
Solutions to exercises for the course Topologie en Meetkunde 1

For a metric space (X, d), one defines Td as the collection of all sets U ⊂ X which
are open with respect to d. This defines a topology, called the topology induced by
the metric.

Exercise 1. Show that Td is a topology.

Proof. It is obvious that X and φ belong to Td. Next, assume that U, V ∈ Td. We
want to show that U ∩ V ∈ Td. If U ∩ V = φ we are done. Assume then that
x ∈ U ∩ V . By definition there exist ε1 > 0 and ε2 > 0 such that

B(x, ε1) ⊂ U

and
B(x, ε2) ⊂ V.

Define ε = min{ε1, ε2}, then
B(x, ε) ⊂ U ∩ V.

This proves that U ∩ V ∈ Td.
Now suppose that there is a family {Vα}α∈A with Vα ∈ Td, we need to prove that
U =

⋃
α∈A Vα ∈ Td. Again, if U is empty we are done. Now, take x ∈ U . Then

x ∈ Vα for some α and by definition there exists an ε > 0 such that

B(x, ε) ⊂ Vα ⊂ U,

this shows that U ∈ Td.
�

Exercise 2. Show that in a Hausdorff topological space, if a sequence has a limit,
then the limit is unique.

Proof. Let X be a Hausdorff topological space and suppose that xn → x and
xn → y. We need to prove that x = y. Suppose that x 6= y, then there are
neighborhoods Ux and Uy of x and y respectively with

Ux ∩ Uy = φ

Since xn → x there exists Nx >> 0 such that for all k > Nx, xk ∈ Ux. Similarly,
there exists Ny >> 0 such that for all k > Ny, xk ∈ Uy. Define N = max{Nx, Ny},
and one has that xN+1 ∈ Ux ∩ Uy, which is a contradiction. We conclude that
x = y. �

Exercise 3. Prove that the euclidean and the square metric induce the same topol-
ogy in Rn.

Proof. In view of Lemma 2.11 from the notes it is enough to show that given ε > 0
and x = (x1, ..., xn) ∈ Rn there exist δ1, δ2 such that:

Bd(x, δ1) ⊂ Bρ(x, ε)

and
Bρ(x, δ2) ⊂ Bd(x, ε)

Define
δ1 = ε

and
δ2 = ε/

√
n

Now suppose that y = (y1, · · · yn) ∈ Bd(x, δ1) then:

ρ(x, y) = max{|x1−y1|, · · · |xn−yn|} ≤
√

(x1 − y1)2 + · · ·+ (xn − yn)2 = d(x, y) < ε
1
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Thus, y ∈ Bρ(x, ε).
On the other hand, assume that y = (y1, · · · yn) ∈ Bρ(x, δ2), then:

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 <
√

nδ2
2 = ε

Thus, y ∈ Bd(x, ε) �

Exercise 4. Find an example of a space that satisfies the first countability axiom
but does not satisfy the second one.

Proof. Take the space R with the discrete topology. For any point x ∈ R, {{x}} is a
basis of neighborhoods for x. However, this space has no countable basis: suppose
{Uα}α∈A is a countable basis. Then for each x ∈ R there is α ∈ A such that
x ∈ Uα ⊂ {x} which implies that Uα = {x}. So the basis cannot be countable. �

Exercise 5. Consider two topological spaces (X, TX), (Y, TY ), A ⊂ X endowed
with the induced topology TA, B ⊂ Y endowed with the induced topology TB. Show
that

• If B is a basis for the topology TX , then B|A := {U ∩A : U ∈ B} is a basis
for the induced topology on A.

• The restriction of the product topology TX × TY to A × B coincides with
the product topology TA × TB.

Proof. For the first part we need to show that given an open set U of A and a point
x ∈ U there exist W ∈ B|A with:

x ∈ W ⊂ U

Since U is open in A, there exists U ′ open in X such that U ′ ⋂ A = U . Since B is
a basis for the topology of X, there exists W ′ ∈ B such that

x ∈ W ′ ⊂ U ′.

Then one can choose W = W ′ ∩A. This shows that B|A is a basis for TA.

Let us now look at the second part: Let B′ be a basis for the topology of Y . It
is enough to show that

B|A × B′|B
is a basis for TA × TB and for (TX × TY )A×B . Let us first see that B|A × B′|B is a
basis for TA × TB . From Part (a) we know that B|A and B′|B are basis for TA and
TB respectively. Then we know from Lemma 3.2 in the notes that B|A × B′|B is a
basis for TA × TB .
Now,

B|A × B′|B = (B× B′)|A⊗B

so, by the first part of this exercise (applied to the space X × Y ) it follows that
B|A × B′|B is a basis for (TX × TY )A×B . �

Exercise 6. (ex. 6, pp. 101) Let A and B denote subsets of a topological space X.
Prove that

(a) If A ⊂ B then A ⊂ B.
(b) A ∪B = A ∪B.

Proof. We will present to solutions to this exercise, the first one is more ”formal”
and the second one may be more ”natural”.
First solution:
Part(a) It is clear that

A ⊂ B ⊂ B
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now,
A =

⋂
D∈D

D

where D is the set of all closed subsets of X that contain A. Then since B ∈ D, it
follows that A ⊂ B.
Part(b) Since

A ⊂ A ∪B

and
B ⊂ A ∪B

then from part (a) it follows that A ⊂ A ∪B and B ⊂ A ∪B, hence

A ∪B ⊂ A ∪B

On the other hand:
A ∪B ⊂ A ∪B

so, again by part (a)
A ∪B ⊂ A ∪B = A ∪B

Second solution: Here we use the characterization of points in the closure of a
subset A given in Lemma 3.16:

x ∈ A iff Ux ∩A 6= φ for all Ux neighborhood of x
Part(a) Suppose that x ∈ A and let Ux be a neighborhood of x. Then

Ux ∩A ⊂ Ux ∩B

and since Ux ∩A is nonempty, so is Ux ∩B. We conclude that x ∈ B.
Part(b) We argue by contradiction: Take x ∈ A ∪B and assume that

x /∈ A

and
x /∈ B

Then, there exist neighborhoods U, V of x such that

U ∩A = φ

and
U ∩B = φ

Define W := U ∩ V , then W is neighborhood of x and

W ∩ (A ∪B) = (W ∩A) ∪ (W ∩ V ) = φ

this is a contradiction because x ∈ A ∪B. We conclude that x belongs to A ∪B.
�


