The Tropos Software Engineering Methodology

Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

Abstract The agent-oriented software engineering methodology Tropos offers a
structured development process for the development of socio-technical systems.
Such systems explicitly recognise the interplay between social actors (humans and
organisations) and technical systems (software). Tropos adopts the state-of-the-art
i* requirements modelling language throughout the development cycle, giving spe-
cial attention to the early phases of domain and requirements analysis. The system
is modelled in terms of the goals of the involved actors and their social interdepen-
dencies, allowing for a seamless transition from the requirements to the design and
potentially to an an agent-oriented implementation. Tropos prescribes a limited set
of domain-independent models, activities, and artefacts, which can be complement
with domain- and application-specific ones.

Acknowledgements The authors thank Angelo Susi (Fondazione Bruno Kessler), Anna Perini
(Fondazione Bruno Kessler), and Paolo Giorgini (University of Trento) for their support.

M. Morandini, C. D. Nguyen
Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy
e-mail: {morandini |cunduy}@fbk.eu

F. Dalpiaz

Department of Computer Science, University of Toronto, 40 St. George Street, M5S 2E4, Toronto,
Ontario, Canada

e-mail: dalpiaz@cs.toronto.edu

A. Siena
DISI, Universita di Trento, via Sommarive 5, 38123 Trento, Italy
e-mail: siena@disi.unitn.it

2 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

1 Introduction

Tropos is a comprehensive, agent-oriented methodology for developing socio-tech-
nical systems. Such systems explicitly recognise the existence of and interplay be-
tween technical systems (software) and social actors (humans and organisations).
Tropos adopts a requirement-driven approach to software development, recognizing
a pivotal role to the modelling of domain stakeholders (social actors) and to the anal-
ysis of their goals and interdependencies, before designing a technical system-to-be
that supports the social actors. System design results in the specification of a multi-
agent system. The methodology was first introduced in [4] and has been extended
in different ways in the last decade. For instance, its modelling language has been
adapted to support the analysis of crucial issues in distributed systems, such as trust,
security and risks [10, 1].

Tropos encompasses all the software development phases, from Early Require-
ments to Implementation and Testing. Tropos introduces an Early Requirements
Analysis phase in software development in which the analysts consider the stake-
holders, their strategic goals, and the organisational aspects of the system as it is,
before the software system under design comes into play.

Throughout the design phases, the aim of Tropos is to understand and analyse
the goals of the stakeholders and to operationalise them, obtaining the requirements
for the software system to be built. Tropos was proposed to ease traceability is-
sues in the software development life-cycle, by relying upon consistent concepts
and artefacts throughout the development phases. As a result, problems that arise
during software construction can be traced back to their original requirements, and
an advanced analysis can be conducted to check whether a specific implementa-
tion satisfies a stakeholder’s goals. Besides this, Tropos also provides guidelines for
implementation and testing. Designed artefacts are used to generate agent-oriented
prototypes and for the derivation of test cases, whose execution result can tell the
fulfilment of stakeholders’ goals (see [18]).

Several support tools for Tropos are available: TAOM4e covers the entire devel-
opment cycle [21, 13], £2x supports generating agent-oriented implementations [14],
the T-Tool [8] provides model checking for Tropos specifications, the GR-Tool sup-
ports formal reasoning on goal models [9], multi-agent planning enables the selec-
tion among alternative networks of delegations [6].

The Tropos methodology was applied to various research and industrial case
studies. Research contributions, including several Ph.D. theses from various uni-
versities and research centers including, among others, FBK Trento and the Univer-
sities of Trento, Toronto, Louvain, Haifa, and Recife, consolidated and extended the
Tropos methodology in several directions, covering topics such as security, norms,
risks, agent testing, adaptive systems, socio-technical systems, traceability, services,
formal analysis, and model interchange. Furthermore, various empirical studies con-
ducted on Tropos, its extensions and concurrent methodologies, demonstrated its
applicability in different domains [11, 16, 5].

This chapter provides guidance on how to use Tropos to develop a Multi-Agent
System (MAS), performing analysis and design activities, generating code and per-

The Tropos Software Engineering Methodology 3

forming testing on it, with the support of a set of tools. Moreover, it enables com-
parison with other tool-supported AOSE methodologies through a description of the
main steps of these activities and of excerpts of the resulting artefacts, with refer-
ence to a common case study, namely, the Conference Management System (CMS)
case study. Following the IEEE FIPA standard XC00097A for agent-oriented soft-
ware engineering, first the methodology life cycle and meta-model are presented.
Then, each phase of the methodology is presented by describing participating roles,
included activities and resulting work products. Finally, the dependencies between
the work products are outlined.

2 The Tropos Process Lifecycle

The software development process in Tropos consists of five subsequent phases,
shown in Fig. 1:

e Early Requirements Analysis is concerned with understanding and modelling the
existing organizational setting where the system-to-be will be introduced (the so-
called “as-is” setting). The organization is represented in terms of goal-oriented
actors that socially depend one on another to fulfil their respective goals.

e Late Requirements Analysis starts from the output of the early requirements, and
introduces the system-to-be in the organizational setting.

e Architectural Design defines the system-to-be’s overall architecture in terms of
interacting subsystems (agents). These agents are those to be implemented.

e Detailed Design further refines the system specification. It defines the function-
alities to be implemented in each agent as well as the interaction protocols.

o Implementation and Testing are concerned with the actual development of the
system agents and verifying whether they operate and interact as specified, re-
spectively.

Even though not expressly shown in the figure, backwards iterations are possible
and often needed, since the analysis carried out in a phase can provide feedback
for the refinement of a previous phase. For example, while modelling the system-
to-be in the late requirements phase, additional actors in the organizational setting
may be identified. Their analysis is carried out through another iteration of the early
requirements phase.

Tropos engineering process

.—..:. , [. D A 1_..c__..1_..t__.::i_,®

Rﬂqﬁzganm Req uLi;lfnants Architectural Detaiked Implementation
Analysis Analysis Design Design and Testing

Fig. 1 The phases of the Tropos software engineering process

4 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

The Tropos software engineering process is model-based. Diagrammatic require-
ments and design models are used and refined throughout the process. These models
are created using a variant of the conceptual modelling language i* [24]. Modelling
activities are central to the first four phases in the software development process,
from early requirements analysis to detailed design. The basic concepts of the goal-
oriented modelling language (see Section 3) are those of actor, goal, plan and social
dependency. Goal modelling is complemented by UML activity and sequence dia-
grams, in the detailed design phase.

Goal modelling can be performed using i * modelling tools such as TAOM4e [13],
which implements the Tropos metamodel presented in Section 3, provides explicit
support for the different modelling phases, and is able to derive skeletons of a BDI-
based agent implementation from goal models.

