AT

securityandtrust.lu

Analyzing Natural-Language Requirements:

Industrial Needs and Scalable Solutions

UU/SIKS Symposium on Natural Language in Requirements Engineering, 30 November 2017

Lionel Briand “ '" I"

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

Introduction

NL requirements come in a variety of forms
NL requirements won’t go away

Many and varying industrial needs

NLP has made a huge leap forward in recent
years

Research leading to practical and scalable
solutions

Context factors, working assumptions

Outline

Report on a variety of research projects
Collaborations with industry

Various objectives and applications
Examples from automotive and satellite
Lessons learned

Experience

Compliance with requirements templates
Change impact analysis

Domain knowledge extraction
Requirements completeness assessment
Requirements-driven testing

Product lines and configuration

Checking Compliance with
Templates

Representative Contex

A

your satellite company

Challenges

Large projects (e.g., ESA)

Hundreds of natural language requirements
Tiers of requirements

Many stakeholders

Requirements capture a contract
Requirements frequently change

Compliance with Templates

 Templates and guidelines address ambiguity
and incompleteness in NL requirements

» Large number of requirements

* People tend not to comply with templates and
guidelines, unless they are checked and
enforced

 Scalable and accurate automation is needed

 Existing tools (DODT, RQA) require glossary or
ontology

Rupp’s Template

: SHALL PROVIDE <whom> <additional
<Optional § <System § co.00p | WITH THE ABILITY TO details about
Condition> Name> <process> the object>
WILL
BE ABLE TO <process>

As soon as the visual notification is presented
the SOT Operator shall launch the local S&T application as a
separate process. ' e

Glossary?

Approach

Text chunking: identifies sentence segments
(chunks) without performing expensive
analysis

NLP parsing only when needed

Templates: RUPP and EARS, expressed as BNF
grammars and then pattern matching rules
Practical: No reliance on glossary, ontology ...
Scalable: Hundreds of requirements in a few
minutes

10

Text Chunking

Process of decomposing a sentence into non-overlapping
segments.

As soon as the visual notification is presented the SOT
Operator shall launch the local S&T application as a
separate process.

Noun Phrase (NP) Verb Phrase (VP) Subordinate Clause (SBAR)
Prepositional Phrase (PP) Adverbial Phrase (ADVP)

11

Template Conformance Checking

Mark Valid Mark - "f"a’k :
Sentence Condition sl
Segment
Mark Template Mark Mark
Conformance Conditional Details
Details

Valid Sentence

Mark Mark

Head Modal VP

CONFORMANT

12

Evaluation

SES*

your satellite company

380 Requirements : :
380 Requirements 110 Requirements 890 Requirements

13

Results

e Absence of glossary has no significant impact on
the accuracy of template conformance checking

e Avg. Recall - 94.3%

e Avg. Precision - 91.6%

14

Tool: RETA

Requirements Analyst 8 — Glossary

s— | (optional)

U ?iiz—zf @ ENTERPRISE @
Requirements Authoring &

Management GATE NLP
Workbench
Y T 1
Conformance
3 \. - Diagnostics
Requirements (within GATE)

P - .- - - -

Lists of modals, Rules for checking Rules for checking

conditional words, template best practices
conformance

@:’TA [LST JAPE JAPE

\---------—

amblguous terms, etc.

--

http://sites.google. com/sﬂe/retanlp/

15

Change Impact Analysis

Supporting Change

Requirements change frequently
Changes have side-effects on other

requirements, design decisions, test cases ...

How do we support such changes in ways
that scale to hundreds of requirements or
more?

Automated impact analysis

17

Inter-Requirements

Inter-Requirements
Change Impact Analysis

18

Approach

Hundreds of requirements

No traceability

We propose an approach based on: (1) Natural
Language Processing, (2) Phrase syntactic
and semantic similarity measures

Results: We can accurately pinpoint which
requirements should be inspected for
potential changes

19

Example

e R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

20

Change

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

21

Challenge #1
Capture Changes Precisely

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

22

Challenge #2
Capture Change Rationale

e R1: The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

e R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

e R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

23

Challenge #2
Change Rationale

e R1: The mission operation controller shall transmit satellite status reports to the user help-desk
document repository.

o R2: The satellite management system shall provide users with the ability to transfer
maintenance and service plans to the user help desk.

e R3: The mission operation controller shall transmit any detected anomalies with the user help

desk.

