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106 8. SPACES OF FUNCTIONS

1. The algebra C(X) of continuous functions

We start this chapter with a discussion of continuous functions from a Hausdorff compact
space to the real or complex numbers. It makes no difference whether we work over R or C, so
let’s just use the notation K for one of these base fields and we call it the field of scalars. For
each z ∈ K, we can talk about |z| ∈ R- the absolute value of z in the real case, or the norm of
the complex number z in the complex case.

For a compact Hausdorff space X, we consider the set of scalar-valued functions on X:

C(X) := {f : X → K : f is continuous}.
When we want to make a distinction between the real and complex case, we will use the more
precise notations C(X,R) and C(X,C).

In this section we look closer at the “structure” that is present on C(X). First, there is a
topological one. When X was an interval in R, this was discussed in Section 9, Chapter 3 (there
n = 1 in the real case, n = 2 in the complex one). As there, there is a metric on C(X):

dsup(f, g) := sup{|f(x) − g(x)| : x ∈ R}.
Since f, g are continuous and X is compact, dsup(f, g) < ∞. As in loc.cit., dsup is a metric and
the induced topology is called the uniform topology on C(X). And, still as in loc.cit.:

Theorem 8.1. For any compact Hausdorff space X, (C(X), dsup) is a complete metric space.

Proof. Let (fn) be a Cauchy sequence in C(X). The proof of Theorem 3.27 applies word by
word to ourX instead of the interval I, to obtain a function f : X → R such that dsup(fn, f) → 0
when n → ∞. Then similarly, the proof of Theorem 3.26 (namely that C(I,Rn) is closed in

(F(I,Rn), d̂sup)) applies word by word with I replaced by X to conclude that f ∈ C(X).

The metric on C(X) is of a special type: it comes from a norm. Namely, defining

||f ||sup := sup{|f(x)| : x ∈ X} ∈ [0,∞)

for f ∈ C(X), we have

dsup(f, g) = ||f − g||sup.

Definition 8.2. Let V be a vector space (over our K = R or C). A norm on V is a function

|| · || : V → [0,∞), v 7→ ||v||
such that

||v|| = 0 ⇐⇒ v = 0

and is compatible with the vector space structure in the sense that:

||λv|| = |λ| · ||v|| ∀ λ ∈ K, v ∈ V,

||v + w|| ≤ ||v|| + ||w|| ∀ v,w ∈ V.

The metric associated to || · || is the metric d||·|| given by

d||·||(v,w) := ||v − w||.
A Banach space is a vector space V endowed with a norm || · || such that d||·|| is complete. When
K = R we talk about real Banach spaces, when K = C about complex ones.

With these, we can now reformulate our discussion as follows:

Corollary 8.3. For any compact Hausdorff space X, (C(X), || · ||sup) is a Banach space.
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Of course, this already makes reference to some of the algebraic structure on C(X)- that of
vector space. But, of course, there is one more natural operation on continuous functions: the
multiplication, defined pointwise:

(fg)(x) = f(x)g(x).

Definition 8.4. A K-algebra is a vector space A over K together with an operation

A×A→ A, (a, b) 7→ a · b
which is unital in the sense that there exists an element 1 ∈ A such that

1 · a = a · 1 = a ∀ a ∈ A,

and which is K-bilinear and associative, i.e., for all a, a′, b, b′, c ∈ A, λ ∈ K,

(a+ a′) · b = a · b+ a′ · b, a · (b+ b′) = a · b+ a · b′,
(λa) · b = λ(a · b) = a · (λb), ,

a · (b · c) = (a · b) · c .
We say that A is commutative if a · b = b · a for all a, b ∈ A.

Example 8.5. The space of polynomials K[X1, . . . ,Xn] in n variables (with coefficients in
K) is a commutative algebra.

Hence the algebraic structure of C(X) is that of an algebra. Of course, the algebraic and the
topological structures are compatible. Here is the precise abstract definition.

Definition 8.6. A Banach algebra (over K) is an algebra A equipped with a norm || · || which
makes (A, ||·||) into a Banach space, such that the algebra structure and the norm are compatible,
in the sense that,

||a · b|| ≤ ||a|| · ||b|| ∀ a, b ∈ A.

Hence, with all these terminology, the full structure of C(X) is summarized in the following:

Corollary 8.7. For any compact Hausdorff space, C(X) is a Banach algebra.

There is a bit more one can say in the case when K = C: there is also the operation of
conjugation, defined again pointwise:

f(x) := f(x).

As before, this comes with an abstract definition:

Definition 8.8. A *-algebra is an algebra A over C together with an operation

(−)∗ : A→ A, a 7→ a∗,

which is an involution, i.e.
(a∗)∗ = a ∀ a ∈ A,

and which satisfies the following compatibility relations with the rest of the structure:

(λa)∗ = λa∗ ∀ a ∈ A,λ ∈ C,

1∗ = 1, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ ∀ a, b ∈ A.

