Goed of Fout?	Naam:					
(test 1, 27/11/2013)	Studentnr.:					
QUESTION 1 If a space is metrizable then it is also:						
$Hausdorff. \ 1^{st} \ countable. \ 2^{nd} \ countable.$	$\begin{array}{c c} \mathbf{Fout} & \mathbf{Goed} \\ & \square & \boxtimes \\ & \square & \boxtimes \\ & \square & \end{array}$					
QUESTION 2 If a topological space can be embedded in some \mathbb{R}^n (for some n), then it is also:						
$Hausdorff. \ metrizable. \ 1^{st}\ countable. \ 2^{nd}\ countable.$						
QUESTION 3 A subset $A \subset \mathbb{R}$ is open in \mathbb{R} It is an open interval. It can be written as a union of a finite number A if can be written as a (arbitrary) union of A if A if A if A is interior (in A if A is interior (in A is interior).	open intervals. \square					
QUESTION 4 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:						
A Moebius band. A cyclinder. two Moebius bands. two cylinders.	Fout Goed □ □ □ □ □ □ □ □ □ □					
QUESTION 5 $A \text{ subset } U \text{ of } \mathbb{R}^2 \text{ is open in } Euclidean \text{ topology}) \text{ if and o} U_1 \times U_2 \text{ of two opens}$	nly if it is the product					

Goed of Fout?		Naam:			
(test 1, 27/11)	/2013)	Studentnr.:			
QUESTION 6 If a space is metrizable then it is also:					
			Fout	Go	oed
	Hausdorff.				
	1^{st} countable.				
	2^{nd} countable.		Ш	Ш	
QUESTION 7 If a topological space can be embedded in some \mathbb{R}^n (for some n), then it is also:					
			Fout	\mathbf{G}	oed
	${\it Hausdorff.}$				
	metrizable.				
	1^{st} countable.				
	2^{nd} countable.				
QUESTION 8 A subset $A \subset \mathbb{R}$ is open in \mathbb{R} (with respect to the Euclidean topology) if an only if: Fout Goed					
	It is an open interval.				
It can be written	as a union of a finite numbe	r of open intervals.			
It can be written as a (arbitrary) union of open intervals. \Box					
It o	coincides with its interior (in	\mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}			
QUESTION 9 If we cut a Moebius band open through the middle circle then we obtain a space which is homeomorphic to:					
F	-		Fou	t (Goed
	A Moebius band.				
	$A\ cyclinder.$				
	$two\ Moebius\ bands.$				
	$two\ cylinders.$				
			D -	4	C 1
QUESTION 10	A subset U of \mathbb{R}^2 is open in Euclidean topology) if and	only if it is the produ	he	out	Goed
	$U_1 \times U_2$ of two oper	$s \cup_1, \cup_2 \ of \mathbb{K}$	L		\Box .