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Abstract—Domain models play a crucial role in software
development, as they provide means for communication among
stakeholders, for eliciting requirements, and for representing the
information structure behind a database scheme or at the basis
of model-driven development. However, creating such models is
a tedious activity and automated support may assist in obtaining
an initial domain model that can later be enriched by human
analysts. In this paper, we propose an experimental comparison
of the effectiveness of various approaches for deriving domain
models from a given set of user stories. We contrast human
derivation with machine derivation; for the latter, we compare
(i) the Visual Narrator: an existing rule-based NLP approach;
(ii) a machine-learning classifier that we feature engineered;
and (iii) a generative AI approach that we constructed via
prompt engineering. Based on a benchmark dataset that consists
of nine collections of user stories and corresponding domain
models, the evaluation indicates that no approach matches human
performance, although a tuned version of the machine learning
approach comes close. To better understand the results, we
qualitatively analyze them and identify differences in the types
of false positives as well as other factors that affect performance.

I. INTRODUCTION

Domain models provide a holistic view of the environment
where the system to-be will operate. These models serve
multiple purposes, as they facilitate communication with de-
velopers and stakeholders, may be used to uncover missing
requirements, and are a blueprint for the design of a database
scheme or for adopting model-driven development.

The construction of domain models is usually a human
activity. Analysts create domain models on the basis of do-
main knowledge and documentation, interview notes, existing
requirements and, in general, any information that an analyst
possesses about the domain at hand [1].

The systematic mapping by Zhao et al. [2] shows the
existence of many NLP-powered approaches for constructing
conceptual models from written text, including documentation,
domain descriptions, and requirements. We refer to this pro-
cess as domain model derivation, and this paper focuses on the
derivation of such domain models from a set of user stories.

The existing literature on deriving domain models from
requirements comprises both manual approaches that provide
guidelines for extraction models [3], [4], [5] as well as
automated approaches that include rule-based solutions [6],
[7] and machine learning solutions [8].

On the one hand, deriving domain models automatically can
bring several benefits, as it saves time and effort. Furthermore,
it might improve consistency and completeness, as manual
derivation may lead to omitting certain concepts, especially
when starting from a large collection of requirements.

On the other hand, deriving domain models automatically
is challenging due to the ambiguity and impreciseness of
requirements expressed in natural language. Moreover, as
observed by Arora and colleagues, the notion of relevance
is inherently subjective [5], although this can be partially
mitigated via clear guidelines [3], [4].

In this paper, we investigate the relative effectiveness of
several automated approaches, compared to human perfor-
mance, for the task of deriving domain models that capture the
core structural concepts and relationships from a set of user
stories [9]. Our research question (RQ) is: How do automated
approaches for the derivation of domain models from user
stories compare to manual derivation by human analysts?

To answer the RQ, we develop a machine learning approach
to derive domain models and we construct a prompt procedure
that allows ChatGPT to derive domain models. We then com-
pare the results with the state-of-the-art rule-based approach
from the literature (Visual Narrator [10]) and with human
performance (manually derived domain models).

Thus, the paper includes the following contribution:
1) We propose a machine-learning-based approach and

prompts to generative models (ChatGPT 4.0) for the
derivation of domain models from user stories;

2) We assess the relative performance of the approaches to
derive domain models by measuring their completeness
and validity [11], [12];

3) We conduct a qualitative analysis of the results to
better understand the strengths and weaknesses of the
approaches, beyond the metrics;

4) We construct and share a dataset of 487 user stories from
nine cases and their derived domain models; these can
be used as a benchmark for future research.

Organization. In Sect. II, we set the background and review
related studies. We present the benchmark dataset in Sect. III.
In Sect. IV, we introduce the two approaches we developed
as well as the rule-based baseline. Our evaluation is presented
in Sect. V, including the experiment design and the results.
In Sect. VI we qualitatively analyze the results and their
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implications and discuss the threats to validity. We conclude
and set plans for future research in Sect. VII.

II. BACKGROUND AND RELATED WORK

Requirements describe the stakeholders’ needs, the desired
functionality, and the constraints under which the software
should operate, making them one of the most critical phases
of the software development process [13]. Requirements ex-
pressed in natural language may suffer from several de-
fects [14], including ambiguity and vagueness [15], [14].
Furthermore, requirements keep evolving and they undergo a
number of changes alongside their evolution [16], [17].

Domain models support analysts in addressing these chal-
lenges, as these models deliver an overview of the key entities
in the domain [1], facilitate the identification of ambiguity and
incompleteness [18], and serve as the starting point for design
and implementation [3]. We group the existing literature into
two lines of work: the essence of domain models (Sect. II-A),
and approaches to extract or derive such models (Sect. II-B).

A. Domain Models

According to Broy [1], a “domain model identifies funda-
mental business- and application-specific entity types and rela-
tionships between them, including business processes”. Blaha
and Rumbaugh [3] propose three types of domain models:
class models, state models, and interaction models. They are
constructed based on user interviews, domain knowledge, real-
world experience, and the analysis of related systems.

Domain class models include [3] classes (entities), at-
tributes, and various types of relationships: association, ag-
gregation, and inheritance. Relationships have names and may
express cardinality constraints [3].

In this paper, we focus on domain class models (domain
models from here on) that only consist of classes and associ-
ations. This choice is motivated by our RQ: (1) user stories
are a user-oriented notation for expressing requirements that
usually misses information such as attributes and cardinality
constraints [7], [9]; and (2) rather than a complete domain
model, we aim to obtain a high-level domain class model
that serves as a first step in analyzing the requirements
for understanding the static structures of a domain for both
professional and non-professional stakeholders [3], [19].

Domain models can be constructed in many ways. They
can be built manually from scratch or from informal domain
knowledge, or they can be derived from a textual artifact
such as domain documents, business processes, or an existing
set of requirements. In this paper, we rely on the guidelines
for deriving models for human analysts proposed by Blaha
and Rumbaugh [3], which suggest identifying all candidate
elements and then removing those that are not relevant for the
model, based on some exclusion criteria.

B. Model Extraction and Derivation

Generating models from requirements descriptions is a well-
studied problem [20], [21], [22]. Yue et al.’s [23] systematic

analysis on the generation of models from requirements re-
vealed that, to generate complete and consistent models, either
human intervention or artificially restricted natural language,
such as controlled vocabulary and grammar, are required.

Most of the approaches for the extraction of models from
requirements rely on rule-based NLP. Although many studies
exist [2], only a few provide in-depth empirical evaluations
that deliver solid evidence of their effectiveness.

