω(v, w), ∀v, w ∈ TxM , x ∈M

Hence we can define a linear symplectic form on the cotangent bundle, which we will also denote by ω

ω(α, β) = ω(ω̃−1(α), ω̃−1(β)), ∀α, β ∈ Ω1(M)
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We can extend this linear symplectic form to a linear symplectic form Ωk(M) for all k. To do this,
note that the pure wedges span Ωk(M). Therefore, we only need to define the linear symplectic form
on pure wedges and extend linearly. On pure wedges, this linear symplectic form is defined to be

ω(α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk) = det((ω(αi, βj))1≤i,j≤k)

Definition 5.2.0.1. The symplectic Hodge star operator ?ω : Ωk(M) → Ω2n−k(M) is the unique
operator which satisfies the equation

α ∧ ?ωβ = ω(α, β)
ωn

n!

for all α, β ∈ Ωk(M). Similar to the normal Hodge star operator, we define a map

d∗ : Ωk(M)→ Ωk−1(M), d∗ = (−1)k ?ω d?ω

We call α ∈ Ωk(M) symplectic harmonic if dα = d∗α = 0. Let Hk
hr(M) be the set of cohomologyclasses

which can be represented by symplectic harmonic k-forms. This is a linear subspace of Hk(M), so we
define

hk(M,ω) = dim(Hk
hr(M))

The next theorem relates symplectic harmonic forms to the hard Lefschetz property.

Theorem 5.2.0.2. Let (M,ω) be a compact symplectic manifold. Then hk(M,ω) = bk(M) for all
1 ≤ k ≤ n if and only if ω satisfies the hard Lefschetz property.

The proof can be found in [14]. Since all compact Kähler manifolds satisfy the hard Lefschetz property,
we get hk(M,ω) = bk(M) for all compact Kähler manifolds. Hence if the equality does not hold,
then M can not admit a Kähler structure. In particular, if hk(M,ω) is odd for some odd k, then
M can not admit a Kähler structure, regardless of its Bettinumbers. Either bk(M) 6= hk(M,ω) or
bk(M) = hk(M,ω). In the first case, the theorem shows that there can be no Kähler structure. In the
second case bk(M) is odd, so again there can be no Kähler structure.

5.3 Blow ups

Until now, all examples of symplectic manifolds with no Kähler structure were non-simply connected.
It is harder to come up with simply connected examples, but it has been done. The first examples of
simply connected symplectic manifolds with no Kähler structure were constructed by Dusa McDuff.
For the original article, see [15]. This construction made use of symplectic blows ups.
We first take a look at classical blow ups. Consider the submanifold γn ⊂ Cn+1 × CPn given by

γn = {(z, l) ∈ Cn+1 × CPn | z ∈ l}

This manifold has a natural structure of a line bundle. The projection p : γn → CPn provides this
structure. In what follows we will be more interested in the projection to the first coordinate.
We first construct the new manifold

D(γn) = {(z, l) ∈ γn | |z| < 1}

Let π : D(γn) → D(0, 1) denote the projection of D(γn) to the open unit disc in Cn+1 given by
π((z, l)) = z. All lines l ∈ CPn are uniquely determined by a single point z ∈ Cn+1\{0}. Hence for all
z ∈ D(0, 1)\{0} we get π−1(z) = (z, l), which is a single point. On the other hand, π−1(0) = {(0, l) ∈
γn | 0 ∈ l} = CPn. This means that π|D(γn)\{0} is a diffeomorphism. The new manifold D(γn) is
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thus the unit disc in Cn+1 where the origin is replaced by CPn. In terminology, the origin has been
blown up to CPn. One can check that D(γn) is simply connected by considering long exact homotopy
sequences.
Let X be a complex manifold of complex dimension n+ 1, and let x ∈ X. Take a complex chart (U,ϕ)
with ϕ : (U, x)→ (D(0, 1), 0). Then we can define π̃ = π|D(γn)\{0} ◦ ϕ|U\{x}.

Definition 5.3.0.1. Let X be a complex manifold of complex dimension n + 1 and x ∈ X a point.
The blow up of X at the point x is given by

Bl(X,x) = (X\{x}) ∪π̃ D(γn)

This is again a complex manifold. The preimage π−1(0) is called the exceptional divisor E of the blow
up.