Possible Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission
operation controller” and “user help desk” (R3)
3: We no longer want to “transmit satellite status
reports” to “user help desk” but instead to “user
document repository” (only R1)

24

Solution Characteristics

» Account for the phrasal structure of requirements

The mission operation controller shall transmit satellite
status reports to the user help-desk document repository.

user help desk,

user document repository,

e Consider semantically-related phrases that are not exact
matches and close syntactic variations across requirements

e Account for change rationale expressed by user

25

(&) !
€ (.. Process 4 S
- '
requirements [—> 4 (,y)

!

|

I

|

__Statements Phrase Similarity l

J

annotations functions !

A

document based on relevance

Requirements @ (5 (“*:. Sort requirements A

to change

.
B(ooty | O 1gentity | @[Specity
PPY L o y »| propagation >
change differences "
L _condition) poolean

/ expression

Sorted requirements

https://sites.google.com/site/svvnarcia/

Evaluation
SES”

your satellite company

72 Requirements
5 Change
Scenarios

158 Requirements
9 change scenrios

Effectiveness of Our Approach

50%

e 45%

o2 1 impacted requirement missed

out of a total of 106 impacted
20% requirements.

1% - 7% 6% - 8%

10%

Futile Inspection Effort

28

Requirements to Design

g

Requirements-to-Design

Change Impact Analysis

29

Motivations

 Rigorous change management required by many standards
and customers in safety critical systems, and embedded
systems in general in many industry sectors

o Impact of requirements changes on design decisions
o Complete and precise design impact set

e SysML commonly used as embedded and cyber-physical
system design representation

30

Requirements Diagram

«requirement»
Temperature Diagnostics

text = "The CP controller shall
provide temperature diagnostics."

id="R1"
«requirement» «requirement»
Over-Temperature Detection Operational Temperature Range
text = "The CP controller shall text = "The CP controller shall be
detect temperatures exceeding | |able to measure temperatures
110 °C." between -20 °C and 120 °C."
id ="R11" id="R12"

31

<<satisfy>>

B2

:0ver-Temperature
Monitor >

14

<<requirement>>
Over-Temperature
Detection
(R11)

Structural Diagram

BS

:Diagnostics and

> Status Signal

B3

:Diagnostics

B1

:Temperature

= Manager

Processor

<<satisfy>>

<<requirement>>
Operational
Temperature Range
(R12)

Generation
B4
51 :DC Motor
Controller
B6

:Digital to Analog

Converter

:x3 Diagnostics Manager

Behavioural Diagram

r

<<Decision>>

J

r

<<Assignment>>
Error =1

~N

[no]

r

-
Is position valid?
_
[ves]
[yes]
4)
' : <<Decision>>
Over-Temp detected?
_ J
[no]

_

<<Assignment>>

: MotorDriveMode = RUN

~

J

_

<<Assignment>>

: MotorDriveMode = OFF

J

Compute Impacted Elements

Structural Behavioural

Analysis Analysis

<<satisfy>>

B2

:0ver-Temperature
Monitor >

14

<<requirement>>
Over-Temperature
Detection
(R11)

Structural Diagram

BS

:Diagnostics and

> Status Signal

B3

:Diagnostics

B1

:Temperature

= Manager

Processor

<<satisfy>>

<<requirement>>
Operational
Temperature Range
(R12)

Generation
B4
51 :DC Motor
Controller
B6

:Digital to Analog

Converter

Structural Diagram

Change to R11: Change over temperature detection level to 147 C
from 110 C.

<<satisfy>>

2 §

:0ver-Temperature

Detection
(R11)

<<requirement>>
Over-Temperature

4

o f

1>

:Diagnostics

= Manager

Structural Diagram

B5 §

:Diagnostics and

> Status Signal

Generation
B4 f
51 :DC Motor
Controller

Monitor >
— 4
B1
— 4
:Temperature
Processor
<<satisfy>>

<<requirement>>
Operational
Temperature Range
(R12)

BG,

:Digital to Analog

Converter

:x3 Diagnostics Manager

Behavioural Diagram

r

<<Decision>>

J

r

<<Assignment>>
Error =1

~N

[no]

r

-
Is position valid?
_
[ves]
[yes]
4)
' : <<Decision>>
Over-Temp detected?
_ J
[no]

_

<<Assignment>>

: MotorDriveMode = RUN

~

J

_

<<Assignment>>

: MotorDriveMode = OFF

J

Behavioural Diagram

:x3 Diagnostics Manager

r

<<Decision>>

J

output

r

to B5
<
<<Assignment>> \

Error = 1

J

[no]

output
to B4

r

-
Is position valid?
_
g [ves]
Input
from B2
[ves]
4)
' : <<Decision>>
Over-Temp detected?
_ J
[no]

