LLM-Assisted Requirements Engineering in Agile
MDD: Industry Insights and Validation

Tjerk Spijkman*f, Bente Molenkamp', Steffen Beudeker*, Sietse Overbeek!, and Fabiano Dalpiaz’
*fizor. — Utrecht, the Netherlands
Email: {tjerk.spijkman, steffen.beudeker} @fizor.com
TUtrecht University — Utrecht, the Netherlands
Email: bente_molenkamp@hotmail.com, {s.j.overbeek, f.dalpiaz}@uu.nl

Abstract—Despite the growing interest in integrating Large-
Language Models (LLMs) within software development, there
is limited empirically-grounded guidance for teams to effec-
tively apply this technology in industry. We explore the use
of LLMs for generating requirements artifacts within a low-
code consultancy organization that builds low-code development
applications following a custom Agile model-driven development
(Agile MDD) process. Through the analysis of multiple project
cases within the company, we construct a method as an accurate
representation of the employed Agile MDD approach. We then
identify high-potential use cases for LLM adoption within the
Agile MDD method. For these use cases, we engineer reusable
LLM prompts that generate requirements artifacts. We validate
the generated output for three of such use cases: generation of
user stories, of acceptance criteria, and of data models. The team
members of four projects were asked to express their opinion
on the automatically generated artifacts. The results show high
appreciation for the artifacts, which were found to be mainly
relevant and similar to requirements that were included in the
initial specification. The generation of the data model was rated
less positively than the other use cases. Besides providing detailed
insights on the inclusion of LLMs in the company’s Agile MDD
process, we share our results to provide guidance for other
software teams seeking to leverage LLMs in Agile MDD.

Index Terms—Agile MDD, LLM, Prompt Engineering, Re-
quirements Engineering, Requirements Specification, User Sto-
ries, Data Modeling.

I. INTRODUCTION

Agile development is currently the mainstream development
method in software companies. According to Digital. Al’s
survey results, 71% of the respondents state they use Agile
in their software development life-cycle (SDLC) [1]].

Model-driven development (MDD), the use of models as
primary artifacts for software development, is also a rising
trend [2]. Through various platforms and toolkits, MDD aims
to simplify and formalize the various activities and tasks
of the SDLC [3]]. For example, this can be done through
standardizing development steps into reusable models and
facilitating conversion into code. MDD is at the basis of
low-code development [4]-[6], which aims at mitigating the
lack of IT personnel by increasing intuitiveness and speed of
development [7].

Agile model-driven development (Agile MDD) strives to
leverage the adaptivity, flexibility and user-centricity of Agile
with the abstraction level and living documentation of MDD
[8]]. The executable models of MDD can serve as a means of

communication and contribute to shared understanding [9]. in
Agile MDD, Agile artifacts such as user stories and scenar-
ios guide the MDD development. Research on the effective
combination of these two approaches is limited.
Similarly, there is growing reliance on Large Language
Models (LLMs) in industry, with widespread adoption yet a
notable absence of standardization [10]]. Due to the novelty
of the field, however, there is a significant gap in research on
effective applications and processes to utilize Al
In this paper, we investigate the use of LLMs in Agile MDD
from an industrial perspective. The creation and maintenance
of RE artifacts is a time consuming activity [11f], and we
surmise that LLMs may be able to support practitioners and
improve efficiency. To investigate this, we conduct a study
within a low-code consultancy company, wherin we aim at
identifying the suitability of LLMs for generating RE artifacts
in their custom Agile MDD process. We have one main
research question that is refined into three sub-questions:
MRQ. To what extent can LLM-based RE artifacts be effec-
tively generated within an Agile MDD process?

RQ1. In which use cases can we employ LLMs to generate
RE artifacts?

RQ2. What is a re-usable set of prompt templates that can be
applied in the identified use cases?

RQ3. What is the perceived effectiveness of the LLM-
generated RE artifacts by project team members?

We first characterize the Agile MDD process in order to
identify candidate artifacts and activities for LLM use (RQ1).
Then, we design re-usable prompt templates for five use cases
within the Agile MDD process (RQ?2). Finally, we select three
use cases that are most relevant for the creation and improve-
ment of a requirements specification. With these use cases, we
validate the perceived effectiveness of three kinds of generated
outputs, which are user stories, acceptance criteria, and data
models, according to the team members from four projects
(RQ3). To enable a more homogeneous comparison across
cases, all these projects are in the Warehouse Management
Systems domain.

This industry-academia collaboration allows us to: (i) create
prompts that are clearly positioned in a real-world devel-
opment process, and (ii) validate the generated RE artifacts
with project team members, who are experts with detailed
knowledge of the domain and of the projects.

Through this investigation, we aim to provide validated
insights from industry context on the effectiveness of LLMs
in the generation of Requirements Engineering (RE) artifacts.
In this research, we utilize ChatGPT-40 through the web
interface because we focus on the use case of a practitioner
interacting with the LLM chat interface. While this resembles
how LLMs can be used by practitioners without integration in
their IDEs, this comes with some limitations; using the chat,
indeed, did not allow us to adjust parameters such as the LLM
temperature.

While we perform this study in a specific industry context,
we share the steps used to design the prompts and the results
of the empirical validation. In particular, we provide an online
appendi including an example mock-project (part A), and
the data gathered from our surveys (part B) for replicability
and as inspiration for using LLMs in similar contexts. Addi-
tional parts are specified in later sections.

The remainder of the paper is organized as follows. [Sect. II
reviews the relevant background. details the research
method. We describe the Agile MDD context in
present the engineered prompts in and report on the
validation in After discussing threats to validity in

ect. VIII we present lesson learned and the conclusions in

Finally, we outline future directions in

II. BACKGROUND

We review related literature on LLMs and their use in RE

(Sect. II-A), prompt engineering (Sect. II-B)), and agile MDD
(Sect. 1I-C).

A. LLMs in Software and Requirements Engineering

Since the public release of ChatGPT-3, LLMs have seen
a surge in public use. This has only increased with im-
provements to the OpenAl models (currently offering GPT-
40 and GPT-4.5) and new contenders like Deepseek. LLMs
have already been used in many software engineering re-
search efforts. Focus areas include code generation [[12f], [[13]],
testing [14], and code summarization [15]. In the industry,
commercial systems like ChatGPT, GitHub’s Copilot, Amazon
CodeWhisperer, and Google Gemini have seen a rapid increase
in functionality and adoption. A recent study with thirty tech
professionals found that nearly half the respondents stated that
LLMs can significantly accelerate software development [[16].

LLMs are a hot topic in RE too [17]. Applications include
tasks such as requirement elicitation [18]], generating interview
scripts [[19] and dealing with ambiguitiy in requirements [20]].
Voria et al. [21]] combine the NLP and LLM functions in
a pipeline to generate requirements specifications from tran-
scriptions. Many of such articles present novel applications of
LLMs in various use cases. However, while benchmarks exist
for activities like creative writing, commonsense reasoning or
dialogue ability, these do not focus on industry relevance [22],
thereby creating a gap for specialized industry evaluations. Our
study constitutes an industry-specific evaluation.

IThe online appendix can be found at https://doi.org/10.5281/zenodo.
15754874,

B. Prompt Engineering

Prompt engineering is emerging as a critical activity for the
effective use of LLMs. Prompt engineering focuses on design
and optimization of prompts to achieve desired outputs from
LLMs [23]. These prompts are natural language instructions
that are given to an LLM to enhance and refine interactions.
Like design patterns in software engineering [24], prompt
patterns are reusable designs to support LLM interaction [23].
These patterns include providing a persona to the LLM [25]],
specifying an output template [23], and using step-by-step
instructions through the chain-of-thought pattern [26]]. In this
research, we applied patterns, as shown in the tables in[Sect. V|
to design the prompts used and evaluated in the industry study.

