Requirements Conversations: A New Frontier in AI-for-RE

Fabiano Dalpiaz

Requirements Engineering Lab Utrecht University, the Netherlands August 16, 2022

🄰 @FabianoDalpiaz

Outline and Acks

Outline and Acks

I. Context: NLP for Requirements Engineering (NLP4RE)

Natural Language Processing for Requirements Engineering

The Best Is Yet to Come

Fabiano Dalpiaz, Alessio Ferrari, Xavier Franch, and Cristina Palomares

Third Workshop on Natural Language Processing for Requirements Engineering REFSQ2020 Workshop, June 23rd (Online)

Fabiano Dalpiaz, Alessio Ferrari, Xavier Franch, and Cristina Palomares. "Natural language processing for requirements engineering: The best is yet to come." *IEEE Software* 35, no. 5 (2018): 115-119.

RE practice: most reqs. are in natural language

Use Case Name

Use cases

Description - a brief summary of what the use case is about

Rupp's template & ISO/IEC/IEEE 29148

The <system name> shall <system response>.

WHILE <in a specific state> the <system name> shall <system response>

WHEN <trigger> the <system name> shall <system response>

EARS

Scenario	A quick summary of what is going to happen in the use case – exclude actor						
Triggering event	What the actor does in relation to the system – should be first in flow of events						
Actors	List the primary actors – the ones with	List the primary actors – the ones with their hands on the keyboard					
Related use cases	Comma separated list of related use cases						
Stakeholders (1997)	Who is interested in the result of this use case and their role in it						
Pre-condition	What needs to be in place before this use case can execute						
Post-condition	How will the system have changed as a result of this use case						
	Actor	System					
Flow of events	1. The first event should be the triggering event						
Exception	 A list of things that could go wrong and how the system responds 						

ID <TITLE> As <user> I want <what> because <value> Feature\Epic name\ MoSCoW Bus. Value Risk Effort

User stories

@2022 Fabiano Dalpiaz

. . .

RE Research: 4 categories of NLP4RE tools

I. Find defects / deviations from good practice

As a Consumer, I want to know that the data I am downloading is good a myself or run into annoving bugs later on.

As a Consumer, I want to be able to get the data for a data package even I can still use is and my app or analysis keeps working.

As a consumer, I want to view the data package, so that I can get a sense As a Developer, I want to list all DataPackages requirements for my proj DataPackage that my project depends on, so that the project can be deter of the DataPackage schema changes.

As a Publisher, I want to version my Data Package and keep multiple ver break consumer systems when I change my datapackage.

2. Generate models from NL requirements

R1 - When a GSI component constraint is violated, STS shall deliver a warning message to the system operator.

4. Identify key abstractions from NL documents

뛷	R2 - STS shall log the availability of GSI components in the DB server.					
emei	R3 - STS shall supply the GSI monitoring information (GSI anomalies, GSI input parameters and GSI output parameters) to the system operator.					
Ē	R4 - STS subcontractors shall	I track the progress of development ac	tivities in the progress report.			
ed	R5 - When the status of a GSI component is changed, STS shall update the progress report with the status.					
-	R6 - STS shall log the GSI co	mponent status in the DB server.				
		(a)				
[• STS	GSI component	GSI component status			
5 "	• GSI	 warning message 	 status of GSI component 			
	DB server	 STS subcontractor 	 GSI component constraint 			
e ra	 GSI anomaly 	 GSI input parameter 	 GSI monitoring information 			
2 - 1	 progress report 	 development activity 	 availability of GSI component 			
-	 system operator 	 GSI output parameter 	 progress of development activity 			

(b)

Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah Tjong. "The case for dumb requirements engineering tools." In International Working Conference on Requirements Engineering: Foundation for Software Quality, pp. 211-217. 2012.

An active area of research!

Tool Type	Tool Name (Study ID)	No. Tools	Percent
Modeling	OICSI (S678), NL-OOPS (S553), EA-Miner (S499), CM-Builder (S343), Circe (S34), LIDA (S623), NIBA Toolset (S272), RETNA (S108), aToucan (S909), DBDT (S31), Cico (S34), NL2UMLviaSBVR (S70), RADD-NLI (S121), SUGAR (S190), GRACE (S208), AREMCD (S219), RUCM (S227), RSLingo (S266), Zen-ReqConfig (S482), TREx (S496), NAPLES (S499), GeNLangUML (S551), ConstraintSoup (S600), C&L (S707), AnModeler (S799), SBEAVER (S813), KCMP Dynamisch (S272), Xtext (S20), Kheops (S35), Visual Narrator (S683), ProcGap (S800), FeatureX (S772), CMT & FDE (S261), VoiceToModel (S765)	34	26.15%
Detection	ARM (S861), SREE (S812), RQA (S903), AnaCon (S41), REGICE (S55), NARCIA (S56), LELIE (S75), SRRDirector (S86), MIA (S114), KROSA (S178), NAI (S226), QuARS (S232), CAR (S252), CARL (S298), RAVEN (S303), ReqSAC (S370), RAT (S376), MaramaAIC (S395), RESI (S432), RECAA (S447), DeNom (S448), RETA (S450), AQUSA (S501), Dowser (S644), QAMiner (S661), LeCA (S701), S-HTC (S258), CNLP(S464), Pragmatic Ambiguity Detector (S256), ReqAligner (S663), REAssistant (S662)	31	23.85%
Extraction	findphrases (S13), AbstFinder (S307), FENL (S71), NAT2TESTSCR (S131), NLP-KAOS (S132), SAFE (S385), AUTOANNOTATOR (S433), UCTD (S453), GUEST (S598), Guidance Tool (S688), SpecQua (S743), NAT2TEST (S744), semMet (S777), Test2UseCase (S810), OCLgen (S845), Text2Policy (S872), GaiusT (S888), SNACC (S891), Doc2Spec (S897), ARSENAL (S915), MaTREx tool (S284), ELICA (S2), CHOReOS (S520), GuideGen (S907)	24	18.46%
Classification	ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), FFRE (S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE (S757), SOVA R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF (S910), NFRFinder (S647)	20	15.38%
Tracing & Relating	Coparvo (S24), Trustrace (S25), Histrace (S25), CoChaIR (S26), HYPERDOCSY (S38), ReqSimile (S171), LGRTL (S198), CQV-UML (S400), TiQi (S651), REVERE (S717), LiMonE (S723), ESPRET (S792), COCAR (S805), RETRO (S934), WATson (S302)	15	11.54%
Search & Retrieval	RE-SWOT (S174), IntelliReq (S602), ReqWiki (S711), iMapper (S784), PriF (S802), WIKINA (S686)	6	4.62%
Total		130	100%

Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A. Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-Navarro. "Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study." *ACM Computing Surveys 54:3*, 2022

An active area of research!

Tool Type	Tool Name (Study ID)	No. Tools	Percent			
Modeling	 OICSI (S678), NL-OOPS (S553), EA-Miner (S499), CM-Builder (S343), Circe (S34), LIDA (S623), NIBA Toolset (S272), RETNA (S108), aToucan (S909), DBDT (S31), Cico (S34), NL2UMLviaSBVR (S70), RADD-NLI (S121), SUGAR (S190), GRACE (S208), AREMCD (S219), RUCM (S227), RSLingo (S266), Zen-ReqConfig (S482), TREx (S496), NAPLES (S499), GeNLangUML (S551), ConstraintSoup (S600), C&L (S707), AnModeler (S799), SBEAVER (S813), KCMP Dynamisch (S272), Xtext (S20), Kheops (S35), Visual Narrator (S683), ProcGap (S800), FeatureX (S772), CMT & FDE (S261), VoiceToModel (S765) 					
Detection	ARM (S861), SREE (S812), RQA (S903), AnaCon (S41), REGICE (S55), NARCIA (S56), LELIE (S75), SRRDirector (S86), MIA (S114), KROSA (S178), NAI (S226), QuARS (S232), CAR (S252), CARL (S298), RAVEN (S303), ReqSAC (S370), RAT (S376), MaramaAIC (S395), RESI (S432), RECAA (S447), DeNom (S448), RETA (S450), AQUSA (S501), Dowser (S644), QAMiner (S661), LeCA (S701), S-HTC (S258), CNLP(S464), Pragmatic Ambiguity Detector (S256), ReqAligner (S663), REAssistant (S662)	31	23.85%			
Extraction	action findphrases (S13), AbstFinder (S307), FENL (S71), NAT2TESTSCR (S131), NLP-KAOS (S132), SAFE (S385), AUTOANNOTATOR (S433), UCTD (S453), GUEST (S598), Guidance Tool (S688), SpecQua (S743), NAT2TEST (S744), semMet (S777), Test2UseCase (S810), OCLgen (S845), Text2Policy (S872), GaiusT (S888), SNACC (S891), Doc2Spec (S897), ARSENAL (S915), MaTREx tool (S284), ELICA (S2), CHOReOS (S520), GuideGen (S907)		18.46%			
Classification	ASUM (S129), RUBRIC (S223), WCC (S257), NFR2AC tool (S306), ALERTme (S332), PUMConf (337), FFRE (S341), AUR-BoW (S500), SEMIOS (S550), CRISTAL (S629), CoReq (S672), SD (S674), ACRE (S757), SOVA R-TC (S778), SMAA (S788), CSLabel (S892), HeRA (S718), NFR Locator (S758), SURF (S910), NFRFinder (S647)	20	15.38%			
Tracing & Relating	vacing & Coparvo (S24), Trustrace (S25), Histrace (S25), CoChaIR (S26), HYPERDOCSY (S38), ReqSimile (S171), LGRTL (S198), CQV-UML (S400), TiQi (S651), REVERE (S717), LiMonE (S723), ESPRET (S792), COCAR (S805), RETRO (S934), WATson (S302)		11.54%			
Search & Retrieval	RE-SWOT (S174), IntelliReq (S602), ReqWiki (S711), iMapper (S784), PriF (S802), WIKINA (S686)	6	4.62%			
Total		130	100%			

Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo, Muideen A. Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-Navarro. "Natural Language Processing (NLP) for Requirements Engineering: A Systematic Mapping Study." ACM Computing Surveys 54:3, 2022

Main artifact for Al-based tools R1.1 The system shall open the window quickly... R1.2 The system shall download the file to the disk...

Specification

Elicitation: the root of (all) NL requirements

R1.1 The system shall open the window quickly... R1.2 The system shall download the file to the disk...

Specification

Elicitation: the root of (all) NL requirements

Specification

Elicitation: the root of (all) NL requirements

Elicitation is heavily centered on conversations!

Elicitation is heavily centered on conversations!

@2022 Fabiano Dalpiaz

Timeliness: why researching conversations now?

Timeliness: why researching conversations now?

Increased remote work and collaboration

Timeliness: why researching conversations now?

