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Abstract—Issue Tracking Systems (ITSs) serve multiple pur-
poses in software development: they represent requirements and
bugs, facilitate communication between team members, and sup-
port project management by assigning tasks. As software systems
and projects increase in complexity, the number of work items
and their relationships grows considerably, forming a complex
network that is difficult and time-consuming for team members
to navigate using traditional ITSs. Motivated by the interest of
two companies in exploring the use of Artificial Intelligence in
software development, we introduce the GraphRAG Dialogue In-
sights (GDI) framework. GDI uses knowledge graphs, Retrieval-
Augmented Generation (RAG), and Large Language Models
(LLMs) to enable users to query work items in natural language
(NL). In addition to a NL response, GDI returns supporting
information to help users understand how the LLMs queried
the knowledge graph. We empirically validate GDI through two
proof-of-concept implementations, each addressing a use case:
i) onboarding and ii) trace link recovery. Initial user-centered
validations indicate that practitioners find the system intuitive,
useful, and accurate in generating responses. Moreover, they
express willingness to adopt the system and identify additional
potential use cases, including impact analysis, troubleshooting,
and issue resolution. However, further refinement is required to
deploy the system in practice.

Index Terms—Issue Tracking Systems, Large Language Mod-
els, Prompt Engineering, GraphRAG, Onboarding, Trace Link
Recovery

I. INTRODUCTION

Software development is a collaborative activity where
effective communication and knowledge sharing are crucial for
project success [1]]. Knowledge about processes, systems, and
projects is often dispersed across several teams, individuals,
and tools. As software companies transition from co-located
work setups to hybrid and fully remote work arrangements,
team members face increased challenges in seeking this knowl-
edge and guidance from their colleagues to complete tasks [2].

Software development teams often use Issue Tracking
Systems (ITSs) to capture this knowledge. ITSs include
lightweight representations of requirements (often as user
stories), reported bugs, and tasks that represent responsibility
assignments to team members. While each team may work
differently, ITSs offer a shared, structured knowledge base.

ITSs are a valuable and ever-evolving source of knowledge,
as team members can read, update, expand, and act on the
captured information. In this paper, we use the term work
items to refer to any trackable unit of work in the software
development process, including epics, features, user stories,

bugs, and tasks. Detailed work items that are adequately linked
to one another are helpful in supporting software development
teams. However, as systems and projects increase in com-
plexity, navigating work items using traditional ITSs becomes
challenging and time-consuming, as these systems have limited
functionality for searching and acquiring knowledge, making
it difficult to answer complex questions required for tasks.

This research is driven by the needs of two software
development companies that are interested in seizing the
technological opportunity provided by Large Language Models
(LLMs) to support software development teams in the assisted
exploration of ITSs. LLMs have powerful natural language
(NL) capabilities, which have been effectively applied to vari-
ous software engineering tasks, such as onboarding [3]], [4] and
trace link recovery (TLR) [5]-[8]]. However, due to input length
constraints, LLMs are limited in processing data from software
systems and projects. Information retrieval techniques, such
as Retrieval-Augmented Generation (RAG), can enhance their
processing capabilities [9]]. GraphRAG extends RAG by incor-
porating knowledge graphs, which structure information as a
network of entities and the relationships between these entities.
These graphs have been used to model software repositories,
enabling complex queries and providing insights [[10].

In this paper, we propose the GraphRAG Dialogue Insights
(GDI) framework, which uses knowledge graphs, RAG, and
LLMs to enable users to query work items in NL and trace
how the LLM integrates the user question with the retrieved in-
formation to generate a response. We validate GDI through two
proof-of-concept implementations at two software companies,
each addressing a specific use case that requires navigating
through work items: i. onboarding and ii. TLR.

The first use case, onboarding, refers to integrating a new
team member into an existing project or system and is vali-
dated at itemis, where the second author is employed. itemis is
a German software company founded in 2003 that specializes
in IT software development and consulting, with around 200
employees. Building on their prior application of GraphRAG
for onboarding in the aerospace sector [11]], itemis aims to
explore whether GDI could benefit their clients using ITSs.

The second use case, TLR, is validated at VX Company,
a Dutch software organization founded in 1988, where the
first author is employed. VX Company develops and maintains
customized software solutions and has around 200 employees.
By generating or repairing trace links between work items and



other software artifacts [12], TLR may support tasks such as
bug localization [13] and change impact analysis [14]. VX
Company is interested in exploring whether GDI can support
their software development teams in their daily work. To
address both use cases, we define our main research question:

MRQ. How is GDI perceived by users for the tasks of i.
onboarding ii. trace link recovery?

This research question is refined into five research questions
to validate GDI based on user-centered criteria. Each research
question comes in two variants, i. one for the onboarding use
case, and ii. one for TLR use case.

RQ1. How do users perceive the usability of GDI compared to
ITSs? This question assesses users’ perception of how easily
and effectively GDI supports them in achieving their goals.
RQ2. How do users perceive the accuracy of the responses
generated by GDI? This question addresses users’ subjective
evaluations of the correctness of returned information.

RQ3. How do users perceive the adequacy of the supporting
information provided by GDI? This question assesses users’
subjective evaluations of whether the generated query and the
retrieved context adequately support their understanding of
how the LLM queried the graph based on the question.
RQ4. How do users perceive GDI’s usefulness? This question
assesses the users’ perception of the value provided by GDIL
RQS. How likely are users to adopt GDI in their work?
This question evaluates users’ willingness to use GDI to find
information in ITS to support their tasks.

This paper makes the following contributions:

« We introduce GDI, a GraphRAG-based framework de-
veloped to better address the diverse information needs
of software development teams. We provide the source
code of GDI, the original and improved open-source
knowledge graphs [15], along with the logs, an informed
consent form, a user-centered validation session protocol,
and the surveys and interviews questions in a replication
package [[16]. Our framework enables local setups that
address security concerns critical to practitioners.

e« We empirically validate GDI through two proof-of-
concept implementations, each addressing a use case
interesting for the software companies: i. onboarding for
itemis and ii. TLR for VX Company.

