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1. Topological spaces

We start with the abstract definition of topological spaces.

Definition 2.1. A topology on a set X is a collection T of subsets of X, satisfying the
following axioms:

(T1) ∅ and X belong to T .
(T2) The intersection of any two sets from T is again in T .
(T3) The union of any collection of sets of T is again in T .

A topological space is a pair (X,T ) consisting of a set X and a topology T on X.
A subset U ⊂ X is called open in the topological space (X,T ) if it belongs to T .
A subset A ⊂ X is called closed in the topological space (X,T ) if X −A is open.
Given two topologies T and T ′ on X, we say that T ′ is larger (or finer) than T , or that T is

smaller (or coarser) than T ′, if T ⊂ T ′.

Exercise 2.1. Show that, in a topological space (X,T ), any finite intersection of open sets
is open: for each k ≥ 1 integer, U1, . . . , Uk ∈ T , one must have U1 ∩ . . . ∩ Uk ∈ T . Would it
be reasonable to require that arbitrary intersections of opens sets is open? What can you say
about intersections or union of closed subsets of (X,T )?

Terminology/Conventions 2.2. When referring to a topological space (X,T ), when no
confusion may arise, we will simply say that “X is a topological space”. Also, the opens in
(X,T ) will simply be called “opens in X” (and similarly for “closed”).

In other words, we will not mention T all the time; its presence is implicit in the statement
“X is a topological space”, which allows us to talk about “opens in X”.

Example 2.3. ( Extreme topologies) On any set X we can define the following:

1. The trivial topology on X, Ttriv: the topology whose open sets are only ∅ and X.
2. The discrete topology on X, Tdis: the topology whose open sets are all subsets of X.
3. The co-finite topology on X, Tcf: the topology whose open sets are the empty set and

complements of finite subsets of X.
4. The co-countable topology on X, Tcc: the topology whose open sets are the empty set

and complements of subsets of X which are at most countable.

An important class of examples comes from metrics.

Proposition 2.4. For any metric space (X, d), the family Td of opens in X with respect to
d is a topology on X. Moreover, this is the smallest topology on X with the property that it
contains all the balls

Bd(x; r) = {y ∈ X : d(x, y) < r} (x ∈ X, r > 0).

Proof. Axiom (T1) is immediate. To prove (T2), let U, V ∈ Td and we want to prove that
U ∩ V ∈ Td. We have to show that, for any point x ∈ U ∩ V , there exists r > 0 such that
Bd(x, r) ⊂ U ∩ V . So, let x ∈ U ∩ V . That means that x ∈ U and x ∈ V . Since U, V ∈ Td, we
find r1 > 0 and r2 > 0 such that

Bd(x, r1) ⊂ U,Bd(x, r2) ⊂ V.

Then r = min{r1, r2}, has the desired property: Bd(x, r) ⊂ U ∩ V .
To prove axiom (T3), let {Ui : i ∈ I} be a family of elements Ui ∈ Td (indexed by a set I)

and we want to prove that U := ∪i∈IUi ∈ Td. We have to show that, for any point x ∈ U , there
exists r > 0 such that Bd(x, r) ⊂ U . So, let x ∈ U . Then x ∈ Ui for some i ∈ I; since Ui ∈ Td,
we find r > 0 such that Bd(x, r) ⊂ Ui. Since Ui ⊂ U , r has the desired property Bd(x, r) ⊂ U .



1. TOPOLOGICAL SPACES 29

Assume now that T is a topology on X which contains all the balls and we prove that Td ⊂ T .
Let U ∈ Td and we prove U ∈ T . From the definition of Td, for each x ∈ U we find rx > 0 with

{x} ⊂ B(x; rx) ⊂ U.

Taking the union over all x ∈ U we deduce that

U ⊂ ∪x∈UB(x; rx) ⊂ U.

Hence U = ∪xB(x, rx) and then, since all the balls belong to T , U belongs itself to T .

Definition 2.5. A topological space (X,T ) is called metrizable if there exists a metric d on
X such that T = Td.

Remark 2.6. And here is one of the important problems in topology:

which topological spaces are metrizable?

More exactly, one would like to find the special properties that a topology must have so that it
is induced by a metric. Such properties will be discussed throughout the entire course.

The most basic metric is the Euclidean metric on Rn which was behind the entire discussion of
Chapter 1. Also, the Euclidean metric can be (and was) used as a metric on any subset A ⊂ Rn.

Terminology/Conventions 2.7. The topology on Rn induced by the Euclidean metric is
called the Euclidean topology on Rn. Whenever we talk about “the space Rn” without specifying
the topology, we allways mean the Euclidean topology. Similarly for subsets A ⊂ Rn.

For other examples of topologies on R you should look at Exercise 2.19. General methods to
construct topologies will be discussed in the next chapter. Here we mention:

Example 2.8. (subspace topology) In general, given a topological space (X,T ), any subset
A ⊂ X inherits a topology on its own. More precisely, one defines the restriction of T to A, or
the topology induced by T on A (or simply the induced topology on A) as:

T |A := {B ⊂ A : B = U ∩A for some U ∈ T }.
Exercise 2.2. Show that T |A is indeed a topology.

Terminology/Conventions 2.9. Given a topological space (X,T ), whenever we deal with
a subset A ⊂ X without specifying the topology on it, we allways consider A endowed with T |A.

To remove ambiguities, you should look at Exercise 2.23.

Definition 2.10. Given a topological space (X,T ) and A,B ⊂ X, we say that B is open in A
if B ⊂ A and B is an open in the topological space (A,T |A). Similarly, we say that B is
closed in A if B ⊂ A and B is closed in the topological space (A,T |A).

Exercise 2.3. The interval [0, 1) ⊂ R:

(i) is neither open nor closed in (−1, 2).
(ii) is open in [0,∞) but it is not closed in [0,∞).
(iii) is closed in (−1, 1) but it is not open in (−1, 1).
(iv) it is both open and closed in (−∞,−1) ∪ [0, 1) ∪ (2,∞).
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2. Continuous functions; homeomorphisms

Definition 2.11. Given two topological spaces (X,TX) and (Y,TY ), and a function f : X →
Y , we say that f is continuous (with respect to the topologies TX and TY ) if:

f−1(U) ∈ TX ∀ U ∈ TY .

Exercise 2.4. Show that a map f : X → Y between two topological spaces (X with some
topology TX , and Y with some topology TY ) is continuous if and only if f−1(A) is closed in X
for any closed subspace A of Y .

Example 2.12. Some extreme examples first:

1. If Y is given the trivial topology then, for any other topological space (X,TX), any
function f : (X,TX) → (Y,Ttriv) is automatically continuous.

2. If X is given the discrete topology then, for any other topological space (Y,TY ), any
function f : (X,Tdis) → (Y,TY ) is automatically continuous.

3. The composition of two continuous functions is continuous: If f : (X,TX) → (Y,TY ) and
g : (Y,TY ) → (Z,TZ) are continuous, then so is g ◦ f : (X,TX) → (Z,TZ). Indeed, for any
U ∈ TZ , V := g−1(U) ∈ TZ , hence

(f ◦ g)−1(U) = g−1(f−1(U)) = g−1(V )

must be in TX .
4. For any topological space (X,T ), the identity map IdX : (X,T ) → (X,T ) is contin-

uous. More generally, if T1 and T2 are two topologies on X, then the identity map
IdX : (X,T1) → (X,T2) is continuous if and only if T2 is smaller than T1.

Example 2.13. Given f : X → Y a map between two metric spaces (X, d) and (Y, d′),
Exercise 1.32 says that f : X → Y is continuous as a map between metric spaces (in the sense
discussed in the previous chapter) if and only if f : (X,Td) → (Y,Td′) is continuous as a map
between topological spaces.

That is good news: all functions f : Rn → Rm between Euclidean spaces that we knew (e.g.
from the Analysis course) to be continuous, are continuous in the sense of the previous definition
as well. This applies in particular to all the elementary functions such as polynomial ones, exp,
sin, cos, etc.

Even more, if f : Rn → Rm is continuous and A ⊂ Rn, B ⊂ Rm such that f(A) ⊂ B, then
the restriction of f to A, viewed as a function from A to B, is automatically continuous (check
that!). Finally, the usual operations of continuous functions are continuous:

Exercise 2.5. Let X be a topological space, f1, . . . , fn : X → R and consider

f := (f1, . . . , fn) : X → Rn.

Show that f is continuous if and only if f1, . . . , fn are. Deduce that the sum and the product of
two continuous functions f, g : X → R are themselves continuous.

Definition 2.14. Given two topological spaces (X,TX) and (Y,TY ), a homeomorphism be-

tween them is a bijective function f : X → Y with the property that f and f−1 are continuous.
We say that X and Y are homeomorphic if there exists a homeomorphism between them.

Remark 2.15. In the definition of the notion of homeomorphism (and as we have seen already
in the previous chapter), it is not enough to require that f : (X,TX) → (Y,TY ) is continuous
and bijective (it may happen that f−1 is not continuous!). For f−1 to be continuous, one would
need that for each U ⊂ X open, f(U) ⊂ Y is open. Functions with this property (that send
opens to opens) are called open maps.
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For instance, the function

f : [0, 2π) → S1, f(t) = (cos(t), sin(t)),

that we also discussed in the previous chapter, is continuous and bijective, but it is not a
homeomorphism. More precisely, it is not open: [0, π) is open in X, while f([0, 2π)) is a half
circle closed at one end and open at the other- hence not open (Figure 4 in the previous chapter).

Remark 2.16. We would like to emphasize that the notion of “homeomorphism” is the
correct notion “isomorphism in the topological world”. A homeomorphism f : X → Y allows us
to move from X to Y and backwards carrying along any topological argument (i.e. any argument
which is based on the notion of opens) and without loosing any topological information. For this
reason, in topology, homeomorphic spaces are not viewed as being different from each other.

Another important question in Topology is:

how do we decide if two spaces are homeomorphic or not?

Actually, all the topological properties that we will discuss in this course (the countability
axioms, Hausdorffness, connectedness, compactness, etc) could be motivated by this problem.
For instance, try to prove now that (0, 2) and (0, 1) ∪ (1, 2) are not homeomorphic (if you
managed, you have probably discovered the notion of connectedness). Try to prove that the open
disk and the closed disk are not homeomorphic (if you managed, you have probably discovered
the notion of compactness). Let us be slightly more precise about the meaning of “topological
property”.

Terminology/Conventions 2.17. We call topological property any property P of topologi-
cal spaces (that a space may or may not satisfy) such that, if X and Y are homeomorphic, then
X has the property P if and only if Y has it.

For instance, the property of being metrizable (see Definition 2.5) is a topological property:

Exercise 2.6. Let X and Y be two homeomorphic topological spaces. Show that X is
metrizable if and only if Y is.

Definition 2.18. A continuous function f : X → Y (between two topological spaces) is called
an embedding if f is injective and, as a function from X to its image f(X), it is a homeomor-
phism (where f(X) ⊂ Y is endowed with the induced topology).