Automated transcription

 \bigcirc

Increased remote work and collaboration

2. Conversational RE

Background theory: Refinement in RE

Pohl, Klaus. "The three dimensions of requirements engineering: a framework and its applications." *Information systems* 19.3 (1994): 243-258.

Background theory: Refinement in RE

Pohl, Klaus. "The three dimensions of requirements engineering: a framework and its applications." *Information systems* 19.3 (1994): 243-258.

Background theory: Refinement in RE

Pohl, Klaus. "The three dimensions of requirements engineering: a framework and its applications." *Information systems* 19.3 (1994): 243-258.

How do current NLP4RE tools work?

NLP4RE Tools for Conversational RE

@2022 Fabiano Dalpiaz

NLP4RE Tools for Conversational RE

The tool supports the conversation between analyst and stakeholders

NLP4RE Tools for Conversational RE

- The tool supports the conversation between analyst and stakeholders
- Elicitation and refinement as concurrent activities

Conversational RE

"The (automated) analysis of requirements elicitation conversations aimed at identifying and extracting requirements-relevant information"

Speaker: Utterance

- A : What is the main goal of the system?
 - : What would you like for us to focus on?

S : Let me think ...

- : the system shall be customizable...
- : hmm, no, configurable!
- A : Configurable, you said.
 - : Hmmm, what do you exactly mean by that?
- S : Oh yes, sorry...
 - : the developers must be able to adjust parameters A and B so to serve different clients
- A : I see, clear.
 - : Should we use file format XYZ?
- S : Yes, absolutely.

•••

Speaker: Utterance

- A : What is the main goal of the system?
 - : What would you like for us to focus on?
- S : Let me think ...
 - : the system shall be customizable...
 - : hmm, no, configurable!
- A : Configurable, you said.
 - : Hmmm, what do you exactly mean by that?
- S: Oh yes, sorry...
 - : the developers must be able to adjust parameters A and B so to serve different clients
- A : I see, clear.
 - : Should we use file format XYZ?
- S : Yes, absolutely.

•••

2+ parties (here Analyst and Stakeholder)

Speaker: Utterance

- A : What is the main goal of the system?
 - : What would you like for us to focus on?
- S : Let me think ...
 - : the system shall be customizable...
 - : hmm, no, configurable!
- A : Configurable, you said.
 - : Hmmm, what do you exactly mean by that?
- S: Oh yes, sorry...

: the developers must be able to adjust parameters A and B so to serve different clients

- A : I see, clear.
 - : Should we use file format XYZ?
- S : Yes, absolutely.

•••

2+ parties (here Analyst and Stakeholder)

> Informal: no "shall" statements, user stories, glossary

@2022 Fabiano Dalpiaz

Dissecting a conversation: turns and grounding acts

Speaker: Utterance	Turn	Grounding
A : What is the main goal of the system?	1.1	Initiate
: What would you like for us to focus on?	1.2	Continue
S : Let me think	2.1	Acknowledge
: the system shall be customizable	2.2	Initiate
: hmm, no, configurable!	2.3	Repair
A : Configurable, you said.	3.1	Acknowledge
: Hmmm, what do you exactly mean by that?	3.2	Initiate
S : Oh yes, sorry	4.1	Acknowledge
: the developers must be able to adjust parameters A and B so to serve different clients	4.2	Initiate
A : I see, clear.	5.1	Acknowledge
: Should we use file format XYZ?	5.2	Initiate
S : Yes, absolutely.	6.1	Acknowledge

Dissecting a conversation: turns and grounding acts

	Speaker: Utterance	Turn	Grounding	
	A : What is the main go	1.1	Initiate	
	: What would you lik	1.2	Continue	
	S : Let me think		2.1	Acknowledge
	: the syst	customizable	2.2	Initiate
Turns and	utterance units as	ble!	2.3	Repair
iums and	mic optitios	aid.	3.1	Acknowledge
u exactly mean by that?				Initiate
	S : Oh yes, sorry		4.1	Acknowledge
: the developers must be able to adjust parameters A and B so to serve different clients				Initiate
	A : I see, clear.		5.1	Acknowledge
: Should we use file format XYZ?				Initiate
S : Yes, absolutely.				Acknowledge

Dissecting a conversation: turns and grounding acts

	Speaker: Utterance	Turn	Grounding	
	A : What is the main g	1.1	Initiate	
	: What would you lik	1.2	Continue	
	S : Let me think		2.1	Acknowledge
	: the syst	customizable	2.2	Initiate
Turns and	uttoranco unite os	ble!	2.3	Repair
iuiiis and	mic optitios	aid.	3.1	Acknowledge
alo		u exactly mean by that?	3.2	Initiate
	S : Oh yes, sorry	4.1	Acknowledge	
: the developers must be able to adjust parameters A and B so to serve different clients				Initiate
	A : I see, clear.		5.1	Acknowledge
: Should we use file format XYZ? S : Yes, absolutely.				Initiate
				Acknowledge

Grounding acts determine the effect of an utterance unit

Dissecting a conversation: discourse units

Speaker: Utterance	Turn	Grounding	Discourse
A : What is the main goal of the system?	1.1	Initiate	
: What would you like for us to focus on?	1.2	Continue	WHQ, Check
S : Let me think	2.1	Acknowledge	
: the system shall be customizable	2.2	Initiate	
: hmm, no, configurable!	2.3	Repair	Inform, Check
A : Configurable, you said.	3.1	Acknowledge]_
: Hmmm, what do you exactly mean by that?	3.2	Initiate]риз:
S : Oh yes, sorry	4.1	Acknowledge	JWHQ, Check
: the developers must be able to adjust	4.2	Initiate]
parameters A and B so to serve different			DU4:
clients			Inform, Check
A : I see, clear.	5.1	Acknowledge	
: Should we use file format XYZ?	5.2	Initiate	DU5:
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),

