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Abstract—Automated requirements classification is a widely
explored research topic in requirements engineering. In par-
ticular, the distinction between functional and non-functional
requirements has received considerable attention. Recently, Large
Language Models (LLMs) have demonstrated potential in au-
tomating requirement classification tasks. Although existing re-
search emphasizes effective prompting strategies, it provides
limited evaluation of how many requirements should be processed
within a single prompt sequence as a batch to optimize classifier
performance. The batch size is relevant when computational
resources are constrained, as minimizing the number of LLM
calls becomes essential. Moreover, batching requirements may
provide the model with additional contextual information, po-
tentially improving the classification performance. Therefore, this
study investigates the impact of batch size on classification perfor-
mance. We assess how three locally deployable models, Llama3-
8B, Gemma3-12B, and DeepSeek-Distill-Qwen 14B, perform in
classifying requirements according to their functional and quality
aspects. Our findings show that the optimal batch size depends
on both the dataset and the model. Selecting a batch size of
one by default, which is often used for the classification tasks,
does not always yield optimal results. Our findings highlight the
importance of selecting a suitable batch size before performing
classification tasks.

Index Terms—requirements engineering, requirements classi-
fication, quality requirements, large language models

I. INTRODUCTION

Within the field of Requirements Engineering (RE), au-
tomating requirements classification has received significant
research attention over the years. Studies have focused on
identifying requirements from specification documents [[1],
classifying non-functional requirements [2], [3]], and catego-
rizing user reviews into bug reports, feature requests, user
experience feedback, and ratings [4].

In recent years, research on requirements classification has
increasingly turned to the use of Large Language Models
(LLMs). For instance, the research by Ronanki er al. [3]
evaluated and compared five different prompts, each following
a unique pattern, for binary classification of non-functional
and functional requirements. Zadenoori et al. [6] proposed
an approach to optimize the formulation process for distin-
guishing between functional and quality-related requirements.
Furthermore, Motger et al. 7] employed encoder-only models
to extract features from mobile app reviews.

Decoder-only LLMs, like the well-known OpenAl’s GPT
models, can be readily used for this task as they are pre-
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trained. Nonetheless, they are computationally demanding and
their use for classifying requirements may lead to potentially
high costs and energy footprints due the many LLM calls.
In particular, many studies [6], [8], [9] classify a single
requirement per prompt to simplify post-processing, which
can significantly increase resource consumption. On the other
hand, providing multiple requirements in a single prompt may
offer additional context to the model, potentially enhancing
performance [10]. However, excessive large batch sizes can
overwhelm the model’s memory capacity, leading to context
loss. For example, Lui et al. [11] show that in large textual
documents or descriptions, performance decreases when the
model needs to access information in the middle of the text.

Thus, selecting an appropriate batch size is important for
balancing resource efficiency and classification performance.
Despite its importance, current research lacks a systematic
evaluation of LLM performance across varying batch sizes.
To address this gap, we conduct research into the impact of
batch size on requirements classification tasks, driven by the
following main research question:

MRQ. To what extent does the batch size affect the perfor-
mance of large language models in a classification task?

In this study, we focus on classifying requirements into
functional and quality requirements, considering the revised
functional and non-functional classification problem as defined
by Dalpiaz et al. [12], which, building on the theory by Li
et al. [13], treats the classification of the functional aspect
independent from the identification of a quality aspect.

To answer our main research question, we conduct exper-
iments comparing three popular decoder-only LLMs that are
locally deployable: Llama3-8B, Gemma3-12B, and DeepSeek-
Distill-Qwen 14B. We make the following contributions:

« We investigate the performance of three well-established
LLMs using seven different batch sizes across four dis-
tinct datasets.

« We conduct a qualitative analysis to improve our under-
standing of performance across varying batch sizes.

Our experimentation reveals that the performance of each
LLM seem to fluctuate across different batch sizes. This
observation appears to be also dependent on the choice of
dataset and model. For our tested models, the classification of
quality requirements proves to be more challenging than the



classification of functional requirements. We synthesize our
results into findings that include recommendations for research
and practice.

The remainder of the paper is structured as follows. Sec-
tion [lI| presents the research problem and refined research
questions. Section [[T]describes the selected dataset and models
with an explanation of the formulated prompts and metrics
used. Section presents the quantitative findings of the
experiments while Section [V]interprets the results, summarizes
our main findings and covers the results of the qualitative
analysis. Section discusses the threats to validity and
Section |VII| compares our study to related work. Finally, we
conclude this study in Section

II. RESEARCH SETUP
A. Requirements classification problem

We focus on the classification of functional and quality
requirements, considering the revised functional and non-
functional classification problem as defined by Dalpiaz et
al. [12], which is inspired by the ontological analysis of
requirements types by Li et al. [13].

Dalpiaz et al. [12] explored high-level linguistic features
(including dependency grammars) when developing machine
learning models for classifying functional and quality require-
ments. Their study treats the decision of whether a requirement
is functional independent from the decision on whether the
requirement includes a quality aspect. For this reason, they
consider these as distinct classification tasks. They collected
eight datasets and manually annotated the data with the
following labels:

« Functional aspect: the requirement has a functional goal

or constraint (class 1) or does not (class 0).
« Quality aspect: the requirement includes a quality goal or
constraint (class 1) or does not (class 0).

We build on the same framework, conducting the experi-
ments for each of the two classification tasks independently.