The remainder of the paper is structured as follows. In
Section [lI} we discuss the technical background for our frame-
work. In Section we present GDI detailing its architecture,
user interaction, knowledge graph construction process, and
implementation. In Sections andV| we report on the user-
centered validations for the two use cases. In Section we
list the lessons learned and discuss the threats to validity and
limitations. In Section we contrast our work with existing
studies. Finally, in Section we conclude the paper.

II. BACKGROUND

We present the necessary technical background for our
framework: prompt engineering (Section A), RAG (Section
B) and GraphRAG (Section C).

A. Prompt engineering

Prompt engineering is a continuous process of carefully
designing and refining input queries or “prompts”. These
prompts can include instructions, context, input data, and
response guidelines to assist LLMs in generating relevant and
accurate responses aligned with specific goals [17]. Effective
prompts can improve LLM performance [5], enable new use
cases, and save valuable resources [17]]. Additionally, prompt
engineering provides a framework for documenting prompt
patterns that facilitate problem solving and knowledge transfer
among developers and users [18]. Zero-shot prompting lever-
ages carefully crafted prompts to enable LLMs to perform
tasks beyond their explicit training, while few-shot prompting
improves task understanding by integrating input data, such
as examples of user queries, into the prompts [[19]. Moreover,
persona-based prompting instructs LLMs to adopt a specific
perspective or “persona”, guiding them in determining which
details to focus on and what types of outputs to generate [20].

B. RAG

RAG is a technique that improves the performance of
LLMs on knowledge-intensive tasks [9]]. RAG consists of two
main components: a retriever and a generator. To facilitate
information retrieval, data from external sources is segmented
into smaller chunks and transformed into numeric vectors that
represent their semantic meaning using embedding models.
These vectors are stored in indexes, allowing the retriever to
efficiently search and retrieve the most relevant chunks based
on their semantic and syntactic similarity to the user’s ques-
tion. Subsequently, the generator, generally an LLM, combines
the retrieved data with the user’s question to generate a more
accurate and contextually relevant response.

However, RAG has its limitations [21]]: it relies on diverse
parsers to chunk and embed external data, complicating the
data preparation process. Additionally, information may be
lost during the chunking and embedding processes, which
can potentially reduce response accuracy. Moreover, retrieving
information from unstructured text may not fully capture
semantic relationships, which can affect the quality of the
retrieved information.

C. Graph + RAG = GraphRAG

The limitations of RAG can be addressed using GraphRAG
[22], [23]], which leverages knowledge graphs in three different
ways [24]]: (1) as a content source consolidating dispersed
information and uncovering indirect relationships between
entities, (2) as a semantic source preserving the meanings and
relationships of entities to mitigate information loss during
chunking and embedding, and (3) as a structured retriever
retrieving information based on the user’s question and the
structure of the knowledge graph which inherently captures
semantic similarity. The retriever can identify relevant infor-
mation that is not explicitly mentioned in the initial set of
retrieved chunks using the graph structure, leading to more
comprehensive and contextually relevant responses [25[. The
graph structure also enhances retrieval efficiency and facilitates



comprehensive cross-referencing and traceability analysis [26].
Thus, GraphRAG can be advantageous in software engineer-
ing, where artifacts are often interconnected.

The knowledge graph also provides visual insights that
can help developers identify patterns and anomalies, interpret
results, and optimize performance. In addition, the knowledge
graph can be queried using query languages to trace the
retriever’s traversals through the graph, adding to the trans-
parency, trustworthiness, and interpretability of GraphRAG.

III. GDI: GRAPHRAG DiALOGUE INSIGHTS

We present GDI and describe its architecture (Section A),
user interaction (Section B), our knowledge graph construction
process (Section C), and implementation details (Section D).

A. Architecture of GDI

GDI uses GraphRAG to navigate through work items to an-
swer questions from the users. Since it is based on GraphRAG,
a knowledge graph, and an LLM are essential components of
a GDI instance, together with the GDI Core component that
facilitates interaction among the components in GDI. Fig.
presents a simplified view of the GDI architecture with a
locally hosted LLM. The system can be easily configured to
access remotely hosted LLMs via their APIs.
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Fig. 1. Architecture diagram of a GDI instance using a local LLM.

The GDI Core component creates prompts and facilitates the
interaction between the LLM and the knowledge graph. This
component relies on prompt templates to generate prompts at
run-time. There are two prompt templates in the system. The
first template is used to create the query generation prompt,
which incorporates the schema of the knowledge graph and the
user’s question. The second template is used to create the NL
response prompt and includes the selected user persona, the
user’s question, and the context retrieved from the knowledge
graph. Fig. [2] presents an example of the latter template.

B. User Interaction with GDI

Fig. [3] shows the interaction between the user and GDI
components, excluding the user interface (UI) component due
to space constraints. The user specifies their persona, such as

QA_GENERATION_TEMPLATE_SE = """

You are a software engineer responsible for

- Writing, testing, and maintaining high-quality
code.

— Contributing to designing scalable and

maintainable software solutions.

- Identifying and fixing software defects.
Based on the question and Cypher response,
write a natural language answer:

# — Question: {question}
# - Cypher response: {context}
Make sure all the following RULES are
considered before a generating response:
# DO NOT BE TOO TECHNICAL.
# DO NOT INCLUDE SUGGESTIONS,
APOLOGIES. """

QUESTIONS AND

Fig. 2. An example of a prompt template used by the LLM at run-time to
generate the NL response prompt.

software engineer and their LLM of choice for the interactions.
The user initiates the interaction by asking a question to
GDI (M1), for example, “I found a bug in AuthService,
which uses Node.js. Which team members are familiar with
this technology and should be contacted?”. The GDI Core
component constructs a prompt using the prompt template that
includes the knowledge graph schema and the user’s question
and sends it to LLM (M2). Based on this prompt, the LLM
generates a query in the query language used for the knowledge
graph (M3). The GDI Core component queries the knowledge
graph with this query (M4). The knowledge graph sends the
structured data corresponding to the query as the retrieved
context (MS5). GDI Core constructs a prompt using this context,
the persona selected by the user, and the user’s question, and
sends it to the LLM (M6). GDI Core receives the NL response
(M7). Finally, the output is presented to the user (MS).
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Fig. 3. Sequence diagram outlining the interactions between the user and
GDI components.

