
Back to the Roots: Linking User Stories
to Requirements Elicitation Conversations

Tjerk Spijkman
fizor. and Utrecht University

Utrecht, the Netherlands
Email: tjerk@fizor.io

Fabiano Dalpiaz
Utrecht University

Utrecht, the Netherlands
Email: f.dalpiaz@uu.nl

Sjaak Brinkkemper
Utrecht University

Utrecht, the Netherlands
Email: s.brinkkemper@uu.nl

Abstract—Pre-requirements specification (pre-RS) traceability
focuses on tracing requirements back to their sources. In compar-
ison with post-RS traceability, pre-RS traceability is an under-
explored area of research. Likely reasons for the limited studies
are the scarcity of pre-RS resources, e.g., recorded requirements
elicitation conversations such as interviews or workshops, and
the challenges of linking requirements to informal, unstructured
text. Building on the increasing use of digital communication
tools that allow the recording and transcription of conversa-
tions, we explore the opportunity of linking requirements to
the transcript of a requirements elicitation conversation. We
introduce TRACE2CONV, a prototype tool that aims at tracing
user story requirements back to the relevant speaker turns in
a conversation. TRACE2CONV makes use of NLP techniques to
determine the relevant speaker turns. As an initial validation,
we take automatically generated transcripts from real-world
requirements conversations, and we assess the effectiveness of
TRACE2CONV in supporting the process of identifying additional
context for the requirements. The validation serves as a formative
evaluation that guides the evolution of TRACE2CONV and as a
inspiration for future research in the field of conversational RE.

Keywords—Requirements Elicitation, User Stories, Natural
Language Processing, Conversational RE.

I. INTRODUCTION

Requirements traceability (RT) refers to the ability to de-
scribe and follow the life of a requirement, both forward
and backward [1]. Conducting RT is important to identify
the sources of a requirement [2], to analyze the impact of
a requirement on software engineering artifacts such as code
and test cases [3], and to determine dependencies between
requirements, also known as horizontal traceability [4].

Depending on whether we look backward or forward from
a requirements specification document, we can distinguish
between [1]: Pre-RS traceability, referring to linking the re-
quirements in a specification to the sources that justify their
existence; and Post-RS traceability, concerned with the life
cycle of a requirement after its inclusion in the specification.

Although the high(er) potential of pre-RS traceability has
been recognized already in the 1990s by Gotel [1], Pre-RS
traceability is a significantly less explored area of research
than post-RS traceability [2]. We agree with Krause et al. [2]
and argue that this is due to the easier availability of and
accessibility to the artifacts. For example, code and test cases
(post-RS) are much easier to access by researchers than
interview recordings, whiteboard contents, etc. (pre-RS).

The increasing use of digital communication tools (e.g.,
video-conferencing software with recording and automated
captioning), also accelerated by the increased remote work
and collaboration that resulted from the COVID-19 pandemic,
creates an opportunity to revitalize the research in this area.

We present ongoing research that is part of conversa-
tional RE: the analysis of requirements elicitation conversa-
tions (in short form, requirements conversations) aimed at
identifying and extracting requirements-relevant information.
Conversational RE sets requirements elicitation conversations
as central RE artifacts, in contrast with traditionally studied
artifacts such as requirements specification documents [5].

We focus on how to use the verbal communication that is so
important in real-world projects but that is largely overlooked
in RE research. A few exceptions are the analysis of interview
recordings in projects regarding information systems [6], [7]
and the analysis of simulated interviews in RE education [8],
[9]. Yet, we are not aware of any studies that trace require-
ments back to requirements conversations.

In this paper, we design and report on TRACE2CONV, a
prototype tool that aims at automatically tracing user story
requirements [10], [11] back to the segments of a require-
ments interview that are likely to justify that requirement. In
particular, we make the following contributions to the RE field:

• We describe TRACE2CONV and the NLP heuristics that
we implemented in order for the tool to determine which
speaker turns are relevant to a given requirement.