B. Research Questions

We refine our main research question into four distinct re-
search questions, which we aim to address through quantitative
and qualitative analysis of the experiments we conducted.

First, we aim to gain insight into the performance of LLMs
across different batch size settings:

RQ1. What impact do different batch size settings have on
model performance when classifying functional and qual-
ity requirements?

To answer RQI, we experiment with various LLM archi-
tectures and evaluate their effectiveness.

Extensive research has been conducted on the use of ensem-
ble learning to improve the performance of classifiers, partic-
ularly in machine learning [[14]. Ensemble learning uses mul-
tiple algorithms to generate predictions and aggregates these
predictions based on a voting mechanism. Given that these
methods are employed to enhance robustness and stability, we
aim to use a similar approach to analyze its effect on different

batch sizes and compare the results with the individual models.

This leads us to our second research question:

RQ2. How does a LLM ensemble perform compared to
individual LLMs across different batch sizes?

To gain a better understanding of the models’ performance,
we examine whether certain characteristics of the require-
ments influence classification performance. Previous research
into requirements in issue tracking systems has shown that
requirements statements may include both functional and non-
functional aspects [15]. In these cases, however, the quality
aspect is often less explicit. Based on these observations, we
anticipate challenges in classifying such requirements, which
leads to our third research question:

RQ3. To what extent do requirements that combine functional
and quality aspects affect model performance?

Finally, we aim to obtain insight into the impact of dataset
selection on the performance of LLMs and how this varies
depending on the batch size setting:

RQ4. To what extent is the performance of the models af-
fected by the used dataset?

We answer RQ3 and RQ4 through our qualitative analysis
based on the results of the experiments.

III. EXPERIMENTAL SETTINGS

In this section, we first describe the datasets (Section [[II-A)
and models (Section employed in our experiments.
Then, we explain the prompt we used (Section [II-C), the
processing steps (Section [II-D), and the selected metrics
(Section [[II-E).

A. Datasets

To investigate the impact of batch size on LLM perfor-
mance, we conduct experiments on a subset of the data
proposed in the online appendices of [12], [L6].

a) Original datasets: Dalpiaz et al. [12] examined gen-
eral linguistic features for training machine learning models
to classify functional and quality requirements and publicly
share five of the annotated datasets. In [16], the same au-
thors proposed a robust pipeline for conducting and reporting
empirical studies. Two of their research questions involve the
classification of functional and quality requirements, for which
they release additional publicly available datasets.

Table [I] presents four datasets selected for this experiment
based on their availability and relatively balanced class dis-
tributions. The first three columns show the dataset size and
distribution of functional (F) and quality (Q) requirements of
the original datasets. The fourth column shows the number
of requirements with both a functional and a quality aspect
(F+Q). The remaining four columns provide the same infor-
mation for the sampled version.

Given the multi-label nature of this classification problem,
we adopt a strategy to split the problem into two separate
binary classification tasks. The first task aims to determine
whether a requirement contains a functional aspect, while the
second task aims to identify requirements that contain a quality
aspect (consistent with the methodology used in [6]).



TABLE I: Descriptive statistics of the datasets and the sample.

Original Sample
Dataset Size F Q F+Q  Size F Q F+Q
PROMISE 625 310 382 80 192 98 120 31
ERec mgmt 228 163 149 98 192 135 129 83
Leeds library 85 44 61 21 64 36 45 17
OAppT 140 84 53 28 128 83 49 28

b) Sampling and batch setting: We experiment with
batch sizes of 1, 2, 4, 8, 16, 32, and 64, warranting that
all configurations cover the same set of requirements. To
ensure that all data were consistent with multiples of 64, we
decided to sample the data. In addition, the requirements were
randomly selected to reduce any order-related bias. Consider,
for instance, a batch size of 64 on the PROMISE dataset, the
LLM is prompted to classify the functional aspect three times:
for requirements 1 to 64, 65 to 128, and 129 to 192. When
the dataset size permitted, we selected samples of up to 192
requirements (in multiples of 64) to manage the computational
costs associated with running experiments across different
batch sizes.

B. Models

We conducted our experiments using three widely adopted
LLM architectures:

¢ Gemma 3 12
« DeepSeek R1 Distill Qwen 1487
o Llama 3.1 8B-instrucf]

We chose these architectures because of their current rep-
utation as some of the most recognized open-source archi-
tectures. Additionally, we selected these specific model sizes
to minimize computational resource usage without compro-
mising accuracy. Apart from the selected models, we also
experimented with smaller versions (e.g., DeepSeek-Distill-
Qwen 7b), but these yielded high variability in the results
(e.g., inability to recognize the specified template), making
automatic post-processing problematic and impractical.

The models were implemented using the Transformers li-
brary in Pythmﬂ To ensure reproducible results, we set the
temperature to 0.01. After an initial experiment, we discovered
that performing the experiments in multiple runs yields iden-
tical generated output; however, to further rule out potential
fluctuations, we also controlled the seed (42).

To answer RQ2, we utilize the predictions of the three
independent models and apply majority voting as the voting
mechanism for the ensemble model.

We deployed Llama 3.1 on a NVIDIA A100 GPU compute
node. Given their larger sizes, we used a NVIDIA H100 GPU
compute node for Gemma 3 and DeepSeek-Distill-Qwen.