Finally, a C∗-algebra is a Banach algebra (A, || · ||) endowed with a *-algebra structure, s.t.

||a∗|| = ||a||, ||a∗a|| = ||a||2 ∀ a ∈ A.
Of course, C with its norm is the simplest example of C∗-algebra. To summarize our discussion

in the complex case:

Corollary 8.9. For any compact Hausdorff space, C(X,C) is a C∗-algebra.
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2. Approximations in C(X): the Stone-Weierstrass theorem

The Stone-Weierstrass theorem is concerned with density in the space C(X) (endowed with
the uniform topology); the simplest example is Weierstrass’s approximation theorem which says
that, when X is a compact interval, the set of polynomial functions is dense in the space of all
continuous functions. The general criterion makes use of the algebraic structure on C(X).

Definition 8.10. Given an algebra A (over the base field R or C), a subalgebra is any vector
subspace B ⊂ A, containing the unit 1 and such that

b · b′ ∈ B ∀ b, b′ ∈ B.

When we want to be more specific about the base field, we talk about real or complex subalgebras.

Example 8.11. When X = [0, 1], the set of polynomial functions on [0, 1] is a unital subal-
gebra of C([0, 1]). Here the base field can be either R or C.

Definition 8.12. Given a topological space X and a subset A ⊂ C(X), we say that A is
point-separating if for any x, y ∈ X, x 6= y there exists f ∈ A such that f(x) 6= f(y).

Example 8.13. When X = [0, 1], the subalgebra of polynomial functions is point-separating.

Here is the Stone-Weierstrass theorem in the real case (K = R).

Theorem 8.14. (Stone-Weierstrass) Let X be a compact Hausdorff space. Then any point-
separating real subalgebra A ⊂ C(X,R) is dense in (C(X,R), dsup).

Proof. We first show that there exists a sequence (pn)n≥1 of real polynomials which, on

the interval [0, 1], converges uniformly to the function
√
t. We construct pn inductively by

pn+1(t) = pn(t) +
1

2
(t− pn(t)2), p1 = 0.

We first claim that pn(t) ≤
√
t for all t ∈ [0, 1]. This follows by induction on n since

√
t− pn+1(t) = (

√
t− pn(t))(1 −

√
t+ pn(t)

2
).

and pn(t) ≤
√
t implies that

√
t + pn(t) ≤ 2

√
t ≤ 2 for all t ∈ [0, 1] (hence the right hand side

is positive). Next, the recurrence relation implies that pn+1(t) ≥ pn(t) for all t. Then, for each
t ∈ [0, 1], (pn(t))n≥1 is increasing and bounded above by 1, hence convergent; let p(t) be its

limit. By passing to the limit in the recurrence relation we find that p(t) =
√
t.

We still have to show that pn converges uniformly to p on [0, 1]. Let ǫ > 0 and we look for
N such that p(t) − pn(t) < ǫ for all n ≥ N (note that p − pn is positive). Let t ∈ [0, 1]. Since
pn(t) → p(t), we find N(t) such that p(t) − pn(t) < ǫ/3 for all n ≥ N(t). Since p and pN(t) are
continuous, we find an open neighborhood V (t) of t such that |p(s) − p(t)| < ǫ/3 and similarly
for pN(t), for all s ∈ V (t). Note that, for each s ∈ V (t) we have the desired inequality:

p(s) − pN(t)(s) = (p(s) − p(t)) + (p(t) − pN(t)(t)) + (pN(t)(t) − pN(t)(s)) < 3
ǫ

3
= ǫ.

Varying t, {V (t) : t ∈ [0, 1]} will be an open cover of [0, 1] hence we can extract an open sub-
cover {V (t1), . . . , V (tk)}. Then N(t) := max{N(t1), . . . ,N(tk)} does the job: for n ≥ N(t) and
t ∈ [0, 1], t belongs to some V (ti) and then

p(s) − pn(s) ≤ p(s) − pN(ti)(s) < ǫ.

We now return to the theorem and we denote by A the closure of A. We claim that:

f, g ∈ A =⇒ sup(f, g), inf(f, g) ∈ A,
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where sup(f, g) is the function x 7→ max{f(x), g(x)}, and similarly inf(f, g). Since any f ∈ A is
the limit of a sequence in A, we may assume that f, g ∈ A. Since sup(f, g) = (f + g+ |f − g|)/2,
inf(f, g) = (f + g − |f − g|)/2 and A is a vector space, it suffices to show that, for any f ∈ A,
|f | ∈ A. Since any continuous f is bounded (X is compact!), by dividing by a constant, we may
assume that f ∈ A takes values in [−1, 1]. Using the polynomials pn, since A is a subalgera,
fn := pn(f2) ∈ A, and it converges uniformly to p(f2) = |f |. Hence |f | ∈ A.