3 The Tropos Metamodel and Language

The following table describes the key concepts in the Tropos language and their
graphical notation. The definition of the concepts is summarized from [4] and [20].

It models an entity that has strategic goals and inten-
tionality within the system or the organizational set-
ting. It represents a physical, social or software agent
as well as a role or position.

It represents actors’ strategic interests. We distinguish
hard goals (often simply called goals) from softgoals.
The latter have no clear-cut definition and/or criteria
for deciding whether they are satisfied or not, and are
typically used to describe preferences and quality-of-
service demands.

It represents, at an abstract level, a way of doing
something. The execution of plan can be a means for
satisfying a goal or for satisficing (i.e. sufficiently sat-
isfying) a softgoal.

Actor

Goal
Softgoal

i ®

Plan

Resource

Resource It represents a physical or an informational entity.

It is specified between two actors to indicate that one
actor depends, for some reason, on the other in order
to attain some goal, execute some plan, or deliver a
resource.

Dependency

The Tropos Software Engineering Methodology 5

It represents both the ability of an actor to perform
some action and the opportunity of doing this. These
concepts are represented by a plan, together with the

Capability link to the goal which is the means to execute the plan,
and eventual positive or negative contribution links to
softgoals, which describe the opportunity of execut-
ing this plan in favour of alternative ones.

1 depender 0..n

Actor T Tependes 5= Dependency 10"
T 1 0.
executedBy vantedBy 0.1 p.1 o1 n
{XOR} }----f--=-~
| |] wants 0.n Goal 1 dependum {XOR}q---1----
Position Agent Role 0.1 why
Do o] B2 0ulM), —r
oceupy play HardGoal SoftGoal
cover
execute 0.n [pjan 1 dependum
0.1 why
Resource 1 dependum
0.1 why
———

Fig. 2 The UML class diagram specifying the strategic part of the Tropos metamodel.

The Tropos metamodel has been specified in [23]. Here we recall the concepts
and relationships of the language defined in the metamodel.

Concerning the concepts related to the Tropos actor diagram (as shown in Fig-
ure 2), a “position” can cover 1...nroles, whereas an “agent” can play 0. ..n “roles”
and can occupy 0...n “positions”. An “actor” can have 0...n “goals”, which can be
both hard and soft-goals and are wanted by 1 actor.

An actor dependency is a quaternary relationship relating two actors, the depen-
der and the dependee, by a dependum, which can be a goal, a plan, or a resource
and describes the nature of the relationships between the two actors. The why rela-
tionship between the dependum and another concept (goal, plan or resource) in the
scope of the depender actor allows to specify the reason for the dependency.

Figure 3 shows the concepts of the Tropos goal diagram. The distinctive con-
cept of goal is represented by the class Goal. Goals can be analysed, from the
point of view of an actor, by Boolean decomposition, Contribution analysis and
Means-end analysis. Decomposition is a ternary relationship which defines a generic
boolean decomposition of a root goal into subgoals, that can be an AND- or an OR-
decomposition specified via the attribute Type in the class Boolean Decomposition
specialization of the class Decomposition. Contribution Analysis is a ternary rela-
tionship between an actor, whose point of view is represented, and two goals. Con-
tribution analysis strives to identify goals that can contribute positively or negatively
towards the fulfilment of other goals (see association relationship labelled contribute

6 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

1 pointOfView 0..n -
Actor P Decomposition 0.n
1 pointOfView
1
pointOfView 0..n
Contribution 2.0 Boolean Decomposition
+Metric: String +Type: String
o oln on contributedBy o o
{XOR} contributeTo 1 root
-1 Goal
T end
contributeTo | 1 root
T Plan [end
o.n means 0 | J 1
contributeTo {XOR} : - -
1 | Resource : Means-End Analysis
0..n means 0..n
0..n |

Fig. 3 The UML class diagram specifying the concepts related to the goal diagram in the Tropos
metamodel.

in Figure 3). A contribution can be annotated with a qualitative metric, as proposed
in [7], denoted by +, 4+, —, ——. In particular, if the goal g; contributes positively
to the goal g,, with metric ++ then if g; is satisfied, so is g>. Analogously, if the
plan p contributes positively to the goal g, with metric ++-, this says that p fulfils g.
A —+ label for a goal or plan contribution represents a partial, positive contribution
to the goal being analysed. With labels ——, and — we have the dual situation repre-
senting a sufficient or partial negative contribution towards the fulfilment of a goal.
The Means-end relationship is also a ternary relationship defined among an Actor,
whose point of view is represented in the means-end analysis, a goal (the end), and
a Plan, Resource or Goal, representing the means which will be able to satisfy that
goal, i.e. the operationalisation of the goal.

Plan analysis in Tropos is specified in Figure 3. Means-end analysis and AND/OR
decomposition, defined above for goals, can also be applied to plans. In particular,
AND/OR decomposition allows for modelling the detailed plan structure.

4 Early Requirements Phase

The Early Requirements (ER) Phase concerns the understanding of the organiza-
tional context within which the system-to-be will eventually function. During early
requirements analysis, the requirements engineer identifies the domain stakeholders
and acquires through them domain knowledge about the organizational setting. The
organizational setting is further detailed by eliciting and elaborating the needs, pref-
erences and responsibilities of the stakeholders. This domain knowledge is captured
in ER models describing social actors, who have goals and depend on each other for
goals to be fulfilled, plans to be performed, and resources to be furnished.

The Tropos Software Engineering Methodology 7

Q
LDy

Requirements
Analyst

¢

=
<<predecessor>>—|,--—
y

2 o=
‘.e«predecessor»— L,
y

LR Actor Modelling LR Goal Modelling LR Plan Modelling
<</i”PUt><<input>> <<output>> <<input>> <<output>> <<input>> <<output>>
EJ'J" o S EN D
E’a Adct:)r ER Go;’:ll LR Actor LR Goal LR Capability
ode Mode Diagrams Diagrams Table

Fig. 4 The structure of the Early Requirements phase described in terms of activities, involved
roles and work products.

5O ®

ER Goal Modelling

Fig. 5 Flows of activities in the Early Requirements phase.

4.1 Process Roles

Two Roles are involved in this phase: Requirements Analysts and Domain Stake-
holders.

4.1.1 Requirements Analyst

Requirements Analysts gather knowledge about the domain and transform them into
models of early requirements. They are in charge of:

Analysing domain documents

Setting up interviews and focus groups with Domain Stakeholders
Preparing scenarios

Gathering information elicited during interviews and focus groups
Producing ER Actor models

Producing ER Goal models

8 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

4.1.2 Domain Stakeholder

Domain stakeholders own the knowledge about the domain. They are in charge of:

e Providing domain knowledge to Requirements Analysts
e Participating to interviews and focus groups
e Informally validating the requirements models

4.2 Activity Details

4.2.1 Domain knowledge acquisition

Domain Knowledge acquisition consists in the activity of gathering knowledge from
domain stakeholders. It is performed by analysing documents, stakeholder knowl-
edge and production of scenarios, and acquired by setting up stakeholder interviews
or focus groups. The output of this activity consists of domain documentation that
will be the basis for the next two activities in this phase.