_

| <<Assignment>>
MotorDriveMode = RUN

~

J

_

| <<Assignment>>
MotorDriveMode = OFF

J

<<satisfy>>

2 §

:0ver-Temperature

Detection
(R11)

<<requirement>>
Over-Temperature

4

o f

1>

:Diagnostics

= Manager

Structural Diagram

B5 §

:Diagnostics and

> Status Signal

Generation
B4 f
51 :DC Motor
Controller

Monitor >
— 4
B1
— 4
:Temperature
Processor
<<satisfy>>

<<requirement>>
Operational
Temperature Range
(R12)

BG,

:Digital to Analog

Converter

Rank Elements

Change to R11: Change

over temperature detection

level to 147 C from 110 C. Natural [B2
Language B6
Processing B3
B2, B3, B4, B6 Analysis B4
Ranked
according to
likelihood of
impact

4

Change Statements

o Informal inputs from systems engineers regarding impact of
changes

o Example: “Temperature lookup tables and voltage converters
need to be adjusted”

42

Natural Language Processing

o Computing similarity scores for model elements by applying
NLP techniques to measure similarity (syntactic and
semantic) between model elements labels and change
statements.

e Sorting the design elements obtained after structural and
behavioral analysis based on the similarity scores

e Engineers inspect the sorted lists to identify impacted
elements

43

|ldentifying a Subset to Inspect

e Pick the last significant peak in delta similarity between two
successive elements

0.8
> \l
04
0.2
0.0

hmax = 0.26

Similarity score

0.2

0.1 Piast

Delta

hmax/10 = 0.026

0.0

0 25 r=49% "'59 75 100
% of elements inspected in the sorted list

Requirements Changes and
Informal Change Statements

System
Requirements

Approach

Process

Change
Statements

t

R Build SysML s
Models

B

Traceability
Information Model

Requirements and
Design Models

sn

isll ...

Sin

.. SM

Similarity

Phrases Matrix

Compute

Impacted

Elements

I
_fode]—

Estimated
Impact Set

:

Sorted
Elements

Evaluation

DELPHI

Innovation for the Real World

370 elements
16 change scenarios

Effectiveness of Our Approach

Futile Inspection Effort (%)
= &

0
Structural

Effectiveness of Our Approach

—

Futile Inspection Effort (%)
= &

0
Structural Behavioural

Effectiveness of Our Approach

N
N
|

N
=]
|

1 1 impacted element missed out of

a total of 81 impacted elements.

Futile Inspection Effort (%)
=) &

(#)
|

Structural Behavioural NLP

Extracting Domain Knowledge

Domain Knowledge

All requirements depend, more or less
explicitly, on domain knowledge
Domain-specific concepts and terminology

In practice: Not always consistent among all
stakeholders

Software engineers often have a superficial
understanding of the application domain they
target

Capturing domain knowledge: Glossary,
domain model

o1

Glossary Extraction and
Clustering

Terminology

« Usually multiple stakeholders, organizations ...
 Inconsistent terminology
« Multiple terms for same concepts
« element / component / object
o Multiple representations of same keywords
 status of Ground Station Interface component
o Ground Station Interface component’s status
 Interface component status

23

Requirements Glossary

o (Glossaries help mitigate ambiguities
 consistent terminology
e iImproves communication among
stakeholders

« (Glossaries are, in practice, rarely (fully)
defined before requirements are written

24

Approach
-

.NL Clusters
Requirements A

Identification
of
Candidate

Similarity
Calculation

a
2 | H
H
0
Combination and Similarity Clustering
Filtering Heuristics Measure Parameter(s)

Identification of
Candidate Terms

Similarity Calculation Clustering

R1 - STS shall supply GSI monitoring information

(GSI input parameters and GSI output parameters) to the STS

-
subcontractor 085

R2 - When{GSI component’s status)changes, STS shall update the
progress of m ivities.
' STS | [+ development activity

e progress of development activity

>TS Subcontractor |

L 65 o« (GSI component
'« GSI input parameter « GS| component’s status
'« GSI output parameter o GS| monitoring information

——— e — —

96

Evaluation of Glossary Terms

380 Requirements :
; 110 Requirements
138 Requirements

a7

Results

TOPIA

Our Approach E TextRank
TermoStat

No clustering

28

Results

¥
’

29

Clustering Evaluation

o Interview Survey

20 clusters
27 clusters
each case study
60

How useful is our approach?

e | find this cluster helpful for identifying the related terms for a glossary term.
 89.6% (strongly agreed / agreed)

» As the result of seeing this cluster, | can define a glossary term more precisely than |
originally had in mind.