Arora et al. [6] propose a rule-based approach that extracts
domain concepts, associations, generalizations, cardinalities,
and attributes from ‘shall’ requirements. A questionnaire was
given to practitioners with 50 random requirements to assess
the perceived usefulness of their approach. According to the
results, the relevance of the elements within a domain model
extracted by their approach lies in the range of 29%–43% with
a 95% confidence level.

Lucassen et al. [10], [24] propose the Visual Narrator, a
rule-based NLP tool that extracts structural elements from
user stories. The output consists of entities, hierarchical and
non-hierarchical relationships. Using precision, recall, and F1-
score metrics, the Visual Narrator achieved precision and recall
scores above 90%. These results, however, are obtained by
assessing the tool’s performance against a human execution
of the same algorithm the tool implements, rather than against
models that are created by humans based on their own ratio-
nale for the inclusion of entities and relationships.

Bragilovski et al. [8] propose a machine learning algorithm
to recommend relationships between entities in conceptual
models created from user stories. Although their reported F1-
score is better than the Visual Narrator’s [24], they did not
compare it to human performance and they only provided a
limited analysis of the results.

Saini et al. propose DoMoBOT [25], a tool that aids mod-
elers in generating class diagrams from requirements descrip-
tions. DoMoBOT combines rules, machine learning, and deep
learning techniques. This bot takes requirements descriptions
rather than user stories, and it is designed to interactively
assist users throughout the process rather than autonomously
producing a comprehensive and validated model. Nevertheless,
we tested the performance of the class identification task on
two datasets from our benchmark – Planningpoker and School
(see Table I). For Planningpoker, the precision and recall were
0.121 and 0.666, respectively. For School, the precision and
recall were 0.211 and 0.611. In view of the limited precision
and recall and the different application scenario, we decided
not to compare this approach in our paper.

Cámara et al. [26] explore the capabilities of ChatGPT to
develop UML class diagrams with OCL constraints to assist
modelers. In their experiments, they provide a description of
the domain in a conversational manner to ChatGPT and request
a PlantUML as a result. Their results show that ChatGPT’s
performance depends heavily on domain knowledge. Our
objective and approach is different, as we are asking ChatGPT
to identify entities and relationships from a given set of user
stories and providing guidance for their identification.

Arulmohan et al. [27] study how LLMs (ChatGPT 3.5) can
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extract domain concepts from user stories: personas, actions,
and entities. They argue these can then be further transformed
into a domain representation. We take it a step further and
derive relevant classes (a type of entity) and associations,
excluding irrelevant entities and associations. While doing so,
we use the prompt patterns proposed by White et al. [28] and
the strategies introduced by OpenAI [29].

III. A BENCHMARK FOR DOMAIN MODEL DERIVATION
FROM USER STORIES

Due to the lack of benchmarks that contain user stories
and corresponding domain models, we set off to develop a
new one. We selected three collections of user stories from
an online repository of user stories [30] and six sets from
projects of master’s level students taking a course on require-
ments engineering. The process for selecting these collections
(projects, from here on) involved analysis to ensure they met
two criteria: (i) they contain mainly functional requirements,
and (ii) they refer to domains that are relatively easy to
understand with limited domain knowledge. These criteria
were established to isolate factors that could potentially affect
the outcomes of the evaluated approaches. The objective of this
research is to ascertain the optimal capabilities of the existing
approaches within a controlled, “ideal” scenario. For choosing
the projects in our dataset, we took into account the available
resources after applying the inclusion/exclusion criteria, the
time-consuming nature of constructing a gold standard, and
the minimum number of projects (at least five) required for
conducting a Friedman test to statistical analysis (which we
describe in the evaluation part). In the following we describe
the process of creating such a benchmark dataset.

TABLE I: Overview of our benchmark dataset of user stories and
domain models. FK is the Fleiss’ Kappa among the three taggers.

Project #US #Class Class FK #Assoc. Assoc. FK

Camperplus 55 17 0.768 23 0.558
Fish&Chips 50 9 0.557 7 0.732
Grocery 49 9 0.724 8 0.892
Planningpoker 53 6 0.723 6 0.528
Recycling 51 9 0.599 6 0.634
School 61 17 0.601 23 0.589
Sports 63 13 0.694 12 0.398
Supermarket 51 12 0.627 11 0.851
Ticket 54 10 0.657 13 0.730

A. Classes Identification

Three authors of this paper identified the classes for each
project independently using TAGRAM 1 [31], a web platform
designed as an infrastructure for processing, tagging, and
modeling sets of user stories. The tagging has been done
according to the guidelines for class identification by Blaha
and Rumbaugh [3]. The first step was the identification of
all nouns that become tentative classes and the removal of
spurious classes. A class was then eliminated when falling
into one of the following cases: redundant class, irrelevant

1https://github.com/ShahafErez/Tagram

class, vague class, attribute, operation, role, implementation
construct, and derived class. Next, we measured the inter-coder
reliability via Fleiss’ Kappa [32] (FK). Table I shows that for
most of the projects, we achieved substantial agreement (FK
of at least 0.6). To finalize the list of classes, we discussed the
differences and reached an agreement on the gold-standard
classes for each project. The process of identifying classes
and establishing the gold-standard classes through discussion
occurred in three rounds. The initial round involved one
project (School), the second round encompassed two projects
(Fish&Chips and Ticket), and the third round covered all
remaining projects. The purpose of this process was to assess
and align on the understanding of the task.

B. Associations Identification

Associations denote relationships between classes that are at
the same level of abstraction [3], thereby excluding hierarchi-
cal relationships. After agreeing on the classes for each project,
we created a spreadsheet that included all possible binary
associations between pairs of classes in the gold standard.
As a next step, the three authors independently tagged each
candidate association. The taggers were instructed discard un-
necessary and incorrect associations when they fall into one of
the following categories: irrelevant or implementation associ-
ations, actions, ternary associations, and derived associations,
as suggested by [3]. Table I shows the inter-coder reliability,
measured using Fleiss’ Kappa for the associations. In most
projects, we achieved moderate to substantial agreement (FK
of at least 0.55). Here again, we resolved the disagreements
via three rounds of discussion, following the same process
described for the classes.

IV. DOMAIN MODEL DERIVATION APPROACHES

We describe the approaches that we used to automatically
derive domain models from user stories. The first approach
consisted of the Visual Narrator, a rule-based-NLP based tool
[10] (Sect. IV-A). Next, we developed a machine learning
model based on feature engineering (Sect. IV-B). Finally,
we devised an LLM-based approach by setting a prompt for
ChatGPT 4.0 (Sect. IV-C).