In the Conference Management System scenario, during this phase the domain
is investigated to capture its fundamental organizational setting, such as domain
actors and their responsibilities. A guide to start building the Early Requirements
model is given by the following analysis questions: Who are the stakeholders in the
domain? What are their goals and how are they related to each other? What are there
strategic dependencies between actors for goal achievement? The answers to these
question contain information about stakeholders such as the Program Committee,
the Program Chair, the paper submission and peer reviewing mechanism and so on.
They allow for example to insert the Publisher as a major stakeholder in the domain,
and demote the Vice Chair as not relevant with respect to the CMS mechanism.

4.2.2 ER actor modelling

During Early Requirements actor modelling activity, stakeholders, their desires,
needs and preferences are modelled in Tropos in terms of actors, goals, and actor
dependencies. Stakeholders’ goals are then identified and, for every goal, the ana-
lyst can decide, on the basis of the domain documentation, if the goal is achievable
by the actor itself or if the actor has to delegate it to another actor, revealing a de-
pendency relationship between two actors. The activity produces as output an ER
actor model using the delegation step in the design process.

The Conference Management System domain is modelled in terms of its main
stakeholders (actors), as shown in Fig. 6: they are papers’ authors, modelled as the
actor Author; the conference’s program committee and its chair — the PC PC Chair
actors respectively —, papers reviewers, modelled as the actor Reviewer and the pro-
ceedings publisher, actor Publisher. Dependency relationships between actors are
identified, such as in the case of the dependency between Author and PC for the

The Tropos Software Engineering Methodology 9

achievement of the goal Publish proceedings. An analogous analysis can be carried
on for the domain softgoals and resources, according to the Tropos modelling pro-

cess.
Publish Manage
proceedings conference

@ A fix deadline

Peer review
Check
availability

Publication

Fig. 6 The Early requirements Actor Diagram for the Conference Management System domain.

Review

Assigned
paper

4.2.3 ER goal modelling

The Early Requirements goal modelling activity is intended to model the goals of
each given actor, producing a goal model that represent the actor’s rationale. This
activity includes a modelling algorithm comprised by three steps:

e Refine. Goals are refined from a higher abstraction level (typically, the top level
strategic goals coming form the actor model) into more fine-grained goals. The
refinement can include an And- (i.e. decomposition) and Or- (i.e. alternative)
relations among the refining goals.

o Delegate. Goals that are desired by an actor but are able to be satisfied by another
actor are delegated from the former to the latter.

e Contribute. Contribution relations are established between goals whenever the
achievement of a certain goal helps in the achievement of another goal or soft-
goal.

Additional stakeholder needs and preferences can be modelled in this activity by
means of adding new goals and softgoals, and dependency links representing so-
cial relationships. Early requirements analysis consists of several refinements of
the models identified so far, and e.g., further dependencies can be added through a
means-ends analysis of each goal.

In Fig. 7, an Early Requirements goal diagram is shown. This diagram represents
a (partial) view on the model. Only two actors of the model, PC and PC Chair,

10 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

are represented with two goal dependencies, Manage conference and Fix deadlines.
The goal Manage conference is analysed from the point of view of its responsible
actor, PC Chair, through an And- decomposition into several goals: Get papers, Select
papers, Print proceedings, Nominate PC and Decide deadlines. Moreover, softgoals
can be specified inside the actor goal diagram, with their contribution relationships
to/from other goals (see for example the softgoal Conference quality and the positive
contribution relationship from the softgoal Better quality papers).

Manage
conference
Fix
deadline

Organlze
conference
Manage -
Conference ./ Prmt_
quality Sme'SS'ons proceedlngs
Organize
Peer rewew Manage conference event
rewews
+

Better
quality papers 2_*,

AND

Fix
W \<m>
review forms
Nominate Decuje Check reviewer Dispatch
PC deadline availability reviews
'

Fig. 7 Early Requirements of CMS: Goal Diagram.

4.3 Work Products

Table 1 shows the work products for the Early Requirements phase. The relation-
ships of these work products with the Tropos meta-model elements are described
in the following Figure 8. Since these relationships are valid for all goal modes
(including goal and actor diagrams and the capability table) throughout the Tropos
process, the figure does not attribute the work products to a specific phase.

4.3.1 Work Products Examples

The ER Actor Diagram is illustrated by Fig. 6, which shows the actors in the Early
Requirements phase as long as their social dependencies. Fig. 7 illustrates an ER
Goal Diagram for the System-to-be actor.

The Tropos Software Engineering Methodology 11

Table 1 Work products for the Early Requirements phase

Name Description Work Product Kind
Domain Documentation |It contains the knowledge about the domain as|Composite
gathered by requirements analysts.

ER Actor Diagram It represents the actors identified in the domain | Structural
and the strategic dependencies among them.
ER Goal Diagram For each identified actor, it represents the gath-|Structural

ered hard and soft goals that form the rationale
of that actor, decomposed into sub-goals and op-
erationalised through plans.

3 ola
Actor Goal Model
Diagram
Agent ’

= 5 Je e

Q =
Role Actor Goal Diagram ;.l‘.
EJ \§</ J/' Capability Table
Position Resource

Goal R

@FJ‘F‘E Plan

SoftGoal HardGoal

Fig.8 General structure of a Goal Model, composed of actor- and goal diagrams and the capability
table, in relation to the meta-model elements, as used in the early and late requirements analysis
phases and in the architectural and detailed design phases (D: define, R: relate, F: refine, Q: query).

5 Late Requirements Phase

The Late Requirements phase is concerned with the definition of functional and
non-functional requirements of the system-to-be. This is accomplished by treating
the system as another actor (or a small number of actors representing system compo-
nents) who are dependers or dependees in dependencies that relate them to external
actors. The shift from early to late requirements occurs when the system actor is
introduced and it participates in delegations from/to other actors. Here, modelling
activities consist of introducing the system-to-be as a new actor with specific depen-
dencies from/to stakeholder actors. These dependencies lead to the identification of
system goals, that will be further analysed in terms of sub-goals, of plans providing

12 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

Far}
Lw
Requirements
Analyst

¢

I
<<predecessor>>—| -

i o [5
‘.e<<predecessor>>—|l.——— '
y

= =7 —
LR Actor Modelling LR Goal Modelling LR Plan Modelling
<</i”PUt><<input>> <<output>> <<input>> <<output>> <<input>> <<output>>
El\j Adct:)r ER Go;’:ll LR Actor LR Goal LR Capability
ode Mode Diagrams Diagrams Table

Fig. 9 The structure of the Late Requirements phase described in terms of activities, involved roles
and work products.

means for their achievement, of positive and negative contributions to stakeholders’
preferences (typically modelled as softgoals).

