
Noname manuscript No.
(will be inserted by the editor)

Extracting Conceptual Models from User Stories
with Visual Narrator

Garm Lucassen · Marcel Robeer · Fabiano Dalpiaz ·
Jan Martijn E.M. van der Werf · Sjaak Brinkkemper

Received: date / Accepted: date

Abstract Extracting conceptual models from natural
language requirements can help identify dependencies,
redundancies and conflicts between requirements via a
holistic and easy-to-understand view that is generated
from lengthy textual specifications. Unfortunately, ex-
isting approaches never gained traction in practice, be-
cause they either require substantial human involve-
ment, or they deliver too low accuracy. In this paper,
we propose an automated approach called Visual Narra-
tor based on natural language processing that extracts
conceptual models from user story requirements. We
choose this notation because of its popularity among
(agile) practitioners and its focus on the essential com-
ponents of a requirement: Who? What? Why? Coupled
with a careful selection and tuning of heuristics, we
show how Visual Narrator enables generating concep-
tual models from user stories with high accuracy. Visual
Narrator is part of the holistic Grimm method for user
story collaboration that ranges from elicitation to the
interactive visualization and analysis of requirements.

G. Lucassen (�) · M. Robeer · F. Dalpiaz · J.M.E.M. van der
Werf · S. Brinkkemper
Department of Information and Computing Sciences,
Utrecht University, Princetonplein 5, 3584 CC Utrecht,
The Netherlands
E-mail: g.lucassen@uu.nl

M. Robeer
E-mail: m.j.robeer@uu.nl

F. Dalpiaz
E-mail: f.dalpiaz@uu.nl

J.M.E.M. van der Werf
E-mail: j.m.e.m.vanderwerf@uu.nl

S. Brinkkemper
E-mail: s.brinkkemper@uu.nl

Keywords User stories · requirements engineering ·
conceptual modeling · NLP · case study · conceptual
model visualization

1 Introduction

The software industry commonly uses natural language
(NL) notations to express software requirements [47],
with NL being employed by over 60% of practition-
ers [32]. With the increasing adoption of agile develop-
ment practices such as Scrum, the semi-structured NL
notation of user stories is gaining momentum [31,38].

NL requirements are easy to understand because
they employ the very same language that we use to
communicate with others. Nevertheless, NL suffers from
several drawbacks too. The ambiguity of words and sen-
tences is a well-known and widely studied problem that
results in different interpretations of the same text. See
Berry et al. [9] for an authoritative review. In this pa-
per, we focus on another difficult problem: the iden-
tification and exploration of the key entities and rela-
tionships in a large set of requirements. Our work is
intended to support the detection of dependencies be-
tween requirements, redundancies, and inconsistencies.

Our baseline consists of the existing literature on
deriving conceptual models from NL requirements [20,
27, 28, 48]. However, we go beyond the limitations of
these inspiring techniques, which either (i) require hu-
man supervision to appropriately tag the entities and
relationships in the text [20, 49], or (ii) have low ac-
curacy, often due to the ambitious attempt to support
arbitrarily complex requirements statements [27,57].

Several studies have shown the added value of con-
ceptual modeling in software development [18,22]. Yet,
practitioners remain reluctant to adopt these methods.

2 Garm Lucassen et al.

In 2006, just 13% of the Australian Computer Soci-
ety’s 12,000 members indicated an interest in concep-
tual modeling [18]. A probable explanation is that the
benefits do not outweigh the burden of constructing and
maintaining a conceptual model manually.

Our goal is to overcome the limitations stated above
and to promote the adoption of conceptual models for
discussing about requirements. Our recipe includes three
main ingredients: (i) our chosen notation is user stories,
which are highly popular among practitioners [31, 38]
and that express concisely the essential elements of re-
quirements (Who? What? Why?); (ii) we minimize hu-
man supervision by proposing a fully automated soft-
ware tool; and (iii) we deliver value by focusing on high
accuracy, and we do so by carefully choosing heuristics
that help create a holistic view of the requirements, and
by ignoring those that contribute with too fine-grained
details (and are often less accurate).

In previous work [53], we have shown the feasibility
of this recipe by introducing the Visual Narrator tool
for extracting conceptual models from user stories via
NLP. Prior to that, we introduced a conceptual model
and an NLP-enabled tool for assisting users in writing
high-quality user stories [36] that obtained promising
results [37]. In this paper, we extend the work in [53]
by making two main contributions:

– We combine Visual Narrator with our other NLP
toolsAQUSA and Interactive Narrator into the com-
prehensive Grimm Method for conducting RE with
user stories while stimulating the discussion about
requirements among team members.

– We make technical improvements to Visual Nar-
rator’s algorithms and conduct a new quantitative
evaluation with four cases, two of which are com-
pletely new, resulting in improved accuracy.

The rest of the paper is structured as follows. Sec-
tion 2 introduces our GrimmMethod that combines our
research baseline. Section 3 reviews 23 heuristics from
the literature and selects 11 for use with user stories.
Section 4 presents the architecture, the main algorithm
of the tool and elaborates upon the made technical im-
provements. Section 5 reports on our quantitative eval-
uation on four data sets from the software industry.
We discuss related work in Section 6, while Section 7
presents conclusions and future directions.

2 Baseline: The Grimm Method

This paper is part of our ongoing research line on user
stories. The premise of our research is the high adoption
yet low quality of user stories in industry [32, 37, 38].

To improve this situation we focus on fostering deeper
understanding of user stories by creating tool-assisted
techniques that support practitioners in creating and
communicating about high quality user stories [36,39].

In Section 2.1 we present the conceptual anatomy
of user stories, while in Section 2.2 we introduce the
main elements of the Grimm method for conducting
requirements engineering (RE) based on user stories.

2.1 Conceptual anatomy of user stories

Based on previous work [15, 37, 66] we define a generic
representation of user stories—see the UML class dia-
gram in Fig. 1—that dissects a user story into its con-
stituents. User stories follow a standard predefined for-
mat [66] to capture three aspects of a requirement:

1. Who wants the functionality;
2. What functionality the end users or stakeholders

want the system to provide; and
3. Why the end users and stakeholders need this func-

tionality (optional).

User Story

Role Means Ends

Indicator Indicator

Subject

Main Verb

Main Object

1 1 0..1

1 1

1

1

1

Functional
Role

1

Free Form
0..1

Indicator
1

Free Form
1

Fig. 1: Conceptual anatomy of a user story

These three aspects are captured in a simple textual
template to form a running sentence. Although many
different templates exist, 70% of practitioners use the
Connextra template “As a 〈type of user〉, I want 〈some
goal〉 [so that 〈some reason〉]” [15].

We distinguish between the role, means and ends
parts of a user story. Each of these parts features an
indicator delimiting the three basic parts of a user story.
Jointly, the indicators are the template of a user story.

The role part encompasses the role indicator and the
functional role, describing a generalized type of person

Extracting Conceptual Models from User Stories with Visual Narrator 3

who interacts with the system. When no ambiguity ex-
ists, we use the term role to denote both the full part
and the functional role. The means consists of a subject,
a main object of the functionality, and a main verb de-
scribing the relationship between the subject and main
object. The main object can be represented explicitly
by the direct object or implicitly (e.g., ‘I want to log
in’ actually refers to logging in the system). The rest of
the means can assume too many variations in practice;
as such, we do not make any further distinction: words
are captured by the free form class.

For example, consider the user story “As a visitor,
I want to purchase a ticket so that I can attend the
conference”. Here, ‘visitor’ is the functional role, ‘I’ is
the subject, ‘a ticket’ the main object (a direct object),
and ‘purchase’ is the main verb linking subject and ob-
ject. There is no free form part for the means, and the
indicators are ‘As a’, ‘I want to’, and ‘so that’.

Although the ends has a similar structure to the
means in this example, this is not always the case [37]:
there are at least three main purposes for having the
ends: (1) clarifying the means, (2) referencing another
user story, or (3) introducing a qualitative requirement.
These functions can be combined for a single user story.
This semantic distinction between ends types is beyond
the scope of this paper and is left for future work.

2.2 The Grimm Method: Overview and Tooling

The Grimm method that we propose is our response to
the low quality of user stories in industry [32,37,38], de-
spite their popularity. Grimm features automated tools
that improve the situation [37,39]. Fig. 2 illustrates how
Grimm combines our tools in such a way to stimulate
discussion around user stories among the stakeholders;
this is one of the key objectives of user stories [15].

In the following paragraphs we elaborate on how
each tool contribute to this goal: (1) AQUSA detects
quality defects in human-made user stories, (2) Visual
Narrator extracts entities and relationships from a user
story collection to construct a conceptual model and (3)
Interactive Narrator generates specialized views of the
conceptual model that facilitate discussions for identi-
fying inconsistencies, dependencies and ambiguities.

2.2.1 AQUSA

Grimm begins when stakeholders formulate some user
stories. First, the AQUSA tool [37] validates their qual-
ity by automatically detecting defects using NL process-
ing techniques. Based on the Quality User Story Frame-
work, AQUSA focuses on those quality criteria can have
the potential to be detected with 100% recall. Although

Interactive Narrator

Stakeholders
User

stories

Visual Narrator

Overview
zoom filter

visualization

o

b

lx

yz

Reviewed
user

stories

AQUSA

Entities & relationships

o l
o x

b

l x -
b -

yz

yz

Fig. 2: The Grimm method for user-story-based RE

this Perfect Recall Condition is theoretically unattain-
able [55], AQUSA has proven capable of uncovering up
to 90% of easily preventable defects in user stories [37].
Then, a human requirements engineer analyzes the re-
ported errors and take corrective actions when needed.
This leads to a revised collection of reviewed user sto-
ries, which may involve rephrasing some stories, split-
ting them, or removing text that is not essential for a
user story such as references to design documents.

2.2.2 Visual Narrator

After preprocessing with AQUSA, the user stories can
be analyzed further. Visual Narrator applies heuristics
from the conceptual model field to extract the relevant
entities and their relationships. The result is a compre-
hensive conceptual model of the entire user story col-
lection. A key use case for this output is to check the
completeness and consistency of the entities and rela-
tionships the user stories talk about. For example, one
could identify isolated entities that are not connected to
others and viewpoints that haven’t been fully explored
yet such as a role connected to very few entities. The
remainder of this paper focuses on explaining Visual
Narrator’s inner workings and evaluating its accuracy.

Visual Narrator can generate output as a Prolog
program (to be used for further automated reasoning)
or an OWL 2 ontology. The latter can be used in read-
ily available ontology visualization tools such as Web-
VOWL [35] to graphically explore the conceptual model.

