Solutions to exercises for the course Topologie en Meetkunde 1

For a metric space (X, d) , one defines \mathcal{T}_d as the collection of all sets $U \subset X$ which are open with respect to d. This defines a topology, called the topology induced by the metric.

Exercise 1. Show that \mathcal{T}_d is a topology.

Proof. It is obvious that X and ϕ belong to \mathcal{T}_d . Next, assume that $U, V \in \mathcal{T}_d$. We want to show that $U \cap V \in \mathcal{T}_d$. If $U \cap V = \phi$ we are done. Assume then that $x \in U \cap V$. By definition there exist $\epsilon_1 > 0$ and $\epsilon_2 > 0$ such that

and

 $B(x, \epsilon_2) \subset V$.

 $B(x, \epsilon_1) \subset U$

Define $\epsilon = min{\epsilon_1, \epsilon_2}$, then

$$
B(x,\epsilon) \subset U \cap V.
$$

This proves that $U \cap V \in \mathcal{T}_d$.

Now suppose that there is a family $\{V_\alpha\}_{\alpha \in \mathcal{A}}$ with $V_\alpha \in \mathcal{T}_d$, we need to prove that $U = \bigcup_{\alpha \in \mathcal{A}} V_{\alpha} \in \mathcal{T}_d$. Again, if U is empty we are done. Now, take $x \in U$. Then $x \in V_\alpha$ for some α and by definition there exists an $\epsilon > 0$ such that

$$
B(x,\epsilon) \subset V_{\alpha} \subset U,
$$

this shows that $U \in \mathcal{T}_d$.

Exercise 2. Show that in a Hausdorff topological space, if a sequence has a limit, then the limit is unique.

Proof. Let X be a Hausdorff topological space and suppose that $x_n \to x$ and $x_n \to y$. We need to prove that $x = y$. Suppose that $x \neq y$, then there are neighborhoods U_x and U_y of x and y respectively with

$$
U_x \cap U_y = \phi
$$

Since $x_n \to x$ there exists $N_x >> 0$ such that for all $k > N_x$, $x_k \in U_x$. Similarly, there exists $N_y >> 0$ such that for all $k > N_y$, $x_k \in U_y$. Define $N = max\{N_x, N_y\}$, and one has that $x_{N+1} \in U_x \cap U_y$, which is a contradiction. We conclude that $x = y$.

Exercise 3. Prove that the euclidean and the square metric induce the same topology in \mathbb{R}^n .

Proof. In view of Lemma 2.11 from the notes it is enough to show that given $\epsilon > 0$ and $x = (x_1, ..., x_n) \in \mathbb{R}^n$ there exist δ_1, δ_2 such that:

$$
B_d(x, \delta_1) \subset B_{\rho}(x, \epsilon)
$$

and

$$
B_{\rho}(x,\delta_2) \subset B_d(x,\epsilon)
$$

Define

$$
\delta_1=\epsilon
$$

and

$$
\delta_2 = \epsilon/\sqrt{n}
$$

Now suppose that $y = (y_1, \dots, y_n) \in B_d(x, \delta_1)$ then:

$$
\rho(x, y) = max\{|x_1 - y_1|, \dots |x_n - y_n|\} \le \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} = d(x, y) < \epsilon
$$

$$
\Box
$$

Thus, $y \in B_{\rho}(x, \epsilon)$.

On the other hand, assume that $y = (y_1, \dots, y_n) \in B_\rho(x, \delta_2)$, then:

$$
d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} < \sqrt{n\delta_2^2} = \epsilon
$$

Thus, $y \in B_d(x, \epsilon)$

Exercise 4. Find an example of a space that satisfies the first countability axiom but does not satisfy the second one.

Proof. Take the space R with the discrete topology. For any point $x \in \mathbb{R}, \{\{x\}\}\$ is a basis of neighborhoods for x. However, this space has no countable basis: suppose ${U_\alpha}_{\alpha\in\mathcal{A}}$ is a countable basis. Then for each $x \in \mathbb{R}$ there is $\alpha \in \mathcal{A}$ such that $x \in U_\alpha \subset \{x\}$ which implies that $U_\alpha = \{x\}$. So the basis cannot be countable. \Box

Exercise 5. Consider two topological spaces (X, T_X) , (Y, T_Y) , $A \subset X$ endowed with the induced topology T_A , $B \subset Y$ endowed with the induced topology T_B . Show that

- If $\mathbb B$ is a basis for the topology T_X , then $\mathbb B|_A := \{U \cap A : U \in \mathbb B\}$ is a basis for the induced topology on A.
- The restriction of the product topology $T_X \times T_Y$ to $A \times B$ coincides with the product topology $T_A \times T_B$.