5.1 Process Roles

The Late Requirements Phase is accomplished by Requirements Analysts.

5.1.1 Requirements Analyst

During this phase, Requirements Analysts are in charge of:

Introducing the system-to-be as a new actor

Delegating stakeholder goals to the system to be through dependency links
Refining the top goals assigned to the system to be to leaf-level goals
Identifying the capabilities of the system-to-be and model them as plans

The Tropos Software Engineering Methodology 13

'

LR Actor Modelling | LR Goal Modelling LR Plan Modelling

Fig. 10 The flow of activities in the Late Requirements phase.

o -

5.2 Activity Details

5.2.1 LR actor modelling

During Late Requirements actor modelling, the System-to-be is introduced into
the models as a new actor. Stakeholder needs and preferences are assigned to the
System-to-be actor by establishing goal dependency links from stakeholder actors
to the System actor. Top-level goals received by stakeholders form the functionali-
ties which the system is responsible for.

A partial view of the LR actor model for the CMS domain is shown in Fig. 11
where the CMS System actor is represented.

Publication

Coordinate
conference

Support paper

submission

Fig. 11 Late Requirements: Actor Diagram.

5.2.2 LR goal modelling

During Late Requirements goal modelling the top-level goals of the system-to-be
are refined into more fine-grained goals, resulting in system-specific goal models.
This activity includes the same goal modelling algorithm used in ER goal modelling.

14 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

The System’s goals are And- or Or- decomposed into more fine-grained goals. These
goals are analysed from the system actor perspective.

In Fig. 12, the relative goal diagram is shown for the CMS domain. The goals
Coordinate conference and Manage proceedings are decomposed in new sub-goals.
Moreover, operative plans are specified and associated to the system goals as means
to achieve them (means-ends relationships), such as in the case of the goal Manage
decision.

Coordinate
conference

AND

Manage
Manage proceedings
submissions Manage AND

reviews
AND

Manage
decisions
Get final
) ()
apers assigne:
+ tz reviewegrs be collected proceedings
Support paper Reqeive @
submission <reV|ews >
Get Deal with @
proceedings review

Fig. 12 Late Requirements: Goal Diagram.

N

5.2.3 LR plan modelling

During plan modelling actor goals are operationalised into concrete plans. If an ac-
tor owns the capability to fulfil a leaf-level goal by performing a specific plan, this
is modelled into the goal model as a plan and bound through a means-end relation
to the goal. Otherwise, the goal may require to be delegated to some other actor.
This activity produces as output a modified version of the goal model and a a capa-
bility table. The capability table which consists in a view on the goal model, which
highlights the capabilities identified for the actors.

In Fig. 12, the two plans Accept and Reject operationalise the goal Manage deci-
sion.

The Tropos Software Engineering Methodology 15

5.3 Work Products

Table 2 shows the work products for the Late Requirements phase. For the content
of these work products refer to the general Figure 8.

Table 2 Work products for the Late Requirements phase.

Name Description Work Product Kind

LR Actor Diagram [It represents the System-to-be as a new actor of the|Structural
model, and the functionalities assigned to it as functional
dependencies from domain actor to the system actor.

LR Goal Diagram |It represents the operationalisation of the System-to-be|Structural
strategic top goals in terms of tactical goals, including
alternative ways to achieve them.

LR Capability Model | It represents the operationalisation of the System-to-be|Structured
functional goals in terms of plans and contribution to
softgoals.

5.3.1 Work Products Examples

The LR Actor Diagram is illustrated by Fig. 11, which shows the actors in the
Late Requirements phase as long as their social dependencies. Fig. 12 illustrates
an LR Goal Diagram for the System-to-be actor. Table 3 illustrates the LR Capabil-
ity Model.

Table 3 LR Capability Model example.

Goal Capabilities
Format proceedings Accept; Reject
Reviews be collected Send reminders, Receive reviews

6 The Architectural Design Phase

The Architectural Design (AD) phases drives the definition of the actual system
architecture. It comprises both the overall multi-agent system structure and the de-
tailed design for each single agent of the system. The phase is outlined in Fig. 13
(activity flow) and Fig. 14 (structural view), while details are provided in the fol-
lowing sub-sections.

The produced artefact consists of the system’s overall structure, which is repre-
sented in terms of its sub-systems (AD Goal Diagrams), their inter-dependencies

16 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

Further refinement

needed
|| i[5)
Identify agents Applysc:;fgatlon Goal modeling Capability modeling

Fig. 13 Flow of activities in the Tropos Architectural Design phase.

(AD Actor Diagram), and their capabilities (AD Capability Table). Adopting the
multi-agent system paradigm, sub-systems are autonomous agents that communi-
cate through message passing.

6.1 Process roles

Two roles are involved: the System Architect and the Agent Designer.

6.1.1 System Architect

It is responsible for refining the system actor (LR Goal Diagram) by introducing
system agents, which are delegated responsibility for the fulfilment of the system’s

v fh
System architect Agent designer

[|
- e<<predecessor>>— |

Identify agents Applysﬁfsgatlon Goal modeling Capability modeling
<<i73ut>> <<input>\> <<output>> <<input>> <<outpuy<input>> <<output>>
B B B B 2.
LR Actor LR Goal AD Actor AD Goal AD Capability
Diagram Diagram Diagram Diagrams Table

Fig. 14 The structure of the Architectural Design phase described in terms of activities, involved
roles and work products.

The Tropos Software Engineering Methodology 17

goals. While delegating responsibilities, the architect may apply organizational pat-
terns [12] so as to structure the relationships between and responsibilities of agents.

6.1.2 Agent Designer

Given the AD Actor Diagram created by the System Architect, it is responsible for
detailing the identified agents by applying goal modelling (as in the early and late
requirements phases). Additionally, the agent designer is responsible for perform-
ing capability modelling, which defines how each agent will fulfil the goals it is
responsible for.

6.2 Activity Details

We detail each of the activities of the phase, showing the main involved artefacts, as
well as examples from the CMS case study.

6.2.1 Identify agents

The aim is to split the complexity of the system, which is described in terms of high-
level goals, into smaller components, easier to design, to implement, and to manage.
These components are autonomous agents.

6.2.2 Apply delegation styles

The identified agents take up responsibilities (through delegations) from the system
actor. In other words, the goals of the system actor (LR Goal Diagram) are delegated
to specific agents. During this activity, when applicable, organizational patterns [12]
(e.g., structure-in-five or joint-venture) can be applied to decide how to relate the
agents. Fig. 15 displays the resulting architectural design diagram for the CMS
System actor. Analysing this actor’s goal model (see Fig. 12), the engineer should
be able to extract a proper decomposition into agents.