Uhttps://huggingface.co/google/gemma- 3- 12b-it
Zhttps://huggingface.co/deepseek-ai/DeepSeek- R 1-Distill-Qwen- 14B
3https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
4https://huggingface.co/docs/transformers/index

C. Prompt Engineering

a) Two distinct classification tasks: The classification
problem involves two different tasks: 1) determining whether
the requirement concerns a functionality, and 2) identifying
whether the requirement addresses a quality aspect. Since we
acknowledge that a requirement can reflect both a functionality
and a quality aspect (i.e., a requirement does not have to be
exclusively functional or quality-related), we have split the
experiments into two separate sessions for each requirement.
Therefore, we have formulated a distinct prompt for each task.
The final prompts can be found in our online appendix [17].

b) Sequence per session: Based on an initial exploratory
experiment, we observed that certain models, particularly
DeepSeek 14B, generally produce more variable output than
other models. Given the importance of obtaining outputs con-
forming to the specified post-processing template, we included
a follow-up prompt after the initial response within each
session, in which we instruct the LLM to comply with the
template to obtain a final, correctly formatted output.

c) Prompt strategy: When focusing on decoder-only
LLMs [18], the performance of these models is highly in-
fluenced by the formulation of the corresponding prompt. To
assist users in formalizing their prompts, several guidelines
have been proposed. One of the most prominent guides is the
one by White et al. [19]. In addition, organizations developing
and introducing new LLMs often include prompt guidelines in
their documentatiorm To formalize our prompt, we consid-
ered the following well-established prompting patterns to date:
persona pattern, template pattern and few-shot prompting:

o Persona pattern: this requests the LLM to take a specific
perspective, allowing it to determine which output to
generate and which details to focus on [19]]. Hence, to
ensure a consistent viewpoint, each prompt starts with a
request to the LLM to act as a requirements analyst.

o Template pattern: it enables the user to guide the LLM in
producing output in a format that it would not normally
use [19]]. We request the LLM to generate the output
based on the requirement and label numbers, for which
we also provide a partial placeholder.

o Few-shot pattern: In-context few-shot prompting is
widely applied and involves providing a number of
demonstration examples in the prompt [20]. Unlike tradi-
tional fine-tuning on language models, few-shot prompt-
ing does not require updating the model weights. Current
research on few-shot prompting aims to develop tech-
niques for selecting an optimal subset of demonstration
examples [21]. Here, we employed a manual approach,
in which the second and third author collaborated to the
creation of five examples per class (i.e., 10 examples per
batch) to ensure a diverse range of cases was represented.
We opted for this procedure as these authors have sub-
stantial experience in requirements classification.

Shttps://platform.openai.com/docs/guides/text?api-mode=responses
Shttps://www.llama.com/docs/how- to- guides/prompting/
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D. Post processing

We automated the processing of the output with the help of
the defined template. In general, no manual intervention was
required, with a few exceptions. On some occasions, Llama
deviated slightly from the template, for example, by skipping
a requirement number or by repeating the prediction. Due
to their limited occurrence (fewer than 10 cases across all
experiments) and easy detection, we manually corrected the
values based on the conversation history or counted them as
incorrect predictions.

E. Metrics

The following metrics are used to gain insight into the
performance of the LLMs:

e F1 score: the harmonic mean of recall and precision.

e Recall: ratio between the number of true positive results

and the total number of positive cases.

o Precision: ratio between the number of true positive

results and the total number of cases predicted as positive.

e Specificity: ratio between the number of true negative

results and the total number of negative cases.

To present the results, we chose the F1 score as it is a
balanced measure of recall and precision, making it easier
to identify performance trends across different settings. We
examine recall and precision scores to gain a better under-
standing of overall performance. In addition, we selected
specificity to evaluate performance for the negative cases.

IV. QUANTITATIVE FINDINGS

We present the quantitative results of the experiments.
First, we show the performance of each model individually.
Subsequently, we present the results of an ensemble model,
along with a comparison between all models.

A. Performance of individual LLMs

We conducted our experiments on the four datasets using
the three selected LLMs. Table display the F1 scores
for each distinct model. The tables show the values across the
different datasets, for each classification problem. The gray-
highlighted cells indicate the minimum and maximum F1 score
for the specific dataset and classification task.

DeepSeek’s performance is shown in Table[[I} The F1 scores
of the functional classification task remain relatively stable
across the different datasets and batch sizes. In contrast, the
performance of the quality classification task varies depending
on the batch size: a batch size of 1 yields the worst results,
with the lowest average F1 score and a high variation across
datasets. A batch size of 32 achieves the highest average F1
scores and the lowest variation.

Table [III| shows Llama’s performance using different batch
sizes. As can be observed in the table, the average performance
for both tasks decreases as the batch size increases. For
the quality classification task, the variation between different
datasets is highest for batch size 1 and 32.

The performance of Gemma is presented in Table Sim-
ilar to DeepSeek, the F1 score for the functional classification

TABLE II: DeepSeek F1 Scores for functional

requirements, with different batch sizes.