• Through collaboration with a partner in the software
consultancy, we present an early validation of our imple-
mented algorithms on automatically generated transcripts
of requirements interviews.

We provide qualitative observations on search strategies in
backward traceability, we reflect on goals & use-cases, and we
position initial approaches for ranking relevance. Additionally,
the reported validation serves not only as a formative evalua-
tion that guides the evolution of TRACE2CONV, but also as a
kick-off for future research in the field of conversational RE.

Organization. We motivate our work with reference to the
existing literature in Sec. II. Then, we present the design of
TRACE2CONV and provide an overview in Sec. III. We report
on our validation in Sec. IV. Finally, we present a discussion
and outline future directions in Sec. V.

II. MOTIVATION & RELATED WORK

Pre-RS traceability aims to establish trace links between
the needs in the problem space and the requirements in
the solution space [12]. Ravichandar et al. [12] position the
Capabilities Engineering approach as a glue between problem
and solution space. These capabilities can be used to define
the requirements as a high-level architecture while remaining
abstract enough to handle detailed changes in the requirements.

In the work on abstraction identification by Gacitua et
al. [13], the authors propose an approach to provide require-
ments engineers with abstractions (domain terms) to support
knowledge gathering. Although not directly executing pre-RS
tracing, the use of external documentation to identify domain
terms is a relevant activity for understanding which domain
elements the requirements may operate on, and these terms
can also provide additional information for the interpretation
of a requirements conversation.

Requirements conversations have not been a common object
of RE research. Alvarez and Urla [6] conducted one of
the very few studies that investigate the narrative structure
behind requirements conversations. They study requirements
interviews conducted as part of the implementation of a large-
scale ERP system, and they identify the important role of the
stories that the clients and stakeholders tell. Their interesting
findings, however, are based on a time-consuming manual
analysis of the interviews transcripts, which is feasible for
research but inadequate for practical RE settings.

Ferrari et al. [14] focus on RE interviews in their work on
voice and biofeedback to identify the emotions of the speaker.
They find that voice analysis alone can lead to good-enough
results, without the necessity of using the more intrusive
biofeedback analysis. Similar findings were presented in the
Google Cloud Next 2019 [15] conference, where sentiment
analysis was used in a call-center scenario to review customer
satisfaction. In this version of our work, we focus on text
transcripts generated from interview recordings. Sentiment and
emotion analysis are intriguing future directions.

In our research, we make use of speaker turns, which is
a form of speaker diarization that is part of conversation
analysis [16]. The automated transcription services we use
offer this feature to provide the transcript in a format that
is split into these speaker turns. The services can recognize
automatically when the speaker turn changes by detecting
differences in voice, different audio streams, and speech events
like silence to identify utterances. Park et al. [17] cover the
history and advances of speaker diarization.

Our work focuses on the use of transcripts from require-
ments elicitation sessions. While we see these as a valuable
asset and initial source of information, it is also important
to acknowledge the limitations of the artifacts. Ferrari et
al. [8] note a number of ambiguity types and their effects
in interviews. These can all negatively impact the value of the
information that we present to the user. Especially users who
were not present in the conversations might take a segment of
it as truth, disregarding the limitations of the conversational

setting. Additionally, requirements evolve between the discus-
sions in the recordings and the authoring of the requirements
specification. In recent research, Debnath et al. [18] found that
30-38% of finalised requirements can be fully traced to the
initial specification, 54-63% are refinements, and 13-21% are
completely novel. We expect a similar evolutionary refinement
of the discussion into the creation of the specification.