In our example we introduce four new agents. The Conference Manager man-
ages the top-level goal Coordinate conference, delegated to the system by the
program committee actor PC. The Paper Manager gets goal Support paper sub-
mission delegated from the domain actor Author. Further, some internal agents
depend on it to manage submissions. To do this, the agent depends on authors to
get papers. Similarly, the Review Manager and Proceedings Manager get goals
delegated from the Reviewer and the Publisher, respectively.

18 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

CMS

Systy

Support paper

submission

Get paper
Get
proceedings

Reviewer Deal with
reviews

Fig. 15 Architectural Design: CMS System Decomposition into agents.

Coordinate
conference

Conference
Manager

Manage

submissions

Collect CR
papers

Deal with
proceedings
Collect
reviews

Paper
Manager

Proceedings
Manager

Get papers
to review

Review
Manager

A 4

0609

6.2.3 Goal modelling

Once the sub-actors have been modelled and have been assigned responsibilities
through goal and task delegation, each of them is analysed by building a goal model.
For more details about this activity, look at the goal modelling activity in the early
and late requirements phases.

Fig. 16 shows an excerpt of the goal models for two agents, namely Paper
Manager and Proceedings Manager. We focus on the analysis of the goal Get
proceedings delegated from the Publisher agent, and the resulting dependency
between the two agents. The delegated goal is AND-decomposed into sub-goals,
which are either operationalised through a plan or further decomposed. To be
achieved, one of the sub-goals, Deal with proceedings, causes the Proceedings
Manager to depend on the Paper Manager for the goal collect finals.

Notice that there may exist alternative operationalisations of the system agents.
For example, in Fig. 16, the Proceedings Manager can print proceedings either
via postscript (ps) or pdf. These alternatives differ in terms of their contribution to
soft-goals. While the postscript option is better in terms of contribution to soft-goal
printer fidelity, the pdf option is better for what concerns portability. The decision
about which option to select is delegated either to the detailed design phase or,
envisioning an adaptive system, to run-time.

The Tropos Software Engineering Methodology 19

Cat Publisher

CMS roceedings
Collect CR

System
44— _ papers
- (cOuecx CR) ~_
papers ~

Manager
AND

Proceedings | — o ~_
proceedings.
AND \
/ \ / = _ \
/ Collect CRs (Prepare) \ / Deal w_nh) G Deliver) \
/ in DB support \ / proceedings roceedings \
/ ’\‘ /'\ \ / AND
[\ [~ Format
tore CRS! Prepare Prepare \ | _
in DB USB stick | | publisher,
R / | check
/ \ / Check
\ style
\

AND |
) Print to /
<Prmt to ps> < pof > /
\\ Recompile
N

Fig. 16 Architectural Design: Simplified Goal Model of two agents of CMS.

\

6.2.4 Capability modelling

This activity details whether and how a specific agent is capable of achieving a goal
by executing a specific plan. As suggested in [20], modelling capabilities includes
assessing both ability and opportunity. Ability means that the agent can carry out
a plan without interacting with (delegating to) other agents. A greater opportunity
means that the plan contributes better than others to the stakeholders’ preferences
and QoS needs (i.e. to modelled soft-goals). Plans can also be detailed, by decom-
posing them in AND and OR to more concrete sub-plans. See for instance the AND
decomposition of the plan store finals in DB into the sub-plans retrieve finals,
control format, store in DB, in Fig. 16.

6.3 Work Products

Table 4 lists the work product types for the Architectural Design phase. The rela-
tionships of these work products, representing a Tropos goal model, with the meta-
model elements, are described in Figure 8.

6.3.1 Work Products Examples

The AD Actor Diagram is illustrated in Fig. 16, which shows the delegations be-
tween the system actor and other agents. Fig. 15 compactly shows two AD Goal
Diagram for agents “Paper Manager” and “Proceedings Manager”. Table 5 illus-
trates an AD Capability Table.

20 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

Table 4 Work products for the Architectural Design phase.

Name Description Work Product Kind

AD Actor Diagram (It shows the dependencies from the system actor to the | Structural
agents as well as the dependencies between the agents.

AD Goal Diagrams | They represent the goal diagram for each of the identi- | Structural
fied and analysed agents.

Capability Table [It lists all agent capabilities along with their contribu-|Structured
tions to soft-goals

Table 5 Example of an AD Capability Table.

Goal Ability Contribution
Prepare support Prepare USB stick Flexibility (+); Cost (-)
Prepare support Prepare CD Flexibility (-); Cost (+)

7 Detailed Design

The Detailed Design (DD) phase is concerned with the specification of the capa-
bilities of the software agents in the system and of the interactions taking place,
focusing on dynamic and input-output aspects, leading to a detailed definition of
how each agent needs to behave in order to execute a plan or satisfy a goal. This
includes the detailed specification of the single functionalities composing the plans
associated to each agent’s goals, the definition of interaction protocols and of the dy-
namics of the interactions occurring between agents and with systems and humans
in the environment.

In this phase, also a decision on the implementation paradigm has to be made,
either for going to a traditional object-oriented, or to an agent-based, goal-driven
implementation. The activities in the phase are outlined in Figure 17 while Figure 18
shows the internal structure of the phase.

) Decision 0{1].,_: :-.
Activity Jm’iii’;ﬁ’,»g‘f,ﬂf’" 7S
I modelling \ 00 design
| Q| E' ey :~, o :,
. L/ lr)j _"‘: 7S -
Detailed plan Interaction]I'—: e
modelling modelling 7S]

BDI agent design

Fig. 17 Flow of activities in the Tropos Detailed Design phase. Iterations are not shown in the
diagram, but possible starting at each activity.

The Tropos Software Engineering Methodology 21

= [, =
7b
(= ent = 2

AD Actor™, designer DD Goal Ly

Diagrams<<input>> <<oupu>> Diagrams '
= e B

\;{I“\‘—-«inpm» N |ﬁ >g+e<<predecessor>>—‘ 2\—{&'
AD Gl Detailed plan |_L_ . o2 __s<outpup>> UML
bi) modelling f \/51 <—<<predecessory> :7>J component and
fagrams <<jnput>> //l\:ctiv-it_ 00 design class diagrams
<<output>> i 4 < >>
E modelling predecessor:
= = / oS
) = AL ¢

AD Capability UML activit — <<output>> Interaction <<Predecessor>> =

Table t y = modelling A <<0ulpu1>>/7 s

lagrams =0y [l=] — BDI agent
i3 structure
UML_ sequence BDI agent
diagrams design

Fig. 18 The structure of the Detailed Design phase described in terms of activities, involved roles
and work products. Please note that the internal use of work products in output of an activity as
inputs of the subsequent activities is not shown explicitly, to keep the diagram concise.