The browser-based interface is presented in Fig. @] On the
left side (area A), the user can select a persona based on the
stakeholder role, which corresponds to the options in the first
drop-down menu, such as software engineer or product owner.
If multiple LLMs are integrated into the system, the user
can indicate their preference through the second drop-down
menu. At the top of the interface (area B), we provide example
questions and guidelines to the user. The user can access their



conversation history under the “Chat History” item. There is
an input field for the user to enter their questions at the center
of the interface (area C). Below this field (area D), there are
the UI elements to present the output of the GDI instance,
including /. NL response to the question, 2. the generated
query used to query the knowledge graph, 3. the retrieved
context as a result of the query. The user can save the chat
history by clicking on the “Save Session” button (area E).

GraphRAG Dialogue Insights

"p.name

Fig. 4. GDI User Interface.

C. Knowledge graph construction

To build the knowledge graph, the first step is to collect work
item-related data, such as epics, features, user stories, and their
relationships, from the ITSs by exporting the data in a tabular
format, such as CSV. Tabular data can easily be loaded into a
graph database management system to implement the graph.
However, it is important to preprocess the data by removing
sensitive information such as email addresses, and filtering
out embedded code fragments due to the GDPR and privacy
concerns. Additionally, handling empty fields by assigning a
default value is crucial to ensure consistency, as graph database
management systems typically do not support null values.

After preprocessing, the next step is to build the schema for
the graph. In our schema, we add the work items as nodes
and the relationships among them as edges. We also specify
the properties of the values, such as the date or the author.
Fig. [5] presents an excerpt from our open-source knowledge
graph, where the nodes denote a team (blue), a task (orange),
and a microservice (purple), and the edges represent the
relationships. We store the data in CSV format, where nodes
and edges are organized in separate folders under version
control using Git to track changes and maintain snapshots of
the knowledge graph. For smaller knowledge graphs with fewer
than 100 nodes and edges, we directly ingest the data into the

graph database management system using queries. For further
information on the knowledge graph construction process, we
refer to the book chapter of Fensel et al. [27].
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Fig. 5. Snapshot of the open-source knowledge graph.

D. Implementation of GDI

GDI is developed in Python. We created one graph schema
for each use case. However, in large software systems, where
the same type of work item may have different attributes across
different projects, aligning the metadata corresponding to that
work item type is necessary. We use a local instance of Neo4;j
as the graph database management system and connect to it
through the Neo4jGraph Python client. Cypher is the query
language for Neo4;j. Fig |llI| presents the query corresponding
to the example user question provided earlier in Section B.

MATCH (m:Microservice {name: "AuthService"})H
[ :MAINTAINED_BY][> (t:Team) <- [ :PART_OF] -
(p:Person) WHERE m.technology = "Node. js"
RETURN p.name

Fig. 6. Example of a generated Cypher query by the LLM.

We use Streamlit [28] to accelerate the development of
GDI and LangChain [29] to streamline the LLM integration.
Multiple LLMs can be plugged into the system either by
hosting them locally or accessing them through their APIs.
We use Ollama to host a local instance of Llama 3.1 due
to sensitive and confidential data. In our implementation, we
integrate Meta’s Llama3.1 (8B, the temperature is set to 0 to
maximize determinism for both use cases) [30] and OpenAl’s
GPT-4 [31] into our system. The LLMs can be customized
according to preferences, constraints, and available resources.
Ollama and Neo4j can also be installed via a Docker setup.
The technologies mentioned, such as Neo4j, Cypher, Streamlit
in this section, are modular and can be interchanged.

IV. VaLipATION OF GDI FOR ONBOARDING

We present the dataset for the knowledge graph, the research
methods used, and the results from the onboarding use case.
Dataset: We needed a dataset that the participants would

not already be familiar with. As such, we selected an open-
source synthesized Azure DevOps dataset provided by Neo4j
[15]] using purposive convenience sampling due to its small
size (33 nodes and 52 edges). The dataset represents a
microservices architecture within the retail domain, includ-
ing services (e.g., AuthService, OrderService), infrastructural



components (e.g., Database, ExternalAPI), task management
(e.g., BugFix, Optimize), team structures and members (see
Fig. ). Since the dataset is publicly available, participants
can ask questions and then manually verify the responses.
Cognitive walkthrough: We conducted a group cognitive
walkthrough (CW) [32] lasting 30 minutes to systematically
validate GDI by reasoning through user actions and identi-
fying potential usability issues. Since there are no end users
for the dataset, we involved practitioners through purposive
convenience sampling. The colleagues of the second author
with work experience in ITSs and GraphRAG systems were
invited via Slack and email (see Table [). The invitation
detailed the study’s objective, the purpose of the CW, and
a short description of the user-centered validation session. We
obtained the consent of the participants to record the CW.

TABLE I
PaRTICIPANT ROLES AND EXPERIENCE FOR ONBOARDING USE CASE.

D Role Years of Experience
1 Front-end Developer 3
2 Artificial Intelligence Engineer 3
3 Artificial Intelligence Engineer 4
4 Systems Engineer 15
5  Technical Manager 20

The goal of the CW session was to systematically validate
GDI by reasoning through user actions and identifying poten-
tial usability issues. We followed the streamlined CW method,
an adaptation designed to address social constraints in software
companies, such as time limitations, lengthy discussions, and
defensiveness [33[]. The walkthrough consisted of five steps:

1) Define inputs: We selected the software engineer prompt
template with Llama 3.1 (8B) to reflect the participants’
roles. We also defined user queries related to onboarding
(UQ1-UQ5) and user action sequences (see Fig.

2) Convene the CW session: GDI ran locally on a Mac M1
Pro with 32GB unified memory (200GB/s bandwidth),
a l4-core GPU, and a 16-core Neural Engine. The CW
session was held via Zoom, a communication platform,
with screen sharing enabled, as the participants were
working in a fully remote arrangement.