4 Garm Lucassen et al.

2.2.3 Interactive Narrator

Although a preliminary evaluation with practitioners
showed the potential of Visual Narrator, the extracted
models quickly become too large for human analysts [53].
This cognitive overload is a well-known problem for con-
ceptual model comprehensibility [4, 45]. As a response,
we created the so-called Interactive Narrator [39] that
generates specialized views of the conceptual model.
Adhering to Shneiderman’s Visual Information-Seeking
Mantra: “overview first, zoom and filter, then details-
on-demand” [58], we combine Visual Narrator’s output
with other data sources to create specialized views that
highlight different user story elements: (1) clustering
entities based on state-of-the-art semantic relatedness
algorithm Word2Vec [25] and (2) filtering on specific
user story details such as roles as well as project man-
agement data from issue trackers such as Jira1.

As highlighted by our qualitative study via inter-
views concerning Visual Narrator [53], key requirements
for this tool are to help identify and resolve inconsis-
tencies, dependencies [64], and redundancies between
the requirements. The literature shows that the con-
ceptual model can also play a role in reducing the am-
biguity of the requirements [50]. Interactive Narrator is
intended as a real-time, modern documentation tool for
agile development [54] that fosters and facilitates effec-
tive discussion among stakeholders about the software
system (to be) [15]. These possible uses are enabled by
the key advantage of graphical representations over NL
in holistically representing a given domain.

User
stories

Visual Narrator

Segmenting

Entities and
relationships

o l
o x

b

l x -
b -

yz

yz

Interactive Narrator
with filter

Issue tracker
o

b
yz

Filtered entities
and relationships

Fig. 3: Method for filtering a large conceptual model

While our initial prototype only supports semantic
clustering and zooming2, we have since built upon our
proposal and realized a filtering prototype available on

1https://www.atlassian.com/software/jira
2https://github.com/gglucass/Semantic-Similarity-

Prototype

GitHub3. Aside from generating views that highlight a
specific role or relationship, it supports filtering based
on agile artifacts. In agile software development, user
stories are frequently managed in an issue tracker such
as Jira. These types of tools allow the user to organize
a user story collection into meaningful chunks: epics,
themes and sprints. Interactive Narrator combines this
data with entities and relationships extracted using Vi-
sual Narrator as shown in Fig. 3. By providing the op-
tion to select any combination of these, the user can ex-
plore specific parts of the system (via epics and themes)
or focus on certain development periods (sprints). For
example: a user story can be part of the epic ‘Presenta-
tion’ in sprint 6 and simultaneously belong to the theme
‘Conference’ (see Fig. 4).

Fig. 4: Filter example showing entities and relationships
for user stories in sprint 6 belonging to theme Confer-
ence and epic Presentation

Each of Interactive Narrator’s views zoom in on
specific aspects of the system, so as to help end users
in identifying inconsistencies, dependencies and ambi-
guity between requirements [50, 63]. Stakeholders can
then use the views as input for collaboratively resolv-
ing issues by modifying existing user stories or identi-
fying new ones. This triggers a new method iteration in
Fig. 2, which repeats until all issues are resolved.

3 NLP Heuristics for User Story Analysis

To extract meaningful models from NL requirements,
researchers have been proposing heuristic rules for the
identification of entities and relationships whenever the
text matches certain patterns of the given language
(usually English). The purpose of this section is to se-
lect NLP heuristics that can be effectively employed to
derive conceptual models from user stories.

3https://github.com/Gionimo/VNwebapp

Extracting Conceptual Models from User Stories with Visual Narrator 5

Table 1: Classification of heuristics found in previous literature for conceptual model generation.

ID Rule head (if) Rule tail (then) Source(s)

Entities
E1 Noun Potential entity [27,43,60]
E2 Common noun Entity [11,28,48,60]
E3 Sentence subject Entity [57,60]
E4 Compound noun Take compound together to form entity [57,62]
E5 Gerund Entity [11,57]

Non-hierarchical Relationships
R1 Verb Potential relationship [43,57]
R2 Transitive verb Relationship [11,27,28,57]
R3 Verb (phrase) linking the subject and an

object
Relationship [27,57,60]

R4 Verb followed by preposition Relationship including preposition [48]
R5 Noun-noun compound Non-hierarchical relationship between prefix

and compound
[62]

Hierarchical Relationships
H1 Verb ‘to be’ Subjects are children of parent object [28,60]
H2 Head of noun-noun compound IS-A relationship between compound and head [62]

Attributes
A1 Adjective Attribute of noun phrase main [11,27,28,57,60]
A2 Adverb modifying a verb Relationship attribute [11,28]
A3 Possessive apostrophe Entity attribute [27,57]
A4 Genitive case Entity attribute [48,57,60]
A5 Verb ‘to have’ Entity attribute [2, 27,57,60]
A6 Specific indicators (e.g. ‘number’, ‘date’,

‘type’, . . .)
Entity attribute [48]

A7 Object of numeric/algebraic operation Entity attribute [11]

Cardinality
CA1 Singular noun (+ definite article) Exactly 1 [27,43,60]
CA2 Indefinite article Exactly 1 [27]
CA3 Part in the form “More than X” X..∗ [27, 48]
CA4 Indicators many, each, all, every, some, any ??..∗ [27, 48]

Our literature study on conceptual model genera-
tion identified the 23 heuristics shown in Table 1. This
overview groups the heuristics by the part of a con-
ceptual model they generate: entities, non-hierarchical
relationships, hierarchical relationships, attributes, and
cardinality. The table presents a simple version of each
rule as an implication from a condition (the head) to a
consequence (the tail). As an example, the first entity
heuristic should be read as E1: “If a word is a noun,
then it is a potential entity.”

The concise format and structure of user stories im-
plies that not all heuristics are equally relevant. For
example, user stories are not meant to include informa-
tion about attributes or cardinality [15], thereby mak-
ing those heuristics poorly relevant for our work. Other
heuristics are still ignored by or too difficult for state-of-

the-art part-of-speech taggers. For example, the main-
stream Penn Treebank tags do not distinguish between
gerunds and present participle. This exclusion process
results in 11 heuristics that are particularly relevant for
generating conceptual models from user stories. We ex-
plain and illustrate those 11 heuristics in the following.

3.1 Entities and non-hierarchical relationships

The most basic heuristics in the literature specify that
(1) nouns in a sentence denote an entity, and (2) verbs
indicate a potential relationship [10, 43]. This prompts
us to define the first two heuristics:

E1. “Every noun is a potential entity.”

6 Garm Lucassen et al.

R1. “Every verb is a potential relationship.”

Example A: Consider the user story “As a visitor,
I want to create a new account.” that comprises two
nouns (visitor and account), and one verb (create) when
we exclude role and means indicators. Rule E1 speci-
fies to create two entities visitor and account and rule R1
originates a relationship between these entities named
as the verb: create(visitor,account).

However, uncritically designating all nouns as enti-
ties would result in a conceptual model with superfluous
entities. Previous authors have employed the distinction
between proper nouns and common nouns to generalize
some of the identified entities as more abstract instan-
tiations [11, 28, 48, 60]. In general, common nouns are
entities and proper nouns are instances of these entities
that can be disregarded. Transitive verbs have a similar
function, referencing an object in the sentence. These
two phenomena lead to heuristics E2 and R2:

E2. “A common noun indicates an entity.”

R2. “A transitive verb indicates a relationship.”

To form relationships between entities, a sentence
should contain three components: the subject, the ob-
ject and the verb (phrase) linking the previous two.
The subject is certainly essential: in an active sentence,
for instance, the subject is the initiator—the so-called
agent—of the main action performed in the sentence.
Therefore, it has its own heuristics:

E3. “The subject of a sentence is an entity.”

R3. “The verb (phrase) linking the sentence subject and
an object forms the relationship between these two.”

Example B: Let us consider the story “As John the
manager, I want to design a website.” The sentence
comprises two common nouns, one proper noun and
one transitive verb. The person John—a proper noun—
can be generalized to his job description manager (E2).
Therefore, John is an instance of entity manager. Note
that this proper noun defines the entity John because
heuristic E3 says that, no matter its type, the subject
of a sentence leads to an entity. The transitive verb has
website as its direct object, and subject I which refers
to John (R2). As we do not know whether the abil-
ity to design a website applies to John or to managers
in general, we create entity John (E3) with relationship
design(John,website) (R3).

Concerning relationships, Omar et al. [48] distin-
guish between two types of verbs that indicate relation-
ships: general transitive verbs and verbs followed by a
preposition. These prepositions significantly change the

meaning of a relationship, and are therefore captured
in a separate heuristic:

R4. “If a verb is followed by a preposition, then the
preposition is included in the relationship name.”

Example C: For the user story “As a visitor, I want
to search by category”, we first identify the subject I
(E3). The sentence has no direct object. The preposi-
tion by (R4) changes the meaning of the relationship
from searching something to searching by something.
Therefore, we obtain the relationship search_by(I,category).
Since I refers to the functional role visitor, it results in
the relationship search_by(visitor,category).

3.2 Compound Nouns

Compound nouns describe an entity that includes mul-
tiple words. Most often these are sequences of nouns or
adjectives that precede a noun. To accurately construct
a conceptual model, we consider the whole compound
noun as the entity. Compound nouns are known to have
many inherent relationships, as there are many ways to
combine them [23]. However, extracting this requires
the synthesis of lexical, semantic and pragmatic infor-
mation, which is a complex task [33] that can hardly
lead to accurate results. Therefore, we limit ourselves
to a simple heuristic proposed by Vela and Declerck [62]
by considering only compound nouns of length two:

E4. “Noun compounds are combined to form an entity.”

R5. “In noun-noun compounds there is a non-hierarchical
relationship between the prefix and compound.”

Example D: The compound noun “event organizer”
leads to entity event_organizer (E4) and a “has” relation-
ship has_organizer(event,event_organizer) (R5).

3.3 Hierarchical Relationships

The ontology generation domain pays special attention
to generalization relationships, often referred to as IS-A
relationships [28,60]. Tenses of the verb to be typically
indicate a hierarchical relationship between two enti-
ties. The subject of the relationships on the left side of
the verb is a specialization of the parent object on the
right side of the verb to be:

H1. “The verb ‘to be’ indicates a hierarchical relation-
ship: the subject is taken as a specialization of the parent
object.”

In addition, Vela and Declerck [62] note that the
nouns in compounds have a generalization relationship.

Extracting Conceptual Models from User Stories with Visual Narrator 7

Compound noun entities are a form of a more abstract
entity, e.g., database_administrator is a type of administra-
tor. This is captured by the following heuristic:

H2. “If a noun-noun compound exists, the prefix of the
compound is the parent of the compound entity.”