We need one more remark: for any x, y ∈ X with x 6= y and any a, b ∈ R, there exists f ∈ A
such that f(x) = a, f(y) = b. Indeed, by hypothesis, we find g ∈ A such that g(x) 6= g(y); since
A contains the unit (hence all the constants),

f := a+
b− a

g(y) − g(x)
(g − g(x))

will be in A and it clearly satisfies f(x) = a, f(y) = b.
Let now h ∈ C(X,R). Let ǫ > 0 and we look for f ∈ A such that dsup(h, f) ≤ ǫ.
We first show that, for any x ∈ X, there exists fx ∈ A such that fx(x) = h(x) and fx(y) <

h(y) + ǫ for all y ∈ X. For this, for any y ∈ X we choose a function fx,y ∈ A such that
fx,y(x) = h(x) and fx,y(y) ≤ h(y) + ǫ/2 (possible due to the previous step). Using continuity,
we find a neighborhood V (y) of y such that fx,y(y

′) < h(y′)+ ǫ for all y′ ∈ V (y). From the cover
{V (y) : y ∈ X} we extract a finite subcover {V (y1), . . . , V (yk)} and put

fx := inf{fx,y1
, . . . , fx,yk

}.
From the previous steps, fx ∈ A; by construction, fx(y) < h(y) + ǫ for all y ∈ X and fx(x) =
h(x). Due to the last equality, we find an open neighborhood W (x) of x such that fx(x

′) >
h(x′)−ǫ for all x′ ∈W (x). We now let x vary and choose x1, . . . , xl such that {W (x1), . . . ,W (xl)}
cover X. Finally, we put

f := sup{fx1
, . . . , fxl

}.
By the discussion above, it belongs to A while, by construction, dsup(h, f) ≤ ǫ.

The previous theorem does not hold (word by word) over C instead of the reals. The appropri-
ate complex-version of the Stone-Weierstrass theorem requires an extra-condition which refers
precisely to the extra-structure present in the complex case: conjugation (hence the *-algebra
structure on C(X,C)).

Definition 8.15. Given a unital *-algebra A, a subalgebra B ⊂ A is called a *- subalgebra if

b∗ ∈ B ∀ b ∈ B.

With this, we have:

Corollary 8.16. Let X be a compact Hausdorff space. Then any point-separating *-subalgebra
A ⊂ C(X,C) is dense in (C(X,C), dsup).

Proof. Let AR := A∩ C(X,R). Since for any f ∈ F ,

Re(f) =
f + f

2
, Im(f) =

f − f

2i

belong to AR, it follows that AR separates points and is a unital subalgebra of C(X,R). From
the previous theorem, AR is dense in C(X,R). Hence A = AR + iAR is dense in C(X,C).
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3. Recovering X from C(X): the Gelfand Naimark theorem

The Gelfand-Naimark theorem says that a compact Hausdorff space can be recovered from its
algebra C(X) of continuous functions (using only the algebra structure!!!) . Again, it makes no
difference whether we work over R or C; so let’s just fix K to be one of them and that we work
over K. The key ingredient in recovering X from C(X) is the notion of maximal ideal.

Definition 8.17. Let A be an algebra. A ideal of A is any vector subspace I ⊂ A satisfying

a · x, x · a ∈ I ∀ a ∈ A, x ∈ I.

The ideal I is called maximal if there is no other ideal J strictly containing I and different from
A. We denote by MA the set of all maximal ideals of A.

For instance, for A = C(X) (X a topological space), any subspace A ⊂ X defines an ideal:

IA := {f ∈ C(X) : f |A = 0}.
When A = {x} is a point, we denote this ideal simply by Ix. Note that IA ⊂ Ix for all x ∈ A.

Proposition 8.18. If X is a compact Hausdorff space, then Ix is a maximal ideal of C(X)
for all x ∈ X, and any maximal ideal is of this type. In other words, one has a bijection

φ : X
∼→MC(X), x 7→ Ix.

Proof. Fix x ∈ X and we show that Ix is maximal. Let I be another ideal strictly con-
taining Ix; we prove I = C(X). Since I 6= Ix, we find f ∈ I such that f(x) 6= 0. Since f is
continuous, we find an open U such that x ∈ U , f 6= 0 on U . Now, {x} and X − U are two
disjoint closed subsets of X hence, by Urysohn lemma, there exists η ∈ C(X) such that η(x) = 0,
η = 1 outside U . Clearly, η ∈ Ix ⊂ I. Since I is and ideal containing f and η, g := |f |2 +η2 ∈ I.
Note that g > 0: for x ∈ U , f(x) 6= 0, while for x ∈ X − U , η(x) = 1. But then any h ∈ C(X)
is in I since it can be written as g h

g
with g ∈ I, h

g
∈ C(X). Hence I = C(X).

We still have to show that, if I is a maximal ideal, then I = Ix for some x. It suffices to
show that I ⊂ Ix for some x ∈ X. Assume the contrary. Then, for any x ∈ X, we find
fx ∈ I s.t. fx(x) 6= 0. Since fx is continuous, we find an open Ux s.t. x ∈ Ux, fx 6= 0 on Ux.
Now, {Ux : x ∈ X} is an open cover of X. By compactness, we can select a finite subcover
{Ux1

, . . . , Uxk
}. But then

g := |fx1
|2 + . . .+ |fxk

|2 ∈ I
and g > 0 on X. By the same argument as above, we get I = C(X)- contradiction!