3) Walk through the user queries: Five participants validated
each question by answering two questions: “1) Will the
user know what to do? 2) If the user takes the correct
action, will they recognize that they are making progress
towards their goal?” If a plausible story was told for both
questions, then we proceeded to the following user ques-
tion. Else, we documented usability issues and identified
missing knowledge required for the user to proceed.

4) Document findings: We documented design gaps and
ideas, learnability challenges, and issues in task analysis.
These findings are discussed in this section.

5) Revise the Ul: After the CW and user-centered validation
sessions, we refined our implementation of GDI to resolve
the identified usability issues, which are discussed under
GDI Improvements in this section.

The considered user queries were as follows:

UQ,:What are the dependencies of [SERVICE NAME]?

UQ,:Is there a relationship between [SERVICE NAME]
and [SERVICE NAME]?

UQ;:Which microservices
NAME]?

UQ,:Which tasks are assigned to Team [TEAM NAME],
and what services do they affect?

UQ;:Which services are maintained by Team [TEAM
NAME]?

depend on [SERVICE

Protocol: After the CW session, participants were invited
to 15-minute individual user-centered validation session to
gain hands-on experience with GDI. Participants received
guidance with predefined user queries and were encouraged
to formulate their own questions. The logs of these sessions
were saved for analysis and shared with the participants along
with the CW session recording for reference during the survey.
After these sessions, participants were invited to complete a
15-minute survey (refer to our replication package for the logs
and survey questions [[16]). We used a 5-point Likert scale due
to ease of understanding for the questions related to perceived
usability, perceived accuracy, and likelihood of adopting.

RQI.a: To validate the perceived usability of GDI, par-
ticipants were asked: “How easy was it to interact with the
system compared to acquiring the required information from
other tools (e.g., Azure DevOps, Jira, GitHub Issues)?”

Finding 1: The majority of participants found GDI easier
to use than traditional issue tracking systems, with only one
participant reporting difficulty (see Fig. [7).

P4 reported having difficulty interacting with GDI, par-
ticularly when formulating user questions. P4 expressed a
preference for directly using a graph language due to its
guaranteed precision and recall, and found the system inef-
ficient for query generation. In contrast, the majority of the
participants indicated that the system was easy or very easy
to use compared to other tools. Fig. [7| presents the results.

We asked participants for possible improvements. P1 rec-
ommended enhancing the Ul to make it more accessible for
non-technical users. P5 suggested enhancing the prompting of
the system. P2 provided feedback on the knowledge graph, sug-
gesting the need for more detailed, role-specific information.
P4 noted that the system (due to its knowledge graph) is not
able to distinguish between internal and external dependencies.
P3 highlighted that if alignment on how to structure REST-
APIs is incorporated into the work items of ITSs, GDI can
be used to support technical compatibility between software
development teams, and contribute to seamless integration.

RQ2.a: To validate the perceived accuracy, participants
were asked: “How accurate were the responses provided by
the system?”, followed with “If you found the responses inac-
curate, misleading, or unnecessary, please provide examples.”
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Fig. 7. Overview of perceived usability, perceived accuracy, and likelihood
to adopt GDI by participants (onboarding use case).

Finding 2: For the onboarding use case, participants rated
GDI’s responses as follows: two participants found them
somewhat accurate, two participants found them moderately
accurate, and one participant found them extremely accurate.

Participants rated the accuracy of GDI as presented in
Fig.|7} P3 highlighted issues related to the system’s reliance on
linguistic nuances, such as results changing with capitalization.
P3 elaborated “Some responses simply weren’t true. Example:
Which tasks are unassigned? There are no unassigned tasks.”
The tasks were assigned to a team, which GDI did not infer.

P4 found the responses somewhat accurate: “Which Mi-
croservices has External Dependency? Artificial Intelligence
(Al) could not answer this question at all, as it does not
understand the word ”External.“ Le., when using an Al, 1
expect flexibility in the formulations I can use as prompts so
that I do not have to learn a special language to communicate
with the AL” This indicates a limitation in GDI’s ability to han-
dle flexible language inputs, something that users expect from
intelligent systems. P1 rated the system responses’ moderately
accurate, noting that “Queries summarizing numbers were not
100% successful.” This suggests that GDI has limitations in
providing reliable results when dealing with numerical queries.

P3 highlighted two key areas for improvement: i. ensuring
the system interprets queries correctly regardless of capital-
ization or syntactic features and ii. reducing hallucinations
through domain-specific fine-tuning. P3 highly advised re-
fining the model with Azure DevOps-related data via “con-
tinued pretraining on domain-specific data and supervised
fine-tuning, specifically for the task of query generation.” P3
also recommended implementing a validation script to review
queries before execution and warning users if a generated
query might fail, thereby helping them refine their questions.

RQ3.a: To validate the adequacy of the supporting in-
formation, participants were asked: “Did the response provide
sufficient supporting information to justify the response?” If
they answered no, they were prompted with “Please explain
what information was missing in the responses.”

Finding 3: Three participants indicated that the response
provided sufficient supporting information to justify the
answers, whereas two participants indicated that it did not.

The participants who rated GDI as somewhat accurate in
Finding 2 reported that the response lacked sufficient support-
ing information to justify the responses. P3 pointed out “The
reasoning behind why it provided a certain response was miss-
ing.” However, the participant did not elaborate further. This
suggests that P3 may have expected more detailed explanations
and found that the generated query and the retrieved context
were insufficient to justify the answers provided by GDI.

Similarly, P4 found that the Cypher query did not provide
insight into the raw data of the underlying model. While P4
could explore the graph by running the Cypher query in Neo4;,
P4 preferred a more intuitive approach, stating “I would rather
like to see a graphically presented subgraph of the underlying
graph model that encompasses all the nodes and edges which
are relevant for the answer.” P4 suggested integrating the
visualization of the subgraph directly into GDI's UI and
making the elements clickable to enable navigation to related
information for enhanced usability. The other participants were
able to justify how GDI generated its responses based on the
generated query and the retrieved context.

RQA4.a: To validate the perceived usefulness, the partic-
ipants were asked to “Which tasks would you use this system
for?” with pre-determined answer options, and “Are there any
other tasks that you would use this system for? Please specify.”