Example E: Consider the user story “As a visitor, I can
change my account password.” Here, heuristics E4, E5
and H2 apply on noun compound account password. We
create compound entity account_password (E4), which
is a type of password: IS-A(account_password,password)
(H2). In addition, we create a ‘has’ relationship (R5)
has_password(account,account_password).

4 The Visual Narrator Tool

To automatically extract conceptual models from user
stories, we developed the Visual Narrator tool that im-
plements the 11 heuristics detailed in Sec. 3. Visual
Narrator takes a set of user stories as input and gen-
erates a conceptual model as output4. It is built in
Python and relies on the natural text processor spaCy
(http://spacy.io), a recent proposal in NLP that im-
plements algorithms needing minimal to no tuning and
with excellent performance. Additionally, phrasal verb
extraction is performed using Li’s algorithm [34].

Our tool only accepts user stories that use the indi-
cators as identified by Wautelet et al. [66]: As / As a(n)
for the role, I want (to) / I can / I am able / I would like
for the means, and so that for the ends part. Syntacti-
cally invalid user stories are not processed; in order to
sanitize these stories, analysts should pre-process them
using tools such as AQUSA as shown in Fig 2 [37].

In addition to generating the conceptual model, Vi-
sual Narrator can also generate separate models per
role to help analysts focus on an individual role. Fur-
thermore, analysts have the option to fine-tune the sen-
sitivity of the tool: (i) weights for each type of entity
(role, main object, compound, etc.) can be specified to
determine their relative importance, and (ii) a threshold
can be expressed to exclude from the generated mod-
els the least frequent entities by computing a ranking
based on frequency and entity weight.

4.1 Architecture

The conceptual architecture of Visual Narrator is shown
in Fig. 5 and depicts two main components: (1) the Pro-
cessor analyzes and parses user stories according to the
syntactic model for user stories (Fig. 1), while (2) the

4github.com/MarcelRobeer/VisualNarrator

VISUAL NARRATOR

«component»
UserStory

«component»
Miner

«component»
spaCy

«component»
Matrix

Unprocessed
User Story

User Story
object

WeightedToken

User Story
Set

Conceptual
Model

«component»
Constructor

«component»
Generator

«component»
Ontology

«component»
PatternFactory

«component»
PatternIdentifier

Ontology
object

Pattern

Model

«component»
WeightAttacher

Term-by-
US matrix

User Story
object

«component»
Processor

Fig. 5: Component Diagram of the Visual Narrator tool

Constructor creates the actual conceptual model starting
from the parsed stories.

First, the Processor analyzes the user story set. The
Miner component uses spaCy to parse each user story into
tokens, which hold the term itself, its part-of-speech tag
and relationships with other tokens. These tokens are
stored in the UserStory component and used to infer enti-
ties and relationships, and to determine token weights.

Next, theMatrix component removes stop words from
the collection of tokens and then attaches a weight to
each term, based on the frequency and on the weights
that were specified as input parameters. This step re-
sults in a Term-by-User-Story matrix containing a weight
for each term in the individual user stories. The sum-
mation of the weights for a given term is added to each
token, resulting in a set of WeightedTokens.

The Constructor then generates the conceptual model
by further processing the WeightedTokens. This starts in
the PatternIdentifier component, which applies the heuris-
tics to identify all patterns in the user story. The Pattern-
Factory component creates an internal conceptual Model
based on the patterns and stores it in the Ontology com-
ponent. Parts of the Ontology are linked to the user
story they originated from. Note that the PatternFactory
filters out all entities and relationships with a weight
below an user-specified threshold. Finally, two Genera-

8 Garm Lucassen et al.

tors output an ontological representation of the Ontology
object as an OWL 2 ontology and as a Prolog program.

4.2 Extraction Algorithm

To extract a conceptual model from user stories, Visual
Narrator implements the procedure DeriveCM pre-
sented in Algorithm 1. The procedure takes as input
a set user stories S as well as empty sets of entities E
and relationships R. The procedure then populates E
and R while parsing the user stories and applying the
heuristics defined in the previous sections.

The procedure starts in line 2 by defining the valid
indicators ind for splitting the user stories into role,
means, end. The cycle of lines 3–14 excludes syntacti-
cally incorrect user stories and creates the set of enti-
ties, including hierarchical ones. Every story (r,m, e) is
initially split using the indicators (line 4); if this opera-
tion fails, the story is discarded and the loop continues
to the next story (line 5). If a story is identified, it is
added to the set of syntactically valid user stories S’.

Every part of a syntactically valid user story (role,
means, end) is parsed (line 8). Then, the heuristics to
identify nouns (E2) and the subject of the sentence
(E3) are executed (lines 9–10); all identified nouns are
added to the set of entities E. Lines 11–14 process com-
pound nouns: the compound is added to E according
to heuristic E4, a specialization relationship is created
linking the sub-entity to the super-entity (H2), and a
non-hierarchical “has” relationship is created from the
prefix of the compound to the compound itself (R5).

Lines 15–29 iterate over the set S′ of syntactically
correct user stories with the intent of identifying rela-
tionships where entities in E are linked through associa-
tions created by processing the verbs in the user stories.
Lines 16–17 modify the means and the end by resolving
the pronoun reference: the subject of the means (the “I”
of the indicator “I want to”) is replaced by the subject
of the role r; a similar processing applies to ends whose
subject is “I” (e.g., “so that I. . . ”).

Both means and end are processed in lines 18–29.
Subject, main verb and direct object (R2) are identified
in lines 19, 21, 22, respectively. If no subject is iden-
tified, the algorithm continues to the next user story
element: we do not look for verbs when the subject is
unclear or nonexistent. If a direct object is not found,
an indirect object is searched for applying heuristics
R3 and R4 (lines 23–24). If no object is found, the cy-
cle continues to the next user story element (line 25).
If both subject and object are in E, a relationship with
the name of the verb is created between them (lines
26–27). In case only the subject is in E and we are an-
alyzing the means, a relationship is created from the

Algorithm 1 Pseudo-code of DeriveCM that builds
a conceptual model by mining stories and applying the
heuristics
1: procedure DeriveCM(Stories S, Entities E, Rels R)
2: ind = ({As a, . . . },{I want, I can, . . . },{So that})
3: for each s ∈ S do
4: (r,m,e) = split-by-indicators(s,ind)
5: if (r,m,e) == null then continue
6: else S′ = S′ ∪ (r,m, e)
7: for each p ∈ {r,m, e} do
8: pt = create-parse-tree(p)
9: E = E ∪ find-nouns(pt) [E2]
10: E = E ∪ subject-of(pt) [E3]
11: for each cn∈comp-nouns(pt) do
12: E = E ∪ {cn} [E4]
13: R = R ∪ IS-A(cn, prefix(cn)) [H2]
14: R = R ∪ has(prefix(cn), cn) [R5]
15: for each (r,m, e) ∈ S′ do
16: replace-subject(m,r)
17: if subject-of(e) == “I” then replace-subject(e,r)
18: for each p ∈ {m, e} do
19: subj = find-subject(p)
20: if subj == null then continue
21: v = find-main-verb(p)
22: obj = find-direct-object(p) [R2]
23: if obj == null then
24: obj = find-non-direct-object(p) [R3,R4]
25: if obj == null then continue
26: if subj, obj ∈ E then
27: R = R ∪ v(subj, obj)
28: else if subj ∈ E ∧ p == m then
29: R = R ∪ v(subj, system)

subject to a special entity called system. For example,
the story “As a user, I want to login” would result in
a relationship login(user,system). This rule applies only
to the means because this part refers to a desired func-
tionality, while the structure of the end is less rigid [37].

4.3 Tool Implementation and Improvements

The aforementioned architecture and algorithm based
on the heuristics of Sec. 3 capture the design and in-
tention of Visual Narrator. The actual implementation,
however, deviates from this in some aspects. It adapts
some of the heuristics and includes a number of tech-
niques to go beyond spaCy’s initial Part-of-Speech (PoS)
tagging in order to further optimize the results.

We modify E2 by including both common and proper
nouns, because proper nouns often refer to domain-
specific notions such as the name of a software prod-
uct or a library. To improve accuracy, we replace the
pronoun “I” with the noun they refer to when no am-
biguity exists (see Sec. 4.2). Effectively, this means Vi-
sual Narrator assigns every noun to either a new or an
existing entity. We did not implement H1 because the

Extracting Conceptual Models from User Stories with Visual Narrator 9

Fig. 6: Prepositional phrase parsing examples depicting assigning the pobj as main object improvement over [53]

correct application of the heuristics requires a deep un-
derstanding of the semantics of the “to be” relationship.

Furthermore, after separating a user story in its role,
means and ends parts, Visual Narrator reruns the PoS
tagger on each of these shorter parts. Because these
partial user story phrases are tagged with higher ac-
curacy we use these as the basis for further analysis.
Even if the PoS tagger fails due to missing word classes
in a fragmented or grammatically incorrect sentence,
Visual Narrator includes fall-back mechanisms to parse
the user story part: (i) when no noun is present in the
role part the entire text between the two indicators is
adopted as the role; (ii) if spaCy does not detect a verb
and/or a direct object in the means, Visual Narrator
presumes the word directly after the indicator is the
verb and assigns the first object in the sentence as the
direct object; and (iii) if no object is available at all, it
assigns System as a default object.

To improve accuracy over our previous work [53], we
carefully examined Visual Narrator’s output to identify
opportunities for improvement. This resulted in several
minor bug fixes and the introduction of three new fea-
tures. The first two features enhance Visual Narrator’s
detection of compound nouns, while the third changes
how we detect a user story’s main object:

– Amod - Previously, Visual Narrator relied solely on
spaCy’s “compound” dependency tag to identify two
nouns as a compound noun such as “environment
language”. SpaCy, however, excludes all compound
nouns that comprise a noun adjunct and a noun, in-
stead assigning these the adjectival modifier depen-
dency “amod”. By including compound nouns with
this dependency, Visual Narrator now correctly cre-
ates a compound for phrases such as “content types”
and “chicken soup”.

– Rightmost child - There are no agreed upon rules
concerning the sequence of a compound noun. Gen-
erally speaking, however, the primary noun is the
very last one with the nouns before it specializing
its meaning: a full moon or a bus stop. Visual Nar-
rator now favors the rightmost child for noun com-
pounds with more than 2 nouns. Parsing the phrase
“photo editing tools” now results in compound “edit-
ing tools” instead of “photo editing” as in [53].

