True o	or False? Naam:	
$(\text{test } \exists$	3, 9/12/2013) Studentnr.:	
True		False
	1. If X and Y are homeomorphic then, for all $x \in X$ and all $y \in Y$, $X \setminus \{x\}$ and $Y \setminus \{y\}$ are homeomorphic.	
	2. If X and Y are homeomorphic then, for all $x \in X$ there exists $y \in Y$ such that $X \setminus \{x\}$ and $Y \setminus \{y\}$ are homeomorphic.	
	3. The collection of all open triangles in the plane is a topology basis.	
	4. for any action of \mathbb{Z}_2 on S^n , S^n/\mathbb{Z}_2 is homeomorphic to \mathbb{P}^n .	
	5. for any action of \mathbb{Z}_2 on S^n , S^n/\mathbb{Z}_2 is Hausdorff.	
	6. For any (X, \mathcal{T}) , $A \subset B \subset X$, one has $(\mathcal{T} _B) _A = \mathcal{T} _A$.	
	7. The product of any two Hausdorff spaces is Hausdorff.	
	8. if $p_n : [0,1] \longrightarrow \mathbb{R}$ are polynomial functions converging uniformly to then f is a continuous.	f, \square
	9. if $p_n : [0, 1] \longrightarrow \mathbb{R}$ are polynomial functions converging pointwise to f then f is continuous.	f, 🗆
	10. if $p_n : [0,1] \longrightarrow \mathbb{R}$ are polynomial functions converging uniformly to then f is a polynomial.	f , \Box

True o	or False? Naam:	
$(\text{test } \exists$	3, 9/12/2013) Studentnr.:	
True		False
	1. If X and Y are homeomorphic then, for all $x \in X$ and all $y \in Y$, $X \setminus \{x\}$ and $Y \setminus \{y\}$ are homeomorphic.	
	2. If X and Y are homeomorphic then, for all $x \in X$ there exists $y \in Y$ such that $X \setminus \{x\}$ and $Y \setminus \{y\}$ are homeomorphic.	
	3. The collection of all open triangles in the plane is a topology basis.	
	4. for any action of \mathbb{Z}_2 on S^n , S^n/\mathbb{Z}_2 is homeomorphic to \mathbb{P}^n .	
	5. for any action of \mathbb{Z}_2 on S^n , S^n/\mathbb{Z}_2 is Hausdorff.	
	6. For any (X, \mathcal{T}) , $A \subset B \subset X$, one has $(\mathcal{T} _B) _A = \mathcal{T} _A$.	
	7. The product of any two Hausdorff spaces is Hausdorff.	
	8. if $p_n : [0,1] \longrightarrow \mathbb{R}$ are polynomial functions converging uniformly to then f is a continuous.	f, \square
	9. if $p_n : [0, 1] \longrightarrow \mathbb{R}$ are polynomial functions converging pointwise to f then f is continuous.	f, 🗆
	10. if $p_n : [0,1] \longrightarrow \mathbb{R}$ are polynomial functions converging uniformly to then f is a polynomial.	f , \Box