C. Agile Model-Driven Development

Model-driven development (MDD) is a software develop-
ment method that applies models and modeling tools for
abstraction of development [3]. Using these models in de-
velopment helps to establish a shared domain understanding
between stakeholders [27]]. MDD techniques boost productiv-
ity, minimize manual implementation effort, increase system
quality, and provide flexibility [28]. Research has suggested
approaches to integrate agile practices in MDD. For instance,
MERODE [9]] integrates MDD in Agile processes by including
software architecture in the process.

Industry has seen an increase in MDD application through
the rise of low-code platforms [5]], [6]. Mendix states that
MDD is the foundation of low-code development [4]]. These
low-code application platforms (LCAPs) are defined by Gart-
ner as “platforms for accelerated development and mainte-
nance of applications, using model-driven tools for the en-
tire application’s technology stack, generative Al and pre-
built component catalogs” [2]. This includes platforms like
Thinkwise, Mendix, Betty Blocks, and Power Apps. Gartner’s
report [2f states that, in 2024, 10% of software development
organizations use LCAPs as their main development platform
with a projected growth over the next years.

Combining generative Al and Agile MDD, Sadik et al. [29]
suggest an approach to combine ChatGPT and PlantUML to
convert UML diagrams into textual representations to be used
as prompt. However, further research on this combination is
extremely limited. Interestingly, from the industry side, LCAPs
are introducing and pushing LLM functionality. For instance,
Thinkwise supports Al code reviews, test automation and
model generation [30]. Similarly Mendix has recently intro-
duced Mendix Al Assistance with new functionality including
page generation and user story generation [31].

III. RESEARCH METHOD & INDUSTRIAL CASE

We opt for context-driven software engineering research
[32] and investigate a specific low-code development context.
In particular, we apply the design cycle of Wieringa’s design
science [33]]. We perform problem investigation by analyzing
three MDD projects, leading to the construction of a Pro-
cess Deliverable Diagram (PDD) [34]]. PDDs are a modeling
approach within method engineering that allows to precisely

https://doi.org/10.5281/zenodo.15754874
https://doi.org/10.5281/zenodo.15754874

characterize the activities and deliverables of a method [34].
We analyze the methods used in the three cases and generalize
those into a single PDD that represents the specific Agile MDD
process used at the case company.

A. Industry Context

Our research is conducted at fizor.,, a low-code consul-
tancy company located in the Netherlands, with approximately
50 employees at the time of writing. fizor. uses low-code
platforms provided by technology partners to build complex
software systems within core processes for customers. These
applications are developed using Agile MDD.

Customer applications are developed to customer specific
requirements defined for the project, and managed based
on an agreed scope and timeline. These projects start with
an analysis phase, where a requirements specification and
functional design are the main deliverables. This is followed
by a sprint 0, where the initial data model is designed and
the project management context is defined. Finally, a two-
week sprint process includes the main activities of the software
project.

Customer (Optional)

provided
documents Process

6 Introduction
1

Functional
B Process /
Design

Module
Document

: 1

Document
Introduction

Process
description

Process

B —T
Model (As Is)

Not provided in use case 1
Requirements Epic
Document

Conclusion

User Story

User groups
(roles / rights)

|
3

LLM
(GPT 40)
lUse case 2

Use case 1 Use case 3

Acceptance
Criteria
Generation

Data Model
Generation

User story
Generation

Fig. 1. Overview of the input and output RE artifacts for the validation (RQ3).

In this research, we use the analysis outputs as the main
artifacts to feed the LLM prompts and generate RE artifacts
that can contribute to the project specification. [Fig. T| visualizes
the input artifacts that were used for the generation tasks in this
research. We chose to focus on the functional design document
as this was leading for the project scope and would be available
for all projects in this industry context. Optionally, documents
provided for the project were also included when they were
available for additional context. The documents provided to
the LLM were first reviewed for sensitive data based on the
company guidelines on Al use. Although we cannot share
the original documents due to confidentiality agreements, we
provide a mock case document in the online appendix.

While the overall development context at fizor. is domain
agnostic, this research focuses on four projects with a similar
scope for validation of the outputs in a specific context.
All these projects are in the Warehouse Management System
(WMS) domain, and developed in the Thinkwise low-code
platform (MDD). ProjA is a project focusing on replacing a
legacy application for warehouse management that includes
purchasing and sales processes, ProjB concerns an existing
ERP application in the low-code platform that is extended with
warehouse management functionality still being used through
the legacy ERP system. ProjC is an extension of an ERP
application to include WMS functionality. ProjD is a new
WMS system, that replaces a legacy application and integrates
with an existing ERP system for order data. For each project,
we selected a single process as the focus for the artifacts, as
we wanted to set a specific scope for LLM and participants.

B. Problem Investigation

In the first phase of Wieringa’s design cycle, we have
analyzed the Agile MDD process at the case company. We
did so through semi-structured interviews with team members
of three industry projects (Table T), of which ProjD is also
used for the validation. The interviews were aimed at gathering
insights into project activities, their sequence, and the project
artifacts. Participants were also asked about their views on
using generative Al and to share ideas for using LLMs in
their day to day workflows. We created a process deliverable
diagram that describes the Agile MDD method at the company
(see [Sect. IV). The resulting model provided insight in the
artifacts and process used at fizor. In addition to its represen-
tational function, the model was used to identify five use cases
for the use of LLM-generated artifacts.

TABLE 1
PROJECTS STUDIED IN THE PROBLEM INVESTIGATION PHASE (RQ1).

Project LCAP Interview participants
ERP replacement project Novulo Lead developer
Project planning tool Betty Blocks Business analyst
WMS replacement project Thinkwise Business analyst, lead

(ProjD) developer

C. Treatment Design

For treatment design, we aimed to employ LLMs for these
five identified use cases. Using the available documents for
these three projects, we iteratively engineered the prompts for
the five use cases as described in [Sect. V]

D. Treatment Validation

For the validation, we had to limit the effort required by
the team members. Thus we decided to focus on the use cases
for generation of (i) user stories, (ii) acceptance criteria, and
(iii) data models. These prompts shared the same inputs with
project context and fit in the focus of RE artifacts within the
Agile MDD process.

The prompts were then applied on a set of four more
homogeneous industry projects, as described in In
order to replicate the most likely industry interaction utilizing
LLMs through the web interface, we used a single LLM chat
session to generate artifacts. This limits the output bias as we
rely on the non-determinism of the LLM, instead of running
the prompts repeatedly on the same inputs and selecting which
results to use.

We used the prompts as they are, without specific project-
based tweaks through follow-up prompting. We made this
choice to validate the prompt templates as a re-usable tool
that can be applied to other cases.

The generated outputs were then fed into a set of three
surveys per case to validate the outputs. We designed one
survey per each use case, for a total of twelve surveys. The
surveys were distributed to industry professionals involved in
the case projects. This meant a limited potential sample size,
especially as there was a overlap in the project teams across
the cases. To mitigate threats to validity, and limit the required
effort from participants, we opted to involve each participant
for a single case. The outputs were not explicitly compared to
the project artifacts. This was done implicitly by relying on
the participants’ knowledge, since they were project members
and, thus, familiar with the project artifacts.

IV. LLM IN AGILE MDD PROCESS FOR GENERATION OF
ARTIFACTS (RQ1)

For the problem investigation part of the research (RQ1), we
created a holistic representation of the Agile MDD method
used at the company. This was done in order to determine
use cases for LLMs to support and enhance the Agile MDD
process. To achieve this, we performed method analysis [34]
based on three (at the time) ongoing projects, each relying on
a different LCAP: Thinkwise, Betty Blocks and Novulo. With
use cases, we refer to the combination of the two sides of the
PDD, activities and their resulting deliverables.

