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Abstract To achieve system-level properties of a multiagent system, the be-
havior of individual agents should be controlled and coordinated. One way to
control agents without limiting their autonomy is to enforce norms by means of
sanctions. The dynamicity and unpredictability of the agents’ interactions in
uncertain environments, however, make it hard for designers to specify norms
that will guarantee the achievement of the system-level objectives in every
operating context. In this paper, we propose a runtime mechanism for the
automated revision of norms by altering their sanctions. We use a Bayesian
Network to learn, from system execution data, the relationship between the
obedience/violation of the norms and the achievement of the system-level ob-
jectives. By combining the knowledge acquired at runtime with an estimation
of the preferences of rational agents, we devise heuristic strategies that auto-
matically revise the sanctions of the enforced norms. We evaluate our heuristics
using a traffic simulator and we show that our mechanism is able to quickly
identify optimal revisions of the initially enforced norms.

Keywords Multiagent Systems ¨ Norm Revision ¨ Norm Enforcement

1 Introduction

Multiagent systems (MASs) comprise autonomous agents that interact in a
shared environment [57]. To achieve the system-level objectives of a MAS, the
behavior of the autonomous agents should be controlled and coordinated [12].
For example, a smart traffic system is a MAS that includes autonomous agents
like cars, traffic lights, etc. The objectives of the system include avoiding the
occurrence of traffic jams as well as minimizing the number of accidents.
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One way to control the behavior of the agents in a MAS without limiting
their autonomy is norm enforcement [1, 49]. Norm enforcement via sanctions
is traditionally contrasted with norm regimentation; the latter alternative pre-
vents the agents from reaching certain states of affairs. For example, in a smart
traffic system, a regimentation strategy is to close a road to prevent cars from
entering that road, while a sanctioning strategy is to impose sanctions on cars
that drive through the road.

Due to the dynamicity and unpredictability of the behaviours of interacting
agents in uncertain environments, it is difficult for the designers who engineer a
MAS to specify norms that, when enforced, will guarantee the achievement of
system-level objectives in every operating context. To cope with this issue, the
enforced norms need to be revised at runtime. Existing research has investi-
gated the offline revision of the enforced norms [3], proposed logics that support
norm change [4, 34,35], and examined the legal effects of norm change [29].

In [24], we proposed a framework for engineering normative MASs that,
using observed data from MAS execution, revises the norms in the MAS at
runtime to maximize the achievement of the system objectives. In that work,
we made the simplistic assumption that norms are regimented and we intro-
duced algorithms for switching among alternative predefined norms. In [25] we
extended the framework to support the revision of norm enforced via sanction-
ing. In addition to observed data from MAS execution, we used an estimation
of the preferences of the agents to guide the runtime norm revision. However,
we considered MASs where only one norm at a time was enforced.

In this paper, we significantly extend our previous work by supporting
MASs where multiple norms are enforced. We formalize different types of ra-
tional agents that behave according to their preferences and we disccus their
properties. We use Bayesian Networks to learn the norm effectiveness from
data observed from MAS execution and to inform the runtime norm revision
mechanism that revises the sanctions of multiple norms.

The contributions of this paper are as follows:

– We provide a formal definition of different types of rational preferences of
agents, specified in terms of desired states of affairs and the maximum pay-
ment that the agent is willing to make to achieve such states of affairs. We
prove that such preferences satisfy the basic rationality requirements [38].

– We build on and extend the general architecture proposed in [24, 25], and
study in detail the relationships between estimated agents’ preferences,
sanctions, and system-level objectives. We use a framework where the nor-
mative MAS is flanked by a norm monitoring and enforcement component,
and we introduce a norm revision component that uses observed data from
MAS execution and an estimation of agents’ preferences to modify norm
sanctions at runtime.

– We propose six heuristic strategies for the revision of multiple norms that
leverage probabilistic information learned from observed data from MAS
execution and an estimation of the preferences of agents.
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– We report on an evaluation through a traffic simulator that shows the
effectiveness and efficiency of our revision strategies in identifying optimal
sanctions for multiple norms.
Organization. Section 2 reports on related work. Section 3 presents our

framework to characterize norms and agents’ preferences. Section 4 explains
the overall approach for the supervision of normative MAS based on prob-
abilistic reasoning over norm effectiveness and agents’ preferences. Section 5
introduces six strategies for revising norms by combining agents’ preferences
with the achievement of the system-level objectives. Section 6 evaluates our
work through simulation experiments. Section 7 discusses the results and the
assumptions, limitations and future directions of our work. Section 8 presents
our conclusions.

2 Related Work

In the MAS literature, norms have been proposed as a way to regulate the
behavior of the agents in order to achieve system-level properties without
limiting the autonomy of the agents [1, 49,52].

Many approaches focus on the design-time construction of robust norma-
tive MASs. Several techniques enable proving the correctness of normative sys-
tems through the model checking of formulas that describe liveness or safety
properties [2, 23, 33]. These works are useful for the initial design of a MAS,
but they cannot cope with the runtime unpredictability of the system that
stems from the autonomy and heterogeneity of the agents.

In order to successfully supervise and regulate dynamic MASs, researchers
have studied the revision of norms. Some frameworks formalize norm dynamics
thereby allowing the assessment of the impact of norms on the specification of a
MAS, i.e., whether the designed MAS will be norm compliant. Aucher et al. [4]
introduce a dynamic context logic to describe the operations of contraction
and expansion of theories that occur when removing or adding new norms.
Governatori et al. [29] investigate how the application of theory revision leads
to legal abrogations and annulments. Knobbout et al. [35] propose a dynamic
logic to characterize the dynamics of state-based and action-based norms. Both
in Knobbout’s work [34,35] and in Alechina et al.’s approach [2], norm change
is restricted to norm addition. This family of approaches focus on the impact
of revising a norm on an existing normative system. In this paper, instead
we study the relationship at runtime between the enforced norms and the
achievement of system-level objectives, and suggest mechanisms to determine
how to revise the (sanctions of the) current norms.

Jiang et al. [31] discuss the contextualization of norms. They explicitly
represent the context of application of a norm and they use such context to
organize norms during the design of a MAS. In our work, we also enforce
different norms in different contexts. Unlike them, however, we determine the
most appropriate context for different norm sets at runtime and based on
observed data from MAS execution.
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Miralles et al. [39] present a framework for the adaptation of MAS regu-
lations at runtime. Their approach is complementary to ours. They represent
conditional norms via norm patterns and describe an adaptation mechanism
based on case-based reasoning. Adaptation is performed at runtime individu-
ally by a number of assistant agents and then, via a voting mechanism, a final
adaptation is approved. The decision on how to adapt norms is taken based
on similar previously seen cases. In their work, however, they do not consider
sanctions. In our work, we focus on the revision of sanctions, we perform norm
revision through a centralized component, and we make use of an estimation
of agents’ preferences to guide norm revision.

Cardoso et al. [13] present a framework for the runtime adaptation of sanc-
tions associated with obligations. In their work, they assume that norm vio-
lations are bad for the system-level objectives. In our work, we relax such
assumption, as agents ability to violate norms can be useful [14]. We evaluate
the effectiveness of a norm at runtime based on observed data from MAS ex-
ecution. Furthermore, they assume that the strength of a sanction should be
directly proportional to its application frequency, and they constantly try to
lower sanctions in order to give agents maximum autonomy. In our work, we
base the revision of norms on an estimation of the preferences of the agents, and
we determine the appropriate value of their sanctions based on the relation-
ship between obedience of norms and achievement of system-level objectives
determined at runtime.

In MASs, agents’ preferences have been mainly used as a way to choose at
runtime between different plans or actions to execute [21, 32, 42, 53]. Prefer-
ences are usually interpreted as constraints that, if satisfied by a certain plan
(or action), increase the desirability of executing such plan (or action). For-
mal languages have been proposed and used for expressing preferences (e.g.,
LPP [6, 10] or LTL [12]). In this work we focus on strategies for sanctions’
revision. For this reason, we make use of a high-level representation of prefer-
ences, without restricting ourselves to, but supporting, any specific language.
In particular, we consider preferences that satisfy the basic rationality require-
ments [38] and order different alternative states of affairs that agents may de-
sire to achieve. Our agents are rational and norm-aware [43], in the sense that
they always try to aim at the most preferred state of affairs for which they
have enough budget, taking also into account the possible sanctions they would
incur when violating some of the enforced norms. Furthermore, our agents are
autonomous, in the sense that they are able to make decisions without the
intervention of human users but in line with their preferences [5, 22]. As we
aim to investigate the process of norm revision, we assume that we have an
accurate estimation of the agents’ preferences. In future work, we can relax
this assumption and investigate norm revision based on inaccurate estimations
of the agents’ preferences.

Chopra et al. [17] study how agents’ preferences—expressed in terms of
goals—interact with norms—represented as commitments. In particular, they
propose a framework for the agents to adapt their behavior. We take an or-
thogonal approach, for we study how to change the norms without altering the
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agent construction. In particular, we study how to alter the sanctions used to
enforce the norms on the agents, so to guarantee at runtime the system-level
objectives. Our proposed mechanisms, therefore, relate also to the idea of ad-
justable autonomy [40]. The proposed runtime mechanism of revision of the
sanctions of the norms can be seen as an automated mechanism to adjust the
decisions’ options of the agents (thus their degree of autonomy) so to maximize
the objectives of the system and its operators.

Cranefield et al. [19] present a Bayesian approach to norm identification.
They show that agents can internalize norms that exist in an environment, by
learning from the behavior that complies with or violates certain norms. This
work is a valuable addition to ours, for it shows that it is possible for agents
to learn norms even when they are not explicitly communicated to them.

Tumer et al. [50] use multi-agent reinforcement learning in a smart traf-
fic simulation to determine the behavior of the car agents that maximizes
the utility of the city designer and of the individual agents. Their interesting
work focuses on regimentation; instead, we focus on enforcement that does not
violate agents’ autonomy.

3 Normative Multiagent Systems

This section presents a generic framework for specifying normative multia-
gent systems in which the agents behave in line with their preferences while
norms are enforced on them via sanctions. This framework allows us to analyze
the interplay between norms and agents’ preferences in normative multiagent
systems.

3.1 Illustrative example

Consider the two-lanes ring road depicted in Fig. 1. In a ring road, a popu-
lation of vehicles moves continuously in a circle. Every vehicle is autonomous
and acts according to its own preferences. For example, vehicles have prefer-
ences about, among other things, their speed, based on which they determine
their willingness to risk sanctions for violating traffic norms. Such preferences
and their corresponding willingness to risk sanctions allow the vehicles to au-
tonomously decide when and how to accelerate or decelerate or to change
lane. If a fast vehicle is using the outer line and a slower vehicle blocks its
way, the fast vehicle may move to the inner line to overtake the slow vehicle.
Since all vehicles share the same environment, their local decisions have an
effect on the (emergent) system-level behavior of the vehicles driving on the
ring road [48]. For example, based on contextual factors such as the density
of vehicles on the ring road, the vehicles’ behavior may provoke traffic jams
and the average speed may vary, as well as the average time to complete a
loop of the ring road. The ring road is a simple example of a MAS. Although
far from realistic traffic situations, the ring road illustrates the fundamental
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Fig. 1: Two lanes ring road. Rectangles are vehicles, moving in counter clock-
wise direction.

phenomena of emergent system-level properties, caused by the local decisions
of individual agents, and the importance of mechanisms to control and steer
such system-level behaviors.

We assume that the main stakeholder of the ring road (the city council) has
two system-level objectives: to minimize the average time to complete a loop
of the ring road and to minimize the number of halted cars. Despite interde-
pendence, the stakeholder desires to evaluate the two objectives independently
due to their distinct nature. We consider two contextual variables that may
influence the achievement of the system-level objectives, together with the ve-
hicles’ behavior: the density of vehicles and the presence of an obstacle on the
ring road. The higher is the density of the vehicles on the ring road, the higher
is the risk of breaking waves and slowdowns. The presence of an obstacle may
force vehicles to halt and wait for an adequate moment to take over the ob-
stacle. If the density of vehicles on the ring road is high enough, this may also
cause queues after the obstacle. To achieve the objectives, the behavior of the
agents is regulated by enforcing norms concerning (i) the speed limit, such as
the norm every vehicle on the ring road shall not exceed a speed of 50km/h,
otherwise it will receive a sanction of 100€, and (ii) the minimum safety dis-
tance between cars, such as the norm every vehicle on the ring road shall keep
a minimum distance of 2m, otherwise it will receive a sanction of 20€. Reg-
ulating speed and safety distance of the cars on the ring road is expected to
help achieving the system-level objectives in the traffic contexts represented
by the contextual variables. A car that keeps a sufficient safety distance from
the car ahead, is less likely affected by sudden deceleration of the car ahead.
More space between cars may also favour surpasses of slow cars when neces-
sary. An opportune safety distance, together with opportune cars speed, may
reduce jams in the presence of obstacles or the effect of breaking waves.

The ring road above described is a normative MAS. Vehicles are autonomous
agents, each acting according to their own preferences. Each agent belongs to
an agent type that can be characterized by the agent’s preferences. For in-
stance a cautious agent is a type of agent that prefers to go slow rather than
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fast on the ring road and prefers to maintain the appropriate safety distance.
A brave agent is a type of agent that prefers to go fast rather than slow, and
to approach cars closer than the minimum safety distance, even if it has to
pay some money to do so.

3.2 Norms

The focus of this paper is the runtime revision of the sanctions of the norms
enforced in the MAS. In order to focus on this aspect, we propose a simple
but extensible language for norms. Consider a set of propositional atoms L “
tp1, . . . , pku, each representing a fact that can hold or not in a system state1

(e.g., propositional atom sp100 indicates that the speed of a vehicle on the ring
road is ď 100 km{h).

Let AL “ pL1, ..., Lnq be an ordered list of n disjoint subsets of L, s.t. Li
contains atoms related to an aspect i of the system2 (e.g., Li “ tsp100, sp50u,
in the ring road scenario, contains atoms related to the speed of the cars).

We consider a norm as a pair N “ pp, sq, where p P L and s P N, indicating
that p should hold in the current system state for all agents, otherwise sanction
s will incur. For instance, a norm N “ psp50, 100q indicates that every vehicle
on the ring road shall not exceed a speed of 50km/h, otherwise it will receive
a sanction of 100€.

In the following we consider an ordered set of norms N “ xN1, N2, . . . , Nny
and assume that (i) norms are non-conflicting, i.e., obeying a norm Ni does
not prevent an agent from obeying or violating any other norm in N ; and (ii)
each norm regulates a different aspect of the system, so that the i-th norm
Ni “ pp, sq in N is a pair where p P Li (with Li i-th set in AL) and s P N. For
instance, if AL “ pL1, L2q, L1 “ tsp50, sp100u and L2 “ tdist1, dist2u, then
N1 “ psp50, 100q is a norm concerning the speed limit and N2 “ pdist2, 100q is
a norm concerning the minimum safety distance.

Note that, despite these assumptions, norms can still influence each others
by means of the behavior that they cause on the agents. For instance, if the
density of vehicles on the ring road is high, in order to obey a norm concern-
ing the minimum safety distance from the car ahead, an agent may need to
decrease its speed, therefore obeying also a norm concerning the maximum
speed limit. We distinguish, however, such influence from the concept of con-
flict, in the sense that the norm concerning the minimum safety distance does
not prevent, a priori, an agent to either obey or violate the norm concerning
the maximum speed limit, and vice-versa.

1 A system state is assumed to consist of the state of individual cars (e.g., speed and
position of the cars) as well as the state of the environment (e.g., density of vehicles in the
ring road).

2 We use the term aspect to indicate any particular characteristics of the behavior of the
agents, such as the speed of the cars, that is both monitorable by an organization that
enforces norms in the MAS, and over which agents have control.
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3.3 Rational Agents and Their Preferences

In MASs, agents are often assumed to be autonomous and possibly hetero-
geneous. Moreover, it is common to assume that the internal states of the
agents such as their beliefs, preferences, and decision making mechanisms are
unknown or partly known to other agents or to the institutions that regulate
their behaviour. In line with the theory of economic rationality [38], in this
paper we consider rational agents that behave according to their rational pref-
erences, which determine an ordering between different alternative states of
affairs (simply alternatives in the following). A rational agent aims to achieve
its most preferred states of affairs: when a rational agent believes it is possi-
ble to achieve a certain state of affairs s, the agent will never aim to achieve
states of affairs that are less preferred than s. For example, a cautious agent
that prefers to go slow on the ring road and maintain appropriate safety dis-
tance, may be less prone to surpass other cars or to change lane, and may
exhibit more moderate acceleration or deceleration than less cautious agents.
The behavior of such a cautious agent, however, can vary significantly, based
on contextual conditions. For example, a sudden break from the car ahead
may force also the cautious agent to brusquely decelerate.