Finding 4: Participants indicated multiple uses for GDI:
onboarding and knowledge sharing, performing impact anal-
ysis, understanding context, troubleshooting and resolving
work items, and optimizing resource allocation.

P3 indicated an interest in using GDI for TLR. P1 and P3
showed interest in using the system for tracking the progress
and status of work across different sprints or iterations. These
tasks might be less interesting as they were less relevant to
their roles: four out of five participants were hands-on engi-
neers (see Table [lI| for an overview). However, they expressed
interest in using the system to find the right contact person for
issues related to specific technologies or services from other
teams (P2), identifying incorrect string values in continuous
integration (CI) artifacts and image specifications (P3), and
team management (P5).

RQ5.a: To validate the likelihood of adopting GDI,
participants were asked “How likely are you to use this system
to find answers related to the questions?

Finding S: Participants’ likelihood of adopting the system
varied, with one rating it as extremely unlikely, one as
neutral, one as likely, and two as extremely likely.

Most participants expressed a neutral to strong willingness
to adopt the system in their work, as presented in Fig.



In contrast, P4 expressed a strong reluctance to use GDI
due to proficiency in graph query languages. However, many
practitioners are not proficient in these query languages, and
our system enables them to benefit from data in ITSs.

GDI Improvements: We refined GDI to resolve the usabil-
ity issues identified in the CW and user-centered validation
sessions. We incorporated a cheat sheet that outlines user
questions and guidelines to help users. We improved the Ul
and log mechanisms by displaying the generated query and
the retrieved context separately through structured formatting
to enhance readability. We also introduced buttons that allow
users to copy the query and its retrieved context easily.

Based on participants’ feedback, we implemented modifi-
cations to the knowledge graph. We restructured the team
organization by linking tasks to individual members rather
than to teams (P2). We changed the database and ExternalAPI
microservices to dependencies of other microservices (P4).

The participants asked the questions PQ1-PQ5 listed below
during their interaction with GDI. We used these questions
as input for few-shot prompting and incorporated them into
the query generation prompt template. When rerunning these
queries, we observed that the previously encountered issues,
including errors, had been successfully mitigated.

PQ,: Which team members are working on Recommenda-
tionService?

PQ,: 1 noticed a bug in AuthService that has something to
do with Node.js, who from the Team should I contact
that is familiar with that technology?

PQ,: What are the most similar Tasks?

PQ,: Which Microservices has External Dependency?

PQ;: What are all the biggest teams?

We used the output of the onboarding use case, i.e., an
improved version of GDI for the TLR use case.

V. VALIDATION OF GDI FOR TRACE LINK RECOVERY

We present the dataset for the knowledge graph, the research
methods used, and the results from the TLR use case.
Dataset: We built a dataset for the TLR study using
the work items of VX Company, the employer of the first
author. The work items and their relationships are extracted
from a proprietary Azure DevOps repository called Non-
profit organization care (NPO), which we cannot share due
to confidentiality agreements. We selected NPO based on
purposive convenience sampling due to its moderate size (830
nodes and 387 edges) and our access to domain experts who
can validate the content of generated responses by GDI.
NPO provides non-profit organizations in South Africa with
a web-based solution that enhances administration, streamlines
daily operations, and ultimately improves services for bene-
ficiaries. The system is built using a Model-View-Controller
architecture, implemented in Groovy and Grails, and operates
on a Tomcat server with a MariaDB database. We employ a
hybrid approach to enhance performance by combining graph
indexing, which preserves the complete graph structure for

efficient graph traversal and relationship queries, with vector
indexing, which converts data into vector representations for
fast similarity-based retrieval. We define a schema for the
proprietary dataset as a procedural step, as we do not propose
it as a standard for other software repositories.

User-centered validation: We conducted user-centered
validation sessions to give participants hands-on experience
with GDI before they validated the system in the follow-up
interview. We used purposive convenience sampling to select
participants with work experience in ITSs and NPO (see P6—
P10 in Table [lI) from VX Company. The participants, who are
colleagues of the first author, were invited by e-mail, including
the objective of the study and an overview of the session.

TABLE II
ParticiPANT RoLES AND ExPERIENCE FOR TLR UsE CASE.

D Role Years of Experience

6  Full Stack Developer 2

7  DevOps Engineer 5.5

8  Product Owner (Client) 14

9  Service Coordinator 33

10 Full Stack Developer 34
Protocol: The sessions were conducted via Microsoft

Teams, which is an online communication platform used by
software development teams of VX. Participants were pre-
sented with an informed consent form. If we obtained consent
from the participants, we started the recording and screen
sharing as participants were located in different places. The
session started with an explanation of the study, its objectives,
and a system demonstration, lasting 15 minutes.

If participants had no questions, we proceeded with the
session, lasting 30 minutes. We used various stakeholder
persona prompt templates with Llama3.1 to represent the
different roles of participants. GDI ran locally on a desktop
with Intel Core i7 CPU, Nvidia GeForce RTX 4080 Super (16
VRAM), and DDRS 16GB Memory.

We defined five user questions (UQ6-UQ10) with varying
complexity related to TLR. The questions and guidelines were
provided as a cheat sheet to help participants, who were
encouraged to modify the questions to suit their needs.

UQg:Is there a relationship between Bug [ID] and
User_Story [ID]?

UQ-,:What are the tasks of User Story [ID]?

UQg:Which Incidents are related to Bugs?

UQ,:What is the longest dependency chain in the system?

UQ,; Which User_Stories are most similar based on their
title?

Participants were instructed to think aloud to articulate
their thought processes during hands-on testing. They were
informed that the researchers would not intervene unless
explicitly requested. The participants then followed these steps:

1) Attempt to find the answer to the user’s question us-

ing Azure DevOps and record the expected answer in
Notepad++.



2) Interact with the system by asking the same user question.

3) Validate whether GDI-generated response aligned with
their expected answer by verifying it using Azure DevOps
or Neo4j.

