
Classification of real division algebras and which n-spheres can be topological

groups

Stefan Franssen

4035844

August 1, 2015



Contents

1 Introduction 3

1.1 Preliminary knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Algebras 4

2.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Examples of fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Sub-algebras and ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Operations on algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Division algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Frobenius theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Classification of all composition algebras 12

3.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Quadratic forms on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Composition algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Imaginary elements and conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Associativity properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The 1,2,4,8 theorem and the classification of all Composition algebras . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Hurwitz problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Real composition division algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Topological groups 32

4.1 Examples of topological groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 R is a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 Rn is a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Hilbert spaces form a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 The spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 S0 is a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 S1 is a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 S3 is a topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Rn real associative division composition algebra implies Sn−1 is a topological group . . . . . . . . . . . . . . 33

1



5 Lie groups 34

5.1 Spheres which are Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Vector Bundles 35

6.1 Bundles over SN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Topological K-theory 40

7.1 Direct sum of vector bundles induces an Abelian group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Tensoring vector bundles induces a multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Continuous maps induce ring homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Extra properties of K(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4.1 External product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4.2 The fundamental Product theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4.3 Complex Bott periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4.4 K-theory as a Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4.5 The Splitting Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Complex Bott periodicity 44

9 Extending to a cohomology theory 47

10 Sn is an H-space iff n = 0, 1, 3, 7 49

10.1 H-spaces have Hopf invariant ±1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 Adams Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



Chapter 1

Introduction

In this thesis we are going to classify division algebras, and in a related fashion, classify which spheres can be groups. The

classification of division algebras will be done in 3 phases. First we will classify the associative division algebras. Then

we will classify the composition algebras. In order to classify all the division algebras we will show that if Rn is a division

algebra then Sn−1 is a Hopf space. And then we will show that Sn−1 is a Hopf space if and only if n = 1, 2, 4, 8. This

allows us to classify the division algebras. For this thesis we first study division algebras and follow the proofs stated in [10]

for the Frobenius theorem. Then we will take a closer look at composition algebras and follow [8] closely. Then from the

introduction of vector bundles and further we closely follow [5]. There are extra references to more background information.

See for example [1].

1.1 Preliminary knowledge

We will assume that the reader has understanding of introduction to topology, for example in [3] and group theory, and hence

we assume the reader knows the following concepts: spheres, real numbers, complex numbers and quaternions. Further more

we assume the reader has background in algebraic topology as on the level of [4].
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Chapter 2

Algebras

We start by introducing the definitions of an algebra, and some theorems about algebras over the real field. We are mostly

intrested in division algebras. These are algebras where every non zero element has an inverse element. At the end of this

chapter we start our work on the first classification theorem. This is the Frobenius classification theorem which states that

all associative real division algebras are isomorphic to either R,C,H. After this is done we will introduce a generalization

of normed algebras, the concept of composition algebras, and then classify all composition algebras over a field. This work

is highly related to the following question which has historically been important: Let K be a field with characteristic other

than 2. The only values of n ∈ N − {0} for which the statement is true are 1, 2, 4, 8: there exists n bilinear functions

zi : Kn ×Kn → K such that for all x, y ∈ Kn the following equation holds:

(

n∑
i=1

x2i )(

n∑
i=1

y2i ) =

n∑
i

zi(x, y)2 (2.1)

This is the Hurwitz problem, which we will examine in the third chapter. At the end of the third chapter we have a list of

all normed division algebras over a field K, and we have classified all associative real division algebras. Historically Hurwitz

problem is related to the question which natural numbers could be written as a sum of squares. That Hurwitz problem has

a solution when n = 4 is a mayor ingredient in the proof that every natural number can be written as a sum of 4 square

numbers, since this allows us to prove the statement for all odd primes, and then generalize it to all whole numbers greater

than 2. Since 1 and 2 are sums of 4 squares (12 + 0 + 0 + 0 and 12 + 12 + 0 + 0) this then allows us to show the statement for

every whole number. Thus we only need to prove that you can write every odd prime p as the sum of 4 squares. For more

details in the proof, we will refer to the dictaat of Frits Beukers on number theory [2].

2.1 Fields

A field K is a set S with two associative operations +, ·. These operations have to obey the following axioms:

• (S,+) is an Abelian group.

• (S − {0}, ·) is an Abelian group.

• + and · obey the distributive law:

x(y + z) = xy + xz (2.2)

(y + z)x = yx+ zx (2.3)
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2.1.1 Examples of fields

We will give some example of fields.

• Q, the rational numbers form a field.

• R, the real numbers form a field.

• C, the complex numbers form a field.

• Z/p for p prime is a field. If we have [n], [m] ∈ Z/p, where [x] are the natural numbers congruent to x modulo p, we

can talk about addition and multiplication in the following way:

[n] + [m] = [n+m] (2.4)

[n] · [m] = [nm] (2.5)

From the extended Euclidean algorithm we can find inverses for every number which is not a multiple of p, and the

equivalence class of numbers which are a multiple of p form the unit element in Z/p. Hence Z/p is a field.

• As an extension of Z/p we have the Galois fields of order pn, for p prime and n ∈ N. These form a field as well. Every

finite field of characteristic p prime is isomorphic to the Galois field of order pn for some n ∈ N.

• Given a field K the rational functions over K form a field. I.e. {P/Q|P,Q ∈ K[x]} is an field.

• Given a field K and a set S, the maximal set F of functions f : S → K, such that if there exists an x ∈ S : f(x) = 0

then f(y) = 0 ∀y ∈ S with pointwise addition and multiplication.

2.2 Algebra

Definition 1. An algebra A over a field K is a vector space over K together with a bilinear product m : A × A → A. We

will denote m(a, b) = a · b for a, b ∈ A.

We will create a list of examples of algebras which we will keep using as examples to illustrate definitions in the rest of

the coming two chapters. When we will define properties we will refer back to these examples and examine which of these

examples have these properties.

• R endowed with the real product.

• R2 = C with the complex product. I.e. (x+ yi)(z+wi) = xz− yw+ (xw+ yz)i, stated otherwise, for two pairs of real

numbers (a, b) and (c, d) their product is (ac− bd, ad+ bc). Addition then works pointwise (a, b) + (c, d) = (a+ c, b+d).

• R2 with the split complex product. I.e. (x+ yi)(z+wi) = xz+ yw+ (wx+ yz)i, we can again restate this in the form

of product of pairs of real numbers: (a, b)(c, d) = (ac+ db, ad+ bc), while addition again works pointwise.

• R4 with the quaternionic product. The algebra is generated by {1, i, j, k} with the following multiplication relation:

i2 = j2 = k2 = ijk = −1. If we look at the product we can restate it as the product of two pairs of complex numbers:

(a, b)(c, d) = (ac− d∗b, da+ bc∗), and addition works pointwise.
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• R4 with the split quaternionic product. The algebra is again generated by {1, i, j, k} but now the relations are i2 = −1,

j2 = k2 = 1. We have the following relations:

ij = k = −ji

jk = −i = −kj

ki = j = −ik

• R8 with the product of the Cayley octonions. It is an extension of the quaternions by doubling the dimension again. A

possible definition of the multiplication is for pairs of quaternion numbers (a, b) and (c, d) the product is (ac−d∗b, da+

bc∗), and addition is defined pointwise.

• Rn with the piece-wise product (x1, .., xn) · (y1, ..., yn) = (x1y1, ..., xnyn).

• R3 with the cross product a× b.

Definition 2. If m is associative we call A an associative algebra. In explicit the following holds for all x, y, z ∈ A:

(x · y) · z = x · (y · z) (2.6)

Examples

• The real multiplication is associative.

• The complex multiplication is associative.

• The split complex product is associative.

• The quaternion product is associative.

• The split quaternion product is associative.

• The octonions product is not associative.

• Rn with the piece wise product is associative.

• R3 with the cross product a× b is not associative since j × (j × k) = j × i = k 6= (j × j)× k = 0.

Definition 3. We call an algebra A commutative if and only if m(a, b) = m(b, a) for all a, b ∈ A.

Examples

• The real multiplication is commutative.

• The complex multiplication is commutative.

• The split complex product is commutative.

• The quaternion product is not commutative: ij = −ji.

• The split quaternion product is not commutative ij = −ji.

• The octonions product not commutative since it contains the quaternions as a sub-algebra and hence it is not commu-

tative.

6



• Rn with the piecewise product is commutative.

• R3 with the cross product a× b is not commutative since a× b = −b× a.

Definition 4. We call an algebra A unital if there exists an identity e such that m(x, e) = m(e, x) = x for all x.

Lemma 1. Any associative unital algebra A is a ring.

Proof. Notice that the vector structure provides an addition operator +, and by bilinearity m right- and left-distributes over

+. There exists an identity and the multiplication is associative. Thus A obeys the ring axioms.

Definition 5. Given two algebras A,B over a field K, a K-algebra homomorphism is an K-linear map f : A→ B such that

f(xy) = f(x)f(y) for all x, y ∈ A.

Definition 6. A K-algebra isomorphism is a bijective K-algebra homomorphism.

Definition 7. A norm on an algebra A is a function A→ R≥0 which obeys the following relations:

• |x| = 0⇔ x = 0.

• |xy| = |x||y| for all x, y.

• |x+ y| ≤ |x|+ |y| for all x, y.

Examples

• The real multiplication are a normed algebra with as norm the function
√
x2.

• The complex multiplication forms a normed algebra with |x+ yi| =
√
x2 + y2.

• The split complex product forms a normed algebra with |x+ yi| =
√
x2 + y2.

• The quaternion product has a norm: |x+ yi+ zj + wk| =
√
x2 + y2 + z2 + w2.

• The split quaternion product has a norm |(x, y)| =
√
|x|2 + |y|2.

• The octonions product has also a norm |(x, y)| =
√
|x|2 + |y|2.

• Rn with the piecewise product is not equipped with a norm when n > 1, which we will show in chapter 3.

• R3 with the cross product forms no normed algebra, we will show this in chapter 3.

Definition 8. We call an algebra A alternative if the following is true for all x, y ∈ A

x(yx) = (xy)x (2.7)

(xx)y = x(xy) (2.8)

(xy)y = x(yy) (2.9)

(2.10)

All of our examples of algebras except the cross product are alternative.

Definition 9. We call an algebra A quadratic if for all x ∈ A there exists λ, µ ∈ K such that the following holds: x2 = λx+µe.

All of our examples of algebras except the last two are quadratic.
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2.2.1 Sub-algebras and ideals

Definition 10. A sub-algebra B of an algebra A is a linear subspace B such that the product of any two elements of B is

again an element of B. Thus a sub-algebra is a subset of elements that is closed under addition, multiplication and scalar

multiplication.

Corollary 2. Any sub-algebra is also an algebra.

Proof. Let B be a subalgebra of A. We have a product m on A, this can be restricted to a product on B:

m|B×B(x, y) = m(x, y) ∀x, y ∈ B (2.11)

Then B is a vector space over K since it is a linear subspace of A, together with a bilinear multiplication map m|B×B , since

m is bilinear and we restrict it to a linear subspace. This restriction is also closed under multiplication hence get a map

mB : B ×B → B which obeys all the axioms.

We can also define left and right ideals I. They have a somewhat stronger property that multiplication by any element

of the algebra A with an element in I is again an element of I.

Definition 11. An left/right ideal of an F -algebra A is a linear subspace I such that for all x ∈ I we have that for all y ∈ A

we have respectively x · y ∈ I or y · x ∈ I.

Notice that every left or right ideal is a sub-algebra. We speak of an ideal if the space is both a left and right ideal.

2.3 Operations on algebras

Given an ideal I of an algebra A, there exists a quotient algebra A/I. This quotient has again a bilinear multiplication m

on a vector space. The ideal induces an equivalence relation ∼ on A, given a, b ∈ A we write a ∼ b iff a − b ∈ I. This

induces equivalence classes on A, and we have addition and multiplication on these equivalence classes: [a]+ [b] := [a+b] and

[a] · [b] = [a ·b]. It is clearly well defined since if we have ã, b̃ alternative representations for [a] and [b], we get [ã]+[b̃] = [ã+ b̃].

Since a− ã and b− b̃ are both elements of I these are congruent to zero, and hence we can add them under the equivalence

relation. This yields

[ã+ b̃] = [ã− ã+ a+ b̃− b̃+ b] = [a+ b] (2.12)

And this shows that addition is well defined. For multiplication the following shows that it is well defined: Let a, b ∈ A and

a′, b′ ∈ I then

[a+ a′] · [b+ b′] = [(a+ a′) · (b+ b′)]

= [a · b+ a′ · b+ a · b′ + a′ · b′]

= [a · b]

The last step is true since I is closed under multiplication of elements of A and hence a′ · b, a · b′ and a′ · b′ are all elements

of I and thus congruent to zero. This shows that A/I exists and multiplication and addition on A/I are well defined.

Direct products of A and B is again an algebra since we can define m((α1, β1), (α2, β2)) as(mA(α1, α2),mB(β1, β2)).

Tensor products of algebras form again an algebra since we can define (α1 ⊗ β1)(α2 ⊗ β2) = (α1α2)⊗ (β1β2).

2.4 Division algebras

We begin with the definition of a division algebra.
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Definition 12. A division algebra D is an algebra that does not only contain zero, and for every non zero elements a, b ∈ D

there exists precisely one element x ∈ D with a = bx and precisely one element y ∈ D with a = yb.

Lemma 3. If A is an associative algebra, then A is a division algebra if and only if there exists a non zero identity and

every non zero element a has a multiplicative inverse.

Proof. If A is an associative division algebra, then we need to show that there exists a non-zero identity and every non-zero

element has an multiplicative inverse.

To show that there exist an unit we use that for every non-zero element x there exists an element ex such that x = exx.

Notice that exex = ex, since x = exx = ex(exx) = (exex)x since A is associative. There only exists 1 such element by our

hypothesis, thus ex = exex. Now we are going to show that for every y ∈ A the following holds: exy = y. Let y ∈ A. If

y = 0 then exy = ex0 = 0 hence our statement is true. Now suppose y is non-zero. Then there exists a z ∈ A such that

y = xz. Then exy = ex(xz) = (exx)z = xz = y. Hence exy = y. Thus ex is a left unit. We need to show that xex = x. In

order to do that we first show another relation: ex is non-zero since x = exx for some x non-zero, and 0x = 0 6= x. Thus

ex is non-zero. This allows us to create 2 extra elements: xR and xL. By our hypothesis there exists xR and xL such that

ex = xLx = xxR since x and ex are both non-zero.

Then we will show that xR = XLex:

xR = exxR

= (xLx)xR

= xL(xxR)

= xLex

This then allows us to show that xex = x:

xex = x(xLx)

= (xxL)x

= (xxL)(exx)

= (x(xLex))x

= (xxR)x

= exx

= x

Thus xex = x. From this we will also show that yex = y for all y ∈ A. Let y ∈ A, if y = 0 then yex = 0ex = 0 = y. If y is

non-zero there exists z ∈ A such that y = zx. Then yex = (zx)ex = z(xex) = zx = y. Hence yex = y. This shows that ex is

the unit in A, which we from now on denote by e.

Now we are going to show that left and right inverses are the same. Let y ∈ A non-zero. Then there exists yL, yR such that

e = yLy = yyR. Then

yR = eyR

= (yLy)yR

= yL(yyR)

= yLe

= yL
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Hence every non-zero element y has an inverse y−1 such that yy−1 = y−1y = e.

If A is an associative algebra with unit and every non-zero element has a multiplicative inverse then observe that for every

a, b ∈ A we find that a = b(b−1a) and a = (ab−1)b by associativity. Hence A is a division algebra.

2.4.1 Frobenius theorem

We will require the Cayley-Hamilton theorem before we prove the main theorem of this section. We will not prove the

Cayley-Hamilton theorem.

Theorem 4 (Cayley-Hamilton). Every square matrix M over a commutative ring R satisfies its own characteristic polyno-

mial p, i.e. p(M) = 0.

With this theorem we will prove the next theorem which classifies the associative finite dimensional division algebras.

Theorem 5 (Frobenius). If D is a finite dimensional associative division algebra of the real numbers, then D is isomorphic

to one of the following: R,C,H.

Corollary 6. If D is a finite dimensional associative commutative division algebra of the real numbers, then D is isomorphic

to R or C.

Proof. We have a natural inclusion of R in D since m is bilinear over R, and we have an identity element e. Then m(λ, e) is

a natural inclusion of R if we let λ vary over R. Hence we can speak of R ⊂ D.

We first consider the elements such that their square is a non positive real number, i.e.: V = {z|z2 ∈ R≤}. We will show

that this set has codimension 1 and that D = R⊕ V .