III. TRACE2CONV: DESIGN AND OVERVIEW

For the design of TRACE2CONV, we started with a manual
review of two data sets of real-world RE interviews for two
information systems. One of these data sets concerned a
system supporting core operating processes, and the recording
consisted of an 1.5 hours on-site session and a 2 hours
digital conversation with 4-5 participants. The second data set
regarded a web portal to externalize data from an ERP, and
was discussed in a 1.5 hour digital session with 8 participants.
In this analysis, we manually tagged automatically transcribed
interviews in NVivo to identify requirements-relevant informa-
tion and to define the goals to be achieved by TRACE2CONV.
During this tagging, the transcripts had an average of 44.5%
of the transcript text tagged as requirements relevant, which
indicates not only a summarization opportunity, but also po-
tential for tool-assisted exploration of the transcript to enable
effectively finding this relevant information.

The main use cases that we investigate in this research relate
to increasing the available context for existing requirements
and linking them to parts of the requirements conversation.
Given a set of requirements R – consisting of user stories
in this paper – and a requirements conversation C – an
interleaving of speaker turns uttered by multiple speakers
– we identify the following scenarios: (i) developers can
review parts of a conversation they otherwise wouldn’t for
additional information on their assigned tasks; (ii) requirement
engineers can use the related speaker turns for their initial
requirements set to enhance their requirements specifications;
and (iii) project managers can trace back requirements to the
conversation to identify agreements made with the client.

Although these use cases can be seen as a traceability
problem, pre-RS traceability poses additional challenges that
make existing techniques from the literature unsuitable:

1) While each requirement is an individual element to be
traced, there is no distinguishable, atomic element in a
conversation. We aim to provide additional context to a
requirement, rather than only finding a specific speaker
turn or utterance where that requirement is stated (this
distinction is elaborated upon later, in Table I).

2) Requirements conversations can be informal, unstruc-
tured [19], and they include jargon that does not follow
the quality conventions that are often used for writing
requirements [20], for naming classes and methods, etc.

3) The process of writing a specification from requirements
interviews includes an abstraction gap–also called com-
plexity gap [21], [12]–from the problems that are dis-
cussed in the interviews to the functions and constraints
that are set for the system to-be.

Fig. 1. Matching process & front-end features of TRACE2CONV

Therefore, our solution, sketched in Fig. 1, focuses on iden-
tifying potential matches between requirements and speaker
turns in a conversation, to facilitate the exploration of a
transcript and gain further context for a requirement, rather
than establishing the actual trace links between the artifacts.

Pre-processing. The role of pre-processing activities, high-
lighted in Fig. 2, is to convert an audio recorded requirements
elicitation conversation into a textual representation.

Since our use cases assume the existence of a set of
user story requirements R, we build on previous research to
improve the transcript recognition for the automated speech
recognition software (for this study, AWS Transcribe [22]).
Preprocessing starts by analyzing a collection of user stories
using the Visual Narrator tool [23], which outputs a domain
model with the most important concepts in the user stories.
These concepts are used as a custom vocabulary for AWS
Transcribe, to improve the accuracy of transcript and, thus,
to be better able to match the requirements to the transcript
segments. The requirements conversation recording is then
converted to a format supported by AWS, and uploaded. This
is run as a transcription job in AWS transcribe and the output
is downloaded and then transformed into an CSV file with
Python’s tscribe [24]. Finally post-processing is conducted
to combine adjacent speaker turns uttered by the same speaker.

Processing After the pre-processing steps are completed,
TRACE2CONV can initiate the process of matching the user
stories with the transcript of a requirements conversation. In
our current prototype, the requirements are inputted from a
CSV file, each line containing one user story. The transcript is

Fig. 2. Pre-processing process for TRACE2CONV leading to the transcript file

a CSV file where every line is a speaker turn with information
about the start time, end time, speaker, and uttered text.

First, TRACE2CONV executes the steps detailed in Algo-
rithm 1: both transcript and requirements are tokenized and
lemmatized (lines 3–4), then the identified tokens are filtered

depending on the POS tag. Based on our empirical analysis,
this first version of TRACE2CONV includes tokens that are
either nouns or verbs (the list of tokens Tsent is reduced in
lines 5–6), excluding auxiliary verbs. Then, for each identified
token (line 8), TRACE2CONV creates the set of requirements
and speaker turns where that token occurs (lines 9–10).