In this work, we assume we have an estimation of the preferences of the
agents concerning the n different aspects of the system that we aim to regu-
late by a norm, as per Sec. 3.2. In the rest of the paper, when we refer to the
preferences of the agents, we refer therefore to such an estimation of their pref-
erences. We do not assume access to the agents’ internals such as their beliefs
or their preferences regarding other aspects of the system (e.g., information
about fuel reserve or the preference on road types). Having an estimation of
the preferences of the agents should not be seen as a violation of the auton-
omy of agents or access to their internals. Having some knowledge of agents’
preferences is realistic in most MAS settings. For example, in some coopera-
tive settings, agents may be requested to declare their true preferences prior
entering the system and agents can autonomously decide whether to join or
not, while in other settings the preference of agents can be learned from their
behaviors [8]. Note that we do not focus on the process of preference elicita-
tion, which is essential for deriving and formulating agents’ preferences, but
beyond the scope of this paper. Several techniques for the elicitation of pref-
erences have been proposed in literature, including both automated methods
and methods that directly involve the end-user (see for example [11, 16, 46]).
Here, we rely on such techniques and we just assume that some relevant part
of agents’ preferences is already given or estimated.

We represent the alternatives over which the agents have preferences as
lists of pairs such as pxp1, b1y, . . . , xpn, bnyq, indicating that for a state of affairs
where p1, ..., and pn hold, the agent is willing to spend, if necessary, a budget
b1 to achieve p1, a budget b2 to achieve p2, etc. We focus on finite preferences,
therefore we constrain the budgets expressed in the alternatives to be member
of a budget set B Ă N.
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We denote by Pref paq “ pA,ľq the preference of an agent a P Ag, where
Ag “ ta1, . . . , anu is a set of agents, A is a set of alternatives defined as per
Def. 1, and ľ is a partial order on A. We write x ľ y to denote the fact that
the agent either prefers alternative x to alternative y or is indifferent between
x and y.

Definition 1 (Preference Alternatives) LetAL “ pL1, . . . , Lnq be a list as
per Sec. 3.2. Given a set of budget lists BL Ď Bn (with Bn the n-ary Cartesian
power of B), the set of alternatives A is the set t pxp1, b1y, . . . , xpn, bnyq | pi P
Li & pb1, . . . , bnq P BL u.

Notation. Before continuing, we provide here a summary of the notation that
we will use in the rest of the paper in the context of preferences. Given a
preference Pref paq “ pA,ľq, an alternative x “ pxp1, b1y, . . . , xpn, bnyq P A,
and a set of budget lists BL Ď Bn, we call:

– proppxq “ pp1, ..., pnq, the list of propositional atoms in x
– budpxq “ pb1, ..., bnq P BL, the list of budgets associated to each proposi-

tional atom in x.
– req budpxq “

ř

bPbudpxq b the budget required by alternative x (required
budget, in the following), i.e., the sum of all budgets in x.

– xrB1s a new alternative x1 “ pxp1, b
1
1y, ..., xpn, b

1
nyq with same propositional

atoms as x, but using budgets B1 “ pb11, . . . , b1nq P BL instead of budgets
B “ pb1, . . . , bnq.

Furthermore, in the rest of the paper, unless specified otherwise, when we pro-
vide an example concerning preferences or norms, we make use of L defined
as the set tsp50, sp100, dist1, dist2u with AL “ pL1, L2q and L1 “ tsp50, sp100u
and L2 “ tdist1, dist2u so that N “ xN1, N2y with L1 related to N1 (norm
concerning speed limit) and L2 related to N2 (norm concerning safety dis-
tance), and we use n to indicate the number of norms in N .

In the following we define the types of preferences that we consider in this
paper. We first define two basic types of preferences. Then, after providing
some examples of such preferences, we define more complex preferences that
combine the two basic types.

3.3.1 Basic Preferences

We define here two types of basic preferences. The first kind of preference
orders the alternatives based on their budgets, while the second type orders
the alternatives based on the propositional atoms (i.e., states).

Definition 2 (Basic Preference) Given a list AL “ pL1, ..., Lnq and a set
BL Ď Bn, an agent is said to have a basic preference pA,ľq when for all
alternatives x and y in A, the partial order ľ satisfies one of the following two
clauses:
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a. x ľ y iff
req budpxq ď req budpyq &
@v, w P A,@B,B1 P BL : vrBs ą wrBs ñ vrB1s ą wrB1s

b. x ľ y iff
if proppxq “ proppyq then req budpxq ď req budpyq
else @B,B1 P BL : xrBs ľ yrB1s

In the rest of the paper, we write x „ y when x ľ y and y ľ x. We write
x ą y when x ľ y but not y ľ x.

If an agent’s preference adheres to Def. 2a, then the required budget de-
termines the order of the alternatives. In particular, Def. 2a determines a
preference where alternatives that require a lower budget are preferred to
alternatives that require higher budget (first condition of Def. 2a) and the
relative order between two alternatives with different propositional atoms is
the same for all possible budgets (second condition of Def. 2a). Note that in
a basic preference that adheres to Def. 2a, two alternatives x and y such that
req budpxq ą req budpyq cannot be equally preferred. In fact, if x „ y we
have that req budpxq ď req budpyq and req budpyq ď req budpxq. As a conse-
quence, all alternatives with required budget 0 are strictly preferred to all the
other alternatives, and all alternatives with same required budget are equally
preferred.

If an agent’s preference adheres to Def. 2b, then the propositional atoms
determine the order of the pairs. If a set of propositional atoms is preferred to
another, then it is preferred regardless of the required budget. In a preference
that adheres to Def. 2b though, the alternatives with required budget 0 are
strictly preferred to all the other alternatives with same propositional atoms.

We would like to emphasize that the basic preferences as we defined here are
different than lexicographic ordering [28]. An agent’s preference, as per Def. 2,
satisfies, instead, the basic rationality requirements [38], as per Prop. 1.

Proposition 1. A basic preference Pref paq “ pA,ľq for an agent a P Ag is

– transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and
– complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. See Appendix A.
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3.3.2 Examples of Basic Preferences

Given B “ t0, 1u and BL “ B2, an example of basic preference defined ac-
cording to Def. 2a is the following.

pxsp100 , 0y, xdist1 , 0yq ľ pxsp100 , 0y, xdist2 , 0yq ľ

pxsp50 , 0y, xdist1 , 0yq ľ pxsp50 , 0y, xdist2 , 0yq ą

pxsp100 , 0y, xdist1 , 1yq ľ pxsp100 , 1y, xdist1 , 0yq ľ

pxsp100 , 0y, xdist2 , 1yq ľ pxsp100 , 1y, xdist2 , 0yq ľ

pxsp50 , 0y, xdist1 , 1yq ľ pxsp50 , 1y, xdist1 , 0yq ľ

pxsp50 , 0y, xdist2 , 1yq ľ pxsp50 , 1y, xdist2 , 0yq ą

pxsp100 , 1y, xdist1 , 1yq ľ pxsp100 , 1y, xdist2 , 1yq ľ

pxsp50 , 1y, xdist1 , 1yq ľ pxsp50 , 1y, xdist2 , 1yq

(1)

Note that in preference (1), alternatives with lower required budget are pre-
ferred over alternatives with higher required budget and the agents’ prefers
sp100 over sp50 for every safety distance, and dist1 over dist2 for every speed.

Given B “ t0, 1u and BL “ B2, an example of basic preference defined
according to Def. 2b is the following.

pxsp100 , 0y, xdist1 , 0yq ą pxsp100 , 0y, xdist1 , 1yq ľ

pxsp100 , 1y, xdist1 , 0yq ą pxsp100 , 1y, xdist1 , 1yq ą

pxsp50 , 0y, xdist1 , 0yq ą pxsp50 , 0y, xdist1 , 1yq ľ

pxsp50 , 1y, xdist1 , 0yq ą pxsp50 , 1y, xdist1 , 1yq ą

pxsp100 , 0y, xdist2 , 0yq ą pxsp100 , 0y, xdist2 , 1yq ľ

pxsp100 , 1y, xdist2 , 0yq ą pxsp100 , 1y, xdist2 , 1yq ą

pxsp50 , 0y, xdist2 , 0yq ą pxsp50 , 0y, xdist2 , 1yq ľ

pxsp50 , 1y, xdist2 , 0yq ą pxsp50 , 1y, xdist2 , 1yq

(2)

Notice that in preference (2) states of affairs where sp100 and dist1 hold are
preferred over states of affairs where sp50 and dist1 hold, regardless of the
budget. Analogously, regardless of the budget, states of affairs where sp50 and
dist1 hold are preferred over states of affair where sp100 and dist2 hold, which,
in turn, are preferred over states of affair where sp50 and dist2 hold. Such pref-
erence describes an agent type that prefers to drive fast rather than slow and
that prefers to have a short safety distance rather than high, for whom max-
imizing speed and minimizing safety distance have priority over minimizing
the budget to be spent, and, finally, who gives more importance to having a
short safety distance rather than driving fast.

Finally, an example of a preference that does not satisfy Def. 2 is pxsp50, 1y, xdist1, 1yq ą

pxsp50, 0y, xdist1, 0yq ą . . . . This is because the first two alternatives share the
same propositional atoms but the alternative with higher required budget is
preferred to the alternative with lower required budget.
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3.3.3 Preferences

The basic preference as defined in Def. 2 may not be expressive enough to
capture some realistic cases. In order to cover more cases and to make our ap-
proach applicable to model more realistic scenarios, we consider more complex
types of agents’ preferences that combines the two basic types of preferences
(defined in Def. 2a and Def. 2b).

Intuitively, a rational agent may exhibit different preferences when the
required budget increases. For example, consider a brave agent that prefers
to drive fast and to keep a short safety distance rather than long, e.g., as per
preference (2). Suppose, however, that such an agent is ready to pay only up
to 1€ for driving fast and for keeping short safety distance. In such case, the
agent would prefer to drive fast and to keep a short safety distance, compared
to other alternatives (e.g., to drive slow and keep a long safety distance), if
the required budget is lower than 1€. For example, in preference (2), ordered
according to Def. 2b, we have pxsp100, 1y, xdist1, 1yq ą pxsp50, 0y, xdist1, 0yq. If
the required budget for either driving fast or keeping a short safety distance
is higher than 1, however, the agent may instead give priority to spending the
least possible. For example, pxsp50, 0y, xdist1, 2yq, not reported in preference
(2), would be preferred to pxsp100, 1y, xdist1, 2yq, adhering to Def. 2a instead
of Def. 2b. In other words, a rational agent may use different criteria to order
the alternatives in a preference depending on the required budget.

We formalize this intuition by defining a type of preference pA,ľq that is
a sequence of k basic preferences, with 1 ď k ď |B|. We call such a complex
preference simply preference. Each of the k basic preferences adhere to either
Def. 2a or Def. 2b, and the alternatives in the different basic preferences have
increasing budgets. In particular, the set of possible budget lists BLi Ď Bn for
an alternative in the i-th basic preference pAi,ľiq, for i ď k, is determined as
per Def. 3.

Definition 3 (Budget Lists of the i-th Basic Preference) Consider a
set B Ă N, and k disjoint subsets of B, i.e., B1, . . . ,Bk, such that each element
of Bi is bigger than each element of Bj , for j ă i ď k. In a preference composed
by k basic preferences, the set of possible budget lists for the alternatives in
the i-th basic preference pAi,ľiq, for i ď k, is BLi “ p

Ť

jďi Bjqnz
Ť

jăiBLj

For instance, given the set B “ t0, 1, 2u and k “ 2 two possible subsets of B
as per Def. 3 are B1 “ t0, 1u and B2 “ t2u. The possible budget lists for the al-
ternatives of 2 basic preferences are therefore BL1 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu
and BL2 “ tp0, 2q, p1, 2q, p2, 0q, p2, 1q, p2, 2qu. In other words, the budgets in the
alternatives of the i-th basic preference are always lower or equal to maxpBiq.
This means that the required budget of every alternative in Ai is always lower
or equal to n ¨maxpBiq, while the required budget of every alternative in Ai`1
is always higher or equal to n ¨maxpBiq.

Definition 4 (Preference) Let pA1,ľ1q, . . . , pAk,ľkq be k basic preferences
as per Def. 2, such that alternatives in Ai are defined with respect to a set of
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budget lists BLi as per Def. 3. An agent is said to have a preference pA,ľq, iff
A “

Ťk
i“1 Ai and ľ“

Ťk
i“1 ľi Ytpx, yq | x P Aj & y P Ai & 1 ď j ă i ď k u.

Note that a preference pA,ľq that is composed by only one basic preference
pA1,ľ1q so that A “ A1 for BL1 Ď Bn, and ľ“ľ1, is a basic preference. If
a preference is composed by more than one basic preference, every basic pref-
erence pAi,ľiq composing the preference adheres to either Def. 2a or Def. 2b,
and for every pair of alternatives x, y P A such that x P Ai, y P Aj and
i ă j, it holds that req budpxq ď req budpyq. Furthermore, notice that the sets
A1, . . . , Ak of alternatives of the k basic preferences composing a preference
pA,ľq are disjoint subsets of A, since the possible budget lists of the k basic
preferences are disjoint subsets of Bn.

Again, we note that a preference as per Def. 4 is transitive and complete.

Proposition 2. A preference Pref paq “ pA,ľq for an agent a P Ag is

– transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and
– complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. See Appendix A.

3.3.4 Examples of Preferences

An example of a preference composed by two basic preferences pA1,ľ1q and
pA2,ľ2q is given in Eq. 3, given B “ t0, 1, 2u.

#from here ordered by Def. 2b
pxsp100 , 0y, xdist1 , 0yq ą pxsp100 , 0y, xdist1 , 1yq ľ

pxsp100 , 1y, xdist1 , 0yq ą pxsp100 , 1y, xdist1 , 1yq ą

pxsp50 , 0y, xdist1 , 0yq ą ... ą pxsp50 , 1y, xdist1 , 1yq ą ... ą

pxsp50 , 1y, xdist2 , 1yq ą

#from here ordered by Def. 2a
pxsp100 , 0y, xdist1 , 2yq ľ pxsp100 , 2y, xdist1 , 0yq ľ ... ą

pxsp100 , 2y, xdist1 , 2yq ą pxsp50 , 0y, xdist1 , 2yq ľ ... ľ

pxsp50 , 2y, xdist2 , 2yq

(3)

In such preference, the budget lists of the alternatives in A1 are elements of
BL1 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu for B1 “ t0, 1u, and the alternatives are
ordered by Def. 2b. The budget lists of the alternatives in A2, instead, are
elements of BL2 “ tp0, 2q, p1, 2q, p2, 0q, p2, 1q, p2, 2qu, for B2 “ t2u, and they
are ordered by Def. 2a. The required budget of every alternative in A1 is lower
or equal to 2, while the required budget of every alternative in A2 is higher or
equal to 2 and lower or equal to 4.
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3.3.5 Consistent Preferences

The preferences above described allow to express a multitude of possible order-
ings between different states of affairs. In the following we define an additional
property that a preference can exhibit. We call such property consistency [30].

Intuitively a preference is consistent if when a state of affairs where a propo-
sitional atom p holds is preferred to a state of affair where q holds, then states
of affairs where p holds are preferred to states of affairs where q holds also when
a third atom r is considered. For instance, if pxp, b1y, xx, b2yq ľ pxq, b1y, xx, b2yq,
then in a consistent preference this holds for every propositional atom x.

Notice that preferences as per Def. 4 are not necessarily consistent. An
example of a preference that is not consistent (i.e., does no exhibit the consis-
tency property) is the following:

pxsp100, 0y, xdist1, 0yq ą pxsp80, 0y, xdist1, 0yq ą pxsp80, 0y, xdist2, 0yq ą

pxsp50, 0y, xdist1, 0yq ą pxsp50, 0y, xdist2, 0yq ą pxsp100, 0y, xdist2, 0yq ą ...

Notice that, given dist1, sp100 is preferred to sp80, but given dist2, sp80 is
preferred to sp100.

We define consistent preferences by means of an enumeration condition
over the propositional atoms of the alternatives. In particular, if two alterna-
tives x and y with same budget lists differ exactly for one propositional atom,
then if x is preferred to y, this has to hold also for all other pairs of alternatives
with same budget lists differing exactly for the same propositional atoms as x
and y. Intuitively the enumeration condition imposes an ordering on the alter-
natives that corresponds to an ordering that can be obtained by systematically
enumerating the possible combinations of propositional atoms. For instance,
if, given dist1, the proposition sp100 from the set tsp100, sp50u is enumerated
before proposition sp50 (i.e, pxdist1, b1y, xsp100, b2yq ą pxdist1, b1y, xsp50, b2yq),
then in a consistent preference sp100 is enumerated before sp50 also given dist2
(i.e, pxdist2, b1y, xsp100, b2yq ą pxdist2, b1y, xsp50, b2yq).

