
CHAPTER 9

Embedding theorems

In this chapter we will describe a general method for attacking embedding problems. We will
establish several results but, as the main final result, we state here the following:

Theorem 9.1. Any compact n-dimensional topological manifold can be embedded in R
2n+1.
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1. Using function spaces

Throughout this section (X, d) is a metric space which is assumed to be compact and Hausdorff,
and (Y, d) is a complete metric space (which, for the purpose of the chapter, youy may assume to
be R

n with the Euclidean metric). The associated embedding problem is: can X be embedded in
(Y, Td). Since X is compact, this is equivalent to the existence of a continuous injective function
f : X → Y .

Definition 9.2. Given f ∈ C(X, Y ), the injectivity defect of f is defined as

δ(f) := sup {d(x, x′) : x, x′ ∈ X such that f(x) = f(x′)}.
For each ǫ > 0, we defined the space of ǫ-approximately embeddings of X in Y as:

Embǫ(X, Y ) := {f ∈ C(X, Y ) : δ(f) < ǫ}
endowed with the topology of uniform convergence.

Proposition 9.3. If Embǫ(X, Y ) is dense in C(X, Y ) with respect to the uniform topology,
for all ǫ > 0, then there exists an embedding of X in Y .

Proof. The space Emb(X, Y ) of all embeddings of X in Y can be written as

Emb(X, Y ) = ∩nEmb1/n(X, Y )

where the intersection is over all positive integers. Since (Y, d) is complete, Theorem 8.24 implies
that (C(X, Y ), dsup) is complete. By Proposition 6.3, it will have the Baire property. Hence, it
suffices to show that the spaces Embǫ(X, Y ) are open in C(X, Y ) (and then it follows not only
that Emb(X, Y ) is non-empty, but actually dense in C(X, Y )).

So, let ǫ > 0 and we show that Embǫ(X, Y ) is open. Let f ∈ Embǫ(X, Y ) arbitrary; we are
looking for δ such that

Bdsup
(f, δ) = {g ∈ C(X, Y ) : dsup(g, f) < δ}

is inside Embǫ(X, Y ). We first claim that there exists δ such that

(1.1) d(f(x), f(y)) < 2δ =⇒ d(x, y) < ǫ.

If no such δ exists, we would find sequences (xn) and (yn) in X with

d(f(xn), f(yn)) → 0, d(xn, yn) ≥ ǫ.

Hence (as we have already done several times by now), after eventually passing to convergent
subsequences, we may assume that (xn) and (yn) are convergent, with limits denoted x and y.
It follows that

d(f(x), f(y)) = 0, d(x, y) ≥ ǫ,

which is in contradiction with f ∈ Embǫ(X, Y ). Hence we do find δ satisfying (1.1). We claim
that δ has the desired property; hence let g ∈ Bdsup

(f, δ) and we prove that g ∈ Embǫ(X, Y ).
Note that

δ(g) = sup {d(x, x′) : x, x′ ∈ K(g)}
where K(f) ⊂ X × X consists of pairs (x, x′) with g(x) = g(x′). Since g is continuous, K(f) is
closed in X×X; since X is compact, it follows that K(f) is compact; hence the above supremum
will be attained at some x, x′ ∈ K(g). But for such x and x′:

d(f(x), f(x′)) ≤ d(f(x), g(x)) + d(g(x′), f(x‘)) + d(g(x), g(x′)) < 2δ

hence, by (1.1), d(x, x′) < ǫ; hence δ(g) < ǫ.
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2. Using covers and partitions of unity

In this section we assume that (X, d) is a compact metric space and Y = R
N is endowed with

the Euclidean metric (where N ≥ 1 is some integer). For the resulting embedding problem, we
use the result of the previous section. We fix

f ∈ C(X, RN ), ǫ, δ > 0

and we search for g ∈ C(X, Y ) with δ(g) < ǫ, dsup(f, g) < δ. The idea is to look for g of type

(2.1) g(x) =

p∑

i=1

ηi(x)zi,

where {ηi} is a continuous partition of unity and zi ∈ R
N some points. To control δ(g), the

points zi have to be chosen in “the most general” position.