– Pobj is main object - The direct object in a
user story is, in general, the object of the role’s
action. This changes, however, when a user story
has a pronoun, adverb or adjective as direct ob-
ject and includes a prepositional phrase. Grammat-
ically, an adverb or adjective cannot be the direct
object as they qualify something else. Yet, the data
does include this construction because POS tag-
gers parse single adverbs and adjectives as a “noun
phrase”, resulting in a missing valid “dobj”. When
a prepositional phrase is present, the main object
is found by following prep’s “pobj” dependency link
as shown in Fig.6. Where Visual Narrator would
previously extract learn(I,more) from the user story
‘I can learn more about the content’, the tool now
creates the arguably more meaningful relationship
learn_more_about(I,content). Note that this new fea-
ture results in extra information by including the
adverbs in the action, but simply replaces the pro-
noun with the functional role. We argue, however,
that linking the pobj is more informative than keep-
ing the pronoun’s context. Consider for example “I
register the site” versus “I register myself ” in the
case of a user story “I register myself with the site”.

These new features combined with an update to the
PoS tagger spaCy means Visual Narrator output is dif-
ferent from the output evaluated in [53]. In Sec. 5 we

10 Garm Lucassen et al.

report on a thorough new evaluation of Visual Narrator
to investigate whether and to what extent these changes
result in better recall and precision.

5 Quantitative Evaluation: Accuracy

We evaluate the feasibility of our approach and heuris-
tic accuracy by applying Visual Narrator to four data
sets from real-world projects: an interactive story telling
project by WebCompany, a year of developing CM-
SCompany’s flagship product, a public works project
for Michigan State and six months of development for
the open source archival software ArchivesSpace. In the
following we introduce each in more detail. The data
sets and their evaluation documents are available on-
line5. An overview of the data sets’ characteristics is
provided in Table 2. The first five rows show the totals
per data set: the number of stories nus , of words nword ,
of entities nent , of relationships nrel and of words in
the user story template ntmpl (e.g., ‘so that’ means two
words). The following three rows indicate averages per
user story: number of words x̄word , of entities x̄ent and
of relationships x̄rel . Finally, to measure the user story
writing style, the last three rows report on the concep-
tual density per data set by introducing three metrics
for a given set of user stories, i.e., entity density ρent ,
relationship density ρrel and concept density ρconc :

ρent =
nent

nword − ntmpl

ρrel =
nrel

nword − ntmpl

ρconc = ρent + ρrel

Looking at the averages, the table reveals that CM-
SCompany’s user stories are long and entity-rich and
that despite being shorter, ArchivesSpace’s user stories
contain more concepts than Michigan State’s. Among
these four sets the average number of words does not
correlate with average entities and average relation-
ships. Looking at the density metrics, we can see how
the ArchivesSpace’ set is much more conceptually rich
than Michigan State’s and CMSCompany’s; 85% as op-
posed to 58%. Nevertheless, we could find no correlation
between density and the number of words. A detailed
study of these metrics and their effect on quality in RE
is left for future work.

In Sec. 5.1, we determine the accuracy of our imple-
mentation of the heuristics (Algorithm 1) by comparing
the results of Visual Narrator to a manual labeling of
the data sets done by the authors. The outcome of this

5http://www.staff.science.uu.nl/~lucas001/vn_
user_stories.zip

Table 2: Lexical characteristics of the evaluation cases.

Web CMS Michigan Archives
Totals per data set

nus 79 32 17 49
nword 1549 954 414 783
nent 400 272 91 294
nrel 247 168 42 156
nind 645 207 185 261

Averages per user story
x̄word 19.6 29.8 24.4 16.0
x̄ent 5.1 8.5 5.4 6.0
x̄rel 3.1 5.3 2.5 3.2

Conceptual density per data set
ρent 0.44 0.36 0.40 0.56
ρrel 0.27 0.22 0.18 0.29
ρconc 0.71 0.58 0.58 0.85

comparison is encouraging, we obtain accuracies as high
as 97% recall and 98% precision with a lower bound
of 88% recall and 92% precision. A small but impor-
tant accuracy improvement over our earlier work [53].
In Sec. 5.2, we discuss the limitations of our approach
in terms of important entities and relationships that are
not recognized due to NLP limitations, our algorithm,
or unanticipatable structure of the user stories.

5.1 Heuristics Accuracy

We evaluate the accuracy of our implemented heuristics
by comparing the output of Visual Narrator to manu-
ally created golden data sets. In comparison to our eval-
uation in [53], we have taken a considerably more rigor-
ous approach to constructing these golden data sets in
order to ensure their validity: (1) two independent tag-
gers applied Algorithm 1 to the user stories to identify
all the entities and their relationships, (2) one tagger
compared the two resulting documents and records all
discrepancies between them, (3) together, the two tag-
gers resolved the discrepancies by discussing the correct
application of Algorithm 1. In our case, there was high
agreement between the two taggers, with only 5% to at
most 9% discrepancies depending on the data set.

To evaluate our implementation of Algorithm 1 we
compare the golden data sets to the analysis by Visual
Narrator.

Our evaluation has two objectives:

– To determine quantitatively to what extent the em-
ployed NLP toolkit fails to deliver accurate results
due to the difficulty of correctly tagging and parsing
sentences.

– To analyze qualitatively the limitations of our imple-
mentation in terms of important information that is
not recognized correctly.

Extracting Conceptual Models from User Stories with Visual Narrator 11

We determine true positive, false positive and false
negative user story elements (entities and relationships).
As is customary in Information Retrieval reporting, we
do not report on true negatives because they shouldn’t
affect how good or bad the outcome is of your algo-
rithm [41]:

– True positive: the element is identified both by the
tool and by the manual analysis.

– False positive: the element is identified by the tool
but not by the manual analysis.

– False negative: the element is not identified by the
tool while it was listed in the manual analysis.

Note that multiple heuristics may apply to a given
text chunk. For example, three heuristics (see Table 1)
apply to a compound: C4, R5, and H2. Thus, if the
tool misses a compound, it actually generates three false
negatives. On the other hand, if the tool and the man-
ual analysis match, three true positives are generated.
Moreover, the incorrect identification of a relationship
(e.g., see(visitor,content) instead of see(visitor,display_name))
results in both a false positive (the incorrect relation-
ship) and a false negative (the missed out relationship).

We report on accuracy in two ways: (i) on indi-
vidual user stories, by aggregating the number of true
positives, false negatives and false positives for entities
and relationships; and (ii) on the obtained conceptual
model, by comparing the manually created one against
the generated one.

Making this distinction is important when an un-
recognized entity appears many times: consider, for ex-
ample, a compound noun (C4, H2, R5) that appears in
20 different user stories in a data set. This would imply
20 false negative entities and 40 false negative relation-
ships (20 times H2 and 20 times R5), while the resulting
conceptual model—the actual artifact that we propose
for the stakeholders to use in their discussion—would
only miss one entity and two relationships.

Tables 3–10 report the results using the same for-
mat. They have three macro-columns: entities, relation-
ships, and overall (entities+relationships). Each macro-
column has three sub-columns to denote true positives
(TP), false positives (FP) and false negatives (FN).
The rows indicate the number of instances (Inst.), i.e.,
the number of identified and missed out entities and re-
lationships; the percentile splitting of TP, FP, and FN
(%), the precision (PRC), the recall (RCL) and the
weighted harmonic mean of PRC and RCL using the
F1 score [41] (F1).

5.1.1 WebCompany

This data set comes from a young company in the Nether-
lands that creates tailor-made web business applica-

tions. The team consists of nine employees who itera-
tively develop applications in bi-weekly Scrum sprints.
WebCompany supplied 98 user stories covering the de-
velopment of an entire web application focused on in-
teractive story telling that was created in 2014.

79 of these 98 user stories were syntactically cor-
rect, usable and relevant for conceptual model gener-
ation [37]. Part of the generated conceptual model is
shown in Fig. 7.

Administrator User
find, remove, manage, ban

Media Element

add, edit, remove

Media
has_element Media

Gallery

has_gallery

Element Gallery

IS-A IS-A

update, delete, add

Content List

search, manage,
see

Account

manage

Fig. 7: Partial conceptual model for WebCompany’s
Administrator role based on Visual Narrator output

Table 3: Accuracy of individual user story analysis for
the WebCompany case (N=79).

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 393 10 7 230 10 17 618 20 24
% 95.9 2.4 1.7 89.3 4.0 6.7 93.4 3.0 3.6
PRC 97.5 95.7 96.9
RCL 98.3 93.0 96.3
F1 97.9 94.4 96.6

Table 4: Accuracy of the generated conceptual model
for the WebCompany case.

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 102 5 5 149 10 15 251 15 20
% 91.1 4.5 4.5 85.6 5.7 8.6 87.8 5.2 7.0
PRC 95.3 93.7 94.4
RCL 95.3 90.9 92.6
F1 95.3 92.3 93.5

The accuracy results of the individual user story
analysis shown in Table 3 are positive. The overall pre-
cision and recall are 96.9% and 96.3%. The accuracy
is higher for entities than for relationships; for enti-
ties, precision and recall are approximately 98%, while
for relationships precision is 95.7% and recall is 93.0%.
This happens because correctly identifying a relation-

12 Garm Lucassen et al.

ship depends on correctly identifying both the relation-
ship name as well as its source and target entities.

The accuracy of the generated conceptual model
(Table 4) is also very good, although a bit less accurate
than that of the individual user story analysis: over-
all precision is 94.4% and recall is 92.6%. Interestingly,
despite the large overlap in individual errors, the drop
in recall and precision are comparable for both entities
and relationships (95.3% for both vs. 93.7% precision
and 90.9% recall).

Overall, Visual Narrator’s output for the WebCom-
pany data set is highly accurate. A closer examination
of the false positives and false negatives reveals that
there are two main causes for errors: (i) human error
such as using its instead of it’s confuses spaCy, and (ii)
ambiguous or complex phrases that the NLP tooling
fails to correctly identify, such as up to date erroneously
resulting in a entity date.

5.1.2 CMSCompany

A data set from a mid-sized software company located
in the Netherlands with 120 employees and 150 cus-
tomers. They supplied 34 user stories for a complex
CMS product for large enterprises; those stories repre-
sent a snapshot of approximately a year of development
in 2011. A partial conceptual model is shown in Fig. 8.
The data set of CMSCompany included 32 syntactically
correct user stories. Despite the smaller size, this data
set is particularly interesting due to the use of lengthy
user stories with non-trivial sentence structuring such
as: “As an editor, I want to search on media item titles
and terms in the Media Repository in a case insensitive
way, so the number of media item results are increased,
and I find relevant media items more efficiently”.