For each of these cases, a Process Deliverable Diagram
(PDD) was created. To create and validate the project-specific
PDDs, interviews were conducted with the project’s business
analyst or lead developer. During these interviews, we also
discussed how participants would envision using LLMs in their
workflow. Findings from these interviews regarding the LLM
requirements are provided in the online appendix (part C).

To combine the resulting PDDs into a company-specific
one, we compared method fragments across the projects,
for example, sprint preparation or project preparation. These
fragments were assembled into a single PDD to represent
the Agile MDD method used at fizor. This PDD forms the
foundation for LLM use case identification. From the method
analysis, we found the ‘Functional Design Document’ to be
a central RE artifact, and identified a set of activities and

Analyse problem domain

Identify project goals

Define application architecture

|——————— >| PROJECT GOALS |-

Activities and artifacts
related to LLM inputs

l:l Candidate activities for LLM support
And related output artifacts

i AS-IS PROCESS
MODEL

FUNCTIONAL

Analyse as-is processes

PROCESS
DESCRIPTION

— D

Document as-is processes

Business Analyst, Cli

r— - DESIGN DOCUMENT
Version
I

11 11

Business Analyst, Client

[else]
[requi complete and

efine project requirements ‘ ————— > INTERVIEW NOTES [
|
Elicit requirements L 4
>|
v
[Create functional design document
v
[Document requirements (User Stories) -
2
[Prioritize requirements (MoScoWw)
v
[Validate document with client -
|
I
I
|

CLIENT FEEDBACKi
7 NOTES

|
,,,,,,, |
N } b
r*f***—» AS-IS PROCESS
|
777777 |
DOCUMENTATION f — — — — — — —
ent /™| FROM CLIENT

belongs to &
tracked in ¥
i
USER STORY* | ——
————— > Description
————— ! Priority P .
tracked in ¥

APPLICATION
- ARCHITECTURE

|
|
|
|
|
,'
impacts ¥)]
i
|
]

regards a

roject preparation (‘tprim 0)

SECTION

Business analyst, Projec] Manager, Lead devel(ﬁy/
v

ACCEPTANCE .
] CRITERIA o s

PROJECT
BACKLOG

JIRATICKET

IssueType (Epic, Story, Task)

Assignee
| Title

Description
| Priority

PROJECT SPECIFIC
DATA MODEL

[Create project backlog } 777777777777777
Iy
[Formulate acceptance criteria } 7777777777777
[Add time estimates to user stories =~ @ H — — — — — — — — — — — — — —
[Create initial project planning] T
[Create initial project data model { PROJECT SPECIFIC
—— — — >3 DATA MODEL

L — — > TimeEstimate

SPRINT BACKLOG I

Fig.

2. PDD representing the first three activities and sub-activities of the Agile MDD method, with highlighted activities and artifacts.

artifacts (concepts in the PDD notation) around this document.
highlights the activities and artifacts related to the LLM
inputs in blue, and the candidate activities and outputs in
orange. While the figure only includes the first three steps,
the full PDD is in the online appendix (part D).

From this central artifact, we opted to focus on the activities
in the project startup (analysis of the problem domain, defi-
nition of project requirements and the project preparation).
This falls in the window between the pre-requirements and
post-requirements specification phases [35]], specifically the
refinement and extension of the requirements specification.
Note that these activities can also be relevant for requirements
identified later in the project. Based on the method analysis
and interviews, we determined a list of potential use cases for
utilizing LLMs.

From the identified use cases, we selected five for which we
would create prompt templates as part of the treatment design
phase of the design cycle. We limited our use cases to five due
to time and scope constraints. The selection criteria were: (i)
the generated output needs to be an artifact with a consistent
structure content and explicit intended use; (ii) the use case
task should allow the creation of a re-usable prompt template;
and (iii) input documentation needs to be available that can
be used as input for the generation of the artifact. This led to
the following five use cases:

1) User Story Generation. corresponds to the activity ‘Doc-
ument Requirements (user stories)’ as depicted in
This step involves the analyst formulating the requirements
in the form of user stories (US), such as: “As a warehouse
manager, I want to make inventory mutations so that I can
correct inaccurate inventory data”. The analyst translates as-
is processes into requirements for the to-be processes [36].
These user stories are the primary artifact in Jira, the employed
project management tool. This not only supports validating
requirement completeness, but also improves efficiency by
accelerating specification.

2) Acceptance Criteria Generation. During the project
preparation phase, user stories are enriched with acceptance
criteria (AC), which specify the detailed conditions to be met.
For example, the user story in the previous paragraph can have
the AC ‘Stock can be both added and subtracted (+ and —)’ for
an inventory adjustment story. AC are added to USs and inform
both estimation and development during sprints. Interviewees
noted the activity is perceived as tedious and time-consuming,
especially since customers rarely provide them. Automating
this step could accelerate the specification process.

3) Data Model Generation. In LCAPs, MDD generally
centers on the data model, which is initially designed by the
project team and expanded during development. Automating
this process with LLMs could accelerate development by gen-
erating a tailored model that, through MDD toolkits, enables
rapid application prototyping.

4) Process Model Generation. Business analysts document
current processes in BPMN to communicate with stakeholders
and identify knowledge gaps. These models are included in
the functional design as context for the application. Utilizing

LLMs to generate these models could significantly reduce the
time needed for the design document.

5) Meeting Summarization. During the project, requirements
are typically gathered through interviews or discussions [37].
Al facilitates transcript availability [|38]], or interview notes can
be available. LLMs can generate summaries from transcripts or
notes, reducing the need for manual note-taking. This allows
analysts to focus on the conversation and easily share insights
with the broader team.

V. PROMPT ENGINEERING (RQ2)

To determine the prompts, we followed Marvin et al.’s
structured prompt engineering [39]]. Zero-shot prompting was
used, and we adopted best practices and guidelines from
literature [40], [41]. Additionally, prompt patterns [23] were
incorporated when applicable. Through iterative testing and
refinement, prompts were engineered based on the initial three
projects mentioned in We provide the prompts for
the three use cases, while the other two prompts are in the
appendix (part E). Overall lessons learned on the prompt
engineering will be discussed in

A. User Story Generation

This use case aims to generate a comprehensive set of
user stories based on the provided contextual information. The
functional design document and, optionally, customer provided
documents (e.g., legacy system documentation) are provided
to the LLM. To improve the formatting, the prompts
provide a user story template. The prompts initially returned
a relatively low number of user stories with high abstraction.
To remedy this, we adapted them to request user stories for a
specific section of the attached document.

TABLE I
PROMPTS FOR THE GENERATION OF USER STORIES.

Prompt 1: Provide context Patterns

You are a business analyst for a software
development project described in the [project
documentation]. Read this [project
documentation] carefully. Acknowledge that
you have received and read the document
carefully and wait for my next prompt. I will
then provide you with [some additional
information] based on which I will ask you
to write a comprehensive set of user stories.

persona specification,
input project context,
task definition,

confirmation request

Prompt 2: Provide input and task instructions Patterns

Attached you will find [requirement input
documentation]. Based on the information in
the attached document, write a comprehensive
set of user stories for [input document
section]. Write the user stories in the
following format, “As [user], I want [desired
functionality] so that [reason/goal]”. Make
sure that all features of [input document
section] are covered. Ensure that each user
story provides a detailed description of what
a user wants to be able to do.

task-specific input,
constraints and
guidelines, expected
output format

B. Acceptance Criteria Generation

This use case aims at defining clear and testable accep-
tance criteria for a provided set of user stories. The prompts
(Table III) also use the project documentation as additional
context, which is the functional design in our case. Chain-
of-thought prompting is applied here: we first provide the
persona and request the LLM to analyze the context infor-
mation. A second prompt then provides the user stories and
the task to generate acceptance criteria. Optionally, focus on
specific functional or non-functional criteria can be added. To
prevent the addition of unnecessary formatting such as headers
that contribute to the token limit, formatting instructions are

TABLE IV

PROMPTS FOR GENERATING A DATA MODEL FOR A PROCESS.