Definition 9.4. We say that a set {z1, . . . , zp} of points in R
N is in the general position if,

for any λ1, . . . , λp ∈ R from which at most N + 1 are non-zero, one has:
p∑

i=1

λizi = 0,

p∑

i=1

λi = 0 =⇒ λi = 0 ∀ i ∈ {1, . . . , p}.

We now return to our problem. Recall that, for a subset A of a metric space (X, d), diam(A)
is sup{d(a, b) : a, b ∈ A}. For a family A = {Ai : i ∈ I}, denote by diam(A) the the supremum
of {diam(Ai) with i ∈ I}. In the following, we control δ(g).

Lemma 9.5. Let U = {Ui} be an open cover of X, {ηi} a partition of unity subordinated to U
and {zi} a set of points in R

N in general position, all indexed by i ∈ {1, . . . , p}. Assume that,
for some integer m, each point in X lies in at most m + 1 members of U . If N ≥ 2m + 1 then
the resulting function g given by (2.1) satisfies δ(g) ≤ diam(U).

Proof. Assume that g(x) = g(y), i.e.
∑p

i=1(ηi(x) − ηi(y))zi = 0. Now, x lies in at most
m+1 members of U , so at most m+1 numbers from {ηi(x) : 1 ≤ i ≤ p} are non-zero. Similarly
for y. Hence at most 2(m + 1) coefficients ηi(x)− ηi(y) are non-zero. Note also that the sum of
these coefficients is zero. Hence, since {z1, . . . , zp} is in general position and 2(m + 1) ≤ N + 1,
it follows that ηi(x) = ηi(y) for all i. Choosing i such that ηi(x) > 0, it follows that x, y ∈ Ui,
hence d(x, y) ≤ diam(Ui).

Next, we control dsup(f, g). We use the notation f(U) = {f(U) : U ∈ U}.
Lemma 9.6. Let U = {Ui} be an open cover of X, {ηi} a partition of unity subordinated to U

and {zi} a set of points in R
N , all indexed by i ∈ {1, . . . , p}. Assume that, for some r > 0,

diam(f(U)) < r, d(zi, f(Ui)) < r ∀ i ∈ {1, . . . , p}.
Then the resulting function g given by (2.1) satisfies dsup(f, g) < 2r.

Proof. Since d(zi, f(Ui)) < r we find xi ∈ Ui with ||zi − f(xi)|| < r. Writing

g(x) − f(x) =
∑

i

ηi(x)(zi − f(xi)) +
∑

i

ηi(x)(f(xi) − f(x)),

||g(x) − f(x)|| ≤
∑

i

ηi(x)||zi − f(xi)|| +
∑

i

ηi(x)||f(xi) − f(x)||.

Here each ||zi − f(xi)|| < r by hypothesis, hence the first sum is < r. For the second sum note
that, whenever ηi(x) 6= 0, we must have x ∈ Ui hence, ||f(xi) − f(x)|| < r. Hence also the
second sum is < r, proving that ||g(x)− f(x)|| < 2r for all x ∈ X. Since X is compact, we have
dsup(f, g) < 2r.
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Next, we show the existence of “small enough” covers of X and points in R
N in general

position.

Proposition 9.7. For ǫ, δ > 0 there exists an open cover U = {Ui : 1 ≤ i ≤ p} of X with

diam(U) < ǫ, diam(f(U)) < δ/2.

Moreover, for any such cover, there exist points {z1, . . . , zp} in R
N in general position such that

d(zi, f(Ui)) < δ/2 ∀ i ∈ {1, . . . , p}.
In particular, g given by (2.1) satisfies δ(g) < ǫ and dsup(f, g) < δ, provided U has the property
that each point in X lies in at most m + 1 members of U , where m satisfies N ≥ 2m + 1.