7.1 Process roles

Two roles are involved, the Agent Designer and the Software Architect.

7.1.1 Agent Designer

The Agent Designer, involved also in the AD phase, is responsible for detailing the
goal models obtained from the previous step, decomposing the plans into AND/OR
hierarchies, till arriving to the concrete functionalities that compose each plan.

7.1.2 Software Architect

It is responsible for the detailed design of the system as a whole and of the single
functionalities that have to be implemented. He has to take a decision for the pro-
gramming paradigm to follow and the implementation platform to use, and to detail
the models according to its decisions.

22 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

7.2 Activity Details

7.2.1 Detailed capability modelling

The agent designer details the capabilities identified in the AD phase through plan
modelling by AND/OR decomposition to sub-plans, until reaching a fine-grained
level defining the single activities that need to be available in the system.

7.2.2 Activity modelling

At this step, the software architect needs to take a first decision on the alternative ca-
pabilities and sub-plans which should be further specified and finally implemented,
depending on the desired adaptability of the system and the affordable implemen-
tation effort. This selection should be made considering positive and negative con-
tributions to softgoals which represent preferences and quality-of-service demands,
or by employing a requirements prioritisation technique. If the aim is to create an
adaptive system, a higher number of alternatives should be detailed and eventually
implemented. To model the execution workflow for the activities that a capability
is composed of, UML activity diagrams are adopted. UML activity diagrams can
be directly derived from Tropos plan decompositions by model transformation, and
further elaborated by detailing the dynamic aspects of a capability (see an example
in Figure 19), including sequential and parallel workflows and alternative choices.

Retrieve CRs

PaperManager

Author

|
|
L

request:.get_paper

inform:reminder

agree

inform:paper

ack:received

Control
format

C— . —

Fig. 19 Activity and interaction modelling: Goal diagram with a plan decomposition for a part of
the CMS Paper Manager Agent, detailed in UML activity and sequence diagrams.

The Tropos Software Engineering Methodology 23

7.2.3 Interaction modelling

The software architect analyses the interactions that take place, between agents in
the system which need to be detailed for each activity, and between the agents in the
system and actors in its environment (including software agents and human actors).
UML sequence diagrams (Figure 19) are used for specifying interaction protocols
and details for each agent interaction and for single activities (i.e. leaf-level plans).

7.2.4 Platform-dependent design

At this stage, a decision on the implementation paradigm has to be made, either for
going to a traditional object-oriented, or to an agent-based, goal-driven implemen-
tation. Following the central idea of Tropos to keep the notions of actor/agent and
goal throughout all phases to avoid conceptual gaps, an agent-oriented implemen-
tation is recommended. Agents are autonomous entities with independent threads
of control, that can interact with each other to reach their goals. Various frame-
works are available, supporting these implementation concepts. An object-oriented
implementation could be of benefit for performance-critical systems and for a better
integration with existing software. In the following. we briefly touch on an object-
oriented design, while the specific implementation phase proposed for Tropos relies
on an agent-oriented design.

Object-Oriented design

At this point, a traditional OO approach can be followed for the detailed design, by
using component and class diagrams for the description of the agents in the system
and their relationships.

BDI agents design

Aiming at an agent-oriented implementation, after having modelled the single activ-
ities and interactions to be carried out by an agent (i.e. the capability level), in this
activity the behavioural aspects, called the knowledge level [20], are detailed. This is
achieved by mapping the high-level goal model of an agent, including dependencies
and contribution relationships, into a generic BDI (belief-desire-intention) agent
structure, according to a mapping such as the one defined in [19]. This structure
can be enriched defining goal types (maintenance, achievement), goal satisfaction
and goal failure criteria [15]. Selecting the proposed agent development platform
Jadex, the mapping to an Agent Definition File specification is tool-supported [14].

24

Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

7.3 Work Products

The Detailed Design phase generates four work products, which in part depend on
the chosen implementation architecture, out of the ones listed in Table 6.

Table 6 Work products created during the Detailed Design phase.

Name Description Work Product Kind
DD Goal Diagram (It details the AD goal diagram of each agent, with|Structural
the plans decomposed to sub-plans which represent the
single functionalities that should be available.
UML Activity Dia-|It details a plan to the single activities it is composed | Behavioural
gram of, and captures their temporal order.
UML Sequence Dia-|It explicitly shows the interactions between two soft-|Behavioural
gram ware or human entities, possibly basing on interaction
protocols, and defines the effects of an interaction.
UML Component|They illustrate the whole system by the use of UML |Structural
and Class Diagrams |diagrams, suitable if the target language is object-
oriented.
BDI Agent Structure |It has a structure basing on the concepts of goal, plan|Composite
and belief [3]. Adopting Jadex [22] as implementation
platform, this structure is represented in an Agent Def-
inition File.

7.3.1 Work Products Examples

Figure 19 illustrates the main work products of the Detailed Design phase. Left:
an excerpt of a DD goal diagram with plan decomposition; middle: UML activity
diagram for plan Store CRs in DB; right: UML sequence diagram detailing the
interactions that need to take place in one of the leaf-level plans. Portions of a BDI
agent structure are shown, implemented as Jadex Agent Definition File, on the right
side of Figure 22.

8 Implementation and Testing

The last phase in the Tropos development process includes coding and testing activ-
ities, leading to the deployment of the final software.

Tropos does not impose the use of a specific implementation platform. However,
it recommends the adoption of an agent-oriented language with the notions of agent,
goal, and plan. In this way, conceptual gaps are reduced and the traceability of arte-
facts and decisions through the phases is simplified. Specifically, we describe an
implementation on the Jadex [22] agent platform. Nevertheless, the activities de-
scribed are general and apply in principle also to a development with other agent

The Tropos Software Engineering Methodology 25

L5
Test case
derivation
: - ! \
BDI agent code =35 n % rexe)
derivation :_>_7—- ; Q= C
Behaviours :73j “:;M
implementation Agent testing Deployment

Fig. 20 Flow of activities for the Implementation and Testing phase.

languages, such as Jack, Jason or 2APL. Also, non-BDI agent languages such as
JADE can be used for the full implementation, mapping goals to the artefacts avail-
able in the language.

The activities in this phase, outlined in Figure 20, are typically executed in an it-
erative way and, to some degree, in parallel, to take account of the revisions needed
to reach to a final software product. Figure 21 shows the in- and output work prod-
ucts and the involved actors.

= Test case ‘

|_'\' <<input>> denvatlon :\
AD Actor ™~ BDI agent code e BDI (W)= X
Diagram < "PU®Z_ derivation -\, agent ! Agent tester

|\ 171“ :‘ “roulput> I_b COde <<output>>
<<inpm>;/2c:‘>_ <<predecessor>> =
<<ou ul>>
E -~ f <<predecessnr>> <<|nput> Lﬂ»}’
<<input>>

L@\\ Agent Test

Detailed <<Input>> .