Dissecting a conversation: discourse units

Speaker: Utterance	Turn	Grounding	Discourse	
A : What is the main goal of the system?	1.1	Initiate		
: What would you like for us to focus on?	1.2	Continue	WHQ. Check	
S : Let me think	2.1	Acknowledge		
: the system shall be customizable	2.2	Initiate		
: hmm, no, configurable!	2.3	Repair	Inform, Check	
A : Configurable, you said.	3.1	Acknowledge		
: Hmmm, what do you exactly mean by that?	3.2	Initiate		Cross-speaker interaction
S : Oh yes, sorry	4.1	Acknowledge	WHQ, Check	defines the meaning
: the developers must be able to adjust	4.2	Initiate		
clients			Inform, Check	
A : I see, clear.	5.1	Acknowledge		
: Should we use file format XYZ?	5.2	Initiate	טסך:	
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),	
			LVai	Traum, David R., and Elizabeth A. Hinkelman

"Conversation acts in task-oriented spoken dialogue." *Computational intelligence* 8.3 (1992): 575-599.

Dissecting a conversation: argumentation acts

Speaker: Utterance	Turn	Grounding	Discourse	Argumentation	
A : What is the main goal of the system?	1.1	Initiate]	
: What would you like for us to focus on?	1.2	Continue	WHQ, Check	084	
S : Let me think	2.1	Acknowledge			
: the system shall be customizable	2.2	Initiate			
: hmm, no, configurable!	2.3	Repair	Inform, Check		
A : Configurable, you said.	3.1	Acknowledge			
: Hmmm, what do you exactly mean by that?	3.2	Initiate	ן סט3:		
S : Oh yes, sorry	4.1	Acknowledge	WHQ, Check	Q&A	
: the developers must be able to adjust parameters A and B so to serve different clients	4.2	Initiate	DU4: Inform, Check		
A : I see, clear.	5.1	Acknowledge			
: Should we use file format XYZ?	5.2	Initiate	דטסך DU5:	٦	
S : Yes, absolutely.	6.1	Acknowledge	☐ _Request(Eval), _ Eval		
					d Elizabeth A. Hinkelman.
				Conversation acts	in tas igence
Dissecting a conversation: argumentation acts

Speaker: Utterance	Turn	Grounding	Discourse	Argumentation	
A : What is the main goal of the system?	1.1	Initiate		7	The purpose of a
: What would you like for us to focus on?	1.2	Continue	WHO. Check		conversation across
S : Let me think	2.1	Acknowledge			multiple turns:
: the system shall be customizable	2.2	Initiate			argumentation acts
: hmm, no, configurable!	2.3	Repair	Inform, Check		
A : Configurable, you said.	3.1	Acknowledge	<u>ן</u>		
: Hmmm, what do you exactly mean by that?	3.2	Initiate	ן DU3:		
S : Oh yes, sorry	4.1	Acknowledge	WHQ, Check	Q&A	
: the developers must be able to adjust parameters A and B so to serve different clients	4.2	Initiate	DU4: Inform, Check		
A : I see, clear.	5.1	Acknowledge			
: Should we use file format XYZ?	5.2	Initiate	ד ^{DU5:}		
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),		
			Eval	Conversation a Computational in	d Elizabeth A. Hinkelman. Iccs in task-oriented spoken dialogue." telligence 8.3 (1992): 575-599.

Dissecting a conversation: argumentation acts

Speaker: Utterance	Turn	Grounding	Discourse	Argumentation			
A : What is the main goal of the system?	1.1	Initiate		7	The purpose of a		
: What would you like for us to focus on?	1.2	Continue	WHO. Check		conversation across		
S : Let me think	2.1	Acknowledge		-Q&A	multiple turns:		
: the system shall be customizable	2.2	Initiate	200	ן ך [argumentation acts		
: hmm, no, configurable!	2.3	Repair	Inform, Check				
A : Configurable, you said.	3.1	Acknowledge					
: Hmmm, what do you exactly mean by that?	3.2	Initiate]риз:				
S : Oh yes, sorry	4.1	Acknowledge	WHQ, Check	Q&A			
: the developers must be able to adjust	4.2	Initiate]				
parameters A and B so to serve different			DU4:				
	F 4				Q&A as a basic interaction,		
A : I see, clear.	5.1	Acknowledge			clarifications, summary,		
: Should we use file format XYZ?	5.2	Initiate	ן DU5:		Dersuasion		
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),				
			Eval		d Elizabeth A. Hinkelman.		
				Conversation	i acus in task-oriented spoken dialogue."		
Computational intelligence 8.3 (1992): 575-599.							