The proposition shows how to recover X from C(X) as a set. To recover the topology, it is
useful to slightly change the point of view and look at characters instead of maximal ideals.

Definition 8.19. Given an algebra A, a character of A is any K-linear function χ : A → K

which is not identically zero and satisfies

χ(a · b) = χ(a)χ(b) ∀ a, b ∈ A.

The set of characters of A is denoted by XA and is called the spectrum of A. When we want to
be more precise about K, we talk about the real or the complex spectrum of A.

The previous proposition can be reformulated into:

Corollary 8.20. If X is a compact Hausdorff space then, for any x ∈ X,

χx : C(X) → K, χx(f) = f(x)

is a character of C(X), and any character is of this type. In other words, one has a bijection

φ : X
∼→ XC(X), x 7→ χx.
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Proof. The main observation is that characters correspond to maximal ideals. It should
be clear that any χx is a character. Let now χ be an arbitrary character. Let I := {f ∈ C(X) :
χ(f) = 0} (an ideal- check that!). We will make use of the remark that

(3.1) f − χ(f) · 1 ∈ I

for all f ∈ C(X) (indeed, all these elements are killed by χ). We show that I is maximal. Let
J be another ideal strictly containing I. Choosing f ∈ J not belonging to I (i.e. χ(f) 6= 0)
and using (3.1) and I ⊂ J , we find that 1 ∈ J hence, as above, J = C(X). This proves that I
is maximal. We deduce that it is of type Ix for some x ∈ X. But then, using (3.1) again we
deduce that (f − χ(f) · 1)(x) = 0 for all f , i.e. χ = χx.

The advantage of characters is that there is a natural topology on XA for any algebra A.

Definition 8.21. Let A be an algebra A and let XA be its spectrum. For any a ∈ A, define

fa : XA → K, fa(χ) := χ(a).

We define T as the smallest topology on XA with the property that all the functions {fa : a ∈ A}
are continuous. The resulting topological space (XA,T ) is called the topological spectrum of A.

Theorem 8.22. Any compact Hausdorff space X is homeomorphic to the topological spectrum
of its algebra C(X) of continuous functions.

Proof. Let TX be the topology of X. We still have to show that the bijection ψ is a
homeomorphism. Equivalently: ψ induces a topology T ′ on X which is the smallest topology
with the property that all f ∈ C(X) are continuous as functions with respect to this new topology
T ′. We have to show that T ′ coincides with the original topology TX . From the defining property
of T ′, the inclusion T ′ ⊂ TX is tautological. For the other inclusion, we have to use the more
explicit description of T ′: it is the topology generated by the subsets of X of type f−1(V ) with
f ∈ C(X) and V ⊂ K open. We have to show that any U ∈ TX is in T ′. Fixing U , it suffices to
show that for any x ∈ U we find f and V such that

x ∈ f−1(V ) ⊂ U.

But this follows again by the Urysohn lemma: we find f : X → [0, 1] continuous such that
f(x) = 0 and f = 1 outside U . Taking V = (−1, 1), we have the desired property.

Remark 8.23. (for the curious reader) In this remark we work over K = C. An interesting
question that we did not answer is: which algebras A are of type C(X) for some compact
Hausdorff X? What we did show is that the space must be XA. Note also that the map ψ
makes sense for any algebra A:

ψA : A→ C(XA), a 7→ (fa : XA → C given by fa(χ) = χ(a)).

Hence a possible answer is: algebras with the property that XA is compact and Hausdorff, and
ψA is an isomorphism (bijection). But this is clearly far from satisfactory.

The best answer is given by the full version of the Gelfand-Naimark theorem: it is the com-
mutative C∗-algebras! This answer may seem a bit unfair since the notion of C∗-algebras seem
to depend on data which is not algebraic (the norm!). However, a very special feature of C∗-
algebras is that their norm can be recovered from the algebraic structure by the formula:

||a||2 = sup{|λ| : λ ∈ C such that λ1 − a∗a is not invertible}.
One remark about the proof: one first shows that XA is compact and Hausdorff; then that
||ψA(a)|| = ||a|| for all a ∈ A; this implies that ψA is injective and the image is closed in C(XA);
finally, the Stone-Weierstrass implies that the image is dense in C(XA); hence ψA is bijective.
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4. General function spaces C(X,Y )

For any two topological spaces X and Y we denote by C(X,Y ) the set of continuous functions
from X to Y - a subset of the set F(X,Y ) of all functions from X to Y . In general, there are
several interesting topologies on C(X,Y ). So far, in this chapter we were concerned with the
uniform topology on C(X,Y ) when X is compact and Hausdorff and Y = R or C. In Section
9 , Chapter 3, in the case when X ⊂ R was an interval and Y = R

n, we looked at the three
topologies: of pointwise convergence, of uniform convergence, and of uniform convergence on
compacts.