Definition 5 A preference Pref paq “ pA,ľq is consistent if and only if for all
alternatives x, y in A s.t. their lists of propositional atoms differ exactly for
one element, the following enumeration condition holds.
Let ˛ P tą,„u.
x ˛ y ñ

@v, w P A | proppvq “ pp1, .., pnq & proppwq “ pp11, .., p1nq
if pi ‰ p1i & @kPt1,...,nu|k‰ipk “ p1k & budpvq “ budpwq
then v ˛ w

3.4 Norms and Agents’ Preferences

As above mentioned, in this paper we assume that norms and agents’ pref-
erences are comparable. Consider AL “ pL1, . . . , Lnq and a norm set N “

xN1, . . . , Nny as per Sec. 3.2. Given an alternative pxp1, b1y, ..., xpn, bnyq in an
agent’s preference, we have that both the proposition pi of i-th pair xpi, biy
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and the proposition p of the i-th norm Ni “ pp, sq in N belong to Li. Fur-
thermore, since both the sanctions of the norms and the agents’ budgets of
agent’s preferences are natural numbers, they also are commensurable. This
makes it possible to analyze an agent’s preference in the context of a norm to
determine whether the preference motivates an agent to comply with a norm
or to violate it.

Intuitively, in the context of a set of enforced norms, an agent that follows
its preference aims at realizing a state of affairs that can be compliant with
some of the enforced norms and violating other norms for which he is willing
to pay the corresponding sanctions.

Given a set N of n norms and a preference pA,ľq, we say that an alter-
native x P A such that x “ pxp1, b1y, . . . , xpi, biy, . . . , xpn, bnyq is a violating
alternative w.r.t. the i-th norm Ni “ pp, sq in N , and we write violpx,Niq, if
and only if pi (e.g., sp100) excludes3 p (e.g., sp50); otherwise x is said to be a
complying alternative w.r.t. norm Ni. An alternative that is compliant w.r.t.
all norms in N is said fully compliant. Note that any rational preference, due
to its completeness property as per Prop. 2, always contains at least one fully
compliant alternative. This means that agents always have a choice to aim at
a state of affairs that does not violate any norm.

Definition 6 (Most Preferred Alternatives to Act Upon) Given a pref-
erence pA,ľq and a set N of n norms, a subset A1 Ď A of alternatives is
called the set of most preferred alternatives to act upon in the context of N
if and only if for all alternatives x P AzA1 it holds that for all alternatives
y P A1 either y ą x or x ľ y and there exists a norm Nj “ pp, sq in N s.t.
violpx,Njq & bj ă s (with bj budget of the j-th pair in x).

The set of most preferred alternatives to act upon in the context of N is
the set of alternatives A1 Ď A such that every other alternative x P AzA1 is
either strictly less preferred (i.e., y ą x @y P A1), or is an alternative that
violates at least a norm Nj but the budget is not enough to pay the sanction
(i.e., violpx,Njq & bj ă s). This means that the alternatives in A1 are either
fully compliant or they violate some norms and the budget is enough to pay
the sanction, and there is no other alternative that satisfies such conditions
that is strictly preferred to them.

A rational agent always acts upon one of its most preferred alternatives.
We say that an agent a has a reason to violate a norm N whenever the agent’s
preference Pref paq is so that, among the set of most preferred alternatives,
there is at least one alternative x such that violpx,Nq. When different alter-
natives are equally preferred by an agent, the agent can freely choose to aim
at any of them. This means that an agent that has a reason to violate a norm
will not necessary aim to violate it: if another alternative is equally preferred

3 In this paper we assume that information about exclusion between propositional atoms
(e.g., in the sense of material implication) is given as background knowledge. A formal
definition of violation of a norm depends on the specific language used to specify the norms
and is out of the scope of the paper.
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to the violating state of affairs, the agent may decide to aim to the obey-
ing state of affairs, despite it has a reason to violate the norm. Consider for
example an agent type characterized by the preference in Eq. 1 and a norm
N “ psp50 , 0q that prohibits agents to drive faster than 50km{h. Given N ,
the agents’ most preferred alternatives to act upon are pxsp100 , 0y, xdist1 , 0yq,
pxsp100 , 0y, xdist2 , 0yq, pxsp50 , 0y, xdist1 , 0yq and pxsp50 , 0y, xdist2 , 0yq. Some of
these alternatives violate the norm N (e.g., pxsp100 , 0y, xdist1 , 0yq), therefore
the agent has a reason to violate N . However, some of the other most preferred
alternatives are compliant with the norm (e.g., pxsp50 , 0y, xdist2 , 0yq). Since all
most preferred alternatives are equally preferred, the agent may rationally de-
cide to aim at any of them.

We introduce the notion of maximum budget for norm violation as the
maximal payment that an agent is willing to pay for violating a given norm
according to its preference. Let Ni “ pp, sq be the i-th norm in N , and let
Pref paq “ pA,ľq be the preference of agent a. Let x P A be the agent’s most
preferred fully compliant alternative, and A1 “ ty P A | y ľ xu be the set
of alternatives in A that are (equally) preferred to x. The maximum budget
that a is willing to pay for the violation of Ni, denoted as maxBpa,Niq, is the
highest budget b that occurs in the i-th pair of the alternatives in A1. Note
that if the maximum budget for violating a norm is lower than the sanction
of norm Ni, then the most preferred alternatives to act upon are necessarily
alternatives compliant w.r.t. Ni. For instance if N “ psp50 , 3q and an agent
a has maxBpa,Nq “ 2, then all alternatives x in the set of most preferred
alternatives are compliant to N , i.e., violpx,Nq does not hold, and it does not
exists a pair xp, by P x with b ě 3, since b ď maxBpa,Nq ă 3.

Finally, it is worth noting that in case of preference composed by more
than one basic preference as per Def. 4, it is always the case that if the first
basic preference is strictly preferred to the remaining ones then the set of
most preferred alternatives to act upon in the context of N never contains
any alternatives from any basic preference apart from the first one. This is
because the first basic preference necessarily contains an alternative that is
fully compliant (due to completeness of every basic preference pAi,ľiq w.r.t.
AL and BLi for 1 ď i ď k and k number of basic preferences composing the
preference), and such alternative is strictly preferred to any other alternative
that belongs to the remaining basic preferences.

4 Norm-based Supervision

In this section we present the key concepts of a norm-based supervision of a
multi-agent system. We build on the runtime norm-based supervision mech-
anism for multiagent systems as proposed in [24] and sketched in Fig. 2.
Such mechanism corresponds to a control loop that continuously monitors
the behavior of a multiagent system, evaluates the enforcement of the norms
w.r.t. the system-level objectives, and, when needed, intervenes by revising the
norms.
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Fig. 2: Illustration of the MAS supervision mechanism.

Consider an ordered set N “ xN1, ..., Nny of norms and a set C of all
possible operating contexts of the multiagent system (e.g, a context c P C in
the ring road scenario could be “low vehicle density and no obstacle”). We call
system configuration an assignment of a sanction s P N to each norms in N in
each of the MAS operating contexts.

For example, given two possible operating contexts c1 and c2, and given a
norm set N “ tN1, N2u, a possible system configuration is tpc1, pN1, 1q, pN2, 0qq,
pc2, pN1, 0q, pN2, 1qqu, meaning that in context c1 norms N1 and N2 are en-
forced respectively with sanctions 1 and 0, while in context c2 they are enforced
respectively with sanctions 0 and 1.

The control loop of the supervision mechanism sketched in Fig. 2 starts
with an initial system configuration. A Monitoring and Sanctioning component
collects, at runtime, perfect information about the obedience or violation of
the norms in the contexts in which they are evaluated and sanctions agents
that violate the norms. Such component also provides a Boolean evaluation of
the system-level objectives (e.g., whether the number of halted cars is below
a certain threshold or not, in the ring road scenario).

The collected information is used to automatically train a Bayesian Net-
work called Norm Bayesian Network (described in Sec. 4.1) that is used to
learn and reason at runtime about the correlation between norm obedience
or violation and the achievement of the system-level objectives. For example,
the Norm Bayesian Network helps answering questions like how well, and in
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which contexts, does the norm psp50 , 100q help achieve the objective of avoid-
ing halted cars?

A Norm Revision component makes use of the learned knowledge, encoded
in the Bayesian Network, to determine whether some norms should be revised
and how. Revising a norm N “ pp, sq means modifying either the proposition p
or the sanction s, or both. In this paper we focus on the revision of the sanctions
of the norms. The norm revision process generates as output a (possibly) new
system configuration, replacing the current one.

In previous work [24], we proposed an implementation of the control loop
above described as a variation of the hill climbing optimization technique. In
this paper we follow the same approach. We consider the system configurations
as possible solutions to explore in order to find an optimal one. The quality of a
solution is determined, by means of the observed data from MAS execution, as
the probability of achieving the system-level objectives. Instead of terminating
the exploration of the space when a local optimum is found, as in traditional
hill climbing, we use as stopping criterion a constraint defined by the system
designer that determines whether or not the current solution is acceptable.
In particular we use, as stopping criterion, a minimum desired value of the
probability of achieving the system-level objectives. We call such value toa.
We use the Norm Revision component to determine the next solution to try,
when the current one is not acceptable.

In [24] we proposed heuristic algorithms for suggesting norm revisions that
alter the regimented norms. In this paper, differently from the earlier work,
we make use of some additional information concerning the preferences of the
agents in order to determine how to revise the norms, and we focus on the
revision of sanctions. In [25], we used the same framework of [24] to revise
the way one norm is enforced by modifying its sanction. In this paper, we
significantly extend our previous work by devising several new strategies for
the revision of the sanctions of multiple norms enforced at the same time.

In the rest of the section we first provide some background concerning the
Norm Bayesian Network, then we analyze some properties of the relationships
between norms, agents’ preferences and system-level objectives.

4.1 Norm Bayesian Network

Consider some monitorable environmental properties such as the density of
vehicles or the presence of an obstacle on the ring road. Each of these prop-
erties is called contextual variable, and is associated to a domain of values.
For example, Vehicles density can be either low or high, while Obstacle can
be true or false. Given a set of contextual variables, a context assigns a value
to each contextual variable. For instance, given Vehicles density and Obstacle,
four possible contexts exist: high-true, high-false, low-true, low-false.

A Norm Bayesian Network N BN “ pX ,A,Pq [24] is a Bayesian Network
where:
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– X “ NYOYC are nodes that represent random variables in probability
theory. N, O and C are disjoint sets. N consists of norm nodes; each node
N P N corrensponds to a norm and has a discrete domain of 3 possible
values: obeyed, violated and disabled. O consists of objective nodes; each
node O P O corresponds to a Boolean objective and has a discrete domain
of 2 values: true and false. Finally, C consists of context nodes; each node
C P C corresponds to a contextual variable and can have a discrete or
continuous domain of values.

– A Ď pC ˆNq Y pC ˆOq Y pN ˆOq is the set of arrows that connect
pairs of nodes. If there is an arrow from node X to node Y , X is called
parent of Y .

– P is a set of conditional probability distributions. These are encoded into
conditional probability tables (CPTs), each one associated with a node in
X and quantifying the effect of the parents on the node. The conditional
probability values in the CPT of a node are the parameters of the network.
These parameters are automatically learned from observed data from MAS
execution through classic Bayesian learning.

Notation. In the rest of the paper, we use the following notation for Bayesian
Networks. Italic uppercase (X, Y , . . .) for random variables; bold uppercase
(X, Y, . . .) for sets of random variables; italic lowercase (v1, v2, . . .) for values
in the domain of a random variable; Nv abbreviates pN “ vq, i.e., an assign-
ment of value v to a norm variable N ; Ov denotes an assignment of value v to
all nodes in O; P denotes a single probability. An evidence e is an observed
assignment of values for some or all of the random variables in the network. An
evidence c for all the context nodes C is an observation for a certain context;
for example, Vehicles density has value low and Obstacle has value false. For
simplicity, we use the term context also to refer to the associated evidence in
the Bayesian Network.

Fig. 3 reports an example of a Norm Bayesian Network for the running
example of the ring road.

Since we focus on revising the sanctions that enforce norms, norms are
never disabled, therefore in the following we ignore the disabled value of the
nodes in the Bayesian Network. Despite we do not explicitly disable a norm,
we consider enforcing a norm with a sanction of 0 as equivalent to disabling the
norm, assuming that an agent that violates a norm with sanction of 0 does not
incur in any other kind of sanctions (e.g., consequences in the relation between
the individual and the other agents due to shared (moral) values [7]).

Finally, the construction and training of the Norm Bayesian Network is
a fully automated process. In particular, the structure of the network can
be trivially obtained from the the definition of X and A. The conditional
probability distributions P (i.e., the parameters of the network), instead, are
automatically learned through classical Bayesian learning using data collected
from MAS execution. Without going into the details of the Monitoring and
Sanctioning component, which are out of the scope of this paper, Table 1
reports a sample dataset that can be obtained from monitoring norms and
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Fig. 3: A Norm Bayesian Network for the ring road.

objectives for the running example of the ring road. The values that each of
the variables assumes belongs to its domain as above specified (e.g., obeyed,
violated, for norm nodes, true or false for objective nodes). Such dataset can
be used to automatically train the Norm Bayesian Network of Fig. 3 and learn
the set of conditional probability distributions P. As in this work we assume
that the population of agents do not change over time and that the behavior
of agents is consistent over time, the CPTs of the Norm Bayesian Network
stabilize after receiving a sufficient number of evidences.

Table 1: Example of part of a dataset used to train the Norm Bayesian Network
of Fig. 3 and obtained from monitoring the execution of the MAS.

VehicleDensity Obstacle SpdLim SafDst TripDur Halted
low true viol ob true false
low false ob viol false false
high true viol ob true false
high false ob ob true true
...

4.2 Norms, Agents’ Preferences and System-level Objectives in MAS

Consider a set of agent types T “ tt1, . . . , tku, each type corresponding to a
preference as per Sec. 3. In order to focus on the revision of the norms’ sanc-
tions, we assume that we possess a correct estimation of the preferences of
agents concerning the aspects of the system we aim to regulate. Additionally,
we assume that the agents’ preferences do not change in different contexts. As
we will see in the following, an accurate estimation of agents’ preferences is
helpful for improving the effectiveness of our heuristics. Our technique, how-
ever can be extended to support partial or inaccurate estimations of the agents’
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preferences. In Section 7.1, we sketch some directions for future work to sup-
port these aspects.

Take a set of agents Ag “ ta1, . . . , anu, each with a specific type from T .
We use Pref paq P T to indicate that agent a P Ag behaves according to a
type from T . For simplicity we assume that the behaviors exhibited in the
multiagent system are uniformly distributed over all the agents: at every time
instant every agent either violates or obeys each of the enforced norms.

Given these assumptions and a set of norms N , we say that a norm N in
N is well defined in the context of N (simply well defined, for brevity) if the
probability that N is violated, denoted as P pNviolq, is never higher than the
percentage of agents in the MAS with a reason to violate N in the context of
N .4 In other words, the upper bound of the probability P pNviolq in the context
of N (denoted as UBpNviol ,N q) is the percentage of the agents with a reason
to violate N in the context of N .

Let N be a norm in N , and let δ “ pd1, ..., dkq be a distribution over the
agent types T “ tt1, . . . , tku, where di P r0, 1s is the percentage of population of
agents of type ti, with

řk
i“1 di “ 1. The percentage of agents with a reason to

violate N (as per Sec. 3.4) in the context of N is
řk
i“1pdi ¨hasReasonpi,N,N qq,

with hasReasonpi,N,N q “ 1 if agent type ti has a reason to violate N in the
context of N , 0 otherwise.

Consider, as an example, a norm set N “ xN1, N2y, with N1 “ psp50, s1q
and N2 “ pdist2, s2q and B “ t0, 1u. Consider the two types of agents t1 and t2
as per Eq. 1 and Eq. 2, respectively. Assuming a uniform distribution of agents
between the two types, Fig. 4 reports the upper bound of the probability of
violating N1 and N2 for this example with different sanctions (i.e., different
values of s1 and s2).

The upper bound of P pNviolq describes a worst-case hypothetical situation
where all agents behave according to their preferences, and if they have reason
to violate a norm they are assumed to violate it, no contextual factor influences
agent behavior, and interactions among agents do not prevent them to act
according to their preferences. This would happen, for example, when a single
car drives on an empty highway with perfect road and car conditions. Note,
however, that the actual probability to violate a norm is affected by the agents’
decisions, their interactions and by the MAS environment, and it is assumed
to be unknown a priori. Even if all agents have a reason to violate a norm,
due to their interaction or to environmental circumstances (e.g., large number
of cars on the ring-road), none of them may end up violating it. Furthermore,
as explained in Sec. 3.4, if an agent equally prefers two states of affairs, one

4 Consider a norm N “ every vehicle on the ring road shall always exceed 70km/h, a type
of norm employed in our society, for instance, to prevent vehicles to have negative impact
on road throughput and safety. Our framework supports such type of norm if it is well-
defined. Suppose that in our running example no agent has reason to violate N . If N was
well-defined we would expect P pNviolq “ 0. However, in our running example, such norm is
not well-defined, for in case of high density, for example, the agents may be forced to slow
down below the minimum speed, therefore violating the norm and exhibiting P pNviolq ą 0.
A well-defined norm guarantees agents that have no reason to violate the norm (i.e., their
preferred alternatives are compliant with the norm) to be able to obey such norm.
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Fig. 4: Upper bound of the probability of violating norms N1 “ psp50, s1q (in
red) and N2 “ pdist2, s2q (in black) with the two types of agents t1 and t2 as
per Eq. 1 and Eq. 2, respectively, uniformly distributed.

violating a norm, and another obeying the norm, the agent, since autonomous,
may decide to obey the norm even if it has a reason to violate it. We call,
therefore, the monitored probability of violating (obeying) a norm exhibited
norm violation (obedience). We do not assume any prior knowledge about such
probability.