Example 2.19. There are injective continuous maps that are not embeddings. This is the
case already with the function f(α) = (cos(α), sin(α)) already discussed, viewed as a function
f : [0, 2π) → R2.

Remark 2.20. Again, one of the important questions in Topology is:

understand when a space X can be embedded in another given space Y

When Y = R2, that means intuitively that Xcan be pictured topologically on a piece of paper.
When Y = R3, it is about being able to make models of X in space. Of course, one of the most
interesting versions of this question is whether X can be embedded in some RN for some N .
As we have seen, the torus and the Moebius band can be embedded in R3; one can prove that
they cannot be embedded in R2; also, one can prove that the Klein bottle cannot be embedded
in R3. However, all these proofs are far from trivial.
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3. Neighborhoods and convergent sequences

Definition 2.21. Given a topological space (X,T ), x ∈ X, a neighborhood of x (in the topo-
logical space (X,T )) is any subset V ⊂ X with the property that there exists U ∈ T such that

x ∈ U ⊂ V.

When V is itself open, we call it an open neighborhood of x. We denote:

T (x) := {U ∈ T : x ∈ U}, N (x) = {V ⊂ X : ∃ U ∈ T (x) such that U ⊂ V }.
Example 2.22. In a metric space (X, d), from the definition of Td we deduce:

(3.1) N (x) = {V ⊂ X : ∃ ǫ > 0 such that B(x, ǫ) ⊂ V }.
Remark 2.23. What are neighborhoods good for? They are the “ topological pieces” which

are relevant when looking at properties which are “local”, in the sense that they depend only
on what happens “near points”. For instance, we can talk about continuity at a point.

Definition 2.24. We say that a function f : (X,TX) → (Y,TY ) is continuous at x if

(3.2) f−1(V ) ∈ NX(x) ∀ V ∈ NY (f(x).

Proposition 2.25. A function is continuous if and only if it is continuous at all points.

Proof. Assume first that f is continuous, x ∈ X. For V ∈ N (f(x)), there exists U ∈
T (f(x)) with U ⊂ V ; then f−1(U) is open, contains x and is contained in f−1(V ); hence
f−1(V ) ∈ N (x). For the converse, assume that f is continuous at all points. Let U ⊂ Y open;
we prove that f−1(U) is open. For each x ∈ f−1(U), continuity at x implies that f−1(U) is
a neighborhood of x, hence we find Ux ⊂ f−1(U), with Ux-open containing x. It follows that
f−1(U) is the union of all Ux with x ∈ f−1(U), hence it must be open.

Neighborhoods also allow us to talk about convergence.

Definition 2.26. Given a sequence (xn)n≥1 of elements of in a topological space (X,TX),
x ∈ X, we say that (xn)n≥1 converges to x in (X,T )), and we write xn → X (or limn→∞ xn = x)
if for each V ∈ Nx, there exists an integer nV such that

(3.3) xn ∈ V ∀ n ≥ nV .

Example 2.27. Let X be a set. Then, in (X,Ttriv), any sequence (xn)n≥1 of points in X
converges to any x ∈ X. In contrast, in (X,Tdis), a sequence (xn)n≥1 converges to an x ∈ X if
and only if (xn)n≥1 is stationary equal to x, i.e. there exists n0 such that xn = x for all n ≥ n0.

To clarify the relationship between convergence and continuity, we introduce:

Definition 2.28. Let (X,TX), (Y,TY ) be topological spaces, f : X → Y . We say that f is
sequentially continuous if, for any sequence (xn)n≥1 in X, x ∈ X, we have:

xn → x in (X,TX) =⇒ f(xn) → f(x) in (Y,TY ).

Theorem 2.29. Any continuous function is sequentially continuous.

Proof. Assume that xn → x (in (X,TX)). To show that f(xn) → f(x) (in (Y,TY ), let
V ∈ N (f(x)) arbitrary and we have to find nV such that f(xn) ∈ V for all n ≥ nV . Since f is
continuous, we must have f−1(V ) ∈ N (x); since xn → x, we find nV such that xn ∈ f−1(V ) for
all n ≥ nV . Clearly, this nV has the desired properties.

Definition 2.30. Let (X,T ) be a topological space and x ∈ X. A basis of neighborhoods of x
(in the topological space (X,T )) is a collection Bx of neighborhoods of x with the property that

∀ V ∈ T (x) ∃ B ∈ Bx : B ⊂ V.
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Example 2.31. If (X, d) is a metric space, x ∈ X, the family of all balls centered at x,

(3.4) Bd(x) := {B(x; ǫ) : ǫ > 0},
is a basis of neighborhoods of x.

Remark 2.32. What are bases of neighborhoods good for? They are collections of neighbor-
hoods which are “rich enough” to encode the local topology around the point. I.e., instead of
proving conditions for all V ∈ N (x), it is enough to do it only for the elements of a basis. For
instance, in the the definition of convergence xn → x (Definition 2.26), if we have a basis Bx of
neighborhoods of x, it suffices to check the condition from the definition only for neighborhoods
V ∈ Bx (why?). In the case of a metric space (X, d), we recover the more familiar description
of convergence: using the basis (3.4) we find that xn → x if and only if:

∀ ǫ > 0, ∃ nǫ ∈ N : d(xn, x) < ǫ ∀ n ≥ nǫ.

A similar discussion applies to the notion of continuity at a point- Definition 2.24: if we have
a basis Bf(x) of neighborhoods of f(x), then it suffices to check (3.2) for all V ∈ Bf(x). As
before, if f is a map between two metric spaces (X, dX ) and (Y, dY ), we find the more familiar
description of continuity: using the basis (3.4) (with x replaced by f(x)), and using (3.1), we
find that f is continuous at x if and only if, for all ǫ > 0, there exists δ > 0 such that

dY (f(y), f(x)) < ǫ ∀ y ∈ X satisfying dX(y, x) < δ.

Definition 2.33. We say that (X,T ) satisfies the first countability axiom, or that it is
1st-countable, if for each point x ∈ X there exists a countable basis of neighborhoods of x.

Exercise 2.7. Show that the first-countability is a topological property.

Example 2.34. Any metric space (X, d) is 1st countable: for x ∈ X,

B′
d(x) := {B(x;

1

n
) : n ∈ N}

is a countable basis of neighborhoods of x. Hence, in relation with the metrizability problem,
we deduce: if a topological space is metrizable, then it must be 1st countable.

Exercise 2.8. Let (X,T ) be a topological space and x ∈ X. Show that if x admits a
countable basis of neighborhoods, then one can also find a decreasing one, i.e. one of type

Bx = {B1, B2, B3, . . .},with . . . ⊂ B3 ⊂ B2 ⊂ B1.

(Hint: Bn = V1 ∩ V2 ∩ . . . ∩ Vn).

The role of the first countability axiom is a theoretical one: “it is the axiom under which the
notion of sequence can be used in its full power”. For instance, Theorem 2.29 can be improved:

Theorem 2.35. If X is 1st countable (in particular, if X is a metric space) then a map
f : X → Y is continuous if and only if it is sequentially continuous.

Proof. We are left with the converse implication. Assume f -continuous. By Prop. 2.25, we
find x ∈ X such that f is not continuous at x. Hence we find V ∈ N (f(x)) such that f−1(V ) /∈
N (x). Let {Bn : n ∈ N} be a countable basis of neighborhoods of x; by the previous exercise,
we may assume it is decreasing. Since f−1(V ) /∈ N (x), for each n we find xn ∈ Bn − f−1(V ).
Since xn ∈ Bn, it follows that (xn)n≥1 converges to x (see Remark 2.32). But note that (f(xn))
cannot converge to f(x) since f(xn) /∈ V for all n. This contradicts the hypothesis.

Another good illustration of the fact that, under the first-countability axiom, “convergent
sequences contain all the information about the topology”, is given in Exercise 2.43. Another
illustration is the characterisation of Hausdorffness (Theorem 2.46 below).
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4. Inside a topological space: closure, interior and boundary

Definition 2.36. Let (X,T ) be a topological space. Given A ⊂ X, define:

• the interior of A:
◦

A=
⋃

U−open contained in A

U.

(The union is over all the subsets U of A which are open in (X,T )). It is sometimes

denoted by Int(A). Note that
◦

A is open, is contained in A, and it is the largest set with
these properties.

• the closure of A:

A =
⋂

F−closed containing A

F.

(The intersection is over all the subsets A of X which contain A and are closed in (X,T )).
It is sometimes denoted by Cl(A). Note that A is closed, contains A, and it is the smallest
set with these properties.

• the boundary of A:

∂(A) = A−
◦

A .

x

y

z

.

..

X

A

boundary point

interior point

not in the 
  closure

Figure 1.

Lemma 2.37. Let (X,T ) be a topological space, x ∈ X, and assume that Bx is a basis of
neighborhoods around x (e.g. Bx = T (x)). Then:

(i) x ∈
◦

A if and only if there exists U ∈ Bx such that U ⊂ A.
(ii) x ∈ A if and only if, for all U ∈ Bx, U ∩A 6= ∅.
(iii) If (X,T ) is metrizable (or just 1st countable) then x ∈ A if and only if there exists a

sequence (an)n≥1 of elements of A such that an → x.

See Figure 1.

Proof. (of the lemma) You should first convince yourself that (i) is easy; we prove here (ii)
and (iii). To prove the equivalence in (ii), is sufficient to prove the equivalence of the negations,
i.e.

[x /∈ A] ⇐⇒ [∃ U ∈ Bx : U ∩A = ∅].
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From the definition of A, the left hand side is equivalent to:

∃ F − closed : A ⊂ F, x /∈ F.

Since closed sets are those of type F = X − U with U -open, this is equivalent to

∃ U − open : A ∩ U = ∅, x ∈ U,

i.e.: there exists U ∈ T (x) such that U ∩A = ∅. On the other hand, any U ∈ T (x) contains at
least one B ∈ Bx, and the condition U ∩A = ∅ will not be destroyed if we replace U by B. This
concludes the proof of (ii). For (iii), first assume that x = lim an for some sequence of elements
of A. Then, for any U ∈ T (x), we find nU such that an ∈ U for all n ≥ nU , which shows that
U ∩A 6= ∅. By (ii), x ∈ A. For the converse, one uses that fact that B(x, 1

n
) ∩A 6= ∅ hence, for

each n, we find an ∈ A with d(an, x) <
1
n
. Clearly an → a.