This procedure gives us a way to blow up points. This can be generalized to blow up submanifolds
instead of only points.
First note that the condition z ∈ l is equivalent to the condition zilj = zj li for all 1 ≤ i, j ≤ n+ 1. To
generalize blow ups to submanifolds, consider the disc D = D(0, 1) ⊂ Cn and define

D̃ = {(z, l) ∈ D × CPn−k−1 | zilj = zj li for k + 1 ≤ i, j ≤ n}

The projection onto the first coordinate is again denoted by π. The exceptional divisor is now given
by CPn−k−1.
Let X be a complex manifold of (complex) dimension n and M a complex submanifold of (complex)
dimension k. Take a collection of charts {(Uα, ϕα) | α ∈ A} such that in local coordinates M is given
by zk+1

α = · · · = znα = 0, where z1
α, . . . , z

n
α denote coordinates in the chart (Uα, ϕα). By identifying Uα

with D, we get the blow up Ũα. On intersections, we define the transition maps

παβ : π−1
α (Uα ∩ Uβ)→ π−1

α (Uα ∩ Uβ)

Now we define
Ũ = ∪παβ Ũα

with projection π : Ũ → ∪αUα.

Definition 5.3.0.2. Let X be a complex manifold of complex dimension n+1 and M ⊂ X a complex
submanifold of complex dimension k. The blow up of X along M is given by

Bl(X,M) = (X\M) ∪π Ũ

together with a projection π̃ : Bl(X,M)→ X extending π.

This complex blow up has a symplectic analog, which is described and applied in the article of McDuff
(see [15]). Using the symplectic blow up, McDuff constructed symplectic simply connected manifolds
with no Kähler structure.

5.4 Gompf’s construction

In 1995 Robert Gompf used surgery to construct new symplectic manifolds out of old ones. He used
this new construction to find a lot of new examples of symplectic manifolds which do not admit a
Kähler structure. For the original article, see [16].
This result is precisely formulated in the following theorem.

Theorem 5.4.0.1. For any even number n ≥ 6, finitely generated group G and natural number b
there is a closed symplectic manifold M with π1(M) ' G and bi ≥ b for 2 ≤ i ≤ n− 2 such that M is
not homotopy equivalent to any Kähler manifold. For n ≥ 8 we may choose either b2 or b3 to be any
preassigned sufficiently large number.
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For the proof, the reader is again referred to the original paper ([16]). The construction used in the
proof will be discussed below. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds of dimension
2n. Suppose we have a symplectic manifold (N, σ) of dimension 2n − 2, together with embeddings

ij : (N, σ)→ (Mj , ωj). The normal bundle of a submanifold N ⊂Mj is defined to be νN = TMj�TN .
Suppose that both embeddings have a trivial normal bundle. Then the symplectic neighborhood
theorem (see [3]) gives us symplectic embeddings ϕj : N ×Dε → Mj such that ϕj |N×{0} = ij , where

Dε is the open disc of radius ε with standard symplectic form dx ∧ dy. Remove the origin from Dε to
get the annulus Aε = Dε\{0}. This annulus admits a symplectic automorphism which interchanges
the boundary components. In polar coordinates, it is given by

ψ : Aε → Aε, (r, θ) 7→ (
√
ε2 − r2,−θ)

The fiber connected sum is now constructed as

M1#NM2 = M1\i1(N) ∪Id×ψ M2\i2(N)

where Id×ψ : ϕ1(N ×Dε)→ ϕ2(N ×Dε). This new manifold carries a natural symplectic form which
agrees with ω1 on M1 and with ω2 on M2 outside a neigborhood of ϕ1(N) and ϕ2(N).



Appendix A

Algebraic Topology prerequisites

A.1 Splitting lemma

Definition A.1.0.1. An exact sequence is a sequence (Ai)i∈I of groups together with maps dn : An →
An+1 such that Im(dn) = Ker(dn+1).

A special case of an exact sequence is a short exact sequence, where I = {0, 1, 2, 3, 4} and A0 = A4 = 0.
The counterpart is a long exact sequence, in which the index set I is infinite.
The splitting lemma states that under certain conditions it is possible to split a group using a short
exact sequence.

Theorem A.1.0.2. Suppose we have a short exact sequence of abelian groups

0 A B C 0
f g

Then the following three statements are equivalent:

1. There exists a map h1 : B → A such that h1 ◦ f = IdA.

2. There exists a map h2 : C → B such that g ◦ h2 = IdC .

3. B is isomorphic to A⊕ C with f as natural inclusion and g as natural projection.

Proof. First assume that statement 3 holds. Then we can simply take h1 to be the natural projection
and h2 to be the natural inclusion.
Now we go on with the interesting part of the proof. Assume that statement 1 holds. Then we can write
every b ∈ B as b = (b − f(h1(b))) + f(h1(b)), where f(h1(b)) ∈ Im(f) and b − f(h1(b)) ∈ Ker(h1).
Now let b ∈ Ker(h1) ∩ Im(f), then b = f(a) for some a ∈ A and 0 = h1(b) = h1(f(a)) = a, so
a = b = 0. We conclude that B = Im(f)⊕Ker(h1). Since the sequence is exact, Im(f) = Ker(g) and
g is surjective. Hence any c ∈ C can be written as g(b) for some unique b ∈ Ker(h1). This means that
g : Ker(h1)→ C is an isomorphism. By exactness again, f is injective, which means that B ' A⊕C.
For the last part, assume that statement 2 holds. Then we can write every b ∈ B as b = (b−h2(g(b)))+
h2(g(b)), where b−h2(g(b)) ∈ Ker(g) and h2(g(b)) ∈ Im(h2). Let b ∈ Ker(g)∩Im(h2), then b = h2(c)
for some c ∈ C and 0 = g(b) = g(h2(c) = c, so c = b = 0. Hence B = Ker(g) ⊕ Im(h2). Since the
sequence is exact, Ker(g) = Im(f) and f is injective. Hence A ' Im(f) = Ker(g). Since g ◦ h2 is a
bijection, h2 is an injection, so Im(h2) ' C. We conclude that B ' A⊕ C.

A.2 Five Lemma

The Five lemma is a useful tool which combines commutative diagrams with exact sequences. The
proof of it heavily depends on two other lemmata called the first and second four lemma.
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A.2.1 First Four Lemma

Theorem A.2.1.1. Consider the following commutative diagram:

A B C D

F G H I

f

j

g

k

h

l m

o p q

and suppose that the rows are exact, k and m are injective and j is surjective. Then l is injective.

Proof. Let c̃ ∈ Ker(l), then l(c̃) = 0, so q(l(c̃)) = 0. By commutativity of the right diagram, m(h(c̃)) =
0. Since m is injective, h(c̃) = 0, so c̃ ∈ Ker(h) = Im(g). This means that c̃ = g(b̃) for some b̃ ∈ B.
By commutativity of the middle diagram, p(k(b̃)) = l(g(b̃) = l(c̃) = 0. Hence k(b̃) ∈ Ker(p) = Im(o),
which means that k(b̃) = o(f̃) for some f̃ ∈ F . Since j is surjective, f̃ = j(ã) for some ã ∈ A. By
commutativity of the left diagram, k(b̃) = o(f̃) = o(j(ã)) = k(f(ã)). Since k is injective, this means
that b̃ = f(ã), so b̃ ∈ Im(f) = Ker(g). Hence c̃ = g(b̃) = 0, so l is injective.

A.2.2 Second Four Lemma

Theorem A.2.2.1. Consider the following diagram:

B C D E

G H I J

g

k

h

l

i

m n

p q r

and suppose that the rows are exact, k and m are surjective and n is injective. Then l is surjective.

Proof. Let h̃ ∈ H, then by surjectivity of m there exists a d̃ ∈ D for which q(h̃) = m(d̃). By
commutativity of the right diagram and exactness, 0 = r(q(h̃)) = r(m(d̃)) = n(i(d̃)). Since n is
injective, this means that i(d̃) = 0, so d̃ ∈ Ker(i) = Im(h). Therefore, d̃ = h(c̃) for some c̃ ∈ C.
By commutativity of the middle diagram, q(h̃) = m(h(c̃)) = q(l(c̃)), so h̃ − l(c̃) ∈ Ker(q) = Im(p).
Therefore we can write h̃− l(c̃) = p(g̃) for some g̃ ∈ G. Since k is surjective, g̃ = k(ã) for some ã ∈ A,
so by commutativity of the left diagram h̃− l(c̃) = p(k(ã)) = l(g(ã)). We conclude that h̃ = l(c̃+g(ã)),
so l is surjective.

Remark A.2.2.2. The method of both of these proofs is called diagram chasing. It is widely used in
algebraic topology and related areas of mathematical research.

With both of these lemmata in mind it is easy to prove the Five Lemma:

Theorem A.2.2.3. Consider the following diagram:

A B C D E

F G H I J

f

j

g

k

h

l

i

m n

o p q r

and suppose that the rows are exact, k and m are isomorphisms, n is injective and j is surjective.
Then l is also an isomorphism.

Proof. By the first four lemma, l is injective. By the second four lemma l is surjective. Hence l is an
isomorphism.
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A.3 Algebraic Mapping Cone

Definition A.3.0.1. A cochain complex is a sequence A = (Ai)i∈I of abelian groups together with
differentials dn : An → An+1 such that dn+1 ◦ dn = 0

Any exact sequence is a cochain complex. The reverse does not hold in general however. The number
i is called the degree. A map between cochain complexes is called a cochain homomorphism if it
conserves the degree and intertwines the differentials.

Definition A.3.0.2. Let f : A → B be a cochain homomorphism. Then we construct the algebraic
mapping cone C(f) as the following cochain complex: The sequence of abelian groups is (Ai+1⊕Bi)i∈I
and the differential is given by dn : (a, b) 7→ (−dn+1

A a, f(a) + dnBb).
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