(a) Functional Requirements

and quality

Bsz;tzceh Dataset Mean SD
Leeds PM ER  OAppT

1 0835 0.857 0.836 0.867 0.849 0.016

2 0828 0.833 0.835 0901 0.849 0.035

4 0.800 0.809 0.836 0.885 0.833 0.038

8 0.809 0.829 0.840 0.886 0.841 0.033

16 0791 0.835 0.839 0.849 0.828 0.026

32 0.800 0.844 0.838 0.862 0.836  0.026

64 0809 0.813 0.839 0.808 0.817 0.015
Mean 0.810 0.831  0.838 0.866
SD 0.016 0.017 0.002 0.031

(b) Quality Requirements

BSa}th;h Dataset Mean SD
Leeds PM ER  OAppT

1 0615 0765 0.288 0.111 0.445 0.299

2 0.667 0.837 0.602 0.323  0.607 0214

4 0636 0.820 0.558 0.444  0.615 0.158

8 0.657 0.834 0.557 0478 0.631 0.154

16 0.657 0.833 0.611 0375 0.619 0.189

32 0.638 0.893 0.623 0.612 0.691 0.135

64 0.613 0.892 0.685 0.513  0.676  0.160
Mean  0.640 0.839  0.560 0.408
SD 0.021 0.044 0.128 0.161

TABLE III: Llama F1 Scores for functional

requirements, with different batch sizes.

(a) Functional Requirements

and quality

BSz}theh Dataset Mean SD
Leeds PM ER  OAppT

1 0809 0.770 0.828 0.794  0.800 0.025

2 0756 0.788 0.833 0.806 0.796  0.033

4 0761 0.780 0.831 0.792  0.791  0.030

8 0778 0.778 0.827 0.794  0.794  0.023

16  0.759 0.788  0.828 0.802 0.794  0.029

32 0773  0.743  0.827 0.802 0.786  0.036

64 0701 0.724 0.828 0.756  0.752  0.055
Mean  0.762  0.767  0.829 0.792
SD  0.032 0.025 0.002 0.017

(b) Quality Requirements

Bszitzceh Dataset Mean SD
Leeds PM ER  OAppT

1 0.882 0.889 0.796 0.673  0.810 0.101

2 0828 0.832 0.786 0.684 0.783  0.069

4 0822 0837 0.818 0.648 0.781  0.089

8 0841 0831 0812 0.712  0.799  0.060

16 0.846 0.812 0.812 0.631 0.775  0.098

32 0784 0.807 0.811 0.528 0.732  0.137

64 0.800 0.800 0.763 0.603  0.741 0.094
Mean  0.829 0.830 0.800 0.640
SD  0.032 0.030 0.020 0.061




task remains stable across different batch sizes and shows little
variation between datasets. The performance of the quality
classification task varies significantly depending on the batch
size and the dataset. The model performs increasingly better as
the batch size scales up to 8, but decreases when the batch size
increases further. The best performing batch size for Gemma
is eight, as this yields the highest average F1 score.

TABLE IV: Gemma F1 Scores for functional and quality
requirements, with different batch sizes.

(a) Functional Requirements

Batch Dataset

Si Mean SD
ize

Leeds PM ER  OAppT

1 0818 0.810 0.833 0.798 0.815 0.015

2 0867 0.824 0.831 0.830  0.838  0.020

4 0.847 0810 0.834 0.841 0.833 0.016

8 0847 0815 0.832 0.830 0.831 0.013

16 0814 0.814 0.831 0.834 0.823 0.011

32 0828 0.810 0.808 0.838 0.821 0.015

64 0.818 0.814 0.801 0.838 0.818 0.015
Mean 0.834 0.814 0.824 0.830
SD  0.020 0.005 0.014 0.015

(b) Quality Requirements

Bszitzceh Dataset Mean SD
Leeds PM ER  OAppT

1 0763 0.887 0517 0.400 0.642 0.223

2 069 0.833 0.584 0.400 0.628 0.183

4 0701 0.856 0.619 0.553  0.682  0.131

8 0747 0833 0.713 0.568 0.715 0.110

16  0.658 0.813 0.670 0.575  0.679  0.099

32 0623 0.792 0.630 0.642 0.672 0.081

64 0.738 0.737 0.693 0.560 0.682  0.084
Mean 0.704 0.822  0.632 0.528
SD  0.050 0.048 0.068 0.092

In Section [IV-C| we provide additional details on the
performance of each model, accompanied by a comparative
analysis.

B. Ensemble performance

As shown by the individual performance of each model, the
performance for a single task (functional versus quality) varies
depending on the model and batch size setting. Considering
the strengths of each model in specific scenarios, a hybrid
version of the models may demonstrate superior performance.
To answer RQ2, we investigate whether the use of an ensemble
models yields the best performance and examine the impact
over the batch size settings. This ensemble approach utilizes
the prediction of the three independent models and employs
majority voting to generate a final prediction.

Table |V| shows the performance of the ensemble of the
models. The functional identification task yields a stable F1
score for all settings, as expected based on the individual per-
formance of Gemma and DeepSeek. The average performance
for quality classification increases as the batch size increases,
up to batch size 8, after which it decreases only slightly. The

configurations with the largest (64) and smallest (1, 2, and 4)
batch sizes show the highest variance.

TABLE V: LLM ensemble F1 Scores for functional and
quality requirements, with different batch sizes.