Algorithm 1 Data Preparation and Data Matching
Input: R a set of requirements,
C a set of speaker turns,

Output: a set of tokens AllTokens , linked to their
occurrences in requirements and speaker turns

1: function PREPROCESSANDMATCH(R, C)
2: for all sent ∈ R ∪ C do
3: Tsent ← TOKENIZE(sent)
4: Tsent ← LEMMATIZE(Tsent)
5: Tsent ← (t ∈ Tsent | POS TAG(t) ∈ {NOUN, VERB})
6: Tsent ← (t ∈ Tsent | POS TAG(t) /∈ {AUX})
7: AllTokens ←

⋃
sent∈R∪C Tsent

8: for all t ∈ AllTokens do
9: t .reqs ← {req ∈ R | t ∈ Treq}

10: t .turns ← {sturn ∈ C | t ∈ Tsturn}
11: return AllTokens

Algorithm 2 takes care of determining the counts that show
the frequency of the tokens. After calling Algorithm 1 in line
2, three counts are calculated: the number of requirements
where that token occurs (line 4), the number of turns where
the token occurs (line 5), and the number of total occurrences
of that token in the requirements conversation (line 6).

Algorithm 2 Token Counts
Input: R a set of requirements,
C a set of speaker turns

1: function TOKENCOUNT(R, C)
2: T ← PREPROCESSANDMATCH(R,C)
3: for all tk ∈ T do
4: tk .reqCount ← |{r ∈ R | tk ∈ Tr}|
5: tk .turnCount ← |{sturn ∈ C | tk ∈ Tsturn}|
6: tk .instCCount ← |

⋃
sturn∈C{t′ ∈ Tsturn | t′ = tk}|

7: return T

User Interface. The outputs of the processing are used by the
user interface, where the user can select their transcript to
review the speaker turns in order of occurrence with additional
manual highlighting and filtering. The matching process that
links requirements tokens and conversations tokens enables
the most valuable functionality of TRACE2CONV: the ability
to drill down from a requirement into the speaker turns where
certain key terms are discussed, providing extra context and
tracing the requirement to the RE interview. In the current
prototype, this exploration process is led by the user, who
decides which terms to focus on; TRACE2CONV does provide
counts on the frequency of the term in the requirements and

in the speaker turns, as well as the number of speaker turns
where the term occurs: see Fig. 3.

Fig. 3. Requirements Token Review in TRACE2CONV

The user can then select one of the requirements tokens to
drill-down into the speaker turns that match the requirement
token as seen in Fig. 4. For guiding the user, the requirement
token are highlighted in the speaker turns. By clicking view on
one specific speaker turn, the user can review the speaker turn
in the wider conversation context, and is presented with the 5
minutes of conversation before and after the speaker turn.

In the roadmap (Section V), we discuss improved algorithms
based on our validation to suggest speaker turns for the
requirements to further support locating relevant information.

Fig. 4. Matching Speaker Turns for a Requirement Token in TRACE2CONV

IV. VALIDATION

We performed a formative [25], post-implementation [26]
evaluation of our prototype designed based on the guidelines
from the Framework for Evaluation in Design Science (FEDS)
by Venable et al. [27]. This framework splits the evaluation
approach into four steps, which we apply to our research.

Step 1: Explicate the goals. In this evaluation, we validate the
initial results provided by the tooling, and we observe how an
RE expert utilizes current functionality, their search strategies
and whether consistent behavior can be observed. Our aim is
to inform the design of algorithms that mirror the observations.

Step 2: Choose a strategy for the evaluation. We utilize a
“quick and easy” [27] strategy for this first validation. We

aim to discover ways to improve the tooling and to evaluate
initial results. We opt for an evaluation strategy that is executed
without relying on external validation. Three reviewers took
part in the evaluation: two are authors of this paper, and the
third reviewer is conducting research on a similar topic.