In this section we look at generalizations of these topologies to the case when X and Y are
more general topological spaces. We assume throughout this entire section that

X − is a locally compact topological space, Y − is a metric space with a fixed metric d.

These assumptions are not needed everywhere (e.g. for the pointwise topology on C(X,Y ),
the topology of X is completely irrelevant, etc etc). They are made in order to simplify the
presentation.

4.1. Pointwise convergence, uniform convergence, compact convergence. Almost
the entire Section 9, Chapter 3 goes through in this generality without any trouble (“word by
word” most of the times). For instance, given a sequence {fn}n≥1 in F(X,Y ), f ∈ F(X,Y ), we
will say that:

• fn converges pointwise to f , and we write fn
pt→ f , if fn(x) → f(x) for all x ∈ X.

• fn converges uniformly to f , and we write fn ⇉ f , if for any ǫ > 0, there exists nǫ s.t.

d(fn(x), f(x)) < ǫ ∀ n ≥ nǫ, ∀ x ∈ X.

• fn converges uniformly on compacts to f , and we write fn
cp→ f if, for any K ⊂ X

compact, fn|K ⇉ f |K .

And, as in loc.cit (with exactly the same proof), these convergences correspond to convergences
with respect to the following topologies on F(X,Y ):

• the pointwise topology, denoted Tpt, is the topology generated by the family of subsets

S(x,U) := {f ∈ F(X,Y ) : f(x) ∈ U} ⊂ F(X,Y ),

with x ∈ X, U ⊂ Y open.
• the uniform topology is induced by a sup-metric. For f, g ∈ F(X,Y ), we define

dsup(f, g) = sup{d(f(x), g(x)) : x ∈ X}.
Again, to overcome the problem that this supremum may be infinite (for some f and g)
and to obtain a true metric, once considers

d̂sup(f, g) = min(dsup(f, g), 1).

The uniform topology is the topology associated to d̂sup; it is denoted by Tunif.
• the topology of compact convergence, denoted Tcp, is the topology generated by the fam-

ily of subsets

BK(f, ǫ) := {g ∈ F(X,Y ) : d(f(x), g(x)) < ǫ ∀ x ∈ K},
with K ⊂ X compact, ǫ > 0.

We will be mainly concerned with the restrictions of these topologies to the set C(X,Y ) of
continuous functions fromX to Y . So, the part of Theorem 3.27 concerning continuous functions,
with exactly the same proof, gives us the following:

Theorem 8.24. If (Y, d) is complete, then (C(X,Y ), d̂sup) is complete.
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4.2. Equicontinuity. A useful concept regarding function spaces is equicontinuity. Recall
that X is a locally compact space and (Y, d) is a metric space. Then a function f : X → Y is
continuous if it is continuous at each point, i.e. if for each x0 ∈ X and any ǫ > 0 there exists a
neighborhood V of x0 such that

(4.1) d(f(x), f(x0)) < ǫ ∀ x ∈ U.

Definition 8.25. A subset F ⊂ C(X,Y ) is called equicontinuous if for any x0 ∈ X and any
ǫ > 0 there exists a neighborhood V of x0 such that (4.1) holds for all f ∈ F .

When X is itself a metric space, then there is a “uniform” version of continuity and equicon-
tinuity.

Definition 8.26. Assume that both (X, d) and (Y, d) are metric spaces. Then

1. A map f : X → Y is called uniformly continuous if for all ǫ > 0 there exists δ > 0 s.t.

(4.2) d(f(x), f(y)) < ǫ ∀ x, y ∈ X with d(x, y) < δ.

2. A subset F ⊂ C(X,Y ) is called uniformly equicontinuous if for all ǫ > 0 there exists δ > 0
s.t. (4.2) holds for all f ∈ F .

From the definitions we immediately see that, in general, the following implications hold:

F − is uniformly equicontinuous //

��

each f ∈ F is uniformly continuous

��

F − is equicontinuous // each f ∈ F is continuous

As terminology, we say that a sequence (fn)n≥1 is equicontinuous if the set {fn : n ≥ 1} is.

Proposition 8.27. A sequence {fn}n≥1 is convergent in (C(X,Y ),Tcp) if and only if it is
convergent in (C(X,Y ),Tpt) and it is equicontinuous.

Proof. For the direct implication, we still have to show that, if fn
cp→ f , then {fn} is

equicontinuous. Let x0 ∈ X. Since f is continuous, we find a neighborhood V of x0 such that
d(f(x), f(x0)) < ǫ/3 for all x ∈ V . Since X is locally compact, we may assume V to be compact.
Then fn|V ⇉ f |V hence we find nǫ such that d(fn(x), f(x)) < ǫ/3 for all n ≥ nǫ, x ∈ V . Then

d(fn(x), fn(x0)) ≤ d(fn(x), f(x)) + d(f(x), f(x0)) + d(f(x0), fn(x0)) < ǫ.

for all x ∈ V and n ≥ nǫ. By making V smaller if necessary, the previous inequality will also
hold for all n < nǫ (since there are a finite number of such n’s, and each fn is continuous).