We chose this setup as the interaction with GDI may influence
the answers given by the participants. By comparing their
expected answers with the system-generated responses, we are
able to establish a baseline to assess the alignment between
user expectations and system responses. After the hands-on
section, we held 15-minute interviews to validate GDI. The
interview questions can be found in the replication package
[16]). We used a 5-point Likert scale due to ease of understand-
ing for the questions related to perceived usability, perceived
accuracy, and likelihood to adopt. During the interviews, we
showed participants a visual representation of the Likert scale.
Pilot: The protocol was tested in a pilot study with one
participant who was not included in the final participant group.
After the pilot, the participant provided feedback, noting that
while the UI is user-friendly, the retrieved context should
not be expanded by default as it occupies too much space.
Based on this feedback, we adjusted the UI so that the
retrieved context no longer expands by default. Additionally,
the participant pointed out that formulating user queries was
difficult due to issues with capitalization of entity names and
that the system is currently unable to incorporate the previous
responses as context. We leave these points for future work.
RQI1.b: To validate the perceived usability of GDI, par-
ticipants were asked: “How easy was it to interact with the
system compared to acquiring the required information from
other tools (e.g., Azure DevOps, Jira, GitHub Issues)?”

Finding 6: Participants generally found GDI easy to use
for answering questions compared to issue tracking systems.
One participant found it neither difficult nor easy, three
found it easy, and one found it very easy.

Fig.|8|summarizes the responses. P7 had no prior experience
with chatbot systems and found GDI neither difficult nor easy
to use, while the other participants found it easy to use. P6
found using the system easy but noted that formulating queries
still involved “trial and error, but it is easier than composing
a query in DevOps.” Similarly, P9 found the system easy to
use, stating “It is easier because you do not need to know the
query language, and you can ask it in your own language.”

To identify areas for improvement, we asked participants
“What aspects of the system could be improved?”

P10 recommended taking inspiration from the UI of Chat-
GPT and WhatsApp. P9 recommended making it clearer when
GDI is unable to generate an answer or execute a query, as it
only displays an error. Finally, P8 stated that integrating the
system into Azure DevOps would enhance its usability.

RQ2.b: To validate the perceived accuracy, participants
were asked: “How accurate were the responses provided by
the system? If you found the responses inaccurate, misleading,
or unnecessary, please provide examples.”

% Perceived usability - Response

r T T T T T T T 11 [l Very difficult
C -10 0 10 20 30 40 50 60 70 80 90 Difficult
Percentage Neither difficult nor easy
Easy
W Very easy

Response

W Not at all accurate
Slightly accurate
Somewhat accurate
Moderately accurate

W Extremely accurate

Perceived accuracy

C 0 10 20 30 40 50 60 70 80 90 100
Percentage

Response

W Extremely unlikely
Unlikely
Neutral
Likely

W Extremely likely

% Likelihood to adopt

T T T T T T — 1 1T 1T 1
C -10 0 10 20 30 40 5 60 70 80 90
Percentage

Fig. 8. Overview of perceived usability, perceived accuracy, and likelihood
to adopt GDI by participants (TLR use case).

Finding 7: For the TLR use case, two participants rated
GDI’s responses as moderately accurate, while three found
them extremely accurate.

Fig. [] presents the answers to these questions. P6 and P7
found the responses to be moderately accurate. P8, P9, and
P10 found the responses generated by GDI extremely accurate.
P8 noted, “The answers it gives are good, but there may be
more answers that I have not seen, but I am not really sure,
without this I would not have found these answers at all, you
should mention that too.” We observed that most participants
verified the results for simpler user questions (UQ6-UQ8) but
relied on GDI for complex questions (UQ9 and UQ10).
RQ3.b: To validate the adequacy of supporting informa-
tion, participants were asked: “Did the response provide suffi-
cient supporting information to justify the response?” If they
answered no, they were prompted to elaborate with “Please
explain what information was missing in the responses.”

Finding 8: All participants agreed that the responses in-
cluded sufficient supporting information to justify the an-
SWers.

P6 found the queries useful, stating “The generated queries
are indeed very helpful and really good.” Additionally, P7
elaborated “Yes, you can indeed find that with it, and in
combination with the answer itself, you can understand why it
gave that response.” In contrast, P9 elaborated “I would just
assume that they are the correct answers. I would not look at
the supporting information; I would just go to DevOps myself
to check the descriptions or comments.”

RQ4.b: To validate the perceived usefulness, we asked
participants “Which tasks would you use this system for?” with
pre-determined answer options, followed by “Are there any
other tasks that you would use this system for? Please specify.”

Finding 9: Participants would use GDI for onboarding and
knowledge sharing, TLR, troubleshooting and work item
resolution, understanding context, and progress tracking.



P8 and P9 stated that they would use the system for
performing impact analysis. P8 expressed a willingness to use
GDI to track the progress of a work item, including when it is
implemented and the version of NPO in which specific bugs
were fixed. All participants expressed interest in using GDI to
find similar user stories, bugs, and documentation, as searching
in Azure DevOps requires exact text matches, which makes it
difficult to locate relevant work items. Building upon this, P9
emphasizes the value of GDI understanding the connections
between the wiki, work items, and the source code.

RQS5.b: To validate the likelihood of adopting GDI,
participants were asked “How likely are you to use this system
to find answers related to the questions?”

Finding 10: The majority of participants expressed a will-
ingness to adopt the system, with two indicating they were
extremely likely to use it, two likely, and one neutral.

Fig. presents the responses. P6, P9, and P10 expressed
that they would use Azure DevOps to retrieve information
for simpler questions but prefer GDI for complex questions,
possibly due to their familiarity with Azure DevOps. P7 stated
that “I would not use it very often, but I do not frequently
need to search in work items, but if it were easily accessible,
I would still use it.” Finally, P8 does not find Azure DevOps
user-friendly or intuitive, and GDI is easier to use.

VI. Discussion

We present the lessons learned (LL) labeled as LL 1, LL 2,
and so on, in Section A. We discuss the threats to the validity
and limitations in Section B.