Conversations vs. Specifications: not quite the same

Speaker: Utterance	Turn	Grounding	Discourse	Argumentation	
A : What is the main goal of the system?	1.1	Initiate			
: What would you like for us to focus on?	1.2	Continue	WHQ, Check		
S : Let me think	2.1	Acknowledge			
: the system shall be customizable	2.2	Initiate		ן רנ	
: hmm, no, configurable!	2.3	Repair	Inform, Check		
A : Configurable, you said.	3.1	Acknowledge	<u> </u> _		
: Hmmm, what do you exactly mean by that?	3.2	Initiate]риз:	Clarify	
S : Oh yes, sorry	4.1	Acknowledge	WHQ, Check	Q&A	
: the developers must be able to adjust	4.2	Initiate]]		
parameters A and B so to serve different			DU4:		
clients			Inform, Check		
A : I see, clear.	5.1	Acknowledge			
: Should we use file format XYZ?	5.2	Initiate	דטסך:		
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),	Q&A	
			Evai		

The parameters A and B shall be configured via a configuration file in format XYZ

[specification]

@2022 Fabiano Dalpiaz

Tools for Conversational RE: Two Examples

Trace2Conv: pre-RS traceability Requirements Conversation Summarizer

@2022 Fabiano Dalpiaz

3. Trace2Conv: Tracing requirements to conversations

Back to the Roots: Linking User Stories to Requirements Elicitation Conversations Fabiano Dalpiaz

Utrecht University

Utrecht, the Netherlands

Email: f.dalpiaz@uu.nl

Tjerk Spijkman fizor. and Utrecht University Utrecht, the Netherlands Email: tjerk@fizor.io

Sjaak Brinkkemper Utrecht University Utrecht, the Netherlands Email: s.brinkkemper@uu.nl

Abstract—Pre-requirements specification (pre-RS) traceability focuses on tracing requirements back to their sources. In compar-ison with post-RS traceability, pre-RS traceability is an underion with post-RS traceability, pre-RS traceability is an under-captionization of pre-RS traceability, pre-RS traceability is an under-captionization of pre-RS traceability, pre-RS traceability is an under-text building on the increasing use of digital communication the challenges of linking requirements in formal, nuteriative and the research in this area. The challenges of this pre-presents in formal, nuteriative and the research in the star-text. Building on the increasing use of digital communication the transcript of a requirement ficilation conversa-tions, We explore the opportunity of linking requirements. Introduce TAACE2CONY, a prototype tool that aims at tracing conversation. RE startSection contrast with rational studies intervidue TAACE2CONY, a prototype tool that aims at tracing conversation. RE startSection contrast with rational studies conversation. a conversion. TRACE2CONV makes use of NLP techniques to determine the relevant speaker turns. As an initial validation, we take automatically generated transcripts from real-world requirements conversations, and we assess the effectiveness of TRACE2CONV in supporting the process of identifying additional context for the requirements. The validation serves as a formative evaluation that guides the evolution of TRACE2CONV and as a inspiration for future research in the field of *conversational RE*. Keywords—Requirements Elicitation, User Stories, Natural Language Processing, Conversational RE. In this paper, we design and report on TRACE2CONV, a

The increasing use of digital communication tools (e.g., video-conferencing software with recording and automated captioning), also accelerated by the increased remote work artifacts such as requirements specification documents [5]. We focus on how to use the verbal communication that is so important in real-world projects but that is largely overlooked in RE research. A few exceptions are the analysis of interview recordings in projects regarding information systems [6], [7] and the analysis of simulated interviews in RE education [8], [9]. Yet, we are not aware of any studies that trace requirements back to requirements conversations.

I. INTRODUCTION

Requirements traceability (RT) refers to the ability to describe and follow the life of a requirement, both forward and backward [1]. Conducting RT is important to identify the sources of a requirement [2], to analyze the impact of a requirement on software engineering artifacts such as code and test cases [3], and to determine dependencies between requirements, also known as horizontal traceability [4]. Depending on whether we look backward or forward from

a requirements specification document, we can distinguish between [1]: Pre-RS traceability, referring to linking the requirements in a specification to the sources that justify their

prototype tool that aims at automatically tracing user story requirements [10], [11] back to the segments of a requirements interview that are likely to justify that requirement. In particular, we make the following contributions to the RE field: · We describe TRACE2CONV and the NLP heuristics that we implemented in order for the tool to determine which speaker turns are relevant to a given requirement. · Through collaboration with a partner in the software consultancy, we present an early validation of our implemented algorithms on automatically generated transcripts of requirements interviews. We provide qualitative observations on search strategies in

existence; and Post-RS traceability, concerned with the life backward traceability, we reflect on goals & use-cases, and we cycle of a requirement after its inclusion in the specification. position initial approaches for ranking relevance. Additionally, Although the high(er) potential of pre-RS traceability has the reported validation serves not only as a formative evaluabeen recognized already in the 1990s by Gotel [1], Pre-RS tion that guides the evolution of TRACE2CONV, but also as a traceability is a significantly less explored area of research kick-off for future research in the field of conversational RE. than post-RS traceability [2]. We agree with Krause et al. [2] Organization. We motivate our work with reference to the and argue that this is due to the easier availability of and existing literature in Sec. II. Then, we present the design of cressibility to the artifacts. For example, code and test cases TRACE2CONV and provide an overview in Sec. III. We report

requirements to conversations

3. Trace2Conv: Tracing

Wed 17 Aug

Displayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change

11:20 - 12:10	Na Cha	tural Language Processing for RE at Dibbler air(s): Tong Li Beijing University of Technology	RE@Next! Papers / Journal-First		
11:20 20m <i>Talk</i>	${\propto}$	Back to the Roots: Linking User Stories to Requirement RE@Next! Papers Tjerk Spijkman Utrecht University, Fabiano Dalpiaz Utrecht University, Sjaal	s Elicitation Conversations		