We now prove the converse. Assume equicontinuity and assume that fn → f pointwise. Let
K ⊂ X be compact; we prove that fn|K ⇉ f |K . Let ǫ > 0. For each x ∈ K, there is an open
Vx containing x, such that

d(fn(y), fn(x)) < ǫ/3 ∀ y ∈ Vx, ∀ n.
Since {Vx} covers the compact K, we find a finite number of points xi ∈ K (with 1 ≤ i ≤ k)
such that the opens Vi = Vxi

cover K. Since fn(xi) → f(xi), we find nǫ such that

d(fn(xi), f(xi)) < ǫ/3 ∀ n ≥ nǫ ∀ i ∈ {1, . . . , k}.
Now, for all n ≥ nǫ and x ∈ K, choosing i such that x ∈ Vi, we have

d(fn(x), f(x)) ≤ d(fn(x), fn(xi)) + d(fn(xi), f(xi)) + d(f(xi), f(x)) < 3
ǫ

3
= ǫ.

(here we used that d(f(xi), f(x)) = limn d(fn(xi), fn(x)) ≤ ǫ/3).
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4.3. Boundedness. Let’s also briefly discuss boundedness. For F ⊂ C(X,Y ) and x ∈ X
we use the notation

F(x) := {f(x) : f ∈ F}.
As we have already discussed, in a metric space, there is also the notion of “totally bounded”,
which is an improvement of the notion of “bounded”. Also, in our case we can talk about
boundedness (and totally boundedness) with respect to d̂sup, or we can have pointwise versions
(with respect to the metric d of Y ). In total, four possibilities:

Definition 8.28. We say that F ⊂ C(X,Y ) is:

• Bounded if it is bounded in (C(X,Y ), d̂sup).

• Totally bounded if it is totally bounded in (C(X,Y ), d̂sup).
• Pointwise bounded if F(x) is bounded in (Y, d) for all x ∈ X.
• Pointwise totally bounded if F(x) is totally bounded in (Y, d) for all x ∈ X.

From the definitions we immediately see that, in general, the following implications hold:

totally bounded //

��

bounded

��

pointwise totally bounded // pointwise bounded

Example 8.29. For Y = R
n with the Euclidean metric d, since totally boundedness and

boundedness in (Rn, d) are equivalent, we see that a subset F ⊂ C(X,Rn) is pointwise totally
bounded if and only if it is pointwise bounded. However, it is not true that F is totally bounded
if and only if it is bounded. In general, totally boundedness implies equicontinuity:

Proposition 8.30. If F ⊂ C(X,Y ) is totally bounded then it must be equicontinuous. More-
over, if each f ∈ F is uniformly continuous, then F is even uniformly equicontinuous.

Proof. Fix ǫ > 0 and x0 ∈ X. By assumption, we find f1, . . . , fk ∈ F such that

F ⊂ B(f1, ǫ/3) ∪ . . . ∪B(fk, ǫ/3),

where the balls are the ones corresponding to d̂sup. Since each fi is continuous, we find a
neighborhood Ui of fi such that

d(fi(x), fi(x0)) < ǫ/3, ∀ x ∈ Ui.

Then U = ∩iUi is a neighborhood of x0. For x ∈ U , f ∈ F , choosing i s.t. f ∈ B(fi, ǫ/3):

d(f(x), f(x0)) ≤ d(f(x), fi(x0)) + d(fi(x), fi(x0)) + d(fi(x0), f(x0)),

which is < ǫ (for all x ∈ U , f ∈ F). This proves equicontinuity. For the second part the
argument is completely similar (even simpler as all Ui will become X), where we use that each
fi is uniformly continuous.

Let us also recall that the notion of totally boundedness was introduced in order to characterize
compactness. Since d̂sup is complete whenever (Y, d) is (Theorem 8.24) we deduce:

Proposition 8.31. A subset F ⊂ C(X,Y ) is totally bounded if and only if it is relatively

compact in (C(X,Y ), d̂sup).
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4.4. The case when X is a compact metric space. When X is a compact metric space
the situation simplifies quite a bit. In some sense, the pointwise conditions imply the uniform
ones (in the vertical implications from the previous two diagrams). To be more precise, let us
combine the two diagrams and Proposition 8.30 together into a diagram of implications:

totally bounded //

��

bounded and uniformly equic. //

��

uniformly equic.

��

pt. totally bounded and equic. // pt. bounded and equic. // equic.

where “pt.” stands for pointwise and “equic.” for equicontinuous. Of course, we could have
continued to the right with “each f ∈ F is (uniformly) continuous”. We are looking at the
converses of the vertical implications. The first one is of the next subsection. For the rest:

Theorem 8.32. If (X, d) is a compact metric space, f : X → Y , F ⊂ C(X,Y ), then

1. (f is continuous) ⇐⇒ (f is uniformly continuous).
2. (F is equicontinuous) ⇐⇒ (F is uniformly equicontinuous). In this case, moreover,

a. (F is pointwise bounded) ⇐⇒ (F is bounded).
b. Tunif and Tpt induce the same topology on F .