» 88% (strongly agreed / agreed)
e | find this cluster helpful for identifying the variations (synonyms) of a glossary term.
e 61% (strongly agreed / agreed)

e 28% (not relevant)

61

Domain Model Extraction

Motivation

e Representation of important domain concepts and their relations

e Facilitate communication between stakeholders from different
backgrounds

 Help identify inconsistencies in terminology, etc.
 Helps assess completeness of requirements

e In practice, domain models are not preceding the elicitation and writing of
requirements

63

Domain Models

A domain model is a representation of conceptual entities or
real-world objects in a domain of interest.

Satellite

PN

sateI“te sate“'te transfers user ™ Control Centre
Ground Station S&T Station |1 reavesiso 1) o eon

RN

Satellite Satellite
Ground Station - A | |Ground Station - B

64

Context

Requirements
Analysts

NL Requirements
Requirements Document

I / Relation
Build Domain ET 1 ?
Model

Domain
Model

65

Problem Definition

e Manually building domain models is laborious

o Automated support is required for building domain models

66

State of the Art

» Multiple approaches exist for extracting domain models or
similar variants from requirements using extraction rules

o Majority assume specific structure, e.g., restricted NL
o Extraction of direct relations only but not indirect ones

 Limited empirical results on industrial requirements

76

Approach

Domain
Model

NL
Requirements

+

Process Lift
Requirements Dependencies to
Statements Semantic Units

Construct
Domain Model

Phrase-level
Dependencies

Phrasal Dependencies
Structure

Extraction
68 Rules

Approach

NL
Requirements

+

Process
Requirements
Statements

Phrasal Dependencies
Structure

Construct

Domain Model

Phrase-level
Dependencies

Extraction

69

Rules

Grammatical Dependencies

il Wi

The system operator shall initialize the simulator configuration.

initalize >

Operator Configuration

70

Lift Dependencies to Semantic Units

o R

The system operator shall initialize the simulator configuration

-

Operator ol Configuration

System initalize P> Simulator
Operator Configuration

Approach

NL
Requirements

+

Process
Requirements

Lift

Dependencies to

Statements Semantic Units

Phrasal Dependencies
Structure

Domain
Model

Phrase-level
Dependencies

72

Extraction
Rules

Link Paths

The simulator shall send log messages to the
database via the monitoring interface.

send >

Simulator Log Message

send log message p>

Database
fo

Simulator

send log message Monitoring
to database via Interface

Simulator

73

How useful is our approach?

e Interview survey with
experts

e Correctness and Relevance
of each relation

» Missing relations in each
20 Requirements :
213 Relations requirement

83

Results

Correctness- 90% (avg.)
Relevance- 36% (avg.)

Missed Relations- 8%

84

Requirements-Driven Testing

Traceability

In many domains, various types of traceability
are required

For example, in automotive (ISO 26262),
traceability between requirements and system
tests: requirements-driven testing

Many requirements, many tests, therefore
many traces ...

Automation is required

77

Context

|[EE develops real-time embedded systems:

* Automotive safety sensing systems

* Automotive comfort & convenience systems,
e.g., Smart Trunk Opener

JIEE

International Electronics
& Engineering (IEE)

78

Objectives

e Support generation test cases from requirements

e Capture and create traceability information between test
cases and requirements

e Requirements are captured through use cases

e Use cases are used to communicate with customers and the
system test team

o Complete and precise behavioral models are not an option:
too difficult and expensive (Model-based testing)

79

Strateqgy

e Analyzable use case specifications

e Automatically extract test model from the use case
specifications (Natural Language Processing)

e Minimize modeling, domain modeling only

e No behavioral modeling

80

UMTG

THE ACTOR SEND
THE ACTOR SEND
THE ACTOR SEND

THE SYSTEM VALI
THE SYSTEM DIS

= Use Cases

Evaluate
Consistency
Domam Model /

t> 0&&t <50
Stlatus (= null
Errors.size() == U

Test Cases

81

Restricted Use Case Modeling:
RUCM

« RUCM is based on a (1) template, (2) restriction rules,
and (3) specific keywords constraining the use of
natural language in use case specifications

 RUCM reduces ambiguity and facilitates automated
analysis of use cases

e Conformance is supported by a tool based on NLP

82

RUC M [Yue et al. TOSEM’13]

Use Case Name: Identify Occupancy Status
Actors: AirbagControlUnit
Precondition: The system has been initialized

Basic Flow
1. The seat SENDS occupancy status TO the system.