Note that, since we consider agent types with rational preferences as per
Sec. 3.3, increasing the sanction s of a norm N “ pp, sq, without changing
the sanctions of other norms, does not increase the percentage of agents with
a reason to violate N . Therefore, given k agent types and maxBpT , Nq as
the maximum budget among all agent types to violate a well-defined norm
N “ pp, sq, the percentage of agents with a reason to violate a well-defined
norm N 1 “ pp,maxBpT , Nq ` 1q in the context of N is 0. This is to say that
increasing the sanction of a norm above the maximum budget that any agent is
willing to pay causes all agents to comply with the norm. Consequently, given
two well-defined norms N “ pp, s1q and N 1 “ pp, s2q such that s2 ą s1, and
assuming no change in other norms of N , the upper bound of the probability
P pN 1violq is never bigger than the upper bound of the probability P pNviolq.

Furthermore, it is possible to prove that, if all agents in the MAS have a
consistent preference (as per Def. 5), then given a set of norms N “ xN1, ..., Nny,
increasing the sanction of a norm Nj in N without changing the sanctions of
other norms, does not increase the upper bound of the probability P pNviolq
for every N in N .

Proposition 3. Given an ordered set of norms N “ xN1, ..., Nny, and a set
of t agent types T , each type corresponding to a consistent preference (as per
Def. 5), increasing the sanction of a norm Nj in N without changing the
sanctions of other norms, does not increase the upper bound of the probability
P pNviolq, i.e., UBpNviol ,N q, for all N in N .

Proof. See Appendix A.
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The concept of well-defined norm as described above, concerns the rela-
tionship between a norm and the preferences of the agents. In a multiagent
system, norms are enforced in order to achieve some system-level objectives.
Although setting the sanction of all norms in N above maxpBq makes all the
agents fully compliant (i.e., P pNviolq “ 0 and P pNobq “ 1 for all N P N), this
does not necessarily guarantee the achievement of the system-level objectives,
as norms can be ineffective, or even harmful, when obeyed by all agents [24].
Having an estimation of the agents’ preferences on its own is therefore not
sufficient for an effective supervision of a MAS.

We describe here two properties that, instead, relate a norm with the
system-level objectives: the concept of synergy between a norm and the system-
level objectives, and the concept of effectiveness of a norm set.

We say that there is a positive synergy between a norm and the system-level
objectives if it is more likely to achieve the system-level objectives when the
norm is obeyed than when it is violated. A positive synergy between a norm
N and a set of Boolean objectives O exists if P pOtrue|Nobq ą P pOtrue|Nviolq.
We say that there is a negative synergy between N and O if P pOtrue|Nobq ă
P pOtrue|Nviolq. Finally, we say that there is no synergy between N and O if
P pOtrue|Nobq “ P pOtrue|Nviolq.

We say, instead, that a norm set N is effective if, when norms in N are
enforced, N guarantees the desired achievement level toa of the system-level
objectives, i.e., when P pOtrueq ě toa. Conversely, if, when enforcing a norm
set N , we have that P pOtrueq ă toa, we say that N is ineffective.

Information such as the exhibited norm obedience, the synergy and the
effectiveness described above, are hard to determine while designing a MAS.
This is due to several factors, including the complexity of the system, the
interaction between autonomous agents, the lack of complete knowledge of
the agents’ internals, and the uncertainty of the environment. However, they
can be learned at runtime by monitoring the MAS execution. In this paper, we
learn such properties by means of the Norm Bayesian Network and, in Sec. 5,
we propose different strategies to combine these properties with the agents’
preferences, in order to revise the sanctions of an ineffective norm set N .

5 Norm Revision

In this section we propose different heuristic strategies for the revision of the
sanctions of a set of norms whose enforcement is currently ineffective (as
per Sec. 4.2). Opportune sanctioning of agents is a well-known mechanism
to achieve the system-level objectives in MASs [12,13]. Our strategies leverage
the knowledge learned at runtime about norm effectiveness and an estimation
of the preferences of the agents in the system, and determine a new set of
sanctions to use to enforce the norms.

Take the Norm Bayesian Network in Fig. 3. By analyzing the CPTs of the
objectives nodes O “ tTripDur,Haltedu, we can determine whether a norm set



24 Dell’Anna et al.

N is effective or not in a context c. If N is not effective (i.e., P pOtrue|cq ă toa),
a norm revision process is triggered. In such case, in this paper we aim to revise
the sanctions of the norms in N . For example, if the two norms psp50, 1q and
pdist1, 1q are ineffective when on the ring road there is an obstacle and high
vehicle density, we aim to identify another set of values for their sanctions.
Given a norm set N consisting of n norms, a set of agent types T and the
maximum possible budget maxpBq among all agent types in T , the possible
sets of sanctions that can be used to enforce norms in N is S “

Śn
i“1ts P

N | s ď maxpBq ` 1u. When a norm is enforced with a sanction 0, agent’s
decisions are not affected by the norm, since every agent can always afford to
violate (if preferred) a norm with sanction 0. When a norm is enforced with a
sanction maxpBq ` 1, instead, no agent can violate such norm, since no agent
can afford to pay such sanction, for the maximum possible budget among all
agent types is maxpBq.

The set S is the search space within which our heuristic strategies for norm
revision search for new sanctions.

In Sec. 5.1, we describe six strategies for the suggestion of a revision of the
sanctions of a norm set. Such strategies extend and adapt heuristics presented
in previous work [24, 25] by supporting the revision of sanctions of multiple
norms. Each strategy suggests how the behavior of agents w.r.t. the aspects of
the system regulated by norms should change in order to improve the probabil-
ity of achieving the system-level objectives. For example, given two norms, one
strategy could suggest to reduce the violations of one norm and to increase the
violations of the second norm. Based on the upper bound of the violation of
norms obtained from agents’ preferences (Sec. 4.2), we provide then in Sec. 5.2
an algorithm to explore the search space S in order to identify a new set of
sanctions that satisfies (as much as possible) the suggestions provided by the
revision strategies.

It is worth noting that we do not claim that modifying sanctions is al-
ways enough in order to achieve the system’s objectives. As shown in previous
work [24], sometimes the enforced norms (and not their enforcement) need to
be revised. In this paper, however, we focus on mechanisms for the revision of
the sanctions associated to the norms (i.e., the way norms are enforced). The
combination of the mechanisms proposed here with the revision of the content
of the norms is left for future work.

5.1 Norm Revision Strategies

We propose six strategies for the suggestion of norm revisions. Each strategy
determines a list of n suggestions (one per each norm in N ). We present three
types of strategies: synergy-based strategies, sensitivity-based strategies, and
category-based strategies.

Each strategy is applied to a context mpc that, in our framework, cor-
responds to the most problematic context in which the objectives are not
achieved. In particular, mpc “ argmaxcPallpcqP pOfalse | cq, where allpcq is
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the set of all possible contexts (assignments of a value to each of the context
nodes in N BN ). For simplicity, in the rest of the section, we call such context
simply c.

5.1.1 Synergy-based strategies

Synergy-based strategies are based on the concept of norm-objectives synergy
described in Sec. 4.2. The idea is that, if there is a positive synergy between
a norm N and the objectives O in c, the objectives O are more likely to be
achieved when N is obeyed. In this case, by reducing the violations of N , we
expect to increase P pOtrue|cq. If there is a negative synergy between N and
O in c, instead, we expect that increasing the violations of N , and P pOtrue|cq
would increase. We present two strategies of this type (Naive synergy and
Combined synergy), which differ in the way they determine the synergy be-
tween norms and objectives.

Naive synergy. Consider, for each norm N P N, its synergy with the objectives
O:

argmaxvPtob,violuP pOtrue|Nv ^ cq (4)

For instance, for a norm node SpdLim in the Bayesian Network of Fig. 3,
where O “ tTripDur ,Haltedu, we have that

P pOtrue | Nv ^ cq “ P pTripDur true,Haltedtrue |
SpdLimv ^ c^ SafDstobq ¨ P pSafDstob | cq ` P pTripDur true,Haltedtrue |

SpdLimv ^ c^ SafDstviolq ¨ P pSafDstviol | cq

To determine the argmax of Eq. 4 means therefore to determine if SpdLimob
is better than SpdLimviol for the achievement of the objectives TripDur and
Halted.

Naive synergy calculates such argmax for each norm node and suggests
to decrease violations of norms such that v “ ob in Eq. 4, and to increase
violations of norms where v “ viol in Eq. 4. For instance, given N “ xN1, N2y,
if v “ ob for N1 and v “ viol for N2, then naive synergy suggests to decrease
violations of norm N1 and to increase violations of norm N2.

Combined synergy. Determine which combination of values obeyed and violated
for each norm is the best for the achievement of the objectives O.
Let ov be the set of all possible assignments of values in the set tob, violu to
all norm nodes in N (e.g., given N “ tN1, N2u, then ov “ ttN1ob, N2obu,
tN1ob, N2violu, tN1viol, N2obu, tN1viol, N2violuu). Determine:

nd “ argmaxnPovP pOtrue|n^ cq (5)

This strategy suggests to decrease violations of norms with value ob in nd
and to increase violations of norms with value viol in nd. For instance if
nd “ tN1ob, N2violu, then combined synergy suggests to increase violations
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of norm N1 and to decrease violations of norm N2.

It is worth noting that Combined synergy purely determines the best com-
bination of values for the norms, according to the observed data from MAS
execution, without considering the prior probability of observing those val-
ues (in practice, Combined synergy only compares, one by one, the rows of the
CPT of the objective nodes). Naive synergy, instead, when comparing different
combinations of values for the norms, takes also into account the probability
to observe those values (Naive synergy compares sums of different rows of the
CPT of the objectives nodes, multiplied by the prior probability of observing
the corresponding values for the norm nodes). Adopting the Naive synergy
strategy may have the advantage of providing more precise suggestion w.r.t.
the data acquired so far during the system execution. Considering only the
CPT of the objective nodes, as per Combined synergy, may help instead de-
termining the actual best combination of values of obedience of the norms for
the system-level objectives, without being biased by the current probabilities
of violating the norms, which will be modified after the sanctions revision.

5.1.2 Sensitivity-based strategies

Sensitivity-based strategies are based on the sensitivity analysis technique from
probabilistic reasoning [15]. Such strategies do not only determine the direc-
tion of the revision—i.e., increasing or decreasing the probability of violating
a norm, as in the case of synergy-based strategies—, but also estimate the re-
quired change in such probability in order to make the entire norm set effective
in context c. In particular, given a norm node N , the probability P pNviol|cq
is a parameter θNviol|cof the Norm Bayesian Network. Sensitivity-based strate-
gies try to identify possible changes to the parameter θNviol|cthat can ensure
the satisfaction of the constraint P pOtrue|cq ě toa. We call required revision
strength (RRS) for a norm set N “ xN1, ...Nny, the set of desired changes
t∆θN1viol|c , ...,∆θNnviol|cu in the parameters θNviol|cof each N in N that ensure
the satisfaction of the constraint P pOtrue|cq ě toa. We present two strategies
of this type (Naive sensitivity analysis and n-CPT sensitivity analysis), which
differ in the way they determine such set of desired changes for each norm in
N .

Naive sensitivity analysis. Determine, for each norm N , the required revision
strength (RRS) ∆θNviol by solving equation 6.

P pOtrue|cq `
δP pOtrue|cq
δθNviol|c

¨∆θNviol|c ě toa (6)

Consider the topology of a Norm Bayesian Network. Following Chan et al. [15],
the derivative δP pOtrue|cq

δθNviol|c
for a norm node N in N can be computed as follows.

δP pOtrue|cq
δθNviol|c

“
P pOtrue, Nviol|cq

P pNviol|cq
´ P pOtrue|Nob, cq (7)
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For instance, for a norm node SpdLim in the Bayesian Network of Fig. 3, where
O “ tTripDur ,Haltedu, the left member of the difference in Eq. 7 is

P pOtrue,Nviol|cq
P pNviol|cq “

P pTripDur true,Haltedtrue,SpdLimviol|cq
P pSpdLimviol|cq

“

“
P pTripDur true,Haltedtrue|SpdLimviol,cq ¨ P pSpdLimviol|cq

P pSpdLimviol|cq
“

P pTripDur true|SpdLimviol, cq ¨ P pHaltedtrue|SpdLimviol, cq “
“ P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHaltedtrue |

SpdLimviol ,SafDstviol , cq ¨ P pSafDstviol | cq `
P pTripDur true | SpdLimviol ,SafDstob, cq ¨ P pHaltedtrue |

SpdLimviol ,SafDstob, cq ¨ P pSafDstob | cq
while the right member of the difference in Eq. 7 is

P pOtrue|Nob, cq “ P pTripDur true,Haltedtrue|SpdLimob, cq “
P pTripDur true | SpdLimob,SafDstviol , cq ¨ P pHaltedtrue |

SpdLimob,SafDstviol , cq ¨ P pSafDstviol | cq `
P pTripDur true | SpdLimob,SafDstob, cq ¨ P pHaltedtrue |

SpdLimob,SafDstob, cq ¨ P pSafDstob | cq
Therefore the derivative of Eq. 7 for a norm node SpdLim in the Bayesian
Network of Fig. 3 can be computed as:

P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHaltedtrue |
SpdLimviol ,SafDstviol , cq ¨ P pSafDstviol | cq `

P pTripDur true | SpdLimviol ,SafDstob, cq ¨ P pHaltedtrue |
SpdLimviol ,SafDstob, cq ¨ P pSafDstob | cq ´

P pTripDur true | SpdLimob,SafDstviol , cq ¨ P pHaltedtrue |
SpdLimob,SafDstviol , cq ¨ P pSafDstviol | cq ´

P pTripDur true | SpdLimob,SafDstob, cq ¨ P pHaltedtrue |
SpdLimob,SafDstob, cq ¨ P pSafDstob | cq

The RRS for a norm N determines the change in P pNviol|cq that is esti-
mated, based on observed data from MAS execution, to be required in order
to make the norm set N effective.

Naive sensitivity analysis suggests to change (increase or decrease) the
violations of norms of the amount determined by the corresponding RRSs.
The sign of the required revision strength determines whether it is required
to reduce (negative RRS) or to increase (positive RRS) violations of a norm,
i.e., it determines the direction of the required revision. The value of the RRS
determines the intensity of the required change. For instance if ∆θN1viol|c “

`0.2 and ∆θN2viol|c “ ´0.5, then the suggestion is to increase P pN1violq of 0.2
and to decrease P pN2violq of 0.5.

This strategy computes the RRS for a norm, without considering that
a change could be applied, at the same time, also to other norms. In other
words, the RRS for a norm N is computed as if no change in the probability
of violating any other norm could happen (from this the term naive). However,
when determining the RRS for a norm, Naive sensitiity analysis considers all
possible values of the other norms. Therefore, this strategy may result robust to
unexpected changes in the probability of violating other norms when changing
the sanctions.



28 Dell’Anna et al.

n-CPT sensitivity analysis. Determine the required revision strength for all
norms together, by solving, following Chan et al. [15], equation 8 for the n pa-
rameters ∆θN1viol , ...,∆θNnviol . Let copN, iq be the set of all possible combina-
tions of i norm nodes from the set N, and, given a set M “ tN1, ..., Nmu Ď N
of norm nodes, let δi

δθMviol|c
be the Leibniz’s notation for the i-th partial deriva-

tive δi

δθN1 viol|c...δθNmviol|c
for Nj P M.

P pOtrue|cq `
n
ÿ

i“1

»

–

ÿ

MPcopN,iq

˜

δiP pOtrue|cq
δθMviol|c

¨
ź

NPM
∆θNviol|c

¸

fi

fl ě toa (8)

Solving equation 8 means to determine a list of n values ∆θNviol , one for each
norm node N P N. To do so, first of all it is required to compute: the n first
partial derivatives δP pOtrue|cq

δθNviol|c
(one for each norm N P N); the second partial

derivatives for the
`

n
2
˘

possible combinations of two norm nodes from N; the
third partial derivatives for the

`

n
3
˘

possible combinations of three norm nodes
from N; and so on until the n-th partial derivative δnP pOtrue|cq

δθN1viol|c ...δθNnviol|c
.

For instance, in the case of N “ tN1, N2u, we have that n “ 2, copN, 1q “
ttN1u, tN2uu, and copN, 2q “ ttN1, N2uu, and inequality 8 corresponds to
inequality 9.

P pOtrue|cq `
δP pOtrue|cq
δθN1viol|c

¨∆θN1 viol|c `
δP pOtrue|cq
δθN2viol|c

¨∆θN2 viol|c`

δ2P pOtrue|cq
δθN1 viol|cδθN2 viol|c

¨∆θN1 viol|c∆θN2 viol|c ě toa

(9)

The first partial derivatives in Eq. 8 can be computed as per Eq. 7, while
the second partial derivative, in the case of two norms (as it is in Eq. 9), can
be computed as per Eq 10.

