
CHAPTER 6

Metric properties versus topological ones

1. Completeness and the Baire property

2. Boundedness and totally boundedness

3. Compactness

4. Paracompactness

5. More exercises

93
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1. Completeness and the Baire property

Probably the most important metric property is that of completeness which we now recall.

Definition 6.1. Given a metric space (X, d) and a sequence (xn)n≥1 in X, we say that
(xn)n≥1 is a Cauchy sequence if

lim
n,m→∞

d(xn, xm) = 0,

i.e., for each ǫ > 0, there exists an integer nǫ such that

d(xn, xm) < ǫ

for all n,m ≥ nǫ. One says that (X, d) is complete if any Cauchy sequence is convergent.

Very simple examples (see e.g Exercise 1.33 from the first chapter) show that completeness is
not a topological property. However, it does have topological consequences. The first one is a
relative topological property for complete spaces.

Proposition 6.2. If (X, d) is a complete metric space then A ⊂ X is complete (with respect
to the restriction of d to A) if and only if A is closed in X.

Proof. Assume first that A is complete and show that A = A. Let x ∈ A. Then we
find a sequence (an) in A converging (in (X, d)) to x. In particular, (an) is Cauchy. But the
completeness of A implies that the sequence is convergent (in A!) to some a ∈ A. Hence
x = a ∈ A. This proves that A is closed. For the converse, assume A is closed and let (an) be
a Cauchy sequence in A. Of course, the sequence is Cauchy also in X. Since X is complete, it
will be convergent to some x ∈ X. Since A is closed, x ∈ A, i.e. (an) is convergent in A.

The next topological property that complete metric spaces automatically have is:

Proposition 6.3. Any complete metric space (X, d) has the Baire property, i.e. for any
countable family {Un}n≥1 consisting of open sets Un ⊂ X, if Un is dense in X for all n, then
∩nUn is dense in X.

Proof. Assume now that {Un}n≥1 consists of open dense subsets of X. We show that any
x ∈ X is in the closure of ∩nUn. Let U be an open containing x; we have to show that U
intersects ∩nUn. First, since U1 is dense in X, U ∩ U1 6= ∅; choosing x1 in this intersection,
we find r1 > 0 such that B[x1, r1] ⊂ U ∩ U1. We may assume r1 < 1. Next, since U2 is
dense in X, B(x1, r1) ∩ U2 6= ∅; choosing x2 in this intersection, we find r2 > 0 such that
B[x2, r2] ⊂ B(x1, r1) ∩ U2. We may assume r2 < 1/2. Similarly, we find x3 and r3 < 1/3 such
that B[x3, r3] ⊂ B(x2, r2)∩U3 and we continue inductively. Then the resulting sequence (xn) is
Cauchy because d(xn, xm) < rn for n ≤ m. This implies that (xn) is convergent to some y ∈ X
and d(xn, y) ≤ rn for all n. Hence y ∈ B[xn, rn] ⊂ Un, i.e. y ∈ ∩nUn. Also, since B[x1, r1] ⊂ U ,
y ∈ U . Hence U ∩ (∩nUn) 6= ∅, as we wanted.
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2. Boundedness and totally boundedness

Another notion that strongly depends on a metric is the notion of boundedness.

Definition 6.4. Given a metric space (X, d), we say that A ⊂ X is

1. bounded in (X, d) (or with respect to d) if there exists x ∈ X and R > 0 such that
A ⊂ B(x,R).

2. totally bounded in (X, d) if, for any ǫ > 0, there exist a finite number of balls in X of
radius ǫ covering A.

When A = X, we say that (X, d) is bounded, or totally bounded, respectively.

You should convince yourself that, when X = R
n and d is the Euclidean metric, total bound-

edness with respect to d is equivalent to the usual notion of boundedness.
A few remarks are in order here. First of all, these properties are not really relative properties

(i.e. they did not depend on the way that A sits inside X), but properties of the metric space
(A, dA) itself, where dA is the induced metric on A.

Exercise 6.1. Given a metric space (X, d) and A ⊂ X, A is bounded in (X, d) if and only
if (A, dA) is bounded. Similarly for totally bounded.

Another remark is that the property of “totally bounded” is an improvement of that of
“bounded”. The following exercise shows that, by a simple trick, a metric d can always be
made into a bounded metric d̂ without changing the induced topology; although the notion of
boundedness is changed, totally boundedness with respect to d and d̂ is the same.