Step 3: Determine the properties to evaluate. We focus on
four properties: (i) search strategies based on the presented
tokens; (ii) initial feedback on using the tool; (iii) review of
requirement token evaluation types; (iv) consistency of the
different reviewers for the selection of search terms.

Step 4: Design the individual evaluation episodes. First, shared
understanding of a specific case was ensured. The system
discussed in the transcript was demoed and the domain terms
were discussed and highlighted. Given a requirement r and a
speaker turn st , we set the guidelines and examples for speaker
turn relevance that are shown in Table I.

TABLE I
GUIDELINES FOR DETERMINING THE RELEVANCE OF A SPEAKER TURN st

FOR A REQUIREMENT r.

Guideline 1 st elaborates on a domain concept that appears in r.
Example r The system will initiate transfer from a bulk location to

a picking location if an order exceeds the current picking
location stock.

Spkr turn st “So we utilize 2 sort of stocks, those directly accessible
to our order pickers to gather in their lists, and harder to
reach stock. These are kept on the highest shelves in a
bulk location, and require a forklift to move.”

Guideline 2 st explicitly discusses the functionality in r.
Example r As a user, I can assign a task with a deadline to someone

else, so that we can ensure follow up and appropriate
notifications.

Spkr turn st “We’re working with action items, these are just a mes-
sage to notify a specific user, what we’d like is a more
actionable way of keeping track of these. Using a date
to complete the action item, we can also provide our
managers an overview with tasks they allocated, and give
them a heads-up when something is overdue.”

Guideline 3 st provides rationale or additional background for r,
although it does not explicitly request r.

Example r As an admin, I want to approve new supplier requests, so
that no data is entered into our ERP without a validation.

Spkr turn st “We get a huge amount of supplier requests, so in a week
we might be adding more than 20 new suppliers. We have
a unit of people working on this in our company. So they
just receive supplier application forms, and key in all the
data in the correct places.”

The reviewers first individually tagged the same three
requirements, determining the tokens to review, and tag-
ging speaker turns on relevance. Afterwards, the results and
reasoning for tagging were discussed, leading to the final
guidelines of Table I. Then, each reviewer individually tagged
the remaining 27 requirements and took notes on the review,
as a qualitative evaluation.

Evaluation results. Out of the total 369 requirement to-
kens returned by TRACE2CONV, the reviewers evaluated 112
(30.35%), 107 (29.00%) and 73 (21.41%) of the tokens,
respectively. The set of tokens contained 250 nouns (67.7%)
and 119 verbs (32.3%); each of the reviewers had a similar
distribution: 66.7%, 71.9%, 68.6% of the tags were nouns.

We did not detect any major difference in the POS tags for
the tokens compared to the general distribution. For the 149
unique tokens tagged, 49 were shared among all reviewers,
44 were reviewed by 2 reviewers and 56 were reviewed by a
single reviewer: 50.52% ((49× 3/(112 + 107+ 73)), 30.24%
and 19.24% of all tags, respectively. This indicates a similar
search strategy by the three reviewers.

Qualitative observations. The free-form notes taken by the
reviewers include observations on the use of TRACE2CONV
and possible improvements to the user experience.
While the reviewers tested multiple search strategies through-
out the process, the main strategy was the following: (i) tag
the action verbs and the main nouns in the requirement while
trying to prevent selecting those occurring too often; (ii) if
no results were found in the initial selection, the terms with
higher occurrence would be considered.

Similar and overlapping requirements were also influencing
factors: when exploring a similar requirement, the reviewer
already knew where to look and could quickly find the match-
ing speaker turns. Additionally, while the prototype did not
support it, all reviewers mentioned using their browser’s search
functionality to further filter the resulting speaker turns and
to find compound nouns (e.g., “vendor user”). The reviewers
observed that the context influences the search process. For
instance, for a requirement regarding an API connection, it
was noted that the information around the invoices was more
interesting than the term “connection” itself.