Example 2.38. Take the “open disk” in the plane

A =
◦

D
2

(= {(x, y) ∈ R2 : x2 + y2 < 1}).
Then the interior of A is A itself (it is open!), the closure is the “closed disk”

A = D2(= {(x, y) ∈ R2 : x2 + y2 ≤ 1}),
while the boundary is the unit circle

∂(A) = S1(= {(x, y) ∈ R2 : x2 + y2 = 1}).
Example 2.39. Take A = [0, 1) ∪ {2} ∪ [3, 4) in X = R. Using the lemma (and the basis

given by open intervals) we find
◦

A= (0, 1) ∪ (3, 4), A = [0, 1] ∪ {2} ∪ [3, 4], ∂(A) = {0, 1, 2, 3, 4}.
However, considering A inside X ′ = [0, 4) (with the topology induced from R),

◦

A= [0, 1) ∪ (3, 4), A = [0, 1] ∪ {2} ∪ [3, 4), ∂(A) = {1, 2, 3}.
For the case of metric spaces, let us point out the following corollary. To state it, recall that

given a metric space (X, d), A ⊂ X, and x ∈ X, one defines the distance between x and A as

d(x,A) = inf{d(x, a) : a ∈ A}.
Corollary 2.40. If A is a subspace of a metric space (X, d), x ∈ X, then the following are

equivalent:

(1) x ∈ A.
(2) there exists a sequence (an) of elements of A such that an → x.
(3) d(x,A) = 0.

Proof. The equivalence of (1) and (2) follows directly from (iii) of the lemma. Next, the
condition (3) means that, for all ǫ > 0, there exists a ∈ A such that d(x, a) < ǫ. In other words,
A ∩ B(x, ǫ) 6= ∅ for all ǫ > 0. Using (iii) of the lemma (with Bx being the collection of all balls
centered at x), we find that (3) is equivalent to (1).

Definition 2.41. Given a topological space X, a subset A ⊂ X is called dense in X if A = X.

Example 2.42.
◦

D
n

is dense in Dn; Q is dense in R.
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5. Hausdorffness; 2nd countability; topological manifolds

One of the powers of the notion of topological space comes from its generality, which gives
it a great flexibility when it comes to examples and general constructions. However, in many
respects the definition is “too general”. For instance, for proving interesting results one often
has to impose extra-axioms. Sometimes these axioms are rather strong (e.g. compactness),
but sometimes they are rather weak (in the sense that most of the interesting examples satisfy
them anyway). The most important such (weak) axiom is “Hausdorffness”. This axiom is also
important for the metrizability problem, for which we have to understand the special topological
properties that a topology must satisfy in order to be induced by a metric. And Hausdorffness
is the most basic one.

Definition 2.43. We say that a topological space (X,T ) is Hausdorff if for any x, y ∈ X with
x 6= y, there exist V ∈ N (x) and W ∈ N (y) such that V ∩W = ∅.

Example 2.44. Looking at the extreme topologies: Ttriv is not Hausdorff (unless X is empty
or consists of one point only), while Tdis is Hausdorff. In the light of the Hausdorffness property,
the cofinal topology Tcf becomes more interesting (see Exercise 2.62).

Exercise 2.9. Show that Hausdorffness is a topological property.

As promised, one has:

Proposition 2.45. Any metric space is Hausdorff.

Proof. Given (X, d), x, y ∈ X distinct, we must have r := d(x, y) > 0. We then choose
V = B(x; r

2), W = B(y; r
2). We claim these are disjoint. If not, we find z in their intersection,

i.e. z ∈ Z such that d(x, z) and d(y, z) are both less than r
2 . From the triangle inequality for d

we obtain the following contradiction

r = d(x, y) < d(x, z) + d(z, y) <
r

2
+
r

2
= r.

However, one of the main reasons that Hausdorffness is often imposed comes from the fact
that, under it, sequences behave “as expected”.

Theorem 2.46. Let (X,T ) be a topological space. If X is Hausdorff, then every sequence
(xn)n≥1 has at most one limit in X. The converse holds if we assume that (X,T ) is 1st countable.

Proof. Assume that X is Hausdorff. Assume that there exists a sequence (xn)n≥1 in X
converging both to x ∈ X and y ∈ X, with x 6= y; the aim is to reach a contradiction. Choose
V ∈ N (x) and W ∈ N (y) such that V ∩W = ∅. Then we find nV and nW such that xn ∈ V for
all n ≥ nV , and similarly for W . Choosing n > max{nV , nW}, this will contradict the fact that
V and W are disjoint.

Let’s now assume that X is 1st countable and each sequence in X has at most one limit, and
we prove that X is Hausdorff. Assume it is not. We find then x 6= y two elements of X such
that V ∩W 6= ∅ for all V ∈ N (x) and W ∈ N (y). Choose {Vn : n ≥ 1} and {Wn : n ≥ 1} bases
of neighborhoods of x and y, which we may assume to be decreasing (cf. Exercise 2.8). For each
n, we find an element xn ∈ Vn ∩Wn. As in the previous proofs, this implies that xn converges
both to x and to y- which contradicts the hypothesis.

Besides Hausdorffness, there is another important axiom that one often imposes on the spaces
one deals with (especially on the spaces that arise in Geometry).
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Definition 2.47. Let (X,T ) be a topological space. A basis of the topological space (X,T ) is
a family B of opens of X with the property that any open U ⊂ X can be written as a union of
opens that belong to B.

We say that (X,T ) satisfies the second countability axiom, or that it is second-countable (also
written 2nd countable) if it admits a countable basis.

Exercise 2.10. Given a topological space (X,T ) and a family B of opens of X, show that
B is a basis of (X,T ) if and only if, for each x ∈ X,

Bx := {B ∈ B : x ∈ B}
is a basis of neighborhoods of x. Deduce that any 2nd countable space is also 1st countable.

Example 2.48. In a metric space (X, d), the collection of all balls

Bd := {B(x, r) : x ∈ X, r > 0}
is a basis for the topology Td (see the end of the proof of Proposition 2.4). Although metric
spaces are allways 1st countable (cf. Example 2.34), not all are 2nd countable. However:

Example 2.49. For Rn, one can restrict to balls centered at points with rational coordinates:

BQ
Eucl := {B(x,

1

k
) : x ∈ Qn, k ∈ Q+}.

This is a countable family since Q is countable and products of countable sets are countable.

Exercise 2.11. Show that BQ
Eucl is a basis of Rn. Deduce that any A ⊂ Rn is 2nd countable.

Finally, we come at the notion of topological manifold.

Definition 2.50. An n-dimensional topological manifold is any Hausdorff, 2nd countable
topological space X which has the following property: any point x ∈ X admits an open neigh-
borhood U which is homeomorphic to Rn.

Remark 2.51. Of course, the most important condition is the one requiring X to be locally
homeomorphic to Rn. A pair (U,χ) consisting of an open U ⊂ X and a homeomorphism

χ : U → Rn, x 7→ χ(x) = (χ1(x), . . . , χn(x))

is called a (local) coordinate chart for X; U is called the domain of the chart; χ1(x), . . . , χn(x)
are called the coordinates of x in the chart (U,χ). Given another chart ψ : V → Rn,

c := ψ ◦ χ−1 : χ(U ∩ V ) → ψ(U ∩ V )

(a homeomorphism between two opens in Rn) is called the change of coordinates from χ to ψ
(it satisfies ψi(x) = ci(χ1(x), . . . , χn(x)) for all x ∈ X). By definition, topological manifolds
can be covered by (domains of) coordinate charts; hence they can be thought of as obtained by
“patching together” several copies of Rn, glued according to the change of coordinates.

Remark 2.52. One may wonder why the “2nd countability” condition is imposed. Well,
there are many reasons. The simplest one: we do hope that a topological manifold can be
embedded in some RN for N large enough. However, as the previous exercise shows, this would
imply that X must be 2nd countable anyway. Also, the 2nd countability condition implies that
X can be covered by a countable family of coordinate charts (see Exercise 2.63).

Example 2.53. Of course, Rn is itself a topological manifold. Using the stereographic pro-
jection (see the previous chapter), we see that the spheres Sn are topological n-manifolds. But
note that, while the open disks are topological manifolds, the closed disks are not.

Exercise 2.12. Show that the torus is a 2-dimensional topological manifold. What about
the Klein bottle? What about the Moebius band? Try to define “manifolds with boundary”.
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6. More on separation

The Hausdorffness is jut one of the possible “separation axioms” that one may impose (the
most important one!). Such separation axioms are relevant to the metrizability problem, as they
are automatically satisfied by metric spaces. Here is the precise definition.

Definition 2.54. We say that two subspaces A and B of a topological space (X,T ) can be
separated topologically (or simply separated) if there are open sets U and V such that

A ⊂ U,B ⊂ V, and U ∩ V = ∅.
We say that A and B can be separated by continuous functions if there exists a continuous
function f : X → [0, 1] such that f |A = 0, f |B = 1 (and we say that f separates A and B).

Example 2.55. If A and B can be separated by continuous functions, then they can be
separated topologically as well. Indeed, if f separates A and B, then

U = f−1((−∞,
1

2
)), V = f−1((

1

2
,∞))

are disjoint opens (as pre-images of opens by a continuous map) containing A and B.
The separation conditions are most natural when A and B are closed in X. For instance,

inside R, [0, 1) and (1, 2] cannot be separated by continuous functions, while [0, 1) and [1, 2]
cannot be separated even topologically (see also Exercise 2.64).

In any metric space (X, d), any two disjoint closed subsets A and B can be separated: indeed,

U = {x ∈ X : d(x,A) < d(x,B)}, V = {x ∈ X : d(x,A) > d(x,B)}
are disjoint opens containing A and B. Here we use the continuity of the function dA : X → R,
x 7→ d(x,A) (see Exercise 2.32 ) and the similar function dB. Actually, one can separate A and
B even by continuous functions: take

f : X → [0, 1], f(x) =
dA(x)

dA(x) + dB(x)
.

There are several classes of separation conditions one may impose on a topological space X.
At one extreme, when the separation is required for sets of one elements, we talk about the
Hausdorffness condition. At the other extreme, one has “normality”:

Definition 2.56. A topological space is called normal if it is Hausdorff and any two disjoint
closed subsets can be separated topologically.

From our previous discussion it follows that all metrizable spaces are normal. As we shall
see, for normal spaces disjoint closed subsets can allways be separated by continuous functions
(Urysohn lemma) and 2nd countable normal spaces are metrizable (Urysohn metrization theo-
rem). That is why normal spaces are important. However, one should be aware that“normality”
is a condition that is (so) important mainly inside the field of Topology; as soon as one moves
to neighbouring fields (Geometry, Analysis, etc), although many of the topological spaces one
meets there are normal, very little attention is paid to this condition (and you will almost never
hear about “normal spaces” in other courses). For instance, in such fields, Urysohn lemma (so
important for Topology), often follows by simple tricks (e.g., as many such spaces are already
metrizable, it follows from the previous remark). For that reason we decided not to concentrate
too much on normal spaces; also, although the proof of Urysohn’s results could be presented
right away, we have decided not to do them until they are absolutely needed. Note that, in
contrast with “normality”, the other topological conditions that we will study, such as Haus-
dorffness, connectedness, compactness, local compactness and even paracompactness, show up
all over in mathematics whenever topological spaces are relevant, and they are indispensable.
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7. More exercises

7.1. On topologies.

Exercise 2.13. How many distinct topologies can there be defined on a set with two ele-
ments? But with three?