Exercise 6.2. As in Exercise 1.34, for a metric space (X, d) we define d̂ : X × X → R by

d̂(x, y) = min{d(x, y), 1}.

We already know that d̂ is a metric inducing the same topology on X as d, and that (X, d̂) is

complete if and only if (X, d) is. Also, it is clear that (X, d̂) is always bounded. Show now that

(X, d̂) is totally bounded if and only if (X, d) is.

Finally, here is a lemma that we will use later on:

Lemma 6.5. Given a metric space (X, d) and A ⊂ X, then A is totally bounded if and only if
A is.

Proof. Let ǫ > 0. Choose x1, . . . , xk such that A is covered by the balls B(xi, ǫ/2). Then
A will be covered by the balls B(xi, ǫ). Indeed, if y ∈ A, we find x ∈ A such that d(x, y) < ǫ/2;
also, we find xi such that x ∈ B(xi, ǫ/2); from the triangle inequality, y ∈ B(xi, ǫ).
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3. Compactness

The main criteria to recognize when a subspace A ⊂ R
n is compact is by checking whether it

is closed and bounded in R
n. For general metric spaces:

Theorem 6.6. A subset A of a complete metric space (X, d) is compact if and only if it is
closed (in X) and totally bounded (with respect to d).

This theorem will actually be an immediate consequence of another theorem, which also
clarifies the relationship between compactness and sequential compactness for metric spaces.

Theorem 6.7. For a metric space (X, d), the following are equivalent:

1. X is compact.
2. X is sequentially compact.
3. X is complete and totally bounded.

Proof. We first prove Theorem 6.7. The implication 1=⇒ 2 is Corollary 4.33. For 2=⇒ 3,
assume that X is sequentially compact. We first prove that X is complete. Let (xn)n≥1 be a
Cauchy sequence. By hypothesis, we find a convergent subsequence (xnk

)k≥1. Let x be its limit.
We prove that the entire sequence (xn) converges to x. Let ǫ > 0. We look for an integer Nǫ

such that d(xn, x) < ǫ for all n > Nǫ. Since (xn) is Cauchy we find N ′
ǫ such that

d(xn, xm) < ǫ/2

for all n,m ≥ N ′
ǫ. Since (xnk

)k≥1 converges to x, we find kǫ such that

d(xnk
, x) < ǫ/2

for all k ≥ kǫ. Choose Nǫ = max{N ′
ǫ, nkǫ

}. Then, for n > Nǫ, choosing k such that nk > n
(such a k exists since n1 < n2 < . . . is a sequence that tends to ∞), we must have k > kǫ and
nk > N ′

ǫ, hence
d(xn, xnk

) < ǫ/2, d(xnk
, x) < ǫ/2.

Using the triangle inequality, we obtain d(xn, x) < ǫ, and this holds for all n ≥ Nǫ. This
proves that (xn) converges to x. We now prove that X is totally bounded. Assume it is not.
Then we find r > 0 such that X cannot be covered by a finite number of balls of radius r.
Construct a sequence (xn)n≥1 as follows. Start with any x1 ∈ X. Since X 6= B(x1, r), we
find x2 ∈ X − B(x1, r). Since X 6= B(x1, r) ∪ B(x2, r), we find x3 ∈ X − B(x1, r) ∪ B(x2, r).
Continuing like this we find a sequence with xn /∈ B(xm, r) for n > m. Hence d(xn, xm) > r for
all n 6= m. But by hypothesis, (xn) has a subsequence (xnk

)k≥1 which converges to some x ∈ X.
But then we find N such that d(xnk

, x) < r/2 for all k ≥ N , hence

d(xnk
, xnl

) ≤ d(xnk
, x) + d(x, xnl

) < r

for all k, l ≥ N , and this contradicts the condition “d(xn, xm) > r for all n 6= m”.
3=⇒ 1: Assume that (X, d) is complete and totally bounded. The last condition ensures that

for each integer n ≥ 0, there is a finite set Fn ⊂ X such that

X =
⋃

x∈Fn

B(x,
1

2n
).