Prompt 1: provide context

Patterns

You are a low-code developer for the project
described in the attached [project
documentation]. The project will be built on
[MDD platform]. I will ask you to create a
relational data model for a certain part of the
project. While creating the data model, I want
you to adhere to the [MDD platform] data
modeling guidelines specified in [modeling
guidelines documentation]. Carefully read the
attached project description and the
guidelines. Confirm that you have carefully

persona specification,
input project context,
task definition, provide
modeling guidelines,
confirmation request

included.

TABLE III

PROMPTS FOR THE GENERATION OF ACCEPTANCE CRITERIA.

Prompt 1: Provide context

Patterns

You are a business analyst for the project
described in the attached [project
documentation]. Read the document carefully.
Confirm that you have read the document and
wait for my next prompt. I will then ask you
to help write acceptance criteria for a set of
user stories from the project.

persona specification,
input project context,
confirmation request,
task definition.

Prompt 2: Provide task instruction

Patterns

I want you to generate acceptance criteria for
the following user stories. Make sure to align
the criteria with the information outlined in
the [project documentation]. Each criterion
should be clear and concise. For each user
story, list the user story first and then directly
follow it with the corresponding acceptance
criteria in bullet-point format. Here is the list
of user stories: “[user story set]”

task definition,
task-specific input,
constraints and
guidelines, expected
output format

Optional: Specify project focus e.g.: Prioritize
criteria for [performance OR functionality,
OR usabilty]

extra constraints and
guidelines

Optional: Specify AC template e.g.: Use the
‘Given, when, then’ template for each

extra constraints and
guidelines

criterion.

C. Data Model Generation

For the generation of data models, it is important for
the LLM to fully understand the context and process to be
supported by the data model. Therefore, the first prompt
(Table IV) informs the LLM of the context, role and task
expectations. Additionally, since ChatGPT-40 did not perform
well in generating model visualizations, we stated that the
descriptions should be formatted for use in the desired visual-
ization tool [23]. The prompts also contain extra instructions
regarding the relationships, to improve overall correctness
and completeness of the generated model. Additionally, the
prompts include instructions for link or bridge tables as they
would otherwise not be included. Output formatting instruc-
tions are also provided. The third prompt is used to translate
the output to a visualization tool. For this research we used
PlantUML.

read the provided information and then wait
for my next prompt.

Prompt 2: provide task instructions Patterns

task definition,
task-specific input,
constraints and
guidelines, expected
output format

I want you to create a data model, more
specifically a [specific modeling approach],
based on the [data model input
documentation]. Make sure to follow the
aforementioned modeling guidelines when
describing the model. Take extra care when
determining the relations (one-to-one,
many-to-one, and link tables for
many-to-many relationships) between the
entities, to make sure they adhere to the
provided input. Make sure to not forget to
use link tables to incorporate many-to-many
relationships. For each entity, provide a
concise name, its attributes, and a description
of the entity. For each relationship, provide
between which entities it lies, whether it is a
one-to-many or one-to-one relationship and
your reasoning for including it.

Optional: Provide instructions to refine the
generated model description if necessary.

Prompt 3: format for visualization tool Patterns

Format the generated data model description
output so that I can provide it to
[visualization tool] to visualize it.

visualization generator

D. Meeting Summarization

This use case aims to generate accurate and detailed meeting
summaries. Optionally, the LLM can be prompted to focus
specifically on key decisions, meeting action points, require-
ments, or other explicitly defined topics.

We added specific instructions to improve the level of
detail, focus on certain items, and to boost comprehensive-
ness. Additionally, formatting instructions were added to write
paragraphs instead of bullet points and adding headers.

For this use case, it was also required to split the transcripts
into sections in order for the LLM to handle the entire meeting
duration. Timestamps were also included in the instructions so
outputs could be more easily traced back to the transcript. The
meeting summarization prompt template can be found in the
online appendix (part E).

E. Process Model Generation

The aim of this use case is to generate a process model
for the domain. A first prompt provides the LLM with role

and project context. The LLM is explicitly asked to confirm it
reviewed the context in the prompt. Then, the process model
generation task is triggered. This prompt provides specific
guidelines to identify and outline all tasks, sub-processes,
events and decision nodes. General BPMN naming conven-
tions and constraints were included to provide a focus on
their identification by the LLM. Finally, similar to data model
generation, the outputs are transformed for a visualization tool.
The prompt templates for process model generation can also
be found in the online appendix (part E).

VI. PERCEIVED EFFECTIVENESS OF THE
LLM-GENERATED RE ARTIFACTS (RQ3)

To validate the LLM prompt templates, we assessed the
perceived effectiveness of the outputs. Making use of the
industrial embedding of this research, we evaluated the LLM-
generated outputs with the team members of the projects.

While gauging the opinion of the team members increases
the authenticity of the results, this also poses limitations.
Indeed, the potential set of participants is low, and there
is a necessity to limit the required effort from the industry
experts. Thus, we selected three use cases based on their
importance for the Agile MDD process at the company. We
excluded summarization as this is not currently an activity
in the process, and left out process generation because we
prioritized requirement-centric artifacts. A uniform survey was
designed to validate the outputs across the four industry cases

(Sect. III-Al). The survey focused on:
1) the perceived quality of the generated artifacts;

2) the perceived artifact applicability in the projects.

The former concern was addressed by means of a set of
questions for each of the generated artifacts, for example, for
one user story. The latter was studied via questions regarding
the whole generated output for a given use case.

To limit the participants’ cognitive effort, all artifacts were
generated for the same business process within a given project.
These artifacts are user stories, acceptance criteria, and data
models. The focus processes and participant information are
shown in[Fig. 3] participant experience is based on the function
title. Each participant was involved in a single case and is
therefore unique for our validation (Sect. III))

Focus Process Role Distribution

Q-
99

Participant Experience

28R i

F - Developer Business Analyst @ Senior
ocus process within

project (Proj.): Medior

Junior

@ Project Manager

@ A-Assembly A 4
(Z@:& B- Repairs B 501

@ C-ValueAdded C 2

&= Logistics

% D-Order Picking D 2 1.
4

0 2

@ Tester

{

Junior
16.7%

Proj

Senior

Medior 55.6%

27.8%

Fig. 3. Focus processes & participant information.

To maximize the data collection outputs, we also included
the responses of two of the authors of this paper, as they were

also project members for two different projects: ProjA and
ProjB. These authors filled in the survey before accessing any
of their colleagues’ opinions. For transparency, we provide
the survey responses in the online appendix (part B), clearly
highlighting the results by the authors who are also project
members. The appendix (part A) also contains example sur-
veys for replicability.

Participants were provided with the input documents used
by the LLM in order for them to possess additional context
while answering the surveys.

In the following, we first discuss results per each use case,
and then provide a comparison across the use cases.

A. User Story Generation

We presented a set of fifteen LLM-generated user stories
to each participant. Each user story was accompanied by the
categorization assigned by the LLM. The participants were
asked to answer three statements on a 4-point Likert scale with
an additional option “I’m not able to answer”. An example
showing the format is as follows:

‘As a planner, [want to generate an assembly forecast based
on historical sales data so that I can prepare for the next
four weeks production needs’
(Category; Forecast and Planning)
Please rate your agreement with the following statements:
o The user story is in the scope of the application process.
o The user story could have been included in the project
specification as is.
o The user story has been or will be implemented in the
project.