Table 5 presents the results of the analysis of in-
dividual stories. The accuracy for the CMSCompany
data set is still high, despite the high complexity of
its user stories in terms of average words, entities and
relationships per user story as shown in Tab. 2. The
overall precision and recall for individual user stories
are 95.1% and 91.8%. This lower accuracy is mostly
due to the 86.3% recall for relationships and in smaller
part its 92.4% precision. Although the identification of
entities also shows lower accuracy (precision 96.6% and
recall 95.2%) the decrease is small considering the high
user story complexity.

Table 6 reports on the accuracy of the generated
conceptual model. The less accurate parsing is also re-
flected here with a less accurate conceptual model: over-
all precision and recall are 93.1% and 88.9%. While ac-
curacy for entities is nearly identical to in the individual

Fig. 8: Partial conceptual model for CMSCompany’s
Marketeer role in the conceptual model visualization
tool Interactive Narrator

Table 5: Accuracy of individual user story analysis for
the CMSCompany case (N=32).

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 259 9 13 145 12 23 404 21 36
% 92.2 3.2 4.6 80.6 6.7 12.8 87.6 4.6 7.8
PRC 96.6 92.4 95.1
RCL 95.2 86.3 91.8
F1 95.9 89.2 93.4

Table 6: Accuracy of the generated conceptual model
for the CMSCompany case.

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 129 5 7 112 13 23 241 18 30
% 91.5 3.5 5.0 75.7 8.8 15.5 83.4 6.2 10.4
PRC 96.3 89.6 93.1
RCL 94.9 83.0 88.9
F1 95.6 86.2 90.9

analysis case, the precision and recall for relationships
drop to 89.6% and 83.0%.

The main determinant of this performance is the
existence of hard-to-process compound nouns that in-
clude an ambiguous term such as “content” or ‘̀flash”
which could also be an adjective or verb. In the worst
case, Visual Narrator identifies the wrong compound
(C4) and its relationships (H2, R5). As stated earlier, a
missed out compound also implies missing out the re-
lationships when the compound is a direct object (R2)
or a non-direct object (R3 or R4).

Extracting Conceptual Models from User Stories with Visual Narrator 13

5.1.3 Michigan State

These user stories are extracted from a State of Michi-
gan Enterprise Procurement document. This publicly
available document created by the Department of Tech-
nology, Management, and Budget in Lansing, Michigan
describes a Statement of Work concerning the scope
and definition of the professional services to be pro-
vided by a contracting company: Accela, Inc. For our
analysis, we extracted 27 user stories for a complaints
system. Although these user stories are concise and ob-
viously written by English native speakers, Visual Nar-
rator could only parse 17 out of 27 user stories, of which
Fig 9 shows a partial model. The non-parsed user stories
contain minor well-formedness issues that could quickly
be resolved by preprocessing with AQUSA [37].

Fig. 9: Partial conceptual model for Michigan State’s
Complaint concept in Interactive Narrator

Despite the small magnitude, the data set is inter-
esting for its extreme simplicity and consistent struc-
ture. Although its 5.4 average entities per user story
is actually slightly higher than WebCompany ’s 5.1, the
accuracy results shown in Table 7 for individual sto-
ries push the boundary of what Visual Narrator can
achieve: 97% precision and 98.5% recall. One reason for
this high accuracy is the inclusion of just 6 compound
nouns. In total, there are four errors. Two wrongly iden-
tified entities lead to a 98% precision and 100% recall
for entities, and two mistakenly generated relationships
result in identical precision and recall of 95.2%. Due to
the low number of errors, the accuracy of the generated
conceptual model is nearly identical: 96.6% precision
and recall overall, 95.8% precision and 97.9% recall for
entities and 97.4% precision and 95.0% recall for rela-

Table 7: Accuracy of individual user story analysis for
the Michigan State case (N=17).

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 91 2 0 40 2 2 131 4 2
% 97.8 2.2 0 90.0 4.5 4.5 95.6 2.9 1.5
PRC 97.8 95.2 97.0
RCL 100.0 95.2 98.5
F1 98.9 95.2 97.8

Table 8: Accuracy of the generated conceptual model
for the Michigan State case.

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 46 2 1 38 1 2 84 3 3
% 93.9 4.1 2.0 92.7 2.4 4.9 93.3 3.3 3.3
PRC 95.8 97.4 96.6
RCL 97.9 95.0 96.6
F1 96.8 96.2 96.6

tionships (Table 8). Of all the errors in the conceptual
model, 4 errors are the consequence of mistakes by the
NLP tooling, while the remaining 2 emerge because Vi-
sual Narrator does not include personal pronouns in the
conceptual model even when they are the subject (with
the exception of “I”, which is replaced by the referential
element as per line 17 in Algorithm 1).

5.1.4 ArchivesSpace

ArchivesSpace6 is an open source software product cre-
ated by archivists such as those of the British Royal
Archive. The user stories of this project are available
online7. For our analysis, we extracted 56 user stories
that span development from the start of the project
in August 28, 2012 until February 28, 2013. Out of
those stories, 49 are syntactically correct. The user sto-
ries in this collection are quite peculiar: all of them
omit the so that part of the Connextra template [15],
but many user stories contain unnecessarily capitalized
words, compound nouns and idiosyncratic phrases such
as “. . . edit for (Accession | Resources) before . . . ”.

This non-standard approach has a substantial im-
pact on the analysis and the conceptual model (Fig. 10).
Despite omitting the so that, Visual Narrator’s accu-
racy is lowest on the ArchivesSpace data set. For in-
dividual user stories, the overall precision is 92.3% and
recall is 88.4%. For relationships in particular, precision
is 87.6% and recall is 81.4%. Likewise, accuracy in iden-
tifying entities is the lowest out of all four sets: 94.8%
precision and 92.2% recall.

6http://www.archivesspace.org/
7archivesspace.atlassian.net

14 Garm Lucassen et al.

Fig. 10: Partial conceptual model for ArchivesSpace’s
Agent concept using the publicly available visualization
tool WebVOWL

Table 9: Accuracy of individual user story analysis for
the ArchivesSpace case (N=49).

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 271 15 23 127 18 29 398 33 52
% 87.7 4.9 7.4 73.0 10.3 16.7 82.4 6.8 10.8
PRC 94.8 87.6 92.3
RCL 92.2 81.4 88.4
F1 93.4 84.4 90.4

Table 10: Accuracy of the generated conceptual model
for the ArchivesSpace case.

Entities Relationships Overall
TP FP FN TP FP FN TP FP FN

Inst. 137 6 10 116 17 23 253 23 33
% 89.5 3.9 6.5 74.4 10.9 14.7 81.9 7.4 10.7
PRC 95.8 87.2 91.7
RCL 93.2 83.5 88.5
F1 94.5 85.3 90.0

Table 10 reports on the accuracy of the conceptual
model. Again, the accuracy results are the worst out of
all four data sets: overall precision is 91.7% and recall
is 88.5%. Remarkably, however, the precision of entities
and recall of both entities and relationships in the con-
ceptual model is superior to individual user story anal-
ysis. The reason is that some relationships were missed
out in some user stories, but recognized correctly in
others, depending on the complexity of the sentence.

The majority of incorrectly identified relationships
and entities are due to the (non-)identification of com-
pound nouns. For example: the text chunk “(Accession
| Resources)” resulted in the creation of the compound
noun | Resources, while Visual Narrator did not identify
a compound noun for the jargon term Subject heading.

50%

63%

75%

88%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

96.3%96.9%
93%95.7%

98.3%97.5%
92.9%91%

87.2%
83.7%

96.3%95.6%

Old New

Fig. 11: Web individual PRC and RCL change

50%

62.5%

75%

87.5%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

92.6%94.4%
90.9%

93.7%95.3%95.3%

88.2%

96.2%

86.0%

94.8%
91.4%

98.2%
Old New

Fig. 12: Web set PRC and RCL change

50%

63%

75%

88%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

91.8%
95.1%

86.3%
92.4%

95.2%96.6%

86%
81.4%

75.3%

67.2%

91.9%90%

Old New

Fig. 13: CMS individual PRC and RCL change

50%

62.5%

75%

87.5%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

88.9%
93.1%

83.0%

89.6%
94.9%96.3%

85.3%
79.3%80.3%

71.7%

90.5%
87.9%

Old New

Fig. 14: CMS set PRC and RCL change

5.2 Analysis and Discussion

The changes described in Sec. 4.3 generally improved
the accuracy of Visual Narrator over our previous re-
sults [53] as highlighted by the bar charts in Figs. 11,

Extracting Conceptual Models from User Stories with Visual Narrator 15

12, 13, 14. For the WebCompany case, the average pre-
cision for entities and relationships actually dropped
by 1%. In exchange, however, recall improved substan-
tially. Entity recall for individual analysis and gener-
ated model improved by 2% and 4%, while relationship
recall improved by 6% and 5%. The improvement for
CMSCompany is even better, although there were more
opportunities for improvement. On average, precision
improved by 1.5%. Entity recall improved by 3% and
4%, whereas relationship recall improved by 11% and
3%. WebCompany’s overall accuracy raised from 97.9%
precision and 92.9% recall to 96.9% and 96.3% for in-
dividual analysis, and from 96.2% precision and 88.2%
recall to 94.4% and 92.6% for the generated model. CM-
SCompany’s overall accuracy changed from 93.8% pre-
cision and 86.0% recall to 96.1% and 91.8% for individ-
ual analysis, and from 91.9% precision and 85.3% recall
to 93.1% and 88.9% for the generated model.

The simple and semi-structured template of user
stories makes them an ideal candidate for NLP anal-
ysis as demonstrated by the high accuracy of Visual
Narrator. Problems arise when, as in the second and
fourth case study, people deviate from the basic format
and formulate complex requirements that go beyond
the purpose of the user story template. This had a sub-
stantial impact for the ArchivesSpace set in particular,
with overall accuracies of just 92% recall and 88.5% pre-
cision for both individual user story analysis and gener-
ated conceptual model. Conversely, the Michigan State
user stories are parsed with the highest accuracy thanks
to their simplicity and consistency. In the following, we
present some key challenges concerning NLP processing
for user stories that our evaluation revealed.

Compounds are difficult to identify correctly.
Their proper identification depends on their position
within a sentence. For example, the spaCy tagger would
find the compound events_section in the sentence “I keep
the events section”, but it would miss it in the sentence
“I can keep the events section”. This is due to the fact
that modern NLP taggers are statistical and try to find
the most probable tagging in many situations [40]. Fur-
thermore, we do not yet support compounds that con-
sist of three or more nouns, such as “profile page statis-
tics”. Note, however, that these are often grammatically
complex structures with ambiguous semantics: in the
example, do “page statistics” refer to the “profile”, or
do “statistics” refer to the “profile page”? While a part
of speech tagger is capable of recognizing “profile page
statistics” as a three-word compound, it is unable to
disambiguate it semantically.