Proof. For the first part we use that f is uniformly continuous and choose r < ǫ such that

d(x, y) < r =⇒ d(f(x), f(y)) <
δ

2
.

Consider then the open cover of X by balls of radius r (or any other arbitrarily smaller radius)
and choose a finite subcover. For the second part, we choose xi ∈ Ui arbitrary and set yi =
f(xi) ∈ R

N . We prove that, in general, for any finite set {y1, . . . , yp} of points in R
N and any

r > 0, there exists a set {z1, . . . , zp} of points in general position such that d(zi, yi) < r for all i.
We proceed by induction on p. Assume the statement holds up to p and we prove it for p + 1.
So, let {y1, . . . , yp+1} be points in R

N . From the induction hypothesis, we may assume that
{y1, . . . , yp} is already in general position. For each I ⊂ {1, . . . , p} of cardinality at most N we
consider the “hyperplane”

HI := {
∑

i∈I

λiyi : λi ∈ R,
∑

i∈I

λi = 1}.

Since |I| ≤ N , each such hyperplane has empty interior (why?), hence so does their union ∪IHI

taken over all Is as above. Hence B(yp+1, r) will contain an element zp+1 which is not in this
intersection. It is not difficult to check now that {y1, . . . , yp, zp+1} is in general position.
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3. Dimension and open covers

As in the previous section, we fix a compact metric space (X, d) and Y = R
N with the

Euclidean metric. We assume that N = 2m + 1 for some integer m. Proposition 9.7 almost
completes the proof of the existence of an embedding of X in R

2m+1; what is missing is to make
sure that the covers U from the proposition can be chosen so that each point in X lies in at
most m + 1 members of U . Note however that this is an important demand. After all, all that
we have discussed applies to any compact metric space X (e.g. S5) and any R

N (e.g R!); this
extra-demand is the only one placing a condition on N in terms of the topology of X. Actually,
this is about “the dimension” of X.

Definition 9.8. Let X be a topological space, m ∈ Z+. We say that X has dimension less
or equal to m, and we write dim(X) ≤ m, if any open cover U admits an open refinement V
of multiplicity mult(V) ≤ m + 1, i.e. with the property that each x ∈ X lies in at most m + 1
members of V.

The dimension of X is the smallest m with this property.

With this, Proposition 9.7 and Proposition 9.3 give us immediately:

Corollary 9.9. Any compact metric space X with dim(X) ≤ m can be embedded in R
2m+1.

Of course, this nice looking corollary is rather cheap at this point: it looks like we just defined
the dimension of a space, so that the corollary holds. However, the definition of dimension given
above is not at all accidental. By the way, did you ever think how to define the (intuitively
clear) notion of dimension by making use only of the topological information? What are the
properties of the opens that make R one-dimensional and R

2 two-dimensional? You may then
discover yourself the previous definition. Of course, one should immediately prove that dim(RN )
is indeed N or, more generally, that any m-dimensional topological manifold X has dim(X) = m.
These are all true, but they are not easy to prove right away. What we will show here is that:

Theorem 9.10. Any compact m-dimensional manifold X satisfies dim(X) ≤ m.

This will be enough to apply the previous corollary and deduce Theorem 9.1 from the beginning
of this chapter. The rest of this section is devoted to the proof of this theorem. First, we have
the following metric characterization of dimension:

Lemma 9.11. Let (X, d) be a compact metric space and m an integer. Then dim(X) ≤ m if
and only if, for each δ > 0, there exists an open cover V with diam(V) < δ and mult(V) ≤ m+1.

Proof. For the direct implication, start with the cover by balls of radius δ/2 and choose
any refinement V as in Definition 9.8. For the converse, let U be an arbitrary open cover. It
then suffices to consider an open cover as in the statement, with δ a Lebesgue number for the
cover U (see Proposition 6.10).