BofE b T TR 86 4 R0Hy oS AT APam fiRnro! has been sent.

3. The system VALIDATES THAT the occupant class for airbag control is valid.
4. The system SENDS the occupant class for airbag control TO AirbagControlUnit.

Specific Alternative Flow

Iﬁgsﬁg’ondition: The previous occupant class for airbag control has been sent.
1. IF the occupant class for airbag control is not valid THEN

e e e et o e NN IR s tEneses msasasrmmared Alacas famr Atulan s AaassinslTEREA

?Elicit Use Cases | ?Model the Domain |

THE ACTOR SEND / % I
THE ACTOR SEND
THE ACTOR SEND
RUCM Evaluate Domain Model E %
Use Cases Consistency R \Missing Entities

?Specify Constraints |

Identify Constraints

TEMPERATURE IS LOW /
t> 0&&t<50

STATUS IS VALID Status = null

ERRORS ARE ABSENT RIS ::_“
: o OCL constraints
Constraint descriptions
\4
14

Generate

6 Generate + Tt Test Cases
Scenarios and
EEEN |
Diagrams Scenarios Mapping Table

Test Cases

Inputs

: ==
Evaluate
J ——— Consistency J

+ 0
Identify Constraints ?Specify Constraints |
g aat o

t> 0&&t<50
STATUS IS VALID
ERRORS ARE ABSENT

olatus = null

J

\4

Based on Natural

6 Generate

Scenarios and
Inputs

Language Processing

Basic Flow

1. The seat SENDS occupancy status TO the system. > [INPUT STEP

DOMAIN ENTITY

2. INCLUDE USE CASE Classify occupancy status. — | INCLUDE STEP

3. The system VALIDATES THAT

—— |[CONDITIONAL STEP
the occupant class for airbag control is valid and

CONSTRAINT

the occupant class for seat belt reminder is valid.

CONSTRAINT

4. The system SENDS the occupant class for airbag control TO

AirbagGontrolUit.

—— |OUTPUT STEP

9. The system SENDS the occupant class for seat belt reminder T0 —— |OUTPUT STEP

Rt pnnolUnit

6. The System Waits for next execution cycle. —— [INTERNAL STEP

Postcondition: The occupant class for airbag control and the POSTCONDITION
occupant class for seat belt reminder have been sent.

86

UselaseStart DomainEntity

OccupancyStatus
“no error has bheen detected”
OCL Constraint \\ OCL Constraint

Error.allinstances()
->forAll(i | 1.isDetected = false)

A 4

Condition
T

’

“the occupant class for aifbag

Exit| |Output
s

control was derived.” - DomainEntity
XI

‘. OCL Constraint

DomainEntity

BodySenseSystem.allinstances() - forAll(b |
b.0ccupantClassForAirbag = Child
OR b.OccupantClassForAirbag = Adult)

Evaluate Model Consistency

BasicFlow ——> | BASIC FLOW BEGIN |
1. The seat SENDS occtus TO the system. e
2. INCLUDE USE CASE Classify occupancy status. . A L b c t I c I] f] t- F- I t
3. The system VALIDATES THAT Ir ag On ro aSSI Ica Ion I er
— | CONDITIONAL STEP |
the occupant class for airbag control is valid and
[|

Occupant Class for Airbag Control
5. The system SENDS the occupant class for seat belt reminder T0 —>
SeatBeltControlUnit.

e e Occupant Class for Seat Belt Reminder

the occupant class for seat belt reminder is valid.
Postcondition: The occupant class for airbag control and the — | POSTCONDITION
occupant class for seat belt reminder have been sent. 15

4. The system SENDS the occupant class for airbag control TO —> | OUTPUT STEP

Tagged Use Case Domain Entities

AirbagControl

OccupantStatus

- OccupantClassForAirbagControl
- OccupantClassForSeatBeltReminder

r GTooIset Integrated with IBM
DOORS and Rhapsody

Rhapsody M =]

- . - - - - - File Edit Navigate Search Project Dresden OCL Test Ge it Ri Code Generat Toels Wind Hel,
File Edit View Insert Link Analysis Table Tools Discussions User TestGenerator =T ngme -Sfrch ol ren SLoenREerSon_-oce et 100 now _—ep

HRE [saw [FF@fen [o256 R S I [R I R e
Vi [St dard vi = ——— - - Quick Access £ | [ty Resource t Dresden OCL
iew | Standard view e e e e e ——————————

