Solutions to exercises for the course Topologie en Meetkunde 1

For a metric space (X, d), one defines 7 as the collection of all sets U C X which
are open with respect to d. This defines a topology, called the topology induced by
the metric.

Exercise 1. Show that 7 is a topology.

Proof. Tt is obvious that X and ¢ belong to 7;. Next, assume that U,V € 7;. We
want to show that UNV € 7. f UNV = ¢ we are done. Assume then that
x € UNV. By definition there exist e; > 0 and e > 0 such that

B(z,e1) CU
and
B(z,e3) C V.
Define € = min{ey, €2}, then
B(z,e) CUNV.

This proves that UNV € 7.

Now suppose that there is a family {V,, }oca with V,, € 73, we need to prove that
U = Ugea Vo € Tg. Again, if U is empty we are done. Now, take x € U. Then
x € V,, for some « and by definition there exists an € > 0 such that

B(z,e) CV, CU,
this shows that U € 7y.
O

Exercise 2. Show that in a Hausdorff topological space, if a sequence has a limit,
then the limit is unique.

Proof. Let X be a Hausdorff topological space and suppose that x, — z and
T, — y. We need to prove that x = y. Suppose that x # y, then there are
neighborhoods U, and U, of x and y respectively with

U, NU, = ¢

Since x,, — x there exists N, >> 0 such that for all £ > N, x; € U,. Similarly,
there exists N, >> 0 such that for all k > Ny, z, € U,. Define N = max{N,, Ny},
and one has that zy1 € U, N Uy, which is a contradiction. We conclude that
r=1y. O

Exercise 3. Prove that the euclidean and the square metric induce the same topol-
ogy in R™.

Proof. In view of Lemma 2.11 from the notes it is enough to show that given € > 0
and z = (x1,...,x,) € R™ there exist 1, d2 such that:

Ba(z,01) C By(w,¢)

and
Bp(.’IJ, (52) - Bd(l', 6)
Define
01 =€
and

5226/\/ﬁ

Now suppose that y = (y1, - yn) € Ba(z,d1) then:

pla,y) = maz{lzi—yil, oo —yal} < V(o1 —y1)? +- + (@0 —yn)? = d(,y) <e
1
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Thus, y € B,(z,€).
On the other hand, assume that y = (y1,- - yn) € B,(x,d2), then:

d(mvy):\/(‘rl_yl)2+"'+($n_yn)2< n(?%:e
Thus, y € By(z,€) 0

Exercise 4. Find an example of a space that satisfies the first countability aziom
but does mot satisfy the second one.

Proof. Take the space R with the discrete topology. For any point x € R, {{z}} is a
basis of neighborhoods for x. However, this space has no countable basis: suppose
{Uqa}aeca is a countable basis. Then for each € R there is @ € A such that
x € U, C {z} which implies that U, = {z}. So the basis cannot be countable. O

Exercise 5. Consider two topological spaces (X,Tx), (Y,Ty), A C X endowed
with the induced topology T4, B CY endowed with the induced topology Tp. Show
that
o IfB is a basis for the topology Tx, then B|4 :={UNA:U € B} is a basis
for the induced topology on A.
e The restriction of the product topology Tx X Ty to A x B coincides with
the product topology Ta X Tg.

Proof. For the first part we need to show that given an open set U of A and a point
x € U there exist W € B|4 with:

reWcU

Since U is open in A, there exists U’ open in X such that U' (A = U. Since B is
a basis for the topology of X, there exists W’ € B such that

xeW cU'.
Then one can choose W = W’ N A. This shows that B|4 is a basis for T4.

Let us now look at the second part: Let B’ be a basis for the topology of Y. It

is enough to show that
B'A X B/|B
is a basis for Ty x Ts and for (T'x X Ty )axp. Let us first see that B|4 x B|p is a
basis for T4 x Tp. From Part (a) we know that B|4 and B'|p are basis for T4 and
Tp respectively. Then we know from Lemma 3.2 in the notes that B|4 x B|p is a
basis for T4 x Tg.
Now,
B|A X B/|B = (B X B/)|A®B

so, by the first part of this exercise (applied to the space X x Y) it follows that
B‘A XB/|B is a basis for (TX XTy)AXB. O

Exercise 6. (ex. 6, pp. 101) Let A and B denote subsets of a topological space X .
Prove that

(a) If AC B then AC B.

(b) AUB=AUB.

Proof. We will present to solutions to this exercise, the first one is more ”formal”
and the second one may be more ”"natural”.
First solution:
Part(a) It is clear that
ACBCB



now,
A= (D
DeD
where D is the set of all closed subsets of X that contain A. Then since B € D, it
follows that A C B.
Part(b) Since

ACAUB
and
BCAUB
then from part (a) it follows that A C AU B and B C AU B, hence
AUBCAUB
On the other hand:
AUBC AUB

so, again by part (a)

AUBCAUB=AUB
Second solution: Here we use the characterization of points in the closure of a
subset A given in Lemma 3.16:

x € Aiff U, N A # ¢ for all U, neighborhood of x
Part(a) Suppose that z € A and let U, be a neighborhood of x. Then

U, NnACU;,NB

and since U, N A is nonempty, so is U, N B. We conclude that 2 € B.
Part(b) We argue by contradiction: Take z € AU B and assume that

r¢ A
and -
x ¢ B
Then, there exist neighborhoods U, V' of x such that
UNA=¢
and
UNB=¢

Define W := U NV, then W is neighborhood of x and
WN(AUB)=WnNnAUWNV)=¢

this is a contradiction because x € AU B. We conclude that 2 belongs to AU B.
O