A. Rule-based: Applying the Visual Narrator

The Visual Narrator [10] was designed by Robeer, Lu-
cassen, and colleagues to automatically generate conceptual
models from a collection of user stories. This tool contains
an algorithm composed of several heuristic rules from the
NLP and conceptual modeling domain to determine classes
and relationships. Visual Narrator builds on a traditional NLP
pipeline that uses the spaCy toolkit for Python: after tokenizing
the user stories, the part-of-speech tagger is used to separate
the parts of a user story (role, action, benefit), and then various
heuristics are applied (e.g., every noun is a candidate class) to
identify classes and relationships.
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B. Feature Engineering a Machine-Learning-based approach

We started from the approach by Bragilovski et al. [8],
which identifies associations from a pre-defined set of classes,
and further extend it. Specifically, we conducted feature en-
gineering in order to build an end-to-end machine-learning
approach that also identifies classes from a collection of user
stories, leading to an approach that is able to output both
classes and associations.

Game
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Fig. 1: An illustration of the process of deriving a domain model
using a machine-learning based approach.

The pipeline of this approach is illustrated in Fig. 1 and
consists of (1) extracting potential classes; (2) identifying
non-spurious classes; (3) assembling all possible associations
between the identified classes; (4) filtering those associations
by selecting the relevant ones. The identification of classes and
associations is mapped into a prediction task using Random
Forest (RF), a state-of-the-art technique that achieved the best
results in many software-engineering-related tasks [33].

1) Identifying Classes: The first step is the identification
of the classes from the user stories. To do so, we first extract
all nouns and compound nouns (up to three words) through
the noun-phrase identification component of spaCy 2. These
extracted phrases are tentative classes [3]. Next, to eliminate
spurious classes, we define a vector of features for each
tentative class that is used by the RF model to identify the
classes of the domain model. We engineered features based on
rules for class identification [24], [3] as well as from additional
insights we gained after exploring the data. The features are
listed in Table II, and they are based on the following rationale.
Feature 1 assumes that if a phrase appears frequently, it is
likely to be an important phrase. Features 2–5 determine if
the noun phrase should be a class based on part-of-speech
features: is it a noun, the subject of a sentence, a compound
noun? Feature 6 refers to the cases where a noun co-occurs at
least once with other ones. Finally, features 7–9 relate to the

2https://spacy.io/

frequency of occurrence in the various parts of the user story
template (according to the Connextra format [9]).

TABLE II: Features used by the machine-learning model for class
identification. Each feature characterizes a noun phrase.

ID Feature Description
1 count The number of times the phrase appears

in the user stories.
2 noun The number of times the phrase appears

as a noun in the user stories.
3 subject The number of times the phrase appears

as a subject in the user stories.
4 compound The number of times the phrase appears

as a compound in the user stories.
5 gerund The number of times the phrase appears

as a gerund in the user stories.
6 part of frequent ngram 1 if the class is in an N-Gram (N ∈

2, 3, 4) that occurs ≥2 times, else 0.
7 user role The number of times the phrase appears

in the role part of a user story.
8 action The number of times the phrase appears

in the action part of a user story.
9 benefit The number of times the phrase appears

in the benefit part of a user story.

2) Identifying Associations: The next step is to identify
associations between the classes. Here, we employ the features
engineered by Bragilosvki et al. [8], which we report and
briefly comment on for completeness.

These features can be categorized into three groups: external
knowledge, internal knowledge, and requirements-type knowl-
edge. The inspiration for this categorization stems from [3],
which emphasizes the importance of considering domain
knowledge and real-world experience when building a model.

a) External knowledge: concerns the existing knowledge
in other domains (we used the ModelSet repository [34]).
It involves features that calculate the similarity between a
tentative association and other associations that have already
been used in models from different domains. The rationale
is that if an association appears in other projects, it may be
relevant to the new project as well.

b) Internal knowledge: concerns the information ob-
tained from the given requirements. It involves examining
features that count how frequently classes co-occur in the
user stories and how often both classes occur individually.
The rationale behind this is that if classes frequently occur
together, they may have an association.

c) Requirements-type knowledge: concerns the informa-
tion derived from the structure of the requirements. Our
benchmark consists of user stories that follow the Connextra
format. Thus, features that examine in which part each class
of the association occurs may aid in the identification of the
association. For example, if two classes only appear in the role
part, it is unlikely for an association between them to exist.

C. An LLM-based Approach based on ChatGPT

Following the guidelines of [3], we also built a derivation
approach using ChatGPT 4.0 (API). We have defined two
initial prompts (one for classes, one for associations) that are
intended to be useful for any collection of user stories. In
unusual cases, however, ChatGPT may produce a list of classes
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that is clearly too long or too short. In such situations, limited
follow-up questions may be required to indicate that the final
list of classes can be made stricter or more flexible.

We used the user stories from the School project to ex-
periment with the initial prompt(s). To refine this initial
prompt, we attempted several enhancements derived from
OpenAI’s strategies [29] (also considered by, e.g., [27]) and
the community-posted prompt patterns from White et al. [28].
Both resources include strategies that are independent from
our specific task. In the following, we discuss the rationale
for the various parts of our prompt:

• General structure. Especially for more complex prompts,
it is important to remove ambiguity in the formulated
task by structuring the prompt [29]. For example, we
add delimiters (e.g., triple quotation marks, colons) and
divide the query into separate sections. As OpenAI [29]
suggests, it is also valuable to divide complex tasks into
simpler subtasks. Consequently, we divide the task into
two subtasks: (1) identifying relevant classes, and (2)
finding associations between these classes. Furthermore,
writing the task as a sequence of steps makes it easier for
ChatGPT to accomplish it [29]. We split both subtasks
into two steps based on the guidelines by Blaha and
Rumbaugh [3]: 1) define classes/associations, 2) remove
irrelevant classes/associations.

• Persona. Specifying a persona ensures that the LLM
takes into account a specific perspective when generating
output, which can help focus on the correct details
[29], [28]. For this reason, we specify that the model
should behave like a requirements engineer specializing
in domain modeling.

• Context. As indicated by the guidelines [29], [28], it is
relevant to provide additional details to the query and
indicate what can be discarded from the context to avoid
irrelevant output. Thus, our prompt includes more context
about which classes can be selected for objects (with
some examples) and which classes should be excluded.
For associations, we follow the same procedure.

• Reasoning. Both OpenAI and [28] emphasize the impor-
tance of giving the model time to reason, which can help
understand how the model reached the answer [28] and
help the model reason more reliably toward correct an-
swers. Therefore, we explicitly ask the model to explain
how it arrived at the output.