A. Lessons learned

LL 1. GDI can improve transparency and trustworthiness
by making Al responses easier to understand and trace: Trust
between humans and Al is a critical concern, mainly due to the
lack of transparency in Al decision-making. Research indicates
that providing insights into an Al system’s reasoning process
can improve user trust [34]]. This is important for practitioners
who rely on Al for their work. Most participants were able
to understand why the LLM generated a particular answer by
analyzing the generated query used to query the knowledge
graph and the retrieved context as a result of the query.

LL 2. To increase the adoption rate of GDI, customization
and a user feedback loop are essential: By analyzing GDI’s
logs, we gain insights into different types of queries asked by
users, which enables the refinement of prompts based on users’
needs. For example, while participants in our studied context
preferred short answers, this may not be the case in other
settings. Additionally, implementing a mechanism to collect
user feedback on the generated responses allows developers to
iteratively refine GDI and improve adaptability over time.

LL 3. Humans should stay in the loop: While GDI can
streamline tasks like onboarding and TLR, relying entirely on
Al without human supervision introduces potential risks. In
the TLR use case, most participants verified responses for

simple questions but did not verify the responses for com-
plex questions. This reliance on GDI for complex questions
increases the risk of misinformation. Moreover, the use of
GDI shifts the time from searching to validation, which does
not necessarily reduce the total human effort. We recommend
software companies train employees on how to use GDI, which
could be delivered through an e-learning module or a manual.
In the onboarding use case, we noticed that participants
needed support from the researchers to validate the responses
of GDI as they were not familiar with the dataset. We recom-
mend that software companies ensure that experienced team
members mentor new team members to prevent them from
being completely unsupervised. This guidance helps to identify
potential problems early and supports ongoing learning.

LL 4. Incorporating heterogeneous data sources enhances
the value of the knowledge graph and enables a greater range
of use cases: The effectiveness of GDI relies on the quality
and completeness of the data sources that form the knowledge
graph. Participants suggested incorporating additional data,
such as comments, technical alignments on how to structure
REST-APIs into work items of ITSs to support compatibility
between teams for seamless integration, documentation, and
code into the graph to enable the system to generate responses
with richer contextual understanding to resolve work items.
By incorporating these data, we could use GDI to analyze the
communication of software development teams in ITSs [35].

LL 5. Domain experts are necessary for knowledge graph
creation: We initially attempted to create a knowledge graph
from an open-source dataset; however, we encountered chal-
lenges in cleaning the data due to inconsistencies that required
domain expertise. Thus, we chose to use an existing open-
source knowledge graph [15]. With the proprietary data set,
we did not have this issue due to access to domain experts.
Domain experts can assist developers in interpreting, cleaning,
structuring, and validating the data, ensuring that entities and
relationships are correctly represented in the knowledge graph.

LL 6. Continuous monitoring, maintenance, data security,
and access control are critical for long-term system reliability:
Integrating GDI into existing workflows and ITSs of software
companies is crucial for system adoption. Regular updates and
snapshots are required to monitor and maintain the knowledge
graph effectively. We suggest using version control such as Git
to track changes in the CSV files. Additionally, we recommend
creating a pipeline that is automatically triggered, for example,
when a new user story is added. This pipeline can use a
command in the preferred query language (e.g.,“MERGE”
command in Cypher) to automatically add a new node into
the knowledge graph, thereby eliminating the need to reload
the entire graph. Moreover, security measures and role-based
access control should be implemented in the knowledge graph
and GDI to prevent any security breaches and data leaks.

B. Threats to validity and limitations

We address potential threats to validity and limitations
according to the categories proposed by Wohlin et al. [36].
We also outline the measures taken to mitigate these threats.



Construct validity validates the extent to which the treatment
accurately represents the theoretical construct of the cause,
and the outcomes reflect the construct of the effect. The
proprietary repository contains data in English and Dutch,
which we retained in its original form to avoid introducing
translation bias and preserve its real-world characteristics. To
ensure that the proprietary knowledge graph represents the data
of NPO, we perform validation checks during its formulation
by randomly selecting work items and manually verifying
that their representations align with the source data. We also
iteratively refine the graph through discussions. Moreover, the
domain experts validated the graph by querying GDI and
cross-referencing the results with Azure DevOps.

Internal validity refers to the risk of uncontrolled factors that
influence the observed causal relationship between treatment
and outcome. The proprietary knowledge graph was created
based on the authors’ domain knowledge and technical exper-
tise, which could introduce bias. To mitigate this bias, two
authors who were not involved in graph creation validated the
process. Additionally, domain experts validated parts of the
knowledge graph.

Conclusion validity pertains to the relationship between
the treatment and the outcome, ensuring that a statistically
significant relationship exists. Given the novelty of GDI, we
lack a baseline. To address this, we asked participants familiar
with the data of NPO to first answer user queries with Azure
DevOps and record their expected answers to establish a
baseline. Participants then interacted with GDI and validated
whether its responses aligned with their expected answers.

External validity assesses the degree to which the causal
relationship between the cause and effect observed in the study
can be generalized to other contexts. The representativeness of
the data sets is limited by variations in issue-tracking systems,
work items, relationships, and data quality. To mitigate this
threat, we use both an open-source and a proprietary data
set, which vary in technology, architecture, number of work
items, and relationships. However, further research applying
GDI to data sets with a higher number of work items is
necessary to assess its scalability and impact on performance
and generalize our findings. We do not claim that our findings
are generalizable due to the small number of participants.
However, this setup reflects real-world contexts where a small
group of team members with diverse knowledge contribute to
projects. Our study is limited because it only consists of a user-
centered validation of GDI. However, this is an exploratory
study, and we plan to extend the validation in future work.

VII. RELATED WORK

We contrast our work with existing studies. We observe that
prompt engineering, RAG, and GraphRAG have been applied
to the tasks of onboarding and TLR in a limited capacity.

Schuszter and Cioca [3]] introduce a system that optimizes
onboarding processes using an LLM with RAG, enhanced
with domain-specific knowledge of the team and internal doc-
umentation. They combine chatbot development techniques for
an industrial context at CERN. They encountered issues with

hallucinations, emphasized the importance of cross-checking
responses, and highlighted the tools’ effectiveness as a starting
point for new team members. These findings align with ours.
However, we use GraphRAG and data from ITSs, which
enables us to provide the users with supporting information to
understand how the LLM queried the knowledge graph, which
can help users improve trust in GDI.