In particular, if a sequence (fn)n≥1 is equicontinuous, then it is uniformly convergent (or
bounded) iff it is pointwise convergent (or pointwise bounded, respectively).

Proof. For 1, 2 and (a) the nontrivial implications are the direct ones. For 1, assume that
f is continuous. Let ǫ > 0. For each x ∈ X choose Vx such that

d(f(y), f(x)) < ǫ/2 ∀ y ∈ Vx.

Apply now the Lebesgue lemma (Proposition 6.10) and let δ > 0 be a resulting Lebesgue number.
Then, for each y, z ∈ X with d(y, z) < δ we find x ∈ X such that y, z ∈ Vx, hence

d(f(y), f(z)) ≤ d(f(y), f(x)) + d(f(z), f(x)) < ǫ.

This proves that f is uniformly continuous. Exactly the same proof applies to 2 (just add “for
all f ∈ F” everywhere). For (a), assume that F is equicontinuous and pointwise bounded. From
the first condition we find an open cover {Vx}x∈X with x ∈ Vx and d(f(y), f(x)) < 1 for all
y ∈ Vx. Choose a finite subcover corresponding to x1, . . . , xk ∈ X. Using that F(xi) is bounded
for each i, we find M > 0 such that

d(f(xi), g(xi)) < M ∀ f, g ∈ F , ∀ 1 ≤ i ≤ k.

Then, for arbitrary x ∈ X, choosing i such that x ∈ Vxi
, we have

d(f(x), g(x)) ≤ d(f(x), f(xi)) + d(f(xi), g(xi)) + d(g(xi), g(x)) < M + 2,

for all f, g ∈ F , showing that F is bounded. For (b), the non-obvious part is to show that
Tunif|F ⊂ Tpt|F . Due to the definitions of these topologies, we start with f ∈ F and a ball

BF (f, ǫ) = {g ∈ F : dsup(g, f) < ǫ},
and we are looking for x1, . . . , xk ∈ X and ǫ1, . . . , ǫk > 0 such that

∩i{g ∈ F : d(g(xi), f(xi)) < ǫi} ⊂ BF (f, ǫ).

For that, choose as before a finite open cover {Vxi
} of X such that

d(f(x), f(xi)) < ǫ/6 ∀ f ∈ F , x ∈ Vxi

and, by the same inequalities as above, we find that the xi and ǫi = ǫ/3 have the desired
properties.
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4.5. The Arzela-Ascoli theorem. The Arzela-Ascoli theorem has quite a few different
looking versions. They all give compactness criteria for subspaces of C(X,Y ) in terms of equicon-
tinuity; sometimes the statement is a sequential one (giving criteria for an equicontinuous se-
quence to admit a convergent subsequence). The difference between the several versions comes
either from the starting hypothesis on X and Y , or from the topologies one considers on C(X,Y ).
As in the last subsections, we restrict ourselves to the case that X and Y are metric and X is
compact; the interesting topology on the space of functions will then be the uniform one.

Theorem 8.33. (Arzela-Ascoli) Assume that (X, d) is a compact metric space, (Y, d) is com-
plete. Then, for a subset F ⊂ C(X,Y ), the following are equivalent:

1. F is relatively compact in (C(X,Y ), dsup).
2. F is equicontinuous and pointwise totally bounded.

(note: when Y = R
n with the Euclidean metric, “pointwise totally bounded”=“pointwise bounded”).

Corollary 8.34. Let X and Y be as above. Then any sequence (fn)n≥1 which is equicontin-
uous and pointwise totally bounded admits a subsequence which is uniformly convergent.

Proof. The direct implication is clear now: if F is compact, it must be totally bounded
(cf. Theorem 6.7); this implies that F (hence also F) is equicontinuous and pointwise bounded.
We now prove the converse. Let us assume for simplicity that F is also closed with respect to
the uniform topology (otherwise replace it by its closure and, by the same arguments as before,
show that equicontinuity and pointwise totally boundedness hold for the closure as well). We
show that F is compact. Using Theorem 6.7, it suffices to show that F is sequentially compact.
So, let (fn)n≥1 be a sequence in F and we will show that it contains a convergent subsequence.
Use Corollary 6.9 and consider

A = {a1, a2, . . .} ⊂ X

which is dense in X. Since (fn(a1))n≥1 is totally bounded, using Corollary 6.8, it follows that it
has a convergent subsequence (fn(a1))n∈I1 , where I1 ⊂ Z+. Let n1 be the smallest element of I1.
Similarly, since (fn(a2))n∈I1 is totally bounded, we find a convergent subsequence (fn(a2)n∈I2

where I2 ⊂ I1. Let n2 be the smallest element of I2. Continue inductively to construct Ij and
its smallest element nj for all j. Choosing gk = fnk

, this will be a subsequence of (fn) which has
the property that (gk(ai))k≥1 is convergent for all i. We will show that (gk) is Cauchy (hence
convergent). Let ǫ > 0. Since F is uniformly equicontinuous, we find δ such that

d(gk(x), gk(y)) < ǫ/3 ∀ k and whenever d(x, y) < δ.