(a) Functional Requirements

Bsz;tzceh Dataset Mean SD
Leeds PM ER  OAppT

1 0.837 0.810 0.833 0.813 0.823 0.014

2 0837 0.821 0.836 0.836  0.832  0.008

4 0.809 0.805 0.835 0.848 0.824  0.020

8 0818 0.814 0.836 0.824 0.823 0.010

16 0787 0.830 0.833 0.832 0.820 0.023

32 0.828 0.803 0.833 0.840 0.826 0.016

64  0.809 0.805 0.828 0.822 0.816 0.011
Mean 0.818 0.813 0.833 0.831
SD  0.018 0.010 0.003 0.012

(b) Quality Requirements

B;t;;h Dataset Mean SD
Leeds PM ER  OAppT

1 0810 0.907 0.525 0.400 0.660 0.237

2 0740 0.858 0.677 0.459 0.684 0.167

4 0765 0.889 0.689 0.585 0.732  0.128

8 0787 0876 0.745 0.658 0.766  0.091

16 0.709 0.855 0.739 0.608 0.728 0.102

32 0641 0.861 0.696 0.659 0.714  0.100

64 0773 0.864 0.733 0.554  0.731  0.130
Mean 0.746  0.873  0.686 0.561
SD  0.057 0.019 0.076 0.098

C. Model comparison for identifying qualities

As shown in Tables [[THV] the differences between the
models are most pronounced in the quality classification task.
Therefore, we provide additional performance details on the
quality classification task, which is the class that originated the
research on requirements classification [2]. The same analysis
for the functional classification task is in our online appendix.

Table shows the mean precision scores of each model
for the four datasets, along with the corresponding standard
deviation. The gray cells indicate the two best performances
per batch size, and the underlined cells represent the optimal
batch size for each model in terms of precision. As shown,
DeepSeek has one of the highest precision scores for all
settings, with the ensemble model achieving a well-balanced
performance across all models. In contrast, Llama showcases
the lowest precision scores for all settings.

Table shows the mean recall scores of the models on
the four datasets, as well as the standard deviation. The table
clearly demonstrates how the relatively high precision results
for DeepSeek and Gemma are contrasted by a limited recall.
Also, there is a visible variation in recall across the batch size
settings, a behavior which is less prominent for Llama.

Lastly, the specificity scores are shown in Table The
table reveals the low specificity scores of the Llama model and
the relatively high scores for the other models. Furthermore,



TABLE VI: Model precision for quality requirements.

Batch DeepSeek Gemma Llama Ensemble
Si
e Mean SD  Mean SD  Mean SD  Mean SD
1 0.88 0.19 0.88 0.14 0.75  0.09 0.88 0.14
2 0.93 0.10 0.93 0.08 0.72  0.09 0.89 0.14
4 0.89 0.14 0.86 0.07 0.71  0.09 0.86  0.09
8 0.90 0.06 0.86 0.04 0.73  0.06 0.88  0.07
16 0.90 0.10 0.84 0.08 0.71 0.11 0.85 0.06
32 0.85 0.11 0.85 0.08 0.66 0.16 0.81 0.09
64 0.78 0.13 0.83 0.07 0.66 0.12 0.78 0.12
SD 0.05 0.03 0.03 0.04

TABLE VII: Model recall for quality requirements.

Batch DeepSeek Gemma Llama Ensemble
Si

1ze Mean SD  Mean SD  Mean SD  Mean SD

1 033 0.26 053 0.25 0.89 0.13 055 0.27

2 047 0.22 049 0.20 0.87 0.05 056 0.18

4 048 0.16 0.57 0.16 0.87 0.11 0.64 0.15

8 0.50 0.17 0.62 0.15 0.88 0.11 0.70 0.14

16 049 0.20 0.57 0.11 0.86 0.13 0.64 0.12

32 059 0.16 0.56 0.09 0.83 0.13 0.64 0.11

64 0.60 0.18 059 0.11 0.85 0.05 0.70 0.15
SD 0.09 0.04 0.02 0.06

specificity is consistently and substantially lowest when using
batch size 64 for DeepSeek, Llama, and the ensemble model.

TABLE VIII: Model specificity for quality requirements.

Batch DeepSeek Gemma Llama Ensemble
Si

e Mean SD  Mean SD  Mean SD  Mean SD

1 0.98 0.01 093 0.03 0.51 028 093  0.03

2 097 0.02 0.96 0.03 046  0.23 0.94 0.03

4 094 0.06 0.86 0.09 0.44 030 0.85 0.08

8 091 0.07 0.82 0.14 045 033 0.79 0.20

16 094 0.09 0.83 0.10 044 030 082 0.12

32 0.86  0.09 083 0.17 036  0.26 0.77  0.16

64 0.73  0.24 0.78 0.18 036  0.18 0.67 0.28
SD 0.09 0.06 0.06 0.10

V. DISCUSSION

We first use the findings from Section [[V] to answer RQI
and RQ2, and attempt to provide a plausible explanation for
the observed performance. Subsequently, we report the find-
ings from our qualitative analysis of the experiment, thereby
answering RQ3 and RQ4.

A. Discussion Quantitative findings

Tables [[THV]in Section [[V]illustrate the performance trends
for the seven batch size settings. These results highlight not
only the variations in average performance, but also in the
variance between datasets. While a high average F1 score is
desirable when selecting an optimal batch size, it is equally
important to ensure this performance is robust across datasets.

For Llama, for example, a batch size of 1 achieves the
highest mean F1 score; however, performance for the quality
classification task fluctuates substantially across the datasets.

Even though the F1 score for batch size of 8 is slightly lower,
the variance is less pronounced compared to a batch size of
1, resulting in a more favorable setup.

For Gemma, batch sizes of 8 or 64 are preferable, as these
yield the highest average F1 and recall score for the quality
classification task (and the standard deviations are among the
lowest). Although a batch size of 8 yields satisfactory results
for Llama and Gemma, this is not the case for DeepSeek,
which benefits from a larger batch size. Furthermore, the
trends visible in the F1 scores vary extensively between the
three different models. Interestingly, for all models, a batch
size of 1 produces the largest standard deviation, suggesting
that this setting may not be the most suitable choice, even
though it is a commonly used default setting by researchers.
These observations lead to our first key finding.