Tonescu et al. [4]] introduce the “Onboarding Buddy”
system using LLM, RAG, and chain-of-thought prompting
to improve the onboarding process of software developers
by delivering dynamic, context-specific support within the
development environment. While their agent-based approach
demonstrates promising results in initial evaluations, it requires
improvements in technical reliability and UI. Our study aims
to improve onboarding across all roles within software devel-
opment teams in ITSs by facilitating task-related information
retrieval, extending beyond programming tasks alone.

Rodriguez et al. [5]] explore to use of prompt engineering to
predict trace links between software artifacts, demonstrating
that even small modifications to prompts can substantially
influence model outputs. We also observed enhanced model
performance and resolution of prior issues after incorporating
example questions into the query generation prompt.

The studies by FuchB et al. [7] and by Ali et al. 6] focus
on traceability from various software engineering artifacts to
source code, whereas our study focuses on traceability between
work items in ITSs.

FuchB et al. [7] propose a framework that enhances LLM
performance using RAG for TLR for three tasks: requirements
to code, documentation to code, and documentation to archi-
tecture models. Their framework outperforms state-of-the-art
methods in code-related tasks but requires performance im-
provements through improved retrieval techniques, aggregation
methods, and code preprocessing. They also plan to incorpo-
rate the LLM’s reasoning into the decision-making process of
creating trace links and adding contextual information to their
prompts to make their framework applicable in practice.

Ali et al. [6] introduce a RAG-based approach to enhance
traceability between high-level use-case requirements and
source code using keyword, vector, and graph indexing. While
we also use vector and graph indexing, we do not use keyword-
based indexing, as our knowledge graphs inherently capture
structured relationships between entities, facilitating retrieval
based on semantic relationships rather than textual matches.
They found that their approach improves the efficiency and
accuracy of establishing traceability links compared to the
baseline approaches.

The study by Hey et al. [8] investigates inter-requirements
traceability. They present a RAG-based approach for recover-
ing inter-requirements traceability without the need for pre-
existing links. Their approach outperforms state-of-the-art and
baseline approaches. However, our scope extends beyond re-
quirements as we cover work items within ITSs.

While the previously mentioned studies focus on TLR and
use open-source data, our study uses both open-source and
proprietary data and empirically validates two use cases: 1) on-



boarding and 2) TLR. These studies validate their approaches
using precision, recall, F1, and F2 scores, while we validate
ours empirically using user-centered metrics. As the first and
second authors work in software companies, we have access
to practitioners, including domain experts, to validate GDI.
The previously mentioned metrics are complementary to the
ground truth and help measure performance.

Finally, Abedu et al. [37] introduce “RepoChat”, a web-
based tool designed to answer repository-related questions by
combining LLMs with GraphRAG. This tool is the closest
to GDI. However, there are four main differences. First, they
collect data from open-source GitHub repositories, including
work items, commit history, and pull requests, and use the
Smart, Zero, and Zipped (SZZ) algorithm [38] to identify
bug-introducing changes. This algorithm requires that issue
IDs are included in commit logs, which may not always be
present in proprietary projects. Second, they automatically
construct a knowledge graph based on GitHub’s schema. In
contrast, GDI currently only contains work items. Software
systems and projects in the industry may include custom work
item types and attributes; thus, we need to define a separate
schema. Moreover, our proprietary data set includes sensitive
information, requiring pre-processing due to the GDPR and
privacy concerns. We included domain experts to interpret,
clean, structure, and validate the data, ensuring that entities
and relationships are accurately represented in the knowledge
graph. Third, the answers provided by RepoChat include
assumptions and are more lengthy than GDTI’s. In our context,
practitioners preferred shorter answers to longer ones. Lastly,
they conducted a user study with four graduate students (with
an average of 4 years of GitHub experience), and RepoChat
answered 36 out of 40 questions correctly, achieving 90%
accuracy. In contrast, we conducted user-centered validations
with 10 practitioners from two companies, focusing on five
criteria: perceived usability, perceived accuracy, the adequacy
of supporting information, perceived usefulness, and the like-
lihood of adoption in the context of onboarding and TLR.

VIII. CoNCLUSIONS

In this paper, we present GDI, a novel framework that uses
GraphRAG and LLMs to assist software development teams in
navigating work items in ITSs to streamline tasks. The main
advantage of GDI is its ability to let users query work items in
NL and provide supporting information that explains how the
LLM queried the knowledge graph. We validate GDI through
two proof-of-concept implementations for i) onboarding at
itemis, and ii) trace link recovery (TLR) at VX Company.

To answer our research question on onboarding, we con-
ducted a group cognitive walkthrough, short user-centered
validation sessions, and surveys with practitioners who have
work experience in ITSs and GraphRAG systems. Our findings
indicate that GDI is generally perceived as user-friendly and
accurate for onboarding tasks. Most participants found the
system useful and expressed willingness to adopt the system,
except a systems engineer who is proficient in writing queries.

To answer our research question on TLR, we conducted
user-centered validation sessions and interviews with domain
experts who validated the content of the responses generated
by GDI. Our findings show that participants found the system
easy to use and its responses accurate for TLR. Most par-
ticipants found the system useful and expressed willingness
to adopt the system primarily for complex questions, while
preferring Azure DevOps for simple questions.

Despite the positive initial user validation, further refine-
ment of GDI is required to deploy the system in practice. We
aim to expand the knowledge graphs by integrating additional
data, including comments, history, pull request links, and doc-
umentation, to provide a more comprehensive representation of
the data. We plan to conduct a more comprehensive evaluation
by applying GDI to larger systems and projects. We intend to
collaborate with other software organizations to increase the
number of participants. These collaborations will enable us to
assess GDI’s scalability and enhance the generalizability of
our findings. Moreover, to ensure that GDI interprets queries
correctly, regardless of capitalization or syntactic features, and
to minimize hallucinations, we aim to optimize the prompts
and fine-tune the model based on the data for query generation.
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