Let m be the dimension of D. Fix α ∈ D. We can see α as an linear operation of a vector space m(α, ·). Then α has

a characteristic polynomial p(x). By the fundamental theorem of algebra this polynomial can be written as a product of

(x− zj) with zj ∈ C. We make a distinction if a root of this polynomial is in R or in C− R. We then get:

p(x) = (x− t1)..(x− tr)(x− z1)(x− z̄1)..(x− zs)(x− z̄s) (2.13)

By the Cayley-Hamilton theorem we know that p(α) = 0. Since D is a division algebra, it has no nilpotent elements, and

thus one of the following should be zero

• α− tj for some j. Then α = tj and thus real.

• (α− zj)(α− z̄j). Then this expression forms a minimal polynomial of α. Notice that p(x) has the same zeroes as the

minimal polynomial of α. Since p(x) is a characteristic polynomial of α it follows that p(x) = (x − zj)(x − z̄j)k for

some k ≥ 1. We can now rewrite (x − zj)(x − z̄j) = x2 − 2Re(zj)x + |zj |2. The coefficient of x2k−1 is the trace of α

up to a sign. But we can also see that this is Re(zj). Hence the trace of α is zero if and only if Re(zj) = 0. But this

is also equivalent with α2 = −|zj |2 ≤ 0. Thus V is the subset for which we have that the trace is zero. Hence V is a

vector space, and its the kernel of a non-zero linear form. Hence V has codimension 1.

Thus we have concluded that there exists a vector space V such that this is a codimension 1 vector space, and we can form

D = R⊕ V .

We will now define an inner product on V :

Define 〈α, β〉 = −ab−ba
2 for α, β ∈ V . We will show that this is a positive definite bilinear symmetric real form. First we will

show it is real. Since V is a vector space, α + β is in V . Since for any element in V their square is a real number, which is

smaller or equal to zero. Then (α+ β)2 − α2 − β2 = ab+ ba, hence ab+ ba is the sum of real numbers, and thus real. Also
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〈α, α〉 = −α2 which is non negative and only zero if α = 0. Furthermore it is bilinear, and hence it is an inner product on V .

Let W be a subspace of V that generates D, and that is minimal with this property. We can chose an orthonormal basis for

V since we have an inner product, hence can we talk about lengths and angles. We will label the elements of this basis as

e1, .., en. If we use −1 times the inner product we find that these basis elements obey the following relationships:

e2i = −1 (2.14)

eiej = −eiej (2.15)

• If n = 0 then V contains only zero and thus D = R.

• If n = 1 then V contains one element e1, and then D is generated by 1 and e1 with e21 = −1. Hence we can identify e1

with i and see that D is isomorphic to C.

• if n = 2 then e21 = e22 = −1 and e1e2 = −e2e1. This is a basis for the quaternions hence in this case D is isomorphic

with H.

• if n > 2 then we can define u = e1e2en. Then u2 = e1e2ene1e2en = −ene2e1e1e2en = 1. Hence we can write

0 = u2 − 1 = (u− 1)(u+ 1). Since there are no zero divisors we see that u = ±1 and hence en = ±e1e2. Hence we can

remove en and keep a generating basis. Thus this basis was not minimal. Therefore we cannot have n > 2.
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Chapter 3

Classification of all composition algebras

In this chapter we will prove Hurwitz theorem. In order to do that, we will be creating a lot of machinery needed in the

proof. At first we will take a closer look to the properties of the quadratic form. Then we will derive general properties of

composition algebras. In the end we will use some of these properties to describe a process which creates new algebras from

an existing algebra. This will turn out to generate all possible algebras. We then show this process stops after applying this

doubling operation 3 times. Then we will have 4 algebras associated to 1 field. This chapter is highly algebraic, and in order

to gain the most from this chapter, it is advised to keep a list of the statements of the theorems which we have proved so

far. This allows you get get through the proofs in the least time, and yield the most information gained.

3.1 Quadratic forms

Definition 13. Given a field K and a vector space V over K, a quadratic form on V is a map N : V → K satisfying

N(λx) = λ2N(x) ∀λ ∈ K, v ∈ V (3.1)

and the associated map 〈·, ·〉N : V × V → K given by

〈x, y〉 = N(x+ y)−N(x)−N(y) (3.2)

is bilinear.

As an immediate consequence we see that N(0) = 0, and 〈·, ·〉 is symmetric. For the rest of this chapter we will assume

that every bilinear map is symmetric unless stated otherwise.

3.1.1 Quadratic forms on Rn

We will classify all quadratic forms on V = Rn. The claim is that they are given by N(X) = xTAx for some symmetric

matrix A and every symmetric matrix A induces an symmetric form. The first step we undertake is showing that given a

symmetric map A we can define a quadratic form N induced by A.

N(λx) = (λx)TA(λx) = λ2xTAx = λ2N(x) (3.3)

12



Hence the first property holds. Now the second property holds since

〈x, y〉 = N(x+ y)−N(x)−N(y) (3.4)

= (x+ y)TA(x+ y)− xTAx− yTAy (3.5)

= xTAx+ yTAx+ ytAx+ yTAy − xTAx− yTAy (3.6)

= xTAy + yTAx (3.7)

= 2xTAy (3.8)

hence 〈·, ·〉 is bilinear. Thus N is an quadratic form.

Now we want to show the converse. We know that for all bilinear forms 〈·, ·〉 : Rn×Rn → R there exists a symmetric matrix

A such that 〈x, y〉 = xTAy. The quadratic form then is recovered from N(x) = 〈x,x〉
2 , since 〈x, x〉 = N(2x)−2N(x) = 2N(x).

Now suppose we have an A and B such that N(x) = xTAx = xTBx. Then we can subtract xTBx everywhere and get

xT (A−B)x = 0 for all x. Hence A−B = 0 and therefore A = B. This proof immediately yields the following proposition

Proposition 7. If the characteristic of K is other than 2 all quadratic forms N on V can be recovered from the bilinear

form 〈·, ·〉 via

N(x) =
1

2
〈x, x〉 (3.9)

If the characteristic of K is two however, 〈x, x〉 = 0 for all x ∈ V

Proof.

〈x, x〉 = N(2x)− 2N(x) = 2N(x) (3.10)

if the characteristic of K is not 2 then we can divide by 2 and find the expression first claimed, otherwise we get the second

claim.

We will now recall some basic definitions from linear algebra. We call two vectors x, y ∈ V orthogonal with respect to

〈·, ·〉 if and only if 〈x, y〉 = 0. We call two subsets U1, U2 ∈ V orthogonal iff all vectors in U1 are orthogonal to all vectors in

U2. We will use x ⊥ U as a notation for {x} ⊥ U . The orthogonal complement U⊥ is {x ∈ V |x ⊥ U}.

Proposition 8. Given a bilinear form 〈·, ·〉 : V × V → K and a subset U ⊂ V then U⊥ is a subspace of V and U ⊂ (U⊥)⊥.

Proof. We will show that U⊥ is a subspace of V :

• 〈0, x〉 = 0 for all x ∈ V hence 0 ∈ U⊥.

• assume that x and y lie in U⊥, then 〈x, u〉+ 〈y, u〉 = 〈x+ y, u〉 = 0 for all u ∈ U hence U⊥ is closed under addition.

• Let x ∈ U⊥, then 〈λx, u〉 = λ〈x, u〉 = λ0 = 0 hence U⊥ is closed under scaler multiplication

This shows that U⊥ is a linear subspace of V . Now since x ∈ U then x ⊥ U⊥ by definition of U⊥. But that is also the

definition of being in (U⊥)⊥, hence x ∈ (U⊥)⊥.

Definition 14. A bilinear form 〈·, ·〉 is called non-degenerate if the only vector in V orthogonal to all other vectors is 0.

Equivalently

〈x, y〉 = 0 ∀y ∈ V ⇒ x = 0 (3.11)

We will call a quadratic form non-degenerate if its associated bilinear form is non-degenerate.

If the restriction of 〈·, ·〉 to a subspace U of V is non-degenerate we call U non-singular. We will denote 〈·, ·〉||U × U and

⊥U will denote the restricted form and the restricted orthogonality, respectively.

13



We will now show a handy property of non-degenerate forms:

Proposition 9. If the form 〈·, ·〉 is non-degenerate and 〈a, y〉 = 〈b, y〉 for all y then a = b.

Proof.

〈a, y〉 = 〈b, y〉 ∀y ∈ V

⇔ 〈a− b, y〉 = 0 ∀y ∈ V

⇔ a− b = 0

⇔ a = b

Another useful proposition which we will need is the following:

Proposition 10. If 〈·, ·〉 is a bilinear form on a vector space V an U is a subspace of V , then the following are equivalent:

• U is non-singular

• U ∩ U⊥ = {0}

Proof. If U is non-singular then 〈·, ·〉|U×U is non-degenerate. Which is the same as U⊥U = {0}. On the other hand

U⊥U = {x ∈ U |x ⊥ U} = U ∩ U⊥. Hence U ∩ U⊥ = {0}.

Let U ∩ U⊥ = 0. Take x ∈ U such that 〈x, y〉 = 0 for all y ∈ U . This property is the same as x ⊥ U , hence x ∈ U⊥. This

means that x ∈ U ∩ U⊥ = {0}, hence x = 0.

The following statement states that for finite-dimensional vector space their dual space is isomorphic to the space itself.

Lemma 11. let V be a finite-dimensional vector space and 〈·, ·〉 a non-degenerate bilinear form on V . Then the linear map

λ : V → V ∗, v 7→ λv = 〈v, ·〉 is an isomorphism.

Proof. Let V be a vector space over K and dim V = n for some n ∈ N. Let 〈·, ·〉 : V ×V → K be a non-degenerate bilinear

form. Define λ : V → V ∗ by v 7→ λv〈v, ·〉. We see that λ is linear since λcv+w = 〈cv + w, ·〉 = 〈cv, ·〉+ 〈w, ·〉 for all v, w ∈ V

and c ∈ K. The kernel of λ is {0} hence λ is injective. It is also surjective since dim V ∗ = dim V , and finite-dimensional.

proof of kernel λ being {0}

kerλ = {v ∈ V |λv = 0}

= {v ∈ V |λv(w) = 0 ∀w ∈ V }

= {v ∈ V |〈v, w〉 = 0 ∀w ∈ V }

= {0}

This statement allows us to prove the next statement:

Theorem 12. If V is a vector space over K, 〈·, ·〉 is a bilinear form on V and U ⊂ V a finite-dimensional non-singular

subspace then

V = U ⊕ U⊥

If we also have that 〈·, ·〉 is non-degenerate then U⊥ is non-singular.
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Proof. Assume that U ⊂ V is non-singular and that the dimension of U is finite. Then U ∩ U⊥ = {0}. Thus we have the

direct sum U ⊕ U⊥. Now we have to show that this equals V . We see that U ⊕ U⊥ is a subset of V since U and U⊥ are

both subsets of V who only have {0} as a common element. Now we need to show that V is a subset of U ⊕ U⊥.

Given a vector w ∈ V we are going to split it in two parts, one in U and one in U⊥. Since U is finite-dimensional and the

restriction 〈·, ·〉|U×U is non-degenerate, then µ : U → U∗, v 7→ µv = 〈v, ·〉|U×U is an isomorphism by the previous lemma.

Now let λV → V ∗, v 7→ λv = 〈v, ·〉. The form λw|U belongs to U∗ as we just ahve shown. Therefore there is a vector u ∈ U ,

such that µu = λw|U . This is the same as:

〈u, v〉 = 〈w, v〉 ∀v ∈ U (3.12)

If we subtract the right hand side from the equation we get

〈u− w, v〉 = 0 ∀v ∈ U (3.13)

We now define u′ = u − w. Then u′ − w ⊥ U hence u′ ∈ U⊥ and w = u + u′. Thus we have proven the first part of the

statement, namely V = U ⊕ U⊥.

Now assume that 〈·, ·〉 is non-degenerate, that U⊥ is singular and that we have x ∈ U⊥ ∩ (U⊥)⊥. If we can prove that x = 0

we are done. We start by taking an element y in V . By the previous part of the proof we know we can write it as u + u′,

with u ∈ U and u′ ∈ U⊥. By our assumption x ∈ U⊥ and x ∈ (U⊥)⊥. This means that 〈x, u〉 = 〈x, u′〉 = 0. We can add

these together and get 〈x, u〉+ 〈x, u〉 = 〈x, u+u〉 = 〈x, y〉 = 0. This is true for all y. Since 〈·, ·〉 is non-degenerate this means

that x = 0.

This theorem has 2 corollaries:

Corollary 13. If 〈·, ·〉 : V × V → K is a bilinear form on a vector space V and U ⊂ V is a finite-dimensional non-singular

subspace, then the dimension of V is the sum of the dimensions of U and U⊥.

Proof. We just use:

dim V = dim (U ⊕ U⊥)

= dim U + dim U⊥

and the theorem is proven.

Corollary 14. If 〈·, ·〉 : V × V → K is a non-degenerate bilinear form and U is a finite-dimensional non-singular subspace

of V then U = (U⊥)⊥.

Proof. We already know that U is a subset of (U⊥)⊥ so all we need to do is prove the other inlcusion. Let x ∈ (U⊥)⊥. We

know that V = U ⊕ U⊥. Hence we can write x = u+ u′ with u ∈ U and u′ ∈ U⊥. But then u ∈ (U⊥)⊥ since u ∈ U . Hence

x− u ∈ (U⊥)⊥. We also know that x− u = u′ ∈ U⊥. This implies that x− u ∈ U⊥ ∩ (U⊥)⊥ and hence x− u = 0. If we now

add u on both sides we get x = u hence x ∈ U .

This concludes our discussion on quadratic forms.

3.2 Composition algebras

In this section we are going to reveal the structure which a composition algebra naturally has. We define a composition

algebra:
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Definition 15. A composition algebra over a field K is a pair (C,N) where C is a nonzero unital algebra and N : C → K

a non-degenerate quadratic form that satisfies

N(xy) = N(x)N(y) ∀x, y ∈ C (3.14)

The quadratic form N is somethimes called a norm and the associated bilinear form 〈·, ·〉 an inner product. However the

inner product need not be an inner product in the usual sence since it need not be positive semidefinite.

Definition 16. A composition subalgebra of an composition algebra (C,N) is a pair (D,N) with D a unital subalgebra of

C.

There are several important examples of composition algebras. The real numbers are an example, (R, |.|) is a composition

algebra. In the same fashion are the complex numbers, the quaternions and the octonions composition algebras with the

euclidean norm. We will use these algebras as examples of composition algebras.

Proposition 15. Let (C,N) be any composition algebra, then the identity e satisfies

N(e) = 1 (3.15)

Proof.

N(e) = N(ee) = N(e)N(e) (3.16)

Hence N(e) = 0 or N(e) = 1, since in a field these are the only two elements that obey the property that they are equal to

their squares.

Now suppose N(e) = 0. Then this implies that N(x) = N(x)N(e) = 0 for all x ∈ C. Hence 〈e, x〉 = 0 ∀x ∈ C. However,

since 〈·, ·〉 is non-degenerate this means that e = 0. But e cannot be the zero element, hence N(e) = 1.

Proposition 16. If x is an invertible element of a composition algebra (C,N), then

N(x−1) = N(x)−1 (3.17)

In particular we know that N(x) and N(x−1) cannot be zero.

Proof. Let x be an invertible element of a composition algebra (C,N). Then the following holds:

1 = N(e) = N(xx−1) = N(x)N(x−1) (3.18)

Hence, N(x−1) = N(x)−1.

We will later show that N(x) 6= 0 is enough to have an inverse, and that that inverse is unique. However, to show that

we need to construct extra machinery.

Proposition 17. In every composition algebra (C,N) the following identities hold for all x, x1, x2, y, y1, y2 ∈ C

〈x1y, x2y〉 = 〈x1, x2〉N(y)

〈xy1, xy2〉 = N(x)〈y1, y2〉

〈x1y1, x2y2〉+ 〈x1y2, x2y1〉 = 〈x1, x2〉〈y1, y2〉
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Proof. We start by proving the first equality. The second equality follows from the exact argument, but then mirrored.

〈x1y, x2y〉 = N(x1y + x2y)−N(x1y)−N(x2y)

= N((x1 + x2)y)−N(x1y)−N(x2y)

= N(x1 + x2)N(y)−N(x1)N(y)−N(x2)N(y)

= (N(x1 + x2)−N(x1)−N(x2))N(y)

= 〈x1, x2〉N(y)

The third identity we have

〈x1, x2〉N(y1 + y2) = 〈x1(y1 + y2, x2(y1 + y2)〉

= 〈x1y1 + x2y2, x2y1 + x2y2〉

= 〈x1y1, x2y1x2y2〉+ 〈x1y2, x2y1 + x2y1 + x2y2〉

= 〈x1y1, x2y1〉+ 〈x1y1, x2y2〉+ 〈x1y2, x2y1〉+ 〈x1y2, x2y2〉

= 〈x1, x2〉N(y1) + 〈x1y1, x2y2〉+ 〈x1y2, x2y1〉+ 〈x1, x2〉N(y2)

But we also have

〈x1, x2〉N(y1 + y2) = 〈x1, x2〉(〈y1, y2) +N(y1) +N(y2))

= 〈x1, x2〉〈y1, y2〉+ 〈x1, x2〉(N(y1) +N(y2))

If we subtract 〈x1, x2〉(N(y1) +N(y2)) from the last terms of both equations we get the last equation.