Finding 1 (RQ1). Each large language model follows
a unique performance trend across varying batch size
settings, ranging from consistently increasing or decreasing
performance over larger batch sizes to patterns where
performance initially improves and subsequently declines
after a specific threshold. Therefore, it is advisable to
selecﬂ the batch size based on the specific characteristics
of the target dataset and model in mind.

In Section we paid special attention to the classi-
fication of quality requirements, given the wide variability
between models and the generally poorer results compared
to the functional classification problem (Section [[V-A). As
shown in Tables Gemma and DeepSeek exhibit a large
gap between recall and precision, while Llama offers a better
balanced recall and precision, even though its precision is the
lowest for all batch sizes. In fact, it demonstrates the least
variation between batch size settings in terms of recall, as
shown by the total standard deviation. However, the specificity
score indicates that Llama struggles to accurately identify the
negative cases (i.e., non-functional and non-quality). Although
the positive class are of most relevance to our classification
problem, a low specificity score is suboptimal.

The ensemble model yields a more balanced trade-off
between recall, precision, and specificity, as reflected in the F1
score (Table @ However, there are still significant variations
between batch sizes, demonstrating a need for adjusting this
setting to the specific use case. For example, selecting a batch
size of 1 limits recall to 0.55, while a batch size of 8 increases
recall to 0.70 (with a precision of 0.88 and a specificity of
0.79). This leads to our second finding:

7Selecting a suitable batch size choice involves systematically adjusting
its values to achieve better performance. We recommend using a validation
dataset (separate from your final test dataset), as is common practice in the
ML and DL domain.



TABLE IX: Ratio of misclassified requirements that posses both characteristics over all misclassified requirements, normalized

by their frequency.

DeepSeek Gemma Llama

Size Functional Quality Functional Quality Functional Quality

LD OA PM ER| LD OA PM ER|LD OA PM ER|LD OA PM ER|LD OA PM ER | LD OA PM ER
1 029 040 1.03 0.09] 1.96 2.67 1.75 1.66] 0.00 0.00 0.28 0.00] 2.09 2.29 0.99 1.64| 0.00 0.00 0.11 0.00] 0.00 1.39 0.44 0.27
2 0.00 0.00 0.67 0.04] 1.80 2.72 2.19 1.66| 0.00 0.00 0.30 0.09| 2.33 2.58 1.38 1.71] 0.17 0.00 0.24 0.00| 0.66 1.14 1.03 0.26
4 0.00 0.00 0.74 0.09] 2.04 2.63 2.01 1.51| 0.00 0.15 0.28 0.04| 1.96 2.42 1.16 1.54| 0.00 0.11 0.48 0.00| 0.20 1.32 0.76 0.36
8 0.00 0.00 0.49 0.00] 1.73 2.87 1.77 1.43| 0.00 0.00 0.43 0.04| 1.61 2.57 1.51 1.38] 0.00 0.00 0.23 0.00| 0.00 1.37 1.06 0.21
16 0.00 0.68 0.86 0.00] 2.29 2.86 2.12 1.35| 0.00 0.00 0.43 0.09| 1.88 2.02 2.01 1.37| 0.18 0.00 0.38 0.00, 0.00 1.00 1.27 0.00
32 0.00 0.37 1.50 0.00] 1.66 1.94 2.06 1.27| 0.00 0.00 0.28 0.15| 1.69 1.89 2.30 1.47| 022 0.00 0.20 0.00| 0.18 0.54 0.79 0.00
64 0.00 0.12 1.39 0.09] 1.04 2.05 2.58 0.88| 0.00 0.00 0.59 0.31| 1.71 1.66 2.38 1.09| 0.33 0.19 0.87 0.04| 0.20 0.64 0.23 0.26
mean | 0.04 0.22 095 0.04] 1.79 2.53 2.07 1.39| 0.00 0.02 0.37 0.10 1.90 220 1.68 1.46| 0.13 0.04 0.36 0.01| 0.18 1.06 0.80 0.19
SD 0.11 0.26 0.38 0.05] 0.39 0.38 0.28 0.27| 0.00 0.06 0.12 0.10| 0.25 0.35 0.56 0.21| 0.13 0.08 0.26 0.02| 0.24 0.35 0.36 0.14

Finding 2 (RQ2). An ensemble model could offer a bal-
anced trade-off between recall, precision, and specificity.
Still, performance discrepancies may persist among vary-
ing batch sizes. Therefore, carefully adjusting the batch
size remains essential even when applying an ensemble
architecture.

B. Qualitative findings

To better understand the errors of the models, we study how
having both a functional and quality aspect in a requirement
influences the performance of the models. Table [[X] shows
the ratio of incorrectly classified requirements by the model
that contain both a functional and a quality aspect, normalized
by the ratio of requirements with this property to the entire
dataset. A value above 1 indicates that the model experiences
more difficulty with these types of requirements, while a value
below 1 suggests that the model can handle such requirements
well. We show these ratios per batch size and per dataset. The
ratios with a value higher than 1 are highlighted in gray.