<<input>> Cases |
S0y

/de ployed

0eSSO> coutput>mgent System

Design
artifacts <<predeoessor>
Behawours {e«m
implementation -‘:7 2]

Agent testing ’I’:_r R

Lo
Adsft

programmer Deployment

Fig. 21 SPEM model showing the structure of the Implementation and Testing phase with in in-
and output work products. The phase takes in input the AD actor diagram and the outputs of the
DD phase.

8.1 Process roles

Two roles are involved: the Agent Programmer and the Agent Tester.

26 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

i %) <agent xmlns="http://jadex.sourceforge.net/jadex"
Paper name="Paper_Manager"
Manager collect finals package="Agent Paper_ Manager">
- " <beliefs/>
i /ﬁ? N <goals>

<achievegoal name="manage_submissions">
; <achievegoal ne ollect_f >
<achievegoal deliver_final

£ send reminders. | <achievegoal "collect finals_in_|

& <metagoal name="meta_ deliver finals_to_ PM">
</goals> - - -
<plans>

<plan name="requestPlan_colle

_finals">

oc d goal, used to

all

<plan r

<plan r aPlan deliver

Plans that d the activity part. >

<plan name="realPlan_deliver_on_CD">
<parameter name="param" clas
<parameter name="result" c ="String">
<body>new RealPlan_deliver_on_CD()</body>
<trigger><goal ref="deliver finals to PM"/>
</trigger>

</plan></plans>

_collect_finals">
nals_to_PM">

"String">

store finals in DB

<events>

<!-- Specifies a request to achieve

@ <messageevent name="request_collect

1 direction="receive" type="fipa">

@ Goal: collect _ <parameter name="performative"
" class="String" direction="fixed">

@_@] finals <value>SFipa.REQUEST</value>
/ </parameter>
?""@) (,_f, Paper <parameter name="content-start"

String" direction="fixed">

</events>
</agent>

cl
G"_'J \%/Manager </i geevent>
@

Fig. 22 Left: Simplified goal diagram for PaperManager modelled using the TAOM4e tool.
Right: part of the Jadex XML code generated with the #2x tool. Bottom: example Jadex run-time
agent instance with activated goals and plans, visualized with the Introspector tool provided by the
Jadex platform.

8.1.1 Agent Programmer

The Agent Programmer is responsible for carrying out the implementation of the
agent system, starting from goal models and UML diagrams. Typically, he also car-
ries out the deployment of the software system.

8.1.2 Agent Tester

On the basis of goal models and sequence diagrams, the agent tester derives test
cases, which are then executed on the software agents.

8.2 Activity Details

We detail each of the activities of the phase and explain the artefacts involved.

The Tropos Software Engineering Methodology 27

8.2.1 BDI agent code derivation

The goal and UML models created in the DD phase and the AD actor diagram
are the basis for the implementation of software agents. Selecting Jadex as a target
platform and using the 72x tool, Jadex code can be generated basing on the BDI
agent structures previously defined. The #2x tool analyses a GM exploring goal de-
composition trees. The goal hierarchy is mapped to Jadex goals along with Java
files containing the decomposition logic, while plans are implemented in Java files
and connected to the relative goals by a triggering mechanism. The generated code
implements the agent’s reasoning mechanisms needed to select correct plans at run-
time to achieve desired goals defined in the agent’s AD goal model. It has to be
customized adding the temporal and operational aspects defined in the detailed de-
sign UML models, and implementing the interaction protocols. FIPA standard agent
interaction protocols such as Request and Contract Net are predefined. As an exam-
ple, Fig. 22 shows part of the generated Jadex code in XML format of the agent
Paper Manager from the CMS example. This fragment of code corresponds to
the Tropos goal model on the top-left side of the figure, and it reasoning trace at
run-time is presented on the bottom-left corner of the figure.

8.2.2 Behaviours implementation

With the DD activity and sequence diagrams in input, in this phase the behaviours of
the agents are implemented. The behaviours realise the plans defined in a goal model
to operationalise the goals. Behaviours can be implemented with OO concepts (e.g.
in JAVA) or using specific concepts present in languages such as JADE [2].

8.2.3 Test case derivation

A systematic way of deriving test cases from goal-oriented specifications and tech-
niques to automate test case generation and their execution has been introduced
in [18]. Such approach considers different testing levels, from unit testing to ac-
ceptance testing, and different aspects of testing a Multi-agent system that adopts
Tropos design. Test cases are derived from the agent specifications (specifically, the
AD actor diagram) with the aim to test and validate the interactions between agents
(represented as dependencies in Tropos) and the achievement of goals, adopting
domain-specific metrics. Test cases derivation is supported by a semi-automatic tool
[17], providing a GUI-based editor to detail test scenarios and inputs.

In the case of the CMS, the eCAT testing tool [17] takes the architectural diagram
in Figure 15 as an input and generates a set of test suites for each agent.

28 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena

8.2.4 Agent testing

The agent testing activity consists of an automated testing of the agents in a vir-
tual environment, observing the interactions with the environment and with the peer
agents, while varying environment and inputs for each test case. This activity can
be automated and parallelised with the help of the testing framework introduced in
[18].

8.3 Deployment

The BDI agent code, including the implemented behaviours, can be executed on
the Jadex platform. Interactions and the goal achievement process can be visual-
ized via tools provided by the platform. Regarding the present case study, code was
generated for the two system agents ProceedingsManager and PaperManager.
As an example, Fig. 22 shows an excerpt Jadex code in XML format, for the agent
Paper Manager. This fragment of code corresponds to the Tropos goal model on
the top-left side of the figure, and it reasoning trace at run-time is presented on the
bottom-left corner of the figure.

8.4 Work Products

Focusing on an agent-oriented implementation, the implementation and testing
phase generates four main work products, listed in Table 7.

Table 7 Work products created during the Implementation and Testing phase.

Name Description Work Product Kind
BDI agent code It represents the executable agent code that exhibits the| Composite
behaviour defined in the previous phases.
Agent test cases They define a list of inputs and corresponding outputs | Behavioural

(data, interactions, exhibited behaviours), to test the
correctness of the single agent implementations and of
the whole system. Defined in XML format, they can be
used as input for automated testing agents.