Change Management Help

& s TBose Bgs;v romel e Lo R S g8 Sttic Model nalysisi _livomain == Ipse
=- : ense G [
- 1.1 Use Case: ldentiy In [— ° s
G- 1.1.1 Brief Descriptic RIS T W
; " , ‘ N roject | Test Generator | Run Code Generator Tools
| sameenin | User | TestGenerator | Change Management Help opi. v | ¥)
s & <<MicroCProjec »
(- 1.1.4 Secondary Act © Component{] - . -
5115 Dependency . : -8 - G @ 1. Check Model Consisten ~
~ Uncioeuse| = =y Export and Create TestGen Project e S a ' 2 T
1.1.6 Generalization =] E]g:alysis 2 G t Abst ct T st c
51,17 Basi Flow — . oy At - enerate ract Test Cases
- 1 NCLUDE US = Check RUCM Syntax : T acor | = tic Mo '
' =
. . (2 Matri '
3 INCLUDE U . p— 5 S paca %ﬁ @ 3. Generate Executable Test Cases
4 Thesydon . Check RUCM Syntax (Debug Mode) “bu '
- 5. The system V. & =
- 6. The system s — g ;j = @ - 4
. 7. The syst _ I e - -
T Postoonaio T ﬁf—'ﬁwmmrs & §* b .1 ’ EXpOl't Model E
| = 1.1.8 Bounded Alten | 46 '11.1.6 Generalization B
| T L o -
2. The system s¢ 47 | 1.1.7 Basic Flow & [g L .
3. The system s¢ 48 1. INCLUDE USE CASE Self Diagnose System. * —— B L
N i3 L - F————
4. The system s¢ 50 2. INCLUDE USE CASE Measure and classify for occupancy status. E - . - e :
3 e syemre 51 3. INCLUDE USE CASE Qualify and Dequalify Errors. B B Class Diagram Static Modelin DomainModel 52 ®=0
.7 RESUME STI 52 4. The system VALIDATES THAT no error is detected and no error is qualified. =
Postcondiion: - 53 5|. Thi srstemkauLIDATEAS THAT blogh the occupant class for airbag control and the occ g o ‘ f:::t'j ln‘:‘:‘;ﬁ‘:‘" B I !
7 Posteondtio ace fnr mat halt rrmindne arn sl = paly
I« =3 v

Usemame: Administrator Exclusive edit mode
—

#DefaultComponent ®, DefaultConfig

https://sites.google.com/site/umtgTestGen/

89

Case Study

e BodySense, embedded system for detecting occupancy

status in a car W
IEE r |

e Evaluation:

e Cost of additional modelling

e Effectiveness in terms of covered scenarios
compared to current practice at IEE

e Keep in mind changes and repeated testing

90

Costs of Additional Modeling

Use Case Steps Use Case OCL
Flows Constraints
UC1 50 8 9
UC2 44 13 7
UC3 35 8 8
UC4 59 11 12
UC5 30 8 5
UC6 25 6 12

5 to 10 minutes to write each constraints
=> A maximum of 10 hours in total

il

Generating OCL Constraints

* May be a challenge in practice

* NLP: Semantic Role Labeling

* Determine the role of words in a sentence
(e.g., affected actor)

» Match words with corresponding concepts in
the domain model

* (Generate an OCL formula

92

Semantic Role Labeling (SRL)

“no error has heen detected”
Al ¥ verb

Error.allinstances()->forAll(i | i.isDetected = false)

AT verb
AO: actor that performs A1: actor that is affected by the
an activity activity described in a sentence

“The system detects temperature errors
AO verh o Al

TemperatureError.allinstances()->forAll(i | i.isDetected = true)

A verb

40

35

30

25

20

15

10

Effectiveness: scenarios covered

It is hard for engineers to capture
100%

all the possible scenarios

involving error conditions.

100%

86%

100%

100%

100% I
|
00% 100°
Bl mEm B o

UC2 UC3 UC4 UC5 UC6
B Scenarios Covered By UMTG

90%

=
] e T RS PR A S

B Scenarios Covered By Engineer 94

Supporting Product Lines and
Requirements Configuration
in Use-Case Driven Development

Configuring Requirements

Many software systems are part of product
families targeting varying needs among multiple
customers

Requirements typically need to be tailored or
configured for each customer

Because of interdependencies among such
decisions, this is often error-prone and complex
How do we support this with natural language
requirements?