The goal was to determine whether or not the LLM would
include stories that could impact scope creep, if they were
fit for specification in the project management tooling, and
whether they ended up in the actual application. The results,
organized by question and case, can be seen in The
individual responses are in the online appendix (part B).

Negative ratings 13% Positive ratings
1. In scope of process - ProjA 10% 16% J 34%

% 14% 18% e

1 2%

1. In scope of process - ProjB

1. In scope of process - ProjC 18% 22% 25% o 3%
2%
1. In scope of process - ProjD 7% 5% 30% I 7
I3%
2. Included in specification - ProjA 9% 20% | 38% o 30%
2. Included in specification - ProjB 4% 20% 30% Y S
2%
2. Included in specification - ProjC 18% 7%, 43% o 30%
V2%
2. Included in specification - ProjD 2% 12% ‘I 30% s
3. Will be implemented - ProjA 14% 9% 33% ‘I 20% ZEEN
1
3. Will be implemented - ProjB 7% 19% 21% 22% o %
3. Will be implemented - ProjC [28% 22% ' o1sy 2%
H

'
3. Will be implemented - ProjD 3% 13% 12% 20% NS

C Disagree

disagree " Not able to answer ' Somewhat agree m Completely agree

Fig. 4. Results for the user story statements.

The results show an overall positive rating for all three
statements. Most stories are perceived to be in scope of the
process and included in the specification. Both statements
have a macro-average of 74.6% positive ratings (somewhat
or completely agree), though the first statement has a higher
rate of complete agreement. However, the results show that
validating the generated user stories is important, as 25%
of them is considered out of scope (40% for ProjC). The
statement about the stories actually being implemented in the
project has a higher number of ‘not able to answer’, probably
due to the detailed level of application knowledge required,
which is uneven among team members. The percentage of
negative ratings (28%) is similar to that of the other statements.

Some user stories show only positive agreements for all
statements. An example: “As a system administrator, I want
the system to auto-assign repairs to technicians based on
past experience so that the most qualified technician gets the
task.” (ProjB - thirteen “Completely agree”, four “Somewhat
agree”, and one “Can’t answer” over the three statements).
This story also matches closely the process described in the
design. In comparison, the story “As a printer operator, I want
to print task sheets and corresponding labels for the assembly
items so that workers can identify and track their progress.”
(ProjA) had two participants strongly disagreeing on the three
statements, three participates rate the statements positively, and
there was one participant with mixed results (two “Completely
agree”, seven “Somewhat agree”, two “Can’t answer”, one
“Somewhat disagree”, and six “Completely disagree” over the
three statements). This could be due to the current process
being paper based, but the implementation supporting this
functionality within the application (so no printed sheets).

B. Acceptance Criteria Generation

For the validation of the generated acceptance criteria,
we opted for a format change and decided to validate each
acceptance criterion individually, as opposed to the set of
acceptance criteria for a single user story. Therefore, we
also chose a different format to keep the effort requirement
manageable: participants were asked to provide input on the
correctness and relevance of each acceptance criterion.

We selected up to fifteen user stories contained in the
functional design for the focus process. The LLM generated
four acceptance criteria for each of these requirements. For
each acceptance criterion, participants were asked to fill in
check boxes to indicate if they deemed the criterion correct,
relevant, both or neither. In this context, correctness means
that it is indeed required for the project; relevance indicates
it is related to the user story. For instance, for the user story
from ProjB: “As a mechanic, I want to record the root cause of
a defect so that I can trace what was wrong with the article”,
the AC “Root cause data must be included in repair reports”
was considered relevant but not correct, because reports were
not part of the project.

shows the distribution of ratings across the cases.
Averaged over all cases, participants found 62% of the ac-
ceptance criteria correct and 61% of them relevant. This

indicates that, although they cannot be used as such, the
resulting acceptance criteria contain a good amount of usable
information. In particular, 37% of all answers indicate both
relevance and correctness of the acceptance criteria.

TABLE V
COMBINED RESULTS FOR THE ACCEPTANCE CRITERIA VALIDATION.

Correct Relevant Both Neither % Cor- % Rel-

rect evant

ProjA 102 75 128 31 68.5% 60.4%
ProjB 85 95 126 54 58.6% 61.4%
ProjC 48 57 41 62 42.8% 47.1%
ProjD 48 54 127 11 729% 75.4%
Combined 283 281 422 158 61.6% 61.5%

Differences exist across projects though, with the best
results in ProjD and the worst in ProjC. This is visible
by the percentages in and also when examining
the box-plots in The latter figure also shows higher
variance for correctness than for relevance, indicating better
agreement among the team members when evaluating whether
the generated acceptance criteria relate to the user story.

AC Perceived Correctness Per Case AC Perceived Relevance per case

80% 80% +
- - :
50% 9 50%

% R

Proj-D o%

0% Proj-A Proj-8 Proj-C Proj-A Proj-B Proj-C Proj-D

Fig. 5. Results for the acceptance criteria survey statements.

C. Data Model Generation

For the validation of the generated data models, participants
were presented with a PlantUML visualization, like that shown
in for ProjB.

They were then asked, for each table, to rate the following
statements on a 4-point Likert scale:

o The table is in the scope of the application process.

o The columns are within the scope of this table.

o The relationships linked to this table are accurate.

o The table and columns have been, or will be imple-
mented in the project.

The findings from the questionnaire can be seen in [Fig. 7]
Here, we observe a less positive image, with a higher share
of negative ratings compared to the user story statements.
Especially the statement about relationships for ProjC &
ProjD are rated negatively. When comparing statements, the

® venton em
S em_ia (INT <PK»

article_number : NVARCHAR(100)
description : NVARCHAR(255)

phone : NVARCHAR(50) f‘)"c"a‘:“gz" N%‘;’;Zﬁm:{gf) expected_delivery_date : DATETIME

address : NVARCHAR(S00)| 1 oo stock_quantity : INT status : NVARCHAR(50)

submit l ordered ﬂ T
- contains|
(B Repair Request

o repair_request_id : INT «PK; ® recrmicn
customer_id : INT «FK» ¥ - |
item_id : INT «FK» o technician_id : INT «PK»
request_date : DATETIME

priority : NVARCHAR(50)
issue_description : NVARCHAR(1000)
status : NVARCHAR(50)
estimated_completion_date : DATETIME
created_by : NVARCHAR(255)

(® customer

o customer_id : INT «PK»

name : NVARCHAR(255)
email : NVARCHAR(255)

(® supplier Order
o supplier_order_id : INT «PK»

supplier_name : NVARCHAR(255)
order_date : DATETIME

() supplier Order item

o supplier_order_item_id : INT «PK»

supplier_order_id : INT «FK»
item_id INT «FK»
quantity_ordered : INT
received_quantity : INT

name : NVARCHAR(255)
expertise : NVARCHAR(255)
contact_info : NVARCHAR(255)

assigned_t)
change: generate: used_inf

() Repair Job
o repair_job_id : INT «PK»
repair_request_id : INT «FK»
technician_id : INT «FK»
start_time : DATETIME
end_time : DATETIME
repair_notes : NVARCHAR(2000)
status : NVARCHAR(50)

() Repair Staws History

o history_id : INT «PK»

repair_request_id : INT «FK» pperforms

changed_on : DATETIME
old_status : NVARCHAR (50)
new_status : NVARCHAR(50)
changed_by : NVARCHAR(255)

log

® TestLog

o test_log_id : INT «PK»

R
(®) Repair Component

o repair_component_id : INT «PK»
repair_job_id : INT «FK»
component_id : INT «FK»
quantity_used : INT

repair_job_id : INT «FK»
performed_by : INT «FK»
test_type : NVARCHAR(50)
test_result : NVARCHAR(255)
test_date : DATETIME

Fig. 6. Generated data model for ProjB.

worst average scores relate to the question on whether each
table has been implemented. This has a similar number of
positive and negative statements, namely 48% and 41%. This
indicates a low precision in the outputs, with many generated
tables perceived to be irrelevant for the actual implementation
in the project.