In addition to the increasing familiarity of the resulting
turns, which influenced this process, the reviewers also re-
ported process fatigue. Over time, the aim of identifying all
relevant speaker turns evolved into finding a set of matching
segments that would satisfy the reviewer. This sets high
expectations on the precision and recall for the automation.
However, it is worth noting that our validation use case differs
from a real use case, in which we expect the analyst to
investigate a few requirements instead of a full set.

As hypothesized, not all requirements can be traced. Multi-
ple reasons were mentioned: some requirements were detailing
standard technical functionality (e.g., password length con-
straints), some were clearly written by the analysts for specify-
ing tasks for the developers to find in their backlog. Similarly,
some requirements are detailed enough not to require any
tracing back to their source; for instance, a requirement that
describes the need to show the username. The tool could
be improved by showing not only possible matching speaker
turns, but also the confidence, or likelihood, of relevance.

Some challenges depend on the quality of the artifacts.
Requirements sometimes use specific implementation terms,
e.g., “export as xls file”, while conversations would use the
generic application name. The tooling could use a glossary of
common terms to expand the search in these cases and thus
also search for mail, email and message when a requirement
contains ”e-mail”. Importantly, the results were impacted by
the quality of the automated transcriptions. While a human
with context knowledge might interpret “fender” as “vendor”

(these words a similar prononuciation, as they share the
metaphone [28]: FNTR), our search and matching processes
do not. We might have to support ways to fix transcripts, or
expect the user to improve them before importing.

V. ROADMAP AND CONCLUSIONS

After the validation, we devised some improvements of
TRACE2CONV aimed to highlight speaker turns that are likely
relevant, with the aim of providing a prioritized list of speaker
turns for the analyst to examine, and avoid process fatigue
that may arise by exploring each of the tokens. We devised
and implemented two prototype ranking mechanisms: single-
token occurrence & multiple-token occurrence. In the current
design iteration, these mechanisms are preliminary and are to
be improved through validation and design iterations.

Single-token occurrence lists speaker turns that contain one
of the requirement tokens 2+ times. For instance, a speaker
turn that contains the lemma for “vendor” 3 times could
be “Our vendors will be logging in to the application, and
then they would be able to see the vendor information, and
request updates to their information. This would then end up
in our mailbox as a vendor request.”. Future refinements of
this mechanism could assign different weights based on the
sentence structure, and token tags, minimizing false positives.

Multiple-token occurrence lists speaker turns based on a
ranking mechanism that counts how many of the collection of
requirement token lemmas occur in a particular speaker turn.
For example, given the tokens [Doctor, prescribe, medicine,
headache, dashboard, paracetamol] the following speaker turn
would have a score of 7: “Our doctors1 prescribe2 all kinds
of medicine3, however, it can be hard to keep track of all the
things that have been historically prescribed4 to a patient.
Thus what we’re looking for is some sort of dashboard5 that
presents at a glance what has been prescribed6 to a patient
by any of our doctors7.” . Also for this mechanism, we are
looking into weighted ranking versions.

Additional relevance variables. We consider the following
items as potential variables that may improve the precision
of the results. The location of the terms in the requirement
can indicate importance: lower priority can be given to the
roles and the so-that part of a user story. The occurrence
count of the terms in the speaker turns should be considered,
since we observed that a lower total occurrence increases
the chances of a match. Speaker turn length will impact the
ranking mechanisms: longer speaker turns are also more likely
to contain multiple terms, and one may need to normalize
the score based on the length of the speaker turns. The
surrounding speaker turns may also be important to determine
the likeliness of relevance of a single turn.

Other tool enhancements. While we utilize low-code for
early prototyping, we acknowledge its limitations. Many NLP
libraries that can easily be used in Python are unavailable
in our current prototype. We are currently working toward

using standard NLP techniques for trace link recovery in-
cluding language patterns, information retrieval (e.g., TF-
IDF) and machine learning classifiers. To do this, we plan
to devise a collection of API endpoints that can be called
by TRACE2CONV. A more ambitious direction that we are
pursuing is the identification of relevant speaker turns without
having an existing set of requirements, extending the use case
to supporting the creation of the requirements specification.