As evident from the average values, having both a functional
and a quality aspect in a requirement appears to influence neg-
atively the classification of the quality aspect. For Gemma and
DeepSeek, a substantial proportion of the incorrectly classified
quality requirements involved requirements possessing both a
functionality and a quality. This suggests that the models strug-
gle to identify a quality when the requirement also includes
a functional aspect. Notably, Llama behaves differently from
DeepSeek and Gemma in this regard, as it appears to have
less difficulty classifying these cases. Furthermore, the batch
size settings that result in the most complications in predicting
these cases vary depending on the context.

Conversely, recognizing the functional aspect does not pose
a problem for the models, regardless of whether it also includes
a quality aspect (as shown by the averages).

In short, these observations demonstrate the challenge of
classifying quality requirements using LLMs. This finding
is in line with prior research in which we examined the
requirements within an issue tracking system and discovered
that identifying non-functional requirements is more complex
than classifying user-oriented functional requirements [22].
Our current findings show that this complexity is particularly
apparent when a requirement relates to both a function and

a quality, as the LLM tends to recognize the function, while
failing to detect the quality. One potential solution would be
to include more few-shot examples with requirements that
contain both characteristics, enabling the model to recognize
this pattern in new cases:

Finding 3 (RQ3). When classifying quality requirements,
LLMs struggle to identify quality aspects when the re-
quirements in question also include a functional aspect. It
is therefore advisable to pay special attention to few-shot
cases with both characteristics, providing the LLM with
more context to recognize these patterns in new examples.

Table |X| shows the accuracy split per dataset-model pair,
reporting both the macro-average and the range (i.e., differ-
ence between the minimum and maximum value) across the
different batch sizes. The gray cells show the dataset with the
highest accuracy score achieved by each model.

TABLE X: Macro-average of accuracy and standard deviation
for each dataset.

(a) Functional Requirements

Model Dataset
LD OA PM ER
DeenSeck Mean 0.74 081 0.81 0.73
P Range 0.10 0.15 0.06 0.00
Gemm Mean 0.78 0.73 0.78 0.71
emma - pange  0.08 009 002 0.03
Llama Mean 0.68 0.67 0.71 0.71
Range 0.09 0.07 0.07 0.01

(b) Quality Requirements

Model Dataset
LD OA PM ER
DeenSeek Mean 0.61 0.69 0.83 0.56
P Range 0.09 0.12 0.12 0.18
Gemma Mean 0.64 0.73 0.8 0.62
Range 0.17 0.10 0.14 0.13
Llam Mean 0.73 0.68 0.78 0.69
ama Range 0.4 023 0.3 0.10

The PROMISE dataset shows the highest accuracy for clas-
sifying quality and functional requirements consistent across
models. For DeepSeek, the difference with the second highest



accuracy (from dataset OAppT) is noticeable, with an average
gap of 0.14 (shown in Table [X}b). Although the accuracy
difference for classifying functional requirements is less sub-
stantial, the quality classification problem is considered the
most challenging by all models and is therefore the most
interesting in this respect.

Finding 4 (RQ4). The requirements in the PROMISE
dataset are consistently considered the easiest to classify
by all models. Despite its popularity in the RE community,
this result emphasizes the importance of incorporating
more diverse datasets for a comprehensive evaluation.

The range represents the variability between batch sizes.
Although the PROMISE dataset may be easier to classify, the
performance variability between batch sizes does not reduce.
This demonstrates the importance of considering the batch size
setting, as even in a simpler dataset this parameter can still
have a significant influence. This leads to our final finding:

Finding 5 (RQ4). Although the particular dataset may
influence the average performance per model, the dataset
does not have a positive or negative effect on the variation
between different batch size settings. This finding further
emphasizes the importance of investigating the batch size
setting in classification problems when using decoder-only
models.

V1. THREATS TO VALIDITY

We adopt the categories defined by Wohlin et al. [23] to
organize the threats to the validity of this study.

Conclusion validity: We compared our models using
widely accepted evaluation metrics in software engineering
research [16]]. However, due to the limited number of datasets
in our experiments, we did not conduct statistical significance
tests, as the small sample size would undermine their relia-
bility. Future studies should incorporate a higher number of
datasets to enable statistical analysis of model performance.

External validity: Given the wide variety of LLMs cur-
rently available, there is a risk of sample bias. To limit this
bias, we examined LLMs which have been used extensively
over the past few years. In the experiments, we used three
LLMs: Gemma, DeepSeek-Qwen, and Llama. We initially
conducted experiments with Mistral; however, despite explor-
ing larger models, the generated responses failed to comply
with the template structure, making automation impractical.
As a result, we removed Mistral from the experiments.

Another potential threat to validity could be related to the
selected datasets. It is possible that the results would have been
different if we had selected other datasets. To mitigate this risk,
we used multiple datasets, one of which is widely used for
classifying functional and quality requirements (PROMISE).
In addition, we used a sample from each dataset, which could
pose a threat. We decided to limit the sample size to 192 to
reduce resource consumption, although we acknowledge that
this may be a limitation.

Internal validity: In our experiments, we selected specific
model sizes for each LLM architecture based on practical
constraints. We acknowledge that model size is a potential
confounding factor, as larger variants might exhibit different
performance characteristics. However, our objective was to
evaluate models that are feasible to deploy under limited
resource conditions, making smaller variants more relevant
for our study. Future work could explore whether the find-
ings generalize across different model sizes within the same
architecture.

Furthermore, as discussed by Dong er al. [21], the choice
of few-shot examples can have a significant impact on the
performance of LLMs. We opted for a manual approach
to ensure that a wide range of scenarios was represented.
However, it is plausible that a different selection of few-shot
examples would have led to different performance results.