Verbs may be difficult to link to the proper
object. For example, for CMSCompany, our implemen-
tation identifies the relationship avoid(marketeer,redirects)

in the sentence “Marketeer can avoid duplicate content
easily without having to set permanent redirects”, in-
stead of avoid(marketeer,content). Although spaCy is ca-
pable of correctly parsing this sentence, this error oc-
curs due to our simplification of the sentence which
replaces “Marketeer can” with “I”. In this case spaCy
incorrectly tags the ambiguous adjective “duplicate” as
a verb and the equally ambiguous noun “content” as an
adjective. In future work, we will re-evaluate whether a
different approach to simplification is necessary.

Furthermore, while we focused on linking the sub-
ject to the main object of the sentence through the verb,
there are also sentences requiring higher arity rela-
tionships. For instance, the sentence “The user can add
new elements to the gallery” would require the creation
of an n-ary association add-something-to tying together
the entities user, element and gallery.

Conjunctions are also a challenge. For the time
being, we decided to overlook them, guided by our con-
ceptual model of user stories that calls for their atomic-
ity and minimality [37]. However, our second and fourth
case study include multiple examples of stories that vi-
olate these principles, using the conjunction “and” (but
also logics-inspired operators such as “|”) to specify mul-
tiple requirements or expressing conditions using the
conjunction “when”.

Additionally, we currently exclude adjectives and
adverbs from the conceptual models. This pre-
vents us from identifying specializations and quality re-
quirements. For example, “external link” is an adjective-
noun compound that could induce an attribute of link
or a specialization. Also, adverbs that qualify verbs
(“easily”, “intuitively”, “faster”) could lead to more accu-
rate relationships that indicate the qualities for the sys-
tem to comply with. Future work should study whether
or not tagging these additional components would pro-
duce more useful conceptual models: the gained com-
pleteness may result in less accuracy, and the trade-off
has to be investigated empirically in industrial practice.

Finally, the human element is difficult to plan
for. A substantial portion of the errors in the Web-
Company case are caused by grammatical errors or mis-
spellings. The lower accuracy of the ArchivesSpace case
can partly be attributed to the usage of the logical OR
sign |. Preprocessing these types of issues would fur-
ther improve the results of Visual Narrator. An inter-
esting direction is to provide interactive support to the
stakeholders expressing these requirements, e.g., via a
grammar checker or the AQUSA tool [37].

16 Garm Lucassen et al.

5.3 Threats to validity

External validity threats reduce the generalizability of
the results. To obtain even more reliable accuracy re-
sults requires substantially larger evaluations. More-
over, our data sets were obtained through convenience
sampling from industry contacts and online searches. It
is unclear whether these data sets are representative of
user stories in general.

Construct validity threats are about the degree to
which a test measures what it intends to measure. Mea-
suring accuracy requires understanding the correct in-
terpretation of a sentence; it is well known that NL is
inherently ambiguous. To reduce the risks, we limited
ourselves to the more objective criterion of compliance
with the algorithm, instead of the general case of rec-
ognizing all entities and relationships. In fact, we argue
that comparing Visual Narrator output with theoreti-
cally ideal output is a more objective evaluation than
comparing with a human’s subjective recognition of all
relevant concepts and relationships in a text.

Nevertheless, by taking this approach we are unable
to empirically evaluate the validity of the algorithm it-
self. While our precision and recall for detecting what
we want to detect is high, we do not know whether
what we want to detect is actually useful. In earlier
work, we conducted a preliminary evaluation with two
practitioners who indicated Visual Narrator output is
usable and promising [53]. However, a larger scale eval-
uation with practitioners is necessary to determine the
subjective validity of the algorithm.

Internal validity threats focus on how the experi-
ments were conducted. The golden data sets were tagged
and applied manually. Although multiple human tag-
gers were used, there is still a low risk that human error
caused incorrect analysis.

6 Related Literature

6.1 User stories

The growing popularity of agile development practices
such as Scrum leads to a continuously increasing adop-
tion of user stories [31, 64]. Although research interest
is slowly growing, the currently available literature is
limited. Arguably, the first literature on incorporating
stories into requirements is within the scenario-based
requirements engineering domain in the 1990s [29]. The
earliest research work on user stories proposes their use
as the first artifact for describing interactions contain-
ing a role, an action and some object [30]. For imple-
mentation purposes the authors propose transforming

user stories into a more formal notation such as use
cases.

The majority of research in the field attempts to
create methods and tools that support or improve user
story practice. In 2002, Rees proposed to replace the
pen-and-card approach for writing user stories with a
software tool called DotStories [52]. Today’s popular ag-
ile project management tools such as Jira and Trello are
all built around the skeuomorph index card metaphor
introduced with DotStories.

As of 2015 academic interest in user stories is re-
newed, leading to a variety of research initiatives. Re-
cent studies predominantly investigate how to connect
and/or integrate user stories with different modeling
techniques. For example, Trkman et al. propose a method
to associate user stories with business process modeling
activities [61]. They find that undergraduate students
better understand user stories’ execution order and in-
tegration dependencies when business process models
are available.

A variety of studies propose new ways to employ or
work with user stories to achieve some goal. For exam-
ple, Barbosa et al. demonstrate how to identify seman-
tically duplicate user stories by applying well known
similarity measures. They test their approach with 3
case sets, automatically identifying up to 92% of dupli-
cates [7]. Observing that practitioners encounter diffi-
culties incorporating user experience concerns into user
stories, Choma et al. propose extending the Connex-
tra template [13]. Although their case company fully
adopted this new template, more research is necessary
to evaluate the added benefit.

Other studies investigate some aspect of user stories
in practice. Dimitrijevic et al. qualitatively compare five
agile software tools in terms of their functionality, sup-
port for basic agile RE entities and practices, and user
satisfaction. They conclude that basic functionality is
well supported by tools, but that user role modeling
and personas are not supported at all [19]. Soares et al.
investigate the link between user stories and documen-
tation debt, finding that the low level of detail of user
stories is the primary reason for difficulties [59].

Finally, two authors take a different approach to
ours for transforming a user story set into a visual rep-
resentation. Wautelet et al. propose a method that re-
sults in Use-Case Diagrams [65]. The authors demon-
strate a CASE-tool that automates their approach and
allows end-users to iteratively improve and extend the
output. In another project [67], these same authors pro-
pose a method for mapping user stories to agent-based
software architecture using i* [17, 68]. Similarly, the
US2StarTool [42] derives skeletons of i* goal models
from user stories.

Extracting Conceptual Models from User Stories with Visual Narrator 17

Whereas our approach employs NLP to extract all
entities and relationships from a user story, these tools
strictly map the entire action text to a task and the
benefit to a goal. While employing the i* and use case
notations enable these models to be more expressive
than ours, they also require a human to actually con-
struct a model by assembling the extracted parts. Vi-
sual Narrator’s fully automatic model generation allows
all stakeholders to quickly get an understanding of the
software system’s functionalities and partake in rele-
vant and meaningful discussion around the user stories.
A key activity according to Cohn [15].

Aside from facilitation communication, Visual Nar-
rator output functions as the foundation for employing
user stories to achieve other goals. For example, com-
bining the extracted entities with semantic similarity
calculations enables grouping user stories in clusters as
we do in [39] or identifying semantically duplicate user
stories similar to the work in [7]. Another application we
are currently exploring is reconciling Visual Narrator
output with class diagrams by automatically connect-
ing an extracted entity to the source code it executes
via automated acceptance tests.

6.2 NLP for RE: Extracting models from requirements

Historically the final frontier of RE has been applying
natural language processing. Nowadays, the ambitious
objective of full automation is considered unattainable
in the foreseeable future [8,55]. Therefore, RE research
has applied NLP to specific use cases. Berry et al. [8]
categorizes the fundamental approach of all NLP RE
tools into four types:

1. Finding defects and deviations in natural language
(NL) requirements document;

2. Generating models from NL requirements descrip-
tions;

3. Inferring trace links between NL requirements de-
scriptions;

4. Identifying the key abstractions from NL documents

In [37] we provide an overview of contemporary tools
in NLP for RE and introduce the AQUSA tool for auto-
matically detecting quality defects in user stories. Fur-
thermore, observing that no objective comparison of
NLP for RE tools is available, Arendse and Lucassen
apply three tools of type I on 112 requirements [5]. They
find that none of the available tools is clearly superior
and call for a next generation tool framework that can
dynamically incorporate the new state of the art.

The objective of type II tools, generating models
from NL requirements descriptions is a long-standing

research topic that is relevant in several domains. Al-
ready in 1989, Saeki et al. described a method where
verbs and nouns are automatically extracted from NL,
in order for a requirements engineer to derive a formal
specification of the system [56]. One of the first tools
that implement this idea is NL-OOPS [44]. The authors
demonstrate the capabilities of NL-OOPS by generat-
ing a data model from a 250 word text. Since then,
many tools have been proposed with diverse approaches
and results. CM-builder [27] managed to extract can-
didate attributes, entities and relationships from a 220
word text with 73% recall and 66% precision. CIRCE [3]
is a sophisticated tool that generates many different
models including ERD, UML and DFD from NL re-
quirements. Experimental application in three case stud-
ies indicated improvements in software model analysis
and changing requirements. All these tools, however, re-
quire either human intervention or artificially restricted
NL in the form of a controlled vocabulary and gram-
mar in order to generate complete and consistent mod-
els, thereby hampering adoption in practice. Note that
while the Connextra user story template required by
our solution imposes a three-part structure, each part
is completely free form.

Recognizing this gap in a structured literature re-
view, Yue et al. called for future approaches that fully
automatically generate complete, consistent and correct
UML models [69]. Their latest tool, aToucan, generates
reasonably high quality class diagrams from use cases in
comparison to diagrams created by experts, managing
to consistently outperform fourth-year software engi-
neering students in terms of completeness, consistency
and redundancy. However, its output constitutes ini-
tial models that require human intervention in the form
of refinements done by experts [70]. Similarly, the tool
presented in [57] outperforms novice human modelers
in generating conceptual models from natural language
requirements. Overall, their recall for identifying enti-
ties ranges from 85% to 100% depending on the case,
while their precision is between 81% and 94%. The per-
formance for relationships between entities, however, is
less impressive: recall is in between 50% and 60%, while
precision is in the 80%-100% range. Arora et al. [6] take
a similar approach to the work we present in this pa-
per, combining existing state-of-the-art heuristics for
domain model extraction. They apply their approach
to four industrial requirements documents. According
to expert evaluation the extraction rules in their imple-
mentation achieve correctness between 74% and 100%.