• Template. The user can instruct the LLM to produce the
output of the LLM to follow a specific template. Although
we do not require a specific template, for ease of use, we
specify that the end of the output should contain a final
list of classes/associations.

• Testing. We added some details to the prompt using the
user stories from the School project, as advised by [29].
For example, the statement to exclude subclasses was
added because we noticed that ChatGPT would otherwise
include them. However, we opted not to test an exhaustive
list of prompt options to avoid overfitting.

Although the guidelines [28], [29] list additional patterns,
we excluded those that were unrelated to our problem state-
ment or that we found irrelevant after experimentation. For
example, the Question Refinement Pattern [28] could be
added to almost any problem statement, but this resulted in
reformulated questions that no longer met the guidelines of
[3]. The resulting prompts are in the online appendix [35].

V. EVALUATION

We present the results obtained by applying the approaches
discussed in Sect. IV on the benchmark dataset that we
assembled (Sect. III). We compare these to the so-called
Human Achievable Performance (HAP), described below.

A. Experimental Settings

Using the approaches outlined in Section IV, we describe
how the domain models were derived. To counter potential bias
in the evaluation process, the evaluation of VN and ChatGPT
was carried out by an author who was not involved in the
preparation of, nor aware of, the gold-standard domain models.
The experimental materials, along with the ML implementa-
tion, the prompt, and the benchmark are in the appendix [35].

a) Tasks: We report on three evaluations, one of which
(Eval C) measures the ability of the approaches to derive
classes, while the other two (Eval Adj

A and Eval Gold
A ) determine

the ability to derive the associations.
In Eval C , we compare the performance of HAP, VN, ML,

and ChatGPT in deriving classes for each of the nine projects
in the benchmark dataset.

In Eval Adj
A , we perform a similar comparison for associa-

tions identification. Since this step depends on the preceding
stage (identifying classes), we adjusted the way we calculate
the metrics. In particular, we do not consider associations that
include one class that a specific approach has not identified:
if that approach fails to identify a class, it obviously cannot
identify any associations involving that class. Similarly, we do
not consider associations where the model identified a class
that is not present in the gold standard. We report the per-
centage of omitted associations in the appendix [35]. We also
omit HAP from Eval Adj

A ; unlike the automated approaches, the
human taggers identified the associations only after agreeing
on the gold standard.

In Eval Gold
A , we compare the approaches using the same

test set (unlike Eval Adj
A , where each approach relies on its own

generated list of classes). To do so, we compare the approaches
for association identification starting from the classes in the
gold standard. We excluded VN due to its inability to predict
associations only between a defined set of classes. Thus, the
comparison is limited to HAP, ML, and ChatGPT.

b) Metrics (dependent variables): The results are re-
ported using F0.5-score, F1-score, and F2-score, which are
different harmonic means of precision and recall [36]. These
metrics integrate the notions of Validity (precision) and Com-
pleteness (recall), drawn from previous conceptual modeling
research [11], [37], [12]. We employed three distinct F-scores,
each tailored to emphasize a specific facet of the domain
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models. The F0.5-score assigns greater weight to validity,
catering to users who prioritize domain models where nearly
all classes are relevant, even if a few are omitted. Conversely,
the F2-score places more emphasis on completeness, catering
to users who favor domain models that contain many relevant
classes, even if some irrelevant ones are included. Lastly,
the F1-score strikes a balance by assigning equal weight to
both validity and completeness, recognizing the comparable
importance of both aspects.

c) Compared approaches (independent variables):

• Human Achievable Performance.
For analyzing HAP, we first calculated the precision
and recall regarding class identification for each author
involved in creating the gold standard. This involved
comparing their outputs prior to the discussion and
establishing the gold standard. Note that there were
cases where, after the discussion, classes that none of
the authors initially identified were included in the gold
standard After reaching a consensus on the gold standard
classes, each author independently collected a list of
associations between these classes. Precision and recall
were calculated for each author by comparing their list
to the agreed-upon gold standard, established through
discussion among the authors. The HAP is then computed
based on the average precision and recall of the three
authors for both classes and associations.

• VN-based approach.
When executing the Visual Narrator, a threshold can be
defined to help filtering out the least frequent classes
[10]. This threshold considers a ranking based on both
the frequency of occurrence and the weight (i.e., relative
importance) of each class [10]. To mimic a real-world
situation in which an analyst could experiment with
multiple thresholds before continuing the modeling, the
threshold value was chosen separately for each project.
We post-processed some of the outputs to enable a fair
comparison. First, the VN can derive multiple associa-
tions between two specific classes. Since we are interested
in a domain model that only indicates if there is an
association between two classes, we consider whether or
not the VN suggests at least one association. Also, the VN
derives parent classes from noun-noun combinations [10].
It defines the parent class as the prefix of the compound
and creates a hierarchical relationship between this parent
class and the actual compound. We include both the
original compounds and the parent classes and do treat the
resulting hierarchical relationship between these classes
as a standard association. Second, when the VN cannot
find a main object in the user story, it is replaced by the
VN with the dummy word “System”. If this class type
appears in the final model, we remove it along with its
associations3. Third, the VN includes all functional roles
from the user stories (even the infrequent ones) as a class

3If “System” is a real domain class, we retain the class, but remove the
associations with this class that refer to the dummy word “System”

in the final model. When these functional roles were not
selected based on the threshold and appeared to have no
associations in the final model, we removed them as well.

• ML-based approach. To obtain a domain model using
the ML approach outlined in Sect. IV-B, we employed the
widely used Leave-One-Out Cross-Validation (LOOCV)
technique [38]. In software engineering research, this is
also referred to as the leave-one-project-out (LOPO) or
p-fold. In this approach, data from a single project is
set aside for testing purposes, while the data from the
remaining projects is utilized for training. This technique
leads to more generalizable results than cross-validation,
as model training is conducted on projects that differ
entirely from the one that is used for prediction [39]. For
class identification, we trained the model on all projects
except the one designated for testing. This process was
repeated nine times, corresponding to the number of
projects in the experiment. For association identification,
we initiated the process by creating a candidate list that
includes all possible associations. This involved generat-
ing all combinations of associations among the classes in
the gold-standard model for each project. Subsequently,
similar to the class identification, we trained nine distinct
models, where each model was specifically designed to
predict a project that was excluded from the training
phase.
For each project, we therefore had two distinct ML
models, one for class identification and the other for
association identification, trained on the other projects. In
order to determine which elements to retain, the author
who was not involved nor aware of the gold standard
made a choice by determining an optimal threshold by
considering the prediction probability set by the ML
model. This was done in two rounds: first, the author
identified the relevant classes by tuning the threshold
for the classes. Then, the ML model for association
identification was executed to connect those classes, and
the author considered different threshold values for the
associations.

