True or False?	Naam:
(test 7, 8/01/2014)	Studentnr.:

False

True

1. A continuous bijection from a Hausdorff space to a compact space is a homeomorphism.	
2. The cone of S^1 can be embedded in \mathbb{R}^2 .	
3. If X is compact and connected and $f: X \to \mathbb{R}$ is continuous, then the image of f is of type $[m, M]$ with $m, M \in \mathbb{R}$.	
4. Any topological manifold is automatically normal as a topological space.	
5. For any $A \subset S^2$ nonempty, $S^2 \setminus A$ can be embedded in \mathbb{R}^2 .	
6. \mathbb{R} endowed with the lower limit topoology is 2-nd countable.	
7. The boundary of any compact subspace $X \subset \mathbb{R}^n$ is compact.	
8. \mathbb{R} endowed with the lower limit topology is connected.	
9. There exists $A \subset \mathbb{R}^2$ whose boundary is the entire \mathbb{R}^2 .	
10. In \mathbb{R} endowed with the lower limit topology, there does not exist a largest open contained in $(0, 1)$.	
11. For any topology basis \mathcal{B} on a set X, there exists a topology \mathcal{T} on X such that \mathcal{B} is a basis for the topological space (X, \mathcal{T}) .	
12. The quotient of any compact Hausdorff space is compact and Hausdorff.	
13. Any path connected space is connected.	
14. A subset of a space X is closed if and only if it concides with its closure.	
15. Assume that X is a normal space, A and B are compact spaces, $f : A \to X$, $g : B \to X$ are continuous and $f(a) \neq g(b)$ for all $a \in A, b \in B$. Then one can find $\phi : X \to \mathbb{R}$ continuous such that $\phi \circ f = 0, \phi \circ g = 1$.	
16. Any connected space is path-connected.	
17. Any compact metrizable space is sequentially compact.	
18. Any 2-nd countable space is also 1-st countable.	
19. There is an action of a group Γ on \mathbb{R}^2 such that \mathbb{R}^2/Γ is homeomorphic to the Klein bottle.	
20. If X is compact (but not necessarily Hausdorff) then any closed subspace A of X is compact.	

True or False?	Naam:
(test 7, 8/01/2014)	Studentnr.:

False

True

1. A continuous bijection from a Hausdorff space to a compact space is a homeomorphism.	
2. The cone of S^1 can be embedded in \mathbb{R}^2 .	
3. If X is compact and connected and $f: X \to \mathbb{R}$ is continuous, then the image of f is of type $[m, M]$ with $m, M \in \mathbb{R}$.	
4. Any topological manifold is automatically normal as a topological space.	
5. For any $A \subset S^2$ nonempty, $S^2 \setminus A$ can be embedded in \mathbb{R}^2 .	
6. \mathbb{R} endowed with the lower limit topoology is 2-nd countable.	
7. The boundary of any compact subspace $X \subset \mathbb{R}^n$ is compact.	
8. \mathbb{R} endowed with the lower limit topology is connected.	
9. There exists $A \subset \mathbb{R}^2$ whose boundary is the entire \mathbb{R}^2 .	
10. In \mathbb{R} endowed with the lower limit topology, there does not exist a largets open contained in $(0, 1)$.	
11. For any topology basis \mathcal{B} on a set X, there exists a topology \mathcal{T} on X such that \mathcal{B} is a basis for the topological space (X, \mathcal{T}) .	
12. The quotient of any compact Hausdorff space is compact and Hausdorff.	
13. Any path connected space is connected.	
14. A subset of a space X is closed if and only if it concides with its closure.	
15. Assume that X is a normal space, A and B are compact spaces, $f : A \to X$, $g : B \to X$ are continuous and $f(a) \neq g(b)$ for all $a \in A, b \in B$. Then one can find $\phi : X \to \mathbb{R}$ continuous such that $\phi \circ f = 0, \phi \circ g = 1$.	
16. Any connected space is path-connected.	
17. Any compact metrizable space is sequentially compact.	
18. Any 2-nd countable space is also 1-st countable.	
19. There is an action of a group Γ on \mathbb{R}^2 such that \mathbb{R}^2/Γ is homeomorphic to the Klein bottle.	
20. If X is compact (but not necessarily Hausdorff) then any closed subspace A of X is compact.	