Negative ratings '

Positive ratings

1. Table Scope - ProjA % 23% 4% 17% RS2
1. Table Scope - ProjB 5% 8% é% 43% s
1. Table Scope - ProjC 31% 3% 3?%_
1. Table Scope - ProjD 17% 12% 10% 15% EEE——s
2. Columns Scope - ProjA 0% 27% 4% 40% INZO%
2. Columns Scope - ProjB 5% 13% 10% 55% T
2. Columns Scope - ProjC 36% 14% 3:% 33% [NEA%I
2. Columns Scope - ProjD 17% 13% 1?% 33% INIe%
3. Relationships - ProjA 15% 33% 4% 19% 2%
3. Relationships - ProjB 5% 17% 1é% 52% N7
3. Relationships - ProjCc 142% 1% 22% 19% 6%1
3. Relationships - Projp [23% ss% 1% 13% I
4. Implemented - ProjA 17% 31% 59:6 19% 27
4. Implemented - ProjB 10% 28% 13‘% 40% 8%l
4. Implemented - ProjC 36% 11% 8%6 39% 6%l
4. Implemented - ProjD 17% 19% 12% 29% N2
C Disagree hat disagree Not able to ;nswer Somewhat agree m Completely agree

Fig. 7. Results for the data model statements.

D. Comparing the Use Cases

For each of the surveys, participants were also asked to
provide their opinions on the use case in general. For each
case, we asked about (a) ‘similarity to the human created
artifacts’, (b) ‘using the generated artifacts as a starting point’,
and (c) ‘willingness to use Al in this use case’. For the
data model, we added a question (d) on the relationships
between tables. Moreover, we split data model generation into
two use cases: (3A.) as extra context in the requirements
specification, and (3B.) as actual data model implementation in
the application. The survey results are visualized in We
combine the results between projects to reflect on the findings
of the use case.

1. Us: Similarity 5% 25% 5% 60% £

1. US: Starting Point 5%5%50% A%
1. US: Intent to Use 5% 20% 50% _

2. AC: Similarity 35% 55% [10%

2. AC: Starting Point 5% 40% s5%
2. AC: Intent to Use 10% 15% 45% _

3. DM: Similarity 30% 35% 35%

3. DM: Relationship 20% 40% 40%

3A. DM specification: Useful 25% 25% 40% ->

3A. DM specification: Starting Point 20% 15% 45% 20%

3A. DM specification: Intent to Use 15% 25% 55% lﬁ

3B. DM implementation: Useful 35% 20% 40% .%

3B. DM implementation: Starting Point 35% 10% 40% -

3B. DM implementation: Intent to Use 30% 25% 45%

Completely Disagree Somewhat disagree Not able to answer Somewhat agree ® Completely agree

Fig. 8. Statements regarding the use cases as a whole.

While the generation of user stories and acceptance criteria
have similar values for all three statements, AC generation has
a slightly higher ‘strongly agree rating’. We observe a high
intent to use (c) of 75% (somewhat agree + completely agree)
for the first two use cases, and lower values for the data model:
60% for specification (cl) and 45% for implementation (c2).
The generally high intention to use can be explained by the
fact these outputs can be generated with no additional effort,
and can therefore be seen as a good starting point compared
to starting from scratch. The better results for (c1) than (c2) is
explained by the fact that, in the former use case, the generated
data model is an appendix to the specification, rather than the
database that guides the MDD application.

In the survey comments, the participants mentioned that
using the user story outputs as a reference would be useful,
but directly using them would take more time as validation
is necessary to ensure correctness. Another participant was
concerned that the LLM output may not cover the entire scope.
Additionally, motivating business analysts to actually check
the entire output was perceived as a challenge. The role part
of the story was mentioned as a risk since it didn’t match
to roles used in the application and specification. Participants
also mentioned in the comments that they are a nice starting
point but need to be specified further. For further prompt
improvement or additional use cases, they also noted that
the description normally included in the project management
tooling was missing. Two participants specifically mentioned
that the generated stories are ‘pretty close’ to what is used in
the project.

For the acceptance criteria, one participant mentioned that
their quality was better than what is generally provided by the
customer. However, another mentioned that while the outputs
are a good starting point, they should not be given to a
developer without checking between the business analyst and
customer to ensure this is what was agreed, also focusing on
existing price arrangements. Again, they mentioned tedious-
ness: checking all the generated acceptance criteria for, say, a
hundred user stories is not something a product owner would

look forward to. This is confirmed by the fact that the survey
had an average completion time of thirty-four minutes for
fifteen stories. Other comments also mentioned the lack of
specificity and consistency with project terminology.

For the data models, we observed a lack of consistency
between the case outputs. Three of the models used the
crow’s foot notation, while one used a composition for each
relation. Similarly, relationship labels were different for the
cases. Examples include ‘logs’, ‘has many’, ‘contains’, and
‘from’. The participants mentioned that the table naming did
not follow the naming conventions provided by the low-code
development platform documentatiorﬂ

VII. THREATS TO VALIDITY

We review the relevant threats to validity using the taxon-
omy by Yin [42], which is recommended by Wohlin e? al. [43]].

Construct validity refers to the adequate choice of opera-
tional measures. Using a survey is a limiting factor, because
we cannot verify whether the participants have read and
understood the survey instructions, nor if the questions are
understood correctly. This is an inherent limitation of our
research design, which we decided for as a trade-off between
effort and thoroughness. We validate the statements in isolation
rather than applying an Al-supported method in the company.
This may result in a different, probably more positive, opinion.
Additionally, although the input files provided as context
contained business process models in the BPMN notation, we
did not specifically instruct the LLM to process those. Thus,
we cannot be sure whether and how the LLM has used these
in generating the outputs.

Internal validity is concerned with uncontrolled factors that
may affect causality. First, the use of ChatGPT as an LLM
poses a threat, as it provides different responses to the same
question, thereby influencing the outputs to validate. We took
a ‘first answer’ approach to prevent further impacting the
validity by cherry picking, and having multiple cases mitigates
this threat. However, a different output by the LLM might have
impacted the findings. Additionally, to limit the participant
effort, we limited the data sets validated in the surveys, i.e.,
fifteen user stories. Also, we measure the perceived effective-
ness of the use cases through Likert surveys. While we see a
high percentage of ‘(strongly) agree’, this may be related to a
positive bias, as the artifacts are generated at ‘no cost’.

External validity regards the extent to which the findings can
be generalized. Since we performed a context-specific industry
study, generalizability is limited. However, since the prompts
were designed based on the method in and validated
within this context, we may expect similar results in other
contexts where Agile MDD is used.

VIII. CONCLUSIONS AND LESSONS LEARNED

We conclude this paper by addressing the research questions
and, while doing so, by highlighting the lessons learned for
the case company.