• LLM-based approach with ChatGPT 4.0. For the
LLM-based approach, we set the temperature to 0 to
keep the output as deterministic as possible. We also
attempted to produce confidence levels per generated
class and association, but since the model tended to be
100% certain in its selection (presumably due to the
temperature value), we excluded this option. Thus, for
the LLM-based approach that uses ChatGPT, we simply
rely on the resulting lists of classes and associations.

• Precision- and recall-oriented variants of VN and ML.
Given our decision of considering, in addition to the
classic F1-score, two variants that favor precision (F0.5)
and recall (F2), we established that the author who would
define the thresholds for VN and for ML would actually
make two choices. The first threshold should favor a
model that, in the eyes of the author, prioritizes precision,
adding little noise to the model. The second threshold
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should focus on building a model that contains as many
relevant classes (and associations) as possible, without
compromising precision too much. This leads to the
precision- and recall-oriented variants of VN and ML (see
the results in Sect. V-B and in Table III).
d) Hypothesis: After defining the approaches, and the

metrics, we define the following (null) hypotheses:
• The class prediction performance (Eval C) from user

stories results in equal F0.5 (HF0.5-class
0 ), F1 (HF1-class

0 ),
F2 (HF2-class

0 ) when comparing the approaches.
• The association prediction performance (Eval Adj

A ) from
user stories results in equal F0.5 (HF0.5-association

0 ), F1

(HF1-association
0 ), F2 (HF2-association

0 ) when comparing
the approaches.

B. Quantitative Results

We compare HAP with the automated approaches for the
identification of classes and associations. Table III shows the
performance of the approaches for deriving classes (Eval C),
organized by project. We report on the results of the six
alternatives: HAP, two versions of VN (precision- and recall-
oriented), two versions of ML (precision- and recall-oriented),
and ChatGPT. We present F0.5-score, F1-score, and F2-score,
and report macro-average and standard deviation for each
approach. We highlight in green the best-automated approach
per project and macro-average.

It appears that HAP consistently outperforms the automated
approaches in terms of F0.5-score, F1-score, and F2-score
across all projects. Among the automated approaches, ML
precision-oriented has the highest average F0.5-score and F1-
score at 0.625 and 0.550, respectively. Regarding F2-score,
ChatGPT takes the lead, with a slight margin over ML recall-
oriented (0.608 versus 0.599).

To determine if the differences are statistically significant,
we conducted statistical tests with α = 0.05. We applied the
Friedman test [40], a non-parametric statistical test to compare
more than two treatments. We found a statistically significant
difference among the compared approaches with p < 0.01.
To check the differences between pairs of approaches, we
applied Nemenyi’s post-hoc test [41]. The results, visualized
in Fig. 2, show that the differences between some automated
approaches and HAP are not statistically significant: (1) ML-
precision in terms of F0.5-score; (2) ML-precision, ML-recall,
and ChatGPT in terms of F1-score; and (3) ML-recall and
ChatGPT in terms of F2-score.

Additionally, we calculated the effect size using Cohen’s d.
We refer to Cohen [42] where d > 0.2 indicates small effect,
d > 0.5 denotes medium effect, and large effect holds when
d > 0.8. From the results, HAP consistently achieved a large
effect size compared to all other alternatives in all metrics. The
full results are shown in the appendix [35].

In Table V, the performance of the approaches for deriv-
ing associations is presented (Eval Gold

A ) against the classes
from the gold standard (GS). HAP seems to outperform the
automated approaches in terms of all average metrics. The
closest approach is ML recall-oriented for the case of F2-score,
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Fig. 2: Classes (Eval C ) post-hoc analysis.

p-value<0.1

No Significant

p-value<0.01

p-value<0.05ML-Precision

ML-Recall

HAP

ChatGPT 4 M
L-P

recisio
n

M
L-R

ecall

H
A

P

C
h

atG
P

T
 4

Fig. 3: Associations (Eval Gold
A ) post-hoc analysis. Only the results for

F2 are shown, as no differences could be found for the other metrics.

where the automated approach achieved 0.800 while the HAP
achieved 0.850. Unlike class identification, there are instances
where automated approaches outperform HAP. For instance,
in the Grocery project, ML recall-oriented achieved the highest
F2-score with a value of 0.952 (while HAP is 0.917). Another
noteworthy example is the Sport project, where ChatGPT
achieved an F2-score of 0.820 (while HAP is 0.745).

Here again, we apply the Friedman test and Nemenyi’s post-
hoc test to check the statistical significance. The results appear
in Fig. 3. We found that: (1) there is no statistical significant
difference between the approaches for p-value< 0.05 in terms
of F0.5 and F1 (in the appendix, not shown in the figure);
(2) for F2-score, there is no statistical significant difference
between HAP and ML recall-oriented.

We also calculated the effect size using Cohen’s d. Except
for ML recall-oriented, HAP consistently outperformed all
other alternatives. Based on F2, it had a medium effect size
of 0.404. The full results are shown in the appendix [35].

VI. DISCUSSION

We first present insights obtained from the results presented
in Sect. V-B. Then, we discuss threats to validity.

A. Results Analysis

We analyze the results from two perspectives: qualitative
and qualitative.

1) Quantitative Analysis: We derive quantitative insights
from the tables and figures in Sect. V-B.

Finding 1. For class identification, HAP outperforms
automated approaches in terms of all metrics. However,
for each F-score, there is at least one version of ML that
has no statistically significant differences from HAP.

Examining the outcomes presented in Figure Fig. 2, which
depicts the post-hoc analysis of Eval C , we observe that for
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TABLE III: F-scores for class identification (Eval C ). The cells in green highlight the best results per project and overall.