δ2P pOtrue|cq
δθN1 viol|cδθN2 viol|c

“

P pOtrue|N1 viol,N2 viol, cq ` P pOtrue|N1 ob,N2 ob, cq ´
P pOtrue|N1 viol,N2 ob, cq ´ P pOtrue|N1 ob,N2 viol, cq

(10)

If we consider the running example from Fig. 3, the derivative in Eq. 10
can be computed as follows.

P pTripDur true | SpdLimviol ,SafDstviol , cq ¨ P pHaltedtrue |
SpdLimviol ,SafDstviol , cq `

P pTripDur true | SpdLimob,SafDstob, cq ¨ P pHaltedtrue |
SpdLimob,SafDstob, cq ´

P pTripDur true | SpdLimviol ,SafDstob, cq ¨ P pHaltedtrue |
SpdLimviol ,SafDstob, cq ´
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P pTripDur true | SpdLimob,SafDstviol , cq ¨ P pHaltedtrue |
SpdLimob,SafDstviol , cq.

After determining the values of the opportune derivatives, as above re-
ported, inequality 8 can be solved by solving the following optimization prob-
lem.

minimize
xPRn

fpxq

subject to: toa ´ fpxq ď 0
(11)

where x “ px1, ..., xnq is a vector of real values, such that xi is a possible
value for ∆θNiviol|c and fpxq is the left member of inequality 8. Notice that the
constraint to which the optimization problem is subject to corresponds to the
canonical form of Eq. 8. Solving the optimization problem 11 means to de-
termine the minimum values for the n parameters ∆θN1viol|c , ...,∆θNnviol|c that
satisfy the desired constraint of inequality 8 (i.e., the probability of achiev-
ing the objectives, after applying the required change in the probability of
violating the enforced norms, is above the desired threshold toa).

Analogously to naive sensitivity analysis, n-CPT sensitivity analysis sug-
gests to change (increase or decrease) the violations of norms of the amount
of the corresponding RRSs determined by solving inequality 8. For instance,
in the case of two norms, if ∆θN1viol|c “ `0.2 and ∆θN2viol|c “ ´0.5, then
the suggestion is to increase P pN1violq of 0.2 and to decrease P pN2violq of
0.5. Differently from the previous strategy, however, such values are obtained
taking into account the change applied at the same time to the probability of
violating all norms (instead of applying a change only one norm at a time).

5.1.3 Category-based strategies

Category-based strategies classify norms into different categories, based on
their exhibited norm violation and on their relationship with the system-level
objectives discovered at runtime, and determine an adequate revision for each
norm based on their category. We present two strategies of this type (Syn-
ergy+MLE and State-based), based on two heuristic strategies presented in [24]
and used to suggest a revision of regimented norms. In this paper we adapt
them to support the revision of sanctions.

Synergy+MLE. This strategy is based on the pureBN strategy presented in
[24]. We distinguish between norms that are more useful when obeyed (useful-
ob for brevity) or more useful when violated (useful-viol). Furthermore, norms
can also be either most likely obeyed when the objectives are not achieved
(likely-ob for brevity) or most likely violated (likely-viol). In order to distinguish
between useful-ob and useful-viol we calculate the combined synergy nd (as
per Eq. 5). Norms with value ob in nd are useful-ob, norms with value viol
in nd are useful-viol. In order to distinguish between likely-ob and likely-viol,
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instead, we determine the most likely explanation [37] mle for Ofalse in context
c, as follows (with ov defined as per Eq. 5).

mle “ argmaxnPov P pn |Ofalse ^ cq (12)

Norms with value ob in mle are likely-ob, norms with value viol in mle are
likely-viol.

Synergy+MLE suggests to increase violations of norms belonging to cate-
gory useful-viol (more useful when violated); to reduce violations of norms be-
longing to both categories useful-ob and likely-viol (norms that are more useful
when obeyed, but most likely violated when the objectives are not achieved);
and to do nothing for, or reduce violations of, norms belonging to both cat-
egories useful-ob and likely-ob (norms that are more useful when obeyed, and
most likely obeyed when the objectives are not achieved).

The original pureBN strategy [24] included the concept of harmful norm:
a norm that is better when disabled. The suggestion of pureBN for harmful
norms is to disable them. In this paper we only consider active norms and
we focus on the sanction revision, thereby omitting specific suggestions for
harmful norms. However, a suggestion of increasing violation of a norm N ,
may lead to enforce N with a sanction equals to 0. In this paper, enforcing a
norm N with a sanction of 0 corresponds to disabling N .

Finally, note that Synergy+MLE is a refinement of Combined synergy strat-
egy. In addition to the combined synergy, this strategy also takes into account
the most likely explanation for the objectives being not achieved, in terms of
obedience or violation of norms.

State-based. This strategy, based on the stateBased strategy presented in
[24], considers, in addition to the classification of norms described for strategy
Synergy+MLE, information about the system state in context c. In particular,
as illustrated in Fig. 5, the system can be in four states with respect to the
average norm obedience, calculated as the mean ns “ meanNPNP pNob|cq, and
the objectives achievement probability oa “ P pOtrue | cq.

– In state A, norms are sufficiently obeyed, but this does not lead to sufficient
objectives achievement (i.e., ns ě tns and oa ă toa for some given tns and
toa).

– In state B, norms are not sufficiently obeyed and also objectives are not
achieved (i.e., ns ă tns and oa ă toa).

– In state C, the objectives are achieved even though the norms are not
obeyed (i.e., ns ă tns and oa ě toa).

– In state D, (the desired state of the system) the norms are satisfied and
the objectives are achieved (i.e., ns ě tns and oa ě toa).

If the system is in state A, State-based suggests to increase violations of
norms belonging to both categories useful-viol and likely-ob, i.e., norms that
are more useful when violated but most likely obeyed when the objectives are
not achieved, if any. Otherwise, State-based suggests to do nothing for (or to
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Fig. 5: System states (points) in four states (A-D) w.r.t. average norm obedi-
ence and objectives achievement probability.

reduce violations of) the current norm set. In this case, there is probably some
aspect of the system that has not been considered during its design, for the
current norms are mostly obeyed and they are most useful when obeyed, but
the system-level objectives are not achieved as desired. If the system is in state
B, State-based suggests to reduce violations of norms belonging to both cate-
gories useful-ob and likely-viol, i.e., norms that are more useful when obeyed
but most likely violated when the objectives are not achieved. It also suggests
to increase violations of norms belonging to category useful-viol, i.e., norms
that are more useful when violated. If the system is in state C, finally, State-
based suggests to increase violations of norms belonging to both categories
useful-viol and likely-viol, if any. Otherwise it suggests to decrease violations
of norms belonging to both categories useful-ob and likely-viol.

While Synergy+MLE suggests for all the norms in N the most adequate
revision to perform, State-based considers the global state of the system and
suggests to revise only a specific category of norms at every iteration (for the
norms that do not belong to the category above mentioned it is suggested
to do nothing). In case of high number of norms enforced, this strategy may
significantly reduce the number of revisions that need to be performed at every
step.

5.2 Sanctions Revision

Consider a norm N “ pp, sq and a revision of it N 1 “ pp, s1q, with s1 ‰ s. Let
P pNviol|cq be N ’s exhibited norm violation (i.e., the probability of violating
N monitored during system’s execution) in context c. We call applied revision
strength the difference UBpN 1viol,N q ´ P pNviol|cq between the upper bound
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UB for violation of N 1 (as per Sec. 4.2) and the N ’s exhibited norm violation.
For instance, in the example reported in Fig. 4, supposing that when enforcing
N1 “ psp50, 1q andN2 “ pdist2, 0q the exhibited norm violation ofN1 is 0.3, the
applied revision strength when revisingN1 intoN 11 “ psp50, 2q is 0´0.3 “ ´0.3,
while the applied revision strength when revising N1 into N 11 “ psp50, 0q is
1´ 0.3 “ 0.7.

The strategies described in Sec. 5.1, provide, for each norm N in N , a
suggestion such as reduce/increase violations of N , do nothing with N , re-
duce/increase violations of N of a certain amount RRS (as per Sec. 5.1.2).
Given these suggestions, and all possible sets of sanctions S that can be used
to enforce norms in N , we need to find a new set of sanctions such that the
applied revision strength satisfies (as much as possible) the given suggestions.

A trivial solution is to systematically go through all elements in S until
the desired sanction set (if it exists) is found. Such solution is however compu-
tationally expensive, as the number of possible sanction sets is pmaxpBq` 2qn,
with maxpBq` 2 maximum budget among all agent types (maxpBq) plus sanc-
tion 0 and sanction maxpBq ` 1, and n number of norms.

In the following, we propose a simple alternative way to explore the search
space S that can be used in case of a population of consistent agent types as
per Def. 5. With a population of consistent agent types, according to Prop. 3,
the upper bound of the probability of violating norms decreases monotonically
when any sanction increases. This means that given a sanction set, and the
exhibited norm violation for each enforced norm, if we desire to apply a neg-
ative revision strength, we need to move towards higher values of sanctions.
To apply a positive revision strength, instead, we could change in any way
the sanctions (even though typically we should move towards lower values of
sanctions), since the currently exhibited norm violation could be lower than
the upper bound of norm violation with an higher sanction.

Under the assumption of consistent agent types, we can reduce therefore the
exploration of S by directing the search towards the desired values of sanctions.
For instance, suppose to have two norms N1 “ pp1, s1q and N2 “ pp2, s2q,
and a list of suggestions sugg “ preduce, increaseq for a context c (i.e., it is
suggested to reduce violations of norm N1 and to increase violations of norm
N2 in context c). Given sugg, we need to look for a new sanction set ts11, s12u
such that UBpN11viol,N 1q ă P pN1viol|cq and UBpN21viol,N q ą P pN2viol|cq,
with N 1 “ xN11, N21y. We can therefore reduce the search space to the subset
of S such that s11 ě s1 and s12 ‰ s2.

Algorithm 1 reports the pseudo-code of a procedure to perform such search.
Notice that if preferences are not consistent, we have no guarantees that

by moving towards higher values of sanctions we will not increase violations
of norms, since Prop. 3 does not hold in the general case (i.e., for preferences
that are not consistent). Despite this, one may still heuristically explore S by
using Algorithm 1, also when not all preferences are consistent.

Algorithm 1 is invoked when a suggestion of norm revision has been deter-
mined with one of the strategies of Sec. 5.1 after a norm revision is triggered,
and there is at least one sanction set that has not been tried previously in
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context c. If a sanction set has already been tried, we know it is not effective
(otherwise no further norm revision would have been triggered). If all possible
sanction sets have been already tried (omitted from Algorithm 1), then the
sanction set that, when enforced, maximizes P pOtrue | cq is selected.

Algorithm 1 The algorithm for the selection of a new sanction set

Input: cs the current sanction set,
E the norms’ exhibited violation,
sugg the n suggestions,
UB the upper bound matrix
RRS a (possibly empty) list of required revision strengths
c the context
Output: a new sanction set sugg to enforce in c

1: function getSanctionSet(cs, E, sugg, UB, RRS, c)
2: op Ð treduce : r0, 1s, increase : r0,´1, 1s,nothing : r0, 1su
3: comb Ð

Śn
i“1 oprsuggriss

4: for all ch P r1,maxpBqs do
5: for all o P comb do
6: nsÐ rcsris ` oris ¨ ch | @i P r1, nss
7: if isNewSanctionSet(ns,c) then
8: if suggSat(cs, ns, sugg, UB, E, RRS , c) then
9: return nsreturn cs

The algorithm takes as input: the list of currently enforced sanctions cs;
the exhibited violation of the enforced norms E; the list sugg of suggestions
obtained with one of the strategies of Sec. 5.1 (a value reduce (or increase,
or nothing) in suggris corresponds to a suggestion to reduce (increase, or do
nothing with) violations of the i-th norm); a matrix UB containing the upper
bounds for norms violations as per Fig. 4; a list RRS of required revision
strengths (empty if no sensitivity-based strategy is used); and the context c.
As output, Algorithm 1 returns a (possibly new) list of sanctions to use to
enforce norms in context c.

The algorithm explores the possible sanction sets starting from the current
sanction set cs. The first step is to determine the subset of S to explore. Notice
that, if a reduce suggestion has been given for norm i (i.e., suggris “ reduce),
the new sanction for norm i must be greater of equal than the current one
(i.e., nsris ě csris). This means that nsris has to be equal to csris ` ch, with
ch ě 0 amount of change. Conversely, if suggris “ increase, nsris has to be
equal to either csris ` ch or csris ´ ch. If we put these cases together (line 6
of Algorithm 1), nsris has to be equal to csris ` oris ¨ ch, with oris P t0, 1u if
suggris “ reduce, and oris P t0,´1, 1u if suggris “ increase, and ch ą 0 amount
of change.

Variable comb (line 3) is a set of all possible combinations of operators oris
for each norm i, obtained from their suggestion suggris (see oprsuggriss, which
retrieves from the labeled set op declared at line 2, the opportune list of opera-
tors given suggestion suggris). For instance, supposing to have two normsN1 “
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pp1, s1q and N2 “ pp2, s2q, and a list of suggestions sugg “ preduce, increaseq,
we have that oprsuggr1ss “ r0, 1s and oprsuggr2ss “ r0,´1, 1s and comb is the
set of all possible combinations of operators in oprsuggr1ss and oprsuggr21ss,
i.e., tp0, 0q, p0,´1q, p0, 1q, p1, 0q, p1,´1q, p1, 1qu, such that given a certain ele-
ment o P comb, oris is the operator to apply to the change of sanction csris.

The algorithm iterates through all possible changes that can be applied
to sanctions (line 4). For each possible change, the algorithm iterates through
all possible new sanction sets that can be obtained with the combinations of
operators in comb (lines 5-6). Notice that, by iteratively increasing the change,
we explore the search space at increasing distance from the current sanction
set. This means that if the algorithm finds a new (function isNewSanction-
Set at line 7) sanction set ns that satisfies the given suggestions (function
suggSat at line 8), such sanction set is also the closest possible to the current
one.

Finally, if no new sanction set satisfying the suggestions is found, the cur-
rent sanction set is returned. In this case, in our framework a random sanction
set never tried before is enforced in context c.

Notice also that function suggSat (line 8), whose purpose is to verify that
a proposed sanction set satisfies the given suggestions, does not need to require
that all suggestions are perfectly satisfied. In particular, especially when sug-
gestions include also a required revision strength (i.e., when using sensitivity-
based strategies), it may be more useful to search for a good-enough sanction
set. For our experiments, described in Sec. 6, when list RRS is not empty,
we keep track of the best new sanction set found so far (if not all suggestions
are satisfied) and for every new sanction set tested we require at least 80% of
suggestions to be satisfied. Furthermore in case of suggestion nothing, since
unlikely, in our experiments, that the exhibited probability of a norm exactly
corresponds to a value on its upper bound, we accept also a reduction of the
probability of violating the norm of a small ε (we used ε “ 0.1).

After enforcing the new norm set N 1, obtained by revising the sanctions of
norms in N according to the new sanction set obtained from Algorithm 1, we
monitor the new behavior of the agents and detect the new exhibited norm
violation P pN 1viol|cq, for each norm N 1 P N 1. We call actual revision strength
the difference P pN 1viol|cq´P pNviol|cq between the exhibited norm violation of
N 1 and N , with N 1 “ pp, s1qand N “ pp, sq.

6 Experimentation

We report on an experiment that investigates the process through which the
norm-based supervision mechanism of Sec. 4 identifies an optimal system con-
figuration. The object of our study consists of the strategies for norm revision
proposed in Sec. 5. In particular, we study the process through which the norm-
based supervision mechanism identifies an optimal system configuration when
employing each of the six proposed strategies as possible informed heuristics
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for defining the neighborhood of a configuration, i.e., the configurations where
the sanctions of the enforced norms are revised as suggested by the heuristics.

We compare the results in terms of convergence speed. The convergence
speed measures the number of steps (i.e., revisions of the sanctions of norms
triggered) required by the heuristic strategies to make the norms effective in
achieving the system-level objectives. This allows us to study the time effi-
ciency of the norm revision strategies in refining sub-optimal norms at run-
time.

6.1 Experimental Setting

Our experiment is run through a simulation5 of the ring road scenario de-
scribed in Sec. 3. Our implementation of the norm-based supervision mech-
anism of Sec. 4, as a modified version of hill climbing, is called SASS (Su-
pervisor of Autonomous Software Systems)6. The supervisor performs a local
search and stops when either (i) all the system configurations have been tried;
or (ii) a local optimum (system configuration) is found that has objectives
achievement probability oa “ P pOtrueq above the desired threshold toa. The
objectives achievement probability of a certain system configuration is not
known to SASS before the configuration is actually enforced. Such probability
is determined at runtime from simulation data, given the chosen system con-
figuration. In this experimental setting, the last system configuration that is
selected before stopping is called optimal, since either the objectives achieve-
ment is above the desired threshold or there is no other better configuration.