@2022 Fabiano Dalpiaz

Supports backward, pre-RS traceability

Largely overlooked area of research

Supports backward, pre-RS traceability

- Largely overlooked area of research
- Aims to find information that provides additional context to a requirement

Supports backward, pre-RS traceability

- Largely overlooked area of research
- Aims to find information that provides additional context to a requirement
- Has to cope with an *abstraction gap*
 - Formal to informal

Trace requirements back to elicitation sessions

Architectural Design – Inputs and Backend

Architectural Design – Inputs and Backend

@2022 Fabiano Dalpiaz

Algorithm 1 Data Preparation and Data Matching

Input: R a set of requirements,

C a set of speaker turns,

Output: a set of tokens *AllTokens*, linked to their occurrences in requirements and speaker turns

- 1: function PREPROCESSANDMATCH(R, C)
- 2: for all $sent \in R \cup C$ do
- 3: $T_{sent} \leftarrow \text{Tokenize}(sent)$
- 4: $T_{sent} \leftarrow \text{LEMMATIZE}(T_{sent})$
- 5: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_\text{TAG}(t) \in \{\text{NOUN}, \text{VERB}\})$
- 6: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_{TAG}(t) \notin \{\text{AUX}\})$
- 7: AllTokens $\leftarrow \bigcup_{sent \in R \cup C} T_{sent}$
- 8: for all $t \in AllTokens$ do
- 9: $t.reqs \leftarrow \{req \in R \mid t \in T_{req}\}$
- 10: $t.turns \leftarrow \{sturn \in C \mid t \in T_{sturn}\}$
- 11: return AllTokens

Algorithm 1 Data Preparation and Data Matching

Input: R a set of requirements,

C a set of speaker turns,

Output: a set of tokens *AllTokens*, linked to their occurrences in requirements and speaker turns

- 1: function PREPROCESSANDMATCH(R, C)
- 2: for all $sent \in R \cup C$ do
- 3: $T_{sent} \leftarrow \text{Tokenize}(sent)$
- 4: $T_{sent} \leftarrow \text{LEMMATIZE}(T_{sent})$
- 5: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_\text{TAG}(t) \in \{\text{NOUN}, \text{VERB}\})$
- 6: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_{TAG}(t) \notin \{\text{AUX}\})$
- 7: AllTokens $\leftarrow \bigcup_{sent \in R \cup C} T_{sent}$
- 8: for all $t \in AllTokens$ do
- 9: $t.reqs \leftarrow \{req \in R \mid t \in T_{req}\}$
- 10: $t.turns \leftarrow \{sturn \in C \mid t \in T_{sturn}\}$
- 11: return AllTokens

Algorithm 1 Data Preparation and Data Matching

Input: R a set of requirements,

C a set of speaker turns,

Output: a set of tokens *AllTokens*, linked to their occurrences in requirements and speaker turns

- 1: function PREPROCESSANDMATCH(R, C)
- 2: for all $sent \in R \cup C$ do
- 3: $T_{sent} \leftarrow \text{TOKENIZE}(sent)$
- 4: $T_{sent} \leftarrow \text{LEMMATIZE}(T_{sent})$
- 5: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_\text{TAG}(t) \in \{\text{NOUN}, \text{VERB}\})$
- 6: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_{TAG}(t) \notin \{\text{AUX}\})$
- 7: AllTokens $\leftarrow \bigcup_{sent \in R \cup C} T_{sent}$
- 8: for all $t \in AllTokens$ do
- 9: $t.reqs \leftarrow \{req \in R \mid t \in T_{req}\}$
- 10: $t.turns \leftarrow \{sturn \in C \mid t \in T_{sturn}\}$
- 11: return AllTokens

Algorithm 1 Data Preparation and Data Matching

Input: R a set of requirements,

C a set of speaker turns,

Output: a set of tokens *AllTokens*, linked to their occurrences in requirements and speaker turns

- 1: function PREPROCESSANDMATCH(R, C)
- 2: for all $sent \in R \cup C$ do
- 3: $T_{sent} \leftarrow \text{Tokenize}(sent)$
- 4: $T_{sent} \leftarrow \text{LEMMATIZE}(T_{sent})$
- 5: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_\text{TAG}(t) \in \{\text{NOUN}, \text{VERB}\})$
- 6: $T_{sent} \leftarrow (t \in T_{sent} \mid \text{POS}_{TAG}(t) \notin \{\text{AUX}\})$
- 7: AllTokens $\leftarrow \bigcup_{sent \in R \cup C} T_{sent}$
- 8: for all $t \in AllTokens$ do
- 9: $t.reqs \leftarrow \{req \in R \mid t \in T_{req}\}$
- 10: $t.turns \leftarrow \{sturn \in C \mid t \in T_{sturn}\}$
- 11: return AllTokens

him. I think I don't know that master Vendor	spk_3
I think you should always be there or you should put your you can can you have multiple. Vendor	spk_4
Like how do you securely do that take one email for one Vendor and allow them to create one or more named email accounts?	spk_2
Oh. Um I mean I guess if you provide them like a secure link to click on and then they just put a new password in um As long	spk_2
here, are there are two genders that you would not want in the, I was gonna say see we because we have not been, I should	spk_3

Architectural Design - Frontend

@2022 Fabiano Dalpiaz

Short demo of the Trace2Conv frontend

Short demo of the Trace2Conv frontend

@2022 Fabiano Dalpiaz

Trace2Conv: Next Steps

Requirements evolution over multiple conversations

More advanced heuristics: what are the most likely matches?