Corollary 18. Let (C,N) be a composition algebra and let x, y ∈ C with 〈x, y〉 = 0. Then for all x1, y1 ∈ C we have

〈x1x, y1y〉 = −〈x1y, y1x〉 (3.19)

Proof. This statement follows directly from the last equality we have just shown.

Proposition 19. Let (C,N) be a composition algebra and x an element in C. Then the following identity holds

x2 − 〈x, e〉x+N(x)e = 0 (3.20)

Proof. We take x ∈ C. Then for abritrary y we are going to recreate the inner product of x2 − 〈x, e〉x+N(x)e with y. This

yields

〈x2 − 〈x, e〉x+N(x)e, y〉 = 〈x2, y〉 − 〈x, e〉〈x, y〉+N(x)〈e, y〉

Then we can take in the N(x) into the inner product. This yields

〈x2 − 〈x, e〉x+N(x)e, y〉 = 〈x2, y〉 − 〈x, e〉〈x, y〉+ 〈xe, xy〉

Then, since 〈x2, y〉+ 〈xe, xy〉 = 〈x, e〉〈x, y〉 by the last equation of the previous proposition, we see that the first and the last

term cancel versus the second term. This implies

〈x2 − 〈x, e〉x+N(x)e, y〉 = 0

This holds for all y, and since the quadratic form is not degenerate we have x2 − 〈x, e〉x+N(x)e = 0

Corollary 20. Every composition algebra is a quadratic algebra

Proof. Let (C,N) be a composition algebra. Then for all x ∈ C, x2 = 〈x, e〉x−N(x)e. Hence x2 ∈ span{e, x}.
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3.2.1 Imaginary elements and conjugation

On the real algebras we have a concept of complex numbers. For example in the complex field C there are the numbers so

that they squared are an real number, but the number themselves are not a member of R− {0}.

Definition 17. The set of all purely imaginary numbers of a composition algebra (C,N) over K is the set

Im C = {x ∈ C|x2 ∈ Ke, x 6∈ Ke− {0}} (3.21)

Proposition 21. Let (C,N) be a composition algebra over a field K with char K unequal to 2. Then Im C is a non-singular

subspace of C, Im C = (Ke)⊥ and C = Im C ⊕Ke

Proof. It is enough to prove that Ke is a non-singular subspace and that Im C = (Ke)⊥. The rest will follow from the

theorem we proved in the previous section since the dimension of Ke is 1.

Asume that Ke is singular. Then x ∈ (Ke)⊥ ∩Ke for some non-zero x ∈ C. Hence x = λe, λ 6= 0 and 〈x, e〉 = 0. However,

0 = 〈e, e〉 = λ〈e, e〉 = 2λ. Hence λ = 0, and thus x = 0. Thus this leads to a contradiction, which implies that (Ke) is

singular.

Now we are going to show Im C = (Ke)⊥. As a first step we will show Im C ⊂ (Ke)⊥. Let x ∈ Im (C)− {0}. Thus x

and e are linearly independent and x2 = λe for some λ. We also have N(x) = −λ and 〈x, e〉 = 0. Hence x ∈ (Ke)⊥.

Now the other inclusion. Assume x ∈ (Ke)⊥. Then 〈x, e〉 = 0 and we again obtain x2 = 〈x, e〉x −N(x)e = −N(x)e. Since

x ⊥ Ke we have x 6= Ke−{0} since Ke is non-singular. Hence x ∈ Im C. Thus C = (Ke)⊥. This concludes the proof.

This proposition has an intresting corollary, which states that for a given algebra there is just one quadratic form.

Corollary 22. If (C,M) and (C,N) are composition algebras, then M = N .

Proof. For every x ∈ C we have by the previous proposition

x2 = 〈x, e〉Mx−M(x)e

x2 = 〈x, e〉Nx−N(x)e

Hence

〈x, e〉Mx−M(x)e = 〈x, e〉Nx−N(x)e (3.22)

It suffices to show that 〈x, e〉Mx = 〈x, e〉Nx. If we take this to the other side we see that this is equivalent with (〈x, e〉M −

〈x, e〉N )x = 0, and this is equivalent with 〈x, e〉M = 〈x, e〉N .

First suppose e and x are linearly dependent. Then x = λ0e+
∑n
i=1 λiei for some λ ∈ Kn. Then we obtain

M(x) = λ2M(e) = λ2 = λ2N(e) = N(x)

This proves the claim in this case.

Now suppose they are linearly independent. Consider the splitting of C into Ke⊕ Im C. Then Im C is perpendicular Ke

with respect to both inner products. If n is the dimension of C, we can find a basis for Im C, (e2, .., en). If we take e1 = e

we can write x = sumn
i=1λiei. This gives 〈x, e〉M = 〈sumn

i=1λiei, e〉 and since Im C is perpendicular to Ke with respect

to 〈, 〉M we get 〈x, e〉M = 〈λ1e, e〉 = λ1〈e, e〉M . In the same way we get 〈x, e〉N = λ1〈e, e〉n. Now there are two cases, the

characteristic is other than two or not. Suppose the characteristic is other than two, then we get that 〈e, e〉M = 1
2 = 〈e, e〉N .

On the other hand if the characteristic is 2 then 〈e, e〉M = 0 = 〈e, e〉N . Hence in both cases 〈e, e〉N = 〈e, e〉M . This yields

−M(x) = −N(x). Hence both cases lead to M(x) = N(x).

For the complex numbers we have a complex conjugation map. In general there also exists a conjugation map which

behaves a lot like the conjugation map for complex numbers.
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Definition 18. Let (C,N) be a composition K-algebra. The conjugation map · : C → C, x 7→ x is defined by

x = 〈x, e〉e− x (3.23)

Geometrically speaking, this is minus the reflection of x in (Ke)⊥. For the complex numbers the definition is the same

with the usual definition of complex conjugates.

Proposition 23. Let (C,N) be a composition algebra. Then conjugation is a linear map and x = x.

Proof. Linearity follows straightforward of the definition since x is the sum of two linear maps (〈x, e〉e and minus the identity

map). To show that x = x we directly compute it:

x = 〈x, e〉e− x

= 〈〈x, e〉e− x, e〉e− 〈x, e〉e+ x

= 〈x, e〉〈e, e〉e− 〈x, e〉e− 〈x, e〉e+ x

= 2〈x, e〉e− 2〈x, e〉e+ x

= x

Here we used that 〈e, e〉 = 2N(e) = 2.

Other important properties of conjugation hold too. They have to be slightly modified.

Proposition 24. In every composition algebra (C,N) the following holds for all x, y ∈ C.

• xx = xx = N(x)e

• xy = yx

• N(x) = N(x)

• 〈x, y〉 = 〈x, y〉

Proof. The first property we will show one side, and the other side is symmetric:

N(x)e = 〈x, e〉x− x2

= (〈x, e〉e− x)x

= xx

For the second property observe

xy = 〈x, e〉e+ 〈x, e〉y − 〈x, y〉e− yx (3.24)

This holds since

xy = (x+ y)2 − x2 − y2 − yx

− 〈x+ y, e〉(x+ y)−N(x+ y)e− 〈x, e〉x+N(x)e0〈y, e〉y +N(y)e− yx

= 〈x, e〉y + 〈y, e〉x− (N(x+ y)−N(x)−N(y))e− yx

= 〈y, e〉x+ 〈x, e〉y − 〈x, y〉e− yx

19



By the definition of conjugation we have

yx = (〈y, e〉e− y)(〈x, e〉e− x)

= 〈x, e〉〈y, e〉e− 〈x, e〉 − 〈y, e〉x+ yx

= 〈xy, e〉e− xy

xy

Hence we have shown the second property.

For the third property we use the two previous properties. This yields

N(x)e = xx = xx = N(x)e (3.25)

Hence N(x) = N(x)

Now if we use the third property we can show the fourth property

〈x, y〉 = N(x+ y)−N(x)−N(y) = N(x+ y)−N(x−N(y)

= N(x+ y)−N(x)−N(y)

= 〈x, y〉

As we said earlier about existence of inverses, we can show the following proposition now

Proposition 25. In every composition algebra (C,N) and for every x ∈ C the following two statements are equivalent:

• x has an inverse

• N(x) 6= 0

In the case N(x)−1x is the inverse of x

Proof. We have shown in proposition 16 on page 16 that if x has in inverse then N(x) 6= 0.

Now suppose we know N(x) 6= 0. Define y = N(x)−1x. This yields

xy = x(N(x)−1x) = N(x)−1(xx) = N(x)−1N(x)e = e (3.26)

The other equality yx = e is just the same statement but then mirrored hence xy = yx = e.

3.2.2 Associativity properties

So far we have not looked at any form of associativity properties of composition algebras. We will start investigating these

now. It will turn out that although composition algebras need not be associative they obey a lot of other properties that are

almost the same. We will start by showing not every composition algebra must be associative. We know the octonions are a

composition algebra with the usual euclidean norm. However, the octonions are not associative. What we will see in the end

is that every non associative composition algebra still obeys a lot of weaker associativity properties such as alternativity, and

that every non associative composition K-algebra is an 8 dimensional K algebra and there are no K algebras with higher

dimension than 8.
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Proposition 26. Let (C,N) be a composition algebra and let x, y, z ∈ C. Then the following three equalities hold:

〈xy, z〉 = 〈y, xz〉 (3.27)

〈xy, z〉 = 〈x, zy〉 (3.28)

〈xy, z〉 = 〈yz, x〉 (3.29)

(3.30)

Proof.

〈y, xz〉 = 〈y, (〈x, e〉e− x)z〉

= 〈y, 〈x, e〉z〉 − 〈y, xz〉

= 〈x, e〉〈y, z〉 − 〈y, xz〉

= 〈xy, z〉+ 〈xz, y〉 − 〈y, xz〉

= 〈xy, z〉

To prove the second equality we use the following

〈xy, z〉 = 〈y, xz〉

= 〈y, zx〉

= 〈zy, x〉

= 〈x, zy〉

〈xy, z〉 = 〈zxy〉

= 〈z, xy〉

= 〈z, xy〉

= 〈yz, x〉

With this proposition we can now define adjoint operators on a composition algebra. First recall that the adjoint of an

linear operator f on an inner product space V is the unique linear operator such that 〈f(x), y〉 = 〈x, f∗(y)〉 for all x, y ∈ V .

Using this definition the adjoints in composition algebras are given by

L∗x = Lx

R∗y = Ry

They are adjoints since 〈Lx(y), z〉 = xy, z〉 = 〈y, xz〉 = 〈y, Lx(z)〉, and similarly for Ry.

The next proposition is a generalization of proposition 24 of page 19.

Proposition 27. If (C,N) is a composition algebra and x, y ∈ C. Then the following holds:

x(xy) = N(x)y (3.31)

(xy)y = N(y)x (3.32)
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Proof. We will show that 〈x(xy), z〉 = 〈N(x)y, z〉 for all z. Then we have equality due to proposition 9 on page 14

〈x(xy), z〉 = 〈xy, xz〉

= 〈xxy, z〉

= N(x)〈y, z〉

= 〈N(x)y, z〉

This holds for all z hence x(xy) = N(x)y. If we now use conjugation we get the following equation:

x(xy) = (xy)x = (yx)x (3.33)

and we also have

N(x)y = N(x)y (3.34)

These two combined prove the second equation.

The previous proposition has the first result on associativity:

Corollary 28. Let (C,N) be a composition algebra. Then for all x and y in C the following holds

x(xy) = (xx)y (3.35)

x(yy) = (xy)y (3.36)

(3.37)

Proof. This result follows directly from the previous proposition and using xx = N(x)e

Another corollary states the uniqueness of inverses:

Corollary 29. Let (C,N) be a composition algebra. Then every element x ∈ C that satisfies N(x) 6= 0 has an unique inverse

N(x)−1x

Proof. Let x ∈ C and N(x) 6= 0. Then x has an inverse y = N(x)−1x. Assume that there is another element z such that

xz = zx = e. Then

y = y(xz)

= N(x)−1x(xz)

= N(x)−1N(x)z

= z

There is another form of associativity rules which composition algberas obey. They are the Moufang identities:

Proposition 30. In every composition algebra (C,N) the Moufang identities hold:

(ax)(ya) = a((xy)a) (3.38)

a(x(ay)) = (a(xa))y (3.39)

x(a(ya)) = ((xa)y)a (3.40)

for all a, x, y ∈ C.
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Proof. We will take the inner product of (ax)(ya) with an arbitrary element z ∈ C. Then we will show that that inner

product equals the inner product of a((xy)a) with z and hence these two elements are equal.

〈(ax)(ya), z〉 = 〈ya, (ax)z〉

= 〈ya, (xa)z〉

= 〈y, xa〉〈a, z〉 − 〈yz, (xa)a〉

= 〈xy, a〉〈a, z〉 − 〈yz,N(a)x〉

= 〈xy, a〉〈a, z〉 −N(a)〈yz, x〉

= 〈xy, a〉〈a, z〉 −N(a)〈xy, z〉

= 〈xy, a〉〈a, z〉 −N(a)〈(xy)z, e〉

= 〈xy, a〉〈a, z〉 − 〈(xy)z, aa〉

= 〈(xy)a, az〉

= 〈a((xy)a), z〉

This proves the first equality. The second equality is again proven by a long chain of equalities.

〈a(x(ay)), z〉 = 〈x(ay), az〉

= 〈x, (az)(ay)〉

= 〈x, az)(ay)〉

= 〈x, (ay)(za〉

= 〈x, a((yz)a〉

= 〈x, ((yz)a))a〉

= 〈x, (a(zy))a〉

= 〈xa, a(zy〉

= 〈a(xa), xy〉

= 〈(a(xa))y, z〉

This proves the second equality. To prove the third we start with the second and we conjugate it. This yields the equality

we want.

Proposition 31. Let (C,N) be a composition algebra. Then C is alternative.

This proposition can be generalised into this proposition, which has the same proof:

Proposition 32. Let A be an unital Algebra that obeys the Moufang identities, then A is alternative (see definition 8 on

page 7.

Proof. We need to prove the following equalities:

x(yx) = (xy)x (3.41)

(xx)y = x(xy) (3.42)

(xy)y = x(yy) (3.43)

(3.44)
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The first equality follows directly if we multiply this by e on both sides. This yields

(xy)x = (xy)(ex) = x((ye)x) = x(yx) (3.45)

The second equation follows from

x(xy) = x(e(xy)) = (x(ex))y = (xx)y (3.46)

The third equality follows from

x(yy) = x(y(ey)) = ((xy)e)y = (xy)y (3.47)

This concludes our proof.

If we summarize our results into this theorem:

Theorem 33. Let (C,N) be a composition algebra. Then C is a quadratic, alternative algebra that satisfies the Moufang

identities.

3.2.3 Doubling

We will now start our work on the doubling construction. This will allow us to construct all the possible composition algebras

over a field.

Lemma 34. Let (C,N) be a composition algebra. If D ⊂ C is a finite-dimensional proper non-singular subspace of C, then

there is an element a ∈ D⊥ − {0} such that N(a) 6= 0.

Proof. Asumme that N(x) = 0 for all x ∈ D⊥. We know that C = D ⊕D⊥ where D⊥ is non-singular. We also know that

D 6= C, hence D⊥ 6= {0}. Now take any element a in D which is nonzero. Then

〈a, x〉 = N(a+ x)−N(a)−N(x) = 0− 0− 0 = 0 ∀x ∈ D⊥ (3.48)

Hence since D⊥ is non-singular we have a = 0. This contradicts our assumption, hence not all elements of D⊥ − {0} can

have nonzero norm.

If we take D a proper subset of C and D is also a finite-dimensional proper composition subalgebra, then this lemma

tells us that we can create another subalgebra of C

D2 = D1 ⊕D1a (3.49)

where a is an nonzero element of D⊥ such that N(a) 6= 0. We first start with an example of the doubling construction.

Consider the complex field C. In there we can identify the real numbers by R1. Then we show that there exists an number

in R1⊥. For example take i ∈ C. Then we can see C = R+Ri. Then we can define addition of (x, y) + (w, z) = (x+w, y+ z)

and multiplication as (xw − yz, xz + yw). We will now start the doubling construction:

Proposition 35. Let (C,N) be a composition algebra. If D1 is a finite-dimensional proper composition subalgebra of C,

a ∈ D⊥1 − {0} and N(a) 6= 0 then the subspace

D2 = D1 ⊕D1a (3.50)

of C is a composition subalgebra of C with dimension of D2 twice the dimension of D1. Multiplication of D2 then is defined

in the following way:

(x+ ya)(z + wa) = (xz −N(a)wy) + (wx+ yz)z (3.51)
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Proof. We will split the proof into 2 parts. The first part will proof that the sum is direct. The second part will work on

the proof of the multiplication. If we show that the claimed multiplication rule is the correct rule, we have shown that D2

is closed under multiplication and non-singular.