Exercise 2.14. Consider the set N := N∪{∞} (the set of strictly positive integers to which
we add the infinity) and, for each n ∈ N put

Un := {k ∈ N : k ≥ n} = {n, n + 1, . . .} ∪ {∞}.
Show that the following is a topology on N:

Tseq := {∅, U1, U2, U3, . . .}.
Exercise 2.15. Prove that, for any set X, Tcf and Tcc are indeed topologies.

Exercise 2.16. On R consider the family T consisting of ∅, R and all intervals of type
(−∞, r) with r ∈ R. Show that T is a topology on R and compare it with the Euclidean
topology.

Exercise 2.17. On R consider the family B consisting of ∅, R and all intervals of type (−∞, r]
with r ∈ R. Show that B is not a topology on R and find the smallest topology containing B.
Is it larger or smaller than the topology from the previous exercise? But than the Euclidean
topology?

Exercise 2.18. Let T be a topology on R. Show that T is the discrete topology if and only
if {r} ∈ T for all r ∈ R.

Exercise 2.19. Let Tl be the smallest topology on R which contains all the intervals of type
[a, b) with a, b ∈ R. Similarly, define Tr using intervals of type (a, b]. Show that:

1. A subset D ⊂ R belongs to Tl if and only if the following condition holds: for any x ∈ D
there exists an interval [a, b) such that

x ∈ [a, b) ⊂ D.

2. Tl and Tr are finer than Teucl, but Tl and Tr are not comparable.
3. Tdis is the only topology on R which contains both Tl and Tr.

Exercise 2.20. Consider a set X, a set of indices I and, for each i ∈ I, a topology Ti on X.
Show that T := ∩iTi (i.e. the family consisting of subsets U ⊂ X with the property that U ∈ Ti

for all i ∈ I) is a topology on X.

Exercise 2.21. Given a set X and a family S of subsets of X, prove that there exists a
topology T (S) on X which contains S and is the smallest with this property. (Hint: use the
axioms to see what other subsets of X, besides the ones from S, must T (S) contain.)

Exercise 2.22. On R2 we define the topology Tl×Tl as the smallest topology which contains
all subsets of type

[a, b) × [c, d)

with a, b, c, d ∈ R. Define similarly Tr ×Tr, Tl ×Tr and Tr ×Tl. Show that any two of these four
topologies are not comparable.

Exercise 2.23. To remove ambiguities regarding the Convention 2.9 show that, inside any
topological space (X,T ), for all A ⊂ Y ⊂ X one has

(T |Y )|A = T |A.
To remove ambiguities regarding Convention 2.7 and 2.9 show that, for A ⊂ Rn, the Euclidean
topology on A coincides with the restriction to A of the Euclidean topology of Rn.
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Exercise 2.24. Let (X, d) be a metric space, A,B subspaces of X such that

d(A,B) = 0.

(where d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}).
Is it true that A and B must have a common point (i.e. A∩B 6= ∅)? What if we assume that

both A and B are closed?

7.2. On induced topologies.

Exercise 2.25. Consider the real line R as a subset of the plane R2. Show that the induced
topology on R coincides with the Euclidean topology on the real line.

Exercise 2.26. Find an example of a topological space X and A ⊂ B ⊂ X such that A is
closed in B, B is open in X, and A is neither open nor closed in X.

Exercise 2.27. Which of the following subsets of the plane are open?

1. A = {(x, y) : x ≥ 0}.
2. B = {(x, y) : x = 0}.
3. C = {(x, y) : x > 0, y < 5}.
4. D = {(x, y) : xy < 1, x ≥ 0}.
5. E = {(x, y) : 0 ≤ x < 5}.

Note that all these sets are contained in A. Which ones are open in A?

Exercise 2.28. Let (X,T ) be a topological space and B ⊂ A ⊂ X.

1. If A is open in X, show that B is open in X if and only if it is open in A.
2. If A is closed in X, show that B is closed in X if and only if it is closed in A.

Exercise 2.29. Given a topological space (X,T ) and A ⊂ X, show that the induced topology
T |A is the smallest topology on A with the property that the inclusion map i : A → X is
continuous.

7.3. On continuity.

Exercise 2.30. Consider

D := {(x, y) : ex > sin(y)cos(x)},

A := {(x, y) : x7 − sin(y7) ≥ 1

x2 + y2 + 1
}.

Show that D is open in R2, while A is closed in R2.

Exercise 2.31. Let R be endowed with the topology Tl from Exercise 2.19. Which one of
the following functions f : R → R is continuous:

(i) f(x) = x+ 1
(ii) f(x) = −x.
(iii) f(x) = x2.

Exercise 2.32. If (X, d) is a metric space and A is a subspace of X, then the function

dA : X → R, dA(x) = d(x,A)

is continuous.
Deduce that, for any closed subset A of a metric space X, there exists a continuous function

f : X → [0, 1] such that A = f−1(0).
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Exercise 2.33. The space Mn(R), of n × n matrices with real coefficients can be identified

with Rn2
and in this way has a natural topology (coming from the Euclidean metric). Prove

that:

1. the subspace GLn(R) of invertible matrices is open in Mn(R).
2. the subspace SLn(R) consisting of invertible matrices of determinant equal to 1 is closed

in GLn(R).
3. the subspace

O(n) := {A ∈ GLn(Rn) : AA∗ = Id}
is also closed (where A∗ denotes the transpose of A and Id is the identity matrix).

Exercise 2.34. Let X and Y be two topological spaces, f : X → Y . We say that f is
continuous at a point x ∈ X if, for any neighborhood V of f(x) in Y there exists a neighborhood
U of x in X such that f(U) ⊂ V . Show that f is continuous if and only if it is continuous at all
points x ∈ X.

7.4. On homeomorphisms and embeddings.

Exercise 2.35. Show that the following three spaces are homeomorphic (giving the explicit
homeomorphisms):

X = {(x, y) ∈ R2 : 0 < x2 + y2 ≤ 1} ⊂ R2

Y = {(x, y) ∈ R2 :
1

2
< x2 + y2 ≤ 1} ⊂ R2

Z = S1 × (0, 1] = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 < z ≤ 1} ⊂ R3.

Then compute the interiors and the boundaries of X, Y (in R2) and Z (in R3). How comes that,
although X, Y and Z are homeomorphic, their interiors and boundaries are quite different?

Exercise 2.36. From the topologies that you found in Exercise 2.13, how many non home-
omorphic ones are there?

Exercise 2.37. Show that R endowed with the Euclidean topology is not homeomorphic to
R endowed with the topology from Exercise 2.16.

Exercise 2.38. Exhibit an embedding f : M →M of the Moebius band into itself which is
not surjective. What is the boundary of f(M) in M?

7.5. The “removing a point trick”. The first part of the following exercise is extremely
useful for some of the later exercises.

Exercise 2.39. If X and Y are homeomorphic, prove that for any x ∈ X there exists y ∈ Y
such that X − {x} is homeomorphic to Y − {y}.

Also explain that, “there exists y ∈ Y ” cannot be replaced with “for any y ∈ Y ”.

7.6. On convergence.

Exercise 2.40. Let X = (0, 1) endowed with the Euclidean topology. Is the sequence

xn =
1

n
convergent in the topological space X?

Exercise 2.41. Let R be endowed with the topology Tl from Exercise 2.19. Study the
convergence of the sequences (xn)n≥1 and (yn)n≥1 where

xn =
1

n
, yn = − 1

n
.
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Exercise 2.42. What about convergence in (X,Tcf). But about (X,Tcc)?

Exercise 2.43. We say that two topologies T1 and T2 on X have the same convergence of
sequences if, for a sequence (xn)n≥1 of elements of X, and x ∈ X, one has:

xn
T1−→ x⇐⇒ xn

T2−→ x.

Show that

• If T1 and T2 satisfy the first countability axiom and have the same convergence of se-
quences, then T1 = T2.

• This is no longer true if one gives up the first countability axiom.

(Hint for the second part: This is difficult. Try Tdiscr and Tcf. If it does not work, try to change
one of them).

7.7. On closure, interior, etc.

Exercise 2.44. Let X = (−∞, 1) ∪ (1, 4) ∪ [5,∞). Find the closure, the interior and the
boundary (in X) of A = [0, 10 ∪ (1, 2) ∪ [3, 4) ∪ (5, 6).

Exercise 2.45. Find the interior and the closure of Q in R in each of the cases: when R is
endowed with

• the Euclidean topology.
• the discrete topology.
• the cofinite topology.
• the co-countable topology.

Exercise 2.46. Find the closure, the interior and the boundary of the following subsets of
the plane:

1. {(x, y) : x ≥ 0, y 6= 0}.
2. {(x, y) : x ∈ Q, y > 0}.

Exercise 2.47. For each of the sets from Exercise 2.27, find the interior, closure and bound-
ary in the plane. Then in A (i.e. as subspaces of A).

Exercise 2.48. Let Tl be the topology from Exercise 2.19. Find the closure and the interior
in (R,Tl) of each of the intervals

[0, 1), (0, 1], (0, 1), [0, 1].

Exercise 2.49. Let Tl be the topology from Exercise 2.19.

(i) In the topological space (R,Tl), find the closure, the interior and the boundary of

A = (0, 1) ∪ [2, 3].

(ii) Show that (R,Tl) and (R,Teucl) are not homeomorphic.

Exercise 2.50. Compute the interior, the closure and the boundary of

A = (0, 1] × [0, 1)

in the topological space X = R2 endowed with the topology Tl × Tl of Exercise 2.22.

Exercise 2.51. Show that, in any topological space X, for any subspace A ⊂ X, one has

∂(A) = ∂(X −A).

Exercise 2.52. Let A,B be two subsets of a topological space X. Recall that Int(A) =
◦

A
denotes the interior of A. Prove that
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1. If A ⊂ B then Int(A) ⊂ Int(B).
2. Int(A ∩B) = Int(A) ∩ Int(B).
3. Int(A ∪B) ⊃ Int(A) ∪ Int(B), but the equality may fail.

Exercise 2.53. Let A, B and {Ai : i ∈ I} denote subsets of a topological space X, where i
runs in a set of indexes I. Prove that

1. If A ⊂ B then A ⊂ B.
2. A ∪B = A ∪B.
3. If I is finite then ∪iAi = ∪iAi.
4. In general, when I is infinite, ∪iAi ⊃ ∪iAi, but the two may be different.
5. We say that {Ai : i ∈ I} is locally finite if any point x ∈ X admits a neighborhood V

which intersects all but a finite number of Ais (i.e. such that {i ∈ I : Ai ∩ V 6= ∅} is
finite). Under this assumption, show that ∪iAi = ∪iAi.

7.8. Density.

Exercise 2.54. Show that Q is dense in R.