Let U = {Ui : i ∈ I} be an open cover of X, and we want to prove that we can extract a finite
subcover of U . Assume this is not possible. We construct a sequence (xn)n≥1 inductively as
follows. Since ∪x∈F1

B(x, 1
2) = ∪iUi, and the first union is a finite union (F1 is finite), we find

x1 ∈ F1 such that B(x1,
1
2) cannot be covered by a finite number of opens from U . Now, since

B(x1,
1

2
) =

⋃

x∈F2

(B(x1,
1

2
) ∩ B(x,

1

4
))
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we find x2 ∈ F2 such that

B(x1,
1

2
) ∩ B(x2,

1

4
) 6= ∅

and B(x2,
1
4) cannot be covered by a finite numbers of opens from U . Continuing this, at step

n we find xn ∈ Fn such that

B(xn−1,
1

2n−1
) ∩ B(xn,

1

2n
) 6= ∅

and B(xn, 1
2n ) cannot be covered by a finite number of opens from U . Note that, choosing an

element y in the (non-empty) intersection above, the triangle inequality implies that

d(xn−1, xn) <
1

2n−1
+

1

2n
=

3

2n
,

from which we deduce that (xn)n≥1 is a Cauchy sequence (why?). By hypothesis, it will converge
to en element x ∈ X. Choose U ∈ U such that x ∈ U . Since U is open, we find ǫ > 0 such
that B(x, ǫ) ⊂ U . Since xn → x, we find nǫ such that d(xn, x) < ǫ/2 for all n > nǫ. Using
the triangle inequality, we deduce that B(xn, ǫ/2) ⊂ U for all n ≥ nǫ. Choosing n so that also
1/2n < ǫ/2, we deduce that B(xn, 1/2n) ⊂ U , which contradicts the fact that B(xn, 1

2n ) cannot
be covered by of finite number of opens from U .

This ends the proof of Theorem 6.7. For Theorem 6.6, one uses the equivalence between 1
and 3 above, applied to the metric space (A, dA), and Proposition 6.2.

We now derive some more properties of compactness in the metric case. In what follows, given
F ⊂ X, we say that F is relatively compact in X if the closure F in X is compact.

Corollary 6.8. For a subset F of a complete metric space (X, d), the following are equivalent

1. F is relatively compact in X.
2. any sequence in F admits a convergent subsequence (with some limit in X).
3. F is totally bounded.

Proof. We apply Theorem 6.7 to F . We know that 3 is equivalent to the same condition
for F (Lemma 6.5). We prove the same for 2; the non-obvious part is to show that F satisfies 2
if F does. So, let (yn) be a sequence in F . For each n we find xn ∈ F such that d(xn, yn) < 1/n.
After eventually passing to a subsequence, we may assume that (xn) is convergent to some x ∈ X
and d(xn, yn) → 0 as n → ∞. But this implies that (yn) itself must converge to x.

Corollary 6.9. Any compact metric space (X, d) is separable, i.e. there exists A ⊂ X which
is at most countable and which is dense in X.

Proof. For each n choose a finite set An such that X is covered by B(a, 1
n) with a ∈ An.

Then A := ∪An is dense in X: for x ∈ X and ǫ we have to show that B(x, ǫ) ∩ A 6= ∅; but we
find n with 1

n < ǫ and a ∈ An such that x ∈ B(a, 1
n); then a ∈ B(x, ǫ) ∩ A.

Proposition 6.10. (the Lebesgue lemma) If (X, d) is a compact metric space then, for any
open cover U of X, there exists δ > 0 such that

A ⊂ X, diam(A) < δ =⇒ ∃ U ∈ U such that A ⊂ U.

(δ is called a Lebesgue number for the cover U).

Proof. It suffices to show that there exists δ such that each ball B(x, δ) is contained in some
U ∈ U . If no such δ exists, we find δn → 0 such that B(xn, δn) is not inside any U ∈ U . Using
(sequential) compactness we may assume that (xn) is convergent, with some limit x ∈ X (if not,
pass to a convergent subsequence). Let U ∈ U with x ∈ U and let r > 0 with B(x, r) ⊂ U .
Since δn → 0, xn → x, we find n s.t. δn < r/2, d(xn, x) < r/2. From the triangle inequality,
B(xn, δn) ⊂ B(x, r) (⊂ U) which contradicts the choice of xn and δn.
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4. Paracompactness

Finally, we show that:

Theorem 6.11. Any metric space is paracompact.

Proof. Start with an arbitrary open cover U = {Ui : i ∈ I} of X. We consider an order
relation “≤” on I, which makes I into a well-ordered set (i.e. so that any subset of I has a
smallest element). We will construct a locally finite refinement of type V = ∪n∈NVn where, for
each n, the family V(n) will have one member for each i ∈ I; i.e. it is of type:

V(n) = {Vi(n) : i ∈ I}.