Zhttps://docs.thinkwisesoftware.com/docs/sf/guidelines_data_modeling

RQI. In which use cases can we employ LLMs to generate
RE artifacts? In order to gain the required contextual knowl-
edge for the Agile MDD process used at our case company,
we identified a set of process steps and artifacts that led to the
PDD shown in[Fig. 2] This precise characterization is a starting
point for the identification of use cases where LLMs can assist
in generating artifacts. Additionally, through interviews with
team members, we identified five RE-relevant use cases (see
[Sect. TV)). These use cases focus on the generation of (a) user
stories, (b) acceptance criteria, and (c) data models, the (d)
summarization of meetings; and (e) process model generation.
Through the research, the case company has documented
its own Agile MDD process in a precise manner, and has
identified concrete use cases where LLMs can be used by po-
tentially (semi-)automating existing activities where artifacts
are generated. Beyond the validated use cases, this approach
supports further method engineering both for integration of
LLMs and general process improvements. Additionally, the
explicit models facilitate communication about the ‘way of
working’ with new employees or customers.

RQ2. What is a re-usable set of prompt templates that can
be applied in the identified use cases? We selected the five use
cases identified in RQ1 to then iteratively design a re-usable
set of prompts to generate RE-related artifacts in the context
of the considered Agile MDD process. By assembling these
prompts, the case company increased its internal knowledge
on practical aspects for the effective use of LLMs (more
specifically, ChatGPT-40) to automatically generate project
artifacts. The prompts also function as examples that can be
adapted to facilitate other use cases. Task breakdown was a
factor for each of the use cases: splitting up the generation
into more focused prompts, i.e., per module resulted in more
complete and specific output. Context window was important
to handle the input documents and to repeat instructions for,
e.g., formatting to ensure they are still being followed. In
our case, we experienced issues with more than fifty user
stories, which could not all be processed together, or with
large input documents. The input documentation has an impact
on the abstraction level of the generated outputs. However,
we found the functional design, one of the key artifacts in
the Agile MDD process to be an effective input
document. Especially for data model generation, we found
that providing guidelines on how to generate a data model
was beneficial to obtain models that met our expectations.
In our case, the data modeling guidelines from Thinkwise
were used for the modeling. Additionally, chain of thought
prompting [26] improved results, especially for the data model
and process model generation.

RQ3. What is the perceived effectiveness of the LLM-
generated RE artifacts by project team members? From the
validation, we observe an overall positive perceived effective-
ness for the set of generated artifacts. The results were gener-
ally more positive than expected, and quite some participants
indicated they are inclined to use the prompts in their projects.
We also identified some considerations in using the generated
artifacts. For example, it is crucial to validate the outputs

https://docs.thinkwisesoftware.com/docs/sf/guidelines_data_modeling

with respect to scope: several of the generated artifacts are
in general sensible and could be relevant, but they may fall
outside the boundaries of the agreed-upon project with the
client, the budget, and the project timeline. Furthermore, in
some cases, we also found artifacts that are not related to their
‘parent’ artifact. For example, a user story that does not pertain
to its epic, or an acceptance criterion outside of the scope of
a user story. When comparing the generated outputs for each
of the cases, we also observe a lack of consistency especially
in the grouping of the user stories, and in the elements that
are included in the data model. These findings indicate that
LLM-generated outputs, at least those created with ChatGPT
in our context, are a starting point for further processing but
are certainly not ready to be used without any validation.
MRQ. To what extent can LLM-based RE artifacts be
effectively generated within an Agile MDD process? Although
imperfect we could, generate outputs for all of our five use
cases by means of a reusable prompt template that does not
require follow-up interaction with the LLM. Therefore, the
artifacts can be created via an API call and then provided
to the team members for further refinement. Especially the
user stories and the acceptance criteria were deemed to be
a good starting point and/or refinement of documentation in
the Agile MDD process at the case company. More than
half of the project members had a positive opinion regarding
their intention to use Al for these use cases, except for using
the data model for the application implementation. While the
generated outputs require human validation for use, one key
lesson learned is that LLMs can lead to efficiency gains for
requirements specification tasks in the Agile MDD process by
providing team members with initial, to be refined inputs.

IX. FUTURE RESEARCH

To enhance the generality of our findings, we encourage re-
searchers to replicate this study in different contexts, possibly
using the materials provided in the online appendix. While our
work is based on real project data, a logical follow-up is to
embed the prompts in the company’s practices.

For application to other contexts, we suggest using our
provided prompts with available project documentation and
reviewing the outputs. The unavoidable differences in different
industrial contexts entail that adaptations will be necessary for
either the input documents (the mock documentation in our
appendix serves as an example) or the prompts.

To further support applicability, our future work includes
the formalization of our user cases and prompts into reusable
method fragments [44] that include instructions for their
application to various contexts.

Future studies could also explore the use of the prompts
beyond the early project phases, particularly during sprints. Fi-
nally, while we studied the applicability of the general-purpose
model ChatGPT-4o, investigating the impact of domain-
specific and fine-tuned models presents a promising direction
to improve accuracy and usefulness of the outputs.

ACKNOWLEDGMENTS

We would like to thank all the employees of fizor. who
participated in our study. Their involvement has been essential
throughout the research cycle reported in this paper.

REFERENCES
[1] Digital.AI, “The 17th state of agile report,” Dig-
ital. A, Tech. Rep., 2023, [Accessed 29-03-2025].
[Online]. Available: https://info.digital.ai/rs/981-LQX-968/images/

RE-SA-17th- Annual-State- Of- Agile-Report.pdf?version=0

[2] O. Matvitskyy, K. Davis, and A. Jain, “Magic quadrant for
enterprise low-code application platforms,” Oct 2024, [Accessed 29-
03-2025]. [Online]. Available: https://www.gartner.com/doc/reprints?id=
1-2J42UZECé&ct=241017 &st=sb

[3] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad,
and the ugly,” IBM Systems Journal, vol. 45, no. 3, pp. 451-461, 2006.

[4] M. DiCesare, “Model-Driven Development: The Foundation
of Low-Code — mendix.com,” |https://www.mendix.com/blog/
low-code-principle- 1-model-driven-development/, 2024, [Accessed
29-03-2025].

[5] A.C.Bock and U. Frank, “Low-code platform,” Business & Information
Systems Engineering, vol. 63, pp. 733-740, 2021.

[6] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?” Software and Systems Modeling, vol. 21,
no. 2, pp. 437446, 2022.

[71 M. Overeem, “Evolution of low-code platforms,” Ph.D. dissertation,
Utrecht University, 2022, https://doi.org/10.33540/1197.

[8] S. Hansson, Y. Zhao, and H. Burden, “How MAD are we? Empirical
evidence for model-driven agile development,” in Proceedings of the
Workshop on Extreme Modeling, ser. CEUR Workshop Proceedings, vol.
1239, 2014, pp. 2-11.

[91 M. Snoeck and Y. Wautelet, “Agile MERODE: A model-driven software

engineering method for user-centric and value-based development,”

Software and Systems Modeling, vol. 21, no. 4, pp. 1469-1494, 2022.

A. Urlana, C. V. Kumar, A. K. Singh, B. M. Garlapati, S. R. Chalamala,

and R. Mishra, “LLMs with industrial lens: Deciphering the challenges

and prospects—a survey,” arXiv preprint arXiv:2402.14558, 2024.

A. Karim Jallow, P. Demian, A. N. Baldwin, and C. Anumba, “An empir-

ical study of the complexity of requirements management in construction

projects,” Engineering, Construction and Architectural Management,

vol. 21, no. 5, pp. 505-531, 2014.

S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “An empirical

study of the non-determinism of ChatGPT in code generation,” ACM

Transactions on Software Engineering and Methdoology, vol. 34, no. 2,

Jan. 2025.

V. Jain, J. M. Chatterjee, A. Bansal, U. Kose, and A. Jain, Computational

Intelligence in Software Modeling. Walter de Gruyter GmbH & Co KG,

2022.