In the ring road scenario, we consider the two contextual variables Vehicle
density, which can be low (40 cars on the ring road) or high (80 cars)7; and
Obstacle, which is true when an obstacle is placed on the outer lane of the
ring road. Each car in the simulation is an agent that acts according to its
specific characteristics, beliefs and preferences. At each simulation step, every
agent also deliberates about a number of things, including its desired speed
and the minimum safety distance, whether and how much to accelerate or
decelerate, whether to change lane to surpass or to move back to the outer
lane, whether to activate the turn signals. Agents’ decisions are based on their
own internals, which are specific for each agent and unknown to the norm
revision mechanism. In our simulations, when an agent equally prefers two
alternatives x and y concerning the speed and safety distance (i.e., x „ y), the
agent applies a deterministic choice to determine what state of affair to pursue
(i.e., simply the first one in the representation of the alternatives), instead of
random choice.

In order to define norms and agents’ preferences, we consider the set
of propositional atoms L “ tsp15 , sp8 , sp3 , dist0 .5 , dist1 , sp2 u, with AL “

5 For our experiment, we used the SUMO traffic simulator [36] and CrowdNav+RTX [45]
6 The source code and the material for experiments’ replication can be found in [26].
7 The density values have been determined empirically based on the size of the ringroad

used for the experiments.
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pL1, L2q and L1 “ tsp15 , sp8 , sp3 , u and L2 “ tdist0 .5 , dist1 , dist2 u. Each el-
ement in L1 represents a speed in m/s and each element in L2 represents a
safety distance in meters. Furthermore, we consider a language B “ t0, 1, 2u
for defining budgets and a language S “ t0, 1, 2, 3u for defining sanctions of
norms.

6.1.1 Agent Types

We experiment with four types of rational agents with consistent preferences
(as per Def. 5). In the following we briefly describe such types, and we report
in Appendix B the full preferences.

– BraveRich is a consistent basic preference that adheres to Def. 2b, i.e.,
where alternatives are ordered by propositional atom. It describes an agent
type with a maximum budget of 4, that prefers to drive fast and to keep
a short safety distance, and that gives priority to the short safety distance
rather than to driving fast.

– BraveMiddleClass is a consistent preference composed by two basic pref-
erences. The first basic preference pA1,ľ1q adheres to Def. 2b. The alterna-
tives inA1 are such thatA1 “ tpxp1, b1y, . . . , xpn, bnyq | pi P Li & pb1, . . . , bnq P
BL1u, with BL1 “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu. The second basic prefer-
ence pA2,ľ2q adheres to Def. 2a. The alternatives in A2 are such that
A2 “ tpxp1, b1y, . . . , xpn, bnyq | pi P Li & pb1, . . . , bnq P BL2u, with BL2 “
tp0, 2q, p1, 2q, p2, 2q, p2, 1q, p2, 0qu. BraveMiddleClass describes an agent type
similar to BraveRich, but that is willing to pay no more than 2 for a certain
state of affairs. The alternatives in A2 are ordered by required budget and,
for consistency, they maintain the same relative order as in A1.

– BravePoor is a consistent basic preference ordered by required budget, as
per Def. 2a. It describes an agent type that equally prefers to drive fast or
slow and to keep a short or long safety distance, but is not willing to pay
anything to reach any state of affairs.

– Cautious is a consistent basic preference ordered by required budget, as
per Def. 2a. It describes an agent type that equally prefers to drive slow
or fast and to keep a long or short safety distance, and is not willing
to pay anything to reach any state of affairs. Notice that this preference
is equivalent to BravePoor, however due to the deterministic mechanism
of choice of an alternative that our agents employ (i.e., the first one in
the representation of the alternatives), these two agent types will exhibit
different behaviors at runtime. For instance, even though states of affairs
where sp15 and dist0 .5 hold are equally preferred to state of affairs where
sp3 and dist0 .5 hold, in both preferences, and they could both be chosen
in the case of random choice, in our simulation, given enough budget,
BravePoor will aim at a state of affair where sp15 and dist0 .5 hold, while
Cautious will aim at a state of affair where sp3 and dist0 .5 hold.

We consider three distributions of types of agents:
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– uniform, the entire population of agents is uniformly distributed across the
four types above described.

– mostly compliant, 75% of agents belongs to type Cautious and the rest is
uniformly distributed across the remaining types.

– mostly violating, 75% of agents belongs to type BraveRich and the rest is
uniformly distributed across the remaining types.
Note that despite our estimation of the preferences of the agents concerning

speed and safety distance, we do not have any control on the exact speed or
safety distance of the agents, which is internally and opaquely set by the
agents, together with the rest of their behaviors.

6.1.2 Norms

We consider four ordered norm sets: N31 “ xSpdLim3 ,SafDst1 y, N32 “

xSpdLim3 ,SafDst2 y, N81 “ xSpdLim8 ,SafDst1 y, N82 “ xSpdLim8 ,SafDst2 y,
with SpdLimx “ pspx , s1q, SafDsty “ pdisty, s2q, x P t3, 8u, y P t1, 2u and s1
and s2 sanctions in S.

Fig. 6 illustrates the upper bounds of the probability of violating the two
norms SpdLimx and SafDsty above defined (as per Sec. 4.2) for the three
agent type distributions. Notice that the reported upper bounds hold for all
combinations of the values x and y above defined (i.e., values of speed limit
and minimum safety distance). This is due to the types of agents that we
considered for our experiments. BraveRich prefers to keep a speed of 15 m/s
by maintaining a short safety distance and it is willing to pay a sanction of
2 for each of these aspects. When the sanction of a norm is above 2 this
agent is compliant with the norm, regardless of the value of the speed limit,
because the agent has no budget for violating the norm. BraveMiddleClass is
analogous to BraveRich but with a maximum budget of 1 for the violation of
a norm: up to sanction 1 BraveMiddleClass has reason to violate a norm (it
also prefers to go at a speed of 15 m/s by maintaining a short safety distance),
while when the sanction of a norm is above 1 BraveMiddleClass is compliant.
Finally BravePoor and Cautious have reason to violate the norms only when
their sanctions is 0. With higher sanctions, these agent types are compliant.

Furthermore notice that, since all the agent types that we considered are
consistent as per Def. 5, the upper bounds reported in Fig. 6 satisfy Prop. 3:
when increasing the sanction of only one norm the upper bound of violat-
ing the other norm never increases. This allows us to take advantage, in our
experiments, of Algorithm 1 for the selection of a new sanction set.

6.2 Experiments

By combining the three distributions of agents of Sec. 6.1.1 with the four norm
sets of Sec. 6.1.2, we derived 12 different experiments. We ran a simulation of
the ring road for each of the 12 experiments and we collected data about norm
obedience and objective achievement in the four different operating contexts
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Fig. 6: Upper bound of the probability of violating norms SpdLimx “ pspx, s1q
(red) and SafDsty “ pdisty, s2q (black) with different agent type distributions.
In each subfigure the x-axis represents the sanction s1 of norm SpdLimx, while
the y-axis represents the sanction s2 of norm SafDsty.

c1 “ VehicleDensitylow^Obstaclefalse, c2 “ VehicleDensitylow^Obstacletrue,
c3 “ VehicleDensityhigh^Obstaclefalse, c4 “ VehicleDensityhigh^Obstacletrue.
This means that during a simulation, the contexts in which the cars on the
ring road operate changes three times (for a total of fours different operating
contexts in each simulation). During the simulations, we monitored the behav-
ior of the cars and sanctioned each car that violated one of the enforced norms.
A car sanctioned for the violation of a norm N was not sanctioned anymore
for violations of norm N until it completed a full loop of the ring road. The
Boolean value of the system-level objectives was measured every 25 simula-
tion steps. The objective TripDur was considered achieved if, on average in
the 25 steps, the cars on the ring road took less than 2.5 times the theoretical
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average trip time8 to complete a loop of the ring road. The objective Halted
was considered achieved if, on average in the 25 steps, less than x% of cars
were halted on the ring road, with x “ 25 if the density of vehicles on the
ring road is high, and x “ 5 if the density of vehicles is low9. A car in SUMO
is considered halted if its speed is below 0.1m{s. Cars could be halted on the
ring road for several reasons. For example, the presence of an obstacle may
force them to stop and wait for the right moment to surpass the obstacle or
breaking waves may force cars to temporary slow down significantly to avoid
collisions.

In every experiment that we perform, the system has nm possible configu-
rations, with n possible sanction sets and m different operating contexts. Since
the speed of convergence to an optimal solution depends on the initial system
configuration (i.e., a different amount of revisions may be required starting
from different initial configurations), we execute each strategy starting from
each possible configuration and we calculate statistics information (i.e., me-
dian, maximum, mean and standard deviation) concerning the convergence
speed in the different executions. To keep our experimentation’s time man-
ageable, in our experiments we considered only 2 of the 4 operating contexts:
c2 and c3. This allowed us to reduce the number of possible configurations
from 164 to 162 “ 256: 16 possible sanction sets for the enforced norms in
any of the 2 contexts. Fig. 7 shows the probability P pOtrueq obtained with
the 256 configurations in each of the 12 experiments and highlights the op-
timal configurations (the configurations s.t. P pOtrueq ě toa). Every dot in
Fig. 7 represents the probability of achieving the objectives during a simula-
tion with a certain system configuration (i.e., P pOtrueq), considering both the
contexts c2 and c3. In each sub-figure (one per experiment) we see therefore
256 dots, one per system configuration. Notice that in the 12 experiments, the
distribution of the 256 configurations w.r.t. the probability of achieving the
system-level objectives is different. In other words, a certain system configura-
tion c (i.e., enforcing norms with certain sanctions in the two contexts c2 and
c3) can be effective in an experiment but ineffective in another experiment.
This makes the 12 experiments independent, thereby increasing the generality
of our results.

For each of the 12 experiments, we defined a different toa as indicated
in Table 2, which summarizes the entire experimental setting. The different
thresholds allow us to test our strategies with different degrees of difficulty
(i.e., number of optimal configurations to be found).

8 The theoretical trip time is
ř

tiPT di ˆ ti,N , with T being the set of agent types, di

being the percentage of agents of type ti, and ti,N being the theoretical time needed by ti
to complete a loop in case of free ring road when norm set N is enforced.

9 Values for the evaluation of the objectives were determined based on some prelimi-
nary experimentation with the ring road simulation in order to retrieve a variegate set of
experiments.
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Exp. ID Agents distribution Norm set Contexts toa Optimal
1 DUN31 uniform N31 c2, c3 0.99 84/256 (32.8%)
2 DUN32 uniform N32 c2, c3 0.99 48/256 (18.7%)
3 DUN81 uniform N81 c2, c3 0.9 6/256 (2.3%)
4 DUN82 uniform N82 c2, c3 0.7 8/256 (3.1%)
5 DCN31 mostly compliant N31 c2, c3 0.99 72/256 (28.1%)
6 DCN32 mostly compliant N32 c2, c3 0.99 60/256 (23.4%)
7 DCN81 mostly compliant N81 c2, c3 0.79 4/256 (1.6%)
8 DCN82 mostly compliant N82 c2, c3 0.5 17/256 (6.6%)
9 DVN31 mostly violating N31 c2, c3 0.99 24/256 (9.4%)
10 DVN32 mostly violating N32 c2, c3 0.9 96/256 (37.5%)
11 DVN81 mostly violating N81 c2, c3 0.6 18/256 (7%)
12 DVN82 mostly violating N82 c2, c3 0.8 3/256 (1.2%)

Table 2: The setting of the 12 experiments.

6.3 Analysis of the Results

Table 3 reports the results concerning the steps required by the supervision
mechanism to find an optimal configuration in the 12 experiments when em-
ploying each of the six proposed revision strategies. In particular, we report the
median, the maximum, the average, and the standard deviation of the number
of steps. We highlight the best performing strategies in each experiment.

On average, all the strategies required a limited number of steps to find an
optimal configuration in almost all experiments. In the 12 experiments, while
the number of optimal configurations to be found ranges from 3 to 96 out of
256 configurations, on average the strategies never required more than 52 steps
to find one of those configurations (see columns Avg (σ) in Table 3, where σ is
the standard deviation), with a minimum of 0 for all strategies (trivially in the
cases the initial configuration is optimal, not reported in Table 3), a maximum
of 218 in the most difficult scenario (see columns Max of experiment DVN82 ),
and a median value never above 35 steps.

If we look at the average values, the strategy that performed less well in the
12 experiments is Naive sensitivity analysis, which, in order to find an optimal
configuration among the 256 possible configurations, required an average num-
ber of steps between 1 and 52. The strategy that, on average, performed best,
instead, is n-CPT sensitivity analysis, requiring an average number of steps
between 2 and 12. In particular, these results show that when using n-CPT
sensitivity analysis, on average, about 6 norm revisions were triggered by the
norm-based supervision mechanism before finding a configuration where the
system-level objectives were achieved as desired.

Despite n-CPT sensitivity analysis performed, on average, better than the
other strategies in the 12 experiments, the results show that using that strategy
was mostly advantageous when very few configurations were optimal among
all the possible ones. In particular, n-CPT sensitivity analysis appeared to be
more effective than the other strategies when the number of optimal configura-
tions was lower than 2% of all the configurations. For instance, in experiment
DCN81 (1.6% of configuration are optimal), never more than 13 steps were
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required to find an optimal configuration when employing n-CPT sensitivity
analysis, while the other strategies required a maximum number of steps be-
tween 104 and 216. Furthermore, while the median number of step is 9 with
n-CPT sensitivity analysis, the median number of steps with the other strate-
gies is more than twice. One exception is State-based, which in such experiment
required an average number of steps similar to n-CPT sensitivity analysis and
an even lower median. State-based, however, exhibited an higher variance, re-
quiring in some executions up to 104 steps. In experiment DVN82 (1.2% of
configuration are optimal), while all other strategies (including State-based)
required an average number of steps between 20 and 52, n-CPT sensitivity
analysis was able to find on average an optimal configuration in about 12
steps.

If we consider, instead, simpler experiments (e.g., DUN31 or DCN31 ), n-
CPT sensitivity analysis did not outperform significantly the other strategies.
In fact, if we consider the average number of steps, among all the strategies,
Naive synergy outperformed (even though by few steps) all the others in 5 ex-
periments, requiring in all of them less then 6 steps to find an optimal configu-
ration. Furthermore in 8 experiments the average number of steps required by
Naive synergy was below the average between the different algorithms. State-
based had similar performances to Naive synergy and, even though it was the
absolute best strategy in only 3 experiments in terms of average number of
steps, in 8 experiments out of 12 it exhibited the lowest median value.

Fig. 8 plots the percentage of configurations explored in the 12 experiments
by the six strategies before finding an optimal one. In most experiments, all
algorithms required to explore less than 10% of all configurations. The only
cases that required to explore more than 10% of configurations were experi-
ments DCN81 and DVN82, where the number of optimal configuration to be
found was less than 2%. Fig. 8 emphasizes that all proposed strategies per-
formed similarly, with the exception of n-CPT sensitivity analysis, which did
not show a degradation in the cases of very few optimal configurations and
required to explore a significantly lower number of configurations.

The values in Table 3 and in Fig. 8 concern the absolute number of steps
required, and configurations explored, to find one of the optimal configurations
among the total amount of 256 configurations. They provide an overview of
the behaviour of the strategies proposed in this paper in problems of differ-
ent difficulty with a search space of 256 possible solutions. Fig. 9 compares
the percentage of explored configurations by the different strategies with the
percentage of optimal configurations to be found.

Note that, in problems with more than 6% of optimal configuration, the
strategies did not exhibit significant differences. In more difficult problems (less
than 3% of optimal configurations), the number of configurations to explore
increased up to 20% with Synergy+MLE, Combined synergy and in particular
with Naive sensitivity analysis. Naive synergy and State-based, instead, as
reported above, exhibited a similar behavior in most of the cases. In problems
with less than 2% of optimal configurations, however, they also required to
explore a higher number (up to „15%) of configurations. Finally, the figure
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Fig. 8: Average percentage of explored configurations before finding an optimal
one.

shows the robustness of n-CPT sensitivity analysis: despite performing slightly
worse than other strategies in some experiments, n-CPT sensitivity analysis
never required to explore more than 5% of all configurations, even in problems
with about 1% of optimal configurations.

7 Discussion

The results reported in Sec. 6 show that our proposed strategies can be em-
ployed to effectively revise at runtime the sanctions of the enforced norms to
quickly improve the performance of the system (in terms of achievement of
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Fig. 9: Average percentage of explored configurations (y-axis) compared to the
percentage of optimal configurations in the 12 different experiments (x-axis).

the system-level objectives). In particular, on 12 problems of different diffi-
culty, our strategies reached optimal system’s configurations after very few
norm revisions. Starting with no initial knowledge about the effectiveness of
the possible configurations, all the strategies explored on average less than
10% of all possible configurations before finding an optimal one. In the sim-
plest experiment (DVN32 ), all strategies required to explore on average less
than 1% of all possible configurations. In the same experiment, an uninformed
strategy that does not consider runtime information and randomly tries a new
configuration when the current one is not optimal would explore, on average,
62.5% of the configurations. In the most difficult experiment (DVN82 ), while a
random strategy would explore on average 98.8% of the configurations to find
one of the 1.2% optimal ones, our best performing strategy n-CPT sensitivity
analysis explored, on average, only 5% of all possible configurations.