Lemma 9.12. Any compact subspace K ⊂ R
N has dim(K) ≤ N .

Proof. For simplicity in notations, we assume that N = 2. We will use the previous lemma.
First, we consider the following families of opens in the plane:

• U0 consisting of the open unit squares with vertices in the integral points (m,n) (m,n ∈
Z).

• U1 consisting of the open balls of radius 1
2 with centers in the integral points.

• U2 consisting of the open balls of radius 1
4 with centers in the middles of the edges of the

integral lattice.
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Make a picture!Note that the members of each of the families Ui are disjoint. Hence

U := U0 ∪ U1 ∪ U2

is an open cover of R
2 of multiplicity 3 with diam(U) =

√
2. To obtain similar covers of smaller

diameter, we rescale. For each λ > 0, φλ : R
2 → R

2, v 7→ λ 7→ λv is a homeomorphism. The
rescaling of U is

Uλ = {φλ(U) : U ∈ U},
it has multiplicity 3 and diameter λ

√
2. Now, for K ⊂ R

2 compact, we use the covers Uλ (and
the compactness o K) to apply the previous lemma.

Lemma 9.13. If X is a topological space and X = ∪p
i=1Xi where each Xi is closed in X with

dim(Xi) ≤ m, then dim(X) ≤ m.

Proof. Proceeding inductively, we may assume m = 2, i.e. X = Y ∪Z with Y , Z-closed in
X of dimension ≤ m. Let U be an arbitrary open cover of X; we prove that it has a refinement
of multiplicity ≤ m + 1. First we claim that U has a refinement V such that each y ∈ Y lies in
at most m + 1 members of V. To see this, note that {U ∩ Y : U ∈ U} is an open cover of Y ,
hence it has a refinement (covering Y ) {Ya : a ∈ A} (for some indexing set A). For each a ∈ A,
write Ya = Y ∩ Va with Va ⊂ X open, and choose Ua ∈ U such that Ya ⊂ Ua. Then

V := {Va ∩ Ua : a ∈ A} ∪ {U − Y : U ∈ U}
is the desired refinement. Re-index it as V = {Vi : i ∈ I} (we assume that there are no
repetitions, i.e. Vi 6= Vi′ whenever i 6= i′). Similarly, let W = {Wj : j ∈ J} be a refinement of V
with the property that each z ∈ Z belongs to at most m + 1 members of W. For each j ∈ J ,
choose α(j) ∈ I such that Wj ⊂ Vα(j). For each i ∈ I, define

Di = ∪j∈α−1(i)Wj .

Consider D = {Di : i ∈ I}. Since for each j ∈ J , i ∈ I

Wj ⊂ Dα(j), Di ⊂ Vi,

D is an open cover of X, which refines V (hence also U). It suffices to show that mult(D) ≤ m+1.
Assume that there exist k distinct indices i1, . . . , ik with

x ∈ Di1 , . . . ,Dik .

We have to show that k ≤ m + 1. If x ∈ Y , since Di ⊂ Vi for all i, the defining property of
V implies that k ≤ m + 1. On the other hand, for each a ∈ {1, . . . , k}, since x ∈ Dia , we find
ja ∈ α−1(ia) such that x ∈ Wja

; hence, if x ∈ Z, then the defining property of W implies that
k ≤ m + 1.

Proof. (end of the proof of Theorem 9.10) Since X is a manifold, around each x ∈ X we
find a homeomorphism φx : Ux → R

n defined on an open neighborhood Ux of x. Let Vx ⊂ Ux

corresponding (by φx) to the open ball of radius 1. From the open cover {Vx : x ∈ X}, extract
an open subcover, corresponding to x1, . . . , xk ∈ X. Then X = ∪iXi, and each Xi is a closed
subset of X homeomorphic to a closed ball of radius 1, hence has dim(Xi) ≤ m.