Proof. For the first part we need to show that given an open set U of A and a point $x \in U$ there exist $W \in \mathbb{B}|_A$ with:

$$
x\in W\subset U
$$

Since U is open in A, there exists U' open in X such that $U' \bigcap A = U$. Since B is a basis for the topology of X, there exists $W' \in \mathbb{B}$ such that

$$
x\in W'\subset U'.
$$

Then one can choose $W = W' \cap A$. This shows that $\mathbb{B}|_A$ is a basis for T_A .

Let us now look at the second part: Let \mathbb{B}' be a basis for the topology of Y. It is enough to show that

$$
\mathbb{B}|_A\times\mathbb{B}'|_B
$$

is a basis for $T_A \times T_B$ and for $(T_X \times T_Y)_{A \times B}$. Let us first see that $\mathbb{B}|_A \times \mathbb{B}'|_B$ is a basis for $T_A \times T_B$. From Part (a) we know that $\mathbb{B}|_A$ and $\mathbb{B}'|_B$ are basis for T_A and T_B respectively. Then we know from Lemma 3.2 in the notes that $\mathbb{B}|_A \times \mathbb{B}'|_B$ is a basis for $T_A \times T_B$.

Now,

$$
\mathbb{B}|_A\times\mathbb{B}'|_B=(\mathbb{B}\times\mathbb{B}')|_{A\otimes B}
$$

so, by the first part of this exercise (applied to the space $X \times Y$) it follows that $\mathbb{B}|_A \times \mathbb{B}'|_B$ is a basis for $(T_X \times T_Y)_{A \times B}$.

Exercise 6. (ex. 6, pp. 101) Let A and B denote subsets of a topological space X. Prove that

(a) If $A \subset B$ then $\overline{A} \subset \overline{B}$. (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. We will present to solutions to this exercise, the first one is more "formal" and the second one may be more "natural".

First solution:

Part(a) It is clear that

 $A \subset B \subset \overline{B}$

now,

$$
\overline{A} = \bigcap_{D \in \mathbb{D}} D
$$

where $\mathbb D$ is the set of all closed subsets of X that contain A. Then since $\overline{B} \in \mathbb D$, it follows that $\overline{A} \subset \overline{B}$.

Part(b) Since

and

$$
A\subset A\cup B
$$

 $B \subset A \cup B$ then from part (a) it follows that $\overline{A} \subset \overline{A \cup B}$ and $\overline{B} \subset \overline{A \cup B}$, hence $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$

On the other hand:

$$
A\cup B\subset \overline{A}\cup \overline{B}
$$

so, again by part (a)

$$
\overline{A \cup B} \subset \overline{A} \cup \overline{B} = \overline{A} \cup \overline{B}
$$

Second solution: Here we use the characterization of points in the closure of a subset A given in Lemma 3.16:

 $x \in \overline{A}$ iff $U_x \cap A \neq \emptyset$ for all U_x neighborhood of x Part(a) Suppose that $x \in \overline{A}$ and let U_x be a neighborhood of x. Then $U_x \cap A \subset U_x \cap B$

and since $U_x \cap A$ is nonempty, so is $U_x \cap B$. We conclude that $x \in \overline{B}$. Part(b) We argue by contradiction: Take $x \in \overline{A \cup B}$ and assume that

$$
x\notin\overline{A}
$$

 $x \notin \overline{B}$

and

Then, there exist neighborhoods U, V of x such that $U \cap A = \phi$

and

$$
U \cap B = \phi
$$

Define $W := U \cap V$, then W is neighborhood of x and

$$
W \cap (A \cup B) = (W \cap A) \cup (W \cap V) = \phi
$$

this is a contradiction because $x \in \overline{A \cup B}$. We conclude that x belongs to $\overline{A} \cup \overline{B}$.

 \Box