Project
HAP VN ML ChatGPT

F0.5 F1 F2
Precision-oriented Recall-oriented Precision-oriented Recall-oriented

F0.5 F1 F2F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2

Camperplus 0.784 0.818 0.856 0.444 0.333 0.267 0.426 0.489 0.573 0.610 0.435 0.338 0.556 0.619 0.699 0.588 0.588 0.588
Fish&Chips 0.708 0.676 0.648 0.333 0.333 0.333 0.294 0.357 0.455 0.714 0.737 0.761 0.507 0.583 0.686 0.472 0.500 0.532
Grocery 0.778 0.849 0.933 0.405 0.375 0.349 0.337 0.414 0.536 0.909 0.800 0.714 0.449 0.552 0.714 0.439 0.476 0.521
Planningpoker 0.767 0.809 0.855 0.370 0.444 0.556 0.370 0.444 0.556 0.652 0.750 0.882 0.349 0.462 0.682 0.305 0.400 0.581
Recycling 0.680 0.714 0.751 0.283 0.300 0.319 0.260 0.308 0.377 0.366 0.353 0.341 0.370 0.444 0.556 0.472 0.500 0.532
School 0.704 0.745 0.790 0.566 0.462 0.390 0.489 0.565 0.670 0.732 0.522 0.405 0.495 0.526 0.562 0.537 0.605 0.691
Sports 0.745 0.754 0.763 0.455 0.333 0.263 0.410 0.400 0.391 0.377 0.348 0.323 0.362 0.370 0.379 0.591 0.667 0.764
Supermarket 0.775 0.749 0.724 0.424 0.435 0.446 0.422 0.483 0.565 0.741 0.533 0.417 0.391 0.486 0.643 0.374 0.457 0.588
Ticket 0.666 0.704 0.746 0.595 0.556 0.521 0.278 0.333 0.417 0.526 0.471 0.426 0.403 0.435 0.472 0.479 0.560 0.673

Mean 0.734 0.757 0.785 0.431 0.397 0.383 0.365 0.421 0.504 0.625 0.550 0.512 0.431 0.498 0.599 0.473 0.528 0.608
Std-dev 0.045 0.057 0.085 0.101 0.083 0.105 0.078 0.083 0.099 0.178 0.172 0.213 0.074 0.079 0.116 0.094 0.083 0.084

TABLE IV: F-scores for association identification (Eval Adj
A ) starting from the classes identified by each approach.

Project
VN ML ChatGPT

precision-oriented recall-oriented precision-oriented recall-oriented
F0.5 F1 F2F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2

Camperplus 0.455 0.400 0.357 0.426 0.348 0.294 0.938 0.857 0.789 0.263 0.174 0.130 0.500 0.364 0.286
Fish&Chips - - - 0.435 0.500 0.588 0.588 0.500 0.435 0.270 0.308 0.357 0.714 0.800 0.909
Grocery 1.000 1.000 1.000 0.800 0.800 0.800 0.000 0.000 0.000 0.370 0.333 0.303 1.000 1.000 1.000
Planningpoker 0.333 0.333 0.333 0.333 0.333 0.333 0.385 0.364 0.345 0.385 0.364 0.345 0.714 0.667 0.625
Recycling 0.833 0.667 0.556 0.833 0.667 0.556 - - - 0.417 0.333 0.278 0.625 0.727 0.870
School 0.469 0.545 0.652 0.390 0.414 0.441 0.250 0.182 0.143 0.377 0.348 0.323 0.530 0.467 0.417
Sports - - - 0.294 0.400 0.625 0.556 0.667 0.833 0.833 0.889 0.952 0.652 0.750 0.882
Supermarket 0.417 0.444 0.476 0.429 0.429 0.429 0.652 0.750 0.882 0.652 0.632 0.612 0.795 0.824 0.854
Ticket 0.385 0.286 0.227 0.294 0.250 0.217 0.250 0.250 0.250 0.385 0.286 0.227 0.526 0.471 0.426

Mean 0.556 0.525 0.515 0.470 0.460 0.476 0.452 0.446 0.460 0.439 0.407 0.392 0.673 0.674 0.696
Std-dev 0.255 0.246 0.258 0.204 0.173 0.184 0.292 0.299 0.337 0.185 0.217 0.247 0.158 0.204 0.263

TABLE V: F-scores for association identification (Eval Gold
A ) starting from the set of classes in the gold standard.

Project
HAP ML ChatGPT

F0.5 F1 F2
precision-oriented recall-oriented

F0.5 F1 F2 F0.5 F1 F2 F0.5 F1 F2

Camperplus 0.851 0.870 0.891 0.862 0.769 0.694 0.840 0.851 0.862 0.588 0.596 0.603
Fish&Chips 0.855 0.889 0.926 0.897 0.933 0.972 0.556 0.667 0.833 0.364 0.421 0.500
Grocery 0.917 0.917 0.917 0.972 0.933 0.897 0.833 0.889 0.952 0.729 0.778 0.833
Planningpoker 0.869 0.855 0.842 0.455 0.400 0.357 0.463 0.556 0.694 0.735 0.769 0.806
Recycling 0.844 0.860 0.877 0.962 0.909 0.862 0.882 0.923 0.968 0.364 0.421 0.500
School 0.765 0.718 0.677 0.339 0.250 0.198 0.408 0.444 0.488 0.488 0.500 0.513
Sports 0.699 0.721 0.745 0.515 0.538 0.565 0.536 0.600 0.682 0.781 0.800 0.820
Supermarket 0.931 0.923 0.914 0.652 0.667 0.682 0.644 0.743 0.878 0.738 0.720 0.703
Ticket 0.921 0.891 0.864 0.702 0.667 0.635 0.674 0.750 0.845 0.725 0.741 0.758

Mean 0.850 0.849 0.850 0.706 0.674 0.651 0.648 0.714 0.800 0.612 0.638 0.671
Std-dev 0.076 0.077 0.085 0.233 0.243 0.253 0.173 0.161 0.153 0.168 0.156 0.143

each F-score measure, at least one version of ML model
demonstrates no statistically significant difference compared
to the HAP. Specifically, regarding the F0.5-score, we find no
basis to reject the null hypothesis HF0.5-class

0 that posits no
difference between HAP and ML precision. Similarly, for the
F1-score, the evidence does not allow us to reject the null
hypotheses HF1-class

0 for the differences between HAP and
both ML precision and recall, as well as chatGPT. Lastly,
concerning the F2-score, the null hypotheses HF2-class

0 cannot
be rejected, as the results indicate no statistical difference
between HAP and both ML recall and chatGPT. These findings
suggest that automated methods may achieve results compa-

rable to human performance, indicating potential savings in
time and effort.

Finding 2. For association identification, HAP generally
outperforms the automated approaches. However, tuning
the ML for recall shows an effect, however, it is not
statistically significantly different from HAP in terms of
F2-score.

Observing Fig. 3, the post-hoc analysis comparing the HAP
and ML-recall reveals a p-value exceeding 0.1. Consequently,
we cannot reject the null hypothesis HF2-association

0 , indicating
that the difference between HAP’s average F2-score of 0.85
and ML-recall’s 0.80 is not statistically significant.
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2) Qualitative Analysis: We complement conventional sta-
tistical evaluations with a qualitative analysis of the generated
domain models in order to obtain a more nuanced understand-
ing of the differences between the approaches beyond the F-
scores.

We derive qualitative insights via a thorough examination
of the alignment of elements (classes and association) across
the domain models generated by automated approaches and
against the gold standard.

Classes: For this element, we observe the following:

Finding 3. The most dominant features that influence the
identification of classes by the ML are: ‘action’, ‘noun’,
and ‘count’, indicating that frequency of occurrence, by
itself, as a noun, and in the action part of a user story,
contributes to identifying a noun phrase as a class.

We ran SHAP [43] on each ML model for class identifica-
tion (due to the LOOCV evaluation) and found that the SHAP
scores were consistent across all approaches (appears in the
appendix [35]). Fig. 4 shows the bar plot of SHAP scores of
the ML achieved when the Planningpoker is used as a test set.
Upon scrutinizing the instances of false positives and false
negatives, it becomes evident that these prevailing features
heavily influence misidentification. For example, in Planning-
poker, the class ‘account’ was identified as a viable class (with
a probability of 0.891) while it was not included in the gold
standard since it is an implementation detail in the context
of the domain. This outcome was influenced by features
such as ‘action’, ‘noun’, and ‘count’, which contributed more
significantly to such identification than the ‘compound’ feature
that contributed negatively to that identification (following the
SHAP analysis). Thus, the ML approach favors frequently
occurring noun phrases, especially those occurring in the
action part of the user stories. The users of this approach could
therefore search carefully into the role and benefit parts for
potentially omitted classes.

Action

Count

Noun

Compound

Subject

Benefit

User Role

Gerund

Part_of_Frequent_N-gram

0.2 0.4 0.6 0.8 1.0

Mean(|SHAP value|) (average impact on model output magnitude)

Fig. 4: SHAP values of the ML model; Planningpoker as a test set.

Finding 4. There are differences between the types of false
positives that each approach generates.

In order to qualitatively compare the treatments and the
differences across domains, we have conducted an analysis
of the false positives according to the categories outlined in
our reference book [3]: (i) redundant or derived (we merged
those); (ii) vague; (iii) role; (iv) attribute; (v) implementation
construct; (vi) operations; and (vii) irrelevant to the domain. To
do so, two authors of this paper have independently examined
the false positives that each treatment produced per each
collection of user stories and assigned one of the six labels (the
operation category was never selected) to each false positive.
This led to Cohen’s kappa of 0.63 (six categories, two raters),
indicating good alignment. The disagreements were discussed
between the two taggers and the conflicts were resolved. To
facilitate the discussion, the taggers constructed a decision tree
(Fig. 5) to determine which class the false positive should
belong to. Following this tree, no false positives were left as
‘undefined’ (the tagging outcomes are in the appendix [35]).

yes

Potential actor, entity or
attribute of the domain?

no

Denotes an implemen-
tation construct?

yes no

irrelevantimplement.

Redundant or derivable
from an identified entity?

yes no

redundant Too generic to be
included?
yes no

vague Used only as a
US role?
yes no

role Attribute of an
existing entity?

yes no

undefinedattribute

Fig. 5: Decision tree for the analysis of false positives.

The results of the analysis appear in Fig. 6. Unsurprisingly,
the VN identifies roles as classes since it is implemented in that
manner. ChatGPT faces challenges in distinguishing between
classes and attributes. This difficulty may arise because the
GPT model is trained on extensive data, where it has probably
encountered the same phrase either as an attribute or as a
class, depending on the domain (e.g., ‘password’ might be
treated as a class in a security system context). In contrast,
ChatGPT adeptly handles irrelevant classes, perhaps due to
the model’s exposure to a large number of data it was
trained on (the irrelevant classes infrequently appear in the
model’s Markov Decision Process). On the other hand, the
ML approach struggles with irrelevant classes. This challenge
stems from the fact that the model heavily relies on word
statistics within the data, lacking a deeper understanding of
the domain context. This is in contrast to LLMs, which, we
believe, possess sufficient contextual knowledge.
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Finding 5. The characteristics of the user story collections
seem to affect the performance of the approaches.

The distribution of false positive types per project (Table VI)
shows some differences. Fish&Chips and Planningpoker have
the highest number of roles that were incorrectly classified as
classes. To assess if a correlation exists between the number
of roles (characteristic of the project) and this error type,
we computed the Pearson correlation between the number of
roles and the mean of role misidentification (‘Role’ column
in Table VI), revealing a statistically significant coefficient
of 0.591 (p-value< 0.05). Furthermore, ML-P, ML-R, and
ChatGPT demonstrate that the ‘Role’ type misidentification
occurs roughly twice as often as their average misidentifcation.
For example, in the Planningpoker project (0.5 vs 0.172,
0.214 vs 0.103, 0.285 vs 0.155, respectively, data in our
online appendix). Considering these findings, coupled with
the fact that, on average, the ‘Role’ misidentification is the
most prevalent (0.228), we can infer a need for improvement
in distinguishing whether roles should be integrated into the
system or not in all automated approaches.

TABLE VI: Analysis of the false positives, organized by project,
highlighting the most common error types per project.

Project Red./der. Irrel. Vague Attribute Role Imp. const.

Camperplus 0.308 0.045 0.245 0.069 0.264 0.069
Fish&Chips 0.260 0.154 0.117 0.120 0.317 0.033
Grocery 0.060 0.158 0.057 0.134 0.193 0.399
Planningpoker 0.121 0.221 0.000 0.107 0.350 0.200
Recycling 0.220 0.162 0.112 0.074 0.259 0.172
School 0.277 0.176 0.031 0.145 0.016 0.355
Sports 0.117 0.217 0.029 0.229 0.151 0.257
Supermarket 0.060 0.127 0.088 0.428 0.148 0.150
Tickets 0.047 0.027 0.130 0.111 0.287 0.398

Mean 0.166 0.142 0.092 0.152 0.228 0.221

Another example regards the ‘Attribute’ error type; when
user stories describe many attributes, the automated ap-

proaches seem incapable of distinguishing between attributes
and classes. For example, in the Supermarket project, 42.8%
of the false positive mistakes identified an attribute as a
class, while the mean across all projects is 15.2%. In case
stakeholders prefer to filter out secondary important elements
(i.e., attributes), an approach that excels at distinguishing
between attributes and classes, such as VN and ML, may be
preferable, as depicted in Fig. 6.

Finding 6. Our analysis found no significant correlation
between the project’s complexity and the effectiveness of
automated tools.