We start by showing that the sum is a direct sum. We will show that D1a ⊂ D⊥1 . This proves that D2 is a direct sum.

Hence, what we need to do is xa ⊥ D1. Hence what we need to show is

〈xa, y〉 = 0 ∀x, y ∈ D1 (3.52)

We know that D1 is closed under conjugation and multiplication since it is a composition subalgebra. We know that

〈xa, y〉 = 〈a, xy〉. But xy is an element of D1 and a ∈ D⊥1 . Hence this inner product is zero. Thus xa ⊥ y. Thus D1a ⊂ D⊥1 .

The second part of the proof is to work out the multiplication. The left hand side of the multiplication is the multiplication

what it should be in C. If we work this multiplication out we get

(x+ ya)(z + wa) = xz + x(wa) + (ya)z + (ya)(wa) (3.53)

If we show the following equalities we are done:

x(wa) = (wx)a (3.54)

(ya)z = (yz)a (3.55)

(ya)(wa) = −N(a)wy (3.56)

At first we note that v = −v for all v ∈ C with v ⊥ e. In particular we get

va = −va (3.57)

for all v ∈ D⊥1
The next step is to prove the first equality. We take an arbitrary v ∈ D1. Then we do the following

〈x(wa), v〉 = 〈wa, xv〉

= 〈wa, xv〉

= 〈−wa, vx〉

= −〈wa, vx〉

= 〈wx, va〉

= 〈wx, (〈v, e〉e− v)a〉

= 〈v, e〉〈wx, a〉 − 〈wx, va〉

= 〈v, e〉0− 〈wx, va〉

= −〈(wx)a, v〉

= 〈(wx)a, v〉

Since this holds for arbitrary v it holds that x(wa) = (wx)a for all x,w, a ∈ D2. The second equality follows since

〈(ya)u, z〉 = 〈ya, zu〉

= −〈yu, za〉

= −〈(yu)a, z〉

= 〈(yu)a, z〉
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The third equality follows from the equality

va = va = −va = −av = av (3.58)

This allows us to compute

(ya)(wa) = (ay)(wa)

= a((yw)a)

= a(a(baryw))

= a(a(wa))

= (aa)(wy)

= −(aa)(wy)

= −N(a)(wy)

Hence D2 is closed under multiplication. What is left to do is to show D2 is non-singular. We look at the norm ND2
. We get

N(x+ ya) =
1

2
〈x+ ya, x+ ya〉

=
〈x, x〉+ 〈ya, ya〉+ 〈x, ya〉+ 〈ya, x〉

2

= N(x) +N(ya) + 〈x, ya〉 = N(x) +N(y)N(a)

The last step holds since ay ⊥ x.

Now we take a look on the inner product, we get for x, yv, w ∈ D1

〈x+ ya, v + wa〉 = 〈x, v〉+ 〈x,wa〉+ 〈ya, v〉+ 〈ya,wa〉

= 〈x, v〉+ 〈ya,wa〉

= 〈x, v〉+ 〈y, w〉N(a)

fix x, y ∈ D1. Now assume that the inner product stated above is zero for all v, y ∈ D1. Then 〈x, v〉+ 〈y, w〉N(a) = 0 for all

v, w ∈ D. Suppose w = 0. Then 〈x, v〉 = 0 for all v and hence x = 0. Suppose v = 0. Then we can divide by N(a) since

N(a) is a non-zero field element. Hence yield 〈y, w〉 = 0 for all w. This gives y = 0. Thus the only element for which this

inner product with all other elements of D2 is zero is 0. Thus D2 is non-singular.

The last step is to prove the claim that the dimension of D2 is twice the dimension of D1. What we need to show is that

the dimension of D1a is the dimension of D1. We define Ra to be the map x 7→ xa. This is a linear map since multiplication

is bilinear. It is also invertible since a has an inverse. Hence R−1a = Ra−1 . This gives a bijective map and hence it is an

isomorphism. This implies that the dimension of D1a is the dimension of D1. Since the dimension of D2 is the dimension of

D1 plus the dimension of D1a, we get that the dimension of D2 is twice the dimension of D1.

This yields us a powerfull tool to create new algebras. But we have not shown much properties of this new algebra.

Proposition 36. Let (C,N) be a composition algebra and D a finite-dimensional proper composition subalgebra. Then D

is associative.

Proof. Let a ∈ D⊥−{0} with N(a) 6= 0. We already have shown that such an element must exist. Then we use the following
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equality N((x+ ya)(z + wa)) = N(x+ ya)N(z + wa) for x, y, zw ∈ D. This yields

N((x+ ya)(z + wa)) = N((xz −N(a)wy) + (wx+ yz)a)

= N(xz −N(a)wy) +N(a)N(wx+ yz)

= 〈xz,−N(a)wy〉+N(xz) +N(−N(a)wy) +N(a)(〈wx, yz〉+N(wx) +N(yz))

And we also get

N(x+ ya)N(z + wa) = (N(x) +N(y)N(a))(N(z) +N(w)N(a))

= N(x)N(z) +N(x)N(w)N(a) +N(y)N(z)N(a) +N(y)N(w)N(a)N(a)

= N(xz) +N(wx)N(a) +N(yz)N(a) +N(a)2N(wy)

These two statements are equal, hence we can equate them. We will first subtract the statements which are the same

expression. This yields

〈xz,−N(a)wy〉+N(a)〈wx, yz〉 = 0 (3.59)

Hence we can take −N(a) outside of the inner product and move that term to the other side. This yields

N(a)〈xz,wy〉 = N(a)〈wx, yz〉 (3.60)

Since N(a) is invertible we can divide by this and get

〈xz,wy〉 = 〈wx, yz〉 (3.61)

We will now transform these equations into a more workable form

〈wx, yz〉 = 〈yz, wx〉

= 〈(yz)x,w〉

= 〈x(zy), w〉

And we get

〈xz,wy〉 = 〈(xz)y, w〉

Thus we have

〈x(zy), w〉 = 〈(xz)y, w〉 (3.62)

This last equation holds for all w, therefore x(zy) = (xz)y for all x, y, z ∈ D. Since we can transform any multiplication into

this form we get associativity.

We will now show an proposition that states that every finite proper composition subalgebra of an associative composition

algebra is associative and commutative.

Proposition 37. Let (C,N) be a composition algebra and D1 a finite-dimensional proper composition subalgebra. Take

a ∈ D⊥1 with N(a) 6= 0 and let D2 = D1 ⊕D1a. Then the two statements are equivalent:

• D2 is associative

• D1 is associative and commutative.
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Proof. D2 is the composition subalgebra of the doubling proposition. We will show first that if D2 is associative then D1 is

associative and commutative.

If D2 is associative then every subalgebra of D2 is also associative. Hence D1 is associative. Suppose x, y ∈ D1 then

(xy)a = x(ya) and we know x(ya) = (yx)a. Combining this gives

xy = xyaa−1 = ((xy)a)a−1 = ((xy)a)a−1 = yxaa−1 = yx (3.63)

This shows the first direction. For the other direction assume that D1 is both commutative and associative. Then we want

to show that multiplication in D2 is associative. Pick 3 elements of D2. These are zi = xi + yia for i = 1, 2, 3. Then using

the multiplication in D2 we get

(z1z2)z3 = (x1x2)x3 −N(a)((y2y1)x3 + y3(y2x1) + y3(y1x1)) + (y3(x1x2)−N(a)(y3(yyy1) + (y2x1)x3 + (y1x2)x3)a

z1(z2z3) = x1(x2x3)−N(a)(x1(y3y2) + (y3x2)y1 + (y2x3)y1) + ((y3x2)x1 + (y2x3)x1 + y1(x2x2)−N(a)y1(y2y3))a

Since D1 is both commutative and associative we have two observations. First (x1x2)x3 = x1(x2x3) and second all the terms

containing an term a (not N(a)) are equal since we can just move the terms around. To show that the statements are equal

we need to show that the 3 terms with an N(a) in are equal. Hence

N(a)(y2y1)x3 = N(a)x1(y3y2)

N(a)y3(y2x1) = N(a)y3(y1x1)

N(a)(y3x2)y1 = N(a)(y2x3)y1

If we use that (ya)z = (yz)a then we arrive at the following:

N(a)xyz = aaxyz = az((ya)x) = az((yx)a) = N(a)xyz (3.64)

Since we have commutativity we can do the same for y and z. Hence we see

N(a)xyz = N(a)xyz = N(a)xyz = N(a)xyz (3.65)

This proves the equalities above since we can just move the terms around until they are in the correct form.

3.3 The 1,2,4,8 theorem and the classification of all Composition algebras

We have now done all the work to do the mayor goal this section. We can now classify all composition algebras.

Theorem 38. Let (C,N) be a composition algebra over a field K. Then C has dimension 1, 2, 4 or 8 and C is a quadratic

alternative algebra that satisfies the Moufang identities. Moreover, it must also satisfy the following:

dim C K commutative associative alternative

1 char 6= 2 yes yes yes

2 any yes yes yes

4 any no yes yes

8 any no no yes

Proof. Let C be a division algebra. We have already shown it is a quadratic alternative algebra that satisfies the Moufang

identities. Now we need to show the rest.

We start with any composition algebra C. Then if the characteristic of K is unequal to 2, we can find a one-dimensional
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composition subalgebra D1 = Ke. It is non-singular since 〈λe, µe〉 = λµ〈e, e〉 = 2λµ 6= 0 if λ, µ 6= 0. However if the

characteristic of K is 2 then 〈λe, µe〉 is equal to zero, thus Ke must be singular. Therefore the dimension of C must be

bigger than 2 in that case.

If the dimension of C is bigger than 1 then in the case the characteristic is not 2 we get a two dimensional subalgebra

D2 = d1 ⊕D1a for some a ∈ C. Since D1 is both associative and commutative (it is isomorphic to the underlying field) we

get that D2 is associative. We need to show it is commutative. Let x, y, z, w ∈ K, i.e. xe, ye, ze, we ∈ D1. Then we have

(xe+ ya)(ze+ wa) = xze+ x(wa) + (ya)ze+ (ya)(wa)

= zxe+ wxa+ zya+ (wa)(ya)

= (ze+ wa)(xe+ ya)

Hence D2 is commutative. If the characteristic of K is two, we will prove it as a lemma after this theorem. Hence no matter

the characteristic we have a commutative associative composition subalgebra of C of dimension 2, if the dimension of C is

bigger than 1.

Now suppose that the dimension of C is greater than 2. Then we can perform the doubling another time and get a

four-dimensional subalgebra D3 = d2 ⊕ d2b. It is associative since D2 is associative and commutative. However it is not

commutative itself.

We start by defining an element y which is perpendicular on e. If the characteristic of K is not 2 then take y = a. This yields

〈y, e〉 = 0. Hence y = −y 6= y¿ if the characteristic of the underlying field is two, then assume that y = y. We then have

y = 〈y, e〉e − y. This implies 2y = 0 = 〈y, e〉e. However this contradicts our choice of y, which had to be perpendicular on

e. Thus y 6= y. We will show that D2b is non-singular. Assume that there is some xb ∈ D2b for which we have 〈xb, zb〉 = 0

for all zb ∈ D2b. Then 〈xb, zb〉 = 〈x, z〉N(b) = 0. Hence 〈x, z〉 = 0 for all z ∈ D2. Since D2 is non-singular this means that

x = 0, and thus xb = 0. This shows that D2b is non-singular. We can now find an element x ∈ D2b such that N(x) 6= 0.

Since x ∈ D2b we know that x ∈ D⊥2 . Hence xy = −xy. However xy − yx = −yx since x ⊥ e. If we combine these results

with y 6= y we get

xy = yx 6= yx (3.66)

So we have shown that D3 is not commutative.

There is one final doubling we can make. If we assume that the dimension of C is bigger than 4 we can double once more

to get D4 = d3 ⊕D3c. It is not associative since D3 is not commutative. It is not commutative since we can identify D3 as

a subalgebra of D4, and D3 itself is not commutative. Moreover, it cannot be a proper subalgebra of C, thus C = D4.

Now we prove the lemma which we used in the proof of the first doubling.

Lemma 39. If (C,N) is a composition K algebra with char K = 2, then there exist an a ∈ C such that 〈e, a〉 6= 0. Then

D = Ke⊕Ka is a two dimensional associative and commutative composition subalgebra.

Proof. Assume that 〈e, a〉 = 0 for all a. Then e = 0 since 〈, 〉 is non-degenerate on C. So 〈e, a〉 6= 0 for some a ∈ C. Note

that a 6∈ Ke, since in that case 〈e, a〉 = 〈e, λe〉 = 0. Hence D is two dimensional. It is non singular, since if 〈λe+ µa, x〉 = 0

for all x ∈ D then in particular 〈λe + µa, e〉 = 0 and 〈λe + µa, a〉 yield µ = 0 andλ = 0, respectively. This would imply

λe+ µa = 0. Hence D is non-singular. It is closed under multiplication follows from

xy = (αe+ βa)(γe+ δa)

= αγe+ (αδ + βγ)a+ βδ(〈a, e〉a−N(a)e)

= (αγ − βδN(a))e+ (αδ + βγ + βδ〈a, e〉)a

29



Associativity follows from the same proof as the last proposition of the previous section. Commuativity follows from this

equation, since α, β, γ and δ are elements of the field they commute. This allows us to change the order of all the elements

in the previous equation and see that xy = yx.

3.3.1 Hurwitz problem

Hurwitz theorem is a theorem about the (non)existance of solutions for the Hurwitz problem.

Theorem 40. Let K be a field with characteristic other than 2. The only values of n ∈ N − {0} for which the following

statement is true are 1, 2, 4, 8: there exists n bilinear functions zi : Kn ×Kn → K such that for all x, y ∈ Kn this equation

holds:

(

n∑
i=1

x2i )(

n∑
i=1

y2i ) =

n∑
i

zi(x, y)2 (3.67)

Note that if we allowed for fields of characteristic two, this statement is trivially true, since the sum of squares is the

square of the sums.

Proof. We will first show existence. For this we look at a few examples. We have seen that the following real algebras are

composition algebras: the real numbers, the complex numbers, the quaternions and the octonions. If we take a closer look

at the square of the norm, we see that it involves sums of squares, and multiplication. For example |(x + iy)(w + zi)|2 =

|(x+ iy)|2|(w + zi)|2 = (x2 + y2)(w2 + z2). But also we see (xw − yz)2 + (xzwy)2. This also holds for the quaternions and

the octonions. This gives an indication what formulas the use when we want to show existence of solutions. As will turn

out, these formulas hold in general:

In the case of n = 1 the statement is trivial.

In the case n = 2 we take z1 = x1y1 + x2y2 and z2 = x1y2 − x2y1
In the case n = 4 we have the following zi

z1 = x1y1 − x2y2 − x3y3 − x4y4 (3.68)

z2 = x1y2 + x2y1 + x3y4 − x4y3 (3.69)

z3 = x1y3 − x2y4 + x3y1 + x4y2 (3.70)

z4 = x1y4 + x2y3 − x3y2 + x4y1 (3.71)

(3.72)

And in the last case when n = 8 we take

z1 = x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8 (3.73)

z2 = x1y2 + x2y1 + x3y4 − x4y3 + x5y6 + x6y5 + x7y8 − x8y7 (3.74)

z3 = x1y3 + x2y4 + x3y1 + x4y2 + x5y7 − x6y8 + x7y5 + x8y6 (3.75)

z4 = x1y4 + x2y3 − x3y2 + x4y1 + x5y8 + x6y7 − x7y6 + x8y5 (3.76)

z5 = x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y2 + x7y3 + x8y4 (3.77)

z6 = x1y6 + x2y5 + x3y8 − x4y7 − x5y2 + x6y1 − x7y4 + x8y3 (3.78)

z7 = x1y7 − x2y8 + x3y5 + x4y6 − x5y3 + x6y4 + x7y1 − x8y2 (3.79)

z8 = x1y8 + x2y7 − x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1 (3.80)

(3.81)
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Now suppose we have another n for which there exists a solution for Hurwitz problem. Then we can define N(x) =
∑n
i=1 x

2
i .