Although [42, 65, 67] discussed in Sec. 6.1 all intro-
duce methods and tools for extracting models from user
stories, these works lack empirical evaluations. Because
of this, comparing their accuracy with the current state

18 Garm Lucassen et al.

of the art or our work is impossible. Nevertheless, the
proliferation of work on extracting models from user
stories using NLP signifies the relevance and timeli-
ness of our work. This paper is the first to empiri-
cally demonstrate user stories’ potential in automat-
ically extracting conceptual models and not without
merit. The results of our evaluation show that our ap-
proach achieves state-of-the-art recall and precision for
both identifying entities as well as relationships. Note
that it is difficult to compare the recall and precision of
our approach with aforementioned studies, because of
the different evaluation methods each employs.

6.3 Visualization of Conceptual Models and
Requirements

To take advantage of human’s visual processing power
conceptual models are typically presented as a visual-
ization. Typically, new visual notation initiatives first
concern is formally specifying the information types to
support. As the popularity of a graphical notation in-
creases, the community around it proposes innovative
features to augment or simplify the notation. Unfortu-
nately, aesthetic aspects such as attractive design and
user experience are mostly disregarded when it comes
to conceptual models [26]. Indeed, the most popular
conceptual modeling paradigms such as ER, UML and
BPMN primarily distinguish elements using basic sym-
bols and shapes [24].

There is a large body of work to inspire innova-
tive visualization. For example, in 2009 Moody pro-
posed the Physics of Notations [45] that provides some
guidelines for creating cognitively effective notations
and for pinpointing flaws in existing notations such as
i* [46] and use case maps [24]. Moody’s guidelines in-
spired further research that is relevant for our work. For
example, Dudáš, Zamazal and Svátek identified seven-
teen relevant features implemented by ontology visual-
ization tools [21] such as incremental exploration and
fisheye distortion. Their notation, however, is mostly
disregarded. Aside from this, other domains such as in-
teraction design and geography are considerably more
sophisticated in effectively visualizing information [12].

A systematic review of the requirements engineering
visualization (REV) literature by Abad et al. [1] con-
cludes that more investigation and research is needed
to support knowledge visualization for RE. Similarly,
Cooper et al. [16] review the papers that appeared in
the REV workshops between 2006 and 2008. They dis-
tinguish between different types of visualizations: tab-
ular, relational, sequential, hierarchical, and metaphor-
ical/quantitative. The most relevant categories for our
work are the relational (i.e., graphs) and hierarchical

(decomposing a system into its parts). While many re-
lational approaches exist, very few focus on hierarchal
aspects, which are the key in our work.

Indeed, there are few contemporary tools available
that focus on visualizing requirements as models. To
date, ReCVisu+ [51] is the most effective tool for re-
quirements visualization. ReCVisu+ supports different
visual exploration tasks and employs clustering tech-
niques and semantic similarity to reduce complexity.
While Visual Narrator only visualizes one type of en-
tity and directed relationship, our work on Interactive
Narrator continuously explores innovative techniques to
convey additional meaning. For this we take inspiration
from existing tools, yet are careful to consider their ap-
propriateness in our context. While RecVisu+ deter-
mines similarity based on the frequency of co-occurrence
in system documentation, the Interactive Narrator we
propose in [39] relies on corpus-based techniques that
do not require the existence of additional system docu-
mentation. Moreover, we do not consider only concepts
but also relationships, necessitating a different yet sim-
ilar approach.

7 Conclusion and Future Work

Natural language is the most adopted notation for re-
quirements [32]. Unfortunately, text does not readily
provide a holistic view of the involved entities and re-
lationships. Aligned with other authors [20, 27, 28, 48],
we argue that extracting a conceptual model can signif-
icantly ease the communication between stakeholders.

We have proposed the Grimm method that com-
bines three NLP-enabled tools to support conducting
user story based RE. Specifically, the main artifact de-
scribed in this paper is the Visual Narrator tool, which
automatically generates a conceptual model from a col-
lection of agile requirements expressed as user stories.
To do so, the tool orchestrates a selection of state-of-
the-art NL processing heuristics and relies on an off-
the-shelf NLP toolkit, spaCy.

Our evaluation on four case studies showed positive
accuracy results, especially when user stories are con-
cise statements of the problem to solve [15] and not
lengthy descriptions of the solution. Overall, our ap-
proach achieves similar recall and precision to state-of-
the-art tools such as [57], for both entities and relation-
ships. This happens thanks to the careful selection and
implementation of heuristics that can deliver accurate
results combined with our application of these heurstics
based on careful dissection of user stories’ syntactical
properties.

Improvements can be made to the user story pro-
cessing algorithms. In particular, we want to develop

Extracting Conceptual Models from User Stories with Visual Narrator 19

support for elaborate entities such as complex com-
pounds, n-ary relationships, conjunctions, adjectives,
adverbs and references such as ‘this’ and ‘that’. While
doing so, however, we aim to make considerate decisions
based on maximizing accuracy.

Furthermore, we intend to create a fully functional
version of the Interactive Narrator that integrates with
the AQUSA Tool and Visual Narrator. We will then
empirically evaluate the Grimm method introduced in
Section 2.2 with practitioners.

Another direction is to study the relationship be-
tween user story metrics such as average number of en-
tities, relationships and their density (see Table 2) and
quality of the created specifications and software. To do
so, we need to collect data about how the user stories
were used in the later stages of software engineering.

Finally, we want to investigate automated techniques
to connect the generated conceptual models to software
architecture views. One promising direction is taking
advantage of automated acceptance tests, which typi-
cally include a hand-coded cross-reference to the user
story they test [14]. For interpreted languages, execut-
ing these test cases produces a runtime trace related to
the user story. By extracting the accessed data entities,
classes and methods it is possible to dynamically con-
struct a class diagram that includes only those classes
contained within the runtime trace.

References

1. Abad, Z.S.H., Ruhe, G., Noaeen, M.: Requirements En-
gineering Visualization: A Systematic Literature Review.
In: Proceedings of the International Requirements Engi-
neering Conference (RE). IEEE (2016)

2. Aguado De Cea, G., Gómez-Pérez, A., Montiel-Ponsoda,
E., Suárez-Figueroa, M.C.: Natural Language-Based Ap-
proach for Helping in the Reuse of Ontology Design Pat-
terns. In: Proceedings of the International Conference
on Knowledge Engineering and Knowledge Management
(EKAW), LNCS, vol. 5268, pp. 32–47. Springer (2008)

3. Ambriola, V., Gervasi, V.: On the Systematic Analysis
of Natural Language Requirements with CIRCE. Auto-
mated Software Engineering 13(1), 107–167 (2006)

4. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A
Framework for Empirical Evaluation of Model Compre-
hensibility. In: Proceedings of the Workshop on Mod-
elling in Software Engineering (MiSE) (2007)

5. Arendse, B., Lucassen, G.: Toward Tool Mashups: Com-
paring and Combining NLP RE Tools. In: Proceedings
of the International Workshop on Artificial Intelligence
for Requirements Engineering (AIRE) (2016)

6. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Ex-
tracting Domain Models from Natural-language Require-
ments: Approach and Industrial Evaluation. In: Proceed-
ings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems
(MODELS), pp. 250–260. ACM (2016)

7. Barbosa, R., Silva, A.E.A., Moraes, R.: Use of Similarity
Measure to Suggest the Existence of Duplicate User Sto-
ries in the Scrum Process. In: Proceedings of the Annual

IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshop (DSN-W), pp. 2–5 (2016)

8. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.: The Case
for Dumb Requirements Engineering Tools. In: Proceed-
ings of International Conference on Requirements En-
gineering: Foundation for Software Quality (REFSQ),
LNCS, vol. 7195, pp. 211–217. Springer (2012)

9. Berry, D.M., Kamsties, E., Krieger, M.M.: From Contract
Drafting to Software Specification: Linguistic Sources of
Ambiguity. Tech. rep., School of Computer Science, Uni-
versity of Waterloo, ON, Canada (2001)

10. Btoush, E.S., Hammad, M.M.: Generating ER Diagrams
from Requirement Specifications Based on Natural Lan-
guage Processing. International Journal of Database The-
ory and Application 8(2), 61–70 (2015)

11. Chen, P.P.: Entity-Relationship Diagrams and English
Sentence Structure. In: Proceedings of the International
Conference on the Entity-Relationship Approach to Sys-
tems Analysis and Design, pp. 13–14 (1983)

12. Chi, E.H.H.: A Taxonomy of Visualization Techniques
using the Data State Reference Model. In: Proceedings
of the IEEE Information Visualization Conference (Info-
Vis), pp. 69–75. IEEE (2000)

13. Choma, J., Zaina, L.A.M., Beraldo, D.: UserX Story: In-
corporating UX Aspects into User Stories Elaboration,
pp. 131–140. Springer (2016)

14. Cleland-Huang, J.: Traceability in Agile Projects. In:
J. Cleland-Huang, O. Gotel, A. Zisman (eds.) Software
and Systems Traceability, pp. 265–275. Springer (2012)

15. Cohn, M.: User Stories Applied: for Agile Software De-
velopment. Addison Wesley Professional, Redwood City,
CA, USA (2004)

16. Cooper Jr, J.R., Lee, S.W., Gandhi, R.A., Gotel, O.: Re-
quirements Engineering Visualization: A Survey on the
State-of-the-art. In: Proceedings of the International
Workshop on Requirements Engineering Visualization
(REV), pp. 46–55 (2009)

17. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language
guide. CoRR abs/1605.07767 (2016). URL http://
arxiv.org/abs/1605.07767

18. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo,
S.: How do Practitioners Use Conceptual Modeling in
Practice? Data & Knowledge Engineering 58(3), 358–
380 (2006)

19. Dimitrijević, S., Jovanović, J., Devedžić, V.: A Compara-
tive Study of Software Tools for User Story Management.
Information and Software Technology 57, 352–368 (2015)

20. Du, S., Metzler, D.P.: An Automated Multi-component
Approach to Extracting Entity Relationships from
Database Requirement Specification Documents. In: Pro-
ceedings of the International Conference on Applications
of Natural Language to Information Systems (NLDB),
LNCS, vol. 3999, pp. 1–11. Springer (2006)

21. Dudáš, M., Zamazal, O., Svátek, V.: Roadmapping and
navigating in the ontology visualization landscape. In:
K. Janowicz, S. Schlobach, P. Lambrix, E. Hyvönen (eds.)
Proceedings of the International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW),
pp. 137–152. Springer International Publishing (2014)

