True or False?	Naam:
(test 8, 13/01/2014)	Studentnr.:

Note: all the exercises below are over \mathbb{R} (hence all the vector spaces and algebras are over \mathbb{R} and by $\mathcal{C}(X)$ we denote the algebra of \mathbb{R} -valued continuous functions on X).

True

1. In every normed vector space, any Cauchy sequence is convergent.	
2. The space $M_{n \times n}(\mathbb{R})$ of n by n matrices is an algebra over \mathbb{R} . (the operations are the usual addition, multiplication etc of matrices)	
3. In any algebra A one has $(a + b)(a - b) = a^2 - b^2$ for all $a, b \in A$.	
4. The space of polynomials in one variable X, which are divisible by $X - 2$, form a subalgebra of $\mathbb{R}[X]$. (the operations are the usual addition, multiplication etc of polynomials).	
5. The space $GL_n(\mathbb{R})$ of invertible <i>n</i> by <i>n</i> matrices is a subalgebra of $M_{n \times n}(\mathbb{R})$. (the operations are the usual addition, multiplication etc of matrices)	
6. For every space $X, \mathcal{A} := \mathcal{C}(X)$ is point-separating. \Box	
7. In any algebra A there exists $b \in A \setminus \{0\}$ such that $(a+b)(a-b) = a^2 - b^2$ for all $a \in A$.	
8. The space of continuous functions on \mathbb{R} with the property that $f(x) = f(x + 2\pi)$ for all x . is a sub-algebra of the algebra of all continuous functions.	
9. For any normal space X, the algebra $\mathcal{C}(X)$ of all continuous functions on X is point-separating.	
10. Let S be a set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ with the property that every $f \in S$ is periodic with some period $t_f \in [1, 2014]$. Then S cannot be dense in $\mathcal{C}(\mathbb{R})$.	

False

True or False?	Naam:
(test 8, 13/01/2014)	Studentnr.:

Note: all the exercises below are over \mathbb{R} (hence all the vector spaces and algebras are over \mathbb{R} and by $\mathcal{C}(X)$ we denote the algebra of \mathbb{R} -valued continuous functions on X).

True

1. In every normed vector space, any Cauchy sequence is convergent.	
2. The space $M_{n \times n}(\mathbb{R})$ of n by n matrices is an algebra over \mathbb{R} . (the operations are the usual addition, multiplication etc of matrices)	
3. In any algebra A one has $(a + b)(a - b) = a^2 - b^2$ for all $a, b \in A$.	
4. The space of polynomials in one variable X, which are divisible by $X - 2$, form a subalgebra of $\mathbb{R}[X]$. (the operations are the usual addition, multiplication etc of polynomials).	
5. The space $GL_n(\mathbb{R})$ of invertible <i>n</i> by <i>n</i> matrices is a subalgebra of $M_{n \times n}(\mathbb{R})$. (the operations are the usual addition, multiplication etc of matrices)	
6. For every space $X, \mathcal{A} := \mathcal{C}(X)$ is point-separating. \Box	
7. In any algebra A there exists $b \in A \setminus \{0\}$ such that $(a+b)(a-b) = a^2 - b^2$ for all $a \in A$.	
8. The space of continuous functions on \mathbb{R} with the property that $f(x) = f(x + 2\pi)$ for all x . is a sub-algebra of the algebra of all continuous functions.	
9. For any normal space X, the algebra $\mathcal{C}(X)$ of all continuous functions on X is point-separating.	
10. Let S be a set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ with the property that every $f \in S$ is periodic with some period $t_f \in [1, 2014]$. Then S cannot be dense in $\mathcal{C}(\mathbb{R})$.	

False