This yields a non-degenerate quadratic form. Moreover N(x)N(y) = N(z(x, y)). The only thing missing before (Kn, N)

becomes a composition algebra is an unit element. We will prove there exist an unit element in the next lemma. Now since

we have a quadratic form on an algebra which is non-singular, we have a composition algebra. Hence the dimension must

be 1, 2, 4, 8

Lemma 41. Let N : A→ K be a non-degenerate quadratic form and A×A→ A, (x, y) 7→ xy a bilinear map such that

N(xy) = N(x)N(y) ∀x, y ∈ A (3.82)

Then there is a map ∗ : A×A→ A, (x, y) 7→ x ∗ y such that N(x ∗ y) = N(x)N(y) and there is an element e ∈ A such that

e ∗ x = x ∗ e = x ∀x ∈ A (3.83)

Proof. Let v ∈ A such that N(v) 6= 0. It exists since N is non-degenerate. Let u = N(v)−1v2, then N(u) = 1 and

N(ux) = N(xu) = N(x) for all x ∈ A. We also have 〈ux, uy〉 = N(ux+uy)−N(ux)−N(uy) = N(x+y)−N(x)−N(y) = 〈x, y〉.

This yields

〈Lu(x), Lu(y)〉 = 〈x, y〉 (3.84)

and

〈Ru(x), Ruy〉 = 〈x, y〉 (3.85)

Let L∗u be the adjoint of Lu. Then for all x, y ∈ A we have

〈x, y〉 = 〈Lu(x), Lu(y)〉 = 〈x, L∗u(Lu(y))〉 (3.86)

This means that y = L∗uLu(y)) for all y ∈ A. Hence L∗u = L−1u . Notice that n(L−1u x = N(uL−1u (x)) = N(x). We can do the

same argument for Ru. Now we define a map ∗ : A×A→ A as

x ∗ y = R−1u (x)L−1u (y) (3.87)

Then N(x ∗ y) = N(R−1u (x))N(L−1u (y)) = N(x)N(y). The only thing we need to check is that we now have an unit.

u2 ∗ x = R−1u (u2)L−1u (x) = UL−1u (x) = x

x ∗ u2 = R−1u (x)L−1u (u2) = R−1u (x)u = x

Hence u2 is the unit element.

3.3.2 Real composition division algebras

We can also classify all real composition division algebras. These are all the normed real algebras where one can define

division in. If we have a real division composition algebra, there are the following options. We either have an associative

division algebra. Then it is isomorphic to either R,C,H. Now there is also the option there is an non-associative real division

composition algebra. Then it must have dimension 8. What turns out is that there is up to isomorphism just one way to

construct a division algebra from the Quaternion. These are the octonions. The idea is that the a we chose behaves either

like a positive or a negative real number. If it is a positive real number we get idempotent elements, if a behaves like a

negative real number we get a division algebra.
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Chapter 4

Topological groups

In order to answer our second question, for which n can Sn be a topological group, we need to define what it means to be a

topological group. We will show a couple of examples of topological groups.

Definition: Topological groups

A topological group is a group G, together with a topological structure on G such that the groups product m : G×G→ G

is a continuous function, and the inverse function x 7→ x−1 is also continuous.

4.1 Examples of topological groups

4.1.1 R is a topological group

We take as group multiplication the additive structure of R and denote it with +. First note that + is a continuous function

from R× R→ R, since it is just translation by a fixed amount in either argument, and translation is continuous in R. The

inverse operation − is also continuous, since if the distance between −x and −y is d, then so is the distance between x and

y. Hence both operations are continuous, and thus R is a topological space.

4.1.2 Rn is a topological group

We look at Rn as a vector space, and take addition of vectors as multiplication. This addition is continuous in both arguments,

and hence it is continuous. The inverse operation − is continuous by the same argument as before, namely, the distance

between x and y is the same as the distance between −x and −y.

4.1.3 Hilbert spaces form a topological group

First notice that addition is continuous and that taking x to −x is also continuous. Furthermore addition is associative and

closed. Hence any Hilbert space H is a topological group.

4.2 The spheres

Here we will show that the 0, 1 and 3 sphere form a topological group. It will turn out that these spheres are the only ones

which can become a topological group.
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4.2.1 S0 is a topological group

First note that S0 is a space consisting of 2 elements, namely 1 and −1. The topology on this space is the discrete topology,

namely every subset is open: φ, {1}, {−1} and {1,−1} are all open sets in §0. Hence every map is continuous. The group

operations are m where 1 is the identity and −1 is the self inverse element. Hence m is continuous and so is the inversion

map. This makes S0 into a topological group.

4.2.2 S1 is a topological group

First note that S1 is the set of all the elements of distance 1 in R2, or, equivalently, the set of all elements of norm 1 in

the complex numbers. These can be represented by eθi. Group inversion becomes eθi 7→ e−θi and multiplication becomes

eθ1ieθ2i = e(θ1+θ2)i, which are both continuous functions. Hence S1 is a topological group. One can also look at this

topological group as follows. Take S1 as a subset of C, namely {z| ||z|| = 1, z ∈ C}. Then multiplication of complex

numbers is the group operation on S1, this again produces numbers of norm 1 in S1. We can also invert the numbers on

S1 since 0 6∈ S1 and C is a division algebra. If we take the inverse of an element of norm 1 we have seen that this yields a

number of norm 1 again. Both these operations are continuous maps, thus S1 forms a topological group.

4.2.3 S3 is a topological group

Again notice that S3 is the set of all elements of distance 1 in R4, or equivalently, the set of all elements of norm 1 in the

quaternions. We can define the multiplication on S3 as multiplication of quaternionic numbers of norm 1. Again we have

shown that this yields another number of norm 1 thus it is on the sphere. We can also take inverses, which will also have

norm 1. Both these operations are continuous maps on H, hence restrict to a continuous map on S3.

4.3 Rn real associative division composition algebra implies Sn−1 is a topo-

logical group

We will show that Sn−1 is a topological group if Rn is a associative division composition algebra.

Notice that the maps x 7→ a · x and x 7→ x · a are linear maps, which are continuous. Furthermore, there is an inversion map

x 7→ x−1 = 1
N(x)x for all x 6= 0 which is continuous. Note that Sn−1 is a subset of Rn. Suppose x, y ∈ Sn−1. Then we can

define m(x, y) = x·y
|x·y| , which is continuous. We can also define the inversion map x 7→ x−1

|x−1| . This is also continuous. Further

notice that m is associative, since · is associative and the norm function obeys |x · y| = |x||y|. Hence Sn−1 is a topological

group.

We have seen that the only real associative division composition algebra are the real numbers, complex numbers and the

quaternions. The natural question arises, is it possible for Sn−1 to be a group when Rn cannot be endowed with a real

associative division composition algebra? The answer to that question will be no. We will show that Sn−1 can be something

that comes close to a group when n = 1, 2, 4, 8. These are the only Sn−1 which have a chance at being a group. Then it

turns out that S7 is not a group, hence the answer will be no.
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Chapter 5

Lie groups

A Lie group is just like a topological group except it is on smooth manifolds and the multiplication and inversion maps

should be smooth maps. This makes some questions in this settings a whole lot easier, since smoothness is far stronger than

just continuity.

Definition 19. A Lie group (G, ·) is a smooth manifold G such that (G, ·) is a group and the multiplication map · : G×G→ G

and inversion map ·−1 : G→ G are smooth maps.

This gives rather strong properties for the geometry which exists on M .

Lemma 42. Any Lie group G is parallelizable.

Proof. We need to show that TG is isomorphic to G×TeG. We have an induced map (Lg)∗ from the map Lg which is defined

by Lgh = gh. Now if we have an element at the tangent space at g, call it Xg we can move it over the entire manifold by

this transformation. Then we get TG = G× TeG by sending Xg to (g, (Lg−1)∗Xg), this gives an isomorphism between TgG

and TeG, and hence get the required relation.

5.1 Spheres which are Lie groups

Theorem 43. The only n for which Sn can be made into Lie groups are n = 0, 1, 3.

Proof. We start by noting that for n = 0 the statement is trivial since S0 = {±1}. Now move to the higher dimensional

case. For all n ≥ 1 the sphere Sn is connected. For connected Lie groups G there is the following theorem on the de Rham

cohomology: if H1(G) = 0 then H3(G) 6= 0, see [7]. For the spheres we have Hn(Sn) = Z and Hi(Sn) = 0 if i 6= n, for a

proof of this see [4]. Suppose Sn is a Lie group. If n = 1 then H1(S1) 6= 0. Hence it can be a Lie group. If n > 1 then

H1(Sn) = 0. This implies that H3(Sn) must be nonzero if Sn is a Lie group. We see that the only moment this is true

when n = 3. Hence the only possible Lie groups are S0, S1, S3. These are Lie groups since we can endow them with the

group structure of the elements of norm 1 of R,C,H respectively. The multiplication and inversion maps are smooth maps in

R− {0},C− {0} and H− {0}. In particular they are smooth when restricted to S0, S1 or S3. This proves the theorem.
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Chapter 6

Vector Bundles

This is a short chapter which contains the theory about complex vector bundles we need, and some general theory about

vector bundles like their definition. From now on we will assume that map means a continuous function. Vector bundles are

topological objects that locally look like a Cartesian product of a topological space with a vector space.

Definition 20. Let B be a topological space. An n dimensional real vector bundle over B is a topological space E and a

map p : E → B together with a real vector space structure of p−1(b) for each b ∈ B, such that the following condition holds:

There exists an open cover U with opens Uα such that for each Uα there exists a homeomorphism hα : p−1(Uα)→ Uα × Rn

taking p−1(b) to {b} × Rn by a vector space isomorphism for each b ∈ Uα. Such an hα is called a local trivialization of the

vector bundle. The space B is called the base space, E is the total space and the vector spaces p−1(b) are the fibers. If we

take C instead of R we get complex vector bundles, which we will use later on. For now, we write K instead of R or C when

results hold for both fields.

Some examples of vector bundles:

1. A trivial vector bundle is the bundle E = B ×Kn with p the projection onto B.

2. Tangent spaces of smooth manifolds form vector bundles.

3. The normal bundle to Sn in Rn+1, consisting of pairs (x, v) such that V is perpendicular to the tangent plane to Sn

at x. This makes E ⊂ S × Rn+1.

4. The open Möbius band is a vector bundle over S1.

5. The infinite cylinder is also a vector bundle over S1. These two vector bundles locally look both like a surface, however

they are not homeomorphic.

Definition 21. We call two vector bundles p1 : E1 → B, p2 : E2 → B over the same base space B isomorphic if there is a

homeomorphism h : E1 → E2 taking each fiber p−11 (b) to the corresponding fiber p−12 (b) by a linear isomorphism. We denote

isomorphism of vector bundles by E1 ≈ E2.

Lemma 44. A continuous map h : E1 → E2 between vector bundles over the same base space B is an isomorphism if it

takes each fiber p−11 (b) to the corresponding fiber p−12 (b) by a linear isomorphism.

Proof. Notice that h must be bijective by the hypothesis. Thus all we have to show is that h−1 is continuous. Since this is a

local question we can restrict to an open subset U ⊂ B over which E1 and E2 are trivial. We can now compose with the local

trivialization since this is a homeomorphism. Thus we have to show that h is locally a continuous map U × Kn → U × Kn
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of the form h(x, v) = (x, gx(v)). Here gx is the composition from the linear isomorphisms from x × Kn to p−11 (b), then

again from p−11 (b) to p2(p−11 (b)) which are both linear isomorphisms. Thus here gx is an element of the group GLn(K) of

invertible linear transformations of Kn, and thus gx depends continuously on x. This means that gx can be regarded as a

n × n matrix, and its n2 entries depend continuously on x, since g−1x = 1
det gx

times the adjoint matrix of gx. Therefore

h−1(x, v) = (x, g−1x (v)) is continuous.

Definition 22. We define the direct sum of two vector bundles E1 and E2 as E1 ⊕ E2 = {(v1, v2)|p1(v1) = p2(v2)}

Lemma 45. The direct sum of two vector bundles is again a vector bundle.

Proof. First note that if we have a vector bundle p : E → B and a subspace A ⊂ B then p|A : p−1(A)→ A is a vector bundle

over A.

Also note that if we have base spaces B1, B2 and vector bundles pi : Ei → Bi then the product

p1 × p2 : E1 × E2 → B1 ×B2 (6.1)

is again a vector bundle, since we can make a trivialization

hα,β : p−11 (Uα)× p−12 (Uβ)→ Uα ×Kn × Uβ ×Km (6.2)

by setting hα,β = hα × hβ .

Then notice that E1 ⊕ E2 is the restriction of E1 × E2 over the diagonal (b, b) for b ∈ B. Hence this is also a vector bundle

by our observations.

We will now work on showing that every vector bundle has a counterpart such that their direct sum is a trivial vector

bundle. Our first observation is that we can define an inner product on vector bundles. The idea is that we pull back the

inner product on Kn to p−1(Uα) via the trivialization. Since our space B is compact Hausdorff it has a partition of unity

subordinate φβ to the open cover Uα(β), such that the support of φβ is contained in Uα(β). We then define our inner product

〈v, w〉 =
∑
β

φβp(v)〈v, w〉α(β) (6.3)

Lemma 46. Let E → B is a vector bundle and B be paracompact. Suppose E0 is a vector subbundle, then there exists a

vector subbundle E⊥0 ⊂ E such that E0 ⊕ E⊥0 = E.

Proof. We have an inner product on E. Define E⊥0 to be the subspace of E such that each fiber consists of all vectors

orthogonal to vectors in E0. Then E0 ⊕E⊥0 is isomorphic to E by sending (v, w) to v+w. Now we need to show that E⊥0 is

a vector bundle. All we have to show is that it admits local trivializations.

Since trivializations are local, we can restrict ourselves to Uα and suppose E = B × Kn. E0 is a vector bundle. It has

dimension m ≤ n. Thus it has m independent local sections b 7→ (b, si(B)) near each point b0 ∈ B.

If m < n then we can enlarge this set of m independent local sections to a set of n independent local sections b 7→ (b, si(b)) of

E by choosing sm+1, .., sn in the fiber p−1(b0). We can now take that vector for all nearby fibers p−1(b) since the determinant

function is continuous, and vectors are linearly independent iff det(s1, ..., sn) 6= 0. Thus they will remain independent. Now

we can apply the Gramm-Schmidt orthonormalization process. This is a continuous function, hence the s′i will remain

orthogonal in a neighborhood. Also notice that the first m will remain a basis for E0 since the first m s′i values are the same

if we just did the Gramm-Schmidt process on E0. The sections s′i allow us to define a local trivialization h : p−1(U)→ U×Kn

with h(b, s′i(b)) equal to the i-th standard basis vector of Kn. Notice that h splits, such that h carries E0 to U × Km and

E⊥0 to U × Rn−m.

We will now use this result to show the following lemma
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Lemma 47. Every vector bundle has a counterpart such that their sum is a trivial vector bundle.

Suppose the result holds. Then E is a subbundle of a trivial bundle, i.e. E is a subbundle of B × Rn. Then by the

previous lemma we have a vector bundle E⊥ such that the direct sum is the trivial bundle. If we include E in the trivial

bundle and then project onto Rn we have a map E → Rn that is a linear injection in each fiber. We can now reverse this.

We build a map E → Rn that is a linear injection. Then we will show that this map gives an embedding of E in B × Rn.

Proof. First notice that for each element x in B there is a open neighborhood Ux of x such that E over Ux is trivial. By

Urysohns Lemma there is a map φx : B → [0, 1] that is 0 outside Ux and non-zero at x. Letting x vary, the sets φ−1x (0, 1]

form an open cover of B. Since B is compact, we can extract a finite subcover. Let the Ux and φx corresponding to this

subcover be labeled Ui and φi. Define a map gi : E → Rn by gi(v) = φi(p(v)) · (πihi(v)), where p is the project E → B, πi

the projection from Ui × Rn onto Rn, and hi : p−1(Ui)→ Ui × Rn. the local trivialization. This makes gi a linear injection

on each fiber over φ−1i (0, 1]. If we make the various gi the coordinates of a map g : E → RN , where RN is a product of copies

of Rn, then g in a linear injection on each fiber.

The map g is the second coordinate of a map f : E → B×RN , with f = (p, g). The image of f is a subbundle of the product

B×RN . This is since if we project RN onto the i− th Rn factor, we have the second coordinate of a local trivialization over

φ−1i (0, 1]. This shows that E is isomorphic to a subbundle of B × RN , hence by preceding lemma we find a complementary

subbundle E⊥ such that their direct sum is isomorphic to B × RN .

We will now define tensors of vector bundles.

Definition 23. Let E1, E2 be vector bundles with projection p1, p2 and trivialization h1, h2. The tensor product of E1, E2

is denoted E1 ⊗ E2. This is a set, formed by the disjoint union of the vector spaces p1(x)−1 ⊗ p−12 (x). Then we will need a

topology on this set.

Choose isomorphisms hi : p−1i (U)→ U×RN for each open U ⊂ B over which E1 and E2 are trivial. We define τU on the set

p−11 (U)⊗p−12 (U) is defined by letting the fiber wise tensor product map h1⊗h2 : p−11 (U)⊗p−12 (U)→ U×(Rn1⊗Rn2). Note that

this topology is independent of hi since h1 and h2 agree on overlaps, and hence the other choices are obtained by composing

with isomorphisms of U × Rn1 of the form (x, v) 7→ (x, gi(x)(v)) for continuous maps gi : U → GLni
(R). Hence h1 ⊗ h2

changes by composing these morphims with the tensors, and the maps g1 ⊗ g2 are continuous maps U → U × (Kn1 ⊗Kn2).