Exercise 2.55. Show that Q × Q is dense in R2.

Exercise 2.56. Let T be the torus. Describe (on the picture) a continuous injection f : R →
T whose image is dense in T . Is f an embedding?

Exercise 2.57. Show that GLn(R) is dense in Mn(R) (see Exercise 2.33).

Exercise 2.58. Show that any continuous function f : R → R with the property that

f(x+ y) = f(x) + f(y)

for all x, y ∈ R, then f must be linear, i.e. there exists a ∈ R such that

f(x) = ax ∀ x ∈ R.

(Hint: a = f(1). For what x’s can you prove that f(x) = ax? Then use continuity and the fact
Q is dense in R.)

7.9. On Hausdorffness, 2nd countability, separation.

Exercise 2.59. How many from the topologies from Exercise 2.13 are Hausdorff?

Exercise 2.60. Is the topology from Exerc. 2.14 Hausdorff? But from 2.16? But from 2.17?

Exercise 2.61. Show that, in any Hausdorff space X, all the subspaces with one element
(i.e. of type A = {x} with x ∈ X) are closed.

Exercise 2.62. Given a set X, show that any Hausdorff topology on X contains Tcf . When
is Tcf Hausdorff? When does it exist a smallest Hausdorff topology on X (i.e. a Hausdorff
topology which is contained in all other Hausdorff topologies on X)?

Exercise 2.63. Let X be a 2nd countable space. Show that from any open cover U of X one
can extract a countable subcover. In other words, for any collection U = {Ui : i ∈ I} consisting
of opens in X such that X = ∪i∈IUi, one can find i1, i2, . . . ∈ I such that X = ∪kUik .

Exercise 2.64. Consider R with the Euclidean topology. In each of the following cases,
decide (and explain!) when A and B can be separated topologically or by continuous functions:

1. A = [0, 1), B = (1, 2].
2. A = [0, 1), B = [1, 2].
3. A = [0, 1), B = (2, 3].

Exercise. Prove that the sphere Sn is an n-dimensional topological manifold. Show that it
can be covered by two coordinate charts. Compute the change of coordinates.
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1. Constructions of topologies: quotients

We now discuss another general construction of topologies. Let’s start with a surjective map
π : X → Y . Typically, (Y, π) is a quotient of X modulo an equivalence relation R on X (“gluing
data”). Assume now that X is endowed with a topology T . Then one defines

π∗(T ) := {V ⊂ Y : π−1(V ) ∈ T },
called the quotient topology on Y induced by π. A surjective map π : (X,TX) → (Y,TY )
between two topological spaces is called a topological quotient map if TY = π∗(TX).

Theorem 3.1. π∗(T ) is indeed a topology on Y . Moreover, it is the largest topology on Y
with the property that π : X → Y becomes continuous.

Proof. Axiom (T1) is immediate. For (T2), let Ui ∈ π∗(T ) (with i ∈ {1, 2}), i.e. subsets
of Y satisfying π−1(Ui) ∈ T . Then

π−1(U1 ∩ U2) = π−1(U1) ∩ π−1(U2)

must be in T , i.e. U1 ∩ U2 ∈ π∗(T ). The axiom (T3) follows similarly, using the fact that
π−1(∪iUi) = ∪iπ

−1(Ui). The last part follows from the definition of continuity and of π∗(T ).

The following is a very useful recognition criteria for continuity of maps defined on quotients.

Proposition 3.2. Let X be a topological space, π : X → Y a surjection, and let Y be endowed
with the quotient topology. Then, for any other topological space Z, a function f : Y → Z is
continuous if and only if f ◦ π : X → Z is.

Proof. f−1(U) is open in Y if and only if π−1(f−1(U)) = (f ◦ π)−1(U) is open in X.

There are some variations on the previous discussion, mainly terminological, when we want
to emphasize that Y is the quotient modulo an equivalence relation (see Definition 3.3).

Definition 3.3. Let R be an equivalence relation defined on a topological space (X,T ). A
quotient of (X,T ) modulo R is a pair (Y, π) consisting of a topological space Y and a topological

quotient map π : X → Y with the property that π(x) = π(x′) holds if and only if (x, x′) ∈ R.
If Y = X/R is the abstract quotient, then the resulting topological space (X/R, π∗(T )) is called

the abstract quotient of (X,T ) modulo R.

With this terminology, the last proposition translates into:

Corollary 3.4. Assume that (Y, π) is a quotient of the topological space X modulo R. Then,
for any topological space Z, there is a 1-1 correspondence between

(i) continuous maps f : Y → Z.

(ii) continuous maps f̃ : X → Z such that f̃(x) = f̃(x′) whenever (x, x′) ∈ R.

This correspondence is characterized by f̃ = f ◦ π.

Finally, we would like to point out one of the notorious problems that arises when considering
quotients: Hausdorffness may be destroyed! (this problem does not appear when we consider
subspace or product topologies!). Hence extra-care is required when we deal with quotients.

Exercise 3.1. Take two copies of the interval [0, 2], say X = [0, 2] × {0} ∪ [0, 2] × {1} (in
the plane) and glue the points (t, 0) and (t, 1) for each t ∈ [0, 2], t 6= 1. Show that the resulting
quotient space Y is not Hausdorff.
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2. Examples of quotients: the abstract torus, Moebius band, etc

In the first chapter we discussed the torus, Moebius band, etc intuitively. We can now have a
more complete discussion about them, as topological spaces. Let us concentrate, for example,
on the torus. Here are some remarks on the discussions from the first chapter:

1. when constructing it by gluing the opposite sides of a square, although the “shape” of the
result may be predicted, the actual result (as a subset of R3) depends on all the movements we
make while gluing. But even the “shape” is not completely clear: we could have performed the
same gluing in a “clumsier way” (e.g., for the Moebius band, we could have twisted the piece of
paper three times before the actual gluing).

2. when saying “torus” , we would like to think about the intrinsic space itself. The information
that this space can be embedded in R3 is interesting and nice, but there may be many such
embeddings. See Figure 1 for several different looking embeddings. The “shape” reflects the
way one embeds the torus into R3, not only the intrinsic torus.

Figure 1.

The way to deal with all these in a more precise way is the following:
1. Consider the abstract torus, defined as the abstract quotient

Tabs := [0, 1] × [0, 1]/R,

where R is the equivalence relation encoding the gluing. This defines Tabs as a topological space.
2. Embed the abstract torus: realizing the torus more concretely in R3, i.e. finding

explicit models of it, translates now into the question of describing embeddings

f : Tabs → R3.

By Corollary 3.4, continuous f ’s correspond to continuous maps

f̃ : [0, 1] × [0, 1] → R3

with the property that f̃(t, s) = f̃(t′, s′) for all ((t, s), (t′, s′)) ∈ R. The injectivity of f is
equivalent to the condition that the last equality holds if and only if ((t, s), (t′, s′)) ∈ R.

Example 3.5. Such f̃ ’s arise in the explicit realizations of the torus (see Chapter 1):

f̃(t, s) = (R+ rcos(2πt))cos(2πs), (R + rcos(2πt))sin(2πs), rsin(2πt)).

The induced f is a continuous injection of Tabs into R3 whose image is the geometric model
TR,r from Section 6. But please note: while we now know that f : Tabs → TR,r is a continuous
bijection, one still has to show that the inverse is continuous. The best proof of this, which
applies immediately to all examples of this type, not only to the torus, and not only to our
explicit f , follows from one of the basic properties of compact spaces, which will be discussed in
the next chapter.

Exercise 3.2. Fill in the details; do the same for the Moebius band, Klein bottle, P2.
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3. Special classes of quotients I: quotients modulo group actions

In this section we discuss quotients by group actions. Let X be a topological space. We denote
by Homeo(X) the set of all homeomorphisms from X to X. Together with composition of maps,
this is a group. Let Γ be another group, whose operation is denoted multiplicatively.

Definition 3.6. An action of the group Γ on the topological space X is a group homomor-
phism

φ : Γ → Homeo(X), γ 7→ φγ .

Hence, for each γ ∈ Γ, one has a homeomorphism φγ of X (“the action of γ on X”), so that

φγγ′ = φγ ◦ φγ′ ∀ γ, γ′ ∈ X.

Sometimes φγ(x) is also denoted γ(x), or simply γ · x, and one looks at the action as a map

Γ ×X → X, (γ, x) → γ · x.
The action induces an equivalence relation RΓ on X defined by:

(x, y) ∈ RΓ ⇐⇒ ∃ γ ∈ Γ s.t. y = γ · x.
The resulting topological quotient is called the quotient of X by the action of Γ, and is denoted
by X/Γ. Note that the RΓ-equivalence class of an element x ∈ X is precisely its Γ-orbit:

Γ · x := {γ · x : γ ∈ Γ}.
Hence X/Γ consists of all such orbits, and the quotient map sends x to Γx.

Example 3.7. The additive group Z acts on R by

Z × R → R, (n, r) 7→ φn(r) = n · r := n+ r.

The resulting quotient is (homeomorphic to) S1. More precisely, one uses Corollary 3.4 again to

see that the map f̃ : R → S1, t 7→ (cos(2πt), sin(2πt)) induces a continuous bijection f : R/Z →
S1; then one proves directly (e.g. using sequences) that f is actually a homeomorphism, or one
waits again until compactness and its basic properties are discussed.

Here is a fortunate case in which Hausdorffness is preserved when passing to quotients.

Theorem 3.8. If X is a Hausdorff space and Γ is a finite group acting on X, then the quotient
X/Γ is Hausdorff.

Proof. Let Γx,Γy ∈ X/Γ be two distinct points (x, y ∈ X). That they are distinct means
that, for each γ ∈ Γ, x 6= γy. Hence, for each γ ∈ Γ, we find disjoint opens Uγ , Vγ ⊂ X
containing x, and γy, respectively. Note that

Wγ = φ−1
γ (Vγ)

is an open containing y, and what we know is that

Uγ ∩ φγ(Wγ) = ∅.
Since Γ is finite, U := ∩γUγ , V := ∩γWγ will be open neighborhoods of x and y, respectively,
with the property that

U ∩ φa(V ) = ∅, ∀ a ∈ Γ.

Using the quotient map π : X → X/Γ, we consider π(U), π(V ), and we claim that they are
disjoint opens in X/Γ separating Γx and Γy. That they are disjoint follows from the previous
property of U and V . To see that π(U) is open, we have to check that π−1(π(U)) is open, but

π−1(π(U)) = ∪γ∈Γφγ(U)

(check this!) is a union of opens, hence opens. Similarly, π(V ) is open. Clearly, Γx = π(x) ∈
π(U) and Γy = π(y) ∈ π(V ).
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4. Another example of quotients: the projective space Pn

A very good illustration of the use of quotient topologies is the construction of the projective
space, as a topological space (a set theoretical version of which appeared already in Exercise
1.29).