Our experiments identified three best-performing strategies: Naive synergy,
State-based and n-CPT sensitivity analysis. We discuss each of these strategies
and interpret the results and the conditions for their applicability.

Naive synergy determines, for each of the enforced norms, what type of
synergy exists between the norm and the system-level objectives. Based on
the identified synergy, Naive synergy increases or decreases the sanction for
violating the norm. This strategy suits well cases where the observed data from
MAS execution clearly highlights that a norm is better when either obeyed or
violated. In experiment DUN81, for instance, in both contexts c2 and c3 the
speed limit norm is effective only when fully obeyed by all agents (i.e., system
configurations where some agents violate the speed limit are not optimal). In
such experiment, and also in similar experiments such as DUN82 and DCN82,
the results confirmed that Naive synergy outperforms the other strategies.

The State-based strategy extends Combined synergy. Just like the latter,
it considers the synergy between norms and objectives. Unlike Combined syn-
ergy, it also considers the most likely explanation for the objectives being not
achieved. Furthermore, State-based takes also into account the global state of
the system (the average norm obedience and objectives achievement) and sug-
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gests to revise only a certain type of norms at every iteration. This strategy
is suitable for cases where many norms are enforced and where the obedience
of agents to a norm is likely to affect also the obedience to other norms. In
our experiments, State-based performed well in most of the cases, with the
exception of the most difficult ones DCN81 and DVN82, where, similarly to
Naive synergy it required a higher number of revisions.

Note that, in experiments DCN81 and DVN82, the optimal configurations
are only 4 and 3, respectively, out of 256. To find the few optimal configurations
quickly, it is necessary to have a strategy that precisely directs the norm
revision. For this reason, synergy-based or category-based strategies, which
only provide a direction for the revision (i.e., they simply suggest to either
increase or decrease violations), were not the best in these experiments.

n-CPT sensitivity analysis, instead, provides a quantitative measure of how
much change in the violations of each norm is required. This strategy is more
precise, and, although it performed slightly worse than other strategies in a few
cases, it showed a consistent convergence speed in all the experiments, includ-
ing complex ones such as DCN81 and DVN82. Thus, this strategy proved to
be the most robust in terms of convergence speed. It is worth noting, however,
that in cases where the desired achievement of the system-level objectives is
not particularly restrictive and where many norms are enforced, n-CPT sen-
sitivity analysis may be less adequate due to the higher computational effort
it requires, especially if compared to simpler strategies like Naive synergy.

The worst-performing strategy, on average, is Naive sensitivity analysis.
This strategy performed particularly bad (compared to the others) especially
in the most difficult experiments, where, as explained above, very few con-
figurations were needed to be found. This result, which may seem surprising
since sensitivity-based strategies are generally more precise than the others,
can be explained by the naive approach of the strategy in determining the
amount of change in the violations of norms that is required to achieve the
system-level objectives. In doing so, unlike n-CPT sensitivity analysis, this
strategy considers the changes for only one norm at a time, assuming that
the other parameters of the Bayesian Network (i.e., the amount of violations
of other norms) would not change. After providing a suggestion, however, the
strategy applies a sanctions revision to all norms together (i.e., it changes all
the parameters of the network together), creating a discrepancy between the
way the suggestions are provided and the implementation of such suggestions.
This discrepancy appears evident in cases where the precision of the sugges-
tions is essential to identify one of the few optimal solutions (e.g., DCN81
and DVN82 ). Note, however, that all the proposed strategies are heuristics.
Therefore, there is no guarantee that one strategy will always perform better
or worse than the others. This is visible in the results: every strategy that
we proposed, including Naive sensitivity analysis, performed better than the
others in at least one experiment.
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7.1 Limitations and Possible Extensions

In the following, we provide a discussion of some of the limitations and as-
sumptions related to our framework and to the revision strategies that we
proposed, outlining some possible future directions.

7.1.1 Preferences Changing over Time and Context

We considered agents with same preferences in all operating contexts. This
simplification does not affect the generality of our approach. Our framework
supports agents with different preferences in multiple operating contexts. In
Sec. 4.2, we have shown how to use the estimation of the preferences of agents
to determine an upper bound of the probability of violating a norm. In Sec. 5,
we used such upper bound to guide the revision of the sanctions of the enforced
norms in a certain operating context c. In order to use different preferences
in varying operating contexts, it is possible to explicitly model the different
contexts (as proposed, for example, in context-aware systems such as Ambient
Intelligence systems [46]), and use an adequate upper bound in each of them.

This is made possible by the assumption that the preferences of agents
(and therefore our estimation) do not change over time, i.e., we assumed that
the behavior of the agent is consistent over time. We did not study the case of
preferences changing over time. Preferences may change over time due to ex-
ternal factors inducing changes in the end-user’s preferences, the introduction
of new norms in the MAS, or changes in agents’ own evaluation of states of
affairs due to the acquisition of new experience [41,58].

To support preferences that change over time, our framework needs to be
adapted in a number of ways, briefly listed below. First, depending on the
type of system, mechanisms for the dynamic elicitation of preferences should
be employed and the estimation of the preferences should be dynamically re-
placed or updated (see, for example, mechanisms to learn and update dynamic
preferences [9, 20]). Given the new preferences, the upper bound of the prob-
ability of violating a norm should be recomputed. System configurations that
are ineffective when certain behaviours are exhibited by the agents, may be
instead effective when different behaviors are exhibited, and vice-versa. When
the preferences of the agents are changed, therefore, the knowledge acquired
during the norm revision process about the effectiveness of the norms and
about the relationship between norm violation and system-level objectives
should be reconsidered and opportunely weighted. If the preferences of the
agents change very quickly and repeatedly over time, the use of a static Norm
Bayesian Network as the one described in Sec. 4 may be unfavourable and
the use of different more dynamic learning techniques, e.g., Dynamic Bayesian
Networks [44], may be necessary. Supporting partial and inaccurate prefer-
ences of agents, as briefly discussed in Sec. 7.1.2, could also help to cope with
preferences changing over time.
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7.1.2 Partial or Inaccurate Information

When looking for a new sanction set, we assumed not to have any knowledge
about the norm violations that will be actually exhibited when a never-tried-
before sanction set is used to enforce norms. To guide the norm revision, we
used the upper bound of a norm violation, a “safe” estimation of the actual
norm violation that will be exhibited by agents. To calculate such upper bound
we assumed an accurate (i.e., perfect) estimation of the preferences of the
agents concerning the aspects of the system we aim to regulate.

The advantage of having an accurate estimation of the preferences of the
agents is that we can define an upper bound for the probability of violating a
(well defined) norm that is not too coarse-grained (e.g., a trivial upper bound
is obviously a probability of 1, but this provides little information). As shown
in Sec. 6, such an estimation, combined with our revision strategies, allows us
to efficiently revise ineffective norms.

In some MASs, however, it is not possible to ensure a correct estimation
of the agents’ preferences [27]. Extending our work to support partial and/or
inaccurate information about the agents’ preferences requires an in-depth in-
vestigation. Based on the amount and type of information available, the accu-
racy and usefulness of the upper bound could significantly change. For partial
information (e.g., we know that an agent type prefers a state of affairs over
another, but we do not have information about all possible comparisons of
alternative states of affairs), it is still possible to estimate a possibly more
coarse-grained upper bound. For example, a trivial estimation could be ob-
tained by assuming that agents always prefer to violate the norms related to
aspects for which we do not have information. Less trivial estimations could be
obtained for example by approximating the complete preferences by expressing
the uncertain information as a belief function and leveraging the rationality
principles of the preferences [18]. The estimated upper bound could be then
refined over time by monitoring the behavior (i.e., the number of violations) of
the agents. In case of inaccurate information (e.g., some of the available infor-
mation about the preferences of agents is wrong, or the information available
is only obtained from statistical data about the behavior of typical agents, or
by learning the preferences from observed agents’ choices [27]), the estimation
of the probability of violating a norm should be treated more as a predic-
tion, rather than an upper bound. In this case, techniques such as Bayesian
Optimization [47], which attempts to find the minimum value of an unknown
function, could be used for selecting new sanction sets and to refine over time
the current estimation.

Nevertheless, a correct estimation of the preferences of the agents, as used
in this paper, does not imply perfect revision strategies. This is because the
trend of the upper bound may be different from the trend of the actual norm
violation, which is unknown a priori. The consequence of this can be illus-
trated on the example of Fig. 10, which reports a comparison between an
upper bound (red dashed line) of the probability of violating a norm N , and
N ’s exhibited violation (blue solid line), w.r.t. the sanction associated to N .
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Fig. 10: Comparison between the upper bound (red dashed line) of the prob-
ability of violating a norm N , and N ’s exhibited violation (blue solid line),
w.r.t. the sanction associated to N .

Suppose the current sanction for a norm N is 0, with an exhibited norm
violation P pNviolq “ 0.3, and the employed revision algorithm (e.g., Naive
synergy) suggests to reduce violations of N . Here, the only possible choice for
Algorithm 1, which relies on the estimation of the upper bound of violating
a norm, is to select sanction 4 as new sanction, since for all other sanctions
the upper bound is higher than the currently exhibited norm violation. Al-
though sanction 2 would also satisfy the suggestion, this will remain unknown
until such sanction is tried. If the optimal value of P pNviolq for the achieve-
ment of the system-level objectives is, for instance, around 0.1, our supervision
framework will need to perform additional revision steps to select sanction 2.

7.1.3 Complexity of Preferences Representation

In this paper, we introduced several types of preferences of rational agents as
lists of tuples ordered according to different rational criteria. In our discussion
and experiments, we considered complete preferences, i.e., we explicitly repre-
sented all possible alternative states of affairs. Such representation, however,
grows exponentially with the number of norms and budgets. In real world sce-
narios, doing so may be possible only in restricted domains where the number
of norms and the possible budgets of the agents is limited. In the general case,
however, representing the complete preferences of agents may be infeasible. In
this work we attempted to lay down well founded principles for understanding
the interplay between norms and the preferences of rational agents. For this
reason, we provided a formal definition of different types of rational agents
and we studied the properties of their preferences in relation with the chances
to violate the enforced norms. We consider this as a necessary starting point
for approaches to the runtime supervision of normative multiagent systems
involving rational agents. In Sec. 7.1.2, we outlined some guidelines for our
framework to support also partial (and inaccurate) preferences, which is one
obvious way to reduce the complexity of explicitly representing the complete
preferences. We leave this as future work, together with the integration of
automated preferences elicitation techniques within our framework.
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7.1.4 Norms Importance

Our strategies do not make any distinction between norms: revisions are ap-
plied to all the norms. This approach can be extended to support a selective
revision that takes into account of the importance of a certain norm for the
achievement of the objectives. Consider the derivative in Eq. 7, which describes
the impact of changes in P pNviolq on P pOtrueq in a context c. High values of
such derivatives imply that changes in the violations of norm N have bigger
impact on P pOtrueq. We call such derivative for a norm N the importance [54]
of norm N in context c. By computing the importance of all norms, we obtain
an ordering between norms w.r.t. the system-level objectives. The strategies
of Sec. 5.1 could be then applied to the k most important norms. Although
there is no guarantee that this approach will be more effective, it applies to
cases in which revising norms comes at a cost, and therefore minimizing the
number of revisions is important.

In addition to the importance of a norm, the observed data from MAS
execution allows to analyze the relationship between pairs of norms and to
detect weather some of the following properties hold.

Additive synergy between two norms. This property, based on the concept
of additive synergies in qualitative probabilistic networks [55], describes a sit-
uation where it is more likely to achieve the objectives when two norms are
either both obeyed or both violated. Formally, two norms N1 and N2 ex-
hibit an additive synergy when P pOtrue|N1obN2obq`P pOtrue|N1violN2violq ě
P pOtrue|N1obN2violq`P pOtrue|N1violN2obq. The norms that exhibit an addi-
tive synergy with some of the k most important ones, could also be considered
among the norms to be revised.

Product synergy between two norms. This property, based on the concept of
product synergies in qualitative probabilistic networks [56], expresses how the
value of one norm (e.g., N1 obeyed) influences the probability of the values of
another norm (e.g., N2 obeyed), upon knowing the value for a common child
(e.g., O true). For instance a negative product synergy says that observing
N1 obeyed makes less likely to observe N2 being obeyed. Formally, two norms
N1 and N2 exhibit a negative product synergy when P pOtrue|N1obN2obq ¨
P pOtrue|N1violN2violq ě pďqP pOtrue|N1obN2violq¨P pOtrue|N1violN2obq. This
property can be used to choose between two norms to revise: it is enough to
revise one of them to obtain an effect on the other.

7.1.5 Conflicting Norms

In this paper we assumed that the norms that are enforced are not conflicting,
i.e., obeying a norm does not prevent a priori agents to obey other norms.
This work focuses on regulative norms: norms enforced by an institution in
order to regulate the behaviour of the agents so to achieve desired system-
level properties. In this context, we believe that an institution should not
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enforce conflicting norms, and we rely on normative conflict resolution mech-
anisms [51]. Despite this, our framework currently supports conflicting norms
as long as the agents are aware of such conflicts, i.e., as long as the prefer-
ences of agents already take into account the conflicts. If two norms N1 and
N2 are conflicting, obeying N1 prevents the agents to obey N2 and vice-versa.
The preference of an agent that is aware of the conflict, determines whether
the agent prefers to obey N1 and pay a sanction for N2, or vice-versa. This
information is sufficient in our framework to estimate the upper bound for the
violation of the norms and revise the sanctions of the norms when needed.
Additionally, the information of the conflict could also be explicitly used to
improve the performance of our revision strategies, similarly to the use of the
product synergies described in Sec. 7.1.4: if obeying a norm agents cannot
obey another norm, then it is sufficient to revise one sanction to obtain an
effect also on the violation of the other norm.

7.1.6 Neighborhood Expansion

When a norm revision is triggered, our supervision mechanism searches for a
new sanction set that satisfies the suggestions provided by one of the heuristic
strategies. The neighborhood of a configuration, in the current hill climb-
ing implementation of the supervisor, is composed by exactly one sanction
set (configuration): the one that best satisfies the suggestions. An immediate
extension of this approach is to expand the neighborhood definition, by in-
cluding not only the best satisfying configuration, but also sub-optimal ones:
those configurations that “almost” satisfy the suggestions provided. This ex-
tension is easily supported by our supervisor, and it better fits the typical
usage of the hill climbing optimization technique. By expanding the neighbor-
hood, the number of revision steps required by the supervision mechanism to
find an optimal configuration could possibly further decrease. The challenge
in expanding the neighborhood is in appropriately defining almost-satisfying
suggestions. Different distance metrics and criteria could be considered in or-
der to do so. Adopting a neighborhood composed only by the best satisfying
configuration allowed us, however, to analyze the quality of the suggestions
provided by our algorithms without further overloading the experimentation
with additional parameters. Experiments with different neighborhood defini-
tions will be carried on in future work, considering also a bigger case study.

8 Conclusions

In a MAS, the complexity and unpredictability of the agent interactions and
of the environment must be taken into account to maximize the achievement
of the system-level objectives. When engineering such systems, the available
knowledge of these dynamics is only partial and incomplete. As a consequence,
MASs need to be supervised and regulated at runtime.
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In this paper, we proposed a supervision mechanism that relies on norms
with sanction to influence agent behavior and regulate a MAS [12]. We consid-
ered MASs where agents are rational, i.e., they always choose to achieve their
most preferred state of affairs. We characterized rational agents through their
preferences and we made use of an estimation of the agents’ preferences to
guide the supervision of the MAS. Our mechanism automatically revises the
sanctions that are employed to enforce the norms. To do so, it first interprets—
through a Bayesian Network—observed data from MAS execution in terms of
how well certain norms contribute to the achievement of the system-level ob-
jectives in different operating contexts. Then, it suggests how to revise the
sanctions based on the knowledge learned at runtime and on the agents’ pref-
erences. We proposed six heuristics for the suggestion of sanction revisions.

An evaluation of the strategies through a traffic regulation simulation shows
that our heuristics quickly identify optimal norm sets. We performed 12 dif-
ferent experiments on a ring-road traffic simulation, differing for the difficulty
of the problem: the number of optimal norm sets to be found among all the
possible ones ranged from 1.2% to 37.5%. All the proposed strategies explored
a small number of norm sets before finding an optimal one. In particular, the
strategy n-CPT sensitivity analysis, based on the sensitivity analysis technique
from probabilistic reasoning [15], on average never required to explore more
than 5% of all possible norm sets in order to find one of the optimal ones.

This work paves the way for numerous future directions, some of which
are sketched in Sec. 7.1. An in-depth evaluation of the scalability and com-
putational complexity of the presented approach is necessary to assess its
suitability for MASs with many norms and sanctions. Our simple language
for representing norms and agents’ preferences can be extended to consider
complex norm types beyond atomic propositions. Our agent population was
defined according to specific types. Future work should study the effect of
agents that deviate from the prototypical agent types. Finally, we are plan-
ning to extend our strategies to support, in addition to the revision of the
sanctions, also the revision of the norm proposition, and to synthesize new
norms.
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Appendix A Properties of Rational Agents’ Preferences

We report here a formal definition of the properties of the rational agents’
preferences described in Sec. 3.3 and Sec. 4.2.