When we replace U by an open subset V , the topology on p−11 (V )⊗ p−12 (V ) induced by τU is the same as the topology τ(V ),

since the local trivializations agree on the overlap between U and V . Hence we get a well defined topology on E1×E2, which

makes this a vector bundle over B.

We have now shown the properties we need to define the functor K(·). If you wish you can go forward to the next chapter

on Topological K-theory. The last part of this chapter proves additional statements which will be used to show the last

property of functors: if we have a map f : X → Y we get a map between K(Y ) and K(X). In this chapter we will be doing

the vector bundle side of the statements. In the next chapter we will use these theorems to show that the result hold for K.

Proposition 48. Given a map f : A → B and a vector bundle p : E → B, then there exists a vector bundle p′ : E′ → E

with a map f ′ : E′ → E taking the fiber of E′ over each point a ∈ α isomorphically onto the fiber of E over f(A), and such

a vector bundle E′ is unique up to isomorphism.

We call E′ the pullback of E by f .

Proof. We will first show the existence of a pullback of E by f and then show this pullback is unique up to isomorphism.

We set E = {(a, v) ∈ A × E| f(a) = p(v)}. Then we set p′(a, v) = a and f ′(a, v) = v. Then fp′ = pf ′, since they both

send (a, v) to f(a) = p(v). Thus we have a commutative diagram:
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E E′

B A

f∗

p

f

p∗

Now we need to show that E′ is a vector bundle. We need to show it has a trivialization functions. We will show that E′

is homeomorphic to a vector bundle. First we look to the graph of f : ∆f = {(a, f(a))}. Then p′ factors as maps from

E′ → ∆f → A

Proposition 49. This induced map f∗ commutes with direct sum and tensoring.

Proof. Notice that if E = E1 ⊕ E2 we can find E′1 and E′2, and then E′ = E′1 ⊕ E′2. The same holds for tensoring. Thus f∗

commutes with direct sum and tensoring.

Theorem 50. Given a vector bundle p : E → B and homotopic maps f0, f1 : A→ B, then the induced vector bundles f∗0 (E)

and f∗1 (E) are isomorphic if A is paracompact.

Proof. This theorem is a special case of the next proposition.

Proposition 51. The restrictions of a vector bundle E :→ X × I over X × {0} and over X × {1} are isomorphic if X is

compact Hausdorff.

Lemma 52. A vector bundle p : E → X × [a, b] is trivial if it restrictions over X × [a, c] and X × [c, b] are both trivial for

some c ∈ (a, b).

Proof. We define the restrictions E1 = p−1(X × [a, c]) and E2 = p−1(X × [c, b]) and we have isomorphisms h1 and h2 the

restrictions to [a, c] and [c, b]. These isomorphisms need not agree on p−1(X ×{c}), but if we replace h2 by the isomorphism

X × [c, b]×Kn → X × [c, b]×Kn on which each slice X ×{x}×Kn is given by h1h
−1
2 : X ×{c}×Kn. Once h1 and h2 agree

on E1 ∩ E2 they define a trivialization of E.

Lemma 53. For a vector bundle p : E → X×I there exists an open cover Uα of X so that each restriction p−1(Uα×I → Uα×I

is trivial.

Proof. This is because for each x ∈ X we can find open neighborhoods Ux,1, ...Ux,k in X and a partition 0 = t0 < t1 < ... <

tk = 1 of [0, 1] such that the bundle is trivial over Ux,i × [ti−1, ti] using compactness of [0, 1]. Then by previous lemma the

bundle is trivial over Uα × I where Uα = Ux,1 ∩ ... ∩ Ux,k.

Proof. We will now prove the proposition. We can take an open cover {Uα} so that E is trivial over each Uα × I. We

extract a finite subcover of X. We relabel them as U1, ..., Um. As shown before there is a corresponding partition of unity

by functions φi with the support of φi contained in Ui. Define ψi =
∑i
j=0 φj . Let Xi be the graph of ψi. Then we can

restrict pi : Ei → Xi be the restriction of the bundle E over Xi. Since E is trivial over Ui × I the natural projection

homeomorphism Xi → Xi−1 lifts to a homeomorphism hi : Ei → Ei−1 which is the identity outside p−1(Ui × I) and which

takes each fiber of Ei isomorphically onto the corresponding fiber of Ei−1. Explicitly, on points in p−1(Ui× I) = Ui× I×Kn

we let hi(x, ψi(x), v) = (x, ψi−1)(x), v). The composition h = h1h2...hm is then a isomorphism from the restriction of E over

X × {1} to the restriction over X × {0}.

Corollary 54. A homotopy equivalence f : A → B of paracompact spaces induces a bijection f∗ between the sets of all K

vector bundles over A and B.
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Proof. If g is a homotopy inverse of f then f∗g∗ = 1∗ = 1 and g∗f∗ = 1∗ = 1, hence we have that f∗ is a bijection with

inverse g∗.

Proposition 55. If p : E → B is a fiber bundle whose fiber F and base B are both finite cell complexes, then E is also a

finite cell complex, whose cells are products of cells in B with cells in F .

Proof. We will use induction. Suppose B is a cell complex with only 1 cell. Then p−1(B) = en × F , which is a finite cell

complex, since F is a finite cell complex, and we can make en × F by taking the em cells in F and replacing them by en+m

cells, and the attaching maps are (id, p) where p is the attaching map in F .

Now suppose B is obtained from a subcomplex B′ by attaching an n-cell en. We assume that p−1(B′) is a finite cell complex.

If Φ : Dn → B is a characteristic map for en then the pullback bundle Φ∗(E) → Dn is a product since Dn is contractable.

Since F is a finite cell complex, this means that we may obtain Φ∗(E) from its restriction of Sn−1 by attaching cells. Hence

we may obtain E from p−1(B′) by attaching cells.

The next goal is to define exterior powers for vector bundles. An exterior power λk(V ) for vector spaces V is constructed

as follows:

First we take the k-fold tensor product. This yields V ⊗ · · · ⊗ V .

In this space we have a subspace generated by v1⊗· · ·⊗ vk− sign(σ)vσ1 ⊗· · ·⊗ vσv where σ is a permutation of the elements

{1, .., k}.

Note that if V has dimension n then λk(V ) has dimension
(
n
k

)
.

We will locally do the same for the exterior products of vector bundles. This will yield the set E which we will then endow

with a topology via local trivialisations in the same way as for tensor products.

Definition 24. The exterior product of a vector bundle is the set E formed by first taking the disjoint union of all λk(p−1(x)),

i.e. point-wise exterior product. Then we use the same construction as for tensors products to create a trivialization for this

set E, and via this route we also are able to endow E with a topology.

In order to show that tensor product had a well defined topology we used that the tensor product φ ⊗ ψ depended

continuously on φ and ψ for φ, ψ linear maps. We will need to show this also holds for λ

Lemma 56. Given a linear map φ : Rn → Rn, we have a linear map λk(φ) : λk(Rn)→ λk(Rn) which depends continuously

on φ.

Proof. Since φ is a linear map it induces a map on the k-fold tensor of Rn. Then we take the quotient. Thus our map ψ̃ is

the quotient map of a k fold tensor of a map ψ by itself, which is continuous.

We will end this chapter with an example:

6.1 Bundles over SN

The n-sphere Sn may be covered by two open discs U1 and U2. The intersection is homotopy-equivalent to Sn − 1. Any

bundle E → Sn with fiber V = Ck is trivial when restricted to U1 and U2, since open disks are contractable. If we look from

a gluing point of view, E is fully determined by the homotopy class of the transition function g : Sn−1 → GL(V ).

If n = 1, this set contains a single element, since GL(V ) is path connected. Thus every complex vector bundle over S1 is

trivial.

When n = 2, the set of all homotopy classes of maps from Sn−1 → GL(V ) is the same as the fundamental group, which is

Z for any V . This is due to GL(k,C) being connected.

In general, if n > 1 the set of homotopy classes from Sn−1 → GL(V ) is the n− 1-th homotopy group of GL(V ).
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Chapter 7

Topological K-theory

In topological K-theory we introduce an Functor K which maps compact Hausdorff topological spaces to rings. So given a

topological space X we are going to introduce a ring K(X). A ring has to obey the following axioms:

• K(X) is an Abelian group under addition.

• K(X) is a monoid under multiplication, eg · is associative and there is an identity.

• multiplication is distributive with respect to addition: a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a)

So first we need a Abelian group for addition. After that, we need an multiplication operation which distributes over the

addition. We shall show that the direct sum of vector bundles on X can be made into an Abelian group, and that tensoring

vector bundles over X defines a multiplication.

Furthermore, to be a functor, morphisms from one topological space into the other should induce morphisms from one ring to

the other. In this case, the morphisms from one topological space to the other is a continuous function, and the morphisms

from the one ring to the other are ring homomorphisms. In other words, the following diagram commutes:

top top

rings rings

F

K

F∗

K

In this diagram top stands for compact Hausdorff topological spaces.

7.1 Direct sum of vector bundles induces an Abelian group

We start with a few basic constructions. First we fix a compact Hausdorff space X. It is convenient to take a slightly broader

definition of vector bundles in this chapter. We allow fibers of a vector bundle p : E → X to be vector spaces of different

dimensions. There still should be local trivializations h : p−1(U)→ U × Cn.

Lemma 57. Dimensions of fibers of vector bundles are locally constant.

Proof. Suppose that we have an open cover U = {Uα} of X. Then we can split every open Uα in U into connected components

Vα,β . This gives another open cover V.
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Then note that for any Vα,β the space Vα,β × Kn has constant dimension, due to dimension being locally constant in Vα,β

and Kn having dimension n.

Now suppose that we have two opens V1, V2 such that p−1(V1) ∩ p−1(V2) = W is non empty. Then we have two homeomor-

phisms p : W → p(W ) ⊂ V1 and p : W → p(W ) ⊂ V2. Hence W has the same dimension as V1 and V2. Thus they are equal.

This shows that dimension is locally constant.

We now define a equivalence relation on the set of all vector bundles.

Definition 25. We call two vector bundles E1 and E2 equivalent, E1 ∼ E2 iff there exist trivial vector bundles εn, εm of

dimension n and m such that E1 ⊕ εn ≈ E2 ⊕ εm

We shall show that the equivalence classes of ∼ form an Abelian group.

Theorem 58. The equivalence classes of ∼ form an Abelian group with the operation ⊕.

We define [E1]⊕ [E2] = [E1 ⊕E2]. This is clearly closed since any direct sum of vector bundles is again a vector bundle.

It is also associative and the class of the trivial bundle [ε0] forms the identity [E1] + [ε0] = [E1 ⊕ ε0] = [E1]. Thus the only

thing we need to show is that there exist inverses.

We have shown that if for a vector bundle E all the fibers have the same dimension n, there exist an vector bundle E′ such

that their direct sum is a trivial vector bundle.

Now suppose that we have a vector bundle p : E → X. We define Xi = {x ∈ X|dim p−1(x) = i}. This is a disjoint set in

X, is open and hence forms an open cover. By compactness we can extract a finite subcover, but we cannot leave any non

open cover out due to every open being disjoint from the rest. Hence there are only a finite amount of such Xi. We can find

for each such Xi a vector bundle E′i such that the direct sum of p−1Xi ⊕E′i is trivial. These E′i together can then be made

the fibers of a vector bundle over X and we have found our inverse. This forms an Abelian group K̃(X). We shall construct

K(X) by using a stronger equivalence relation ≈s.

Definition 26. We call two vector bundles E1, E2 over X stably isomorphic, E1 ≈s E2 if E1 ⊕ εn ≈ E2 ⊕ εn

Note that if E1 ≈s E2 then E1 ∼ E2. Now we construct the Abelian group K(X) using ≈s. We cannot have inverses in

the same way as in K̃(X) as two positive vector bundles cannot be added to form the zero dimensional trivial vector bundle.

Thus we seek another property. Observe the following:

Lemma 59. If E1 ⊕ E2 ≈s E1 ⊕ E3 then E2 ≈s E3.

Proof. We know that E1 ⊕ E2 ≈s E1 ⊕ E3 and we know that for E1 there exists an E′1 such that E1 ⊕ E′1 ≈ εn for some n.

Now add this E′1 to both sides of the first equation. This yields E′1⊕E1⊕E2 ≈ εn⊕E2 ≈s E3⊕ εn. And thus E2 ≈s E3.

We will use formal differences of vector bundles to form the Abelian group K(X). The addition in K(X) is defined in

the following way:

(E1 − E′1)⊕ (E2 − E′2) = (E1 ⊕ E2)− (E′1 ⊕ E′2) (7.1)

for formal differences Ei − E′i, where Ei and Ei are vector bundles. The zero element defined to be E − E for any vector

bundle E. Notice that the inverse of an element E−E′ is E′−E. Also notice that every element E−E′ can be represented

by Ẽ − εn for some n and Ẽ. We can add a bundle E′′ to both E and E′ such that E′ ⊕E′′ ≈ εn. We then add E′′ −E′′ to

E − E′. This gives (E ⊕ E′′)− (E′ ⊕ E′′) = Ẽ − εn

Theorem 60. K(X) = K̃(X)⊕ Z

Proof. Since ≈s was a stronger equivalence relation, we can find a natural homomorphism K(X)→ K̃(X). Notice that the

homomorphism is surjective, and the kernel consist of elements of the form εm − εn. This subgroup of K(X) is isomorphic

to Z.
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7.2 Tensoring vector bundles induces a multiplication

We have just defined the additive structure of K(X) and are going to work on the multiplicative structure of K(X). If we

have two elements of K(X), namely E1, E2, we define their product as follows E1 ⊗ E2. Since the elements of K(X) are in

general represented by differences of vector bundles E − E′ we can define their product as follows:

(E1 − E′1)(E2 − E′2) = E1 ⊗ E2 − E1 ⊗ E′2 − E′1 ⊗ E2 + E′1 ⊗ E′2 (7.2)

Notice that tensoring is associative. distributively follows from the definition. All we have to show is that there exists an

identity. ε1 is the identity by ε1 ⊗ (E −E′) = ε1 ⊗E − ε⊗E′ = E −E′. By commutativity ε1 is the multiplicative identity.

Also notice that εn ⊗ E gives n copies of E hence we can abbreviate εn by n and let nE stand of n copies of E.

Now we want to show that this multiplication is well defined. Suppose that E1, E2 come from the same equivalence class, and

we have another element E3. Then consider E1⊗E3 and E2⊗E3. We can both add them up (E1+εn)⊗E3 and (E2+εm)⊗E3.

These are equivalent to the first statement, however, this also yields E1⊗E3 + εn⊗E3. And also E2⊗E3 + εm⊗E3. These

terms are equal since we multiplied the same element of K(x) by E3. However, the last part is equivalent to zero, hence

E1⊗E3 is equivalent to E2⊗E3. We can exactly mirror this argument for the other side of multiplication. This shows that

multiplication is well defined. As we will see in the next section, continuous maps induce ring homomorphisms. If we take

the map which maps X to x0 ∈ X this comes down to restricting vector bundles over the fibers to x0. Its kernel is K̃(X).

Hence it is an ideal. Then K̃(X) obeys all the ring axioms except it might not have an identity element.

7.3 Continuous maps induce ring homomorphisms

Given two compact Hausdorff spaces X,Y and a continuous map between them. As we have seen, a map f : X → Y induces a

map in vector bundles f∗ : EY → EX . We have seen that f∗(E1⊕E2) = f∗(E1)⊕f∗(E2) and f∗(E1⊗E2) = f∗(E1)⊗f∗(E2)

hence f∗ is a homomorphism. Further more (fg)∗ = g∗f∗, 1∗ = 1. Thus K obeys all the required relations for a functor.

7.4 Extra properties of K(X)

These properties will be proved in later chapters

7.4.1 External product

We define the external product µ : K(X)⊗K(Y )→ K(X ×Y ) to be µ(a⊗ b) = p∗1(a)p∗2(b) where p1 and p2 are the projects

of X × Y onto X and Y . Notice that we tensor rings. The product of a⊗ b · c⊗ d is defined to be a · c⊗ b · d.

7.4.2 The fundamental Product theorem

Suppose H is the canonical line bundle over S2 = CP 1. In [5] example 1.13 is shown that (H ⊗H)⊕ 1 ≈ H ⊕H. In K(S2)

this yields H2 + 1 = 2h, thus H2 − 2H + 1 = 0 and otherwise stated: (H − 1)2 = 0. Thus we have a ring homomorphism

Z[h]/(H − 1)2 → K(S2). We will define a homomorphism µ as the composition

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X)⊗K(S2)→ K(X × S2) (7.3)

Theorem 61. The homomorphism µ : K(X) ⊗ Z[H]/(H − 1)2 → K(X × S2) is an isomorphism of rings for all compact

Hausdorff X.
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Proof. For a proof we refer to [5], there it is theorem 2.2 on page 41. Here we will only introduce the theorem, and later we

will use it.