Recall that, set theoretically, Pn is the set of all lines through the origin in Rn+1:

Pn = {l ⊂ Rn+1 : l − one dimensional vector subspace}.
To realize it as a topological space, we relate it to topological spaces that we already know.
There are several ways to handle it.

4.1. As a quotient of Rn+1 − {0}: For this, we use a simple idea: for each point in
Rn+1−{0} there is (precisely) one line passing through the origin and that point. This translates
into the fact that there is a surjective map

π : Rn+1 → Pn, x 7→ lx,

where lx is the line through the origin and x:

lx = Rx = {λx : λ ∈ R} ⊂ Rn+1.

The projective space Pn can now be defined as the set Pn endowed with the quotient topology.
Note also that the equivalence relation underlying π comes from a group action. This is based
on the remark that π(x) = π(y), i.e. lx = ly, happens if and only if x = λy for some λ ∈ R∗.
Hence, taking Γ = R∗ (a group with usual multiplication), it acts on Rn+1 − {0} by:

φλ(x) = λx for λ ∈ R∗, x ∈ Rn+1 − {0}
and the projective space becomes

Pn = (Rn+1 − {0})/R∗.

4.2. As a quotient of Sn: This is based on another simple remark: a line in Rn+1 through
the origin is uniquely determined by its intersection with the unit sphere Sn ⊂ Rn+1- which is
a set consisting of two antipodal points (the first picture in Figure 2). This indicates that Pn

can be obtained from Sn by identifying (gluing) its antipodal points. Again, this is a quotient
that arises from a group action: the group Z2 acting on Sn. Using the multiplicative description
Z2 = {1,−1}, the action is: φ1 is the identity map, while φ−1 is the map sending x ∈ Sn to its
antipodal point −x. Hence the discussion indicates:

Proposition 3.9. Pn is homeomorphic to Sn/Z2.

Proof. The conclusion of the previous discussion is that there is a set-theoretical bijection:

φ : Sn/Z2 → Pn,

which sends the Z2-orbit of x ∈ Sn to the line lx through x, with the inverse

ψ : Pn → Sn/Z2

which sends the line l to Sn ∩ l (a Z2-orbit!). We have to check that they are continuous. We
use Proposition 3.2 and its corollary. To see that φ is continuous, we have to check that the
composition with the quotient map Sn → Sn/Z2 is continuous. But this composition is precisely
the restriction of the quotient map Rn+1 − {0} → Pn to Sn, hence is continuous. In conclusion,
φ is continuous.

To see that ψ is continuous, we have to check that its composition with the quotient map
Rn+1 − {0} → Pn is continuous. But this composition- which is a map from Rn+1 − {0} to
Sn/Z2 can be written as the composition of two other maps which we know to be continuous:

• The map Rn+1 − {0} → Sn sending x to x/||x||.
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• The quotient map Sn → Sn/Z2.

In conclusion ψ is continuous.

Corollary 3.10. The projective space Pn is Hausdorff.

4.3. As a quotient of Dn: Again, the starting remark is very simple: the orbits of the
action of Z2 on Sn always intersect the upper hemisphere Sn

+ (for notations, see Section 4 in the
first chapter). Moreover, such an orbit either lies entirely in the boundary of Sn

+, or intersects
its interior in a unique point. See the second picture in Figure 2. This indicates that Pn can be
obtained from Sn

+ by gluing the antipodal points that belong to its boundary. On the other hand,
the orthogonal projection onto the horizontal hyperplane defines a homeomorphism between Sn

+

and Dn (see Figure 2). Passing to Dn, we obtain an equivalence relation R on Dn given by:

(x, y) ∈ R⇐⇒ (x = y) or (x, y ∈ Sn−1 and x = −y),
and we have done a part of the following:

Exercise 3.3. Show that Pn is homeomorphic to Dn/R. What happens when n = 1?

Corollary 3.11. Pn for n = 2 is homeomorphic to the projective plane as defined in Chapter
1 (Section 8), i.e. obtained from the square by gluing the opposite sides as indicated in Figure
3.
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5. Constructions of topologies: products

In this section we explain how the Cartesian product of two topological spaces is naturally a
topological space itself. Given two sets X and Y we consider their Cartesian product

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
Given a topology TX on X and a topology TY on Y , one defines a topology on X × Y , the
“product topology” TX ×TY , as follows. We say that a subset D ⊂ X × Y is open if and only if

(5.1) ∀ (x, y) ∈ D ∃ U ∈ TX , V ∈ TY such that x ∈ U, y ∈ V,U × V ⊂ D.

We denote by TX × TY the collection of all such D’s and we call it the product topology.

Proposition 3.12. Given (X,TX) and (Y,TY ), TX × TY is indeed a topology on X × Y .
Moreover, it is the smallest topology on X × Y with the property that the two projections

prX : X × Y → X, prY : X × Y → Y

(sending (x, y) to x, and y, respectively) are continuous.

Proof. Axiom (T1) is clear. For (T2), let D1,D2 be in the product topology, and we show
that D := D1 ∩D2 is as well. To check (5.1), let (x, y) ∈ D. Since D1 and D2 satisfy (5.1), for
each i ∈ {1, 2}, we find Ui ∈ TX and Vi ∈ TY such that

(x, y) ∈ Ui × Vi ⊂ Di.

Then U := U1 ∩ U2 ∈ TX (axiom (T2) for TX), and similarly V := V1 ∩ V2 ∈ TY , while clearly
we have x ∈ U , y ∈ V , U × V ⊂ D. The proof of the axiom (T3) is similar.

For the second part, note that a topology T on X ×Y has the property that both projections
are continuous if and only if U × Y ∈ T and X × V ∈ T for all U ∈ TX and V ∈ TY . Clearly
TX × TY has the property, hence the projections are continuous with respect to the product
topology. For an arbitrary topology T on X × Y with the same property, since

U × V = (U × Y ) ∩ (X × V ),

we deduce that U × V ∈ T for all U ∈ TX , V ∈ TY . To show that TX × TY ⊂ T , let D be an
open in the product topology and we show that it must belong to T . Since D satisfies (5.1), for
each z = (x, y) ∈ D we find Uz ∈ TX , Vz ∈ TY such that

{z} ⊂ Uz × Vz ⊂ D.

Taking the union over all z ∈ D, we deduce that

D = ∪z∈DUz × Vz.

But, as we have already seen, all members Uz × Vz must be in T hence, using axiom (T3) for
T , we deduce that D ∈ T .

Exercise 3.4. Show that, if (Z,TZ) is a third topological space, then a function

h = (f, g) : Z → X × Y, h(z) = (f(z), g(z))

is continuous if and only if its components f : Z → X and g : Z → Y are both continuous.

Example 3.13. In R3 we have the cylinder

C = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 ≤ z ≤ 1},
which is pictured in Figure 4. According to our conventions, C is considered with the topology
induced from R3. On the other hand, since

C = S1 × [0, 1],
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Figure 4.

where S1 is the unit circle in R2, C carries yet another natural topology, namely the product
topology. These two topologies are the same. This can be proven in a much greater generality,
as described in Exercise 3.27.

Exercise 3.5. A topological group is a group (G, ·) endowed with a topology on G such that
all the group operations, i.e.

1. the inversion map τ : G→ G, g 7→ g−1,
2. the composition map m : G×G→ G, (g, h) 7→ g · h

are continuous (where G×G is endowed with the product topology).
Note that the sets of matrices GLn(R), SLn(R), O(n) that appear in Exercise 2.33, together

with multiplication of matrices, are groups. The same exercise describe natural topologies on
them (induced fromMn(R)). Show that, with respect to these topologies, they are all topological
groups.
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6. Combining quotients with products: cones, suspensions

Another class of quotient spaces are quotients obtained by collapsing a subspace to a point.

Definition 3.14. Let X be a topological space and let A ⊂ X. We define X/A as the topo-
logical space obtained from X by collapsing A to a point (i.e. by identifying to each other all the
points of A). Equivalently,

X/A = X/RA,

where RA is the equivalence relation on X defined by

RA = {(x, y) : x = y or x, y ∈ A}.
Here are some more constructions of this type. Let X be a topological space.
The cylinder on X is defined as

Cyl(X) := X × [0, 1],

endowed with the product topology (and the unit interval is endowed with the Euclidean topol-
ogy). It contains two interesting copies of X: X × {1} and X × {0}.

The cone on X is defined as the quotient obtained from Cyl(X) by collapsing X × {1} to a
point:

Cone(X) := X × [0, 1]/(X × {1})
(endowed with the quotient topology). Intuitively, it looks like a cone with basis X.The cone
contains the copy X × {0} of X (the basis of the cone).

The suspension of X is defined as the quotient obtained from Cone(X) by collapsing the basis
X × {0} to a point:

S(X) := Cone(X)/(X × {0}).

1

0

2
1

Xx{ −}

The suspension of XThe cone of XThe cylinder of X

1

Xx{0}

Xx{1}

Xx{0}

Figure 5.

Example 3.15. The general constructions of quotients, such as the quotient by collapsing a
subspace to a point, the cone construction and the suspension construction, are nicely illustrated
by the various relations between the closed unit balls Dn ⊂ Rn and the unit spheres Sn ⊂ Rn+1.
We mention here the following:

(i) Dn is homeomorphic to Cone(Sn−1)- the cone of Sn−1.
(ii) Sn is homeomorphic to S(Sn−1)- the suspension of Sn.
(iii) Sn is homeomorphic to Dn/Sn−1- the space obtained from Dn by collapsing its boundary

to a point.
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Figure 6.

Proof. The first homeomorphism is indicated in Figure 6 (project the cone down to the
disk). It is not difficult to make this precise: we have a map

f̃ : Sn−1 × [0, 1] → Dn, f̃(x, t) = (1 − t)x.

This is clearly continuous and surjective, and it has the property that

f̃(x, t) = f̃(x′, t′) ⇐⇒ (x, t) = (x′, t′) or t = 1,

which is precisely the equivalence relation corresponding to the quotient defining the cone. Hence
we obtain a continuous bijective map

f : Cone(Sn−1) = Sn−1 × [0, 1]/(Sn−1 × {1}) → Dn.

After we will discuss the notion of compactness, we will be able to conclude that also f−1 is
continuous, hence f is a homeomorphism. Note that this f sends Sn−1 × {1} to the boundary
of Dn, hence (ii) will follow from (iii). In turn, (iii) is clear on the picture (see Figure 11 in the
previous Chapter); the map from Dn to Sn indicated on the picture can be written explicitly as

g̃ : Dn → Sn, x 7→ (
x1

||x||sin(π||x||), . . . , xn

||x||sin(π||x||), cos(π||x||))

(well defined for x 6= 0) and which sends 0 to the north pole (0, . . . , 0, 1).
One can check directly that

g̃(x) = g̃(x′) ⇐⇒ x = x′ or x, x′ ∈ Sn−1,

which is the equivalence relation corresponding to the quotient Dn/Sn−1. We deduce that we
have a bijective continuous map:

g : Dn/Sn−1 → Sn

but, again, we leave it to after the discussion of compactness the final conclusion that g is a
homeomorphism.
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7. Constructions of topologies: Bases for topologies

In the construction of metric topologies, the balls were the building pieces. Similarly for the
product topology, where the building pieces were the subsets of type U × V with U ∈ TX ,
V ∈ TY . In both cases, the collection of “building pieces” was not a topology, but “generated”
a topology. The abstract notion underlying these constructions is that of topology basis.