Additionally, the tool will be extended to support using it
over multiple transcripts. Since most requirements elicitation
in projects is done over multiple conversations, and require-
ments change over time [18], TRACE2CONV will support a
project database of both transcripts and requirements that can
evolve over time. This also introduces recency as a variable
in speaker turn suggestions, potentially allowing the user to
define their use case to effectively present results.

A next iteration of the tooling will also include the review
of heat zones, segments of a transcript with multiple matches
(e.g., between minute X and Y) that are more likely to be of
interest to the user, including the unmatched turns.

Overall, while we discuss different approaches to do so, we
aim to suggest and trace mainly on a requirement level instead
of on a requirement token level, as it removes steps the user
would need to take and creates consistency in the results. The
current token-based functionality can still be offered as drill-
down functionality when suggestions are inconclusive.

One major limitation is transcript quality, whose word-
error-rates are getting smaller. While we could leave it up
to the users to provide correct transcripts, we will look into
ways to improve the automated transcript accuracy, including
approaches for the interactive correction.

Validation. For the next phases of our research, we have
planned a more extensive validation with external stakeholders.
However, our preference is to first further refine the tool to
get a more significant validation. We currently envision the
following validation protocol; a set of potential users will
be asked to use the application based on a domain they are
familiar with. They will then be asked to perform a set of tasks,
e.g., finding the context or source of a particular requirement,
then reflect on and evaluate the use of the tool. Also, we
plan to perform more validations on the resulting traceability
and compare our token based approach to common NLP
techniques like TF-IDF [29] and vector space models [30].

Conclusion. This paper introduced the notion of conversa-
tional RE. Furthermore, we proposed a first attempt to estab-
lish backward traceability from requirements to one or more
relevant transcript segments in a requirements conversation
with TRACE2CONV. This is done by matching speaker turns
to the requirements on a tokenization and lemmatization basis.
While functionality and UI need further development for use
in practice, our preliminary results show the feasibility of the
overall approach, which makes use of low-effort technologies
to achieving backward traceability.

Through further design iterations, we aim to support prac-
titioners by providing them with a backward traceability of

requirement documents to conversations without enforcing a
change in work methods. This can improve the information
available to analysts during their projects, but also when we
consider employee turnover and application maintenance. An-
other benefit is that TRACE2CONV can be used as a repository
for requirements and transcripts within an organization.

ACKNOWLEDGMENT

The authors would like to thank Xavier de Bondt for his
help on tagging the data, Kosmas Ntokos for his help with
developing TRACE2CONV, and the members of the RE-Lab at
Utrecht University for the valuable discussions on the research.

REFERENCES

[1] O. C. Gotel and C. Finkelstein, “An analysis of the requirements trace-
ability problem,” in IEEE International Conference on Requirements
Rngineering, 1994, pp. 94–101.

[2] J. Krause, A. Kaufmann, and D. Riehle, “The code system of a sys-
tematic literature review on pre-requirements specification traceability,”
https://doi.org/10.25593/issn.2191-5008/CS-2020-02, Tech. Rep., 2020.

[3] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management for
impact analysis,” in Frontiers of Software Maintenance. IEEE, 2008,
pp. 21–30.

[4] P. Heck and A. Zaidman, “Horizontal traceability for just-in-time
requirements: the case for open source feature requests,” Journal of
Software: Evolution and Process, vol. 26, no. 12, pp. 1280–1296, 2014.

[5] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “PURE: A dataset of
public requirements documents,” in IEEE International Requirements
Engineering Conference. IEEE, 2017, pp. 502–505.