This theorem yields directly the following corollary by taking X = {0}:

Z[H]/(H − 1)2 → K(S2) is an isomorphism of rings. This implies directly that K(S2) = Z

7.4.3 Complex Bott periodicity

The Bott periodicity theorem for complex vector bundles states that there exist a homomorphism β such that β : K̃(X)→

K̃(S2X) with β(a) = (H − 1) ∗ a ∀a ∈ K̃(X) is an isomorphism for all compact Hausdorff X, more details are given in the

next chapter.

As a corollary we have that K̃(S2n+1) = 0 and K̃(S2n) = Z.

7.4.4 K-theory as a Cohomology

We can make K-theory into a cohomology theory, by defining K̃−n(X) = K̃(SnX). This obeys the axioms of cohomology.

This will be shown in the chapter Extending to a cohomology theory. We then set K−n(X) = K(ΣnX), where Σ is the

reduced suspension, i.e. where we send the north and south pole to the same point.

7.4.5 The Splitting Principle

Given a vector bundle E → X with X compact Hausdorff space, there is a compact Hausdorff space F (E) and a map

: F (E) → X such that induced map p∗ : K∗(X) → K∗(F (E)) is injective and P ∗(E) splits as a sum of line bundles. For a

proof of the splitting principle we refer to [5]

43



Chapter 8

Complex Bott periodicity

We start of by introducing exact sequences in K̃(X).

Proposition 62. If X is compact Hausdorff and A ⊂ X is a closed subspace, then the inclusion and quotient maps

A →i X →q X/A induce homomorphisms K̃(X/A) →q∗ K̃(X) →i∗ K̃(A) for which the kernel of i∗ equals the image

of q∗.

Proof. The inclusion Im q∗ ⊂ ker i∗ is equivalent to i∗q∗ = 0. Since qi is equal to the composition A→ A/A→ X/A and

K̃(A/A) = 0 we see that i∗q∗ = 0.

The other inclusion is more work. The general idea is that the only things that get mapped to zero come from the set A.

Now suppose that E is in the kernel of i∗, i.e. an element of K̃(X) such that i∗(E) is 0. Then we are going to show it is an

element in the image of q∗. We know that the restriction of E over A is trivial up to adding a trivial vector space. Hence

we can add a trivial vector bundle to E, thus staying in the same equivalence class, and get E trivial over A. We have a

trivialization h : p−1(A)→ A×Cn. We now define E/h to be the quotient of E under the relation h−1(x, v) ∼ h−1(y, v) for

all x, y ∈ A. Then we have a projection E/h to X/A. To see that this is a vector bundle on X/A we need to show that there

exists a trivialization over a neighborhood of the point A/A.

To find such a neighborhood, we will make an open cover {Uα} of A in X. On this open cover we have sections si : A∩Uα → E

to the fiber of E. These sections can be extended by the Tietze extension theorem. We also have a partition of unity {ψα, ψ}

subordinate to the open cover {Uα, A}. We then define ∑
α

ψαsiα (8.1)

This is an extension of the section si on Uα to a section on X. Since these sections form a basis on A and can be seen as an

invertible linear function, they are a basis in a neighborhood of A.

Now we have a trivialization h of E which extends to a neighborhood U of A. Thus we have a trivialization of E/h over

U/A. Thus E/h is a vector bundle. Note that we have the following commutative diagram:

E E/H

X X/A

p

q

hence we have an isomorphism E ≈ q∗(E/h), and thus we have found an image.

We will extend our exact sequence. First we begin with a sequence of inclusions. Each space in this sequence is created

by the cone of the space two steps back in the sequence. The vertical maps are quotient maps if we collapse that cone to a
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point.

A X X ∪ CA (X ∪ CA) ∪ CX ((X ∪ CA) ∪ CX) ∪ C(X ∪ CA)

X/A SA SX

Corollary 63. If A is contractible, the quotient map Q : X → X/A induces a bijection q∗ : V ectn(X/a) → V ectn(X) for

all n.

Proof. Since A is contractible we notice that the vector bundle E → X must be trivial. Hence we have a trivialization h.

This gives a vector bundle E/h → X/h as in the previous proof. We will now show that the equivalence class of e/h does

not depend on h.

Given two trivializations h0 and h1, we can write h1 = (h1h
−1
0 )h0, we see that h0 and h1 differ by an element gx of GL(n,C),

i.e. an invertible matrix, for each point x in A. The resulting map g : A → GL(n,C) is homotopic to a constant map

x→ α ∈ GL(n,C) since A is contractible. Write now h1 = (h1h
−1
0 α−1)(αh0), we see that composing h0 with alpha does not

change E/h0. Assume that α is the identity. Then the homotopy from g to the identity gives a homotopy H from h0 to h1.

We now build a new vector bundle

(E × I)/H → (X/A)× I (8.2)

This vector bundle restricts to E/h0 on one end of I, and E/h1 on the other end of I. Therefore E/h0 ≈ E/h1.

From this we conclude that we have a well defined map V ectn(X) → V ectn(X/A), namely E 7→ E/h. Is is an inverse of

q∗ since q∗(E/h) ≈ E, by the preceding proof, and for a bundle E → X/A we have q∗(E)/h ≈ E for the trivialization h of

q∗(E) over A. Hence we have shown that q∗ is bijective.

From the previous two statements we have an exact sequence of K̃ groups

...→ K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A) (8.3)

Now, suppose that X is the wedge sum A ∨ B then X/A = B and the sequence breaks into split short exact sequences.

Hence K̃(X)→ K̃(A)⊕ K̃(B) is an isomorphism.

Our next goal is to use the tools we have developed to create a new long exact sequence, from which we can deduce the

Bott Periodicity. The first step is to obtain a reduced version of the external product. This will be a ring homomorphism

K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ). We will start with the long exact sequence for the pair (X × Y,X ∨ Y ):

K̃(S(X × Y )) K̃(S(X ∨ Y )) K̃(X ∧ Y ) K̃(X × Y ) K̃(X ∨ Y )

K̃(SX)⊕ K̃(SY ) K̃(X)⊕ k̃(Y )

≈ ≈

This exact sequence can be obtained directly from the previous results. The first vertical isomorphism is due to the quotient

map of SZ → ΣZ inducing an isomorphism by the previous lemma. We also use that Σ(X ∨ Y ) = ΣX ∨ ΣY . This then

gives the isomorphism which is a split surjection as we can do it per coordinate by projections.

The last horizontal map is also a split surjective, as we can take (a, b) ∈ K̃(X) ⊕ K̃(Y ), then use the isomorphism to find

corresponding points in K̃(X ∨ Y ) and use the projection map to pull the back to K̃(X × Y ). Explicitly we can send

(a, b) 7→ p∗1(A) + p∗2(B) where p1 and p2 are the projections of X ×Y onto X and Y . In the same fashion, the first horizontal
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map splits by (Sp1)∗ + (Sp2)∗.

Thus we have a splitting K̃(X × Y ) ≈ K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

Recall that K̃(X) = ker(K(X) → K(x0)). The same holds for K̃(Y ). Thus if we have (a, b) ∈ K̃(X)⊕ K̃(Y ), the external

product a ∗ b = p∗1(a)p∗2(B) ∈ K̃(X × Y ) has p∗1(A) restricting to zero in K̃(Y ) and p∗2(b) restricting to zero in K̃(X). Thus

p∗1(a)p∗2(b) restricts to zero in both K(X) and K(Y ), and therefore also in K(X∨Y ). This implies that a∗b lies in K̃(X×Y ),

and the short exact sequence then implies that a ∗ b pulls back to an unique element of K̃(X ∧ Y ). This defines the reduced

external product. We will now show that it is a restriction of the unreduced external product:

K̃(X)⊗ K̃(Y ) (K̃(X)⊗ K̃)Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z

K(X × Y ) K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z

≈

≈

Notice that the last part of both lines are equal, thus the only first two parts change. From this we conclude that the reduced

external product is also a ring homomorphism.

Now we will set up the last step before we have the Bott periodicity theorem. We know that Sn ∧X is the n-fold iterated

reduced suspension ΣnX. This in turn is a quotient of Sn(X) by collapsing an n-disk in SnX to a point. Hence by the

previous lemma the quotient map SnX → Sn ∧X induces an isomorphism on K̃.

Then the reduced external product gives rise to a homomorphism

β : K̃(X)→ K̃(S2X) (8.4)

where

β(a) = (H − 1) ∗ a (8.5)

where H is the canonical line bundle over S2 = CP 1.

Theorem 64. The homomorphism β : K̃(X) → K̃(S2X) with β(α) = (H − 1) ∗ α is an isomorphism for all compact

Hausdorff spaces X.

Proof. The map β is the composition

K̃(X)→ K̃(S2)⊗ K̃(X)→ K̃(S2X) (8.6)

where the first map a 7→ (H − 1) ⊗ A is an isomorphism since K̃(S2) is infinite cyclic generated by H − 1 and the second

map is the reduced external product. Then by the diagram above this is equivalent to the product theorem.

Corollary 65. K̃(S2n+1) = 0 and K̃(S2n) ≈ Z, generated by the n-fold reduced external product ∗n(H − 1).

46



Chapter 9

Extending to a cohomology theory

In the previous chapter we shown that

K̃(S2X)→ K̃(S2A)→ K̃S(X/A)→ K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A) (9.1)

is an exact sequence of groups. By definition of the graded topological K-theory we have the exact same sequence:

K̃−2(X)→ K̃−2(A)→ K̃−1(X,A)→ K̃−1(X)→ K̃−1(A)→ K̃0(X,A)→ K̃0(X)→ K̃0(A) (9.2)

Now by the product theorem we have that K̃−2(X) is isomorphic to K̃0(X) by multiplying every element in K̃0(X) by β.

This makes it reasonable by setting K̃2i(X) = K̃(X) and K̃2i+1(X) = K̃(SX). Then we have the following exact sequence

of groups:

K̃0(X,A) K̃0(X) K̃0(A)

K̃1(X,A) K̃1(X) K̃1(A)

Now we can define a product between K̃i(X) ⊗ K̃j(Y ) → K̃i+j(X ∧ Y ). We have an external product on K̃(X) ⊗ K̃(Y )

which goes to K̃(X ∧ Y ). Then if we replace X by SiX and Y by SjY we have our product. By our above statement we

can define K̃∗(X) to be K̃0(X)⊕ K̃−1(X) without losing any information. Hence we have a product of the form

K̃∗(X)⊗ K̃∗(Y )→ K̃∗(X ∧ Y )

We can also define a relative form of this product:

K̃∗(X,A)⊗ K̃∗(Y,B)→ K̃∗(X × Y,X ×B ∪A× Y )

We define this product by replacing K̃i(X/A) by K̃(Σi(X/A). Since X/A∧Y/B = (X×Y )/(X×B ∪A×Y ) we can replace

this in the definition of K̃i+j(X/A ∧ Y/B) and get K̃i+j(X × Y,X ×B ∪A× Y )

We can now compose the product K̃∗(X)⊗ K̃∗(X) → K̃∗(X ∧X) with the map K̃∗(X ∧X)K̃∗(X) which comes from the

map x 7→ (x, x). This gives a multiplication on K̃∗(X). This makes K̃(X)∗ into a ring, which extends the ring on K̃0(X).

Again notice that there need not be an identity, and all other axioms are satisfied.

We can also give a relative form of this product in the same way as before, K̃∗(X, a) ⊗ K̃∗(X,B) → K̃∗(X,A ∪ B) which

comes from the diagonal map X/(A ∪B)→ X/A ∧X/B.

Proposition 66. Multiplication in K̃∗(X) is commutative up to a sign: αβ = (−1)ijβα for all α ∈ K̃i(X) and β ∈ K̃j(X).
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Proof. The product is as we have just seen the composition

K̃(Si ∧X)⊗ K̃(Sj ∧X)→ K̃(Si ∧ Sj ∧X ∧X)→ K̃(Si ∧ Sj ∧X) (9.3)

where the first map is the external product and the second map is induced by the diagonal map. If we replace αβ by βα

the factors in the first term K̃(Si ∧X)⊗ K̃(Sj ∧X) switch. This corresponds to switching the Si and the Sj factors in the

second term, and also in the third therm. If we view Si ∧ Sj as i + j wedges of S1, then switching Si and Sj is the same

as ij times switching two adjacent circles. So all we need to show is that if we switch two adjacent factors we get a −1 sign

and then we have proven that αβ = (−1)ijβα.

If we transpose the two factors of S1 ∧ S1. it is equivalent to reflecting S2 across an equator, since the smash product of

two S1 is homotopic to S2, and if we switch them the homotopy reflects S2 across its equator. Since reflecting across the

equator of S2 is the same as reversing the direction in which we do a suspension, since S2 = SS1. Hence all we need to do

is show that reversing the two ends of a suspension SY induces multiplication by −1 in K̃(SY ). We can view K̃(SY ) as

[Y, U ], where U is the infinite unitary group, we see that switching ends of SY corresponds to the map U → U sending a

matrix to its inverse. The group operation induced by this map is the same as the operation induced by the product in U .

Hence we see that reversing the end points of a suspension gives rise to a factor −1

We will state the following result without prove for completeness:

Proposition 67. The following sequence is an exact sequence of K̃∗ modules with maps homomorphisms of K̃∗ modules:

K̃∗(X,A) K̃0(X)

K̃∗(A)

We will now show how to create unreduced versions of the group K̃(X). We define Kn(X) to be K̃n(X+, where X is just

X with a disjoint extra point called + adjoined. For n = 0 this is consistent with the established relations between K̃(X)

and K(X) since K0(X) = K̃0(X+) = K̃(X+) = ker(K(X+) → K(+)) = K(X). When n = 1 this yields K1(X) = K̃1(X)

since S(X+) = SX ∨ S1 and K̃(SX ∨ S1) ≈ K̃(SX)⊕ K̃(S1) = K̃(SX). Here we used K̃(S1) = 0. For a pair (X,A) with

A nonempty we define Kn(X,A) = K̃n(X,A) and the six term exact sequence which we derived at the beginning of this

chapter is again valid. If A is empty then the statement remains true if we consider X/∅ = X+.

We now work on creating an product, the idea is again the same. Since X+ ∧ Y+ = (X × Y )+ the external product

K̃∗(X)⊗ K̃∗(Y )→ K̃∗(X ∧ Y ) gives a product K∗(X)⊗K∗(Y )→ K∗(X × Y ). If we then again take Y = X and compose

with the diagonal map we get a product which makes K∗(X) into a ring.

We can do the same for the relative productKi(X,A)⊗Kj(Y,B)→ Ki+j(X×Y,X×B∪A×Y ) defined as the external product

K̃(Σi(X/A))⊗ K̃(Σj(Y/B))→ K̃(Σi+j(X/A ∧ Y/B)) using the same identification as before: (X × Y )/(X ×B ∪A× Y ) =

X/A ∧ Y/B. Again this works when A = ∅ since we interpret X/∅ as X+ and similarly for (Y,B). Via the diagonal map

we also obtain a product Ki(X,A) ⊗Kj(X,B) → Ki+j(X,A ∪ B). With these definitions the preceding propositions also

become true for K groups.
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Chapter 10

Sn is an H-space iff n = 0, 1, 3, 7

Definition 27. A Hopf space, H-space in short, is a topological space X with a multiplication map m : X ×X → X which

is continuous and there exists an identity e such that m(e, x) = m(x, e) = x∀x ∈ X.

Lemma 68. If Rn is a division algebra, or Sn−1 is parallelizable, then Sn−1 is an H-space.

Proof. If we have a division algebra structure on Rn with two sides identity, an H-space structure on Sn−1 is given by

(x, y) 7→ xy
|xy| , which is well defined since there are no zero divisors in a division algebra, hence xy 6= 0 and |.| is a norm thus

|xy| 6= 0.

Now suppose Sn−1 is parallelizable, with tangent vector fields v1, .., vn−1 which are linearly independent at each point of

Sn−1. Then at each x we can apply the gram Schmidt process to make the vectors x, v1(x), ..., vn−1(x) orthonormal. Since

these vectors at e1 are non zero, we can deform them to become the basis vectors e1, ..en by deforming vector fields near e1

and possibly changing the orientation of the vector field by changing sign of en−1. Then we find for each x an αx which is

a matrix which obeys the following relations: αxα
T
x = αTxαx = 1 and having determinant 1. We define αx to be the map

which sends the standard basis vectors to x, v1(x), .., vn−1(x). This is an isometry on Rn and hence the map (x, y)→ αx(y)

defines an H space structure on Sn−1. We need to check that (e, y) = y and (x, e) = x. We note that on the point e αe is

the identity map, and αx(e) = x, since e is the first basis vector.