Definition 3.16. Let X be a set and let B be a collection of subsets of X. We say that B is
a topology basis if it satisfies the following two axioms:

(B1) for each x ∈ X there exists B ∈ B such that x ∈ B.
(B2) for each B1, B2 ∈ B, and x ∈ B1 ∩B2, there exists B ∈ B such that x ∈ B ⊂ B1 ∩B2.

In this case, we define the topology induced by B as the collection

T (B) := {U ⊂ X : ∀ x ∈ U ∃ B ∈ B s.t. x ∈ B, B ⊂ U}.
Exercise 3.6. Show that, indeed, for any metric d on X, the collection Bd of all open balls is

a topology basis and topology T (Bd) = Td. Prove a similar statement for the product topology.

We still have to prove that T (B) is, indeed, a topology (the next proposition). Here we point
out a different description of T (B) (which we have already seen in the case of metric an product
topologies- and this is a hint for the next exercise!).

Exercise 3.7. Let X be a set and let B be a collection of subsets of X. Then a subset U ⊂ X
is in T (B) if and only if there exist Bi ∈ B with i ∈ I (I-an index set) such that U = ∪i∈IBi.

Proposition 3.17. Given a collection B of subsets of a set X, the following are equivalent:

1. B is a topology basis.
2. T (B) is a topology on X.

In this case T (B) is the smallest topology on X which contains B; moreover, B is a basis for the
topological space (X,T (B)), in the sense of Definition 2.47.

Proof. We prove that the axioms (T1), (T2) and (T3) of a topology (applied to T (B)) are
equivalent to axioms (B1) and (B2) of a topology basis (applied to B). First of all, the previous
exercise shows that (T3) is satisfied without any assumption on B. Next, due to the definition
of T (B), (B1) is equivalent to X ∈ T (B). Since clearly ∅ ∈ T (B), (B1) is equivalent to (T1).
Hence it suffices to prove that (T2) (for T (B)) is equivalent to (B2) (for B). That (T2) implies
(B2) is immediate: given B1, B2 ∈ B, since they are in T (B) so is their intersection, i.e. for
all x ∈ B1 ∩ B2 there exists B ∈ B such that x ∈ B, B ⊂ B1 ∩ B2. For the converse, assume
that (B2) holds. To prove (T2) for T (B), we start with U, V ∈ T (B) and we want to prove that
U ∩V ∈ T (B). I.e., for an arbitrary x ∈ U ∩V , we have to find B ∈ B such that x ∈ B ⊂ U ∩V .
Since x ∈ U ∈ T (B), we find B1 ∈ B such that x ∈ B1 ⊂ U . Similarly, we find B2 ∈ B such
that x ∈ B2 ⊂ V . By (B2) we find B ∈ B such that x ∈ B ⊂ B1 ∩ B2. We deduce that
x ∈ B ⊂ U ∩V , proving (T2). Finally, the last part of the proposition follows from the previous
exercise, as any topology which contains B must contain all unions of sets in B.

Next, since many topologies are defined with the help of a basis, it is useful to know how to
compare topologies by only looking at basis elements (see Exercises 3.29 and 3.31).

Lemma 3.18. Let B1 and B2 be two topology bases on X. Then T1 is smaller than T2 if and
if and only if: for each B1 ∈ B1 and each x ∈ B1, there exists B2 ∈ B2 such that x ∈ B2 ⊂ B1.

Proof. What we have to show is that T1 ⊂ T2 is equivalent to B1 ⊂ T2. The direct
implication is clear since B1 ⊂ T1. For the converse, we use the fact that every element in
T1 = T (B1) can be written as a union of elements of B1; hence, if B1 ⊂ T2, every element of T1

can be written as a union of elements of T2 hence is in itself in T2.
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8. General remarks on generated and initial topologies

8.1. Generated Topologies. There is a slightly more general recipe for generating topolo-
gies. What it may happen is that we have a set X, and we are looking for a topology on X
which contains certain (specified) subsets of X. In other words,

• we start with a set X and a collection S of subsets of X

and we are looking for a (interesting) topology T on X which contains S. Of course, the discrete
topology Tdis on X is always a choice, but it is not a very interesting one (it does not even depend
on S). Is there a “best” one? More precisely:

• is there a smallest possible topology on X which contains S?

Example 3.19. If S = B is a topology basis on the set X, Proposition 3.17 shows that the
answer is positive, and the resulting topology is precisely T (B).

The answer to the question is always “yes”, for any collection S. Indeed, Exercise 2.20 of
the previous chapter tells us that intersections of topologies is a topology. Hence one can just
proceed abstractly and define:

〈S〉 :=
⋂

T −topology on X containing S

T

This is called the topology generated by S. By Exercise 2.20, it is a topology. By construction, it
is the smallest one containing S. Of course, this abstract description is not the most satisfactory
one. However, using exactly the same type of arguments as in the proof of Proposition 3.17:

Proposition 3.20. Let X be a set, let S be a collection of subsets. Define B(S) as the
collection of subsets of X which can be written as finite intersections of subsets that belong to
S. Then B(S) is a topology basis and the associated topology is precisely 〈S〉. In conclusion, a
subset U ⊂ X belongs to 〈S〉 if and only if it is a union of finite intersections of members of S.

8.2. Initial topologies. Here is a general principle for constructing topologies. Many
topological constructions are what we call “natural”, or “canonical” (in any case, not arbitrary).
Very often, when one looks for a topology, one wants certain maps to be continuous. This
happens e.g. with induced and product topologies. A general setting is as follows.

• start with a set X and a collection of maps {fi : X → Xi}i∈I (I is an index set), where
each Xi is endowed with a topology Ti.

We are looking for (interesting) topologies TX on X such that all the maps fi become continuous.
As before, this has an obvious but unsatisfactory answer: TX = Tdis (which does not reflect the
functions fi). One should also remark that the smaller TX becomes, the smaller are the chances
that fi are continuous. With these, the really interesting question is to

• find the smallest topology on X such that all the functions fi become continuous.

Now, by the definition of continuity, a topology on X makes the functions fi continuous if and
only if all subsets of type f−1

i (Ui) with i ∈ I, Ui ∈ Ti, are open. Hence, denoting

S := {U ⊂ X : ∃ i ∈ I,∃ Ui ∈ Ti such that U = f−1
i (Ui)}

the answer to the previous question is: the topology 〈S〉 generated by S. This is called the initial
topology on X associated to the starting data (the topological spaces Xi and the functions fi).

Example 3.21. Given a subset A of a topological space (X,T ), the natural map here is the
inclusion i : A→ X. The associated initial topology on A is the induced topology T |A .

Given two topological spaces (X,TX) and (Y,TY ), the Cartesian product X × Y comes with
two natural maps: the projections prX : X × Y → X, prY : X × Y → Y . The associated initial
topology is the product topology on X × Y .
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9. Example: some spaces of functions

Given two sets X and Y we denote by F(X,Y ) the set of all functions from X to Y . In
many parts of mathematics, when interested in a certain problem, one deals with subsets of
F(X,Y ), endowed with a topology which is relevant to the problem; the topology is dictated
by the type of convergence one has to deal with. The list of examples is huge; we will look at
some topological examples, i.e. at the set of continuous functions C(X,Y ) ⊂ F(X,Y ) between
two spaces. The general setting will be discussed later. Here we treat the particular case

X = I ⊂ R an interval, Y = Rn endowed with the Euclidean metric d.

Here I could be any interval, open or not, closed or not, equal to R or not.
There are several notions of convergence on the set F(I,Rn) of functions from I to Rn.

Definition 3.22. Let {fn}n≥1 be a sequence in F(I,Rn), f ∈ F(I,Rn). We say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x) → f(x) for all x ∈ I.

• fn converges uniformly to f , and we write fn ⇉ f , if for any ǫ > 0, there exists nǫ s.t.

d(fn(x), f(x)) < ǫ ∀ n ≥ nǫ, ∀ x ∈ I.

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any compact sub-

interval K ⊂ I, fn|K ⇉ f |K .

We show that these convergences correspond to certain topologies on F(I,Rn). First the
pointwise convergence. For x ∈ I, U ⊂ Rn open, we define

S(x,U) := {f ∈ F(I,Rn) : f(x) ∈ U} ⊂ F(I,Rn).

These form a family S. The topology of pointwise convergence, denoted Tpt, is the topology on
F(I,Rn) generated by S. Hence S defines a topology basis, consisting of finite intersections of
members of S, and Tpt is the associated topology.

Proposition 3.23. The pointwise convergence coincides with the convergence in (F(I,Rn),Tpt).

Proof. Rewrite the condition that fn → f with respect to Tpt. It means that, for any
neighborhood of f of type S(x,U) there exists an integer N such that fn ∈ S(x,U) for n ≥ N .
I.e., for any x ∈ I and any open U containing f(x), there exists an integer N such that fn(x) ∈ U
for all n ≥ N . I.e., for any x ∈ I, fn(x) → f(x) in Rn.

For uniform convergence, the situation is more fortunate: it is induced by a metric. Given
two functions f, g ∈ F(I,Rn), we define the sup-distance between f and g by

dsup(f, g) = sup{d(f(x), g(x)) : x ∈ I}.
Since this supremum may be infinite for some f and g (and only for that reason!), we define

d̂sup(f, g) = min(dsup(f, g), 1).

Note that dsup and d̂sup are morally the same when it comes to convergence (dsup(f, g) is“ small”

if and only if d̂sup(f, g) is); they are actually the same on C(I,Rn) if I is compact (why?). The
associated topology is called the topology of uniform convergence.

Exercise 3.8. Show that d̂sup is a metric on F(I,Rn).

Proposition 3.24. The uniform convergence coincides with the convergence in (F(I,Rn), d̂sup).

Proof. According to the definition of uniform convergence, fn ⇉ f if and only if for each
ǫ > 0, we find nǫ such that dsup(f, g) ≤ ǫ for all n ≥ nǫ. Of course, only ǫ’s small enough matter

here, hence we recover the convergence with respect to d̂sup.
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We now move to uniform convergence on compacts. Given K ⊂ I a compact subinterval,
ǫ > 0, f ∈ F(I,Rn), we define

BK(f, ǫ) := {g ∈ F(I,Rn) : d(f(x), g(x)) < ǫ ∀ x ∈ K}.
The toplogy of compact convergence, denoted Tcp, is the topology on F(I,Rn) generated by the
family of all the subsets BK(f, ǫ). As above, the definitions immediately imply:

Proposition 3.25. The uniform convergence on compacts coincides with the convergence in
the topological space (F(I,Rn),Tcp).