Proposition 1. A basic preference Pref paq “ pA,ľq for an agent a P Ag is

– transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and
– complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. Consider a list AL “ pL1, ..., Lnq, a set B Ă N, a set BL Ď Bn and
an ordered set N of n norms. Let Pref paq “ pA,ľq be a basic preference and
x, y, z be alternatives in A.
(Transitivity) Assume that x ľ y and y ľ z. We prove the transitivity for
two cases: either the preference adheres to Def. 2a (case 1) or the preference
adheres to Def. 2b (case 2). For both cases, we show that x ľ z.

Case 1: we have that req budpxq ď req budpyq and req budpyq ď req budpzq.
By transitivity of ď, we have req budpxq ď req budpzq. Moreover, we have
@k, l P A,@B,B1 P BL : krBs ą lrBs ñ krB1s ą lrB1s for both x ľ y and
y ľ z, such that we have it also for x ľ z. Therefore, we conclude that x ľ z.

Case 2: we have either (i) proppxq “ proppyq “ proppzq or (ii) proppxq ‰
proppyq and either proppyq “ proppzq or proppyq ‰ proppzq. In case (i), we
have that req budpxq ď req budpyq and req budpyq ď req budpzq, and, by tran-
sitivity of ď, we have that the first condition of Def. 2b is also satisfied by
x and z. In case (ii), instead, we have that @B,B1 P BL : xrBs ľ yrB1s.
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If proppyq “ proppzq, we have that proppxq ‰ proppzq and @B,B1 P BL :
xrBs ľ zrB1s, so the second condition of Def. 2b is satisfied also by x and z.
If instead also proppyq ‰ proppzq, then we have that @B,B1 P BL : xrBs ľ

yrB1s and @B,B1 P BL : yrBs ľ zrB1s. Take three arbitrary alternatives
xrBs, yrB1s, zrB2s. We have that xrBs ľ yrB1s and yrB1s ľ zrB2s. Since the
choice of B,B1 and B2 was arbitrary, this holds for any possible budget list.
Therefore there is no B,B2 P BL such that alternative zrB2s is strictly pre-
ferred to an alternative xrBs, i.e., @B,B2 P BL : xrBs ľ zrB2s. Again the
second condition of Def. 2b is satisfied by x and z, such that x ľ z.
(Completeness) By definition of basic preference, every pair of alternatives
x, y P A has to satisfy either Def. 2a or Def. 2b. Notice that, given x and y, if
it is not the case that x ľ y, then we have that y ą x, therefore for every pair
of alternatives x, y P A either x ľ y or y ą x.

Proposition 2. A preference Pref paq “ pA,ľq for an agent a P Ag is

– transitive: @x, y, z P A if x ľ y and y ľ z then x ľ z; and
– complete: @x, y P A either x ľ y or y ľ x or x „ y.

Proof. Consider a list AL “ pL1, ..., Lnq, a set B Ă N, a set BL Ď Bn
and an ordered set N of n norms. Let A “ tpxp1, b1y, ..., xpn, bnyq | pi P
Li & pb1, . . . , bnq P BLu be the set of alternatives over which agents have
preferences. Let A1, ..., Ak be k disjoint subsets of A as per Def. 4, and x, y, z
be alternatives in A.
(Transitivity) Assume that x ľ y and y ľ z. If both x, y and z belong to the
same Ai for 1 ď i ď k then, by Prop.1, x ľ z. Otherwise, if x P Ai, y P Aj and
z P Al with i ă j ă l, then, by Def. 4, given i ă l, @v P Ai@w P Al : v ľ w,
therefore x ľ z.
(Completeness) By Prop.1, for every pair of alternatives x, y P Ai for 1 ď i ď k,
either x ľi y or y ľi x. Furthermore, by definition of preference, for all x P Aj
and y P Ai, we have x ľ y, for 1 ď j ă i ď k. We have therefore that for every
pair of alternatives x, y P A either x ľ y or y ľ x.

Proposition 3. Given an ordered set of norms N “ xN1, ..., Nny, and a set
of t agent types T , each type corresponding to a consistent preference (as per
Def. 5), increasing the sanction of a norm Nj in N without changing the
sanctions of other norms, does not increase the upper bound of the probability
P pNviolq, i.e., UBpNviol ,N q, for all N in N .

Proof. In this paper the agent’s preferences are not affected by the preferences
of other agents. Since the upper bound UBpNviol ,N q of the probability of
violating a norm N in the context of a norm set N is determined by the
number of agents with reason to violate N , as per Sec.3.2, if Prop.3 holds for
one agent type, then Prop.3 must hold also for all agent types. In the following
we consider, therefore, one agent type T . Furthermore we assume N composed
by at least two different norms (if only one norm is enforced, Prop.3 is trivially
satisfied).
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We prove Prop. 3 by contradiction.
Let M be the set of most preferred alternatives to act upon for agent type

T in the context of N “ xN1, . . . , Nj , . . . , Nny (as per Def. 6). Suppose we
increase the sanction of norm Nj “ ppj , sjq, obtaining N 1j “ ppj , s1j ą sjq. Let
now M 1 be the set of most preferred alternatives to act upon for agent type T
in the context of N 1 “ xN1, . . . , N

1
j , . . . , Nny.

Suppose, by contradiction, that UBpNviol ,N 1q ą UBpNviol ,N q for N “

pp, sq ‰ Nj , with p P Li and Li in AL. This means that, in the context of
N , T has no reason to violate N , while in the context of N 1, T has reason to
violate N (i.e., there exists no alternative c P M with violpc,Nq, while there
exists an alternative c1 PM 1 such that violpc1, Nq).

In order to modify the set of most preferred alternatives M when increasing
the sanction from sj to s1j , it must be the case that there exists at least one
alternative c PM s.t. violpc,Njq and sj ď bj ă s1j (with bj budget of the j-th
pair in c). If it is not the case increasing sj to s1j does not affect T ’s most
preferred alternatives and thus the proposition holds.

Consider the alternative from M with highest budget bj in the j-th pair.
Consider also an i ‰ j. Let awxrBs “ pxp1, b1y, ..., xw, bwy, ..., xx, bxy, ..., xpn, bnyq
be such alternative, with w P Lj , x P Li and sj ď bw ă s1j . Let bzyrB1s “
pxp11, b

1
1y, ..., xz, bzy, ..., xy, byy, ..., xp

1
n, b

1
nyq be an alternative c1 P M 1 such that

c1 RM and violpc1, Nq with z P Lj , y P Li and bz ě s1j . Notice that awxrBs is
compliant w.r.t. N and bzyrB1s is not compliant w.r.t. N , hence y ‰ x. Notice
also that awxrBs ą bzyrB1s. This is because by Def. 6 we have that, since
bzyrB1s RM , bzyrB1s ľ awxrBs iff bzyrB1s violates a norm Nk but the budget
is not enough to pay the sanction. Such Nk cannot be Nj , since bz ě s1j , and if
it’s another Nk then bzyrB1s cannot be also in M 1 because we only increased
the sanction of norm Nj . Therefore bzyrB1s must be strictly less preferred than
awxrBs. Furthermore, let c be a fully compliant alternative.10

We first consider the case of T “ pA,ľq basic preference as per Def. 2,
which can adhere to either Def. 2a or Def. 2b, then we uplift the proof to the
preference as per Def. 4.

Basic Preference.
(Case Def. 2a) Since awxrBs ą bzyrB1s, it holds that, due to Def. 2a,

crBs ą bzyrB1s for all alternatives c in A. This means that also a fully com-
pliant alternative crBs is such that crBs ą bzyrB1s. However, since s1j ą bw,
after revising sj into s1j , there is at least one alternative in M 1 (i.e., crBs)
that is strictly preferred to bzyrB1s, because already present in M , and that
is compliant to N . Therefore, bzyrB1s cannot be among the most preferred
alternatives to act upon, i.e., bzyrB1s RM 1 (contradiction).

(Case Def. 2b) Since awxrBs P M ą bzyrB1s P M 1, by Def. 2b it holds
that awxrB1s ľ awxrBs ą bzyrB1s ľ bzyrBs for all B1 P BL, i.e., awx ą bzy
regardless of the required budget, including the maximum possible budget in

10 We call a and b the list of propositional atoms that are different from w, x, y, z respec-
tively in awx and bzy. Also, we use notation crBs to indicate an alternative c with list of
budgets B, as described in Sec.3.2.
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B, maxpBq. Therefore, since awx is the alternative in M with highest budget
in the j-th pair, we have that s1j ą maxpBq, and no alternative that violates
N 1j can be chosen in the context of N 1. bzyrB1s is then compliant w.r.t. N 1j ,
hence z ‰ w. By Def. 2, T contains at least another alternative awyrB1s. If
awyrB1s ľ awxrB1s, then, according to Def. 2b, awyrB1s ľ awxrB1s for all
B1 P BL. But if this is the case, we have that sj ą maxpBq (otherwise at least
one alternative awy with bw “ maxpBq is in M and, in contradiction with out
hypothesis, T has reason to violate N since violpy,Nq). But if sj ą maxpBq
we have awxrBs R M (contradiction). If, instead, awxrB1s ą awyrB1s then
awx ą awy regardless of the budget. By consistency (Def 5), then, we also
have bzx ą bzy. We distinguish 2 cases: (a) awx ą bzx, this implies awx ą

bzx ą bzy, which contradicts bzyrB1s P M 1, since alternatives bzx (compliant
w.r.t N 1j) are strictly preferred to bzyrB1s; (b) bzx ą awx, this implies that,
since awxrBs PM and bzx is compliant w.r.t. both Lj and Li, then for every
other norm violated by bzx, the sanction associated to such norm is bigger
than maxpBq (otherwise awx RM and at least one alternative bzx PM). But
if this is the case, also bzyrB1s R M 1, since the only sanction that we change
is sj , and again we have a contradiction.

Preference.
In the case of preference T “ pA,ľq, the k basic preferences composing

A adhere to either Def. 2a or Def. 2b. The only case non considered above is
when awxrBs P Ai, bzyrB

1s P Ap and it does not exists an alternative c P Ap
s.t. awxrBs ą c, and it does not exists an alternative c1 P Aq s.t. c1 ą bzyrB1s,
for two basic preferences Ap, Aq composing A, with 1 ď p ă q ď k. Since all
alternatives in Ai have required budget lower or equal than maxpBiq, then,
due to Def. 2, among Ap there is at least one fully compliant alternative with
required budget ď maxpBiq. Therefore, even if sanction for Nj is increased to a
value s ą maxpBq, M 1 does not contain any alternative from Aq that was not
already in M , therefore bzyrB1s RM 1, and again we have a contradiction.

Appendix B Experiments Agent Types

We report here the full preferences of the four types of agents considered in
our experimentation, described in Sec. 6.

– BraveRich:

pxsp15, 0y, xdist0.5, 0yq ą pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ą pxsp15, 2y, xdist0.5, 2yq ą

pxsp8, 0y, xdist0.5, 0yq ą pxsp8, 0y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 0yq ą

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ą

pxsp8, 1y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 1yq ą pxsp8, 2y, xdist0.5, 2yq ą

pxsp3, 0y, xdist0.5, 0yq ą pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ą

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ą

pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ą pxsp3, 2y, xdist0.5, 2yq ą
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pxsp15, 0y, xdist1, 0yq ą pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ą pxsp15, 2y, xdist1, 2yq ą

pxsp8, 0y, xdist1, 0yq ą pxsp8, 0y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 0yq ą

pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ą

pxsp8, 1y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 1yq ą pxsp8, 2y, xdist1, 2yq ą

pxsp3, 0y, xdist1, 0yq ą pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ą

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ą

pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ą pxsp3, 2y, xdist1, 2yq ą

pxsp15, 0y, xdist2, 0yq ą pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ą pxsp15, 2y, xdist2, 2yq ą

pxsp8, 0y, xdist2, 0yq ą pxsp8, 0y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 0yq ą

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ą

pxsp8, 1y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 1yq ą pxsp8, 2y, xdist2, 2yq ą

pxsp3, 0y, xdist2, 0yq ą pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą pxsp3, 2y, xdist2, 2yq

– BraveMiddleClass:

pxsp15, 0y, xdist0.5, 0yq ą pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ą pxsp8, 0y, xdist0.5, 0yq ą pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ą pxsp8, 1y, xdist0.5, 1yq ą pxsp3, 0y, xdist0.5, 0yq ą

pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ą pxsp3, 1y, xdist0.5, 1yq ą

pxsp15, 0y, xdist1, 0yq ą pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ą

pxsp15, 1y, xdist1, 1yq ą pxsp8, 0y, xdist1, 0yq ą pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ą pxsp8, 1y, xdist1, 1yq ą pxsp3, 0y, xdist1, 0yq ą

pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ą pxsp3, 1y, xdist1, 1yq ą

pxsp15, 0y, xdist2, 0yq ą pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist2, 1yq ą pxsp8, 0y, xdist2, 0yq ą pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ą pxsp8, 1y, xdist2, 1yq ą pxsp3, 0y, xdist2, 0yq ą

pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą pxsp3, 1y, xdist2, 1yq ą

# from here ordered by budget
pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą

pxsp15, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 2yq ľ
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pxsp15, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 2yq ľ

pxsp15, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 2yq

– BravePoor :

pxsp15, 0y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 0yq ą

pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ľ pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ľ

pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ľ pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ľ

pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ľ pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ľ

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ľ

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ

pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ľ

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ľ

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ą

pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ

pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ

pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ą

pxsp15, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 2yq ľ

pxsp15, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 2yq ľ

pxsp15, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 2yq

– Cautious:

pxsp3, 0y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 0yq ľ pxsp15, 0y, xdist2, 0yq ľ

pxsp3, 0y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 0yq ľ pxsp15, 0y, xdist1, 0yq ľ

pxsp3, 0y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 0yq ľ pxsp15, 0y, xdist0.5, 0yq ą

pxsp3, 0y, xdist2, 1yq ľ pxsp3, 1y, xdist2, 0yq ľ pxsp8, 0y, xdist2, 1yq ľ

pxsp8, 1y, xdist2, 0yq ľ pxsp15, 0y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 0yq ľ

pxsp3, 0y, xdist1, 1yq ľ pxsp3, 1y, xdist1, 0yq ľ pxsp8, 0y, xdist1, 1yq ľ

pxsp8, 1y, xdist1, 0yq ľ pxsp15, 0y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 0yq ľ

pxsp3, 0y, xdist0.5, 1yq ľ pxsp3, 1y, xdist0.5, 0yq ľ pxsp8, 0y, xdist0.5, 1yq ľ

pxsp8, 1y, xdist0.5, 0yq ľ pxsp15, 0y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 0yq ą

pxsp3, 1y, xdist2, 1yq ľ pxsp3, 0y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 0yq ľ

pxsp8, 1y, xdist2, 1yq ľ pxsp8, 0y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 0yq ľ

pxsp15, 1y, xdist2, 1yq ľ pxsp15, 0y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 0yq ľ

pxsp3, 1y, xdist1, 1yq ľ pxsp3, 0y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 0yq ľ



62 Dell’Anna et al.

pxsp8, 1y, xdist1, 1yq ľ pxsp8, 0y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 0yq ľ

pxsp15, 1y, xdist1, 1yq ľ pxsp15, 0y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 0yq ľ

pxsp3, 1y, xdist0.5, 1yq ľ pxsp3, 0y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 0yq ľ

pxsp8, 1y, xdist0.5, 1yq ľ pxsp8, 0y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 0yq ľ

pxsp15, 1y, xdist0.5, 1yq ľ pxsp15, 0y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 0yq ą

pxsp3, 1y, xdist2, 2yq ľ pxsp3, 2y, xdist2, 1yq ľ pxsp8, 1y, xdist2, 2yq ľ

pxsp8, 2y, xdist2, 1yq ľ pxsp15, 1y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 1yq ľ

pxsp3, 1y, xdist1, 2yq ľ pxsp3, 2y, xdist1, 1yq ľ pxsp8, 1y, xdist1, 2yq ľ

pxsp8, 2y, xdist1, 1yq ľ pxsp15, 1y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 1yq ľ

pxsp3, 1y, xdist0.5, 2yq ľ pxsp3, 2y, xdist0.5, 1yq ľ pxsp8, 1y, xdist0.5, 2yq ľ

pxsp8, 2y, xdist0.5, 1yq ľ pxsp15, 1y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 1yq ą

pxsp3, 2y, xdist2, 2yq ľ pxsp8, 2y, xdist2, 2yq ľ pxsp15, 2y, xdist2, 2yq ľ

pxsp3, 2y, xdist1, 2yq ľ pxsp8, 2y, xdist1, 2yq ľ pxsp15, 2y, xdist1, 2yq ľ

pxsp3, 2y, xdist0.5, 2yq ľ pxsp8, 2y, xdist0.5, 2yq ľ pxsp15, 2y, xdist0.5, 2yq
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