10.1 H-spaces have Hopf invariant ±1

We begin with a list of easy consequences from earlier statements which we will need later on.

Corollary 69. K̃(Sn) is Z if n is even and 0 if n is odd, and the generator for K̃(S2k) is the k − fold external product

(H − 1) ∗ ... ∗ (H − 1). Multiplication in K̃(S2k) is trivial, since it is the k− fold tensor product of K̃(S2), which has trivial

multiplication.

Corollary 70. The external product K̃(S2k)⊗K̃(X)→ K̃(S2k∧X) is an isomorphism since it is an iterate of the periodicity

isomorphism.

Corollary 71. The external product K(S2k) ⊗ K(X) → K(S2k × X) is an isomorphism. This follows from the previous

corollary and proof that there is a equivalence between the reduced and unreduced form of the Bott periodicity. Since the

external product is a ring isomorphism, the isomorphism K̃(S2k ∧ X) ≈ K̃(S2k) ⊗ K̃(X) is a ring isomorphism as well.

Then because K(S2k) can be described by Z(α)/(α2) we can deduce that K(S2k×K2l) is Z(α, β)/(α2, β2) where α and β are

the pullbacks of generators of K̃(S2k) and K̃(S2l) under projections of S2k × S2l onto its factors. Thus we find a basis for

K(S2k × S2l) namely {1, α, β, αβ).
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Notice that the smash product of any topological space X with Sn is homotopic to the n-reduced suspension of X : ΣnX

which in turn is homotopic to SnX.

Suppose S2k is a H-space for k > 0. Then µ : S2k × S2k → S2k is its H-space multiplication. The induced homomorphism

of rings then has the form Z(γ)/(γ2) → Z[α, β]/(α2, β2). Then what is µ(γ)? If we take i the inclusion onto the subspace

S2k×{e} then i sends α to γ, hence the coefficient of α of µ∗(γ) must be one. The same holds for β if we take i the projection

onto the subspace {e} × S2k.

Then what is µ∗(γ)2. Since µ∗ is a homomorphism µ∗(γ)2 = µ∗(γ2) = µ∗(0) = 0. But µ∗(γ) = α+β+mαβ for some m ∈ Z.

If we compute this we get µ∗(γ)2 = (α+β+mαβ)2 = 2αβ. This is not zero since α and β are not zero, nor is their product.

This leads to a contradiction. Hence S2k cannot be an H-space.

Now we need to show that Sn−1 cannot be an H space for n even and unequal to 2, 4, 8. We start by constructing a map

ĝ : S2n−1 → Sn for every map g : Sn−1 × Sn−1 → Sn−1.

We regard S2n−1 as the union of two opens: ∂Dn ×Dn ∪Dn × ∂Dn = ∂(Dn ×Dn).

We take Sn as the union of two discs Dn with their boundary identified. Then we define ĝ on Dn
+ = |y|g(x, y/|y|) and on Dn

−

ĝ(x, y) = |x|g(x/|x|, y). Note that ĝ is defined on the boundary as |x|g(x/|x|, y) = g(x, y) = |y|g(x, y/|y|) since |x| = |y| = 1.

When |y| or |x| go to zero, we notice that since g is bounded, ĝ goes to zero. ĝ agrees with g on Sn−1 × Sn−1.

When we have a map f : S4n−1 → S2n, we define Cf be S2n with a cell e4n attached by f . The quotient Cf/S
2n is S4n,

and K̃1(S4n) = K̃1(S2n) = K̃(S2n+1) = 0. Therefore the exact sequence of the pair (Cf , S
2n becomes

0→ K̃(S4n)→ K̃(Cf )→ K̃(S2n)→ 0 (10.1)

Let α ∈ K̃(Cf ) be the image of the generator of 2n times the exterior product of H − 1. Thus ∗2n(H − 1). Let β map to

∗n(H − 1), the generator of K̃(S2n). Then β2 maps to 0 in K̃(S2n) since every square in K̃(S2n) is zero. By exactness we

have β2 = hα for some integer h. This h is called the Hopf invariant of f .

h is well defined since β is unique up to addition of a factor of α, and (β +mα)2 = β2 + 2mαβ since α2. And αβ = 0 since

α maps to 0 in K̃(S2n), therefore αβ maps to 0. Therefore αβ = kα for some integer k. Multiply the equation kα = αβ on

the right by β we have kαβ = αβ2 = αhα = hα2 and this is zero since α2 = 0. Thus kαβ = 0. After we divide by k we see

that αβ = 0.

Lemma 72. If g : S2n−1 × S2n−1 → S2n−1 is a H-space multiplication, then the associated map g̃ : S4n−1 → S2n has Hopf

invariant ±1.

Proof. We begin by constructing a commutative diagram. Let f = ĝ. By the way we defined f it is natural to see the

characteristic map Φ of the 4n-cell of Cf as a map of the pair (D2n×D2n, ∂(D2n×D2n)) to the pair (Cf , S
2n). This induces

a map Φ∗ in K-theory. Also notice the isomorphism between K̃(D2n × {e}, ∂D2n × {e}) ⊗ K̃({e} ×D2n, {e} × ∂D2n) and

K̃(D2n ×D2n, ∂D2n ×D2n)⊗ K̃(D2n ×D2n, D2n × ∂D2n), since everything in the second respectively first D2n factor gets

collapsed to zero.
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K̃(Cf )⊗ K̃(Cf ) K̃(Cf )

K̃(Cf , D
2n
− )⊗ K̃(Cf , D

2n
− K̃(Cf , S

2n)

K̃(D2n ×D2n, ∂D2n ×D2n)⊗ K̃(D2n ×D2n, D2n × ∂D2n) K̃(D2n ×D2n, ∂(D2n ×D2n))

K̃(D2n × {e}, ∂D2n × {e})⊗ K̃({e} ×D2n, {e} × ∂D2n)

≈

Φ∗ ≈Φ∗ ⊗ φ∗

≈ ≈

The horizontal maps are the product maps. The diagonal map is the external product K̃(S2n)⊗ K̃(S2n) → K̃(S4n) which

is an isomorphism by iteration of the Bott periodicity isomorphism.

Since f is a H space multiplication, Φ restricts to a homeomorphism from D2n{e} onto D2n
− and from {e} ×D2n onto D2n

+ .

Now we take an element β⊗β in the upper left group in the diagram. This gets mapped to a generator in the bottom row of

the diagram, since β restricts to a generator of K̃(S2n) by definition of β. Thus β⊗β gets send to a generator of K̃(Cf , S
2n).

If we look at the horizontal map in the first row, this is equal to the vertical map from K̃(Cf , S
2n) after going through the

diagram. Since this diagram commutes, β ⊗ β gets send to ±α where α is the image of a generator of K̃(Cf , S
2n). Thus we

have β2 = ±α. Thus the Hopf invariant of f is ±1 since this is the coefficient in front of α when we look at the image of

β2.

Theorem 73. There exists a map f : S4n−1 → S2n of Hopf invariant ±1 only when n = 1, 2, 4.

In the next section we will show the exists of so called Adams operations. They have the following properties

• φkf∗ = f∗φk for all maps f : X → Y .

• φK(L) = Lk if L is a line bundle

• φk ◦ φl = φkl

• φp(x) = xp mod p for p prime.

Then there is an extra property which states that that φk : K̃(S2n)→ K̃(S2n) is multiplication by kn. This is a proposition

we will prove in the next chapter.

Proof. We have α, β ∈ K̃(Cf ). By our previous prop φk(α) = k2nα since α is the image of a generator of K̃(S4n). Similarly,

φk(β) = knβ + µkα for some µk ∈ Z. Now we use commutativity of φkφl = φlφk. Therefore we have

φkφl = φk(lnβ + µlα) = knlnβ + (k2nµl + lnµk)α (10.2)

and

φlφk = φl(knβ + µkα) = lnknβ + (l2nµk + knµl)α (10.3)

Therefore we have the following relation

k2nµl + lnµk = l2nµk + knµl (10.4)

This is equal to

k2n − kn)µl = (l2n − ln)µk (10.5)
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By property 4 of φ2 we have φ2(β) = β2 mod 2. Since β2 = hα with the Hopf invariant of f . This gives φ2(β) = 2nβ+µ2α.

Thus µ2 = h mod 2. If we assume h = ±1 then µ2 is odd. If f is H-space multiplication µ2 must be odd. Then we have

(22n − 2n)µ3 = (32n − 3n)µ2 = 2n(2n − 1)µ3 = 3n(3n − 1)µ2. Thus 2n divides 3n(3n − 1)µ2. Since 3n and µ2 are odd, 2n

must divide 3n − 1. By the next proposition 2n divides 3n − 1 iff n = 1, 2, 4.

Proposition 74. 2n divides 3n − 1 iff n = 1, 2, 4.

Proof. Write n = 2lm with m odd. We will find the highest power of 2 dividing 3n − 1 by induction on l.

If l = 0 we have modulo 4 3n − 1 ≡ (−1)m − 1 ≡ 2 since m is odd.

if l = 1 we have 32m − 1 ≡ 1− 1 ≡ 0 modulo 4. Thus we have divisors. 32m − 1 = (3m − 1)(3m + 1). The highest power of 2

dividing the first factor is 2 as we just showed. The highest power of 2 dividing the second factor is 4 since 3m + 1 ≡ 4 if we

look modulo 8, since even powers of 3 are equal to 1 mod 8 and then odd powers are equal to 3. We add one and get 4.

Now if we go from l to l+ 1 and using l ≥ 1, or from n to 2n with n even since n = 2lm, we write 32n− 1 = (3n− 1)(3n + 1).

Then 3n + 1 ≡ 2 modulo 4 since n is even and even powers of three are equivalent to 1. Thus the highest power of 2 dividing

3n + 1 is 2. Thus the highest power of 2 dividing 3n − 1 is twice the highest power of 2 dividing 3n − 1.

Notice that the highest power of 2 dividing 3n − 1 is bounded by 2l+2.

Now suppose 2n divides 3n − 1 we see that the n is less or equal to l + 2 since the highest power of 2 dividing 3n − 1 is

bounded by l + 2. Thus 2l ≤ 2lm = n ≤ l + 2. Thus l ≤ 2, and hence n ≤ 4.

This leaves us to check the cases of n = 1, 2, 3, 4.

• n = 1: 2 divides 2. Factor is 1.

• n = 2: 4 divides 8. Factor is 2.

• n = 3: 8 does not divide 26. 26 = 3 ∗ 8 + 2.

• n = 4: 16 divides 80. The factor is 5.

This proves the statement.

10.2 Adams Operations

Theorem 75. There exists ring homomorphisms φK : K(X) → K(X) defined for all compact Hausdorff spaces X and all

integers k ≥ 0 which satisfy

• φkf∗ = f∗φk for all maps f : X → Y .

• φK(L) = Lk if L is a line bundle

• φk ◦ φl = φkl

• φp(x) = xp mod p for p prime.

These are called Adams operations.

Proof. We will use exterior powers λk(E). Exterior powers have the following properties on vector bundles:

• λk(E1 ⊕ E2) = ⊕i(λi(E1)⊗ λk−i(E2)).

• λ0(E) = 1

• λ1(E) = E
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• λk(E) = 0 if k is greater than the maximum dimension of the fibers of E.

We will first characterize what we need to do:

If we use property 1 and 2 of φ we see that we want φk of a direct sum of line bundles⊕iLi results in a sum
∑
i φ

K(Li) =
∑
i L

k
i ,

since we can use the projection map.

Now we claim that there exists a polynomial sk with integer coefficients such that LK1 + · · ·+ LKn = Sk(λ1(E), · · · , λk(E)).

We define φK(E) = sk(λ1(E), · · · , λk(E)).

The idea for construction these polynomials is using interpolation polynomials.

The first step is to show that exterior powers λi(E) define a polynomial λt(E) =
∑
i(λ

i(E)ti ∈ K(X)[t]. Since λk(E) = 0

if K is greater than the dimension of the fibers of E this is a finite sum, and hence a polynomial. By property 1 the direct

sum E1 ⊕ E2 yields λt(E1 ⊕ E2) = λt(E1)λt(E2) since ⊗ is the multiplication operator in K(X). Now let E = L1 ⊕ · · ·Ln.

Then λt(E) =
∏
i λt(Li). Then this is

∏
i(1 + Li +

∑
k≥2 λ

k(Li)) =
∏
i(1 + Li). The coefficient λj(E) of tj in λt(E) is the

j-th elementary symmetric function σj of the Li, which is the sum of all products of j distinct Li. This yields us

λj(E) = σj(L1, · · · , Ln) (10.6)

If we now substitute a Li for a variable ti we get (1 + t1) · · · (1 + tn) = 1 + σ1 + · · ·+ σn. Then we can define the newton

polynomial sk(σ1, · · · , σn) = tk1 + · · ·+ tkn. If we define φk(E) as stated we get

φK(E) = Sk(λ1(E), · · · , λk(E)) (10.7)

= sk(σ1(L1, · · · , Ln), · · · , σk(L1, · · · , Lk)) (10.8)

= Lk1 + · · ·+ LKn (10.9)

Our next goal is verifying that this obeys all our properties for φ.

For the first property it is just filling in, it follows since λ(f∗E) = f∗(λ(E)).

Now the splitting principle tells us that given a vector bundle E → X with X compact Hausdorff, there is a compact

Hausdorff space F (E) and a map p : F (E) → X such that the induced map p∗ : K∗(X) → K∗(F (E)) is injective and it

splits as a sum of line bundles.

This allows us to prove the additivity: We can do pullbacks on E1 and then on E2 and then we have φk(E1 ⊕ E2) =

φk(L1 ⊕ · · · ⊕ Ln) = Lk1 + · · ·+ Lkn.

Now we are going to show multiplicativity: If E is the sum of line bundles Li and E is the sum of line bundles Lj then E⊗E

is the sum of line bundles Li ⊗ Lj . Hence φK(E ⊗ E) =
∑
i,j φ

k(Li,⊗Lj) =
∑
i,j L

k
i ⊗ Lkj =

∑
i L

k
i

∑
j Lj = φk(E)φk(E).

Thus φk is multiplicative for vector bundles and thus also for elements on k(X).

Now we want to prove property 3. If we use the splitting principle and additivity we are left in the case of line bundles,

where φK(φl(L)) = Lkl = φlφk(L).

In case of property 4 we again reduce to line bundles, and for line bundles we have E = L1 + · · · + Ln then φp(E) =

Lp1 + · · ·+Lpn = (L1 + · · ·+Ln)p = Ep if we reduce everything modulo p, since the binomial coefficients will be cancelled.

We can restrict φk to be a homomorphism on K̃(X) → K̃(X) by the naturality property, since K̃(X) is the kernel

of the homomorphism K(X) → K(x0) for x0 ∈ X. For the external product K̃(X) ⊗ K̃(Y ) → K̃(X ∧ Y ) we have
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φk(α ∗ β) = φk(α) ∗ φK(β) since

φk(α ∗ β) = φk(p∗1(α)p∗2(β)) (10.10)

= φk(p∗1(α))φk(p∗2(β)) (10.11)

= p∗1φ
k(α)p∗2φ

K(β)) (10.12)

= φk(α) ∗ φk(β) (10.13)

Proposition 76. φk : K̃(S2n)→ K̃(S2n) is multiplication by k.

Proof. We will proof this by induction. Notice that we have an isomorphism by the external product K̃(S2)K̃(S2n−2) →

K̃(S2n).

Consider the case n = 1. φk is additive, thus it will suffice to show φk(α) = kα for α of K̃(S2). We take α = H − 1 for H

the canonical line bundle over S2 = CP 1. Then φk(α) = φk(H − 1) = φk(H)− φk(1) = Hk − 1.

Then we write H as 1 + α. Since αi = 0 for i > 1 we can expand the binomial terms, see that that there are everywhere αi

terms except when i < 2, thus they become zero. The coefficient for α is k, and thus we get that Hk − 1 = 1 + kα− 1 = kα.

Now the induction step. Suppose the result holds for K̃(S2n−2). We have φK(α∗β) = φK(α)∗φk(β) = kα∗kn−1β = kn(α∗β),

where α ∗ β is the generator of K̃(S2n) and hence we are done.

If we use that S7 is not a topological group, then we also know which spheres can be groups:

Corollary 77. The only n for which Sn is a topological group are 0, 1, 3

Proof. We know that Sn is a Hopf space if and only if n ∈ {0, 1, 3, 7}. If Sn is a topological group then Sn is a Hopf space.

Hence this n also shows the only possible spaces where Sn is a topological group. However S7 is not a topological group.

Hence the only n are 0, 1, 3.

Corollary 78. The only dimensions a real division algebra can have are 1, 2, 4 or 8.

Proof. This follows directly from the fact that an n-dimensional real division algebra induces a Hopf space structure on

Sn−1, and that the only n for which Sn is a Hopf space are 0, 1, 3, 7.
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