We set X(n) = ∪iVi(n). The definition of V(n) is by induction on n. For n = 1:

Vi(1) :=
⋃

a∈Ui−(∪j<iUj) with B(a, 3
2
)⊂Ui

B(a,
1

2
).

Assuming that V(1), . . . , V(n − 1) have been constructed, we define, for each i ∈ I:

Vi(n) =
⋃

a∈Ui−(∪j<iUj) with B(a, 3

2n )⊂Ui, a/∈X(1)∪...∪X(n−1)

B(a,
1

2n
).

It is clear that V is a refinement of U . Next, we claim that X = ∪nX(n) (i.e. V is a cover): for
x ∈ X, choose the smallest i such that x ∈ Ui and choose n such that B(x, 3/2n) ⊂ Ui; then
either x ∈ X(1) ∪ . . . ∪ X(n − 1) and we are done, or x can serve as an index in the definition
of Vi(n), hence x ∈ X(n). Before showing local finiteness, we remark that, for each n:

(4.1) d(Vi(n), Vj(n)) ≥
1

2n
∀ i 6= j.

To see this, assume that i < j and let x ∈ Vi(n), y ∈ Vj(n). Then x ∈ B(a, 1
2n ) for some a ∈ X

with B(a, 3
2n ) ⊂ Ui and y ∈ B(b, 1

2n ) for some b ∈ X with b /∈ Ui. These imply that b /∈ B(a, 3
2n ),

i.e. d(a, b) ≥ 3
2n . From the triangle inequality:

d(x, y) ≥ d(a, b) − d(a, x) − d(b, y) >
3

2n
−

1

2n
−

1

2n
=

1

2n
.

We now show local finiteness. Let x ∈ X. Fix n0 ≥ 1 integer, i0 ∈ I with x ∈ Vi0(n0). Also,
choose n1 ≥ 1 integer with

(4.2) B(x,
1

2n1

) ⊂ Vi0(n0).

We claim that

V := B(x, r) where r =
1

2n0+n1

intersects only a finite number of members of V. This follows from the following two remarks

1. For n < n0 + n1, V intersects at most one member of the family V(n).
2. For n ≥ n0 + n1, V intersects no member of the family V(n).

Part 1 follows from (4.1): if V intersects both Vi(n) and Vj(n) with i 6= j, we would find a, b ∈ V

with d(a, b) ≥ 1
2n but d(a, b) ≤ d(a, x) + d(x, b) < 2r ≤ 1

2n for all a, b ∈ V .
For part 2, assume that n ≥ n0 + n1. Assume that V ∩ Vi(n) = ∅ for some i ∈ I. From the

definition of Vi(n), we then find B(a, 1
2n )∩V 6= ∅ for some a ∈ Ui−(∪j<iUj), with B(a, 3

2n ) ⊂ Ui,
a /∈ X(1)∪ . . .∪X(n−1). Since n > n0, we have a /∈ X(n0), hence a /∈ Vi0(n0). From the choice
of n1 (see (4.2) above), a /∈ B(x, 1

2n1
), hence d(a, x) ≥ 1

2n1
. But, by the triangle inequality again,

this implies that B(a, 1
2n ) ∩ B(x, r) = ∅. I.e., for any a which contributes to the definition of

Vi(n), its contribution B(a, 1
2n ) does not intersect V . Hence V ∩ Vi(n) = ∅.
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5. More exercises

Exercise 6.3. Let (X, d) be a metric space. Show that any sequence (xn)n≥1 in X with the
property that

d(xn+1, xn) ≤
d(xn, xn−1)

2
for all n, is Cauchy.

Exercise 6.4. Let (x, d) be a complete metric space and let f : X → X be a map with the
property that there exists λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ λd(x, y)

for all x, y ∈ X. Show that f has a unique fixed point (i.e. a ∈ X with f(a) = a).
(Hint: the difficult part is the existence. Start with any x0 and consider xn+1 = f(xn)).

Exercise 6.5. We say that a topological space X is separable if there exists A ⊂ X countable
and dense in X.

1. Show that if X is 2nd countable, then it is separable.
2. Show that a metric space is 2nd countable if and only if it is separable.
3. Deduce that (R,Tl) is not metrizable (see exercise 2.19).
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