Deployed agent system |1t represents the running agent system. Composite

8.4.1 Work Products Examples

The BDI agent code depends on the selected implementation platform. In Jadex, it
corresponds to an Agent Definition File, such as on the right side of Figure 22, for

The Tropos Software Engineering Methodology 29
Paper Manager
TesterAgent . =

Test scenario 1

. B “eollect finals -

‘ :::'-send reminders
-::Z'_'g_.end by mal._'l_'_'s_'j::-

®

i}
Fig. 23 An example of a test case for the Paper Manager, specified using the eCAT editor.

each agent, in combination with Java code. The behaviour of the deployed agents
can be visualized at run-time on the agent platform, such as in the lower left part of
Figure 22. Figure 23 depicts and example of a test case that checks the goal send
reminders of the Paper Manager. The test case is specified using the eCAT editor;
following the test scenario of the test case, the Agent Tester waits for a message from
the agent under test (Paper Manager), checks for the content of the message, and
sends back a notification.

9 Work Product Dependencies

The work product dependency diagram in Figure 24 describes the dependencies
among the different work products created in the five development phases. Focusing
on an agent-oriented implementation, an eventual object-oriented implementation is
not considered.

¢ =] =] =
JuEY [— MRyTTII I =
A ~ -
_ -~ Domain) 1% Actor /’(ﬁ Actor\\\ TS Agent Testw
@ - Dogémentation P / Diagram e Dlﬂgram s _ ,L{L\. Cases \‘
E N S T AN ¢
TN S~y | 7 v - Ey PP component and _{b\'
Scenarios\ // S~ E' 7 8 7 =TS ~ o class diagrams
b g ~=_ N ~ e defoyed
/ L“\. L{} ————— +L0 T N AN Agent System
g 7 oD © S Teeo T o
— =X ERActor R Goal, AD Goal~ | N /
[oM ~" Diagram < Diagrams ™ S\ BDlagent~~_ e/
~ \ odel e ~ RN N ~
Documen ™ \ | e | N \ Lﬁ, - structure >,
~ ~ SN N L(.‘»
¢ o \ 4 Ev N Eﬂ* D Goak = . = -
* o~ - = - /Diagrams AWE NE -7 BDI
) *%} ****** E o _:l;{_-}i o 7>|4{_,\\/ agent code
ER Goal Capability AD Capability UML activity UML sequence
Model Model Table diagrams diagrams

Fig. 24 Work product dependency diagram for the Tropos methodology.

30 Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena
References
1. Yudistira Asnar, Paolo Giorgini, and John Mylopoulos. Goal-driven risk assessment in re-

11.

12.

13.

14.

15.

16.

17.

18.

19.

quirements engineering. Requir. Eng., 16(2):101-116, 2011.

. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE: A FIPA Compliant agent

framework. In Practical Applications of Intelligent Agents and Multi-Agents, pages 97-108,
April, 1999.

. Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal representa-

tion for bdi agent systems. In PROMAS, pages 44—65, 2004.

. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-

Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Systems,
8(3):203-236, July 2004.

. Volha Bryl, Fabiano Dalpiaz, Roberta Ferrario, Andrea Mattioli, and Adolfo Villafiorita. Eval-

uating procedural alternatives: a case study in e-voting. EG, 6(2):213-231, 2009.

. Volha Bryl, Paolo Giorgini, and John Mylopoulos. Designing cooperative IS: Exploring and

evaluating alternatives. In OTM Conferences (1), pages 533-550, 2006.

. L.K. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software

Engineering. Kluwer Publishing, 2000.

. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early requirements

specifications in Tropos. In IEEE Int. Symposium on Requirements Engineering, pages 174—
181, Toronto (CA), August 2001. IEEE Computer Society.

. P. Giorgini, J. Mylopoulous, and R. Sebastiani. Goal-Oriented Requirements Analysis and

Reasoning in the Tropos Methodology. Engineering Applications of Artificial Intelligence,
18(2):159-171, 2005.

. Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modeling security

requirements through ownership, permission and delegation. In Proceedings of the 13th IEEE
International Requirements Engineering Conference (RE’05), 2005.

Irit Hadar, Tsvi Kuflik, Anna Perini, Iris Reinhartz-Berger, Filippo Ricca, and Angelo Susi.
An empirical study of requirements model understanding: Use Case vs. tropos models. In
SAC, pages 2324-2329, 2010.

M. Kolp, P. Giorgini, and J. Mylopoulos. A goal-based organizational perspective on multi-
agents architectures. In Proceedings of the Eighth International Workshop on Agent Theories,
architectures, and languages (ATAL-2001), 2001.

Mirko Morandini, Duy Cu Nguyen, Anna Perini, Alberto Siena, and Angelo Susi. Tool-
supported development with tropos: The conference management system case study. In
Michael Luck and Lin Padgham, editors, Agent Oriented Software Engineering VIII, volume
4951 of LNCS, pages 182-196. Springer, 2008. 8th International Workshop, AOSE 2007,
Honolulu, HI, USA, May 2007.

Mirko Morandini, Loris Penserini, and Anna Perini. Automated mapping from goal models to
self-adaptive systems. In 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), Tool Demo, pages 485-486, September 2008.

Mirko Morandini, Loris Penserini, and Anna Perini. Operational Semantics of Goal Mod-
els in Adaptive Agents. In 8th Int. Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS’09). IFAAMAS, May 2009.

Mirko Morandini, Anna Perini, and Alessandro Marchetto. Empirical evaluation of tropos4as
modelling. In iStar, pages 14-19, 2011.

Cu Duy Nguyen, Anna Perini, and Paolo Tonella. ecat: a tool for automating test cases genera-
tion and execution in testing multi-agent systems. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems: demo papers, pages 1669-1670.
International Foundation for Autonomous Agents and Multiagent Systems, 2008.

Cu Duy Nguyen, Anna Perini, and Paolo Tonella. Goal-oriented testing for MASs. Interna-
tional Journal of Agent-Oriented Software Engineering, 4(1):79-109, 2010.

Loris Penserini, Anna Perini, Angelo Susi, Mirko Morandini, and John Mylopoulos. A Design
Framework for Generating BDI-Agents from Goal Models. In 6¢h Int. Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS’07), Honolulu, Hawaii, pages 610-612, 2007.

The Tropos Software Engineering Methodology 31

20.

21.

22.

23.

24.

Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. High variability design for
software agents: Extending tropos. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 2(4), 2007.

A. Perini and A. Susi. Agent-Oriented Visual Modeling and Model Validation for Engineering
Distributed Systems. Computer Systems Science & Engineering, 20(4):319-329, 2005.
Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A bdi reasoning engine.
In J. Dix R. Bordini, M. Dastani and A. El Fallah Seghrouchni, editors, Multi-Agent Program-
ming, pages 149—174. Springer Science+Business Media Inc., USA, 9 2005. Book chapter.
Angelo Susi, Anna Perini, John Mylopoulos, and Paolo Giorgini. The tropos metamodel and
its use. Informatica (Slovenia), 29(4):401-408, 2005.

E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, Department of Computer Science, University of Toronto, 1995.