We used the level of agreement among taggers as a proxy
measure for project complexity. A lower agreement is expected
to indicate higher complexity, as it suggests that taggers could
not reach consensus, leading to more extensive discussions to
determine the ‘gold standard’. To investigate this, we looked
at the correlation between the performance scores of HAP —
specifically, its F0.5, F1, and F2 scores (Table III) — and the
complexity of the project as indicated by the Class FK metric
shown in Table I. We found significant positive correlations
with values of 0.674, 0.857, and 0.811, respectively. These
findings suggest that our approach to measuring project com-
plexity is valid, as there’s a clear link between these scores
and the measured complexity.

However, when comparing the performance of all automated
approaches against the Class FK metric, we found weak
correlations (lower than 0.25). This initial evidence supports
the conjecture that automated tools could be particularly ben-
eficial in projects where achieving consensus among human
annotators is challenging.

Adding to this, the results underline that there are no
prominent issues impacting the outcomes, suggesting that tacit
knowledge and abstraction capabilities significantly contribute
to the superior performance of human experts. Nonetheless,
this superiority is accompanied by considerable demands on
time and effort, which may be particularly high for less
experienced analysts.

Associations We observe the following:

Finding 7. The features that influence the most in the
identification of association by the ML are related to
features regarding the Internal knowledge, indicating that
the most important factor to determine whether two classes
should be linked by an association is the co-occurrence of
the noun phrases in the same user story.

We executed SHAP across all the ML models. Unlike the
ML-model for classes, the SHAP values were not always the
same, although almost always all the features that appeared in
the top 5 were from the Internal knowledge category. These
results can be interpreted in view of classic heuristics [44]
such as the one stating that noun phrases acting as subject and
object in the same sentence are connected by an association
labeled with the verb phrase. However, this is not enough to
match human performance, as shown in Table V and Fig. 3.
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Finding 8. We found a significant Pearson correlation of
0.95 (p-value< 0.05) between the recall of the HAP and
the ML recall-oriented results when classes from the gold
standard are used to generate associations (Eval Gold

A ).

This result indicates that the ML approach (recall-oriented)
seems to be able to utilize features considered by humans when
performing the association identification task. Our observa-
tions indicate that when the HAP exceeds 0.88, in 4 out of 5
instances, the ML recall-oriented approach achieved a perfect
recall score of 1. ML may therefore be capable of identify-
ing associations that humans could overlook. Obviously, this
should be tested more thoroughly on a larger scale.

B. Threats to Validity

We discuss the relevant threats to validity according to
the framework by Wohlin et al. [45], which includes four
categories: conclusion, internal, external, and construct.
Conclusion validity concerns the relationship between the
treatments (HAP, and the VN, ML, ChatGPT approaches) and
the experiment outcome (i.e., their comparison). The major
threat in this category concerns the selection of the user story
sets. To avoid the risk of biased selection from a single source,
we sampled nine sets of user stories from two sources (see
Sect. III). Within these sources, we made a random selection
of the sets while excluding those with user stories that were
highly focused on solution-oriented details (a defect of user
stories according to the Quality User Story framework [46]).
Analyzing our treatments with low-quality user stories should
be considered for more general conclusions; here, we decided
to control this factor to reduce heterogeneity between the user
story collections. To mitigate overfitting in the ML model, we
used the LOOCV technique, using eight projects for training
and the remaining one for evaluation purposes.

To evaluate the differences among the approaches we ap-
plied the related statistical checks and analysis.
Internal validity concerns external threats that may affect the
independent variable with respect to causality. Three authors
of this paper constructed the domain models from selected user
story sets. To mitigate bias, we built these models separately,
discussed the results, and agreed on the gold-standard model.
Additionally, one of the authors, not involved in constructing
the gold-standard models, independently executed and con-
structed the domain models using the tools. Although this
approach may yield sub-optimal results, since that researcher
relied on her intuition on what would be the best thresholds
for inclusion of elements in the domain model, this mirrors
a real-world scenario where users are not aware of the gold-
standard model when utilizing automated tools.
External validity concerns the generalization toward industrial
practice. These threats primarily stem from limitations in the
representativeness of the projects, either in terms of number
of user stories, writing style, organization, quality, and cor-
responding model size. To mitigate this threat, our experi-
mentation involved nine sets with different numbers of user
stories from two distinct sources. Additionally, the domain

models generated exhibit differences in size concerning the
number of classes and associations. Despite that, experiments
need to be repeated with more projects to gain more robust
conclusions. Moreover, for the ML model, we did not conduct
hyper-parameters optimization to reduce overfitting.
Construct validity concerns generalizing the experiment results
to the theory/construct behind it. Metrics and measurement are
a major factor. Finding the right balance between precision and
recall is challenging. One may prefer a domain model with
almost all relevant classes included, but this leads to selecting
a few irrelevant classes, while another may prefer a diagram
with almost all relevant classes, with some important classes
missing. To mitigate the risk, we used three common types
of F-scores from the literature, each of which gives different
weights to precision and recall. However, further validation is
necessary, and one important direction is the identification of
the most suitable metric, such as Fβ , by analyzing the relative
impact of Type 1 and Type 2 errors [36].

VII. CONCLUSION AND FUTURE WORK

We experimentally compared three approaches for auto-
matically deriving domain models from user stories: a rule-
based approach (Visual Narrator), a machine learning approach
that we feature engineered, and a generative AI approach
based on ChatGPT. We contrasted them to human achievable
performance (HAP) to answer our RQ.

None of the approaches could outperform HAP in identi-
fying classes and associations (Findings 1–2). However, both
ChatGPT and the ML-based approach outperformed the Visual
Narrator in identifying classes and associations, showing the
potential of learning-based approaches. For class identification,
ML precision-oriented has the highest precision, while Chat-
GPT is better in terms of recall. In identifying associations,
in certain cases, the automated approaches came close to the
results obtained by HAP, especially with the version of the ML
approach optimized for recall (Finding 2), which correlated
strongly with HAP (Finding 7).

Our qualitative analysis reveals that the types of false
positives are affected by the chosen approach (Finding 4) and
that the characteristics of the user story collections also seem
to affect the results (Finding 5). These two empirical findings
hint that we could not determine an automated approach that is
always the best, thereby opening avenues for future research.

In our research agenda, we plan to test and further im-
prove the automatic approaches. For example, the features
we engineered for the ML models could be revised based
on Findings 3 and 6, which show how features that measure
the co-occurrence of noun phrases in the user stories are the
predominant factor. We also aim to explore new alternatives,
such as a deep-learning approach. Finally, we aim to study the
preferences of domain modelers using automatic approaches
with respect to tradeoff between precision and recall.
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