96

Context

|[EE develops real-time embedded systems:

* Automotive safety sensing systems

* Automotive comfort & convenience systems,
e.g., Smart Trunk Opener

JIEE

International Electronics
& Engineering (IEE)

97

Smart Trunk Opener (STO)

STO Provides automatic and hands-free access to a vehicle’s
trunk (based on a keyless entry system) iEE

98

Jse ase Diagram

A

Une Cane

Use Cone

IEE Requirements Engineering

Use Case
Diagram

Ut Cone

Use Case

Use Case-Driven
Development

o e

e Cane

Domain
~ Model

e Orimg Zhopem /

Wels Ut Canbwem

| - C
Bgn_a Sung (d)

paawvort: Sng 1
was LheSwn

a Saeg 2
scdress Adcheas
phorw More
orwd 2wy

1 Pepromd
1 0." a2 sawg ()
— anc Cuw
Accourt oo Raed
Sotahy ey
, " Sewg)
@ Vs foken * (wowed ump el

o 0ot Roskeos

e Cuw
dosect Dute | o
2. [’ R

| Crier
Shopping Can
e Sawyg |4
cated Cwa s Cus !
wgpad Juk
e Adceeas
vty OrderBehn

A Mow
Liwidean 1
* frtered ugue) | ety g * jartered wiue)
pice Price
N ey . ey SAOUTERCE »
"
Seoa
1 Mok
Dot
Prowhat Dodvvwed
o)
o g 0

e Sawg

Bgehar Seophet

99

Use Case
Specifications

Use Case ID:

3

Use Case Name:

Deposit check

Actors:

Customer

Description:

Deposit cash without using ATM card by using E-Card system.

Preconditions:

1- The Customer has an activated E-Bank username and password.
2- The agreement should be signed by the customer.
3- The check must be valid.

Postconditions:

1- Customer account balance is increased by the amount of the deposit check.

Normal Flow:

1- Openthe application.
2- The application shows welcome screen.
3- Logintothe application.
4- Choose the account.
5- Choose the transaction then deposit check service.
6- Enter the amount of money of the check and submit it.
7- Receiving the barcode.
8- Scan the barcode.
9- Insert the check into the ATM machine.
10- Receive notification.
11- 11- Log out of the application.

Alternative Flows:

7a. ifthe customer didn't receive the barcode :

4- Customer will click on the get barcode bottom.
5- Bank sends a new barcode.

6- Use case resumes on step 8 of normal flow.

9a. ifthe ATM didn't accept the check:
3- Reenter the check into the ATM.
4- Use case resumes on step 9 of normal flow.

Exceptions:

8a. In step 8 of the normal flow, if the customer cannot scan the barcode
4- Transaction is disapproved
5- Customer rescan the barcode correctly

6- Use Case resumes on step 9 of normal flow.

Dealing with Multiple Customers

'STO Requirements\
from Customer A

modify

STO Requirements)

evolves to from Customer B

modify

@ Requi
evolves to from Customer C

-
-

»| (Use Case Diagram

(Use Case Diagram
and Specifications,
.and Domain Model)

and Specifications,
.and Domain Model)

(clone-and-own)

(clone-and-own)

\.

rQ

(Use Case Diagram
and Specifications,
and Domain Model)

modify

evolves to

r)

Customer C
for STO

N

STO Test Cases for
Customer C

(

N f f A
| |
o o
| |
Customer A Customer B
for STO for STO
modify
4 N\ ()
STO Test Cases for | evolves to STO Test Cases for
Customer A (clone-and-own) Customer B
_ J .

) (clone-and-own)

100

Product Line Approach

A Product Line approach tailored to practice and with
minimal overhead (adoption)

Restricted and analyzable use case specifications
(RUCM)

No feature modeling!

Variability modeling in use case diagrams and
specifications

Automated configuration guidance for configuring
requirements with each customer

Automated generation of product-specific use case
models based on decisions

101

evolves

Product-Lin

Use Cases And

Domain Model

Identify
Commonalities and v Gonfigurator
Variabilities P
Qnt‘i‘" reconfigure
reconfigure configure

evolves
Use Cases And Use Cases And Use Cases A
Domain Model Domain Model Domain Model

Customer A Customer B Customer G
for Product X for Product X for Product X

102

roduct Line Use Case Diagram for
STO (Partial)