As mentioned in [14]], when using an ensemble learning
method, the aim is to select so-called ‘weak classifiers’ so
that each model focuses on explaining a different part of the
data. The LLMs in our selection cannot be considered weak
classifiers. We could have opted for a smaller model, but this
would have limited the automation of post-processing, as these
models were unable to follow a predefined template. It is
possible that smaller models may lead to a better performing
ensemble model. In addition, we selected majority voting as
the voting mechanism. We acknowledge that a more sophisti-
cated ensemble strategy could have led to better results.

Moreover, we did not tune the temperature values (or other
hyperparameters) of the LLMs, while a different temperature
setting could have influenced the performance of the models.
However, for the sake of reproducibility, we opted for a
temperature of 0.01.

Construct validity: A key threat to construct validity
is whether the chosen evaluation metrics truly reflect model
performance. To address this, we used precision, recall, and
F1 score—metrics widely adopted in software engineering
research for assessing automated classifiers [16]. We also
included specificity to account for the model’s ability to
correctly identify negative cases, offering a more balanced
view of performance.

VII. RELATED WORK

Datasets: PROMISE NFR [24] is a dataset of 15 projects
aiming to demonstrate various categories of non-functional
requirements. The original dataset has been received attention
from the community as a benchmark for classifying require-
ments [25], [26]], [27]]. Dalpiaz et al. [12] re-annotate the orig-
inal PROMISE dataset based on the theory by Li et al. [13].
Hey et al. [28]] use both the original and re-annotated versions
of the dataset for different classification tasks, and further
annotate the functional requirements identified by Dalpiaz et
al. [12] into function, data, and behavior labels. In addition to
the re-annotation of PROMISE NFR, Dalpiaz et al. annotate
four publicly available datasets [29]], [30], [31]], [32] and three
private datasets of functional and non-functional requirements.



Dell’ Anna et al. [16] introduces six new annotated datasets in
addition to those provided by Dalpiaz et al. [12].

Shallow machine learning techniques: Cleland-Huang et
al. [33], [2] use word frequency to classify requirements
sentences into functional and non-functional requirements, and
then into specific qualities such as security. Hussain et al. [23]]
employ decision trees for binary classification of functional
and non-functional requirements. Kurtanovic and Maalej [26]
rely on support vector machines as the classification method
and n-grams for the features. Abad et al. [27]] also use decision
tree algorithm to classify requirements, building upon features
identified by Hussain ef al. [25]]. All these studies only use the
PROMISE NFR dataset and features tailored for it. Identifying
this gap, Dalpiaz et al. classify requirements with support
vector machines with linguistic features to move away from
word-level features and thus increase the generality of the
trained models. They also experiment with multiple datasets.
Later, Dell’Anna er al. [16] adopts a similar approach but
expands the datasets used for the experiments. They also pub-
lish guidelines for comparing classifier models, encouraging
project-fold validation, reporting statistical significance and
effect size, and checking generality and degradation of the
trained models.

Transformer Models: Hey et al. [28] tackles various
classification tasks including functional vs non-functional re-
quirements with BERT-based transformer models. Although
the authors report that their approach dominates the state-of-
the-art, this claim is not supported with statistical tests. Later,
Dell’Anna et al. [16] demonstrates that this is not the case
for all experimental settings and classification tasks with their
replication case study and detailed statistical analyses.

Large Language Models: Ronanki et al. [34] study the
performance of various prompting patterns on requirements
classification and traceability problems. They experiment with
the PROMISE NFR dataset and GPT-3.5 model. Zadenoori et
al. [6] propose a method to optimize prompts and demonstrate
their approach on the requirements classification task, us-
ing Meta-Llama-3-8B-Instruc on the re-annotated PROMISE
NFR dataset by Dalpiaz et al. [12]]. Karlsson et al. [35]]
compare the reliability of GPT-40 and LLAMA3.3-70B using
a zero-shot learning approach on the original PROMISE NFR
dataset and find LLAMAZ3.3-70B more consistent.

VIII. CONCLUSIONS

In this study, we assessed the impact of the selected batch
size on the performance of a LLM prompted to classify
requirements. We define batch size as the number of require-
ments to be classified in a prompt sequence. To answer our
research questions, we conducted experiments with three state-
of-the-art LLMs: Gemma 3 12B, DeepSeek-R1 Distill-Qwen
14B, Llama 3.1 8B-Instruct. We performed the experiments
on samples from four existing datasets [12], [16].

Our findings show that each large language model (Finding
1) and the ensemble version (Finding 2) follow a unique per-
formance trend across different batch size settings. Therefore,

8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.

we recommend adjusting the batch size whenever the dataset
and model are changed, in order to minimize the negative
effect of the batch size setting.

Furthermore, in line with previous work [16], [22]], classify-
ing quality requirements with LLMs appears to be more chal-
lenging than classifying functional requirements. The models
struggled particularly with identifying a quality aspect when
the requirement also describes a functionality (Finding 3).

Finally, out of all the datasets, the PROMISE dataset stood
out as the easiest to classify, suggesting that this benchmark
dataset may not be representative of real-world requirements
(Finding 4). This emphasizes the need for further research in
the field of RE to focus on additional datasets in order to
properly evaluate classifiers.

Future research should focus on expanding our analysis
by integrating additional datasets and models to verify the
generalizability of our study. In addition, it would be relevant
to extend the research to more classification problems, such
as classifying quality requirements into specific types.
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