[6] R. Alvarez and J. Urla, “Tell me a good story: Using narrative analysis
to examine information requirements interviews during an ERP imple-
mentation,” ACM SIGMIS Database: the DATABASE for Advances in
Information Systems, vol. 33, no. 1, pp. 38–52, 2002.

[7] T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Requirements elicitation
via fit-gap analysis: A view through the grounded theory lens,” in In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 2021, pp. 363–380.

[8] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit knowledge in
requirements elicitation interviews,” Requirements Engineering, vol. 21,
no. 3, 2016.

[9] M. Bano, D. Zowghi, A. Ferrari, P. Spoletini, and B. Donati, “Teaching
requirements elicitation interviews: an empirical study of learning from
mistakes,” Requirements Engineering, vol. 24, no. 3, pp. 259–289, 2019.

[10] M. Cohn, User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[11] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,
“The use and effectiveness of user stories in practice,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 2016, pp. 205–222.

[12] R. Ravichandar, J. D. Arthur, and M. Pérez-Quinones, “Pre-requirement
specification traceability: Bridging the complexity gap through capabil-
ities,” arXiv preprint cs/0703012, 2007.

[13] R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of
abstraction identification in requirements engineering,” in 18th IEEE
International Requirements Engineering Conference. IEEE, 2010, pp.
5–14.

[14] A. Ferrari, T. Huichapa, P. Spoletini, N. Novielli, D. Fucci, and D. Gi-
rardi, “Using voice and biofeedback to predict user engagement during
requirements interviews,” arXiv preprint arXiv:2104.02410, 2021.

[15] Google, “Optimizing voice commands and IVRs to speech analytics
(Cloud Next ’19),” https://www.youtube.com/watch?v=71jzm19xn4U.

[16] P. Drew, “Conversation analysis,” in Handbook of Language and Social
Interaction, P. Drew and J. Heritage, Eds., 2005, vol. 2, no. 3, pp. 71–
102.

[17] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and
S. Narayanan, “A review of speaker diarization: Recent advances with
deep learning,” Computer Speech & Language, vol. 72, p. 101317, 2022.

[18] S. Debnath, P. Spoletini, and A. Ferrari, “From ideas to expressed needs:
an empirical study on the evolution of requirements during elicitation,”
in IEEE International Requirements Engineering Conference. IEEE,
2021, pp. 233–244.

[19] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kam-
ran, “Requirements traceability: a systematic review and industry case
study,” International Journal of Software Engineering and Knowledge
Engineering, vol. 22, no. 03, pp. 385–433, 2012.

[20] IEEE, “IEEE recommended practice for software requirements specifi-
cations,” IEEE Std 830-1998, Tech. Rep., 1998.

[21] L. Raccoon, “The complexity gap,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 20, no. 3, pp. 37–44, 1995.

[22] Amazon, “Amazon transcribe: custom-vocabularies.” [Online].
Available: https://docs.aws.amazon.com/transcribe/latest/dg/custom-
vocabulary.html

[23] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. Van Der Werf, and
S. Brinkkemper, “Extracting conceptual models from user stories with
Visual Narrator,” Requirements Engineering, vol. 22, no. 3, pp. 339–358,
2017.

[24] Github, “tscribe, AWS transcribe to docx,” 2022. [Online]. Available:
https://github.com/kibaffo33/aws transcribe to docx

[25] D. Remenyi and M. Sherwood-Smith, IT Investment: Making a business
case. Routledge, 2012.

[26] S. Smithson and R. Hirschheim, “Analysing information systems evalu-
ation: another look at an old problem,” European Journal of Information
Systems, vol. 7, no. 3, 1998.

[27] J. Venable, J. Pries-Heje, and R. Baskerville, “FEDS: a framework for
evaluation in design science research,” European Journal of Information
Systems, vol. 25, no. 1, 2016.

[28] L. Philips, “Hanging on the metaphone,” Computer Language, vol. 7,
no. 12, pp. 39–43, 1990.

[29] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

[30] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