STO System

Sensors

d

STO Controller

Tester

<<include>>

-— -
g =
—

Recognize
Gesture

_~ <<include>>

rovide System
Operating
Status

Clearing
Error Status

Identify System
Operating
Status

<<include>>

Storing Error
Status

-

Y 0.1

<<Variant>>

—_—

Clear Error

Provide System
User Data

<<include>>

Method of
Providing
Data

<<Variant>>
Provide System User
Data via Diagnostic
Mode

<<Variant>>

Data via IEE QC
Mode

Provide System User

<<Variant>>
Store Error
Status

<<include>> -

<<Variant>>

Clear Error Status

via Diagnostic
Mode

Provide System User

Method of
Clearing
Error Status

P 1..1

<<Variant>>
Clear Error Status
via |[EE QC Mode

<<Variant>>

Data via Standard
Mode

103

Example Variability Extension

» Keyword: INCLUDE VARIATION POINT: ...

e Inclusion of variation points in basic or alternative flows of
Lse cases:

Use Case: Identify System Operating Status

Basic Flow

1. The system VALIDATES THAT the watchdog reset is valid.

2. The system VALIDATES THAT the RAM is valid.

3. The system VALIDATES THAT the sensors are valid.

4. The system VALIDATES THAT there is no error detected.
Specific Alternative Flow

RFS 4

1. INCLUDE VARIATION POINT: Storing Error Status.
2. ABORT.

104

Results

e Tool Support (PUMConf): https://sites.google.com/site/pumconf/
e NLP is a key instrument

e Positive feedback from engineers, both about the modeling
approach and configuration tool

e They confirmed they benefited from:

e Understanding the commonalities and differences across product requirements

o Automated guidance in a configuration that is often complex, i.e., many
(interdependent) decisions
105

Discussion

RE Applications

Requirements to support a shared understanding
among many stakeholders in large projects, e.g.,
software engineers and domain experts
Requirements as contract with customers
Requirements to support compliance with
standards, e.g., traceability to tests
Requirements to support quality assurance, e.g.,
system testing

Requirements to support change control
Requirements to support product-line
configuration

107

Forms of Requirements

Natural language statements, complying or
not with templates

Use case stories, following various templates
Use case specifications, possibly structured
and restricted

Mixing models and NL, e.g., class and activity
diagrams

108

The best form of requirements depends on
context, but in most cases significant
information is captured in natural language

109

Contextual Factors

No “right” way to express requirements

Domain complexity and criticality

Regulatory compliance, e.g., standards

Project size, team distribution, and number of
stakeholders

Background of stakeholders and communication
challenges

Presence of product lines with multiple customers
Importance of early contractual agreement
Frequency and consequences of changes in
requirements

110

Automation is required to justify the cost of
rigorous requirements engineering

11

In most cases, we don’t have practical and
scalable automation solutions

112

Conclusions

NLP technology now provides many
opportunities for automation

But more attention to NL requirements
analysis Is needed in research

Many applications, diversity of contexts and
types of requirements

Account for practicality and scalability
More (reported) industrial experiences, as
working assumptions play a key role

113

Acknowledgements

Mehrdad Sabetzadeh
Chetan Arora
Fabrizio Pastore
Chunhui Wang

Arda Goknil

Ines Hajri

Shiva Nejati

114

AT

securityandtrust.lu

Analyzing Natural-Language Requirements:

Industrial Needs and Scalable Solutions

UU/SIKS Symposium on Natural Language in Requirements Engineering, 30 November 2017

Lionel Briand “ '" I"

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

Natural Language Requirements

o [TSE 2017] C. Arora et al., Automated Extraction and Clustering of Requirements Glossary Terms

o [MODELS 2016] C. Arora et al., Extracting Domain Models from Natural-Language Requirements: Approach and
Industrial Evaluation

» [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP Approach

o [TSE 2015] C. Arora et al., Automated Checking of Conformance to Requirements Templates using Natural Language
Processing

Requirements-Driven Testing

o [ISSTA 2015] C. Wang et al., Automatic Generation of System Test Cases from Use Case Specifications
o [ICST 2017] C. Wang et al., System Testing of Timing Requirements based on Use Cases and Timed Automata

o [Submitted] C. Wang et al., Automated Generation of Constraints from Use Case Specifications to Support System
Testing

116

Product Families and Configuration

o [MODELS 2015] 1. Hajri et al., Applying Product Line Use Case Modeling in an Industrial
Automotive Embedded System: Lessons Learned and a Refined Approach

o [SoSYM 2016] I. Hajri et al., A Requirements Configuration Approach and Tool for Use Case-Driven
Development

Impact Analysis

o [FSE 2016] S. Nejati et al., Automated Change Impact Analysis between SysML Models of
Requirements and Design

e [RE 2015] C. Arora et al., Change Impact Analysis for Natural Language Requirements: An NLP
Approach

117