Since A is dense in X, the balls B(ai, δ) cover X; since X is compact, we find some integer N
such that X is covered by B(ai, δ) with 1 ≤ i ≤ N . Since each of the sequences (gk(ai))k≥1 is
convergent for all 1 ≤ i ≤ N , we find nǫ such that

d(gj(ai), gk(ai)) < ǫ/3 ∀ j, k ≥ nǫ ∀ 1 ≤ i ≤ N.

Then, for all x ∈ X, j, k ≥ nǫ, choosing i ≤ N such that x ∈ B(ai, δ), we have

d(gj(x), gk(x)) ≤ d(gj(x), gj(ai)) + d(gj(ai), gk(ai)) + d(gk(ai), gk(x)) < ǫ.

Finally, let us also mention the following more general version of the Arzela-Ascoli (see
Munkres’ book).

Theorem 8.35. (Arzela-Ascoli) Assume that X is a locally compact Hausdorff space, (Y, d)
is a complete metric space, F ⊂ C(X,Y ). Then F is relatively compact in (C(X,Y ),Tcp) if and
only if F is equicontinuous and pointwise totally bounded.

In particular, any sequence (fn)n≥1 in C(X,RN ) which is equicontinuous and pointwise totally
bounded admits a subsequence which is uniformly convergent on compacts.
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5. More exercises

5.1. On Stone-Weierstrass.

Exercise 8.1. Show that C∞([0, 1]) (the space of real-valued functions on [0, 1] which are
infinitely many times differentiable) is dense in C([0, 1]).

Exercise 8.2. On the sphere S2 we consider the real-valued functions

f(x, y, z) = x+ y + z, g(x, y, z) = xy + yz + zx.

Does {f, g} separate points? What if we add the function h(x, y, z) = xyz?

Exercise 8.3. Let X be a compact topological space. Show that if a finite set of continuous
functions

A = {f1, . . . , fk} ⊂ C(X)

separates points, then X can be embedded in R
k.

Exercise 8.4. Consider the 3-dimensional sphere interpreted as:

S3 = {(z1, z2) ∈ C
2 : |z1|2 + |z2|2 = 1}.

Consider the circle S1 = {z ∈ C : |z| = 1}, viewed as a group with respect to the multiplication
of complex numbers, and we consider the action of S1 on S3 given by

z · (z1, z2) := (zz1, zz2).

Let X := S3/S1. Consider f̃ , g̃, h̃ : S3 → R given by

f̃(z1, z2) = z1z2 + z1z2, g̃(z1, z2) = i(z1z2 − z1z2), h̃(z1, z2) = |z1|2 − |z2|2.
Show that

1. f̃ , g̃, h̃ induce functions f, g, h : X → R.
2. {f, g, h} separates points.
3. The image of the resulting embedding (f, g, h) : X → R

3 is S2.

Exercise 8.5. If K is a compact subspace of R
n, show that the space Pol(K) of polynomial

functions on K is dense in C(K) in the uniform topology.
(recall that a function f : K → R

n is polynomial if there exists a polynomial P ∈ R[X1, . . . ,Xn]
such that f(x) = P (x) for all x ∈ K).

Exercise 8.6. Show that, if f : R → R is continuous and periodic of period 2π, then f can
be realized as the limit of a sequence of functions of type

T (x) = a0 +
N∑

k=1

(akcos(kx) + bksin(kx)).

Exercise 8.7. Show that, for any compact smooth manifold X, C∞(X) is dense in C(X).

5.2. On Gelfand-Naimark.

Exercise 8.8. Consider the algebra A = R[t] of polynomials in one variable t. Show that
XA is homeomorphic to R. What if you take more variables?

Exercise 8.9. Consider
A = R[X,Y ]/(X2 + Y 2 − 1)

(the quotient of the ring of polynomials in two variables, modulo the ideal generated by f =
X2 + Y 2 − 1 or, equivalently, the ring of remainders modulo f). Interpret it as an algebra over
R and show that XA is homeomorphic to S1. (Hint: Let α, β ∈ A corresponding to X and Y .
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Then a character χ is determined by u = χ(α) and v = χ(β). What do they must satisfy? Also,
have a look back at Exercise 3.33).

(if you do not understand the above definition of A, take as definition A :=the algebra of poly-
nomial functions on S1 ⊂ R

2 and then α and β in the hint are the first and second projection).

Exercise 8.10. Consider the algebra A = R[t]/(t3) (remainders modulo t3). Compute XA.

Exercise 8.11. Consider the algebra

A = {f ∈ C(Sn) : f(z) = f(−z) ∀ z ∈ Sn}.
Show that XA is homeomorphic to P

n.

Exercise 8.12. More generally, if a finite group Γ acts on a compact space X, consider

A = C(X)Γ := {f ∈ C(X) : f(γ · x) = f(x) ∀ x ∈ X, γ ∈ Γ}
and compute XA.