22. Fettke, P.: How Conceptual Modeling is Used. Communi-
cations of the Association for Information Systems 25(1),
43 (2009)

23. Gagné, C.L.: Lexical and Relational Influences on the
Processing of Novel Compounds. Brain and Language
81(1–3), 723–735 (2002)

20 Garm Lucassen et al.

24. Genon, N., Heymans, P., Amyot, D.: Analysing the Cog-
nitive Effectiveness of the BPMN 2.0 Visual Notation. In:
Proceedings of the ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE), pp. 377–
396. Springer (2010)

25. Goldberg, Y., Levy, O.: word2vec Explained: Deriv-
ing Mikolov et al.’s Negative-sampling Word-embedding
Method. arXiv preprint arXiv:1402.3722 (2014)

26. Gulden, J., Reijers, H.A.: Toward Advanced Visualiza-
tion Techniques for Conceptual Modeling. In: Proceed-
ings of the Forum at the International Conference on
Advanced Information Systems Engineering (CAiSE),
pp. 33–40 (2015). URL http://ceur-ws.org/Vol-1367/
#paper-05

27. Harmain, H., Gaizauskas, R.: CM-Builder: A Natural
Language-Based CASE Tool for Object-Oriented Anal-
ysis. Automated Software Engineering 10(2), 157–181
(2003)

28. Hartmann, S., Link, S.: English Sentence Structures and
EER Modeling. In: Proceedings of the Asia-Pacific Con-
ference on Conceptual Modelling (APCCM), pp. 27–35
(2007)

29. Holbrook III, H.: A scenario-based methodology for con-
ducting requirements elicitation. SIGSOFT Software En-
gineering Notes 15(1), 95–104 (1990)

30. Imaz, M., Benyon, C.: How Stories Capture Interactions.
In: Proceedings of the IFIP International Conference on
Human-Computer Interaction (INTERACT), pp. 321–
328 (1999)

31. Kassab, M.: The Changing Landscape of Requirements
Engineering Practices over the Past Decade. In: Pro-
ceedings of the International Workshop on Empirical Re-
quirements Engineering (EmpiRE), pp. 1–8. IEEE (2015)

32. Kassab, M., Neill, C., Laplante, P.: State of Practice in
Requirements Engineering: Contemporary Data. Innova-
tions in Systems and Software Engineering 10(4), 235–
241 (2014)

33. Lapata, M.: The Disambiguation of Nominalizations.
Computational Linguistics 28(3), 357–388 (2002)

34. Li, W., Zhang, X., Niu, C., Jiang, Y., Srihari, R.: An
Expert Lexicon Approach to Identifying English Phrasal
Verbs. In: Proceedings of the Meeting of the Association
for Computational Linguistics (ACL), pp. 513–520 (2003)

35. Lohmann, S., Link, V., Marbach, E., Negru, S.: Web-
VOWL: Web-based Visualization of Ontologies. In: Pro-
ceedings of EKAW Satellite Events, LNAI, vol. 8982, pp.
154–158. Springer (2015)

36. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M.,
Brinkkemper, S.: Forging High-Quality User Stories: To-
wards a Discipline for Agile Requirements. In: Proceed-
ings of the International Requirements Engineering Con-
ference (RE), pp. 126–135. IEEE (2015)

37. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M.,
Brinkkemper, S.: Improving Agile Requirements: The
Quality User Story Framework and Tool. Requirements
Engineering 21(3), 383–403 (2016)

38. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M.,
Brinkkemper, S.: The Use and Effectiveness of User Sto-
ries in Practice. In: Proceedings of the International
Working Conference on Requirements Engineering: Foun-
dation for Software Quality (REFSQ), LNCS, vol. 9619,
pp. 205–222. Springer (2016)

39. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M.,
Brinkkemper, S.: Visualizing User Story Requirements
at Multiple Granularity Levels via Semantic Related-
ness, pp. 463–478. Springer International Publishing,
Cham (2016). DOI 10.1007/978-3-319-46397-1_35. URL
http://dx.doi.org/10.1007/978-3-319-46397-1_35

40. Manning, C.D.: Part-of-Speech Tagging from 97% to
100%: Is It Time for Some Linguistics?, pp. 171–189.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

41. Manning, C.D., Raghavan, P., Schütze, H., et al.: Intro-
duction to information retrieval. Cambridge university
press Cambridge (2008)

42. Mesquita, R., Jaqueira, A., Agra, C., Lucena, M., Alen-
car, F.: US2StarTool: Generating i* Models from User
Stories. In: Proceedings of the International i* Workshop
(iStar) (2015)

43. Meziane, F., Vadera, S.: Obtaining E-R Diagrams Semi-
Automatically from Natural Language Specifications. In:
Proceedings of the International Conference on Enter-
prise Information Systems (ICEIS), pp. 638–642 (2004)

44. Mich, L.: NL-OOPS: From Natural Language to Object
Oriented Requirements Using the Natural Language Pro-
cessing System LOLITA. Natural Language Engineering
2, 161–187 (1996)

45. Moody, D.: The “Physics” of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Software
Engineering. IEEE Transactions on Software Engineering
35(6), 756–779 (2009)

46. Moody, D.L., Heymans, P., Matulevičius, R.: Visual Syn-
tax does Matter: Improving the Cognitive Effectiveness of
the i* Visual Notation. Requirements Engineering 15(2),
141–175 (2010)

47. Neill, C.J., Laplante, P.A.: Requirements Engineering:
The State of the Practice. IEEE Software 20(6), 40
(2003)

48. Omar, N., Hanna, J., McKevitt, P.: Heuristics-Based
Entity-Relationship Modelling through Natural Lan-
guage Processing. In: Proceedings of the Irish Conference
on Artificial Intelligence & Cognitive Science (AICS), pp.
302–313 (2004)

49. Overmyer, S.P., Lavoie, B., Rambow, O.: Conceptual
Modeling through Linguistic Analysis Using LIDA. In:
Proceedings of the International Conference on Software
Engineering (ICSE), pp. 401–410. IEEE Computer Soci-
ety (2001)

50. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.:
Reducing Ambiguities in Requirements Specifications
Via Automatically Created Object-Oriented Models. In:
Innovations for Requirement Analysis. From Stakehold-
ers’ Needs to Formal Designs, LNCS, vol. 5320, pp. 103–
124. Springer (2008)

51. Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.:
Visual Requirements Analytics: A Framework and Case
Study. Requirements Engineering 19(3), 257–279 (2014)

52. Rees, M.: A Feasible User Story Tool for Agile Software
Development? In: Proceedings of the Asia-Pacific Soft-
ware Engineering Conference (APSEC), pp. 22–30 (2002)

53. Robeer, M., Lucassen, G., Van der Werf, J., Dalpiaz, F.,
Brinkkemper, S.: Automated Extraction of Conceptual
Models from User Stories via NLP. In: Proceedings of
the International Requirements Engineering Conference
(RE). IEEE (2016)

54. Rubin, E., Rubin, H.: Supporting Agile Software Devel-
opment through Active Documentation. Requirements
Engineering 16(2), 117–132 (2010)

55. Ryan, K.: The Role of Natural Language in Requirements
Engineering. In: Proceedings of the IEEE International
Symposium on Requirements Engineering (ISRE), pp.
240–242. IEEE (1993)

56. Saeki, M., Horai, H., Enomoto, H.: Software Develop-
ment Process from Natural Language Specification. In:
Proceedings of the International Conference on Software
Engineering (ICSE), pp. 64–73. ACM (1989)

Extracting Conceptual Models from User Stories with Visual Narrator 21

57. Sagar, V.B.R.V., Abirami, S.: Conceptual Modeling of
Natural Language Functional Requirements. Journal of
Systems and Software 88, 25–41 (2014)

58. Shneiderman, B.: The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. In: Pro-
ceedings of the IEEE Symposium on Visual Languages
(VL), pp. 336–343 (1996)

59. Soares, H.F., Alves, N.S.R., Mendes, T.S., Mendonça, M.,
Spínola, R.O.: Investigating the Link between User Sto-
ries and Documentation Debt on Software Projects. In:
Proceedings of the International Conference on Informa-
tion Technology - New Generations (ITNG), pp. 385–390
(2015)

60. Tjoa, A.M., Berger, L.: Transformation of Requirement
Specifications Expressed in Natural Language into an
EER Model. In: Proceedings of the International Confer-
ence on Conceptual Modeling (ER), LNCS, vol. 823, pp.
206–217. Springer (1993)

61. Trkman, M., Mendling, J., Krisper, M.: Using Business
Process Models to better Understand the Dependencies
among User Stories. Information and Software Technol-
ogy 71, 58 – 76 (2016)

62. Vela, M., Declerck, T.: A Methodology for Ontology
Learning: Deriving Ontology Schema Components from
Unstructured Text. In: Proceedings of the Workshop on
Semantic Authoring, Annotation and Knowledge Markup
(SAAKM), pp. 22–26 (2009)

63. Wang, J., Wang, Q.: Analyzing and Predicting Software
Integration Bugs Using Network Analysis on Require-
ments Dependency Network. Requirements Engineering
21(2) (2016)

64. Wang, X., Zhao, L., Wang, Y., Sun, J.: The Role of
Requirements Engineering Practices in Agile Develop-
ment: An Empirical Study. In: Proceedings of the Asia
Pacific Requirements Engineering Symposium (APRES),
vol. 432, pp. 195–209 (2014)

65. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans,
S.: Bridging User Story Sets with the Use Case Model.
In: S. Link, J.C. Trujillo (eds.) Proceedings of ER Work-
shops, pp. 127–138 (2016)

66. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying
and Extending User Story Models. In: Proceedings of
the International Conference on Advanced Information
Systems Engineering (CAiSE), LNCS, vol. 8484, pp. 211–
225. Springer (2014)

67. Wautelet, Y., Heng, S., Kolp, M., Scharff, C.: Towards
an Agent-driven Software Architecture Aligned with User
Stories. In: Proceedings of the 8th International Confer-
ence on Agents and Artificial Intelligence (ICAART), pp.
337–345 (2016)

68. Yu, E.S.K.: Modelling strategic relationships for process
reengineering. Ph.D. thesis, University of Toronto (1996)

69. Yue, T., Briand, L.C., Labiche, Y.: A Systematic Re-
view of Transformation Approaches between User Re-
quirements and Analysis Models. Requirements Engi-
neering 16(2), 75–99 (2010)

70. Yue, T., Briand, L.C., Labiche, Y.: aToucan: An Auto-
mated Framework to Derive UML Analysis Models from
Use Case Models. ACM Transactions on Software Engi-
neering and Methodology 24(3), 13:1–13:52 (2015)