C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CODAMOSA: Escap-

ing coverage plateaus in test generation with pre-trained large language

models,” in Proceedings of the IEEE/ACM International Conference on

Software Engineering (ICSE), 2023.

T. Ahmed and P. Devanbu, “Few-shot training LLMs for project-specific

code-summarization,” in Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2022, pp. 1-5.

A. S. Pothukuchi, L. V. Kota, and V. Mallikarjunaradhya, “Impact

of Generative Al on the software development lifecycle (SDLC),”

International Journal of Creative Research Thoughts, vol. 11, no. 8,

2023.

C. Arora, J. Grundy, and M. Abdelrazek, “Advancing requirements

engineering through Generative Al: Assessing the role of LLMs,” in

Generative Al for Effective Software Development, A. Nguyen-Duc,

P. Abrahamsson, and F. Khomh, Eds. Switzerland: Springer, 2024,

pp. 129-148.

K. Ronanki, C. Berger, and J. Horkoff, “Investigating ChatGPT’s po-

tential to assist in requirements elicitation processes,” in Proceedings

of the Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). 1EEE, 2023, pp. 354-361.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

https://info.digital.ai/rs/981-LQX-968/images/RE-SA-17th-Annual-State-Of-Agile-Report.pdf?version=0
https://info.digital.ai/rs/981-LQX-968/images/RE-SA-17th-Annual-State-Of-Agile-Report.pdf?version=0
https://www.gartner.com/doc/reprints?id=1-2J42UZEC&ct=241017&st=sb
https://www.gartner.com/doc/reprints?id=1-2J42UZEC&ct=241017&st=sb
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://doi.org/10.33540/1197

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

B. Gorer and F. B. Aydemir, “Generating requirements elicitation
interview scripts with large language models,” in Proceedings of the
IEEE International Requirements Engineering Conference Workshops
(REW). 1EEE, 2023, pp. 44-51.

S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, “Automated
handling of anaphoric ambiguity in requirements: A multi-solution
study,” in Proceedings of the IEEE/ACM International Conference on
Software Engineering (ICSE), 2022, pp. 187-199.

G. Voria, E. Casillo, C. Gravino, G. Catolino, and F. Palomba, “RE-
COVER: Toward requirements generation from stakeholders’ conversa-
tions,” IEEE Transactions on Software Engineering, 2025.

Z. Li, W. Qiu, P. Ma, Y. Li, Y. Li, S. He, B. Jiang, S. Wang, and
W. Gu, “An empirical study on large language models in accuracy
and robustness under Chinese industrial scenarios,” arXiv preprint
arXiv:2402.01723, 2024.

J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern cat-
alog to enhance prompt engineering with ChatGPT,” arXiv preprint
arXiv:2302.11382, 2023.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object-oriented software. Pearson Deutschland
GmbH, 1995.

OpenAl, “Prompt engineering best practices for ChatGPT,” 2024,
accessed: 2024-10-25. [Online]. Available: https://help.openai.com/en/
articles/10032626-prompt-engineering-best- practices- for-chatgpt

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Proceedings of the International Conference
on Neural Information Processing Systems (NIPS), 2022, pp. 24 824—
24 837.

S. W. Ambler, Agile modeling: Effective practices for extreme program-
ming and the unified process. John Wiley & Sons, 2002.

V. Kulkarni, S. Reddy, S. Barat, and J. Dutta, “Toward a symbiotic
approach leveraging Generative Al for Model Driven Engineering,”
in Proceedings of the ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS). 1EEE, 2023,
pp. 184-193.

A. R. Sadik, S. Brulin, and M. Olhofer, “Coding by design: GPT-
4 empowers Agile Model Driven Development,” in Proceedings of
the International Conference on Model-Based Software and Systems
Engineering (MODELSWARD), 2024, pp. 149-156.

Thinkwise, “Unleashing the potential of GAI for advanced application
development,” https://www.thinkwisesoftware.com/ai, 2025, [Accessed
29-03-2025].

D. Roest, “Mendix Release 10.21 - AI AI Al, boosting developer
productivity — Mendix — mendix.com,” https://www.mendix.com/

(32]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

blog/mendix-release- 10-21-ai-ai-ai- boosting-developer-productivity/,
Mendix, 2025, [Accessed 29-03-2025].

L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The
case for context-driven software engineering research: Generalizability
is overrated,” IEEE Software, vol. 34, no. 5, pp. 72-75, 2017.

R. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

I. van de Weerd and S. Brinkkemper, “Meta-modeling for situational
analysis and design methods,” in Handbook of research on modern
systems analysis and design technologies and applications. 1GI Global,
2009, pp. 35-54.

O. Gotel and A. C. W. Finkelstein, “An analysis of the requirements
traceability problem,” Proceedings of IEEE International Conference on
Requirements Engineering (ICRE), pp. 94-101, 1994.

T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Requirements elicitation
via fit-gap analysis: A view through the grounded theory lens,” in
Proceedings of the International Conference on Advanced Information
Systems Engineering (CAISE). Springer, 2021, pp. 363-380.

D. Zowghi and C. Coulin, “Requirements elicitation: A survey of tech-
niques, approaches, and tools,” in Engineering and managing software
requirements. Springer, 2005, pp. 19—46.

T. Spijkman, X. de Bondt, F. Dalpiaz, and S. Brinkkemper, “Sum-
marization of elicitation conversations to locate requirements-relevant
information,” in Proceedings of the International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ).
Springer, 2023, pp. 122-139.

G. Marvin, N. Hellen, D. Jjingo, and J. Nakatumba-Nabende, “Prompt
engineering in large language models,” in Proceedings of the Inter-
national Conference on Data Intelligence and Cognitive Informatics
(ICDICI). Springer, 2023, pp. 387—402.

S. Arvidsson and J. Axell, “Prompt engineering guidelines for LLMs
in requirements engineering,” University of Gothenburg, 2023, BSc
thesis. [Online]. Available: https://hdl.handle.net/2077/77967

OpenAl, “Prompt engineering guide,” 2024, accessed: 2024-
10-25. [Online]. Available: https://platform.openai.com/docs/guides/
prompt-engineering

R. K. Yin, Case study research and applications. Sage Thousand Oaks,
CA, 2018, vol. 6.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the
International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2014, pp. 1-10.

S. Brinkkemper, M. Saeki, and F. Harmsen, “Assembly techniques for
method engineering,” in Proceedings of the International Conference on
Advanced Information Systems Engineering (CAiSE). Springer, 1998,
pp. 381-400.

https://help.openai.com/en/articles/10032626-prompt-engineering-best-practices-for-chatgpt
https://help.openai.com/en/articles/10032626-prompt-engineering-best-practices-for-chatgpt
https://www.thinkwisesoftware.com/ai
https://www.mendix.com/blog/mendix-release-10-21-ai-ai-ai-boosting-developer-productivity/
https://www.mendix.com/blog/mendix-release-10-21-ai-ai-ai-boosting-developer-productivity/
https://hdl.handle.net/2077/77967
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering

	Introduction
	Background
	LLMs in Software and Requirements Engineering
	Prompt Engineering
	Agile Model-Driven Development

	Research Method & Industrial Case
	Industry Context
	Problem Investigation
	Treatment Design
	Treatment Validation

	LLM in Agile MDD process for Generation of artifacts (RQ1)
	Prompt Engineering (RQ2)
	User Story Generation
	Acceptance Criteria Generation
	Data Model Generation
	Meeting Summarization
	Process Model Generation

	Perceived Effectiveness of the LLM-generated RE artifacts (RQ3)
	User Story Generation
	Acceptance Criteria Generation
	Data Model Generation
	Comparing the Use Cases

	Threats to validity
	Conclusions and Lessons learned
	Future Research
	References