Speaker: Utterance	Turn	Grounding	Discourse	Argumentation
A : What is the main goal of the system?	1.1	Initiate]
: What would you like for us to focus on?	1.2	Continue	WHQ, Check	-084
S : Let me think	2.1	Acknowledge		
: the system shall be customizable	2.2	Initiate		JJ
: hmm, no, configurable!	2.3	Repair	Inform, Check	
A : Configurable, you said.	3.1	Acknowledge		
: Hmmm, what do you exactly mean by that?	3.2	Initiate	DU3:	Clarify
S : Oh yes, sorry	4.1	Acknowledge	JWHQ, Check	Q&A
: the developers must be able to adjust	4.2	Initiate	7	
parameters A and B so to serve different			DU4:	
clients			Inform, Check	
A : I see, clear.	5.1	Acknowledge		
: Should we use file format XYZ?	5.2	Initiate	דטסך:]
S : Yes, absolutely.	6.1	Acknowledge	Request(Eval),	
			LVai	-

Matching segments rather than speaker turns

4. Requirements Conversations Summarizer

@2022 Fabiano Dalpiaz

- Aim: summarization before a specification exists
- Trigger: long recorded conversations, spanning over multiple hours
 - How to facilitate the analyst in exploring the transcript?

- Aim: summarization before a specification exists
- Trigger: long recorded conversations, spanning over multiple hours
 - How to facilitate the analyst in exploring the transcript?

- Aim: summarization before a specification exists
- Trigger: long recorded conversations, spanning over multiple hours
 - How to facilitate the analyst in exploring the transcript?

- Aim: summarization before a specification exists
- Trigger: long recorded conversations, spanning over multiple hours
 - How to facilitate the analyst in exploring the transcript?

@2022 Fabiano Dalpiaz

Is Idea #1 effective?

How to filter relevant questions? (Idea #2, version A)

@2022 Fabiano Dalpiaz

How to filter relevant questions? (Idea #2, version A)

How to filter relevant questions? (Idea #2, version B)

How to filter relevant questions? (Idea #2, version B)

34

@2022 Fabiano Dalpiaz

What is our gold standard for relevance?

Previous speakerturn: Interviewee: Yes, absolutely.

Current speakerturn:

Interviewer 1: Good. Um, yeah, we got an email from your company and it said that there is some serious problems with traffic congestion that leads to a bad traffic during peak hours and also from the activists that are arguing of the effect on the environment. **Do you think there are more problems or just these two?**

Next speakerturn:

Interviewee: Well, this is the reason why we contacted you and actually we believe a lot in ah environmental concerns and I'm an activist myself. So that's I cycle here, right? Not only for the body, it's for the environment. Ah, so yes, there is traffic and there is environmental problems to be solved and yeah, to the extent we can we want to improve on that. And I hope you have a solution for me.

What is our gold standard for relevance?

Previous speakerturn: Interviewee: Yes, absolutely.

Current speakerturn:

Interviewer 1: Good. Um, yea and it said that there is some s that leads to a bad traffic durin that are arguing of the effect o are more problems or just th

Next speakerturn:

Interviewee: Well, this is the r we believe a lot in ah environn So that's I cycle here, right? N environment. Ah, so yes, there problems to be solved and yes improve on that. And I hope yo

Q6/52: What type of requirements-relevant information can be found here?

(Disregarding the previous speakerturn, only looking at the current and the next speakerturn)

A functional requirement (functionalities that the system should exhibit, e.g. registering users, scheduling events, calculating something, ...)

A non-functional requirement (a quality that should be there given certain functionality, e.g. speed, security, capacity, compatability, usability, ...)

System users (directly discusses the users of the system, or stakeholders)

Current process understanding (talks about the system as-is, problems that are faced or things that have to improve)

Within or outside of the scope (directly talking about certain things that are inside the scope of the system to-be or not, boundaries discussed)

There is no requirements-relevant information

Previous

Next

What is our gold standard for relevance?

Previous speakerturn: Interviewee: Yes, absolutely

Current speakerturn:

Interviewer 1: Good. Um, yea and it said that there is some s that leads to a bad traffic durin that are arguing of the effect o are more problems or just th

Next speakerturn:

Interviewee: Well, this is the r we believe a lot in ah environn So that's I cycle here, right? N environment. Ah, so yes, there problems to be solved and yea improve on that. And I hope ye

: olutely.	Q6/52: What type of requirements- found here?	-relevant information can be
lm, yea some : ïc durir.	A functional requirement (functionalities th users, scheduling events, calculating some	Q6/52: Where is this requirements-relevant information located?
effect o just tl	 A non-functional requirement (a quality that e.g. speed, security, capacity, compatabilit System users (directly discusses the users) 	The question in the current speakerturn can be answered with requirements-relevant information
is the r	Current process understanding (talks about things that have to improve)	The next speakerturn (after the question) contains requirements-relevant information
nvironn ght? N	Within or outside of the scope (directly talk scope of the system to-be or not, boundar	Previous
s, there and yea nope ya	There is no requirements-relevant information	on
	Previous	Next

Is Idea #2 effective?