In topology, we are interested in continuous functions. The situation is as follows:

Theorem 3.26. For a sequence of continuous functions fn ∈ C(I,Rn), and f ∈ F(I,Rn):

(9.1) (fn ⇉ f) =⇒ (fn
cp→ f) =⇒ (f ∈ C(I,Rn)).

More precisely, one has an inclusion of topologies

(pointwise) ⊂ (uniform on compacts) ⊂ (uniform)

and C(I,Rn) is closed in (F(I,Rn),Tcp) (hence also in (F(I,Rn), d̂sup)).

Proof. The comparison between the three topologies is again a matter of checking the
definitions. Also, the first implication in (9.1) is trivial; the second one follows from the last
part of the theorem, on which we concentrate next. We first show that C(I,Rn) is closed in

(F(I,Rn), d̂sup). Assume that f is in the closure, i.e. f : I → Rn is the uniform limit of a
sequence of continuous functions fn. We show that f is continuous. Let x0 ∈ I and we show
that f is continuous at x0. I.e., we fix ǫ > 0 and we look for a neighborhood Vǫ of x0 such that
d(f(x), f(x0)) < ǫ for all x ∈ Vǫ. Since fn ⇉ f , we find N such that d(fn(x), f(x)) < ǫ/3 for
all n ≥ N and all x ∈ I. Since fN is continuous at x0, we find a neighborhood Vǫ such that
d(fN (x), fN (x0)) < ǫ/3 for all x ∈ Vǫ. But then, for all x ∈ Vǫ,

d(f(x), f(x0)) ≤ d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0)) < 3 × ǫ/3 = ǫ.

Finally, we show that C(I,Rn) is closed in (F(I,Rn),Tcp). Assume that f is in the closure.
Remark that, for f to be continuous, it suffices that f |K is continuous for any compact sub-
interval K ⊂ I. Fx such a K. Considering neighborhoods of type BK(f, 1/n), we find fn ∈
C(I,Rn) lying in this neighborhood. But then fn|K ⇉ f |K hence f |K is continuous.

Here is the most important property of the uniform topology (Tcp will be discussed later).

Theorem 3.27. (F(I,Rn), d̂sup)) and (C(I,Rn), d̂sup)) are complete metric spaces.

Proof. Using the previous theorem and the simple fact that closed subspaces of complete
metric spaces are complete, we are left with showing that (F(I,Rn), d̂sup) is complete. So, let

(fn)n≥1 be a Cauchy sequence with respect to d̂sup (as mentioned above, for such arguments

there is no difference between using d or d̂). Since for all x ∈ I,
d(fn(x), fm(x)) ≤ dsup(fn, fm),

it follows that (fn(x))n≥1 is a Cauchy sequence in (Rn, d), for all x ∈ X. Denoting by f(x) the
limit, we obtain f ∈ F(I,Rn) (to which fn converges pointwise). To show that fn ⇉ f , let ǫ > 0
and we look for nǫ such that dsup(fn, f) < ǫ for all n ≥ nǫ. For that, use that (fn)n≥1 is Cauchy
and choose nǫ such that dsup(fn, fm) < ǫ/2 for all n,m ≥ nǫ. Combininig with the previous
displayed inequality, we have d(fn(x), fm(x)) < ǫ/2 for all such n,m and all x ∈ I. Taking
m → ∞, we find that d(fn(x), f(x)) ≤ ǫ/2 < ǫ for all n ≥ nǫ and x ∈ I, i.e. dsup(fn, f) < ǫ for
all n ≥ nǫ.



10. MORE EXERCISES 59

10. More exercises

10.1. Quotients.

Exercise 3.9. Let T be a model for the torus, with quotient map π : [0, 1]×[0, 1] → T (choose
your favourite). Give an example of a function f : [0, 1] → [0, 1] × [0, 1] with the property that
f is not continuous, but π ◦ f is.

Exercise 3.10. Start with the interval [0, 2] and glue the points 0, 1 and 2. Describe the
equivalence relation R encoding this gluing and let X = [0, 2]/R. Describe an embedding of X
in R2.

Exercise 3.11. Show that the space obtained from R by collapsing [−1, 1] to a point is
homeomorphic to R.

Exercise 3.12. Show that the space obtained from R by collapsing (−1, 1) to a point is not
Hausdorff.

Exercise 3.13. Let X = (0,∞). Show that

φn(r) := 2nr

defines an action of Z on X and X/Z is homeomorphic to S1.
(hint: see Example 3.7 and Exercise 1.2).

Exercise 3.14. Consider the unit circle in the complex plane

S1 = {z ∈ C : |z| = 1}.
Let n be a positive integer, consider the n-th root of unity

ξ = cos(
2π

n
) + isin(

2π

n
) ∈ C

and let Zn be the (additive) group of integers modulo n. Show that

φ
k̂
(z) := ξkz

defines an action of Zn on S1, explain its geometric meaning, and show that S1/Zn is homeo-
morphic to S1. What do you obtain when n = 2?

Exercise 3.15. Let R be the equivalence relation on R consisting of those pairs (r, s) of real
numbers with the property that there exist two integers m and n such that r − s = m + n

√
2.

Show that the resulting quotient space is not Hausdorff.

Exercise 3.16. Let Γ = Z × Z with the usual group operation

(m,n) + (m′, n′) = (m+m′, n + n′).

Show that
φm,n(x, y) := (x+m, y + n)

defines an action of Γ on R2 and R2/Γ is homeomorphic to the torus.

Exercise 3.17. Do the same for the same group but the new action:

φm,n(x, y) := (x+my + n+
m(m− 1)

2
, y +m).

Exercise 3.18. Consider the following groups:

1. Γ = 〈a, b; bab = a〉 (the group in two generators a and b, subject to the relation bab = a).
2. Γ′ = Z × Z with the operation

(m,n) ◦ (m′, n′) = (m+m′, n+ (−1)mn′).
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3. Γ′′ is the subgroup of (Homeo(R2), ◦) (the group of homeomorphisms of the plane endowed
with the composition of functions) generated by the transformations

φ(x, y) = (x+ 1,−y), ψ(x, y) = (x, y + 1).

Show that:

1. these three groups are isomorphic.
2. one obtains an action of these groups on R2; write it down explicitly.
3. the resulting quotient is homeomorphic to the Klein bottle.

Exercise 3.19. Compose ad solve a similar exercise in which the resulting quotient is home-
omorphic to the Moebius band.

Exercise 3.20.

(i) Write the Moebius band as a union of two subspaces M and C where M is itself a Moebius
band, C is a cylinder (i.e. homeomorphic to S1 × [0, 1]) and M ∩ C is a circle.

(ii) Similarly, decompose P2 as the union of a Moebius band M and another subspace Q, such
that Q is a quotient of the cylinder and M ∩Q is a circle.

(iii) Deduce that P2 can be obtained from a Moebius band and a disk D2 by gluing them
along their boundary circles.

Exercise 3.21. Show that

1. Pn is an n-dimensional topological manifold.

2. The map f : Pn → R
(n+1)(n+2)

2 which sends the line lx through x = (x0, . . . , xn) to

f(lx) = (x0x0, x0x1, . . . , x0xn, x1x1, x1x2, . . . , x1xn, . . . , xnxn)

is an embedding.

10.2. Product topology.

Exercise 3.22. Show that

(Rn,Teucl) × (Rm,Teucl) = (Rn+m,Teucl).

Exercise 3.23. Show that if X and Y are both Hausdorff, then so is X × Y . Similarly for
metrizability and first countability.

Exercise 3.24. Look at exercise 2.22 and show that there is no conflict in the notation; i.e.
the topology Tl × Tl defined in that exercise does coincide with the product topology.

Exercise 3.25. Show that if n is an odd number, then GLn(R) is homeomorphic to GL1(R)×
SLn(R) (see Exercise 2.33).

Exercise 3.26. Show that a topological space X is Hausdorff if and only if

∆ := {(x, x) : x ∈ X}
is closed in X ×X.

Exercise 3.27. Let X and Y be two topological spaces, A ⊂ X, B ⊂ Y . Then the following
two topologies on A×B coincide:

(i) The product of the topology of A (induced from X) and that of B (induced from Y ).
(ii) The topology induced on A×B from the product topology on X × Y .

Exercise 3.28. Let X be the cone of the interval (0, 1). Construct an explicit continuous
injection

f : X → R2

and let C be its image. Is f a homeomorphism?
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10.3. Topology bases.

Exercise 3.29. Using Lemma 3.18, prove again that the Euclidean and the square metrics
induce the same topology.

Exercise 3.30. Go back to exercise 2.17 and show that B there is a topology basis. Then
using Lemma 3.18, show again that the resulting topology is larger than the topology from
Exercise 2.16.

Exercise 3.31. Show that
Bl := {[a, b) : a, b ∈ R}

is a topology basis and T (Bl) is the topology Tl from Exercise 2.19. Then use Lemma 3.18 to
prove again that Tl is finer than TEucl.

Exercise 3.32. Do again Exercise 2.22 using Lemma 3.18.

Exercise 3.33. Consider the unit circle S1 and the functions

α, β : S1 → R, α(x, y) = x, β(x, y) = y.

Show that:

1. S1, endowed with the smallest topology which makes α continuous, is not Hausdorff.
2. the smallest topology on S1 which makes both α and β continuous is the Euclidean one.

10.4. Spaces of functions.

Exercise 3.34. Let fn : R → R, fn(x) = 1
n
sin(nx). Show that (fn) is uniformly convergent.

Exercise 3.35. Let fn : R → R, fn(x) = xn. Is (fn) pointwise convergent? But uniformly
on compacts? But uniformly?

Exercise 3.36. Let fn : R → R, fn(x) = x
n
. Is (fn) pointwise convergent? But uniformly on

compacts? But uniformly?

Exercise 3.37. (Dini’s theorem) Let fn : I → R be an increasing sequence of continuous
functions defined on an interval I, which converges pointiwse to a continuous function f . Show
that fn ⇉ f . Is the same true if we do not assume that f is continuous?

Exercise 3.38. Let pn ∈ C([0, 1],R) be the sequence of functions (even polynomials!) defined
inductively by

pn+1(t) = pn(t) +
1

2
(t− pn(t)2), p1 = 0.

Show that (pn) converges uniformly to the function f(t) =
√
t.

(Hint: first show that pn(t) ≤
√
t, then that pn(t) is increasing, then that it converges pointwise

to
√
t, then look above).

Exercise 3.39. Now, did you know that there are continuous surjective functions f : [0, 1] →
[0, 1] × [0, 1]??? (yes, continuous curves in the plane which fill up an entire square!). Actually,
you now have all the knowledge to show that (using Theorem 3.27); it is not obvious but, once
you see the pictures, the proof is not too difficult; have a look at Munkres’ book.
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