Idea 1	Idea 2	Precision	Recall	F1-score	Accuracy
SA	Context Doc.	64.4%	70.3%	67.2%	86.7%
SA	Conversation	64.4%	66.4%	65.4%	86.4%
POS	Context Doc.	53.8%	62.4%	57.8%	82.5%
POS	Conversation	53.9%	63.3%	58.2%	82.4%
COMB	Context Doc.	55.0%	81.7%	65.7%	83.5%
COMB	Conversation	55.7%	81.2%	66.1%	83.9%

No large differences between the approaches – Ideas #2A and #2B are practically equivalent

Summarization: outlook

What does relevance mean?

Large disagreement, especially on questions

\mathbf{Set}	Amount	Percen	tage		
2	44	46.31%			
4	44	50.58%			
5	23	41.07%			
6	5	12.20%			
7	27	25.71%	\mathbf{Set}	Question	Answer
9	28	43.75%	2	77.27%	27.27%
10	44	48.35%	4	72.73%	29.55%
12	15	15.31%	5	69.57%	30.43%
16	8	14.55%	6	60.00%	40.00%
Total	238	34.40%	7	62.96%	37.04%
_		_	9	53.57%	46.43%
		_	10	81.82%	18.18%
			12	66.67%	33.33%
			16	50.00%	50.00%
			Total	70.17%	31.09%

Summarization: outlook

- What does relevance mean?
 - Large disagreement, especially on questions

\mathbf{Set}	Amount	Percen	tage		
2	44	46.31%			
4	44	50.58%			
5	23	41.07%			
6	5	12.20%			
7	27	25.71%	\mathbf{Set}	Question	Answer
9	28	43.75%	2	77.27%	27.27%
10	44	48.35%	4	72.73%	29.55%
12	15	15.31%	5	69.57%	30.43%
16	8	14.55%	6	60.00%	40.00%
Total	238	34.40%	7	62.96%	37.04%
_	I	_	9	53.57%	46.43%
			10	81.82%	18.18%
			12	66.67%	33.33%
			16	50.00%	50.00%
			Total	70.17%	31.09%

How much can we summarize?

• End goal of the tool

Set	Shown	Taggable	Questions	Relevant
2	70.060%	56.886%	31.138%	17.365%
4	72.973%	58.784%	32.432%	22.297%
5	70.408%	57.143%	30.612%	20.408%
6	72.464%	59.420%	30.435%	21.739%
7	73.743%	58.659%	31.285%	10.615%
9	67.241%	55.172%	26.724%	13.793%
10	67.901%	56.173%	30.247%	25.309%
12	74.194%	63.226%	36.129%	28.871%
16	77.500%	68.750%	38.750%	23.750%
Total	71.635%	58.944%	31.857%	19.506%

5. Outlook

Tools for Conversational RE: Two Examples

Trace2Conv: pre-RS traceability Requirements Conversation Summarizer

@2022 Fabiano Dalpiaz

Direction #3: distilling requirements?

- Can we automatically generate requirements from conversations?
- Long-term direction
 - High value
 - Extremely challenging
 - Rarely mentioned in an explicit way (Spijkman, CAiSE'21)

Category	Text tagged Tags
1. Current process	31.2% 35.2%
2. Future process	16.8% 18.1%
3. Explicit requirements	12.0% 8.6%
4. Questions	4.5% 19.1%
5. Product functionality	7.2% 12.5%
6. Organizational problem	2.1% 4.0%
7. Organizational details	0.9% 2.0%
8. Product motivation	0.1% 0.7%

Direction #3: distilling requirements?

- Can we automatically generate requirements from conversations?
- Long-term direction
 - High value
 - Extremely challenging
 - Rarely mentioned in an explicit way (Spijkman, CAiSE'21)

Category	Text tagged Tags
1. Current process	31.2% 35.2%
2. Future process	16.8% 18.1%
3. Explicit requirements	12.0% 8.6%
4. Questions	4.5% 19.1%
5. Product functionality	7.2% 12.5%
6. Organizational problem	2.1% 4.0%
7. Organizational details	0.9% 2.0%
8. Product motivation	0.1% 0.7%

Concept Extraction in Requirements Elicitation Sessions: Prototype and Experimentation

Tjerk Spijkman^{b,a}, Boris Winter^a, Sid Bansidhar^a and Sjaak Brinkkemper^a

^aDept. of Information and Computing Sciences, Utrecht University. Utrecht, the Netherlands ^bfizor. Utrecht, the Netherlands,

Abstract

[Introduction] Requirements elicitation is an important, yet complex step in the software development life cy-

REQUIREMENTS ENGINEERING ROOM

INTERACTIVE BOARD

cle. It is vital for business anal they require a vastly different ir uation of a key abstraction extr. customization needs from trans structured according to Wiering designed a prototype NLP tool. We then validated the results th expert validation show that the sentation of discussed known an we build a promising foundation additional context information. **Keywords**

AUTOMATIC REQUIREMENTS SPECIFICATION

 $\bigcirc \bigcirc$

Ruiz & Hasselman, EMMSAD'20

Spijkman & al., NLP4RE'21

AUTOMATIC SPECIFICATION OF

USER STORIES

The future of evaluation metrics

- Most of the literature employs information retrieval metrics
 - Precision, recall, F1, ...
- Progressive shift toward quality-in-use with conversational RE tools?

The future of evaluation metrics

- Most of the literature employs information retrieval metrics
 - Precision, recall, F1, …
- Progressive shift toward quality-in-use with conversational RE tools?

The way ahead...

Today's NLP4RE Tools

@2022 Fabiano Dalpiaz

Thank you for listening! Questions?

RE-Lab's research illustrated, 2018

